1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/verification.h>
26 #include <linux/namei.h>
27 
28 #include <net/bpf_sk_storage.h>
29 
30 #include <uapi/linux/bpf.h>
31 #include <uapi/linux/btf.h>
32 
33 #include <asm/tlb.h>
34 
35 #include "trace_probe.h"
36 #include "trace.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include "bpf_trace.h"
40 
41 #define bpf_event_rcu_dereference(p)					\
42 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
43 
44 #define MAX_UPROBE_MULTI_CNT (1U << 20)
45 #define MAX_KPROBE_MULTI_CNT (1U << 20)
46 
47 #ifdef CONFIG_MODULES
48 struct bpf_trace_module {
49 	struct module *module;
50 	struct list_head list;
51 };
52 
53 static LIST_HEAD(bpf_trace_modules);
54 static DEFINE_MUTEX(bpf_module_mutex);
55 
56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 	struct bpf_raw_event_map *btp, *ret = NULL;
59 	struct bpf_trace_module *btm;
60 	unsigned int i;
61 
62 	mutex_lock(&bpf_module_mutex);
63 	list_for_each_entry(btm, &bpf_trace_modules, list) {
64 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
65 			btp = &btm->module->bpf_raw_events[i];
66 			if (!strcmp(btp->tp->name, name)) {
67 				if (try_module_get(btm->module))
68 					ret = btp;
69 				goto out;
70 			}
71 		}
72 	}
73 out:
74 	mutex_unlock(&bpf_module_mutex);
75 	return ret;
76 }
77 #else
78 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
79 {
80 	return NULL;
81 }
82 #endif /* CONFIG_MODULES */
83 
84 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
85 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
86 
87 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
88 				  u64 flags, const struct btf **btf,
89 				  s32 *btf_id);
90 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
91 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
92 
93 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx);
94 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
95 
96 /**
97  * trace_call_bpf - invoke BPF program
98  * @call: tracepoint event
99  * @ctx: opaque context pointer
100  *
101  * kprobe handlers execute BPF programs via this helper.
102  * Can be used from static tracepoints in the future.
103  *
104  * Return: BPF programs always return an integer which is interpreted by
105  * kprobe handler as:
106  * 0 - return from kprobe (event is filtered out)
107  * 1 - store kprobe event into ring buffer
108  * Other values are reserved and currently alias to 1
109  */
110 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
111 {
112 	unsigned int ret;
113 
114 	cant_sleep();
115 
116 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
117 		/*
118 		 * since some bpf program is already running on this cpu,
119 		 * don't call into another bpf program (same or different)
120 		 * and don't send kprobe event into ring-buffer,
121 		 * so return zero here
122 		 */
123 		rcu_read_lock();
124 		bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array));
125 		rcu_read_unlock();
126 		ret = 0;
127 		goto out;
128 	}
129 
130 	/*
131 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
132 	 * to all call sites, we did a bpf_prog_array_valid() there to check
133 	 * whether call->prog_array is empty or not, which is
134 	 * a heuristic to speed up execution.
135 	 *
136 	 * If bpf_prog_array_valid() fetched prog_array was
137 	 * non-NULL, we go into trace_call_bpf() and do the actual
138 	 * proper rcu_dereference() under RCU lock.
139 	 * If it turns out that prog_array is NULL then, we bail out.
140 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
141 	 * was NULL, you'll skip the prog_array with the risk of missing
142 	 * out of events when it was updated in between this and the
143 	 * rcu_dereference() which is accepted risk.
144 	 */
145 	rcu_read_lock();
146 	ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
147 				 ctx, bpf_prog_run);
148 	rcu_read_unlock();
149 
150  out:
151 	__this_cpu_dec(bpf_prog_active);
152 
153 	return ret;
154 }
155 
156 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
157 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
158 {
159 	regs_set_return_value(regs, rc);
160 	override_function_with_return(regs);
161 	return 0;
162 }
163 
164 static const struct bpf_func_proto bpf_override_return_proto = {
165 	.func		= bpf_override_return,
166 	.gpl_only	= true,
167 	.ret_type	= RET_INTEGER,
168 	.arg1_type	= ARG_PTR_TO_CTX,
169 	.arg2_type	= ARG_ANYTHING,
170 };
171 #endif
172 
173 static __always_inline int
174 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
175 {
176 	int ret;
177 
178 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
179 	if (unlikely(ret < 0))
180 		memset(dst, 0, size);
181 	return ret;
182 }
183 
184 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
185 	   const void __user *, unsafe_ptr)
186 {
187 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
188 }
189 
190 const struct bpf_func_proto bpf_probe_read_user_proto = {
191 	.func		= bpf_probe_read_user,
192 	.gpl_only	= true,
193 	.ret_type	= RET_INTEGER,
194 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
195 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
196 	.arg3_type	= ARG_ANYTHING,
197 };
198 
199 static __always_inline int
200 bpf_probe_read_user_str_common(void *dst, u32 size,
201 			       const void __user *unsafe_ptr)
202 {
203 	int ret;
204 
205 	/*
206 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
207 	 * terminator into `dst`.
208 	 *
209 	 * strncpy_from_user() does long-sized strides in the fast path. If the
210 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
211 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
212 	 * and keys a hash map with it, then semantically identical strings can
213 	 * occupy multiple entries in the map.
214 	 */
215 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
216 	if (unlikely(ret < 0))
217 		memset(dst, 0, size);
218 	return ret;
219 }
220 
221 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
222 	   const void __user *, unsafe_ptr)
223 {
224 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
225 }
226 
227 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
228 	.func		= bpf_probe_read_user_str,
229 	.gpl_only	= true,
230 	.ret_type	= RET_INTEGER,
231 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
232 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
233 	.arg3_type	= ARG_ANYTHING,
234 };
235 
236 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
237 	   const void *, unsafe_ptr)
238 {
239 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
240 }
241 
242 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
243 	.func		= bpf_probe_read_kernel,
244 	.gpl_only	= true,
245 	.ret_type	= RET_INTEGER,
246 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
247 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
248 	.arg3_type	= ARG_ANYTHING,
249 };
250 
251 static __always_inline int
252 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
253 {
254 	int ret;
255 
256 	/*
257 	 * The strncpy_from_kernel_nofault() call will likely not fill the
258 	 * entire buffer, but that's okay in this circumstance as we're probing
259 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
260 	 * as well probe the stack. Thus, memory is explicitly cleared
261 	 * only in error case, so that improper users ignoring return
262 	 * code altogether don't copy garbage; otherwise length of string
263 	 * is returned that can be used for bpf_perf_event_output() et al.
264 	 */
265 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
266 	if (unlikely(ret < 0))
267 		memset(dst, 0, size);
268 	return ret;
269 }
270 
271 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
272 	   const void *, unsafe_ptr)
273 {
274 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
275 }
276 
277 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
278 	.func		= bpf_probe_read_kernel_str,
279 	.gpl_only	= true,
280 	.ret_type	= RET_INTEGER,
281 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
282 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
283 	.arg3_type	= ARG_ANYTHING,
284 };
285 
286 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
287 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
288 	   const void *, unsafe_ptr)
289 {
290 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
291 		return bpf_probe_read_user_common(dst, size,
292 				(__force void __user *)unsafe_ptr);
293 	}
294 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
295 }
296 
297 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
298 	.func		= bpf_probe_read_compat,
299 	.gpl_only	= true,
300 	.ret_type	= RET_INTEGER,
301 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
302 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
303 	.arg3_type	= ARG_ANYTHING,
304 };
305 
306 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
307 	   const void *, unsafe_ptr)
308 {
309 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
310 		return bpf_probe_read_user_str_common(dst, size,
311 				(__force void __user *)unsafe_ptr);
312 	}
313 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
314 }
315 
316 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
317 	.func		= bpf_probe_read_compat_str,
318 	.gpl_only	= true,
319 	.ret_type	= RET_INTEGER,
320 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
321 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
322 	.arg3_type	= ARG_ANYTHING,
323 };
324 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
325 
326 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
327 	   u32, size)
328 {
329 	/*
330 	 * Ensure we're in user context which is safe for the helper to
331 	 * run. This helper has no business in a kthread.
332 	 *
333 	 * access_ok() should prevent writing to non-user memory, but in
334 	 * some situations (nommu, temporary switch, etc) access_ok() does
335 	 * not provide enough validation, hence the check on KERNEL_DS.
336 	 *
337 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
338 	 * state, when the task or mm are switched. This is specifically
339 	 * required to prevent the use of temporary mm.
340 	 */
341 
342 	if (unlikely(in_interrupt() ||
343 		     current->flags & (PF_KTHREAD | PF_EXITING)))
344 		return -EPERM;
345 	if (unlikely(!nmi_uaccess_okay()))
346 		return -EPERM;
347 
348 	return copy_to_user_nofault(unsafe_ptr, src, size);
349 }
350 
351 static const struct bpf_func_proto bpf_probe_write_user_proto = {
352 	.func		= bpf_probe_write_user,
353 	.gpl_only	= true,
354 	.ret_type	= RET_INTEGER,
355 	.arg1_type	= ARG_ANYTHING,
356 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
357 	.arg3_type	= ARG_CONST_SIZE,
358 };
359 
360 #define MAX_TRACE_PRINTK_VARARGS	3
361 #define BPF_TRACE_PRINTK_SIZE		1024
362 
363 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
364 	   u64, arg2, u64, arg3)
365 {
366 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
367 	struct bpf_bprintf_data data = {
368 		.get_bin_args	= true,
369 		.get_buf	= true,
370 	};
371 	int ret;
372 
373 	ret = bpf_bprintf_prepare(fmt, fmt_size, args,
374 				  MAX_TRACE_PRINTK_VARARGS, &data);
375 	if (ret < 0)
376 		return ret;
377 
378 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
379 
380 	trace_bpf_trace_printk(data.buf);
381 
382 	bpf_bprintf_cleanup(&data);
383 
384 	return ret;
385 }
386 
387 static const struct bpf_func_proto bpf_trace_printk_proto = {
388 	.func		= bpf_trace_printk,
389 	.gpl_only	= true,
390 	.ret_type	= RET_INTEGER,
391 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
392 	.arg2_type	= ARG_CONST_SIZE,
393 };
394 
395 static void __set_printk_clr_event(struct work_struct *work)
396 {
397 	/*
398 	 * This program might be calling bpf_trace_printk,
399 	 * so enable the associated bpf_trace/bpf_trace_printk event.
400 	 * Repeat this each time as it is possible a user has
401 	 * disabled bpf_trace_printk events.  By loading a program
402 	 * calling bpf_trace_printk() however the user has expressed
403 	 * the intent to see such events.
404 	 */
405 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
406 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
407 }
408 static DECLARE_WORK(set_printk_work, __set_printk_clr_event);
409 
410 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
411 {
412 	schedule_work(&set_printk_work);
413 	return &bpf_trace_printk_proto;
414 }
415 
416 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
417 	   u32, data_len)
418 {
419 	struct bpf_bprintf_data data = {
420 		.get_bin_args	= true,
421 		.get_buf	= true,
422 	};
423 	int ret, num_args;
424 
425 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
426 	    (data_len && !args))
427 		return -EINVAL;
428 	num_args = data_len / 8;
429 
430 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
431 	if (ret < 0)
432 		return ret;
433 
434 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
435 
436 	trace_bpf_trace_printk(data.buf);
437 
438 	bpf_bprintf_cleanup(&data);
439 
440 	return ret;
441 }
442 
443 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
444 	.func		= bpf_trace_vprintk,
445 	.gpl_only	= true,
446 	.ret_type	= RET_INTEGER,
447 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
448 	.arg2_type	= ARG_CONST_SIZE,
449 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
450 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
451 };
452 
453 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
454 {
455 	schedule_work(&set_printk_work);
456 	return &bpf_trace_vprintk_proto;
457 }
458 
459 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
460 	   const void *, args, u32, data_len)
461 {
462 	struct bpf_bprintf_data data = {
463 		.get_bin_args	= true,
464 	};
465 	int err, num_args;
466 
467 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
468 	    (data_len && !args))
469 		return -EINVAL;
470 	num_args = data_len / 8;
471 
472 	err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
473 	if (err < 0)
474 		return err;
475 
476 	seq_bprintf(m, fmt, data.bin_args);
477 
478 	bpf_bprintf_cleanup(&data);
479 
480 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
481 }
482 
483 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
484 
485 static const struct bpf_func_proto bpf_seq_printf_proto = {
486 	.func		= bpf_seq_printf,
487 	.gpl_only	= true,
488 	.ret_type	= RET_INTEGER,
489 	.arg1_type	= ARG_PTR_TO_BTF_ID,
490 	.arg1_btf_id	= &btf_seq_file_ids[0],
491 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
492 	.arg3_type	= ARG_CONST_SIZE,
493 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
494 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
495 };
496 
497 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
498 {
499 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
500 }
501 
502 static const struct bpf_func_proto bpf_seq_write_proto = {
503 	.func		= bpf_seq_write,
504 	.gpl_only	= true,
505 	.ret_type	= RET_INTEGER,
506 	.arg1_type	= ARG_PTR_TO_BTF_ID,
507 	.arg1_btf_id	= &btf_seq_file_ids[0],
508 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
509 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
510 };
511 
512 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
513 	   u32, btf_ptr_size, u64, flags)
514 {
515 	const struct btf *btf;
516 	s32 btf_id;
517 	int ret;
518 
519 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
520 	if (ret)
521 		return ret;
522 
523 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
524 }
525 
526 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
527 	.func		= bpf_seq_printf_btf,
528 	.gpl_only	= true,
529 	.ret_type	= RET_INTEGER,
530 	.arg1_type	= ARG_PTR_TO_BTF_ID,
531 	.arg1_btf_id	= &btf_seq_file_ids[0],
532 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
533 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
534 	.arg4_type	= ARG_ANYTHING,
535 };
536 
537 static __always_inline int
538 get_map_perf_counter(struct bpf_map *map, u64 flags,
539 		     u64 *value, u64 *enabled, u64 *running)
540 {
541 	struct bpf_array *array = container_of(map, struct bpf_array, map);
542 	unsigned int cpu = smp_processor_id();
543 	u64 index = flags & BPF_F_INDEX_MASK;
544 	struct bpf_event_entry *ee;
545 
546 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
547 		return -EINVAL;
548 	if (index == BPF_F_CURRENT_CPU)
549 		index = cpu;
550 	if (unlikely(index >= array->map.max_entries))
551 		return -E2BIG;
552 
553 	ee = READ_ONCE(array->ptrs[index]);
554 	if (!ee)
555 		return -ENOENT;
556 
557 	return perf_event_read_local(ee->event, value, enabled, running);
558 }
559 
560 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
561 {
562 	u64 value = 0;
563 	int err;
564 
565 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
566 	/*
567 	 * this api is ugly since we miss [-22..-2] range of valid
568 	 * counter values, but that's uapi
569 	 */
570 	if (err)
571 		return err;
572 	return value;
573 }
574 
575 const struct bpf_func_proto bpf_perf_event_read_proto = {
576 	.func		= bpf_perf_event_read,
577 	.gpl_only	= true,
578 	.ret_type	= RET_INTEGER,
579 	.arg1_type	= ARG_CONST_MAP_PTR,
580 	.arg2_type	= ARG_ANYTHING,
581 };
582 
583 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
584 	   struct bpf_perf_event_value *, buf, u32, size)
585 {
586 	int err = -EINVAL;
587 
588 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
589 		goto clear;
590 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
591 				   &buf->running);
592 	if (unlikely(err))
593 		goto clear;
594 	return 0;
595 clear:
596 	memset(buf, 0, size);
597 	return err;
598 }
599 
600 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
601 	.func		= bpf_perf_event_read_value,
602 	.gpl_only	= true,
603 	.ret_type	= RET_INTEGER,
604 	.arg1_type	= ARG_CONST_MAP_PTR,
605 	.arg2_type	= ARG_ANYTHING,
606 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
607 	.arg4_type	= ARG_CONST_SIZE,
608 };
609 
610 const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void)
611 {
612 	return &bpf_perf_event_read_value_proto;
613 }
614 
615 static __always_inline u64
616 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
617 			u64 flags, struct perf_raw_record *raw,
618 			struct perf_sample_data *sd)
619 {
620 	struct bpf_array *array = container_of(map, struct bpf_array, map);
621 	unsigned int cpu = smp_processor_id();
622 	u64 index = flags & BPF_F_INDEX_MASK;
623 	struct bpf_event_entry *ee;
624 	struct perf_event *event;
625 
626 	if (index == BPF_F_CURRENT_CPU)
627 		index = cpu;
628 	if (unlikely(index >= array->map.max_entries))
629 		return -E2BIG;
630 
631 	ee = READ_ONCE(array->ptrs[index]);
632 	if (!ee)
633 		return -ENOENT;
634 
635 	event = ee->event;
636 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
637 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
638 		return -EINVAL;
639 
640 	if (unlikely(event->oncpu != cpu))
641 		return -EOPNOTSUPP;
642 
643 	perf_sample_save_raw_data(sd, event, raw);
644 
645 	return perf_event_output(event, sd, regs);
646 }
647 
648 /*
649  * Support executing tracepoints in normal, irq, and nmi context that each call
650  * bpf_perf_event_output
651  */
652 struct bpf_trace_sample_data {
653 	struct perf_sample_data sds[3];
654 };
655 
656 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
657 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
658 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
659 	   u64, flags, void *, data, u64, size)
660 {
661 	struct bpf_trace_sample_data *sds;
662 	struct perf_raw_record raw = {
663 		.frag = {
664 			.size = size,
665 			.data = data,
666 		},
667 	};
668 	struct perf_sample_data *sd;
669 	int nest_level, err;
670 
671 	preempt_disable();
672 	sds = this_cpu_ptr(&bpf_trace_sds);
673 	nest_level = this_cpu_inc_return(bpf_trace_nest_level);
674 
675 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
676 		err = -EBUSY;
677 		goto out;
678 	}
679 
680 	sd = &sds->sds[nest_level - 1];
681 
682 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
683 		err = -EINVAL;
684 		goto out;
685 	}
686 
687 	perf_sample_data_init(sd, 0, 0);
688 
689 	err = __bpf_perf_event_output(regs, map, flags, &raw, sd);
690 out:
691 	this_cpu_dec(bpf_trace_nest_level);
692 	preempt_enable();
693 	return err;
694 }
695 
696 static const struct bpf_func_proto bpf_perf_event_output_proto = {
697 	.func		= bpf_perf_event_output,
698 	.gpl_only	= true,
699 	.ret_type	= RET_INTEGER,
700 	.arg1_type	= ARG_PTR_TO_CTX,
701 	.arg2_type	= ARG_CONST_MAP_PTR,
702 	.arg3_type	= ARG_ANYTHING,
703 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
704 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
705 };
706 
707 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
708 struct bpf_nested_pt_regs {
709 	struct pt_regs regs[3];
710 };
711 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
712 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
713 
714 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
715 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
716 {
717 	struct perf_raw_frag frag = {
718 		.copy		= ctx_copy,
719 		.size		= ctx_size,
720 		.data		= ctx,
721 	};
722 	struct perf_raw_record raw = {
723 		.frag = {
724 			{
725 				.next	= ctx_size ? &frag : NULL,
726 			},
727 			.size	= meta_size,
728 			.data	= meta,
729 		},
730 	};
731 	struct perf_sample_data *sd;
732 	struct pt_regs *regs;
733 	int nest_level;
734 	u64 ret;
735 
736 	preempt_disable();
737 	nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
738 
739 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
740 		ret = -EBUSY;
741 		goto out;
742 	}
743 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
744 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
745 
746 	perf_fetch_caller_regs(regs);
747 	perf_sample_data_init(sd, 0, 0);
748 
749 	ret = __bpf_perf_event_output(regs, map, flags, &raw, sd);
750 out:
751 	this_cpu_dec(bpf_event_output_nest_level);
752 	preempt_enable();
753 	return ret;
754 }
755 
756 BPF_CALL_0(bpf_get_current_task)
757 {
758 	return (long) current;
759 }
760 
761 const struct bpf_func_proto bpf_get_current_task_proto = {
762 	.func		= bpf_get_current_task,
763 	.gpl_only	= true,
764 	.ret_type	= RET_INTEGER,
765 };
766 
767 BPF_CALL_0(bpf_get_current_task_btf)
768 {
769 	return (unsigned long) current;
770 }
771 
772 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
773 	.func		= bpf_get_current_task_btf,
774 	.gpl_only	= true,
775 	.ret_type	= RET_PTR_TO_BTF_ID_TRUSTED,
776 	.ret_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
777 };
778 
779 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
780 {
781 	return (unsigned long) task_pt_regs(task);
782 }
783 
784 BTF_ID_LIST(bpf_task_pt_regs_ids)
785 BTF_ID(struct, pt_regs)
786 
787 const struct bpf_func_proto bpf_task_pt_regs_proto = {
788 	.func		= bpf_task_pt_regs,
789 	.gpl_only	= true,
790 	.arg1_type	= ARG_PTR_TO_BTF_ID,
791 	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
792 	.ret_type	= RET_PTR_TO_BTF_ID,
793 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
794 };
795 
796 struct send_signal_irq_work {
797 	struct irq_work irq_work;
798 	struct task_struct *task;
799 	u32 sig;
800 	enum pid_type type;
801 	bool has_siginfo;
802 	struct kernel_siginfo info;
803 };
804 
805 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
806 
807 static void do_bpf_send_signal(struct irq_work *entry)
808 {
809 	struct send_signal_irq_work *work;
810 	struct kernel_siginfo *siginfo;
811 
812 	work = container_of(entry, struct send_signal_irq_work, irq_work);
813 	siginfo = work->has_siginfo ? &work->info : SEND_SIG_PRIV;
814 
815 	group_send_sig_info(work->sig, siginfo, work->task, work->type);
816 	put_task_struct(work->task);
817 }
818 
819 static int bpf_send_signal_common(u32 sig, enum pid_type type, struct task_struct *task, u64 value)
820 {
821 	struct send_signal_irq_work *work = NULL;
822 	struct kernel_siginfo info;
823 	struct kernel_siginfo *siginfo;
824 
825 	if (!task) {
826 		task = current;
827 		siginfo = SEND_SIG_PRIV;
828 	} else {
829 		clear_siginfo(&info);
830 		info.si_signo = sig;
831 		info.si_errno = 0;
832 		info.si_code = SI_KERNEL;
833 		info.si_pid = 0;
834 		info.si_uid = 0;
835 		info.si_value.sival_ptr = (void *)(unsigned long)value;
836 		siginfo = &info;
837 	}
838 
839 	/* Similar to bpf_probe_write_user, task needs to be
840 	 * in a sound condition and kernel memory access be
841 	 * permitted in order to send signal to the current
842 	 * task.
843 	 */
844 	if (unlikely(task->flags & (PF_KTHREAD | PF_EXITING)))
845 		return -EPERM;
846 	if (unlikely(!nmi_uaccess_okay()))
847 		return -EPERM;
848 	/* Task should not be pid=1 to avoid kernel panic. */
849 	if (unlikely(is_global_init(task)))
850 		return -EPERM;
851 
852 	if (preempt_count() != 0 || irqs_disabled()) {
853 		/* Do an early check on signal validity. Otherwise,
854 		 * the error is lost in deferred irq_work.
855 		 */
856 		if (unlikely(!valid_signal(sig)))
857 			return -EINVAL;
858 
859 		work = this_cpu_ptr(&send_signal_work);
860 		if (irq_work_is_busy(&work->irq_work))
861 			return -EBUSY;
862 
863 		/* Add the current task, which is the target of sending signal,
864 		 * to the irq_work. The current task may change when queued
865 		 * irq works get executed.
866 		 */
867 		work->task = get_task_struct(task);
868 		work->has_siginfo = siginfo == &info;
869 		if (work->has_siginfo)
870 			copy_siginfo(&work->info, &info);
871 		work->sig = sig;
872 		work->type = type;
873 		irq_work_queue(&work->irq_work);
874 		return 0;
875 	}
876 
877 	return group_send_sig_info(sig, siginfo, task, type);
878 }
879 
880 BPF_CALL_1(bpf_send_signal, u32, sig)
881 {
882 	return bpf_send_signal_common(sig, PIDTYPE_TGID, NULL, 0);
883 }
884 
885 const struct bpf_func_proto bpf_send_signal_proto = {
886 	.func		= bpf_send_signal,
887 	.gpl_only	= false,
888 	.ret_type	= RET_INTEGER,
889 	.arg1_type	= ARG_ANYTHING,
890 };
891 
892 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
893 {
894 	return bpf_send_signal_common(sig, PIDTYPE_PID, NULL, 0);
895 }
896 
897 const struct bpf_func_proto bpf_send_signal_thread_proto = {
898 	.func		= bpf_send_signal_thread,
899 	.gpl_only	= false,
900 	.ret_type	= RET_INTEGER,
901 	.arg1_type	= ARG_ANYTHING,
902 };
903 
904 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
905 {
906 	struct path copy;
907 	long len;
908 	char *p;
909 
910 	if (!sz)
911 		return 0;
912 
913 	/*
914 	 * The path pointer is verified as trusted and safe to use,
915 	 * but let's double check it's valid anyway to workaround
916 	 * potentially broken verifier.
917 	 */
918 	len = copy_from_kernel_nofault(&copy, path, sizeof(*path));
919 	if (len < 0)
920 		return len;
921 
922 	p = d_path(&copy, buf, sz);
923 	if (IS_ERR(p)) {
924 		len = PTR_ERR(p);
925 	} else {
926 		len = buf + sz - p;
927 		memmove(buf, p, len);
928 	}
929 
930 	return len;
931 }
932 
933 BTF_SET_START(btf_allowlist_d_path)
934 #ifdef CONFIG_SECURITY
935 BTF_ID(func, security_file_permission)
936 BTF_ID(func, security_inode_getattr)
937 BTF_ID(func, security_file_open)
938 #endif
939 #ifdef CONFIG_SECURITY_PATH
940 BTF_ID(func, security_path_truncate)
941 #endif
942 BTF_ID(func, vfs_truncate)
943 BTF_ID(func, vfs_fallocate)
944 BTF_ID(func, dentry_open)
945 BTF_ID(func, vfs_getattr)
946 BTF_ID(func, filp_close)
947 BTF_SET_END(btf_allowlist_d_path)
948 
949 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
950 {
951 	if (prog->type == BPF_PROG_TYPE_TRACING &&
952 	    prog->expected_attach_type == BPF_TRACE_ITER)
953 		return true;
954 
955 	if (prog->type == BPF_PROG_TYPE_LSM)
956 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
957 
958 	return btf_id_set_contains(&btf_allowlist_d_path,
959 				   prog->aux->attach_btf_id);
960 }
961 
962 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
963 
964 static const struct bpf_func_proto bpf_d_path_proto = {
965 	.func		= bpf_d_path,
966 	.gpl_only	= false,
967 	.ret_type	= RET_INTEGER,
968 	.arg1_type	= ARG_PTR_TO_BTF_ID,
969 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
970 	.arg2_type	= ARG_PTR_TO_MEM,
971 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
972 	.allowed	= bpf_d_path_allowed,
973 };
974 
975 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
976 			 BTF_F_PTR_RAW | BTF_F_ZERO)
977 
978 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
979 				  u64 flags, const struct btf **btf,
980 				  s32 *btf_id)
981 {
982 	const struct btf_type *t;
983 
984 	if (unlikely(flags & ~(BTF_F_ALL)))
985 		return -EINVAL;
986 
987 	if (btf_ptr_size != sizeof(struct btf_ptr))
988 		return -EINVAL;
989 
990 	*btf = bpf_get_btf_vmlinux();
991 
992 	if (IS_ERR_OR_NULL(*btf))
993 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
994 
995 	if (ptr->type_id > 0)
996 		*btf_id = ptr->type_id;
997 	else
998 		return -EINVAL;
999 
1000 	if (*btf_id > 0)
1001 		t = btf_type_by_id(*btf, *btf_id);
1002 	if (*btf_id <= 0 || !t)
1003 		return -ENOENT;
1004 
1005 	return 0;
1006 }
1007 
1008 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1009 	   u32, btf_ptr_size, u64, flags)
1010 {
1011 	const struct btf *btf;
1012 	s32 btf_id;
1013 	int ret;
1014 
1015 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1016 	if (ret)
1017 		return ret;
1018 
1019 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1020 				      flags);
1021 }
1022 
1023 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1024 	.func		= bpf_snprintf_btf,
1025 	.gpl_only	= false,
1026 	.ret_type	= RET_INTEGER,
1027 	.arg1_type	= ARG_PTR_TO_MEM,
1028 	.arg2_type	= ARG_CONST_SIZE,
1029 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1030 	.arg4_type	= ARG_CONST_SIZE,
1031 	.arg5_type	= ARG_ANYTHING,
1032 };
1033 
1034 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1035 {
1036 	/* This helper call is inlined by verifier. */
1037 	return ((u64 *)ctx)[-2];
1038 }
1039 
1040 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1041 	.func		= bpf_get_func_ip_tracing,
1042 	.gpl_only	= true,
1043 	.ret_type	= RET_INTEGER,
1044 	.arg1_type	= ARG_PTR_TO_CTX,
1045 };
1046 
1047 static inline unsigned long get_entry_ip(unsigned long fentry_ip)
1048 {
1049 #ifdef CONFIG_X86_KERNEL_IBT
1050 	if (is_endbr((void *)(fentry_ip - ENDBR_INSN_SIZE)))
1051 		fentry_ip -= ENDBR_INSN_SIZE;
1052 #endif
1053 	return fentry_ip;
1054 }
1055 
1056 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1057 {
1058 	struct bpf_trace_run_ctx *run_ctx __maybe_unused;
1059 	struct kprobe *kp;
1060 
1061 #ifdef CONFIG_UPROBES
1062 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1063 	if (run_ctx->is_uprobe)
1064 		return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr;
1065 #endif
1066 
1067 	kp = kprobe_running();
1068 
1069 	if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1070 		return 0;
1071 
1072 	return get_entry_ip((uintptr_t)kp->addr);
1073 }
1074 
1075 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1076 	.func		= bpf_get_func_ip_kprobe,
1077 	.gpl_only	= true,
1078 	.ret_type	= RET_INTEGER,
1079 	.arg1_type	= ARG_PTR_TO_CTX,
1080 };
1081 
1082 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1083 {
1084 	return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1085 }
1086 
1087 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1088 	.func		= bpf_get_func_ip_kprobe_multi,
1089 	.gpl_only	= false,
1090 	.ret_type	= RET_INTEGER,
1091 	.arg1_type	= ARG_PTR_TO_CTX,
1092 };
1093 
1094 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1095 {
1096 	return bpf_kprobe_multi_cookie(current->bpf_ctx);
1097 }
1098 
1099 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1100 	.func		= bpf_get_attach_cookie_kprobe_multi,
1101 	.gpl_only	= false,
1102 	.ret_type	= RET_INTEGER,
1103 	.arg1_type	= ARG_PTR_TO_CTX,
1104 };
1105 
1106 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs)
1107 {
1108 	return bpf_uprobe_multi_entry_ip(current->bpf_ctx);
1109 }
1110 
1111 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = {
1112 	.func		= bpf_get_func_ip_uprobe_multi,
1113 	.gpl_only	= false,
1114 	.ret_type	= RET_INTEGER,
1115 	.arg1_type	= ARG_PTR_TO_CTX,
1116 };
1117 
1118 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs)
1119 {
1120 	return bpf_uprobe_multi_cookie(current->bpf_ctx);
1121 }
1122 
1123 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = {
1124 	.func		= bpf_get_attach_cookie_uprobe_multi,
1125 	.gpl_only	= false,
1126 	.ret_type	= RET_INTEGER,
1127 	.arg1_type	= ARG_PTR_TO_CTX,
1128 };
1129 
1130 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1131 {
1132 	struct bpf_trace_run_ctx *run_ctx;
1133 
1134 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1135 	return run_ctx->bpf_cookie;
1136 }
1137 
1138 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1139 	.func		= bpf_get_attach_cookie_trace,
1140 	.gpl_only	= false,
1141 	.ret_type	= RET_INTEGER,
1142 	.arg1_type	= ARG_PTR_TO_CTX,
1143 };
1144 
1145 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1146 {
1147 	return ctx->event->bpf_cookie;
1148 }
1149 
1150 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1151 	.func		= bpf_get_attach_cookie_pe,
1152 	.gpl_only	= false,
1153 	.ret_type	= RET_INTEGER,
1154 	.arg1_type	= ARG_PTR_TO_CTX,
1155 };
1156 
1157 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1158 {
1159 	struct bpf_trace_run_ctx *run_ctx;
1160 
1161 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1162 	return run_ctx->bpf_cookie;
1163 }
1164 
1165 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1166 	.func		= bpf_get_attach_cookie_tracing,
1167 	.gpl_only	= false,
1168 	.ret_type	= RET_INTEGER,
1169 	.arg1_type	= ARG_PTR_TO_CTX,
1170 };
1171 
1172 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1173 {
1174 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1175 	u32 entry_cnt = size / br_entry_size;
1176 
1177 	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1178 
1179 	if (unlikely(flags))
1180 		return -EINVAL;
1181 
1182 	if (!entry_cnt)
1183 		return -ENOENT;
1184 
1185 	return entry_cnt * br_entry_size;
1186 }
1187 
1188 const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1189 	.func		= bpf_get_branch_snapshot,
1190 	.gpl_only	= true,
1191 	.ret_type	= RET_INTEGER,
1192 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1193 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1194 };
1195 
1196 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1197 {
1198 	/* This helper call is inlined by verifier. */
1199 	u64 nr_args = ((u64 *)ctx)[-1];
1200 
1201 	if ((u64) n >= nr_args)
1202 		return -EINVAL;
1203 	*value = ((u64 *)ctx)[n];
1204 	return 0;
1205 }
1206 
1207 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1208 	.func		= get_func_arg,
1209 	.ret_type	= RET_INTEGER,
1210 	.arg1_type	= ARG_PTR_TO_CTX,
1211 	.arg2_type	= ARG_ANYTHING,
1212 	.arg3_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1213 	.arg3_size	= sizeof(u64),
1214 };
1215 
1216 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1217 {
1218 	/* This helper call is inlined by verifier. */
1219 	u64 nr_args = ((u64 *)ctx)[-1];
1220 
1221 	*value = ((u64 *)ctx)[nr_args];
1222 	return 0;
1223 }
1224 
1225 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1226 	.func		= get_func_ret,
1227 	.ret_type	= RET_INTEGER,
1228 	.arg1_type	= ARG_PTR_TO_CTX,
1229 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1230 	.arg2_size	= sizeof(u64),
1231 };
1232 
1233 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1234 {
1235 	/* This helper call is inlined by verifier. */
1236 	return ((u64 *)ctx)[-1];
1237 }
1238 
1239 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1240 	.func		= get_func_arg_cnt,
1241 	.ret_type	= RET_INTEGER,
1242 	.arg1_type	= ARG_PTR_TO_CTX,
1243 };
1244 
1245 #ifdef CONFIG_KEYS
1246 __bpf_kfunc_start_defs();
1247 
1248 /**
1249  * bpf_lookup_user_key - lookup a key by its serial
1250  * @serial: key handle serial number
1251  * @flags: lookup-specific flags
1252  *
1253  * Search a key with a given *serial* and the provided *flags*.
1254  * If found, increment the reference count of the key by one, and
1255  * return it in the bpf_key structure.
1256  *
1257  * The bpf_key structure must be passed to bpf_key_put() when done
1258  * with it, so that the key reference count is decremented and the
1259  * bpf_key structure is freed.
1260  *
1261  * Permission checks are deferred to the time the key is used by
1262  * one of the available key-specific kfuncs.
1263  *
1264  * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1265  * special keyring (e.g. session keyring), if it doesn't yet exist.
1266  * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1267  * for the key construction, and to retrieve uninstantiated keys (keys
1268  * without data attached to them).
1269  *
1270  * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1271  *         NULL pointer otherwise.
1272  */
1273 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1274 {
1275 	key_ref_t key_ref;
1276 	struct bpf_key *bkey;
1277 
1278 	if (flags & ~KEY_LOOKUP_ALL)
1279 		return NULL;
1280 
1281 	/*
1282 	 * Permission check is deferred until the key is used, as the
1283 	 * intent of the caller is unknown here.
1284 	 */
1285 	key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1286 	if (IS_ERR(key_ref))
1287 		return NULL;
1288 
1289 	bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1290 	if (!bkey) {
1291 		key_put(key_ref_to_ptr(key_ref));
1292 		return NULL;
1293 	}
1294 
1295 	bkey->key = key_ref_to_ptr(key_ref);
1296 	bkey->has_ref = true;
1297 
1298 	return bkey;
1299 }
1300 
1301 /**
1302  * bpf_lookup_system_key - lookup a key by a system-defined ID
1303  * @id: key ID
1304  *
1305  * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1306  * The key pointer is marked as invalid, to prevent bpf_key_put() from
1307  * attempting to decrement the key reference count on that pointer. The key
1308  * pointer set in such way is currently understood only by
1309  * verify_pkcs7_signature().
1310  *
1311  * Set *id* to one of the values defined in include/linux/verification.h:
1312  * 0 for the primary keyring (immutable keyring of system keys);
1313  * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1314  * (where keys can be added only if they are vouched for by existing keys
1315  * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1316  * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1317  * kerned image and, possibly, the initramfs signature).
1318  *
1319  * Return: a bpf_key pointer with an invalid key pointer set from the
1320  *         pre-determined ID on success, a NULL pointer otherwise
1321  */
1322 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
1323 {
1324 	struct bpf_key *bkey;
1325 
1326 	if (system_keyring_id_check(id) < 0)
1327 		return NULL;
1328 
1329 	bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1330 	if (!bkey)
1331 		return NULL;
1332 
1333 	bkey->key = (struct key *)(unsigned long)id;
1334 	bkey->has_ref = false;
1335 
1336 	return bkey;
1337 }
1338 
1339 /**
1340  * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1341  * @bkey: bpf_key structure
1342  *
1343  * Decrement the reference count of the key inside *bkey*, if the pointer
1344  * is valid, and free *bkey*.
1345  */
1346 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
1347 {
1348 	if (bkey->has_ref)
1349 		key_put(bkey->key);
1350 
1351 	kfree(bkey);
1352 }
1353 
1354 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1355 /**
1356  * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1357  * @data_p: data to verify
1358  * @sig_p: signature of the data
1359  * @trusted_keyring: keyring with keys trusted for signature verification
1360  *
1361  * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1362  * with keys in a keyring referenced by *trusted_keyring*.
1363  *
1364  * Return: 0 on success, a negative value on error.
1365  */
1366 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
1367 			       struct bpf_dynptr *sig_p,
1368 			       struct bpf_key *trusted_keyring)
1369 {
1370 	struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p;
1371 	struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p;
1372 	const void *data, *sig;
1373 	u32 data_len, sig_len;
1374 	int ret;
1375 
1376 	if (trusted_keyring->has_ref) {
1377 		/*
1378 		 * Do the permission check deferred in bpf_lookup_user_key().
1379 		 * See bpf_lookup_user_key() for more details.
1380 		 *
1381 		 * A call to key_task_permission() here would be redundant, as
1382 		 * it is already done by keyring_search() called by
1383 		 * find_asymmetric_key().
1384 		 */
1385 		ret = key_validate(trusted_keyring->key);
1386 		if (ret < 0)
1387 			return ret;
1388 	}
1389 
1390 	data_len = __bpf_dynptr_size(data_ptr);
1391 	data = __bpf_dynptr_data(data_ptr, data_len);
1392 	sig_len = __bpf_dynptr_size(sig_ptr);
1393 	sig = __bpf_dynptr_data(sig_ptr, sig_len);
1394 
1395 	return verify_pkcs7_signature(data, data_len, sig, sig_len,
1396 				      trusted_keyring->key,
1397 				      VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1398 				      NULL);
1399 }
1400 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1401 
1402 __bpf_kfunc_end_defs();
1403 
1404 BTF_KFUNCS_START(key_sig_kfunc_set)
1405 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1406 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1407 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1408 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1409 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1410 #endif
1411 BTF_KFUNCS_END(key_sig_kfunc_set)
1412 
1413 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1414 	.owner = THIS_MODULE,
1415 	.set = &key_sig_kfunc_set,
1416 };
1417 
1418 static int __init bpf_key_sig_kfuncs_init(void)
1419 {
1420 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1421 					 &bpf_key_sig_kfunc_set);
1422 }
1423 
1424 late_initcall(bpf_key_sig_kfuncs_init);
1425 #endif /* CONFIG_KEYS */
1426 
1427 static const struct bpf_func_proto *
1428 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1429 {
1430 	const struct bpf_func_proto *func_proto;
1431 
1432 	switch (func_id) {
1433 	case BPF_FUNC_get_smp_processor_id:
1434 		return &bpf_get_smp_processor_id_proto;
1435 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1436 	case BPF_FUNC_probe_read:
1437 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1438 		       NULL : &bpf_probe_read_compat_proto;
1439 	case BPF_FUNC_probe_read_str:
1440 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1441 		       NULL : &bpf_probe_read_compat_str_proto;
1442 #endif
1443 	case BPF_FUNC_get_func_ip:
1444 		return &bpf_get_func_ip_proto_tracing;
1445 	default:
1446 		break;
1447 	}
1448 
1449 	func_proto = bpf_base_func_proto(func_id, prog);
1450 	if (func_proto)
1451 		return func_proto;
1452 
1453 	if (!bpf_token_capable(prog->aux->token, CAP_SYS_ADMIN))
1454 		return NULL;
1455 
1456 	switch (func_id) {
1457 	case BPF_FUNC_probe_write_user:
1458 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1459 		       NULL : &bpf_probe_write_user_proto;
1460 	default:
1461 		return NULL;
1462 	}
1463 }
1464 
1465 static bool is_kprobe_multi(const struct bpf_prog *prog)
1466 {
1467 	return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ||
1468 	       prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1469 }
1470 
1471 static inline bool is_kprobe_session(const struct bpf_prog *prog)
1472 {
1473 	return prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1474 }
1475 
1476 static inline bool is_uprobe_multi(const struct bpf_prog *prog)
1477 {
1478 	return prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI ||
1479 	       prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1480 }
1481 
1482 static inline bool is_uprobe_session(const struct bpf_prog *prog)
1483 {
1484 	return prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1485 }
1486 
1487 static const struct bpf_func_proto *
1488 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1489 {
1490 	switch (func_id) {
1491 	case BPF_FUNC_perf_event_output:
1492 		return &bpf_perf_event_output_proto;
1493 	case BPF_FUNC_get_stackid:
1494 		return &bpf_get_stackid_proto;
1495 	case BPF_FUNC_get_stack:
1496 		return prog->sleepable ? &bpf_get_stack_sleepable_proto : &bpf_get_stack_proto;
1497 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1498 	case BPF_FUNC_override_return:
1499 		return &bpf_override_return_proto;
1500 #endif
1501 	case BPF_FUNC_get_func_ip:
1502 		if (is_kprobe_multi(prog))
1503 			return &bpf_get_func_ip_proto_kprobe_multi;
1504 		if (is_uprobe_multi(prog))
1505 			return &bpf_get_func_ip_proto_uprobe_multi;
1506 		return &bpf_get_func_ip_proto_kprobe;
1507 	case BPF_FUNC_get_attach_cookie:
1508 		if (is_kprobe_multi(prog))
1509 			return &bpf_get_attach_cookie_proto_kmulti;
1510 		if (is_uprobe_multi(prog))
1511 			return &bpf_get_attach_cookie_proto_umulti;
1512 		return &bpf_get_attach_cookie_proto_trace;
1513 	default:
1514 		return bpf_tracing_func_proto(func_id, prog);
1515 	}
1516 }
1517 
1518 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1519 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1520 					const struct bpf_prog *prog,
1521 					struct bpf_insn_access_aux *info)
1522 {
1523 	if (off < 0 || off >= sizeof(struct pt_regs))
1524 		return false;
1525 	if (type != BPF_READ)
1526 		return false;
1527 	if (off % size != 0)
1528 		return false;
1529 	/*
1530 	 * Assertion for 32 bit to make sure last 8 byte access
1531 	 * (BPF_DW) to the last 4 byte member is disallowed.
1532 	 */
1533 	if (off + size > sizeof(struct pt_regs))
1534 		return false;
1535 
1536 	return true;
1537 }
1538 
1539 const struct bpf_verifier_ops kprobe_verifier_ops = {
1540 	.get_func_proto  = kprobe_prog_func_proto,
1541 	.is_valid_access = kprobe_prog_is_valid_access,
1542 };
1543 
1544 const struct bpf_prog_ops kprobe_prog_ops = {
1545 };
1546 
1547 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1548 	   u64, flags, void *, data, u64, size)
1549 {
1550 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1551 
1552 	/*
1553 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1554 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1555 	 * from there and call the same bpf_perf_event_output() helper inline.
1556 	 */
1557 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1558 }
1559 
1560 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1561 	.func		= bpf_perf_event_output_tp,
1562 	.gpl_only	= true,
1563 	.ret_type	= RET_INTEGER,
1564 	.arg1_type	= ARG_PTR_TO_CTX,
1565 	.arg2_type	= ARG_CONST_MAP_PTR,
1566 	.arg3_type	= ARG_ANYTHING,
1567 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1568 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1569 };
1570 
1571 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1572 	   u64, flags)
1573 {
1574 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1575 
1576 	/*
1577 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1578 	 * the other helper's function body cannot be inlined due to being
1579 	 * external, thus we need to call raw helper function.
1580 	 */
1581 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1582 			       flags, 0, 0);
1583 }
1584 
1585 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1586 	.func		= bpf_get_stackid_tp,
1587 	.gpl_only	= true,
1588 	.ret_type	= RET_INTEGER,
1589 	.arg1_type	= ARG_PTR_TO_CTX,
1590 	.arg2_type	= ARG_CONST_MAP_PTR,
1591 	.arg3_type	= ARG_ANYTHING,
1592 };
1593 
1594 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1595 	   u64, flags)
1596 {
1597 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1598 
1599 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1600 			     (unsigned long) size, flags, 0);
1601 }
1602 
1603 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1604 	.func		= bpf_get_stack_tp,
1605 	.gpl_only	= true,
1606 	.ret_type	= RET_INTEGER,
1607 	.arg1_type	= ARG_PTR_TO_CTX,
1608 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1609 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1610 	.arg4_type	= ARG_ANYTHING,
1611 };
1612 
1613 static const struct bpf_func_proto *
1614 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1615 {
1616 	switch (func_id) {
1617 	case BPF_FUNC_perf_event_output:
1618 		return &bpf_perf_event_output_proto_tp;
1619 	case BPF_FUNC_get_stackid:
1620 		return &bpf_get_stackid_proto_tp;
1621 	case BPF_FUNC_get_stack:
1622 		return &bpf_get_stack_proto_tp;
1623 	case BPF_FUNC_get_attach_cookie:
1624 		return &bpf_get_attach_cookie_proto_trace;
1625 	default:
1626 		return bpf_tracing_func_proto(func_id, prog);
1627 	}
1628 }
1629 
1630 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1631 				    const struct bpf_prog *prog,
1632 				    struct bpf_insn_access_aux *info)
1633 {
1634 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1635 		return false;
1636 	if (type != BPF_READ)
1637 		return false;
1638 	if (off % size != 0)
1639 		return false;
1640 
1641 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1642 	return true;
1643 }
1644 
1645 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1646 	.get_func_proto  = tp_prog_func_proto,
1647 	.is_valid_access = tp_prog_is_valid_access,
1648 };
1649 
1650 const struct bpf_prog_ops tracepoint_prog_ops = {
1651 };
1652 
1653 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1654 	   struct bpf_perf_event_value *, buf, u32, size)
1655 {
1656 	int err = -EINVAL;
1657 
1658 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1659 		goto clear;
1660 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1661 				    &buf->running);
1662 	if (unlikely(err))
1663 		goto clear;
1664 	return 0;
1665 clear:
1666 	memset(buf, 0, size);
1667 	return err;
1668 }
1669 
1670 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1671          .func           = bpf_perf_prog_read_value,
1672          .gpl_only       = true,
1673          .ret_type       = RET_INTEGER,
1674          .arg1_type      = ARG_PTR_TO_CTX,
1675          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1676          .arg3_type      = ARG_CONST_SIZE,
1677 };
1678 
1679 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1680 	   void *, buf, u32, size, u64, flags)
1681 {
1682 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1683 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1684 	u32 to_copy;
1685 
1686 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1687 		return -EINVAL;
1688 
1689 	if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1690 		return -ENOENT;
1691 
1692 	if (unlikely(!br_stack))
1693 		return -ENOENT;
1694 
1695 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1696 		return br_stack->nr * br_entry_size;
1697 
1698 	if (!buf || (size % br_entry_size != 0))
1699 		return -EINVAL;
1700 
1701 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1702 	memcpy(buf, br_stack->entries, to_copy);
1703 
1704 	return to_copy;
1705 }
1706 
1707 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1708 	.func           = bpf_read_branch_records,
1709 	.gpl_only       = true,
1710 	.ret_type       = RET_INTEGER,
1711 	.arg1_type      = ARG_PTR_TO_CTX,
1712 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1713 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1714 	.arg4_type      = ARG_ANYTHING,
1715 };
1716 
1717 static const struct bpf_func_proto *
1718 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1719 {
1720 	switch (func_id) {
1721 	case BPF_FUNC_perf_event_output:
1722 		return &bpf_perf_event_output_proto_tp;
1723 	case BPF_FUNC_get_stackid:
1724 		return &bpf_get_stackid_proto_pe;
1725 	case BPF_FUNC_get_stack:
1726 		return &bpf_get_stack_proto_pe;
1727 	case BPF_FUNC_perf_prog_read_value:
1728 		return &bpf_perf_prog_read_value_proto;
1729 	case BPF_FUNC_read_branch_records:
1730 		return &bpf_read_branch_records_proto;
1731 	case BPF_FUNC_get_attach_cookie:
1732 		return &bpf_get_attach_cookie_proto_pe;
1733 	default:
1734 		return bpf_tracing_func_proto(func_id, prog);
1735 	}
1736 }
1737 
1738 /*
1739  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1740  * to avoid potential recursive reuse issue when/if tracepoints are added
1741  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1742  *
1743  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1744  * in normal, irq, and nmi context.
1745  */
1746 struct bpf_raw_tp_regs {
1747 	struct pt_regs regs[3];
1748 };
1749 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1750 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1751 static struct pt_regs *get_bpf_raw_tp_regs(void)
1752 {
1753 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1754 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1755 
1756 	if (nest_level > ARRAY_SIZE(tp_regs->regs)) {
1757 		this_cpu_dec(bpf_raw_tp_nest_level);
1758 		return ERR_PTR(-EBUSY);
1759 	}
1760 
1761 	return &tp_regs->regs[nest_level - 1];
1762 }
1763 
1764 static void put_bpf_raw_tp_regs(void)
1765 {
1766 	this_cpu_dec(bpf_raw_tp_nest_level);
1767 }
1768 
1769 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1770 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1771 {
1772 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1773 	int ret;
1774 
1775 	if (IS_ERR(regs))
1776 		return PTR_ERR(regs);
1777 
1778 	perf_fetch_caller_regs(regs);
1779 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1780 
1781 	put_bpf_raw_tp_regs();
1782 	return ret;
1783 }
1784 
1785 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1786 	.func		= bpf_perf_event_output_raw_tp,
1787 	.gpl_only	= true,
1788 	.ret_type	= RET_INTEGER,
1789 	.arg1_type	= ARG_PTR_TO_CTX,
1790 	.arg2_type	= ARG_CONST_MAP_PTR,
1791 	.arg3_type	= ARG_ANYTHING,
1792 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1793 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1794 };
1795 
1796 extern const struct bpf_func_proto bpf_skb_output_proto;
1797 extern const struct bpf_func_proto bpf_xdp_output_proto;
1798 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1799 
1800 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1801 	   struct bpf_map *, map, u64, flags)
1802 {
1803 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1804 	int ret;
1805 
1806 	if (IS_ERR(regs))
1807 		return PTR_ERR(regs);
1808 
1809 	perf_fetch_caller_regs(regs);
1810 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1811 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1812 			      flags, 0, 0);
1813 	put_bpf_raw_tp_regs();
1814 	return ret;
1815 }
1816 
1817 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1818 	.func		= bpf_get_stackid_raw_tp,
1819 	.gpl_only	= true,
1820 	.ret_type	= RET_INTEGER,
1821 	.arg1_type	= ARG_PTR_TO_CTX,
1822 	.arg2_type	= ARG_CONST_MAP_PTR,
1823 	.arg3_type	= ARG_ANYTHING,
1824 };
1825 
1826 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1827 	   void *, buf, u32, size, u64, flags)
1828 {
1829 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1830 	int ret;
1831 
1832 	if (IS_ERR(regs))
1833 		return PTR_ERR(regs);
1834 
1835 	perf_fetch_caller_regs(regs);
1836 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1837 			    (unsigned long) size, flags, 0);
1838 	put_bpf_raw_tp_regs();
1839 	return ret;
1840 }
1841 
1842 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1843 	.func		= bpf_get_stack_raw_tp,
1844 	.gpl_only	= true,
1845 	.ret_type	= RET_INTEGER,
1846 	.arg1_type	= ARG_PTR_TO_CTX,
1847 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1848 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1849 	.arg4_type	= ARG_ANYTHING,
1850 };
1851 
1852 static const struct bpf_func_proto *
1853 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1854 {
1855 	switch (func_id) {
1856 	case BPF_FUNC_perf_event_output:
1857 		return &bpf_perf_event_output_proto_raw_tp;
1858 	case BPF_FUNC_get_stackid:
1859 		return &bpf_get_stackid_proto_raw_tp;
1860 	case BPF_FUNC_get_stack:
1861 		return &bpf_get_stack_proto_raw_tp;
1862 	case BPF_FUNC_get_attach_cookie:
1863 		return &bpf_get_attach_cookie_proto_tracing;
1864 	default:
1865 		return bpf_tracing_func_proto(func_id, prog);
1866 	}
1867 }
1868 
1869 const struct bpf_func_proto *
1870 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1871 {
1872 	const struct bpf_func_proto *fn;
1873 
1874 	switch (func_id) {
1875 #ifdef CONFIG_NET
1876 	case BPF_FUNC_skb_output:
1877 		return &bpf_skb_output_proto;
1878 	case BPF_FUNC_xdp_output:
1879 		return &bpf_xdp_output_proto;
1880 	case BPF_FUNC_skc_to_tcp6_sock:
1881 		return &bpf_skc_to_tcp6_sock_proto;
1882 	case BPF_FUNC_skc_to_tcp_sock:
1883 		return &bpf_skc_to_tcp_sock_proto;
1884 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1885 		return &bpf_skc_to_tcp_timewait_sock_proto;
1886 	case BPF_FUNC_skc_to_tcp_request_sock:
1887 		return &bpf_skc_to_tcp_request_sock_proto;
1888 	case BPF_FUNC_skc_to_udp6_sock:
1889 		return &bpf_skc_to_udp6_sock_proto;
1890 	case BPF_FUNC_skc_to_unix_sock:
1891 		return &bpf_skc_to_unix_sock_proto;
1892 	case BPF_FUNC_skc_to_mptcp_sock:
1893 		return &bpf_skc_to_mptcp_sock_proto;
1894 	case BPF_FUNC_sk_storage_get:
1895 		return &bpf_sk_storage_get_tracing_proto;
1896 	case BPF_FUNC_sk_storage_delete:
1897 		return &bpf_sk_storage_delete_tracing_proto;
1898 	case BPF_FUNC_sock_from_file:
1899 		return &bpf_sock_from_file_proto;
1900 	case BPF_FUNC_get_socket_cookie:
1901 		return &bpf_get_socket_ptr_cookie_proto;
1902 	case BPF_FUNC_xdp_get_buff_len:
1903 		return &bpf_xdp_get_buff_len_trace_proto;
1904 #endif
1905 	case BPF_FUNC_seq_printf:
1906 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1907 		       &bpf_seq_printf_proto :
1908 		       NULL;
1909 	case BPF_FUNC_seq_write:
1910 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1911 		       &bpf_seq_write_proto :
1912 		       NULL;
1913 	case BPF_FUNC_seq_printf_btf:
1914 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1915 		       &bpf_seq_printf_btf_proto :
1916 		       NULL;
1917 	case BPF_FUNC_d_path:
1918 		return &bpf_d_path_proto;
1919 	case BPF_FUNC_get_func_arg:
1920 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
1921 	case BPF_FUNC_get_func_ret:
1922 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
1923 	case BPF_FUNC_get_func_arg_cnt:
1924 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
1925 	case BPF_FUNC_get_attach_cookie:
1926 		if (prog->type == BPF_PROG_TYPE_TRACING &&
1927 		    prog->expected_attach_type == BPF_TRACE_RAW_TP)
1928 			return &bpf_get_attach_cookie_proto_tracing;
1929 		return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
1930 	default:
1931 		fn = raw_tp_prog_func_proto(func_id, prog);
1932 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1933 			fn = bpf_iter_get_func_proto(func_id, prog);
1934 		return fn;
1935 	}
1936 }
1937 
1938 static bool raw_tp_prog_is_valid_access(int off, int size,
1939 					enum bpf_access_type type,
1940 					const struct bpf_prog *prog,
1941 					struct bpf_insn_access_aux *info)
1942 {
1943 	return bpf_tracing_ctx_access(off, size, type);
1944 }
1945 
1946 static bool tracing_prog_is_valid_access(int off, int size,
1947 					 enum bpf_access_type type,
1948 					 const struct bpf_prog *prog,
1949 					 struct bpf_insn_access_aux *info)
1950 {
1951 	return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
1952 }
1953 
1954 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1955 				     const union bpf_attr *kattr,
1956 				     union bpf_attr __user *uattr)
1957 {
1958 	return -ENOTSUPP;
1959 }
1960 
1961 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1962 	.get_func_proto  = raw_tp_prog_func_proto,
1963 	.is_valid_access = raw_tp_prog_is_valid_access,
1964 };
1965 
1966 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1967 #ifdef CONFIG_NET
1968 	.test_run = bpf_prog_test_run_raw_tp,
1969 #endif
1970 };
1971 
1972 const struct bpf_verifier_ops tracing_verifier_ops = {
1973 	.get_func_proto  = tracing_prog_func_proto,
1974 	.is_valid_access = tracing_prog_is_valid_access,
1975 };
1976 
1977 const struct bpf_prog_ops tracing_prog_ops = {
1978 	.test_run = bpf_prog_test_run_tracing,
1979 };
1980 
1981 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1982 						 enum bpf_access_type type,
1983 						 const struct bpf_prog *prog,
1984 						 struct bpf_insn_access_aux *info)
1985 {
1986 	if (off == 0) {
1987 		if (size != sizeof(u64) || type != BPF_READ)
1988 			return false;
1989 		info->reg_type = PTR_TO_TP_BUFFER;
1990 	}
1991 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1992 }
1993 
1994 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1995 	.get_func_proto  = raw_tp_prog_func_proto,
1996 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1997 };
1998 
1999 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2000 };
2001 
2002 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2003 				    const struct bpf_prog *prog,
2004 				    struct bpf_insn_access_aux *info)
2005 {
2006 	const int size_u64 = sizeof(u64);
2007 
2008 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2009 		return false;
2010 	if (type != BPF_READ)
2011 		return false;
2012 	if (off % size != 0) {
2013 		if (sizeof(unsigned long) != 4)
2014 			return false;
2015 		if (size != 8)
2016 			return false;
2017 		if (off % size != 4)
2018 			return false;
2019 	}
2020 
2021 	switch (off) {
2022 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2023 		bpf_ctx_record_field_size(info, size_u64);
2024 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2025 			return false;
2026 		break;
2027 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
2028 		bpf_ctx_record_field_size(info, size_u64);
2029 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2030 			return false;
2031 		break;
2032 	default:
2033 		if (size != sizeof(long))
2034 			return false;
2035 	}
2036 
2037 	return true;
2038 }
2039 
2040 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2041 				      const struct bpf_insn *si,
2042 				      struct bpf_insn *insn_buf,
2043 				      struct bpf_prog *prog, u32 *target_size)
2044 {
2045 	struct bpf_insn *insn = insn_buf;
2046 
2047 	switch (si->off) {
2048 	case offsetof(struct bpf_perf_event_data, sample_period):
2049 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2050 						       data), si->dst_reg, si->src_reg,
2051 				      offsetof(struct bpf_perf_event_data_kern, data));
2052 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2053 				      bpf_target_off(struct perf_sample_data, period, 8,
2054 						     target_size));
2055 		break;
2056 	case offsetof(struct bpf_perf_event_data, addr):
2057 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2058 						       data), si->dst_reg, si->src_reg,
2059 				      offsetof(struct bpf_perf_event_data_kern, data));
2060 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2061 				      bpf_target_off(struct perf_sample_data, addr, 8,
2062 						     target_size));
2063 		break;
2064 	default:
2065 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2066 						       regs), si->dst_reg, si->src_reg,
2067 				      offsetof(struct bpf_perf_event_data_kern, regs));
2068 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2069 				      si->off);
2070 		break;
2071 	}
2072 
2073 	return insn - insn_buf;
2074 }
2075 
2076 const struct bpf_verifier_ops perf_event_verifier_ops = {
2077 	.get_func_proto		= pe_prog_func_proto,
2078 	.is_valid_access	= pe_prog_is_valid_access,
2079 	.convert_ctx_access	= pe_prog_convert_ctx_access,
2080 };
2081 
2082 const struct bpf_prog_ops perf_event_prog_ops = {
2083 };
2084 
2085 static DEFINE_MUTEX(bpf_event_mutex);
2086 
2087 #define BPF_TRACE_MAX_PROGS 64
2088 
2089 int perf_event_attach_bpf_prog(struct perf_event *event,
2090 			       struct bpf_prog *prog,
2091 			       u64 bpf_cookie)
2092 {
2093 	struct bpf_prog_array *old_array;
2094 	struct bpf_prog_array *new_array;
2095 	int ret = -EEXIST;
2096 
2097 	/*
2098 	 * Kprobe override only works if they are on the function entry,
2099 	 * and only if they are on the opt-in list.
2100 	 */
2101 	if (prog->kprobe_override &&
2102 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
2103 	     !trace_kprobe_error_injectable(event->tp_event)))
2104 		return -EINVAL;
2105 
2106 	mutex_lock(&bpf_event_mutex);
2107 
2108 	if (event->prog)
2109 		goto unlock;
2110 
2111 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2112 	if (old_array &&
2113 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2114 		ret = -E2BIG;
2115 		goto unlock;
2116 	}
2117 
2118 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2119 	if (ret < 0)
2120 		goto unlock;
2121 
2122 	/* set the new array to event->tp_event and set event->prog */
2123 	event->prog = prog;
2124 	event->bpf_cookie = bpf_cookie;
2125 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
2126 	bpf_prog_array_free_sleepable(old_array);
2127 
2128 unlock:
2129 	mutex_unlock(&bpf_event_mutex);
2130 	return ret;
2131 }
2132 
2133 void perf_event_detach_bpf_prog(struct perf_event *event)
2134 {
2135 	struct bpf_prog_array *old_array;
2136 	struct bpf_prog_array *new_array;
2137 	struct bpf_prog *prog = NULL;
2138 	int ret;
2139 
2140 	mutex_lock(&bpf_event_mutex);
2141 
2142 	if (!event->prog)
2143 		goto unlock;
2144 
2145 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2146 	if (!old_array)
2147 		goto put;
2148 
2149 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2150 	if (ret < 0) {
2151 		bpf_prog_array_delete_safe(old_array, event->prog);
2152 	} else {
2153 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
2154 		bpf_prog_array_free_sleepable(old_array);
2155 	}
2156 
2157 put:
2158 	prog = event->prog;
2159 	event->prog = NULL;
2160 
2161 unlock:
2162 	mutex_unlock(&bpf_event_mutex);
2163 
2164 	if (prog) {
2165 		/*
2166 		 * It could be that the bpf_prog is not sleepable (and will be freed
2167 		 * via normal RCU), but is called from a point that supports sleepable
2168 		 * programs and uses tasks-trace-RCU.
2169 		 */
2170 		synchronize_rcu_tasks_trace();
2171 
2172 		bpf_prog_put(prog);
2173 	}
2174 }
2175 
2176 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2177 {
2178 	struct perf_event_query_bpf __user *uquery = info;
2179 	struct perf_event_query_bpf query = {};
2180 	struct bpf_prog_array *progs;
2181 	u32 *ids, prog_cnt, ids_len;
2182 	int ret;
2183 
2184 	if (!perfmon_capable())
2185 		return -EPERM;
2186 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
2187 		return -EINVAL;
2188 	if (copy_from_user(&query, uquery, sizeof(query)))
2189 		return -EFAULT;
2190 
2191 	ids_len = query.ids_len;
2192 	if (ids_len > BPF_TRACE_MAX_PROGS)
2193 		return -E2BIG;
2194 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2195 	if (!ids)
2196 		return -ENOMEM;
2197 	/*
2198 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2199 	 * is required when user only wants to check for uquery->prog_cnt.
2200 	 * There is no need to check for it since the case is handled
2201 	 * gracefully in bpf_prog_array_copy_info.
2202 	 */
2203 
2204 	mutex_lock(&bpf_event_mutex);
2205 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2206 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2207 	mutex_unlock(&bpf_event_mutex);
2208 
2209 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2210 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2211 		ret = -EFAULT;
2212 
2213 	kfree(ids);
2214 	return ret;
2215 }
2216 
2217 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2218 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2219 
2220 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2221 {
2222 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2223 
2224 	for (; btp < __stop__bpf_raw_tp; btp++) {
2225 		if (!strcmp(btp->tp->name, name))
2226 			return btp;
2227 	}
2228 
2229 	return bpf_get_raw_tracepoint_module(name);
2230 }
2231 
2232 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2233 {
2234 	struct module *mod;
2235 
2236 	guard(rcu)();
2237 	mod = __module_address((unsigned long)btp);
2238 	module_put(mod);
2239 }
2240 
2241 static __always_inline
2242 void __bpf_trace_run(struct bpf_raw_tp_link *link, u64 *args)
2243 {
2244 	struct bpf_prog *prog = link->link.prog;
2245 	struct bpf_run_ctx *old_run_ctx;
2246 	struct bpf_trace_run_ctx run_ctx;
2247 
2248 	cant_sleep();
2249 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2250 		bpf_prog_inc_misses_counter(prog);
2251 		goto out;
2252 	}
2253 
2254 	run_ctx.bpf_cookie = link->cookie;
2255 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2256 
2257 	rcu_read_lock();
2258 	(void) bpf_prog_run(prog, args);
2259 	rcu_read_unlock();
2260 
2261 	bpf_reset_run_ctx(old_run_ctx);
2262 out:
2263 	this_cpu_dec(*(prog->active));
2264 }
2265 
2266 #define UNPACK(...)			__VA_ARGS__
2267 #define REPEAT_1(FN, DL, X, ...)	FN(X)
2268 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2269 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2270 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2271 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2272 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2273 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2274 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2275 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2276 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2277 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2278 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2279 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2280 
2281 #define SARG(X)		u64 arg##X
2282 #define COPY(X)		args[X] = arg##X
2283 
2284 #define __DL_COM	(,)
2285 #define __DL_SEM	(;)
2286 
2287 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2288 
2289 #define BPF_TRACE_DEFN_x(x)						\
2290 	void bpf_trace_run##x(struct bpf_raw_tp_link *link,		\
2291 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2292 	{								\
2293 		u64 args[x];						\
2294 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2295 		__bpf_trace_run(link, args);				\
2296 	}								\
2297 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2298 BPF_TRACE_DEFN_x(1);
2299 BPF_TRACE_DEFN_x(2);
2300 BPF_TRACE_DEFN_x(3);
2301 BPF_TRACE_DEFN_x(4);
2302 BPF_TRACE_DEFN_x(5);
2303 BPF_TRACE_DEFN_x(6);
2304 BPF_TRACE_DEFN_x(7);
2305 BPF_TRACE_DEFN_x(8);
2306 BPF_TRACE_DEFN_x(9);
2307 BPF_TRACE_DEFN_x(10);
2308 BPF_TRACE_DEFN_x(11);
2309 BPF_TRACE_DEFN_x(12);
2310 
2311 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2312 {
2313 	struct tracepoint *tp = btp->tp;
2314 	struct bpf_prog *prog = link->link.prog;
2315 
2316 	/*
2317 	 * check that program doesn't access arguments beyond what's
2318 	 * available in this tracepoint
2319 	 */
2320 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2321 		return -EINVAL;
2322 
2323 	if (prog->aux->max_tp_access > btp->writable_size)
2324 		return -EINVAL;
2325 
2326 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, link);
2327 }
2328 
2329 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2330 {
2331 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, link);
2332 }
2333 
2334 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2335 			    u32 *fd_type, const char **buf,
2336 			    u64 *probe_offset, u64 *probe_addr,
2337 			    unsigned long *missed)
2338 {
2339 	bool is_tracepoint, is_syscall_tp;
2340 	struct bpf_prog *prog;
2341 	int flags, err = 0;
2342 
2343 	prog = event->prog;
2344 	if (!prog)
2345 		return -ENOENT;
2346 
2347 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2348 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2349 		return -EOPNOTSUPP;
2350 
2351 	*prog_id = prog->aux->id;
2352 	flags = event->tp_event->flags;
2353 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2354 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2355 
2356 	if (is_tracepoint || is_syscall_tp) {
2357 		*buf = is_tracepoint ? event->tp_event->tp->name
2358 				     : event->tp_event->name;
2359 		/* We allow NULL pointer for tracepoint */
2360 		if (fd_type)
2361 			*fd_type = BPF_FD_TYPE_TRACEPOINT;
2362 		if (probe_offset)
2363 			*probe_offset = 0x0;
2364 		if (probe_addr)
2365 			*probe_addr = 0x0;
2366 	} else {
2367 		/* kprobe/uprobe */
2368 		err = -EOPNOTSUPP;
2369 #ifdef CONFIG_KPROBE_EVENTS
2370 		if (flags & TRACE_EVENT_FL_KPROBE)
2371 			err = bpf_get_kprobe_info(event, fd_type, buf,
2372 						  probe_offset, probe_addr, missed,
2373 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2374 #endif
2375 #ifdef CONFIG_UPROBE_EVENTS
2376 		if (flags & TRACE_EVENT_FL_UPROBE)
2377 			err = bpf_get_uprobe_info(event, fd_type, buf,
2378 						  probe_offset, probe_addr,
2379 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2380 #endif
2381 	}
2382 
2383 	return err;
2384 }
2385 
2386 static int __init send_signal_irq_work_init(void)
2387 {
2388 	int cpu;
2389 	struct send_signal_irq_work *work;
2390 
2391 	for_each_possible_cpu(cpu) {
2392 		work = per_cpu_ptr(&send_signal_work, cpu);
2393 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2394 	}
2395 	return 0;
2396 }
2397 
2398 subsys_initcall(send_signal_irq_work_init);
2399 
2400 #ifdef CONFIG_MODULES
2401 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2402 			    void *module)
2403 {
2404 	struct bpf_trace_module *btm, *tmp;
2405 	struct module *mod = module;
2406 	int ret = 0;
2407 
2408 	if (mod->num_bpf_raw_events == 0 ||
2409 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2410 		goto out;
2411 
2412 	mutex_lock(&bpf_module_mutex);
2413 
2414 	switch (op) {
2415 	case MODULE_STATE_COMING:
2416 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2417 		if (btm) {
2418 			btm->module = module;
2419 			list_add(&btm->list, &bpf_trace_modules);
2420 		} else {
2421 			ret = -ENOMEM;
2422 		}
2423 		break;
2424 	case MODULE_STATE_GOING:
2425 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2426 			if (btm->module == module) {
2427 				list_del(&btm->list);
2428 				kfree(btm);
2429 				break;
2430 			}
2431 		}
2432 		break;
2433 	}
2434 
2435 	mutex_unlock(&bpf_module_mutex);
2436 
2437 out:
2438 	return notifier_from_errno(ret);
2439 }
2440 
2441 static struct notifier_block bpf_module_nb = {
2442 	.notifier_call = bpf_event_notify,
2443 };
2444 
2445 static int __init bpf_event_init(void)
2446 {
2447 	register_module_notifier(&bpf_module_nb);
2448 	return 0;
2449 }
2450 
2451 fs_initcall(bpf_event_init);
2452 #endif /* CONFIG_MODULES */
2453 
2454 struct bpf_session_run_ctx {
2455 	struct bpf_run_ctx run_ctx;
2456 	bool is_return;
2457 	void *data;
2458 };
2459 
2460 #ifdef CONFIG_FPROBE
2461 struct bpf_kprobe_multi_link {
2462 	struct bpf_link link;
2463 	struct fprobe fp;
2464 	unsigned long *addrs;
2465 	u64 *cookies;
2466 	u32 cnt;
2467 	u32 mods_cnt;
2468 	struct module **mods;
2469 	u32 flags;
2470 };
2471 
2472 struct bpf_kprobe_multi_run_ctx {
2473 	struct bpf_session_run_ctx session_ctx;
2474 	struct bpf_kprobe_multi_link *link;
2475 	unsigned long entry_ip;
2476 };
2477 
2478 struct user_syms {
2479 	const char **syms;
2480 	char *buf;
2481 };
2482 
2483 #ifndef CONFIG_HAVE_FTRACE_REGS_HAVING_PT_REGS
2484 static DEFINE_PER_CPU(struct pt_regs, bpf_kprobe_multi_pt_regs);
2485 #define bpf_kprobe_multi_pt_regs_ptr()	this_cpu_ptr(&bpf_kprobe_multi_pt_regs)
2486 #else
2487 #define bpf_kprobe_multi_pt_regs_ptr()	(NULL)
2488 #endif
2489 
2490 static unsigned long ftrace_get_entry_ip(unsigned long fentry_ip)
2491 {
2492 	unsigned long ip = ftrace_get_symaddr(fentry_ip);
2493 
2494 	return ip ? : fentry_ip;
2495 }
2496 
2497 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2498 {
2499 	unsigned long __user usymbol;
2500 	const char **syms = NULL;
2501 	char *buf = NULL, *p;
2502 	int err = -ENOMEM;
2503 	unsigned int i;
2504 
2505 	syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2506 	if (!syms)
2507 		goto error;
2508 
2509 	buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2510 	if (!buf)
2511 		goto error;
2512 
2513 	for (p = buf, i = 0; i < cnt; i++) {
2514 		if (__get_user(usymbol, usyms + i)) {
2515 			err = -EFAULT;
2516 			goto error;
2517 		}
2518 		err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2519 		if (err == KSYM_NAME_LEN)
2520 			err = -E2BIG;
2521 		if (err < 0)
2522 			goto error;
2523 		syms[i] = p;
2524 		p += err + 1;
2525 	}
2526 
2527 	us->syms = syms;
2528 	us->buf = buf;
2529 	return 0;
2530 
2531 error:
2532 	if (err) {
2533 		kvfree(syms);
2534 		kvfree(buf);
2535 	}
2536 	return err;
2537 }
2538 
2539 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2540 {
2541 	u32 i;
2542 
2543 	for (i = 0; i < cnt; i++)
2544 		module_put(mods[i]);
2545 }
2546 
2547 static void free_user_syms(struct user_syms *us)
2548 {
2549 	kvfree(us->syms);
2550 	kvfree(us->buf);
2551 }
2552 
2553 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2554 {
2555 	struct bpf_kprobe_multi_link *kmulti_link;
2556 
2557 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2558 	unregister_fprobe(&kmulti_link->fp);
2559 	kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2560 }
2561 
2562 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2563 {
2564 	struct bpf_kprobe_multi_link *kmulti_link;
2565 
2566 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2567 	kvfree(kmulti_link->addrs);
2568 	kvfree(kmulti_link->cookies);
2569 	kfree(kmulti_link->mods);
2570 	kfree(kmulti_link);
2571 }
2572 
2573 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link,
2574 						struct bpf_link_info *info)
2575 {
2576 	u64 __user *ucookies = u64_to_user_ptr(info->kprobe_multi.cookies);
2577 	u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs);
2578 	struct bpf_kprobe_multi_link *kmulti_link;
2579 	u32 ucount = info->kprobe_multi.count;
2580 	int err = 0, i;
2581 
2582 	if (!uaddrs ^ !ucount)
2583 		return -EINVAL;
2584 	if (ucookies && !ucount)
2585 		return -EINVAL;
2586 
2587 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2588 	info->kprobe_multi.count = kmulti_link->cnt;
2589 	info->kprobe_multi.flags = kmulti_link->flags;
2590 	info->kprobe_multi.missed = kmulti_link->fp.nmissed;
2591 
2592 	if (!uaddrs)
2593 		return 0;
2594 	if (ucount < kmulti_link->cnt)
2595 		err = -ENOSPC;
2596 	else
2597 		ucount = kmulti_link->cnt;
2598 
2599 	if (ucookies) {
2600 		if (kmulti_link->cookies) {
2601 			if (copy_to_user(ucookies, kmulti_link->cookies, ucount * sizeof(u64)))
2602 				return -EFAULT;
2603 		} else {
2604 			for (i = 0; i < ucount; i++) {
2605 				if (put_user(0, ucookies + i))
2606 					return -EFAULT;
2607 			}
2608 		}
2609 	}
2610 
2611 	if (kallsyms_show_value(current_cred())) {
2612 		if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64)))
2613 			return -EFAULT;
2614 	} else {
2615 		for (i = 0; i < ucount; i++) {
2616 			if (put_user(0, uaddrs + i))
2617 				return -EFAULT;
2618 		}
2619 	}
2620 	return err;
2621 }
2622 
2623 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2624 	.release = bpf_kprobe_multi_link_release,
2625 	.dealloc_deferred = bpf_kprobe_multi_link_dealloc,
2626 	.fill_link_info = bpf_kprobe_multi_link_fill_link_info,
2627 };
2628 
2629 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2630 {
2631 	const struct bpf_kprobe_multi_link *link = priv;
2632 	unsigned long *addr_a = a, *addr_b = b;
2633 	u64 *cookie_a, *cookie_b;
2634 
2635 	cookie_a = link->cookies + (addr_a - link->addrs);
2636 	cookie_b = link->cookies + (addr_b - link->addrs);
2637 
2638 	/* swap addr_a/addr_b and cookie_a/cookie_b values */
2639 	swap(*addr_a, *addr_b);
2640 	swap(*cookie_a, *cookie_b);
2641 }
2642 
2643 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2644 {
2645 	const unsigned long *addr_a = a, *addr_b = b;
2646 
2647 	if (*addr_a == *addr_b)
2648 		return 0;
2649 	return *addr_a < *addr_b ? -1 : 1;
2650 }
2651 
2652 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2653 {
2654 	return bpf_kprobe_multi_addrs_cmp(a, b);
2655 }
2656 
2657 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2658 {
2659 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2660 	struct bpf_kprobe_multi_link *link;
2661 	u64 *cookie, entry_ip;
2662 	unsigned long *addr;
2663 
2664 	if (WARN_ON_ONCE(!ctx))
2665 		return 0;
2666 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2667 			       session_ctx.run_ctx);
2668 	link = run_ctx->link;
2669 	if (!link->cookies)
2670 		return 0;
2671 	entry_ip = run_ctx->entry_ip;
2672 	addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2673 		       bpf_kprobe_multi_addrs_cmp);
2674 	if (!addr)
2675 		return 0;
2676 	cookie = link->cookies + (addr - link->addrs);
2677 	return *cookie;
2678 }
2679 
2680 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2681 {
2682 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2683 
2684 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2685 			       session_ctx.run_ctx);
2686 	return run_ctx->entry_ip;
2687 }
2688 
2689 static int
2690 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2691 			   unsigned long entry_ip, struct ftrace_regs *fregs,
2692 			   bool is_return, void *data)
2693 {
2694 	struct bpf_kprobe_multi_run_ctx run_ctx = {
2695 		.session_ctx = {
2696 			.is_return = is_return,
2697 			.data = data,
2698 		},
2699 		.link = link,
2700 		.entry_ip = entry_ip,
2701 	};
2702 	struct bpf_run_ctx *old_run_ctx;
2703 	struct pt_regs *regs;
2704 	int err;
2705 
2706 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2707 		bpf_prog_inc_misses_counter(link->link.prog);
2708 		err = 1;
2709 		goto out;
2710 	}
2711 
2712 	migrate_disable();
2713 	rcu_read_lock();
2714 	regs = ftrace_partial_regs(fregs, bpf_kprobe_multi_pt_regs_ptr());
2715 	old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
2716 	err = bpf_prog_run(link->link.prog, regs);
2717 	bpf_reset_run_ctx(old_run_ctx);
2718 	rcu_read_unlock();
2719 	migrate_enable();
2720 
2721  out:
2722 	__this_cpu_dec(bpf_prog_active);
2723 	return err;
2724 }
2725 
2726 static int
2727 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2728 			  unsigned long ret_ip, struct ftrace_regs *fregs,
2729 			  void *data)
2730 {
2731 	struct bpf_kprobe_multi_link *link;
2732 	int err;
2733 
2734 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2735 	err = kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip),
2736 					 fregs, false, data);
2737 	return is_kprobe_session(link->link.prog) ? err : 0;
2738 }
2739 
2740 static void
2741 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
2742 			       unsigned long ret_ip, struct ftrace_regs *fregs,
2743 			       void *data)
2744 {
2745 	struct bpf_kprobe_multi_link *link;
2746 
2747 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2748 	kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip),
2749 				   fregs, true, data);
2750 }
2751 
2752 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2753 {
2754 	const char **str_a = (const char **) a;
2755 	const char **str_b = (const char **) b;
2756 
2757 	return strcmp(*str_a, *str_b);
2758 }
2759 
2760 struct multi_symbols_sort {
2761 	const char **funcs;
2762 	u64 *cookies;
2763 };
2764 
2765 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2766 {
2767 	const struct multi_symbols_sort *data = priv;
2768 	const char **name_a = a, **name_b = b;
2769 
2770 	swap(*name_a, *name_b);
2771 
2772 	/* If defined, swap also related cookies. */
2773 	if (data->cookies) {
2774 		u64 *cookie_a, *cookie_b;
2775 
2776 		cookie_a = data->cookies + (name_a - data->funcs);
2777 		cookie_b = data->cookies + (name_b - data->funcs);
2778 		swap(*cookie_a, *cookie_b);
2779 	}
2780 }
2781 
2782 struct modules_array {
2783 	struct module **mods;
2784 	int mods_cnt;
2785 	int mods_cap;
2786 };
2787 
2788 static int add_module(struct modules_array *arr, struct module *mod)
2789 {
2790 	struct module **mods;
2791 
2792 	if (arr->mods_cnt == arr->mods_cap) {
2793 		arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
2794 		mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
2795 		if (!mods)
2796 			return -ENOMEM;
2797 		arr->mods = mods;
2798 	}
2799 
2800 	arr->mods[arr->mods_cnt] = mod;
2801 	arr->mods_cnt++;
2802 	return 0;
2803 }
2804 
2805 static bool has_module(struct modules_array *arr, struct module *mod)
2806 {
2807 	int i;
2808 
2809 	for (i = arr->mods_cnt - 1; i >= 0; i--) {
2810 		if (arr->mods[i] == mod)
2811 			return true;
2812 	}
2813 	return false;
2814 }
2815 
2816 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2817 {
2818 	struct modules_array arr = {};
2819 	u32 i, err = 0;
2820 
2821 	for (i = 0; i < addrs_cnt; i++) {
2822 		bool skip_add = false;
2823 		struct module *mod;
2824 
2825 		scoped_guard(rcu) {
2826 			mod = __module_address(addrs[i]);
2827 			/* Either no module or it's already stored  */
2828 			if (!mod || has_module(&arr, mod)) {
2829 				skip_add = true;
2830 				break; /* scoped_guard */
2831 			}
2832 			if (!try_module_get(mod))
2833 				err = -EINVAL;
2834 		}
2835 		if (skip_add)
2836 			continue;
2837 		if (err)
2838 			break;
2839 		err = add_module(&arr, mod);
2840 		if (err) {
2841 			module_put(mod);
2842 			break;
2843 		}
2844 	}
2845 
2846 	/* We return either err < 0 in case of error, ... */
2847 	if (err) {
2848 		kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
2849 		kfree(arr.mods);
2850 		return err;
2851 	}
2852 
2853 	/* or number of modules found if everything is ok. */
2854 	*mods = arr.mods;
2855 	return arr.mods_cnt;
2856 }
2857 
2858 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt)
2859 {
2860 	u32 i;
2861 
2862 	for (i = 0; i < cnt; i++) {
2863 		if (!within_error_injection_list(addrs[i]))
2864 			return -EINVAL;
2865 	}
2866 	return 0;
2867 }
2868 
2869 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2870 {
2871 	struct bpf_kprobe_multi_link *link = NULL;
2872 	struct bpf_link_primer link_primer;
2873 	void __user *ucookies;
2874 	unsigned long *addrs;
2875 	u32 flags, cnt, size;
2876 	void __user *uaddrs;
2877 	u64 *cookies = NULL;
2878 	void __user *usyms;
2879 	int err;
2880 
2881 	/* no support for 32bit archs yet */
2882 	if (sizeof(u64) != sizeof(void *))
2883 		return -EOPNOTSUPP;
2884 
2885 	if (attr->link_create.flags)
2886 		return -EINVAL;
2887 
2888 	if (!is_kprobe_multi(prog))
2889 		return -EINVAL;
2890 
2891 	flags = attr->link_create.kprobe_multi.flags;
2892 	if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2893 		return -EINVAL;
2894 
2895 	uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2896 	usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2897 	if (!!uaddrs == !!usyms)
2898 		return -EINVAL;
2899 
2900 	cnt = attr->link_create.kprobe_multi.cnt;
2901 	if (!cnt)
2902 		return -EINVAL;
2903 	if (cnt > MAX_KPROBE_MULTI_CNT)
2904 		return -E2BIG;
2905 
2906 	size = cnt * sizeof(*addrs);
2907 	addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2908 	if (!addrs)
2909 		return -ENOMEM;
2910 
2911 	ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2912 	if (ucookies) {
2913 		cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2914 		if (!cookies) {
2915 			err = -ENOMEM;
2916 			goto error;
2917 		}
2918 		if (copy_from_user(cookies, ucookies, size)) {
2919 			err = -EFAULT;
2920 			goto error;
2921 		}
2922 	}
2923 
2924 	if (uaddrs) {
2925 		if (copy_from_user(addrs, uaddrs, size)) {
2926 			err = -EFAULT;
2927 			goto error;
2928 		}
2929 	} else {
2930 		struct multi_symbols_sort data = {
2931 			.cookies = cookies,
2932 		};
2933 		struct user_syms us;
2934 
2935 		err = copy_user_syms(&us, usyms, cnt);
2936 		if (err)
2937 			goto error;
2938 
2939 		if (cookies)
2940 			data.funcs = us.syms;
2941 
2942 		sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
2943 		       symbols_swap_r, &data);
2944 
2945 		err = ftrace_lookup_symbols(us.syms, cnt, addrs);
2946 		free_user_syms(&us);
2947 		if (err)
2948 			goto error;
2949 	}
2950 
2951 	if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) {
2952 		err = -EINVAL;
2953 		goto error;
2954 	}
2955 
2956 	link = kzalloc(sizeof(*link), GFP_KERNEL);
2957 	if (!link) {
2958 		err = -ENOMEM;
2959 		goto error;
2960 	}
2961 
2962 	bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2963 		      &bpf_kprobe_multi_link_lops, prog);
2964 
2965 	err = bpf_link_prime(&link->link, &link_primer);
2966 	if (err)
2967 		goto error;
2968 
2969 	if (!(flags & BPF_F_KPROBE_MULTI_RETURN))
2970 		link->fp.entry_handler = kprobe_multi_link_handler;
2971 	if ((flags & BPF_F_KPROBE_MULTI_RETURN) || is_kprobe_session(prog))
2972 		link->fp.exit_handler = kprobe_multi_link_exit_handler;
2973 	if (is_kprobe_session(prog))
2974 		link->fp.entry_data_size = sizeof(u64);
2975 
2976 	link->addrs = addrs;
2977 	link->cookies = cookies;
2978 	link->cnt = cnt;
2979 	link->flags = flags;
2980 
2981 	if (cookies) {
2982 		/*
2983 		 * Sorting addresses will trigger sorting cookies as well
2984 		 * (check bpf_kprobe_multi_cookie_swap). This way we can
2985 		 * find cookie based on the address in bpf_get_attach_cookie
2986 		 * helper.
2987 		 */
2988 		sort_r(addrs, cnt, sizeof(*addrs),
2989 		       bpf_kprobe_multi_cookie_cmp,
2990 		       bpf_kprobe_multi_cookie_swap,
2991 		       link);
2992 	}
2993 
2994 	err = get_modules_for_addrs(&link->mods, addrs, cnt);
2995 	if (err < 0) {
2996 		bpf_link_cleanup(&link_primer);
2997 		return err;
2998 	}
2999 	link->mods_cnt = err;
3000 
3001 	err = register_fprobe_ips(&link->fp, addrs, cnt);
3002 	if (err) {
3003 		kprobe_multi_put_modules(link->mods, link->mods_cnt);
3004 		bpf_link_cleanup(&link_primer);
3005 		return err;
3006 	}
3007 
3008 	return bpf_link_settle(&link_primer);
3009 
3010 error:
3011 	kfree(link);
3012 	kvfree(addrs);
3013 	kvfree(cookies);
3014 	return err;
3015 }
3016 #else /* !CONFIG_FPROBE */
3017 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3018 {
3019 	return -EOPNOTSUPP;
3020 }
3021 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
3022 {
3023 	return 0;
3024 }
3025 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3026 {
3027 	return 0;
3028 }
3029 #endif
3030 
3031 #ifdef CONFIG_UPROBES
3032 struct bpf_uprobe_multi_link;
3033 
3034 struct bpf_uprobe {
3035 	struct bpf_uprobe_multi_link *link;
3036 	loff_t offset;
3037 	unsigned long ref_ctr_offset;
3038 	u64 cookie;
3039 	struct uprobe *uprobe;
3040 	struct uprobe_consumer consumer;
3041 	bool session;
3042 };
3043 
3044 struct bpf_uprobe_multi_link {
3045 	struct path path;
3046 	struct bpf_link link;
3047 	u32 cnt;
3048 	u32 flags;
3049 	struct bpf_uprobe *uprobes;
3050 	struct task_struct *task;
3051 };
3052 
3053 struct bpf_uprobe_multi_run_ctx {
3054 	struct bpf_session_run_ctx session_ctx;
3055 	unsigned long entry_ip;
3056 	struct bpf_uprobe *uprobe;
3057 };
3058 
3059 static void bpf_uprobe_unregister(struct bpf_uprobe *uprobes, u32 cnt)
3060 {
3061 	u32 i;
3062 
3063 	for (i = 0; i < cnt; i++)
3064 		uprobe_unregister_nosync(uprobes[i].uprobe, &uprobes[i].consumer);
3065 
3066 	if (cnt)
3067 		uprobe_unregister_sync();
3068 }
3069 
3070 static void bpf_uprobe_multi_link_release(struct bpf_link *link)
3071 {
3072 	struct bpf_uprobe_multi_link *umulti_link;
3073 
3074 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3075 	bpf_uprobe_unregister(umulti_link->uprobes, umulti_link->cnt);
3076 	if (umulti_link->task)
3077 		put_task_struct(umulti_link->task);
3078 	path_put(&umulti_link->path);
3079 }
3080 
3081 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link)
3082 {
3083 	struct bpf_uprobe_multi_link *umulti_link;
3084 
3085 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3086 	kvfree(umulti_link->uprobes);
3087 	kfree(umulti_link);
3088 }
3089 
3090 static int bpf_uprobe_multi_link_fill_link_info(const struct bpf_link *link,
3091 						struct bpf_link_info *info)
3092 {
3093 	u64 __user *uref_ctr_offsets = u64_to_user_ptr(info->uprobe_multi.ref_ctr_offsets);
3094 	u64 __user *ucookies = u64_to_user_ptr(info->uprobe_multi.cookies);
3095 	u64 __user *uoffsets = u64_to_user_ptr(info->uprobe_multi.offsets);
3096 	u64 __user *upath = u64_to_user_ptr(info->uprobe_multi.path);
3097 	u32 upath_size = info->uprobe_multi.path_size;
3098 	struct bpf_uprobe_multi_link *umulti_link;
3099 	u32 ucount = info->uprobe_multi.count;
3100 	int err = 0, i;
3101 	char *p, *buf;
3102 	long left = 0;
3103 
3104 	if (!upath ^ !upath_size)
3105 		return -EINVAL;
3106 
3107 	if ((uoffsets || uref_ctr_offsets || ucookies) && !ucount)
3108 		return -EINVAL;
3109 
3110 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3111 	info->uprobe_multi.count = umulti_link->cnt;
3112 	info->uprobe_multi.flags = umulti_link->flags;
3113 	info->uprobe_multi.pid = umulti_link->task ?
3114 				 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0;
3115 
3116 	upath_size = upath_size ? min_t(u32, upath_size, PATH_MAX) : PATH_MAX;
3117 	buf = kmalloc(upath_size, GFP_KERNEL);
3118 	if (!buf)
3119 		return -ENOMEM;
3120 	p = d_path(&umulti_link->path, buf, upath_size);
3121 	if (IS_ERR(p)) {
3122 		kfree(buf);
3123 		return PTR_ERR(p);
3124 	}
3125 	upath_size = buf + upath_size - p;
3126 
3127 	if (upath)
3128 		left = copy_to_user(upath, p, upath_size);
3129 	kfree(buf);
3130 	if (left)
3131 		return -EFAULT;
3132 	info->uprobe_multi.path_size = upath_size;
3133 
3134 	if (!uoffsets && !ucookies && !uref_ctr_offsets)
3135 		return 0;
3136 
3137 	if (ucount < umulti_link->cnt)
3138 		err = -ENOSPC;
3139 	else
3140 		ucount = umulti_link->cnt;
3141 
3142 	for (i = 0; i < ucount; i++) {
3143 		if (uoffsets &&
3144 		    put_user(umulti_link->uprobes[i].offset, uoffsets + i))
3145 			return -EFAULT;
3146 		if (uref_ctr_offsets &&
3147 		    put_user(umulti_link->uprobes[i].ref_ctr_offset, uref_ctr_offsets + i))
3148 			return -EFAULT;
3149 		if (ucookies &&
3150 		    put_user(umulti_link->uprobes[i].cookie, ucookies + i))
3151 			return -EFAULT;
3152 	}
3153 
3154 	return err;
3155 }
3156 
3157 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = {
3158 	.release = bpf_uprobe_multi_link_release,
3159 	.dealloc_deferred = bpf_uprobe_multi_link_dealloc,
3160 	.fill_link_info = bpf_uprobe_multi_link_fill_link_info,
3161 };
3162 
3163 static int uprobe_prog_run(struct bpf_uprobe *uprobe,
3164 			   unsigned long entry_ip,
3165 			   struct pt_regs *regs,
3166 			   bool is_return, void *data)
3167 {
3168 	struct bpf_uprobe_multi_link *link = uprobe->link;
3169 	struct bpf_uprobe_multi_run_ctx run_ctx = {
3170 		.session_ctx = {
3171 			.is_return = is_return,
3172 			.data = data,
3173 		},
3174 		.entry_ip = entry_ip,
3175 		.uprobe = uprobe,
3176 	};
3177 	struct bpf_prog *prog = link->link.prog;
3178 	bool sleepable = prog->sleepable;
3179 	struct bpf_run_ctx *old_run_ctx;
3180 	int err;
3181 
3182 	if (link->task && !same_thread_group(current, link->task))
3183 		return 0;
3184 
3185 	if (sleepable)
3186 		rcu_read_lock_trace();
3187 	else
3188 		rcu_read_lock();
3189 
3190 	migrate_disable();
3191 
3192 	old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
3193 	err = bpf_prog_run(link->link.prog, regs);
3194 	bpf_reset_run_ctx(old_run_ctx);
3195 
3196 	migrate_enable();
3197 
3198 	if (sleepable)
3199 		rcu_read_unlock_trace();
3200 	else
3201 		rcu_read_unlock();
3202 	return err;
3203 }
3204 
3205 static bool
3206 uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm)
3207 {
3208 	struct bpf_uprobe *uprobe;
3209 
3210 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3211 	return uprobe->link->task->mm == mm;
3212 }
3213 
3214 static int
3215 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs,
3216 			  __u64 *data)
3217 {
3218 	struct bpf_uprobe *uprobe;
3219 	int ret;
3220 
3221 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3222 	ret = uprobe_prog_run(uprobe, instruction_pointer(regs), regs, false, data);
3223 	if (uprobe->session)
3224 		return ret ? UPROBE_HANDLER_IGNORE : 0;
3225 	return 0;
3226 }
3227 
3228 static int
3229 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs,
3230 			      __u64 *data)
3231 {
3232 	struct bpf_uprobe *uprobe;
3233 
3234 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3235 	uprobe_prog_run(uprobe, func, regs, true, data);
3236 	return 0;
3237 }
3238 
3239 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3240 {
3241 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3242 
3243 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3244 			       session_ctx.run_ctx);
3245 	return run_ctx->entry_ip;
3246 }
3247 
3248 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3249 {
3250 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3251 
3252 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3253 			       session_ctx.run_ctx);
3254 	return run_ctx->uprobe->cookie;
3255 }
3256 
3257 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3258 {
3259 	struct bpf_uprobe_multi_link *link = NULL;
3260 	unsigned long __user *uref_ctr_offsets;
3261 	struct bpf_link_primer link_primer;
3262 	struct bpf_uprobe *uprobes = NULL;
3263 	struct task_struct *task = NULL;
3264 	unsigned long __user *uoffsets;
3265 	u64 __user *ucookies;
3266 	void __user *upath;
3267 	u32 flags, cnt, i;
3268 	struct path path;
3269 	char *name;
3270 	pid_t pid;
3271 	int err;
3272 
3273 	/* no support for 32bit archs yet */
3274 	if (sizeof(u64) != sizeof(void *))
3275 		return -EOPNOTSUPP;
3276 
3277 	if (attr->link_create.flags)
3278 		return -EINVAL;
3279 
3280 	if (!is_uprobe_multi(prog))
3281 		return -EINVAL;
3282 
3283 	flags = attr->link_create.uprobe_multi.flags;
3284 	if (flags & ~BPF_F_UPROBE_MULTI_RETURN)
3285 		return -EINVAL;
3286 
3287 	/*
3288 	 * path, offsets and cnt are mandatory,
3289 	 * ref_ctr_offsets and cookies are optional
3290 	 */
3291 	upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path);
3292 	uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets);
3293 	cnt = attr->link_create.uprobe_multi.cnt;
3294 	pid = attr->link_create.uprobe_multi.pid;
3295 
3296 	if (!upath || !uoffsets || !cnt || pid < 0)
3297 		return -EINVAL;
3298 	if (cnt > MAX_UPROBE_MULTI_CNT)
3299 		return -E2BIG;
3300 
3301 	uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets);
3302 	ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies);
3303 
3304 	name = strndup_user(upath, PATH_MAX);
3305 	if (IS_ERR(name)) {
3306 		err = PTR_ERR(name);
3307 		return err;
3308 	}
3309 
3310 	err = kern_path(name, LOOKUP_FOLLOW, &path);
3311 	kfree(name);
3312 	if (err)
3313 		return err;
3314 
3315 	if (!d_is_reg(path.dentry)) {
3316 		err = -EBADF;
3317 		goto error_path_put;
3318 	}
3319 
3320 	if (pid) {
3321 		rcu_read_lock();
3322 		task = get_pid_task(find_vpid(pid), PIDTYPE_TGID);
3323 		rcu_read_unlock();
3324 		if (!task) {
3325 			err = -ESRCH;
3326 			goto error_path_put;
3327 		}
3328 	}
3329 
3330 	err = -ENOMEM;
3331 
3332 	link = kzalloc(sizeof(*link), GFP_KERNEL);
3333 	uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL);
3334 
3335 	if (!uprobes || !link)
3336 		goto error_free;
3337 
3338 	for (i = 0; i < cnt; i++) {
3339 		if (__get_user(uprobes[i].offset, uoffsets + i)) {
3340 			err = -EFAULT;
3341 			goto error_free;
3342 		}
3343 		if (uprobes[i].offset < 0) {
3344 			err = -EINVAL;
3345 			goto error_free;
3346 		}
3347 		if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) {
3348 			err = -EFAULT;
3349 			goto error_free;
3350 		}
3351 		if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) {
3352 			err = -EFAULT;
3353 			goto error_free;
3354 		}
3355 
3356 		uprobes[i].link = link;
3357 
3358 		if (!(flags & BPF_F_UPROBE_MULTI_RETURN))
3359 			uprobes[i].consumer.handler = uprobe_multi_link_handler;
3360 		if (flags & BPF_F_UPROBE_MULTI_RETURN || is_uprobe_session(prog))
3361 			uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
3362 		if (is_uprobe_session(prog))
3363 			uprobes[i].session = true;
3364 		if (pid)
3365 			uprobes[i].consumer.filter = uprobe_multi_link_filter;
3366 	}
3367 
3368 	link->cnt = cnt;
3369 	link->uprobes = uprobes;
3370 	link->path = path;
3371 	link->task = task;
3372 	link->flags = flags;
3373 
3374 	bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI,
3375 		      &bpf_uprobe_multi_link_lops, prog);
3376 
3377 	for (i = 0; i < cnt; i++) {
3378 		uprobes[i].uprobe = uprobe_register(d_real_inode(link->path.dentry),
3379 						    uprobes[i].offset,
3380 						    uprobes[i].ref_ctr_offset,
3381 						    &uprobes[i].consumer);
3382 		if (IS_ERR(uprobes[i].uprobe)) {
3383 			err = PTR_ERR(uprobes[i].uprobe);
3384 			link->cnt = i;
3385 			goto error_unregister;
3386 		}
3387 	}
3388 
3389 	err = bpf_link_prime(&link->link, &link_primer);
3390 	if (err)
3391 		goto error_unregister;
3392 
3393 	return bpf_link_settle(&link_primer);
3394 
3395 error_unregister:
3396 	bpf_uprobe_unregister(uprobes, link->cnt);
3397 
3398 error_free:
3399 	kvfree(uprobes);
3400 	kfree(link);
3401 	if (task)
3402 		put_task_struct(task);
3403 error_path_put:
3404 	path_put(&path);
3405 	return err;
3406 }
3407 #else /* !CONFIG_UPROBES */
3408 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3409 {
3410 	return -EOPNOTSUPP;
3411 }
3412 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3413 {
3414 	return 0;
3415 }
3416 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3417 {
3418 	return 0;
3419 }
3420 #endif /* CONFIG_UPROBES */
3421 
3422 __bpf_kfunc_start_defs();
3423 
3424 __bpf_kfunc bool bpf_session_is_return(void)
3425 {
3426 	struct bpf_session_run_ctx *session_ctx;
3427 
3428 	session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3429 	return session_ctx->is_return;
3430 }
3431 
3432 __bpf_kfunc __u64 *bpf_session_cookie(void)
3433 {
3434 	struct bpf_session_run_ctx *session_ctx;
3435 
3436 	session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3437 	return session_ctx->data;
3438 }
3439 
3440 __bpf_kfunc_end_defs();
3441 
3442 BTF_KFUNCS_START(kprobe_multi_kfunc_set_ids)
3443 BTF_ID_FLAGS(func, bpf_session_is_return)
3444 BTF_ID_FLAGS(func, bpf_session_cookie)
3445 BTF_KFUNCS_END(kprobe_multi_kfunc_set_ids)
3446 
3447 static int bpf_kprobe_multi_filter(const struct bpf_prog *prog, u32 kfunc_id)
3448 {
3449 	if (!btf_id_set8_contains(&kprobe_multi_kfunc_set_ids, kfunc_id))
3450 		return 0;
3451 
3452 	if (!is_kprobe_session(prog) && !is_uprobe_session(prog))
3453 		return -EACCES;
3454 
3455 	return 0;
3456 }
3457 
3458 static const struct btf_kfunc_id_set bpf_kprobe_multi_kfunc_set = {
3459 	.owner = THIS_MODULE,
3460 	.set = &kprobe_multi_kfunc_set_ids,
3461 	.filter = bpf_kprobe_multi_filter,
3462 };
3463 
3464 static int __init bpf_kprobe_multi_kfuncs_init(void)
3465 {
3466 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_KPROBE, &bpf_kprobe_multi_kfunc_set);
3467 }
3468 
3469 late_initcall(bpf_kprobe_multi_kfuncs_init);
3470 
3471 typedef int (*copy_fn_t)(void *dst, const void *src, u32 size, struct task_struct *tsk);
3472 
3473 /*
3474  * The __always_inline is to make sure the compiler doesn't
3475  * generate indirect calls into callbacks, which is expensive,
3476  * on some kernel configurations. This allows compiler to put
3477  * direct calls into all the specific callback implementations
3478  * (copy_user_data_sleepable, copy_user_data_nofault, and so on)
3479  */
3480 static __always_inline int __bpf_dynptr_copy_str(struct bpf_dynptr *dptr, u32 doff, u32 size,
3481 						 const void *unsafe_src,
3482 						 copy_fn_t str_copy_fn,
3483 						 struct task_struct *tsk)
3484 {
3485 	struct bpf_dynptr_kern *dst;
3486 	u32 chunk_sz, off;
3487 	void *dst_slice;
3488 	int cnt, err;
3489 	char buf[256];
3490 
3491 	dst_slice = bpf_dynptr_slice_rdwr(dptr, doff, NULL, size);
3492 	if (likely(dst_slice))
3493 		return str_copy_fn(dst_slice, unsafe_src, size, tsk);
3494 
3495 	dst = (struct bpf_dynptr_kern *)dptr;
3496 	if (bpf_dynptr_check_off_len(dst, doff, size))
3497 		return -E2BIG;
3498 
3499 	for (off = 0; off < size; off += chunk_sz - 1) {
3500 		chunk_sz = min_t(u32, sizeof(buf), size - off);
3501 		/* Expect str_copy_fn to return count of copied bytes, including
3502 		 * zero terminator. Next iteration increment off by chunk_sz - 1 to
3503 		 * overwrite NUL.
3504 		 */
3505 		cnt = str_copy_fn(buf, unsafe_src + off, chunk_sz, tsk);
3506 		if (cnt < 0)
3507 			return cnt;
3508 		err = __bpf_dynptr_write(dst, doff + off, buf, cnt, 0);
3509 		if (err)
3510 			return err;
3511 		if (cnt < chunk_sz || chunk_sz == 1) /* we are done */
3512 			return off + cnt;
3513 	}
3514 	return off;
3515 }
3516 
3517 static __always_inline int __bpf_dynptr_copy(const struct bpf_dynptr *dptr, u32 doff,
3518 					     u32 size, const void *unsafe_src,
3519 					     copy_fn_t copy_fn, struct task_struct *tsk)
3520 {
3521 	struct bpf_dynptr_kern *dst;
3522 	void *dst_slice;
3523 	char buf[256];
3524 	u32 off, chunk_sz;
3525 	int err;
3526 
3527 	dst_slice = bpf_dynptr_slice_rdwr(dptr, doff, NULL, size);
3528 	if (likely(dst_slice))
3529 		return copy_fn(dst_slice, unsafe_src, size, tsk);
3530 
3531 	dst = (struct bpf_dynptr_kern *)dptr;
3532 	if (bpf_dynptr_check_off_len(dst, doff, size))
3533 		return -E2BIG;
3534 
3535 	for (off = 0; off < size; off += chunk_sz) {
3536 		chunk_sz = min_t(u32, sizeof(buf), size - off);
3537 		err = copy_fn(buf, unsafe_src + off, chunk_sz, tsk);
3538 		if (err)
3539 			return err;
3540 		err = __bpf_dynptr_write(dst, doff + off, buf, chunk_sz, 0);
3541 		if (err)
3542 			return err;
3543 	}
3544 	return 0;
3545 }
3546 
3547 static __always_inline int copy_user_data_nofault(void *dst, const void *unsafe_src,
3548 						  u32 size, struct task_struct *tsk)
3549 {
3550 	return copy_from_user_nofault(dst, (const void __user *)unsafe_src, size);
3551 }
3552 
3553 static __always_inline int copy_user_data_sleepable(void *dst, const void *unsafe_src,
3554 						    u32 size, struct task_struct *tsk)
3555 {
3556 	int ret;
3557 
3558 	if (!tsk) { /* Read from the current task */
3559 		ret = copy_from_user(dst, (const void __user *)unsafe_src, size);
3560 		if (ret)
3561 			return -EFAULT;
3562 		return 0;
3563 	}
3564 
3565 	ret = access_process_vm(tsk, (unsigned long)unsafe_src, dst, size, 0);
3566 	if (ret != size)
3567 		return -EFAULT;
3568 	return 0;
3569 }
3570 
3571 static __always_inline int copy_kernel_data_nofault(void *dst, const void *unsafe_src,
3572 						    u32 size, struct task_struct *tsk)
3573 {
3574 	return copy_from_kernel_nofault(dst, unsafe_src, size);
3575 }
3576 
3577 static __always_inline int copy_user_str_nofault(void *dst, const void *unsafe_src,
3578 						 u32 size, struct task_struct *tsk)
3579 {
3580 	return strncpy_from_user_nofault(dst, (const void __user *)unsafe_src, size);
3581 }
3582 
3583 static __always_inline int copy_user_str_sleepable(void *dst, const void *unsafe_src,
3584 						   u32 size, struct task_struct *tsk)
3585 {
3586 	int ret;
3587 
3588 	if (unlikely(size == 0))
3589 		return 0;
3590 
3591 	if (tsk) {
3592 		ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_src, dst, size, 0);
3593 	} else {
3594 		ret = strncpy_from_user(dst, (const void __user *)unsafe_src, size - 1);
3595 		/* strncpy_from_user does not guarantee NUL termination */
3596 		if (ret >= 0)
3597 			((char *)dst)[ret] = '\0';
3598 	}
3599 
3600 	if (ret < 0)
3601 		return ret;
3602 	return ret + 1;
3603 }
3604 
3605 static __always_inline int copy_kernel_str_nofault(void *dst, const void *unsafe_src,
3606 						   u32 size, struct task_struct *tsk)
3607 {
3608 	return strncpy_from_kernel_nofault(dst, unsafe_src, size);
3609 }
3610 
3611 __bpf_kfunc_start_defs();
3612 
3613 __bpf_kfunc int bpf_send_signal_task(struct task_struct *task, int sig, enum pid_type type,
3614 				     u64 value)
3615 {
3616 	if (type != PIDTYPE_PID && type != PIDTYPE_TGID)
3617 		return -EINVAL;
3618 
3619 	return bpf_send_signal_common(sig, type, task, value);
3620 }
3621 
3622 __bpf_kfunc int bpf_probe_read_user_dynptr(struct bpf_dynptr *dptr, u32 off,
3623 					   u32 size, const void __user *unsafe_ptr__ign)
3624 {
3625 	return __bpf_dynptr_copy(dptr, off, size, (const void *)unsafe_ptr__ign,
3626 				 copy_user_data_nofault, NULL);
3627 }
3628 
3629 __bpf_kfunc int bpf_probe_read_kernel_dynptr(struct bpf_dynptr *dptr, u32 off,
3630 					     u32 size, const void *unsafe_ptr__ign)
3631 {
3632 	return __bpf_dynptr_copy(dptr, off, size, unsafe_ptr__ign,
3633 				 copy_kernel_data_nofault, NULL);
3634 }
3635 
3636 __bpf_kfunc int bpf_probe_read_user_str_dynptr(struct bpf_dynptr *dptr, u32 off,
3637 					       u32 size, const void __user *unsafe_ptr__ign)
3638 {
3639 	return __bpf_dynptr_copy_str(dptr, off, size, (const void *)unsafe_ptr__ign,
3640 				     copy_user_str_nofault, NULL);
3641 }
3642 
3643 __bpf_kfunc int bpf_probe_read_kernel_str_dynptr(struct bpf_dynptr *dptr, u32 off,
3644 						 u32 size, const void *unsafe_ptr__ign)
3645 {
3646 	return __bpf_dynptr_copy_str(dptr, off, size, unsafe_ptr__ign,
3647 				     copy_kernel_str_nofault, NULL);
3648 }
3649 
3650 __bpf_kfunc int bpf_copy_from_user_dynptr(struct bpf_dynptr *dptr, u32 off,
3651 					  u32 size, const void __user *unsafe_ptr__ign)
3652 {
3653 	return __bpf_dynptr_copy(dptr, off, size, (const void *)unsafe_ptr__ign,
3654 				 copy_user_data_sleepable, NULL);
3655 }
3656 
3657 __bpf_kfunc int bpf_copy_from_user_str_dynptr(struct bpf_dynptr *dptr, u32 off,
3658 					      u32 size, const void __user *unsafe_ptr__ign)
3659 {
3660 	return __bpf_dynptr_copy_str(dptr, off, size, (const void *)unsafe_ptr__ign,
3661 				     copy_user_str_sleepable, NULL);
3662 }
3663 
3664 __bpf_kfunc int bpf_copy_from_user_task_dynptr(struct bpf_dynptr *dptr, u32 off,
3665 					       u32 size, const void __user *unsafe_ptr__ign,
3666 					       struct task_struct *tsk)
3667 {
3668 	return __bpf_dynptr_copy(dptr, off, size, (const void *)unsafe_ptr__ign,
3669 				 copy_user_data_sleepable, tsk);
3670 }
3671 
3672 __bpf_kfunc int bpf_copy_from_user_task_str_dynptr(struct bpf_dynptr *dptr, u32 off,
3673 						   u32 size, const void __user *unsafe_ptr__ign,
3674 						   struct task_struct *tsk)
3675 {
3676 	return __bpf_dynptr_copy_str(dptr, off, size, (const void *)unsafe_ptr__ign,
3677 				     copy_user_str_sleepable, tsk);
3678 }
3679 
3680 __bpf_kfunc_end_defs();
3681