1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel internal timers
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8  *
9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12  *              serialize accesses to xtime/lost_ticks).
13  *                              Copyright (C) 1998  Andrea Arcangeli
14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19  */
20 
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/sched/nohz.h>
42 #include <linux/sched/debug.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
45 #include <linux/random.h>
46 #include <linux/sysctl.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/div64.h>
51 #include <asm/timex.h>
52 #include <asm/io.h>
53 
54 #include "tick-internal.h"
55 #include "timer_migration.h"
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/timer.h>
59 
60 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
61 
62 EXPORT_SYMBOL(jiffies_64);
63 
64 /*
65  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
66  * LVL_SIZE buckets. Each level is driven by its own clock and therefore each
67  * level has a different granularity.
68  *
69  * The level granularity is:		LVL_CLK_DIV ^ level
70  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
71  *
72  * The array level of a newly armed timer depends on the relative expiry
73  * time. The farther the expiry time is away the higher the array level and
74  * therefore the granularity becomes.
75  *
76  * Contrary to the original timer wheel implementation, which aims for 'exact'
77  * expiry of the timers, this implementation removes the need for recascading
78  * the timers into the lower array levels. The previous 'classic' timer wheel
79  * implementation of the kernel already violated the 'exact' expiry by adding
80  * slack to the expiry time to provide batched expiration. The granularity
81  * levels provide implicit batching.
82  *
83  * This is an optimization of the original timer wheel implementation for the
84  * majority of the timer wheel use cases: timeouts. The vast majority of
85  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
86  * the timeout expires it indicates that normal operation is disturbed, so it
87  * does not matter much whether the timeout comes with a slight delay.
88  *
89  * The only exception to this are networking timers with a small expiry
90  * time. They rely on the granularity. Those fit into the first wheel level,
91  * which has HZ granularity.
92  *
93  * We don't have cascading anymore. timers with a expiry time above the
94  * capacity of the last wheel level are force expired at the maximum timeout
95  * value of the last wheel level. From data sampling we know that the maximum
96  * value observed is 5 days (network connection tracking), so this should not
97  * be an issue.
98  *
99  * The currently chosen array constants values are a good compromise between
100  * array size and granularity.
101  *
102  * This results in the following granularity and range levels:
103  *
104  * HZ 1000 steps
105  * Level Offset  Granularity            Range
106  *  0      0         1 ms                0 ms -         63 ms
107  *  1     64         8 ms               64 ms -        511 ms
108  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
109  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
110  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
111  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
112  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
113  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
114  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
115  *
116  * HZ  300
117  * Level Offset  Granularity            Range
118  *  0	   0         3 ms                0 ms -        210 ms
119  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
120  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
121  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
122  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
123  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
124  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
125  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
126  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
127  *
128  * HZ  250
129  * Level Offset  Granularity            Range
130  *  0	   0         4 ms                0 ms -        255 ms
131  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
132  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
133  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
134  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
135  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
136  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
137  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
138  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
139  *
140  * HZ  100
141  * Level Offset  Granularity            Range
142  *  0	   0         10 ms               0 ms -        630 ms
143  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
144  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
145  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
146  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
147  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
148  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
149  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
150  */
151 
152 /* Clock divisor for the next level */
153 #define LVL_CLK_SHIFT	3
154 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
155 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
156 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
157 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
158 
159 /*
160  * The time start value for each level to select the bucket at enqueue
161  * time. We start from the last possible delta of the previous level
162  * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
163  */
164 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
165 
166 /* Size of each clock level */
167 #define LVL_BITS	6
168 #define LVL_SIZE	(1UL << LVL_BITS)
169 #define LVL_MASK	(LVL_SIZE - 1)
170 #define LVL_OFFS(n)	((n) * LVL_SIZE)
171 
172 /* Level depth */
173 #if HZ > 100
174 # define LVL_DEPTH	9
175 # else
176 # define LVL_DEPTH	8
177 #endif
178 
179 /* The cutoff (max. capacity of the wheel) */
180 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
181 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
182 
183 /*
184  * The resulting wheel size. If NOHZ is configured we allocate two
185  * wheels so we have a separate storage for the deferrable timers.
186  */
187 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
188 
189 #ifdef CONFIG_NO_HZ_COMMON
190 /*
191  * If multiple bases need to be locked, use the base ordering for lock
192  * nesting, i.e. lowest number first.
193  */
194 # define NR_BASES	3
195 # define BASE_LOCAL	0
196 # define BASE_GLOBAL	1
197 # define BASE_DEF	2
198 #else
199 # define NR_BASES	1
200 # define BASE_LOCAL	0
201 # define BASE_GLOBAL	0
202 # define BASE_DEF	0
203 #endif
204 
205 /**
206  * struct timer_base - Per CPU timer base (number of base depends on config)
207  * @lock:		Lock protecting the timer_base
208  * @running_timer:	When expiring timers, the lock is dropped. To make
209  *			sure not to race against deleting/modifying a
210  *			currently running timer, the pointer is set to the
211  *			timer, which expires at the moment. If no timer is
212  *			running, the pointer is NULL.
213  * @expiry_lock:	PREEMPT_RT only: Lock is taken in softirq around
214  *			timer expiry callback execution and when trying to
215  *			delete a running timer and it wasn't successful in
216  *			the first glance. It prevents priority inversion
217  *			when callback was preempted on a remote CPU and a
218  *			caller tries to delete the running timer. It also
219  *			prevents a life lock, when the task which tries to
220  *			delete a timer preempted the softirq thread which
221  *			is running the timer callback function.
222  * @timer_waiters:	PREEMPT_RT only: Tells, if there is a waiter
223  *			waiting for the end of the timer callback function
224  *			execution.
225  * @clk:		clock of the timer base; is updated before enqueue
226  *			of a timer; during expiry, it is 1 offset ahead of
227  *			jiffies to avoid endless requeuing to current
228  *			jiffies
229  * @next_expiry:	expiry value of the first timer; it is updated when
230  *			finding the next timer and during enqueue; the
231  *			value is not valid, when next_expiry_recalc is set
232  * @cpu:		Number of CPU the timer base belongs to
233  * @next_expiry_recalc: States, whether a recalculation of next_expiry is
234  *			required. Value is set true, when a timer was
235  *			deleted.
236  * @is_idle:		Is set, when timer_base is idle. It is triggered by NOHZ
237  *			code. This state is only used in standard
238  *			base. Deferrable timers, which are enqueued remotely
239  *			never wake up an idle CPU. So no matter of supporting it
240  *			for this base.
241  * @timers_pending:	Is set, when a timer is pending in the base. It is only
242  *			reliable when next_expiry_recalc is not set.
243  * @pending_map:	bitmap of the timer wheel; each bit reflects a
244  *			bucket of the wheel. When a bit is set, at least a
245  *			single timer is enqueued in the related bucket.
246  * @vectors:		Array of lists; Each array member reflects a bucket
247  *			of the timer wheel. The list contains all timers
248  *			which are enqueued into a specific bucket.
249  */
250 struct timer_base {
251 	raw_spinlock_t		lock;
252 	struct timer_list	*running_timer;
253 #ifdef CONFIG_PREEMPT_RT
254 	spinlock_t		expiry_lock;
255 	atomic_t		timer_waiters;
256 #endif
257 	unsigned long		clk;
258 	unsigned long		next_expiry;
259 	unsigned int		cpu;
260 	bool			next_expiry_recalc;
261 	bool			is_idle;
262 	bool			timers_pending;
263 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
264 	struct hlist_head	vectors[WHEEL_SIZE];
265 } ____cacheline_aligned;
266 
267 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
268 
269 #ifdef CONFIG_NO_HZ_COMMON
270 
271 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
272 static DEFINE_MUTEX(timer_keys_mutex);
273 
274 static void timer_update_keys(struct work_struct *work);
275 static DECLARE_WORK(timer_update_work, timer_update_keys);
276 
277 #ifdef CONFIG_SMP
278 static unsigned int sysctl_timer_migration = 1;
279 
280 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
281 
282 static void timers_update_migration(void)
283 {
284 	if (sysctl_timer_migration && tick_nohz_active)
285 		static_branch_enable(&timers_migration_enabled);
286 	else
287 		static_branch_disable(&timers_migration_enabled);
288 }
289 
290 #ifdef CONFIG_SYSCTL
291 static int timer_migration_handler(const struct ctl_table *table, int write,
292 			    void *buffer, size_t *lenp, loff_t *ppos)
293 {
294 	int ret;
295 
296 	mutex_lock(&timer_keys_mutex);
297 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
298 	if (!ret && write)
299 		timers_update_migration();
300 	mutex_unlock(&timer_keys_mutex);
301 	return ret;
302 }
303 
304 static const struct ctl_table timer_sysctl[] = {
305 	{
306 		.procname	= "timer_migration",
307 		.data		= &sysctl_timer_migration,
308 		.maxlen		= sizeof(unsigned int),
309 		.mode		= 0644,
310 		.proc_handler	= timer_migration_handler,
311 		.extra1		= SYSCTL_ZERO,
312 		.extra2		= SYSCTL_ONE,
313 	},
314 };
315 
316 static int __init timer_sysctl_init(void)
317 {
318 	register_sysctl("kernel", timer_sysctl);
319 	return 0;
320 }
321 device_initcall(timer_sysctl_init);
322 #endif /* CONFIG_SYSCTL */
323 #else /* CONFIG_SMP */
324 static inline void timers_update_migration(void) { }
325 #endif /* !CONFIG_SMP */
326 
327 static void timer_update_keys(struct work_struct *work)
328 {
329 	mutex_lock(&timer_keys_mutex);
330 	timers_update_migration();
331 	static_branch_enable(&timers_nohz_active);
332 	mutex_unlock(&timer_keys_mutex);
333 }
334 
335 void timers_update_nohz(void)
336 {
337 	schedule_work(&timer_update_work);
338 }
339 
340 static inline bool is_timers_nohz_active(void)
341 {
342 	return static_branch_unlikely(&timers_nohz_active);
343 }
344 #else
345 static inline bool is_timers_nohz_active(void) { return false; }
346 #endif /* NO_HZ_COMMON */
347 
348 static unsigned long round_jiffies_common(unsigned long j, int cpu,
349 		bool force_up)
350 {
351 	int rem;
352 	unsigned long original = j;
353 
354 	/*
355 	 * We don't want all cpus firing their timers at once hitting the
356 	 * same lock or cachelines, so we skew each extra cpu with an extra
357 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
358 	 * already did this.
359 	 * The skew is done by adding 3*cpunr, then round, then subtract this
360 	 * extra offset again.
361 	 */
362 	j += cpu * 3;
363 
364 	rem = j % HZ;
365 
366 	/*
367 	 * If the target jiffy is just after a whole second (which can happen
368 	 * due to delays of the timer irq, long irq off times etc etc) then
369 	 * we should round down to the whole second, not up. Use 1/4th second
370 	 * as cutoff for this rounding as an extreme upper bound for this.
371 	 * But never round down if @force_up is set.
372 	 */
373 	if (rem < HZ/4 && !force_up) /* round down */
374 		j = j - rem;
375 	else /* round up */
376 		j = j - rem + HZ;
377 
378 	/* now that we have rounded, subtract the extra skew again */
379 	j -= cpu * 3;
380 
381 	/*
382 	 * Make sure j is still in the future. Otherwise return the
383 	 * unmodified value.
384 	 */
385 	return time_is_after_jiffies(j) ? j : original;
386 }
387 
388 /**
389  * __round_jiffies_relative - function to round jiffies to a full second
390  * @j: the time in (relative) jiffies that should be rounded
391  * @cpu: the processor number on which the timeout will happen
392  *
393  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
394  * up or down to (approximately) full seconds. This is useful for timers
395  * for which the exact time they fire does not matter too much, as long as
396  * they fire approximately every X seconds.
397  *
398  * By rounding these timers to whole seconds, all such timers will fire
399  * at the same time, rather than at various times spread out. The goal
400  * of this is to have the CPU wake up less, which saves power.
401  *
402  * The exact rounding is skewed for each processor to avoid all
403  * processors firing at the exact same time, which could lead
404  * to lock contention or spurious cache line bouncing.
405  *
406  * The return value is the rounded version of the @j parameter.
407  */
408 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
409 {
410 	unsigned long j0 = jiffies;
411 
412 	/* Use j0 because jiffies might change while we run */
413 	return round_jiffies_common(j + j0, cpu, false) - j0;
414 }
415 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
416 
417 /**
418  * round_jiffies - function to round jiffies to a full second
419  * @j: the time in (absolute) jiffies that should be rounded
420  *
421  * round_jiffies() rounds an absolute time in the future (in jiffies)
422  * up or down to (approximately) full seconds. This is useful for timers
423  * for which the exact time they fire does not matter too much, as long as
424  * they fire approximately every X seconds.
425  *
426  * By rounding these timers to whole seconds, all such timers will fire
427  * at the same time, rather than at various times spread out. The goal
428  * of this is to have the CPU wake up less, which saves power.
429  *
430  * The return value is the rounded version of the @j parameter.
431  */
432 unsigned long round_jiffies(unsigned long j)
433 {
434 	return round_jiffies_common(j, raw_smp_processor_id(), false);
435 }
436 EXPORT_SYMBOL_GPL(round_jiffies);
437 
438 /**
439  * round_jiffies_relative - function to round jiffies to a full second
440  * @j: the time in (relative) jiffies that should be rounded
441  *
442  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
443  * up or down to (approximately) full seconds. This is useful for timers
444  * for which the exact time they fire does not matter too much, as long as
445  * they fire approximately every X seconds.
446  *
447  * By rounding these timers to whole seconds, all such timers will fire
448  * at the same time, rather than at various times spread out. The goal
449  * of this is to have the CPU wake up less, which saves power.
450  *
451  * The return value is the rounded version of the @j parameter.
452  */
453 unsigned long round_jiffies_relative(unsigned long j)
454 {
455 	return __round_jiffies_relative(j, raw_smp_processor_id());
456 }
457 EXPORT_SYMBOL_GPL(round_jiffies_relative);
458 
459 /**
460  * __round_jiffies_up_relative - function to round jiffies up to a full second
461  * @j: the time in (relative) jiffies that should be rounded
462  * @cpu: the processor number on which the timeout will happen
463  *
464  * This is the same as __round_jiffies_relative() except that it will never
465  * round down.  This is useful for timeouts for which the exact time
466  * of firing does not matter too much, as long as they don't fire too
467  * early.
468  */
469 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
470 {
471 	unsigned long j0 = jiffies;
472 
473 	/* Use j0 because jiffies might change while we run */
474 	return round_jiffies_common(j + j0, cpu, true) - j0;
475 }
476 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
477 
478 /**
479  * round_jiffies_up - function to round jiffies up to a full second
480  * @j: the time in (absolute) jiffies that should be rounded
481  *
482  * This is the same as round_jiffies() except that it will never
483  * round down.  This is useful for timeouts for which the exact time
484  * of firing does not matter too much, as long as they don't fire too
485  * early.
486  */
487 unsigned long round_jiffies_up(unsigned long j)
488 {
489 	return round_jiffies_common(j, raw_smp_processor_id(), true);
490 }
491 EXPORT_SYMBOL_GPL(round_jiffies_up);
492 
493 /**
494  * round_jiffies_up_relative - function to round jiffies up to a full second
495  * @j: the time in (relative) jiffies that should be rounded
496  *
497  * This is the same as round_jiffies_relative() except that it will never
498  * round down.  This is useful for timeouts for which the exact time
499  * of firing does not matter too much, as long as they don't fire too
500  * early.
501  */
502 unsigned long round_jiffies_up_relative(unsigned long j)
503 {
504 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
505 }
506 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
507 
508 
509 static inline unsigned int timer_get_idx(struct timer_list *timer)
510 {
511 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
512 }
513 
514 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
515 {
516 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
517 			idx << TIMER_ARRAYSHIFT;
518 }
519 
520 /*
521  * Helper function to calculate the array index for a given expiry
522  * time.
523  */
524 static inline unsigned calc_index(unsigned long expires, unsigned lvl,
525 				  unsigned long *bucket_expiry)
526 {
527 
528 	/*
529 	 * The timer wheel has to guarantee that a timer does not fire
530 	 * early. Early expiry can happen due to:
531 	 * - Timer is armed at the edge of a tick
532 	 * - Truncation of the expiry time in the outer wheel levels
533 	 *
534 	 * Round up with level granularity to prevent this.
535 	 */
536 	expires = (expires >> LVL_SHIFT(lvl)) + 1;
537 	*bucket_expiry = expires << LVL_SHIFT(lvl);
538 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
539 }
540 
541 static int calc_wheel_index(unsigned long expires, unsigned long clk,
542 			    unsigned long *bucket_expiry)
543 {
544 	unsigned long delta = expires - clk;
545 	unsigned int idx;
546 
547 	if (delta < LVL_START(1)) {
548 		idx = calc_index(expires, 0, bucket_expiry);
549 	} else if (delta < LVL_START(2)) {
550 		idx = calc_index(expires, 1, bucket_expiry);
551 	} else if (delta < LVL_START(3)) {
552 		idx = calc_index(expires, 2, bucket_expiry);
553 	} else if (delta < LVL_START(4)) {
554 		idx = calc_index(expires, 3, bucket_expiry);
555 	} else if (delta < LVL_START(5)) {
556 		idx = calc_index(expires, 4, bucket_expiry);
557 	} else if (delta < LVL_START(6)) {
558 		idx = calc_index(expires, 5, bucket_expiry);
559 	} else if (delta < LVL_START(7)) {
560 		idx = calc_index(expires, 6, bucket_expiry);
561 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
562 		idx = calc_index(expires, 7, bucket_expiry);
563 	} else if ((long) delta < 0) {
564 		idx = clk & LVL_MASK;
565 		*bucket_expiry = clk;
566 	} else {
567 		/*
568 		 * Force expire obscene large timeouts to expire at the
569 		 * capacity limit of the wheel.
570 		 */
571 		if (delta >= WHEEL_TIMEOUT_CUTOFF)
572 			expires = clk + WHEEL_TIMEOUT_MAX;
573 
574 		idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
575 	}
576 	return idx;
577 }
578 
579 static void
580 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
581 {
582 	/*
583 	 * Deferrable timers do not prevent the CPU from entering dynticks and
584 	 * are not taken into account on the idle/nohz_full path. An IPI when a
585 	 * new deferrable timer is enqueued will wake up the remote CPU but
586 	 * nothing will be done with the deferrable timer base. Therefore skip
587 	 * the remote IPI for deferrable timers completely.
588 	 */
589 	if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE)
590 		return;
591 
592 	/*
593 	 * We might have to IPI the remote CPU if the base is idle and the
594 	 * timer is pinned. If it is a non pinned timer, it is only queued
595 	 * on the remote CPU, when timer was running during queueing. Then
596 	 * everything is handled by remote CPU anyway. If the other CPU is
597 	 * on the way to idle then it can't set base->is_idle as we hold
598 	 * the base lock:
599 	 */
600 	if (base->is_idle) {
601 		WARN_ON_ONCE(!(timer->flags & TIMER_PINNED ||
602 			       tick_nohz_full_cpu(base->cpu)));
603 		wake_up_nohz_cpu(base->cpu);
604 	}
605 }
606 
607 /*
608  * Enqueue the timer into the hash bucket, mark it pending in
609  * the bitmap, store the index in the timer flags then wake up
610  * the target CPU if needed.
611  */
612 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
613 			  unsigned int idx, unsigned long bucket_expiry)
614 {
615 
616 	hlist_add_head(&timer->entry, base->vectors + idx);
617 	__set_bit(idx, base->pending_map);
618 	timer_set_idx(timer, idx);
619 
620 	trace_timer_start(timer, bucket_expiry);
621 
622 	/*
623 	 * Check whether this is the new first expiring timer. The
624 	 * effective expiry time of the timer is required here
625 	 * (bucket_expiry) instead of timer->expires.
626 	 */
627 	if (time_before(bucket_expiry, base->next_expiry)) {
628 		/*
629 		 * Set the next expiry time and kick the CPU so it
630 		 * can reevaluate the wheel:
631 		 */
632 		WRITE_ONCE(base->next_expiry, bucket_expiry);
633 		base->timers_pending = true;
634 		base->next_expiry_recalc = false;
635 		trigger_dyntick_cpu(base, timer);
636 	}
637 }
638 
639 static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
640 {
641 	unsigned long bucket_expiry;
642 	unsigned int idx;
643 
644 	idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
645 	enqueue_timer(base, timer, idx, bucket_expiry);
646 }
647 
648 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
649 
650 static const struct debug_obj_descr timer_debug_descr;
651 
652 struct timer_hint {
653 	void	(*function)(struct timer_list *t);
654 	long	offset;
655 };
656 
657 #define TIMER_HINT(fn, container, timr, hintfn)			\
658 	{							\
659 		.function = fn,					\
660 		.offset	  = offsetof(container, hintfn) -	\
661 			    offsetof(container, timr)		\
662 	}
663 
664 static const struct timer_hint timer_hints[] = {
665 	TIMER_HINT(delayed_work_timer_fn,
666 		   struct delayed_work, timer, work.func),
667 	TIMER_HINT(kthread_delayed_work_timer_fn,
668 		   struct kthread_delayed_work, timer, work.func),
669 };
670 
671 static void *timer_debug_hint(void *addr)
672 {
673 	struct timer_list *timer = addr;
674 	int i;
675 
676 	for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
677 		if (timer_hints[i].function == timer->function) {
678 			void (**fn)(void) = addr + timer_hints[i].offset;
679 
680 			return *fn;
681 		}
682 	}
683 
684 	return timer->function;
685 }
686 
687 static bool timer_is_static_object(void *addr)
688 {
689 	struct timer_list *timer = addr;
690 
691 	return (timer->entry.pprev == NULL &&
692 		timer->entry.next == TIMER_ENTRY_STATIC);
693 }
694 
695 /*
696  * timer_fixup_init is called when:
697  * - an active object is initialized
698  */
699 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
700 {
701 	struct timer_list *timer = addr;
702 
703 	switch (state) {
704 	case ODEBUG_STATE_ACTIVE:
705 		timer_delete_sync(timer);
706 		debug_object_init(timer, &timer_debug_descr);
707 		return true;
708 	default:
709 		return false;
710 	}
711 }
712 
713 /* Stub timer callback for improperly used timers. */
714 static void stub_timer(struct timer_list *unused)
715 {
716 	WARN_ON(1);
717 }
718 
719 /*
720  * timer_fixup_activate is called when:
721  * - an active object is activated
722  * - an unknown non-static object is activated
723  */
724 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
725 {
726 	struct timer_list *timer = addr;
727 
728 	switch (state) {
729 	case ODEBUG_STATE_NOTAVAILABLE:
730 		timer_setup(timer, stub_timer, 0);
731 		return true;
732 
733 	case ODEBUG_STATE_ACTIVE:
734 		WARN_ON(1);
735 		fallthrough;
736 	default:
737 		return false;
738 	}
739 }
740 
741 /*
742  * timer_fixup_free is called when:
743  * - an active object is freed
744  */
745 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
746 {
747 	struct timer_list *timer = addr;
748 
749 	switch (state) {
750 	case ODEBUG_STATE_ACTIVE:
751 		timer_delete_sync(timer);
752 		debug_object_free(timer, &timer_debug_descr);
753 		return true;
754 	default:
755 		return false;
756 	}
757 }
758 
759 /*
760  * timer_fixup_assert_init is called when:
761  * - an untracked/uninit-ed object is found
762  */
763 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
764 {
765 	struct timer_list *timer = addr;
766 
767 	switch (state) {
768 	case ODEBUG_STATE_NOTAVAILABLE:
769 		timer_setup(timer, stub_timer, 0);
770 		return true;
771 	default:
772 		return false;
773 	}
774 }
775 
776 static const struct debug_obj_descr timer_debug_descr = {
777 	.name			= "timer_list",
778 	.debug_hint		= timer_debug_hint,
779 	.is_static_object	= timer_is_static_object,
780 	.fixup_init		= timer_fixup_init,
781 	.fixup_activate		= timer_fixup_activate,
782 	.fixup_free		= timer_fixup_free,
783 	.fixup_assert_init	= timer_fixup_assert_init,
784 };
785 
786 static inline void debug_timer_init(struct timer_list *timer)
787 {
788 	debug_object_init(timer, &timer_debug_descr);
789 }
790 
791 static inline void debug_timer_activate(struct timer_list *timer)
792 {
793 	debug_object_activate(timer, &timer_debug_descr);
794 }
795 
796 static inline void debug_timer_deactivate(struct timer_list *timer)
797 {
798 	debug_object_deactivate(timer, &timer_debug_descr);
799 }
800 
801 static inline void debug_timer_assert_init(struct timer_list *timer)
802 {
803 	debug_object_assert_init(timer, &timer_debug_descr);
804 }
805 
806 static void do_init_timer(struct timer_list *timer,
807 			  void (*func)(struct timer_list *),
808 			  unsigned int flags,
809 			  const char *name, struct lock_class_key *key);
810 
811 void timer_init_key_on_stack(struct timer_list *timer,
812 			     void (*func)(struct timer_list *),
813 			     unsigned int flags,
814 			     const char *name, struct lock_class_key *key)
815 {
816 	debug_object_init_on_stack(timer, &timer_debug_descr);
817 	do_init_timer(timer, func, flags, name, key);
818 }
819 EXPORT_SYMBOL_GPL(timer_init_key_on_stack);
820 
821 void timer_destroy_on_stack(struct timer_list *timer)
822 {
823 	debug_object_free(timer, &timer_debug_descr);
824 }
825 EXPORT_SYMBOL_GPL(timer_destroy_on_stack);
826 
827 #else
828 static inline void debug_timer_init(struct timer_list *timer) { }
829 static inline void debug_timer_activate(struct timer_list *timer) { }
830 static inline void debug_timer_deactivate(struct timer_list *timer) { }
831 static inline void debug_timer_assert_init(struct timer_list *timer) { }
832 #endif
833 
834 static inline void debug_init(struct timer_list *timer)
835 {
836 	debug_timer_init(timer);
837 	trace_timer_init(timer);
838 }
839 
840 static inline void debug_deactivate(struct timer_list *timer)
841 {
842 	debug_timer_deactivate(timer);
843 	trace_timer_cancel(timer);
844 }
845 
846 static inline void debug_assert_init(struct timer_list *timer)
847 {
848 	debug_timer_assert_init(timer);
849 }
850 
851 static void do_init_timer(struct timer_list *timer,
852 			  void (*func)(struct timer_list *),
853 			  unsigned int flags,
854 			  const char *name, struct lock_class_key *key)
855 {
856 	timer->entry.pprev = NULL;
857 	timer->function = func;
858 	if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
859 		flags &= TIMER_INIT_FLAGS;
860 	timer->flags = flags | raw_smp_processor_id();
861 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
862 }
863 
864 /**
865  * timer_init_key - initialize a timer
866  * @timer: the timer to be initialized
867  * @func: timer callback function
868  * @flags: timer flags
869  * @name: name of the timer
870  * @key: lockdep class key of the fake lock used for tracking timer
871  *       sync lock dependencies
872  *
873  * timer_init_key() must be done to a timer prior to calling *any* of the
874  * other timer functions.
875  */
876 void timer_init_key(struct timer_list *timer,
877 		    void (*func)(struct timer_list *), unsigned int flags,
878 		    const char *name, struct lock_class_key *key)
879 {
880 	debug_init(timer);
881 	do_init_timer(timer, func, flags, name, key);
882 }
883 EXPORT_SYMBOL(timer_init_key);
884 
885 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
886 {
887 	struct hlist_node *entry = &timer->entry;
888 
889 	debug_deactivate(timer);
890 
891 	__hlist_del(entry);
892 	if (clear_pending)
893 		entry->pprev = NULL;
894 	entry->next = LIST_POISON2;
895 }
896 
897 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
898 			     bool clear_pending)
899 {
900 	unsigned idx = timer_get_idx(timer);
901 
902 	if (!timer_pending(timer))
903 		return 0;
904 
905 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
906 		__clear_bit(idx, base->pending_map);
907 		base->next_expiry_recalc = true;
908 	}
909 
910 	detach_timer(timer, clear_pending);
911 	return 1;
912 }
913 
914 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
915 {
916 	int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
917 
918 	/*
919 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
920 	 * to use the deferrable base.
921 	 */
922 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
923 		index = BASE_DEF;
924 
925 	return per_cpu_ptr(&timer_bases[index], cpu);
926 }
927 
928 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
929 {
930 	int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
931 
932 	/*
933 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
934 	 * to use the deferrable base.
935 	 */
936 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
937 		index = BASE_DEF;
938 
939 	return this_cpu_ptr(&timer_bases[index]);
940 }
941 
942 static inline struct timer_base *get_timer_base(u32 tflags)
943 {
944 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
945 }
946 
947 static inline void __forward_timer_base(struct timer_base *base,
948 					unsigned long basej)
949 {
950 	/*
951 	 * Check whether we can forward the base. We can only do that when
952 	 * @basej is past base->clk otherwise we might rewind base->clk.
953 	 */
954 	if (time_before_eq(basej, base->clk))
955 		return;
956 
957 	/*
958 	 * If the next expiry value is > jiffies, then we fast forward to
959 	 * jiffies otherwise we forward to the next expiry value.
960 	 */
961 	if (time_after(base->next_expiry, basej)) {
962 		base->clk = basej;
963 	} else {
964 		if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
965 			return;
966 		base->clk = base->next_expiry;
967 	}
968 
969 }
970 
971 static inline void forward_timer_base(struct timer_base *base)
972 {
973 	__forward_timer_base(base, READ_ONCE(jiffies));
974 }
975 
976 /*
977  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
978  * that all timers which are tied to this base are locked, and the base itself
979  * is locked too.
980  *
981  * So __run_timers/migrate_timers can safely modify all timers which could
982  * be found in the base->vectors array.
983  *
984  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
985  * to wait until the migration is done.
986  */
987 static struct timer_base *lock_timer_base(struct timer_list *timer,
988 					  unsigned long *flags)
989 	__acquires(timer->base->lock)
990 {
991 	for (;;) {
992 		struct timer_base *base;
993 		u32 tf;
994 
995 		/*
996 		 * We need to use READ_ONCE() here, otherwise the compiler
997 		 * might re-read @tf between the check for TIMER_MIGRATING
998 		 * and spin_lock().
999 		 */
1000 		tf = READ_ONCE(timer->flags);
1001 
1002 		if (!(tf & TIMER_MIGRATING)) {
1003 			base = get_timer_base(tf);
1004 			raw_spin_lock_irqsave(&base->lock, *flags);
1005 			if (timer->flags == tf)
1006 				return base;
1007 			raw_spin_unlock_irqrestore(&base->lock, *flags);
1008 		}
1009 		cpu_relax();
1010 	}
1011 }
1012 
1013 #define MOD_TIMER_PENDING_ONLY		0x01
1014 #define MOD_TIMER_REDUCE		0x02
1015 #define MOD_TIMER_NOTPENDING		0x04
1016 
1017 static inline int
1018 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1019 {
1020 	unsigned long clk = 0, flags, bucket_expiry;
1021 	struct timer_base *base, *new_base;
1022 	unsigned int idx = UINT_MAX;
1023 	int ret = 0;
1024 
1025 	debug_assert_init(timer);
1026 
1027 	/*
1028 	 * This is a common optimization triggered by the networking code - if
1029 	 * the timer is re-modified to have the same timeout or ends up in the
1030 	 * same array bucket then just return:
1031 	 */
1032 	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1033 		/*
1034 		 * The downside of this optimization is that it can result in
1035 		 * larger granularity than you would get from adding a new
1036 		 * timer with this expiry.
1037 		 */
1038 		long diff = timer->expires - expires;
1039 
1040 		if (!diff)
1041 			return 1;
1042 		if (options & MOD_TIMER_REDUCE && diff <= 0)
1043 			return 1;
1044 
1045 		/*
1046 		 * We lock timer base and calculate the bucket index right
1047 		 * here. If the timer ends up in the same bucket, then we
1048 		 * just update the expiry time and avoid the whole
1049 		 * dequeue/enqueue dance.
1050 		 */
1051 		base = lock_timer_base(timer, &flags);
1052 		/*
1053 		 * Has @timer been shutdown? This needs to be evaluated
1054 		 * while holding base lock to prevent a race against the
1055 		 * shutdown code.
1056 		 */
1057 		if (!timer->function)
1058 			goto out_unlock;
1059 
1060 		forward_timer_base(base);
1061 
1062 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1063 		    time_before_eq(timer->expires, expires)) {
1064 			ret = 1;
1065 			goto out_unlock;
1066 		}
1067 
1068 		clk = base->clk;
1069 		idx = calc_wheel_index(expires, clk, &bucket_expiry);
1070 
1071 		/*
1072 		 * Retrieve and compare the array index of the pending
1073 		 * timer. If it matches set the expiry to the new value so a
1074 		 * subsequent call will exit in the expires check above.
1075 		 */
1076 		if (idx == timer_get_idx(timer)) {
1077 			if (!(options & MOD_TIMER_REDUCE))
1078 				timer->expires = expires;
1079 			else if (time_after(timer->expires, expires))
1080 				timer->expires = expires;
1081 			ret = 1;
1082 			goto out_unlock;
1083 		}
1084 	} else {
1085 		base = lock_timer_base(timer, &flags);
1086 		/*
1087 		 * Has @timer been shutdown? This needs to be evaluated
1088 		 * while holding base lock to prevent a race against the
1089 		 * shutdown code.
1090 		 */
1091 		if (!timer->function)
1092 			goto out_unlock;
1093 
1094 		forward_timer_base(base);
1095 	}
1096 
1097 	ret = detach_if_pending(timer, base, false);
1098 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1099 		goto out_unlock;
1100 
1101 	new_base = get_timer_this_cpu_base(timer->flags);
1102 
1103 	if (base != new_base) {
1104 		/*
1105 		 * We are trying to schedule the timer on the new base.
1106 		 * However we can't change timer's base while it is running,
1107 		 * otherwise timer_delete_sync() can't detect that the timer's
1108 		 * handler yet has not finished. This also guarantees that the
1109 		 * timer is serialized wrt itself.
1110 		 */
1111 		if (likely(base->running_timer != timer)) {
1112 			/* See the comment in lock_timer_base() */
1113 			timer->flags |= TIMER_MIGRATING;
1114 
1115 			raw_spin_unlock(&base->lock);
1116 			base = new_base;
1117 			raw_spin_lock(&base->lock);
1118 			WRITE_ONCE(timer->flags,
1119 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1120 			forward_timer_base(base);
1121 		}
1122 	}
1123 
1124 	debug_timer_activate(timer);
1125 
1126 	timer->expires = expires;
1127 	/*
1128 	 * If 'idx' was calculated above and the base time did not advance
1129 	 * between calculating 'idx' and possibly switching the base, only
1130 	 * enqueue_timer() is required. Otherwise we need to (re)calculate
1131 	 * the wheel index via internal_add_timer().
1132 	 */
1133 	if (idx != UINT_MAX && clk == base->clk)
1134 		enqueue_timer(base, timer, idx, bucket_expiry);
1135 	else
1136 		internal_add_timer(base, timer);
1137 
1138 out_unlock:
1139 	raw_spin_unlock_irqrestore(&base->lock, flags);
1140 
1141 	return ret;
1142 }
1143 
1144 /**
1145  * mod_timer_pending - Modify a pending timer's timeout
1146  * @timer:	The pending timer to be modified
1147  * @expires:	New absolute timeout in jiffies
1148  *
1149  * mod_timer_pending() is the same for pending timers as mod_timer(), but
1150  * will not activate inactive timers.
1151  *
1152  * If @timer->function == NULL then the start operation is silently
1153  * discarded.
1154  *
1155  * Return:
1156  * * %0 - The timer was inactive and not modified or was in
1157  *	  shutdown state and the operation was discarded
1158  * * %1 - The timer was active and requeued to expire at @expires
1159  */
1160 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1161 {
1162 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1163 }
1164 EXPORT_SYMBOL(mod_timer_pending);
1165 
1166 /**
1167  * mod_timer - Modify a timer's timeout
1168  * @timer:	The timer to be modified
1169  * @expires:	New absolute timeout in jiffies
1170  *
1171  * mod_timer(timer, expires) is equivalent to:
1172  *
1173  *     timer_delete(timer); timer->expires = expires; add_timer(timer);
1174  *
1175  * mod_timer() is more efficient than the above open coded sequence. In
1176  * case that the timer is inactive, the timer_delete() part is a NOP. The
1177  * timer is in any case activated with the new expiry time @expires.
1178  *
1179  * Note that if there are multiple unserialized concurrent users of the
1180  * same timer, then mod_timer() is the only safe way to modify the timeout,
1181  * since add_timer() cannot modify an already running timer.
1182  *
1183  * If @timer->function == NULL then the start operation is silently
1184  * discarded. In this case the return value is 0 and meaningless.
1185  *
1186  * Return:
1187  * * %0 - The timer was inactive and started or was in shutdown
1188  *	  state and the operation was discarded
1189  * * %1 - The timer was active and requeued to expire at @expires or
1190  *	  the timer was active and not modified because @expires did
1191  *	  not change the effective expiry time
1192  */
1193 int mod_timer(struct timer_list *timer, unsigned long expires)
1194 {
1195 	return __mod_timer(timer, expires, 0);
1196 }
1197 EXPORT_SYMBOL(mod_timer);
1198 
1199 /**
1200  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1201  * @timer:	The timer to be modified
1202  * @expires:	New absolute timeout in jiffies
1203  *
1204  * timer_reduce() is very similar to mod_timer(), except that it will only
1205  * modify an enqueued timer if that would reduce the expiration time. If
1206  * @timer is not enqueued it starts the timer.
1207  *
1208  * If @timer->function == NULL then the start operation is silently
1209  * discarded.
1210  *
1211  * Return:
1212  * * %0 - The timer was inactive and started or was in shutdown
1213  *	  state and the operation was discarded
1214  * * %1 - The timer was active and requeued to expire at @expires or
1215  *	  the timer was active and not modified because @expires
1216  *	  did not change the effective expiry time such that the
1217  *	  timer would expire earlier than already scheduled
1218  */
1219 int timer_reduce(struct timer_list *timer, unsigned long expires)
1220 {
1221 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1222 }
1223 EXPORT_SYMBOL(timer_reduce);
1224 
1225 /**
1226  * add_timer - Start a timer
1227  * @timer:	The timer to be started
1228  *
1229  * Start @timer to expire at @timer->expires in the future. @timer->expires
1230  * is the absolute expiry time measured in 'jiffies'. When the timer expires
1231  * timer->function(timer) will be invoked from soft interrupt context.
1232  *
1233  * The @timer->expires and @timer->function fields must be set prior
1234  * to calling this function.
1235  *
1236  * If @timer->function == NULL then the start operation is silently
1237  * discarded.
1238  *
1239  * If @timer->expires is already in the past @timer will be queued to
1240  * expire at the next timer tick.
1241  *
1242  * This can only operate on an inactive timer. Attempts to invoke this on
1243  * an active timer are rejected with a warning.
1244  */
1245 void add_timer(struct timer_list *timer)
1246 {
1247 	if (WARN_ON_ONCE(timer_pending(timer)))
1248 		return;
1249 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1250 }
1251 EXPORT_SYMBOL(add_timer);
1252 
1253 /**
1254  * add_timer_local() - Start a timer on the local CPU
1255  * @timer:	The timer to be started
1256  *
1257  * Same as add_timer() except that the timer flag TIMER_PINNED is set.
1258  *
1259  * See add_timer() for further details.
1260  */
1261 void add_timer_local(struct timer_list *timer)
1262 {
1263 	if (WARN_ON_ONCE(timer_pending(timer)))
1264 		return;
1265 	timer->flags |= TIMER_PINNED;
1266 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1267 }
1268 EXPORT_SYMBOL(add_timer_local);
1269 
1270 /**
1271  * add_timer_global() - Start a timer without TIMER_PINNED flag set
1272  * @timer:	The timer to be started
1273  *
1274  * Same as add_timer() except that the timer flag TIMER_PINNED is unset.
1275  *
1276  * See add_timer() for further details.
1277  */
1278 void add_timer_global(struct timer_list *timer)
1279 {
1280 	if (WARN_ON_ONCE(timer_pending(timer)))
1281 		return;
1282 	timer->flags &= ~TIMER_PINNED;
1283 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1284 }
1285 EXPORT_SYMBOL(add_timer_global);
1286 
1287 /**
1288  * add_timer_on - Start a timer on a particular CPU
1289  * @timer:	The timer to be started
1290  * @cpu:	The CPU to start it on
1291  *
1292  * Same as add_timer() except that it starts the timer on the given CPU and
1293  * the TIMER_PINNED flag is set. When timer shouldn't be a pinned timer in
1294  * the next round, add_timer_global() should be used instead as it unsets
1295  * the TIMER_PINNED flag.
1296  *
1297  * See add_timer() for further details.
1298  */
1299 void add_timer_on(struct timer_list *timer, int cpu)
1300 {
1301 	struct timer_base *new_base, *base;
1302 	unsigned long flags;
1303 
1304 	debug_assert_init(timer);
1305 
1306 	if (WARN_ON_ONCE(timer_pending(timer)))
1307 		return;
1308 
1309 	/* Make sure timer flags have TIMER_PINNED flag set */
1310 	timer->flags |= TIMER_PINNED;
1311 
1312 	new_base = get_timer_cpu_base(timer->flags, cpu);
1313 
1314 	/*
1315 	 * If @timer was on a different CPU, it should be migrated with the
1316 	 * old base locked to prevent other operations proceeding with the
1317 	 * wrong base locked.  See lock_timer_base().
1318 	 */
1319 	base = lock_timer_base(timer, &flags);
1320 	/*
1321 	 * Has @timer been shutdown? This needs to be evaluated while
1322 	 * holding base lock to prevent a race against the shutdown code.
1323 	 */
1324 	if (!timer->function)
1325 		goto out_unlock;
1326 
1327 	if (base != new_base) {
1328 		timer->flags |= TIMER_MIGRATING;
1329 
1330 		raw_spin_unlock(&base->lock);
1331 		base = new_base;
1332 		raw_spin_lock(&base->lock);
1333 		WRITE_ONCE(timer->flags,
1334 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1335 	}
1336 	forward_timer_base(base);
1337 
1338 	debug_timer_activate(timer);
1339 	internal_add_timer(base, timer);
1340 out_unlock:
1341 	raw_spin_unlock_irqrestore(&base->lock, flags);
1342 }
1343 EXPORT_SYMBOL_GPL(add_timer_on);
1344 
1345 /**
1346  * __timer_delete - Internal function: Deactivate a timer
1347  * @timer:	The timer to be deactivated
1348  * @shutdown:	If true, this indicates that the timer is about to be
1349  *		shutdown permanently.
1350  *
1351  * If @shutdown is true then @timer->function is set to NULL under the
1352  * timer base lock which prevents further rearming of the time. In that
1353  * case any attempt to rearm @timer after this function returns will be
1354  * silently ignored.
1355  *
1356  * Return:
1357  * * %0 - The timer was not pending
1358  * * %1 - The timer was pending and deactivated
1359  */
1360 static int __timer_delete(struct timer_list *timer, bool shutdown)
1361 {
1362 	struct timer_base *base;
1363 	unsigned long flags;
1364 	int ret = 0;
1365 
1366 	debug_assert_init(timer);
1367 
1368 	/*
1369 	 * If @shutdown is set then the lock has to be taken whether the
1370 	 * timer is pending or not to protect against a concurrent rearm
1371 	 * which might hit between the lockless pending check and the lock
1372 	 * acquisition. By taking the lock it is ensured that such a newly
1373 	 * enqueued timer is dequeued and cannot end up with
1374 	 * timer->function == NULL in the expiry code.
1375 	 *
1376 	 * If timer->function is currently executed, then this makes sure
1377 	 * that the callback cannot requeue the timer.
1378 	 */
1379 	if (timer_pending(timer) || shutdown) {
1380 		base = lock_timer_base(timer, &flags);
1381 		ret = detach_if_pending(timer, base, true);
1382 		if (shutdown)
1383 			timer->function = NULL;
1384 		raw_spin_unlock_irqrestore(&base->lock, flags);
1385 	}
1386 
1387 	return ret;
1388 }
1389 
1390 /**
1391  * timer_delete - Deactivate a timer
1392  * @timer:	The timer to be deactivated
1393  *
1394  * The function only deactivates a pending timer, but contrary to
1395  * timer_delete_sync() it does not take into account whether the timer's
1396  * callback function is concurrently executed on a different CPU or not.
1397  * It neither prevents rearming of the timer.  If @timer can be rearmed
1398  * concurrently then the return value of this function is meaningless.
1399  *
1400  * Return:
1401  * * %0 - The timer was not pending
1402  * * %1 - The timer was pending and deactivated
1403  */
1404 int timer_delete(struct timer_list *timer)
1405 {
1406 	return __timer_delete(timer, false);
1407 }
1408 EXPORT_SYMBOL(timer_delete);
1409 
1410 /**
1411  * timer_shutdown - Deactivate a timer and prevent rearming
1412  * @timer:	The timer to be deactivated
1413  *
1414  * The function does not wait for an eventually running timer callback on a
1415  * different CPU but it prevents rearming of the timer. Any attempt to arm
1416  * @timer after this function returns will be silently ignored.
1417  *
1418  * This function is useful for teardown code and should only be used when
1419  * timer_shutdown_sync() cannot be invoked due to locking or context constraints.
1420  *
1421  * Return:
1422  * * %0 - The timer was not pending
1423  * * %1 - The timer was pending
1424  */
1425 int timer_shutdown(struct timer_list *timer)
1426 {
1427 	return __timer_delete(timer, true);
1428 }
1429 EXPORT_SYMBOL_GPL(timer_shutdown);
1430 
1431 /**
1432  * __try_to_del_timer_sync - Internal function: Try to deactivate a timer
1433  * @timer:	Timer to deactivate
1434  * @shutdown:	If true, this indicates that the timer is about to be
1435  *		shutdown permanently.
1436  *
1437  * If @shutdown is true then @timer->function is set to NULL under the
1438  * timer base lock which prevents further rearming of the timer. Any
1439  * attempt to rearm @timer after this function returns will be silently
1440  * ignored.
1441  *
1442  * This function cannot guarantee that the timer cannot be rearmed
1443  * right after dropping the base lock if @shutdown is false. That
1444  * needs to be prevented by the calling code if necessary.
1445  *
1446  * Return:
1447  * * %0  - The timer was not pending
1448  * * %1  - The timer was pending and deactivated
1449  * * %-1 - The timer callback function is running on a different CPU
1450  */
1451 static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown)
1452 {
1453 	struct timer_base *base;
1454 	unsigned long flags;
1455 	int ret = -1;
1456 
1457 	debug_assert_init(timer);
1458 
1459 	base = lock_timer_base(timer, &flags);
1460 
1461 	if (base->running_timer != timer)
1462 		ret = detach_if_pending(timer, base, true);
1463 	if (shutdown)
1464 		timer->function = NULL;
1465 
1466 	raw_spin_unlock_irqrestore(&base->lock, flags);
1467 
1468 	return ret;
1469 }
1470 
1471 /**
1472  * timer_delete_sync_try - Try to deactivate a timer
1473  * @timer:	Timer to deactivate
1474  *
1475  * This function tries to deactivate a timer. On success the timer is not
1476  * queued and the timer callback function is not running on any CPU.
1477  *
1478  * This function does not guarantee that the timer cannot be rearmed right
1479  * after dropping the base lock. That needs to be prevented by the calling
1480  * code if necessary.
1481  *
1482  * Return:
1483  * * %0  - The timer was not pending
1484  * * %1  - The timer was pending and deactivated
1485  * * %-1 - The timer callback function is running on a different CPU
1486  */
1487 int timer_delete_sync_try(struct timer_list *timer)
1488 {
1489 	return __try_to_del_timer_sync(timer, false);
1490 }
1491 EXPORT_SYMBOL(timer_delete_sync_try);
1492 
1493 #ifdef CONFIG_PREEMPT_RT
1494 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1495 {
1496 	spin_lock_init(&base->expiry_lock);
1497 }
1498 
1499 static inline void timer_base_lock_expiry(struct timer_base *base)
1500 {
1501 	spin_lock(&base->expiry_lock);
1502 }
1503 
1504 static inline void timer_base_unlock_expiry(struct timer_base *base)
1505 {
1506 	spin_unlock(&base->expiry_lock);
1507 }
1508 
1509 /*
1510  * The counterpart to del_timer_wait_running().
1511  *
1512  * If there is a waiter for base->expiry_lock, then it was waiting for the
1513  * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1514  * the waiter to acquire the lock and make progress.
1515  */
1516 static void timer_sync_wait_running(struct timer_base *base)
1517 	__releases(&base->lock) __releases(&base->expiry_lock)
1518 	__acquires(&base->expiry_lock) __acquires(&base->lock)
1519 {
1520 	if (atomic_read(&base->timer_waiters)) {
1521 		raw_spin_unlock_irq(&base->lock);
1522 		spin_unlock(&base->expiry_lock);
1523 		spin_lock(&base->expiry_lock);
1524 		raw_spin_lock_irq(&base->lock);
1525 	}
1526 }
1527 
1528 /*
1529  * This function is called on PREEMPT_RT kernels when the fast path
1530  * deletion of a timer failed because the timer callback function was
1531  * running.
1532  *
1533  * This prevents priority inversion, if the softirq thread on a remote CPU
1534  * got preempted, and it prevents a life lock when the task which tries to
1535  * delete a timer preempted the softirq thread running the timer callback
1536  * function.
1537  */
1538 static void del_timer_wait_running(struct timer_list *timer)
1539 {
1540 	u32 tf;
1541 
1542 	tf = READ_ONCE(timer->flags);
1543 	if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1544 		struct timer_base *base = get_timer_base(tf);
1545 
1546 		/*
1547 		 * Mark the base as contended and grab the expiry lock,
1548 		 * which is held by the softirq across the timer
1549 		 * callback. Drop the lock immediately so the softirq can
1550 		 * expire the next timer. In theory the timer could already
1551 		 * be running again, but that's more than unlikely and just
1552 		 * causes another wait loop.
1553 		 */
1554 		atomic_inc(&base->timer_waiters);
1555 		spin_lock_bh(&base->expiry_lock);
1556 		atomic_dec(&base->timer_waiters);
1557 		spin_unlock_bh(&base->expiry_lock);
1558 	}
1559 }
1560 #else
1561 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1562 static inline void timer_base_lock_expiry(struct timer_base *base) { }
1563 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1564 static inline void timer_sync_wait_running(struct timer_base *base) { }
1565 static inline void del_timer_wait_running(struct timer_list *timer) { }
1566 #endif
1567 
1568 /**
1569  * __timer_delete_sync - Internal function: Deactivate a timer and wait
1570  *			 for the handler to finish.
1571  * @timer:	The timer to be deactivated
1572  * @shutdown:	If true, @timer->function will be set to NULL under the
1573  *		timer base lock which prevents rearming of @timer
1574  *
1575  * If @shutdown is not set the timer can be rearmed later. If the timer can
1576  * be rearmed concurrently, i.e. after dropping the base lock then the
1577  * return value is meaningless.
1578  *
1579  * If @shutdown is set then @timer->function is set to NULL under timer
1580  * base lock which prevents rearming of the timer. Any attempt to rearm
1581  * a shutdown timer is silently ignored.
1582  *
1583  * If the timer should be reused after shutdown it has to be initialized
1584  * again.
1585  *
1586  * Return:
1587  * * %0	- The timer was not pending
1588  * * %1	- The timer was pending and deactivated
1589  */
1590 static int __timer_delete_sync(struct timer_list *timer, bool shutdown)
1591 {
1592 	int ret;
1593 
1594 #ifdef CONFIG_LOCKDEP
1595 	unsigned long flags;
1596 
1597 	/*
1598 	 * If lockdep gives a backtrace here, please reference
1599 	 * the synchronization rules above.
1600 	 */
1601 	local_irq_save(flags);
1602 	lock_map_acquire(&timer->lockdep_map);
1603 	lock_map_release(&timer->lockdep_map);
1604 	local_irq_restore(flags);
1605 #endif
1606 	/*
1607 	 * don't use it in hardirq context, because it
1608 	 * could lead to deadlock.
1609 	 */
1610 	WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE));
1611 
1612 	/*
1613 	 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1614 	 * del_timer_wait_running().
1615 	 */
1616 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1617 		lockdep_assert_preemption_enabled();
1618 
1619 	do {
1620 		ret = __try_to_del_timer_sync(timer, shutdown);
1621 
1622 		if (unlikely(ret < 0)) {
1623 			del_timer_wait_running(timer);
1624 			cpu_relax();
1625 		}
1626 	} while (ret < 0);
1627 
1628 	return ret;
1629 }
1630 
1631 /**
1632  * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
1633  * @timer:	The timer to be deactivated
1634  *
1635  * Synchronization rules: Callers must prevent restarting of the timer,
1636  * otherwise this function is meaningless. It must not be called from
1637  * interrupt contexts unless the timer is an irqsafe one. The caller must
1638  * not hold locks which would prevent completion of the timer's callback
1639  * function. The timer's handler must not call add_timer_on(). Upon exit
1640  * the timer is not queued and the handler is not running on any CPU.
1641  *
1642  * For !irqsafe timers, the caller must not hold locks that are held in
1643  * interrupt context. Even if the lock has nothing to do with the timer in
1644  * question.  Here's why::
1645  *
1646  *    CPU0                             CPU1
1647  *    ----                             ----
1648  *                                     <SOFTIRQ>
1649  *                                       call_timer_fn();
1650  *                                       base->running_timer = mytimer;
1651  *    spin_lock_irq(somelock);
1652  *                                     <IRQ>
1653  *                                        spin_lock(somelock);
1654  *    timer_delete_sync(mytimer);
1655  *    while (base->running_timer == mytimer);
1656  *
1657  * Now timer_delete_sync() will never return and never release somelock.
1658  * The interrupt on the other CPU is waiting to grab somelock but it has
1659  * interrupted the softirq that CPU0 is waiting to finish.
1660  *
1661  * This function cannot guarantee that the timer is not rearmed again by
1662  * some concurrent or preempting code, right after it dropped the base
1663  * lock. If there is the possibility of a concurrent rearm then the return
1664  * value of the function is meaningless.
1665  *
1666  * If such a guarantee is needed, e.g. for teardown situations then use
1667  * timer_shutdown_sync() instead.
1668  *
1669  * Return:
1670  * * %0	- The timer was not pending
1671  * * %1	- The timer was pending and deactivated
1672  */
1673 int timer_delete_sync(struct timer_list *timer)
1674 {
1675 	return __timer_delete_sync(timer, false);
1676 }
1677 EXPORT_SYMBOL(timer_delete_sync);
1678 
1679 /**
1680  * timer_shutdown_sync - Shutdown a timer and prevent rearming
1681  * @timer: The timer to be shutdown
1682  *
1683  * When the function returns it is guaranteed that:
1684  *   - @timer is not queued
1685  *   - The callback function of @timer is not running
1686  *   - @timer cannot be enqueued again. Any attempt to rearm
1687  *     @timer is silently ignored.
1688  *
1689  * See timer_delete_sync() for synchronization rules.
1690  *
1691  * This function is useful for final teardown of an infrastructure where
1692  * the timer is subject to a circular dependency problem.
1693  *
1694  * A common pattern for this is a timer and a workqueue where the timer can
1695  * schedule work and work can arm the timer. On shutdown the workqueue must
1696  * be destroyed and the timer must be prevented from rearming. Unless the
1697  * code has conditionals like 'if (mything->in_shutdown)' to prevent that
1698  * there is no way to get this correct with timer_delete_sync().
1699  *
1700  * timer_shutdown_sync() is solving the problem. The correct ordering of
1701  * calls in this case is:
1702  *
1703  *	timer_shutdown_sync(&mything->timer);
1704  *	workqueue_destroy(&mything->workqueue);
1705  *
1706  * After this 'mything' can be safely freed.
1707  *
1708  * This obviously implies that the timer is not required to be functional
1709  * for the rest of the shutdown operation.
1710  *
1711  * Return:
1712  * * %0 - The timer was not pending
1713  * * %1 - The timer was pending
1714  */
1715 int timer_shutdown_sync(struct timer_list *timer)
1716 {
1717 	return __timer_delete_sync(timer, true);
1718 }
1719 EXPORT_SYMBOL_GPL(timer_shutdown_sync);
1720 
1721 static void call_timer_fn(struct timer_list *timer,
1722 			  void (*fn)(struct timer_list *),
1723 			  unsigned long baseclk)
1724 {
1725 	int count = preempt_count();
1726 
1727 #ifdef CONFIG_LOCKDEP
1728 	/*
1729 	 * It is permissible to free the timer from inside the
1730 	 * function that is called from it, this we need to take into
1731 	 * account for lockdep too. To avoid bogus "held lock freed"
1732 	 * warnings as well as problems when looking into
1733 	 * timer->lockdep_map, make a copy and use that here.
1734 	 */
1735 	struct lockdep_map lockdep_map;
1736 
1737 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1738 #endif
1739 	/*
1740 	 * Couple the lock chain with the lock chain at
1741 	 * timer_delete_sync() by acquiring the lock_map around the fn()
1742 	 * call here and in timer_delete_sync().
1743 	 */
1744 	lock_map_acquire(&lockdep_map);
1745 
1746 	trace_timer_expire_entry(timer, baseclk);
1747 	fn(timer);
1748 	trace_timer_expire_exit(timer);
1749 
1750 	lock_map_release(&lockdep_map);
1751 
1752 	if (count != preempt_count()) {
1753 		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1754 			  fn, count, preempt_count());
1755 		/*
1756 		 * Restore the preempt count. That gives us a decent
1757 		 * chance to survive and extract information. If the
1758 		 * callback kept a lock held, bad luck, but not worse
1759 		 * than the BUG() we had.
1760 		 */
1761 		preempt_count_set(count);
1762 	}
1763 }
1764 
1765 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1766 {
1767 	/*
1768 	 * This value is required only for tracing. base->clk was
1769 	 * incremented directly before expire_timers was called. But expiry
1770 	 * is related to the old base->clk value.
1771 	 */
1772 	unsigned long baseclk = base->clk - 1;
1773 
1774 	while (!hlist_empty(head)) {
1775 		struct timer_list *timer;
1776 		void (*fn)(struct timer_list *);
1777 
1778 		timer = hlist_entry(head->first, struct timer_list, entry);
1779 
1780 		base->running_timer = timer;
1781 		detach_timer(timer, true);
1782 
1783 		fn = timer->function;
1784 
1785 		if (WARN_ON_ONCE(!fn)) {
1786 			/* Should never happen. Emphasis on should! */
1787 			base->running_timer = NULL;
1788 			continue;
1789 		}
1790 
1791 		if (timer->flags & TIMER_IRQSAFE) {
1792 			raw_spin_unlock(&base->lock);
1793 			call_timer_fn(timer, fn, baseclk);
1794 			raw_spin_lock(&base->lock);
1795 			base->running_timer = NULL;
1796 		} else {
1797 			raw_spin_unlock_irq(&base->lock);
1798 			call_timer_fn(timer, fn, baseclk);
1799 			raw_spin_lock_irq(&base->lock);
1800 			base->running_timer = NULL;
1801 			timer_sync_wait_running(base);
1802 		}
1803 	}
1804 }
1805 
1806 static int collect_expired_timers(struct timer_base *base,
1807 				  struct hlist_head *heads)
1808 {
1809 	unsigned long clk = base->clk = base->next_expiry;
1810 	struct hlist_head *vec;
1811 	int i, levels = 0;
1812 	unsigned int idx;
1813 
1814 	for (i = 0; i < LVL_DEPTH; i++) {
1815 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1816 
1817 		if (__test_and_clear_bit(idx, base->pending_map)) {
1818 			vec = base->vectors + idx;
1819 			hlist_move_list(vec, heads++);
1820 			levels++;
1821 		}
1822 		/* Is it time to look at the next level? */
1823 		if (clk & LVL_CLK_MASK)
1824 			break;
1825 		/* Shift clock for the next level granularity */
1826 		clk >>= LVL_CLK_SHIFT;
1827 	}
1828 	return levels;
1829 }
1830 
1831 /*
1832  * Find the next pending bucket of a level. Search from level start (@offset)
1833  * + @clk upwards and if nothing there, search from start of the level
1834  * (@offset) up to @offset + clk.
1835  */
1836 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1837 			       unsigned clk)
1838 {
1839 	unsigned pos, start = offset + clk;
1840 	unsigned end = offset + LVL_SIZE;
1841 
1842 	pos = find_next_bit(base->pending_map, end, start);
1843 	if (pos < end)
1844 		return pos - start;
1845 
1846 	pos = find_next_bit(base->pending_map, start, offset);
1847 	return pos < start ? pos + LVL_SIZE - start : -1;
1848 }
1849 
1850 /*
1851  * Search the first expiring timer in the various clock levels. Caller must
1852  * hold base->lock.
1853  *
1854  * Store next expiry time in base->next_expiry.
1855  */
1856 static void timer_recalc_next_expiry(struct timer_base *base)
1857 {
1858 	unsigned long clk, next, adj;
1859 	unsigned lvl, offset = 0;
1860 
1861 	next = base->clk + TIMER_NEXT_MAX_DELTA;
1862 	clk = base->clk;
1863 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1864 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1865 		unsigned long lvl_clk = clk & LVL_CLK_MASK;
1866 
1867 		if (pos >= 0) {
1868 			unsigned long tmp = clk + (unsigned long) pos;
1869 
1870 			tmp <<= LVL_SHIFT(lvl);
1871 			if (time_before(tmp, next))
1872 				next = tmp;
1873 
1874 			/*
1875 			 * If the next expiration happens before we reach
1876 			 * the next level, no need to check further.
1877 			 */
1878 			if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1879 				break;
1880 		}
1881 		/*
1882 		 * Clock for the next level. If the current level clock lower
1883 		 * bits are zero, we look at the next level as is. If not we
1884 		 * need to advance it by one because that's going to be the
1885 		 * next expiring bucket in that level. base->clk is the next
1886 		 * expiring jiffy. So in case of:
1887 		 *
1888 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1889 		 *  0    0    0    0    0    0
1890 		 *
1891 		 * we have to look at all levels @index 0. With
1892 		 *
1893 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1894 		 *  0    0    0    0    0    2
1895 		 *
1896 		 * LVL0 has the next expiring bucket @index 2. The upper
1897 		 * levels have the next expiring bucket @index 1.
1898 		 *
1899 		 * In case that the propagation wraps the next level the same
1900 		 * rules apply:
1901 		 *
1902 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1903 		 *  0    0    0    0    F    2
1904 		 *
1905 		 * So after looking at LVL0 we get:
1906 		 *
1907 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1908 		 *  0    0    0    1    0
1909 		 *
1910 		 * So no propagation from LVL1 to LVL2 because that happened
1911 		 * with the add already, but then we need to propagate further
1912 		 * from LVL2 to LVL3.
1913 		 *
1914 		 * So the simple check whether the lower bits of the current
1915 		 * level are 0 or not is sufficient for all cases.
1916 		 */
1917 		adj = lvl_clk ? 1 : 0;
1918 		clk >>= LVL_CLK_SHIFT;
1919 		clk += adj;
1920 	}
1921 
1922 	WRITE_ONCE(base->next_expiry, next);
1923 	base->next_expiry_recalc = false;
1924 	base->timers_pending = !(next == base->clk + TIMER_NEXT_MAX_DELTA);
1925 }
1926 
1927 #ifdef CONFIG_NO_HZ_COMMON
1928 /*
1929  * Check, if the next hrtimer event is before the next timer wheel
1930  * event:
1931  */
1932 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1933 {
1934 	u64 nextevt = hrtimer_get_next_event();
1935 
1936 	/*
1937 	 * If high resolution timers are enabled
1938 	 * hrtimer_get_next_event() returns KTIME_MAX.
1939 	 */
1940 	if (expires <= nextevt)
1941 		return expires;
1942 
1943 	/*
1944 	 * If the next timer is already expired, return the tick base
1945 	 * time so the tick is fired immediately.
1946 	 */
1947 	if (nextevt <= basem)
1948 		return basem;
1949 
1950 	/*
1951 	 * Round up to the next jiffy. High resolution timers are
1952 	 * off, so the hrtimers are expired in the tick and we need to
1953 	 * make sure that this tick really expires the timer to avoid
1954 	 * a ping pong of the nohz stop code.
1955 	 *
1956 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1957 	 */
1958 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1959 }
1960 
1961 static unsigned long next_timer_interrupt(struct timer_base *base,
1962 					  unsigned long basej)
1963 {
1964 	if (base->next_expiry_recalc)
1965 		timer_recalc_next_expiry(base);
1966 
1967 	/*
1968 	 * Move next_expiry for the empty base into the future to prevent an
1969 	 * unnecessary raise of the timer softirq when the next_expiry value
1970 	 * will be reached even if there is no timer pending.
1971 	 *
1972 	 * This update is also required to make timer_base::next_expiry values
1973 	 * easy comparable to find out which base holds the first pending timer.
1974 	 */
1975 	if (!base->timers_pending)
1976 		WRITE_ONCE(base->next_expiry, basej + TIMER_NEXT_MAX_DELTA);
1977 
1978 	return base->next_expiry;
1979 }
1980 
1981 static unsigned long fetch_next_timer_interrupt(unsigned long basej, u64 basem,
1982 						struct timer_base *base_local,
1983 						struct timer_base *base_global,
1984 						struct timer_events *tevt)
1985 {
1986 	unsigned long nextevt, nextevt_local, nextevt_global;
1987 	bool local_first;
1988 
1989 	nextevt_local = next_timer_interrupt(base_local, basej);
1990 	nextevt_global = next_timer_interrupt(base_global, basej);
1991 
1992 	local_first = time_before_eq(nextevt_local, nextevt_global);
1993 
1994 	nextevt = local_first ? nextevt_local : nextevt_global;
1995 
1996 	/*
1997 	 * If the @nextevt is at max. one tick away, use @nextevt and store
1998 	 * it in the local expiry value. The next global event is irrelevant in
1999 	 * this case and can be left as KTIME_MAX.
2000 	 */
2001 	if (time_before_eq(nextevt, basej + 1)) {
2002 		/* If we missed a tick already, force 0 delta */
2003 		if (time_before(nextevt, basej))
2004 			nextevt = basej;
2005 		tevt->local = basem + (u64)(nextevt - basej) * TICK_NSEC;
2006 
2007 		/*
2008 		 * This is required for the remote check only but it doesn't
2009 		 * hurt, when it is done for both call sites:
2010 		 *
2011 		 * * The remote callers will only take care of the global timers
2012 		 *   as local timers will be handled by CPU itself. When not
2013 		 *   updating tevt->global with the already missed first global
2014 		 *   timer, it is possible that it will be missed completely.
2015 		 *
2016 		 * * The local callers will ignore the tevt->global anyway, when
2017 		 *   nextevt is max. one tick away.
2018 		 */
2019 		if (!local_first)
2020 			tevt->global = tevt->local;
2021 		return nextevt;
2022 	}
2023 
2024 	/*
2025 	 * Update tevt.* values:
2026 	 *
2027 	 * If the local queue expires first, then the global event can be
2028 	 * ignored. If the global queue is empty, nothing to do either.
2029 	 */
2030 	if (!local_first && base_global->timers_pending)
2031 		tevt->global = basem + (u64)(nextevt_global - basej) * TICK_NSEC;
2032 
2033 	if (base_local->timers_pending)
2034 		tevt->local = basem + (u64)(nextevt_local - basej) * TICK_NSEC;
2035 
2036 	return nextevt;
2037 }
2038 
2039 # ifdef CONFIG_SMP
2040 /**
2041  * fetch_next_timer_interrupt_remote() - Store next timers into @tevt
2042  * @basej:	base time jiffies
2043  * @basem:	base time clock monotonic
2044  * @tevt:	Pointer to the storage for the expiry values
2045  * @cpu:	Remote CPU
2046  *
2047  * Stores the next pending local and global timer expiry values in the
2048  * struct pointed to by @tevt. If a queue is empty the corresponding
2049  * field is set to KTIME_MAX. If local event expires before global
2050  * event, global event is set to KTIME_MAX as well.
2051  *
2052  * Caller needs to make sure timer base locks are held (use
2053  * timer_lock_remote_bases() for this purpose).
2054  */
2055 void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem,
2056 				       struct timer_events *tevt,
2057 				       unsigned int cpu)
2058 {
2059 	struct timer_base *base_local, *base_global;
2060 
2061 	/* Preset local / global events */
2062 	tevt->local = tevt->global = KTIME_MAX;
2063 
2064 	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2065 	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2066 
2067 	lockdep_assert_held(&base_local->lock);
2068 	lockdep_assert_held(&base_global->lock);
2069 
2070 	fetch_next_timer_interrupt(basej, basem, base_local, base_global, tevt);
2071 }
2072 
2073 /**
2074  * timer_unlock_remote_bases - unlock timer bases of cpu
2075  * @cpu:	Remote CPU
2076  *
2077  * Unlocks the remote timer bases.
2078  */
2079 void timer_unlock_remote_bases(unsigned int cpu)
2080 	__releases(timer_bases[BASE_LOCAL]->lock)
2081 	__releases(timer_bases[BASE_GLOBAL]->lock)
2082 {
2083 	struct timer_base *base_local, *base_global;
2084 
2085 	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2086 	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2087 
2088 	raw_spin_unlock(&base_global->lock);
2089 	raw_spin_unlock(&base_local->lock);
2090 }
2091 
2092 /**
2093  * timer_lock_remote_bases - lock timer bases of cpu
2094  * @cpu:	Remote CPU
2095  *
2096  * Locks the remote timer bases.
2097  */
2098 void timer_lock_remote_bases(unsigned int cpu)
2099 	__acquires(timer_bases[BASE_LOCAL]->lock)
2100 	__acquires(timer_bases[BASE_GLOBAL]->lock)
2101 {
2102 	struct timer_base *base_local, *base_global;
2103 
2104 	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2105 	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2106 
2107 	lockdep_assert_irqs_disabled();
2108 
2109 	raw_spin_lock(&base_local->lock);
2110 	raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2111 }
2112 
2113 /**
2114  * timer_base_is_idle() - Return whether timer base is set idle
2115  *
2116  * Returns value of local timer base is_idle value.
2117  */
2118 bool timer_base_is_idle(void)
2119 {
2120 	return __this_cpu_read(timer_bases[BASE_LOCAL].is_idle);
2121 }
2122 
2123 static void __run_timer_base(struct timer_base *base);
2124 
2125 /**
2126  * timer_expire_remote() - expire global timers of cpu
2127  * @cpu:	Remote CPU
2128  *
2129  * Expire timers of global base of remote CPU.
2130  */
2131 void timer_expire_remote(unsigned int cpu)
2132 {
2133 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2134 
2135 	__run_timer_base(base);
2136 }
2137 
2138 static void timer_use_tmigr(unsigned long basej, u64 basem,
2139 			    unsigned long *nextevt, bool *tick_stop_path,
2140 			    bool timer_base_idle, struct timer_events *tevt)
2141 {
2142 	u64 next_tmigr;
2143 
2144 	if (timer_base_idle)
2145 		next_tmigr = tmigr_cpu_new_timer(tevt->global);
2146 	else if (tick_stop_path)
2147 		next_tmigr = tmigr_cpu_deactivate(tevt->global);
2148 	else
2149 		next_tmigr = tmigr_quick_check(tevt->global);
2150 
2151 	/*
2152 	 * If the CPU is the last going idle in timer migration hierarchy, make
2153 	 * sure the CPU will wake up in time to handle remote timers.
2154 	 * next_tmigr == KTIME_MAX if other CPUs are still active.
2155 	 */
2156 	if (next_tmigr < tevt->local) {
2157 		u64 tmp;
2158 
2159 		/* If we missed a tick already, force 0 delta */
2160 		if (next_tmigr < basem)
2161 			next_tmigr = basem;
2162 
2163 		tmp = div_u64(next_tmigr - basem, TICK_NSEC);
2164 
2165 		*nextevt = basej + (unsigned long)tmp;
2166 		tevt->local = next_tmigr;
2167 	}
2168 }
2169 # else
2170 static void timer_use_tmigr(unsigned long basej, u64 basem,
2171 			    unsigned long *nextevt, bool *tick_stop_path,
2172 			    bool timer_base_idle, struct timer_events *tevt)
2173 {
2174 	/*
2175 	 * Make sure first event is written into tevt->local to not miss a
2176 	 * timer on !SMP systems.
2177 	 */
2178 	tevt->local = min_t(u64, tevt->local, tevt->global);
2179 }
2180 # endif /* CONFIG_SMP */
2181 
2182 static inline u64 __get_next_timer_interrupt(unsigned long basej, u64 basem,
2183 					     bool *idle)
2184 {
2185 	struct timer_events tevt = { .local = KTIME_MAX, .global = KTIME_MAX };
2186 	struct timer_base *base_local, *base_global;
2187 	unsigned long nextevt;
2188 	bool idle_is_possible;
2189 
2190 	/*
2191 	 * When the CPU is offline, the tick is cancelled and nothing is supposed
2192 	 * to try to stop it.
2193 	 */
2194 	if (WARN_ON_ONCE(cpu_is_offline(smp_processor_id()))) {
2195 		if (idle)
2196 			*idle = true;
2197 		return tevt.local;
2198 	}
2199 
2200 	base_local = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
2201 	base_global = this_cpu_ptr(&timer_bases[BASE_GLOBAL]);
2202 
2203 	raw_spin_lock(&base_local->lock);
2204 	raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2205 
2206 	nextevt = fetch_next_timer_interrupt(basej, basem, base_local,
2207 					     base_global, &tevt);
2208 
2209 	/*
2210 	 * If the next event is only one jiffy ahead there is no need to call
2211 	 * timer migration hierarchy related functions. The value for the next
2212 	 * global timer in @tevt struct equals then KTIME_MAX. This is also
2213 	 * true, when the timer base is idle.
2214 	 *
2215 	 * The proper timer migration hierarchy function depends on the callsite
2216 	 * and whether timer base is idle or not. @nextevt will be updated when
2217 	 * this CPU needs to handle the first timer migration hierarchy
2218 	 * event. See timer_use_tmigr() for detailed information.
2219 	 */
2220 	idle_is_possible = time_after(nextevt, basej + 1);
2221 	if (idle_is_possible)
2222 		timer_use_tmigr(basej, basem, &nextevt, idle,
2223 				base_local->is_idle, &tevt);
2224 
2225 	/*
2226 	 * We have a fresh next event. Check whether we can forward the
2227 	 * base.
2228 	 */
2229 	__forward_timer_base(base_local, basej);
2230 	__forward_timer_base(base_global, basej);
2231 
2232 	/*
2233 	 * Set base->is_idle only when caller is timer_base_try_to_set_idle()
2234 	 */
2235 	if (idle) {
2236 		/*
2237 		 * Bases are idle if the next event is more than a tick
2238 		 * away. Caution: @nextevt could have changed by enqueueing a
2239 		 * global timer into timer migration hierarchy. Therefore a new
2240 		 * check is required here.
2241 		 *
2242 		 * If the base is marked idle then any timer add operation must
2243 		 * forward the base clk itself to keep granularity small. This
2244 		 * idle logic is only maintained for the BASE_LOCAL and
2245 		 * BASE_GLOBAL base, deferrable timers may still see large
2246 		 * granularity skew (by design).
2247 		 */
2248 		if (!base_local->is_idle && time_after(nextevt, basej + 1)) {
2249 			base_local->is_idle = true;
2250 			/*
2251 			 * Global timers queued locally while running in a task
2252 			 * in nohz_full mode need a self-IPI to kick reprogramming
2253 			 * in IRQ tail.
2254 			 */
2255 			if (tick_nohz_full_cpu(base_local->cpu))
2256 				base_global->is_idle = true;
2257 			trace_timer_base_idle(true, base_local->cpu);
2258 		}
2259 		*idle = base_local->is_idle;
2260 
2261 		/*
2262 		 * When timer base is not set idle, undo the effect of
2263 		 * tmigr_cpu_deactivate() to prevent inconsistent states - active
2264 		 * timer base but inactive timer migration hierarchy.
2265 		 *
2266 		 * When timer base was already marked idle, nothing will be
2267 		 * changed here.
2268 		 */
2269 		if (!base_local->is_idle && idle_is_possible)
2270 			tmigr_cpu_activate();
2271 	}
2272 
2273 	raw_spin_unlock(&base_global->lock);
2274 	raw_spin_unlock(&base_local->lock);
2275 
2276 	return cmp_next_hrtimer_event(basem, tevt.local);
2277 }
2278 
2279 /**
2280  * get_next_timer_interrupt() - return the time (clock mono) of the next timer
2281  * @basej:	base time jiffies
2282  * @basem:	base time clock monotonic
2283  *
2284  * Returns the tick aligned clock monotonic time of the next pending timer or
2285  * KTIME_MAX if no timer is pending. If timer of global base was queued into
2286  * timer migration hierarchy, first global timer is not taken into account. If
2287  * it was the last CPU of timer migration hierarchy going idle, first global
2288  * event is taken into account.
2289  */
2290 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
2291 {
2292 	return __get_next_timer_interrupt(basej, basem, NULL);
2293 }
2294 
2295 /**
2296  * timer_base_try_to_set_idle() - Try to set the idle state of the timer bases
2297  * @basej:	base time jiffies
2298  * @basem:	base time clock monotonic
2299  * @idle:	pointer to store the value of timer_base->is_idle on return;
2300  *		*idle contains the information whether tick was already stopped
2301  *
2302  * Returns the tick aligned clock monotonic time of the next pending timer or
2303  * KTIME_MAX if no timer is pending. When tick was already stopped KTIME_MAX is
2304  * returned as well.
2305  */
2306 u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle)
2307 {
2308 	if (*idle)
2309 		return KTIME_MAX;
2310 
2311 	return __get_next_timer_interrupt(basej, basem, idle);
2312 }
2313 
2314 /**
2315  * timer_clear_idle - Clear the idle state of the timer base
2316  *
2317  * Called with interrupts disabled
2318  */
2319 void timer_clear_idle(void)
2320 {
2321 	/*
2322 	 * We do this unlocked. The worst outcome is a remote pinned timer
2323 	 * enqueue sending a pointless IPI, but taking the lock would just
2324 	 * make the window for sending the IPI a few instructions smaller
2325 	 * for the cost of taking the lock in the exit from idle
2326 	 * path. Required for BASE_LOCAL only.
2327 	 */
2328 	__this_cpu_write(timer_bases[BASE_LOCAL].is_idle, false);
2329 	if (tick_nohz_full_cpu(smp_processor_id()))
2330 		__this_cpu_write(timer_bases[BASE_GLOBAL].is_idle, false);
2331 	trace_timer_base_idle(false, smp_processor_id());
2332 
2333 	/* Activate without holding the timer_base->lock */
2334 	tmigr_cpu_activate();
2335 }
2336 #endif
2337 
2338 /**
2339  * __run_timers - run all expired timers (if any) on this CPU.
2340  * @base: the timer vector to be processed.
2341  */
2342 static inline void __run_timers(struct timer_base *base)
2343 {
2344 	struct hlist_head heads[LVL_DEPTH];
2345 	int levels;
2346 
2347 	lockdep_assert_held(&base->lock);
2348 
2349 	if (base->running_timer)
2350 		return;
2351 
2352 	while (time_after_eq(jiffies, base->clk) &&
2353 	       time_after_eq(jiffies, base->next_expiry)) {
2354 		levels = collect_expired_timers(base, heads);
2355 		/*
2356 		 * The two possible reasons for not finding any expired
2357 		 * timer at this clk are that all matching timers have been
2358 		 * dequeued or no timer has been queued since
2359 		 * base::next_expiry was set to base::clk +
2360 		 * TIMER_NEXT_MAX_DELTA.
2361 		 */
2362 		WARN_ON_ONCE(!levels && !base->next_expiry_recalc
2363 			     && base->timers_pending);
2364 		/*
2365 		 * While executing timers, base->clk is set 1 offset ahead of
2366 		 * jiffies to avoid endless requeuing to current jiffies.
2367 		 */
2368 		base->clk++;
2369 		timer_recalc_next_expiry(base);
2370 
2371 		while (levels--)
2372 			expire_timers(base, heads + levels);
2373 	}
2374 }
2375 
2376 static void __run_timer_base(struct timer_base *base)
2377 {
2378 	/* Can race against a remote CPU updating next_expiry under the lock */
2379 	if (time_before(jiffies, READ_ONCE(base->next_expiry)))
2380 		return;
2381 
2382 	timer_base_lock_expiry(base);
2383 	raw_spin_lock_irq(&base->lock);
2384 	__run_timers(base);
2385 	raw_spin_unlock_irq(&base->lock);
2386 	timer_base_unlock_expiry(base);
2387 }
2388 
2389 static void run_timer_base(int index)
2390 {
2391 	struct timer_base *base = this_cpu_ptr(&timer_bases[index]);
2392 
2393 	__run_timer_base(base);
2394 }
2395 
2396 /*
2397  * This function runs timers and the timer-tq in bottom half context.
2398  */
2399 static __latent_entropy void run_timer_softirq(void)
2400 {
2401 	run_timer_base(BASE_LOCAL);
2402 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) {
2403 		run_timer_base(BASE_GLOBAL);
2404 		run_timer_base(BASE_DEF);
2405 
2406 		if (is_timers_nohz_active())
2407 			tmigr_handle_remote();
2408 	}
2409 }
2410 
2411 /*
2412  * Called by the local, per-CPU timer interrupt on SMP.
2413  */
2414 static void run_local_timers(void)
2415 {
2416 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
2417 
2418 	hrtimer_run_queues();
2419 
2420 	for (int i = 0; i < NR_BASES; i++, base++) {
2421 		/*
2422 		 * Raise the softirq only if required.
2423 		 *
2424 		 * timer_base::next_expiry can be written by a remote CPU while
2425 		 * holding the lock. If this write happens at the same time than
2426 		 * the lockless local read, sanity checker could complain about
2427 		 * data corruption.
2428 		 *
2429 		 * There are two possible situations where
2430 		 * timer_base::next_expiry is written by a remote CPU:
2431 		 *
2432 		 * 1. Remote CPU expires global timers of this CPU and updates
2433 		 * timer_base::next_expiry of BASE_GLOBAL afterwards in
2434 		 * next_timer_interrupt() or timer_recalc_next_expiry(). The
2435 		 * worst outcome is a superfluous raise of the timer softirq
2436 		 * when the not yet updated value is read.
2437 		 *
2438 		 * 2. A new first pinned timer is enqueued by a remote CPU
2439 		 * and therefore timer_base::next_expiry of BASE_LOCAL is
2440 		 * updated. When this update is missed, this isn't a
2441 		 * problem, as an IPI is executed nevertheless when the CPU
2442 		 * was idle before. When the CPU wasn't idle but the update
2443 		 * is missed, then the timer would expire one jiffy late -
2444 		 * bad luck.
2445 		 *
2446 		 * Those unlikely corner cases where the worst outcome is only a
2447 		 * one jiffy delay or a superfluous raise of the softirq are
2448 		 * not that expensive as doing the check always while holding
2449 		 * the lock.
2450 		 *
2451 		 * Possible remote writers are using WRITE_ONCE(). Local reader
2452 		 * uses therefore READ_ONCE().
2453 		 */
2454 		if (time_after_eq(jiffies, READ_ONCE(base->next_expiry)) ||
2455 		    (i == BASE_DEF && tmigr_requires_handle_remote())) {
2456 			raise_timer_softirq(TIMER_SOFTIRQ);
2457 			return;
2458 		}
2459 	}
2460 }
2461 
2462 /*
2463  * Called from the timer interrupt handler to charge one tick to the current
2464  * process.  user_tick is 1 if the tick is user time, 0 for system.
2465  */
2466 void update_process_times(int user_tick)
2467 {
2468 	struct task_struct *p = current;
2469 
2470 	/* Note: this timer irq context must be accounted for as well. */
2471 	account_process_tick(p, user_tick);
2472 	run_local_timers();
2473 	rcu_sched_clock_irq(user_tick);
2474 #ifdef CONFIG_IRQ_WORK
2475 	if (in_irq())
2476 		irq_work_tick();
2477 #endif
2478 	sched_tick();
2479 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2480 		run_posix_cpu_timers();
2481 }
2482 
2483 #ifdef CONFIG_HOTPLUG_CPU
2484 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
2485 {
2486 	struct timer_list *timer;
2487 	int cpu = new_base->cpu;
2488 
2489 	while (!hlist_empty(head)) {
2490 		timer = hlist_entry(head->first, struct timer_list, entry);
2491 		detach_timer(timer, false);
2492 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2493 		internal_add_timer(new_base, timer);
2494 	}
2495 }
2496 
2497 int timers_prepare_cpu(unsigned int cpu)
2498 {
2499 	struct timer_base *base;
2500 	int b;
2501 
2502 	for (b = 0; b < NR_BASES; b++) {
2503 		base = per_cpu_ptr(&timer_bases[b], cpu);
2504 		base->clk = jiffies;
2505 		base->next_expiry = base->clk + TIMER_NEXT_MAX_DELTA;
2506 		base->next_expiry_recalc = false;
2507 		base->timers_pending = false;
2508 		base->is_idle = false;
2509 	}
2510 	return 0;
2511 }
2512 
2513 int timers_dead_cpu(unsigned int cpu)
2514 {
2515 	struct timer_base *old_base;
2516 	struct timer_base *new_base;
2517 	int b, i;
2518 
2519 	for (b = 0; b < NR_BASES; b++) {
2520 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
2521 		new_base = get_cpu_ptr(&timer_bases[b]);
2522 		/*
2523 		 * The caller is globally serialized and nobody else
2524 		 * takes two locks at once, deadlock is not possible.
2525 		 */
2526 		raw_spin_lock_irq(&new_base->lock);
2527 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2528 
2529 		/*
2530 		 * The current CPUs base clock might be stale. Update it
2531 		 * before moving the timers over.
2532 		 */
2533 		forward_timer_base(new_base);
2534 
2535 		WARN_ON_ONCE(old_base->running_timer);
2536 		old_base->running_timer = NULL;
2537 
2538 		for (i = 0; i < WHEEL_SIZE; i++)
2539 			migrate_timer_list(new_base, old_base->vectors + i);
2540 
2541 		raw_spin_unlock(&old_base->lock);
2542 		raw_spin_unlock_irq(&new_base->lock);
2543 		put_cpu_ptr(&timer_bases);
2544 	}
2545 	return 0;
2546 }
2547 
2548 #endif /* CONFIG_HOTPLUG_CPU */
2549 
2550 static void __init init_timer_cpu(int cpu)
2551 {
2552 	struct timer_base *base;
2553 	int i;
2554 
2555 	for (i = 0; i < NR_BASES; i++) {
2556 		base = per_cpu_ptr(&timer_bases[i], cpu);
2557 		base->cpu = cpu;
2558 		raw_spin_lock_init(&base->lock);
2559 		base->clk = jiffies;
2560 		base->next_expiry = base->clk + TIMER_NEXT_MAX_DELTA;
2561 		timer_base_init_expiry_lock(base);
2562 	}
2563 }
2564 
2565 static void __init init_timer_cpus(void)
2566 {
2567 	int cpu;
2568 
2569 	for_each_possible_cpu(cpu)
2570 		init_timer_cpu(cpu);
2571 }
2572 
2573 void __init timers_init(void)
2574 {
2575 	init_timer_cpus();
2576 	posix_cputimers_init_work();
2577 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2578 }
2579