1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_CLOCK_WAS_SET (1 << 1) 34 35 #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET) 36 37 enum timekeeping_adv_mode { 38 /* Update timekeeper when a tick has passed */ 39 TK_ADV_TICK, 40 41 /* Update timekeeper on a direct frequency change */ 42 TK_ADV_FREQ 43 }; 44 45 /* 46 * The most important data for readout fits into a single 64 byte 47 * cache line. 48 */ 49 struct tk_data { 50 seqcount_raw_spinlock_t seq; 51 struct timekeeper timekeeper; 52 struct timekeeper shadow_timekeeper; 53 raw_spinlock_t lock; 54 } ____cacheline_aligned; 55 56 static struct tk_data tk_core; 57 58 /* flag for if timekeeping is suspended */ 59 int __read_mostly timekeeping_suspended; 60 61 /** 62 * struct tk_fast - NMI safe timekeeper 63 * @seq: Sequence counter for protecting updates. The lowest bit 64 * is the index for the tk_read_base array 65 * @base: tk_read_base array. Access is indexed by the lowest bit of 66 * @seq. 67 * 68 * See @update_fast_timekeeper() below. 69 */ 70 struct tk_fast { 71 seqcount_latch_t seq; 72 struct tk_read_base base[2]; 73 }; 74 75 /* Suspend-time cycles value for halted fast timekeeper. */ 76 static u64 cycles_at_suspend; 77 78 static u64 dummy_clock_read(struct clocksource *cs) 79 { 80 if (timekeeping_suspended) 81 return cycles_at_suspend; 82 return local_clock(); 83 } 84 85 static struct clocksource dummy_clock = { 86 .read = dummy_clock_read, 87 }; 88 89 /* 90 * Boot time initialization which allows local_clock() to be utilized 91 * during early boot when clocksources are not available. local_clock() 92 * returns nanoseconds already so no conversion is required, hence mult=1 93 * and shift=0. When the first proper clocksource is installed then 94 * the fast time keepers are updated with the correct values. 95 */ 96 #define FAST_TK_INIT \ 97 { \ 98 .clock = &dummy_clock, \ 99 .mask = CLOCKSOURCE_MASK(64), \ 100 .mult = 1, \ 101 .shift = 0, \ 102 } 103 104 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 105 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 106 .base[0] = FAST_TK_INIT, 107 .base[1] = FAST_TK_INIT, 108 }; 109 110 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 111 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 112 .base[0] = FAST_TK_INIT, 113 .base[1] = FAST_TK_INIT, 114 }; 115 116 unsigned long timekeeper_lock_irqsave(void) 117 { 118 unsigned long flags; 119 120 raw_spin_lock_irqsave(&tk_core.lock, flags); 121 return flags; 122 } 123 124 void timekeeper_unlock_irqrestore(unsigned long flags) 125 { 126 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 127 } 128 129 /* 130 * Multigrain timestamps require tracking the latest fine-grained timestamp 131 * that has been issued, and never returning a coarse-grained timestamp that is 132 * earlier than that value. 133 * 134 * mg_floor represents the latest fine-grained time that has been handed out as 135 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and 136 * converted to a realtime clock value on an as-needed basis. 137 * 138 * Maintaining mg_floor ensures the multigrain interfaces never issue a 139 * timestamp earlier than one that has been previously issued. 140 * 141 * The exception to this rule is when there is a backward realtime clock jump. If 142 * such an event occurs, a timestamp can appear to be earlier than a previous one. 143 */ 144 static __cacheline_aligned_in_smp atomic64_t mg_floor; 145 146 static inline void tk_normalize_xtime(struct timekeeper *tk) 147 { 148 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 149 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 150 tk->xtime_sec++; 151 } 152 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 153 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 154 tk->raw_sec++; 155 } 156 } 157 158 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 159 { 160 struct timespec64 ts; 161 162 ts.tv_sec = tk->xtime_sec; 163 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 164 return ts; 165 } 166 167 static inline struct timespec64 tk_xtime_coarse(const struct timekeeper *tk) 168 { 169 struct timespec64 ts; 170 171 ts.tv_sec = tk->xtime_sec; 172 ts.tv_nsec = tk->coarse_nsec; 173 return ts; 174 } 175 176 /* 177 * Update the nanoseconds part for the coarse time keepers. They can't rely 178 * on xtime_nsec because xtime_nsec could be adjusted by a small negative 179 * amount when the multiplication factor of the clock is adjusted, which 180 * could cause the coarse clocks to go slightly backwards. See 181 * timekeeping_apply_adjustment(). Thus we keep a separate copy for the coarse 182 * clockids which only is updated when the clock has been set or we have 183 * accumulated time. 184 */ 185 static inline void tk_update_coarse_nsecs(struct timekeeper *tk) 186 { 187 tk->coarse_nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 188 } 189 190 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 191 { 192 tk->xtime_sec = ts->tv_sec; 193 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 194 tk_update_coarse_nsecs(tk); 195 } 196 197 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 198 { 199 tk->xtime_sec += ts->tv_sec; 200 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 201 tk_normalize_xtime(tk); 202 tk_update_coarse_nsecs(tk); 203 } 204 205 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 206 { 207 struct timespec64 tmp; 208 209 /* 210 * Verify consistency of: offset_real = -wall_to_monotonic 211 * before modifying anything 212 */ 213 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 214 -tk->wall_to_monotonic.tv_nsec); 215 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 216 tk->wall_to_monotonic = wtm; 217 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 218 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 219 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp)); 220 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0))); 221 } 222 223 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 224 { 225 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 226 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta)); 227 /* 228 * Timespec representation for VDSO update to avoid 64bit division 229 * on every update. 230 */ 231 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 232 } 233 234 /* 235 * tk_clock_read - atomic clocksource read() helper 236 * 237 * This helper is necessary to use in the read paths because, while the 238 * seqcount ensures we don't return a bad value while structures are updated, 239 * it doesn't protect from potential crashes. There is the possibility that 240 * the tkr's clocksource may change between the read reference, and the 241 * clock reference passed to the read function. This can cause crashes if 242 * the wrong clocksource is passed to the wrong read function. 243 * This isn't necessary to use when holding the tk_core.lock or doing 244 * a read of the fast-timekeeper tkrs (which is protected by its own locking 245 * and update logic). 246 */ 247 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 248 { 249 struct clocksource *clock = READ_ONCE(tkr->clock); 250 251 return clock->read(clock); 252 } 253 254 /** 255 * tk_setup_internals - Set up internals to use clocksource clock. 256 * 257 * @tk: The target timekeeper to setup. 258 * @clock: Pointer to clocksource. 259 * 260 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 261 * pair and interval request. 262 * 263 * Unless you're the timekeeping code, you should not be using this! 264 */ 265 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 266 { 267 u64 interval; 268 u64 tmp, ntpinterval; 269 struct clocksource *old_clock; 270 271 ++tk->cs_was_changed_seq; 272 old_clock = tk->tkr_mono.clock; 273 tk->tkr_mono.clock = clock; 274 tk->tkr_mono.mask = clock->mask; 275 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 276 277 tk->tkr_raw.clock = clock; 278 tk->tkr_raw.mask = clock->mask; 279 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 280 281 /* Do the ns -> cycle conversion first, using original mult */ 282 tmp = NTP_INTERVAL_LENGTH; 283 tmp <<= clock->shift; 284 ntpinterval = tmp; 285 tmp += clock->mult/2; 286 do_div(tmp, clock->mult); 287 if (tmp == 0) 288 tmp = 1; 289 290 interval = (u64) tmp; 291 tk->cycle_interval = interval; 292 293 /* Go back from cycles -> shifted ns */ 294 tk->xtime_interval = interval * clock->mult; 295 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 296 tk->raw_interval = interval * clock->mult; 297 298 /* if changing clocks, convert xtime_nsec shift units */ 299 if (old_clock) { 300 int shift_change = clock->shift - old_clock->shift; 301 if (shift_change < 0) { 302 tk->tkr_mono.xtime_nsec >>= -shift_change; 303 tk->tkr_raw.xtime_nsec >>= -shift_change; 304 } else { 305 tk->tkr_mono.xtime_nsec <<= shift_change; 306 tk->tkr_raw.xtime_nsec <<= shift_change; 307 } 308 } 309 310 tk->tkr_mono.shift = clock->shift; 311 tk->tkr_raw.shift = clock->shift; 312 313 tk->ntp_error = 0; 314 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 315 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 316 317 /* 318 * The timekeeper keeps its own mult values for the currently 319 * active clocksource. These value will be adjusted via NTP 320 * to counteract clock drifting. 321 */ 322 tk->tkr_mono.mult = clock->mult; 323 tk->tkr_raw.mult = clock->mult; 324 tk->ntp_err_mult = 0; 325 tk->skip_second_overflow = 0; 326 } 327 328 /* Timekeeper helper functions. */ 329 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 330 { 331 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 332 } 333 334 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 335 { 336 /* Calculate the delta since the last update_wall_time() */ 337 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 338 339 /* 340 * This detects both negative motion and the case where the delta 341 * overflows the multiplication with tkr->mult. 342 */ 343 if (unlikely(delta > tkr->clock->max_cycles)) { 344 /* 345 * Handle clocksource inconsistency between CPUs to prevent 346 * time from going backwards by checking for the MSB of the 347 * mask being set in the delta. 348 */ 349 if (delta & ~(mask >> 1)) 350 return tkr->xtime_nsec >> tkr->shift; 351 352 return delta_to_ns_safe(tkr, delta); 353 } 354 355 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 356 } 357 358 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 359 { 360 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 361 } 362 363 /** 364 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 365 * @tkr: Timekeeping readout base from which we take the update 366 * @tkf: Pointer to NMI safe timekeeper 367 * 368 * We want to use this from any context including NMI and tracing / 369 * instrumenting the timekeeping code itself. 370 * 371 * Employ the latch technique; see @write_seqcount_latch. 372 * 373 * So if a NMI hits the update of base[0] then it will use base[1] 374 * which is still consistent. In the worst case this can result is a 375 * slightly wrong timestamp (a few nanoseconds). See 376 * @ktime_get_mono_fast_ns. 377 */ 378 static void update_fast_timekeeper(const struct tk_read_base *tkr, 379 struct tk_fast *tkf) 380 { 381 struct tk_read_base *base = tkf->base; 382 383 /* Force readers off to base[1] */ 384 write_seqcount_latch_begin(&tkf->seq); 385 386 /* Update base[0] */ 387 memcpy(base, tkr, sizeof(*base)); 388 389 /* Force readers back to base[0] */ 390 write_seqcount_latch(&tkf->seq); 391 392 /* Update base[1] */ 393 memcpy(base + 1, base, sizeof(*base)); 394 395 write_seqcount_latch_end(&tkf->seq); 396 } 397 398 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 399 { 400 struct tk_read_base *tkr; 401 unsigned int seq; 402 u64 now; 403 404 do { 405 seq = read_seqcount_latch(&tkf->seq); 406 tkr = tkf->base + (seq & 0x01); 407 now = ktime_to_ns(tkr->base); 408 now += timekeeping_get_ns(tkr); 409 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 410 411 return now; 412 } 413 414 /** 415 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 416 * 417 * This timestamp is not guaranteed to be monotonic across an update. 418 * The timestamp is calculated by: 419 * 420 * now = base_mono + clock_delta * slope 421 * 422 * So if the update lowers the slope, readers who are forced to the 423 * not yet updated second array are still using the old steeper slope. 424 * 425 * tmono 426 * ^ 427 * | o n 428 * | o n 429 * | u 430 * | o 431 * |o 432 * |12345678---> reader order 433 * 434 * o = old slope 435 * u = update 436 * n = new slope 437 * 438 * So reader 6 will observe time going backwards versus reader 5. 439 * 440 * While other CPUs are likely to be able to observe that, the only way 441 * for a CPU local observation is when an NMI hits in the middle of 442 * the update. Timestamps taken from that NMI context might be ahead 443 * of the following timestamps. Callers need to be aware of that and 444 * deal with it. 445 */ 446 u64 notrace ktime_get_mono_fast_ns(void) 447 { 448 return __ktime_get_fast_ns(&tk_fast_mono); 449 } 450 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 451 452 /** 453 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 454 * 455 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 456 * conversion factor is not affected by NTP/PTP correction. 457 */ 458 u64 notrace ktime_get_raw_fast_ns(void) 459 { 460 return __ktime_get_fast_ns(&tk_fast_raw); 461 } 462 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 463 464 /** 465 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 466 * 467 * To keep it NMI safe since we're accessing from tracing, we're not using a 468 * separate timekeeper with updates to monotonic clock and boot offset 469 * protected with seqcounts. This has the following minor side effects: 470 * 471 * (1) Its possible that a timestamp be taken after the boot offset is updated 472 * but before the timekeeper is updated. If this happens, the new boot offset 473 * is added to the old timekeeping making the clock appear to update slightly 474 * earlier: 475 * CPU 0 CPU 1 476 * timekeeping_inject_sleeptime64() 477 * __timekeeping_inject_sleeptime(tk, delta); 478 * timestamp(); 479 * timekeeping_update_staged(tkd, TK_CLEAR_NTP...); 480 * 481 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 482 * partially updated. Since the tk->offs_boot update is a rare event, this 483 * should be a rare occurrence which postprocessing should be able to handle. 484 * 485 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 486 * apply as well. 487 */ 488 u64 notrace ktime_get_boot_fast_ns(void) 489 { 490 struct timekeeper *tk = &tk_core.timekeeper; 491 492 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 493 } 494 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 495 496 /** 497 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 498 * 499 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 500 * mono time and the TAI offset are not read atomically which may yield wrong 501 * readouts. However, an update of the TAI offset is an rare event e.g., caused 502 * by settime or adjtimex with an offset. The user of this function has to deal 503 * with the possibility of wrong timestamps in post processing. 504 */ 505 u64 notrace ktime_get_tai_fast_ns(void) 506 { 507 struct timekeeper *tk = &tk_core.timekeeper; 508 509 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 510 } 511 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 512 513 /** 514 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 515 * 516 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 517 */ 518 u64 ktime_get_real_fast_ns(void) 519 { 520 struct tk_fast *tkf = &tk_fast_mono; 521 struct tk_read_base *tkr; 522 u64 baser, delta; 523 unsigned int seq; 524 525 do { 526 seq = raw_read_seqcount_latch(&tkf->seq); 527 tkr = tkf->base + (seq & 0x01); 528 baser = ktime_to_ns(tkr->base_real); 529 delta = timekeeping_get_ns(tkr); 530 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 531 532 return baser + delta; 533 } 534 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 535 536 /** 537 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 538 * @tk: Timekeeper to snapshot. 539 * 540 * It generally is unsafe to access the clocksource after timekeeping has been 541 * suspended, so take a snapshot of the readout base of @tk and use it as the 542 * fast timekeeper's readout base while suspended. It will return the same 543 * number of cycles every time until timekeeping is resumed at which time the 544 * proper readout base for the fast timekeeper will be restored automatically. 545 */ 546 static void halt_fast_timekeeper(const struct timekeeper *tk) 547 { 548 static struct tk_read_base tkr_dummy; 549 const struct tk_read_base *tkr = &tk->tkr_mono; 550 551 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 552 cycles_at_suspend = tk_clock_read(tkr); 553 tkr_dummy.clock = &dummy_clock; 554 tkr_dummy.base_real = tkr->base + tk->offs_real; 555 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 556 557 tkr = &tk->tkr_raw; 558 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 559 tkr_dummy.clock = &dummy_clock; 560 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 561 } 562 563 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 564 565 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 566 { 567 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 568 } 569 570 /** 571 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 572 * @nb: Pointer to the notifier block to register 573 */ 574 int pvclock_gtod_register_notifier(struct notifier_block *nb) 575 { 576 struct timekeeper *tk = &tk_core.timekeeper; 577 int ret; 578 579 guard(raw_spinlock_irqsave)(&tk_core.lock); 580 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 581 update_pvclock_gtod(tk, true); 582 583 return ret; 584 } 585 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 586 587 /** 588 * pvclock_gtod_unregister_notifier - unregister a pvclock 589 * timedata update listener 590 * @nb: Pointer to the notifier block to unregister 591 */ 592 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 593 { 594 guard(raw_spinlock_irqsave)(&tk_core.lock); 595 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 596 } 597 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 598 599 /* 600 * tk_update_leap_state - helper to update the next_leap_ktime 601 */ 602 static inline void tk_update_leap_state(struct timekeeper *tk) 603 { 604 tk->next_leap_ktime = ntp_get_next_leap(); 605 if (tk->next_leap_ktime != KTIME_MAX) 606 /* Convert to monotonic time */ 607 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 608 } 609 610 /* 611 * Leap state update for both shadow and the real timekeeper 612 * Separate to spare a full memcpy() of the timekeeper. 613 */ 614 static void tk_update_leap_state_all(struct tk_data *tkd) 615 { 616 write_seqcount_begin(&tkd->seq); 617 tk_update_leap_state(&tkd->shadow_timekeeper); 618 tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime; 619 write_seqcount_end(&tkd->seq); 620 } 621 622 /* 623 * Update the ktime_t based scalar nsec members of the timekeeper 624 */ 625 static inline void tk_update_ktime_data(struct timekeeper *tk) 626 { 627 u64 seconds; 628 u32 nsec; 629 630 /* 631 * The xtime based monotonic readout is: 632 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 633 * The ktime based monotonic readout is: 634 * nsec = base_mono + now(); 635 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 636 */ 637 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 638 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 639 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 640 641 /* 642 * The sum of the nanoseconds portions of xtime and 643 * wall_to_monotonic can be greater/equal one second. Take 644 * this into account before updating tk->ktime_sec. 645 */ 646 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 647 if (nsec >= NSEC_PER_SEC) 648 seconds++; 649 tk->ktime_sec = seconds; 650 651 /* Update the monotonic raw base */ 652 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 653 } 654 655 /* 656 * Restore the shadow timekeeper from the real timekeeper. 657 */ 658 static void timekeeping_restore_shadow(struct tk_data *tkd) 659 { 660 lockdep_assert_held(&tkd->lock); 661 memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper)); 662 } 663 664 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action) 665 { 666 struct timekeeper *tk = &tk_core.shadow_timekeeper; 667 668 lockdep_assert_held(&tkd->lock); 669 670 /* 671 * Block out readers before running the updates below because that 672 * updates VDSO and other time related infrastructure. Not blocking 673 * the readers might let a reader see time going backwards when 674 * reading from the VDSO after the VDSO update and then reading in 675 * the kernel from the timekeeper before that got updated. 676 */ 677 write_seqcount_begin(&tkd->seq); 678 679 if (action & TK_CLEAR_NTP) { 680 tk->ntp_error = 0; 681 ntp_clear(); 682 } 683 684 tk_update_leap_state(tk); 685 tk_update_ktime_data(tk); 686 687 update_vsyscall(tk); 688 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 689 690 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 691 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 692 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 693 694 if (action & TK_CLOCK_WAS_SET) 695 tk->clock_was_set_seq++; 696 697 /* 698 * Update the real timekeeper. 699 * 700 * We could avoid this memcpy() by switching pointers, but that has 701 * the downside that the reader side does not longer benefit from 702 * the cacheline optimized data layout of the timekeeper and requires 703 * another indirection. 704 */ 705 memcpy(&tkd->timekeeper, tk, sizeof(*tk)); 706 write_seqcount_end(&tkd->seq); 707 } 708 709 /** 710 * timekeeping_forward_now - update clock to the current time 711 * @tk: Pointer to the timekeeper to update 712 * 713 * Forward the current clock to update its state since the last call to 714 * update_wall_time(). This is useful before significant clock changes, 715 * as it avoids having to deal with this time offset explicitly. 716 */ 717 static void timekeeping_forward_now(struct timekeeper *tk) 718 { 719 u64 cycle_now, delta; 720 721 cycle_now = tk_clock_read(&tk->tkr_mono); 722 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask, 723 tk->tkr_mono.clock->max_raw_delta); 724 tk->tkr_mono.cycle_last = cycle_now; 725 tk->tkr_raw.cycle_last = cycle_now; 726 727 while (delta > 0) { 728 u64 max = tk->tkr_mono.clock->max_cycles; 729 u64 incr = delta < max ? delta : max; 730 731 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 732 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 733 tk_normalize_xtime(tk); 734 delta -= incr; 735 } 736 tk_update_coarse_nsecs(tk); 737 } 738 739 /** 740 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 741 * @ts: pointer to the timespec to be set 742 * 743 * Returns the time of day in a timespec64 (WARN if suspended). 744 */ 745 void ktime_get_real_ts64(struct timespec64 *ts) 746 { 747 struct timekeeper *tk = &tk_core.timekeeper; 748 unsigned int seq; 749 u64 nsecs; 750 751 WARN_ON(timekeeping_suspended); 752 753 do { 754 seq = read_seqcount_begin(&tk_core.seq); 755 756 ts->tv_sec = tk->xtime_sec; 757 nsecs = timekeeping_get_ns(&tk->tkr_mono); 758 759 } while (read_seqcount_retry(&tk_core.seq, seq)); 760 761 ts->tv_nsec = 0; 762 timespec64_add_ns(ts, nsecs); 763 } 764 EXPORT_SYMBOL(ktime_get_real_ts64); 765 766 ktime_t ktime_get(void) 767 { 768 struct timekeeper *tk = &tk_core.timekeeper; 769 unsigned int seq; 770 ktime_t base; 771 u64 nsecs; 772 773 WARN_ON(timekeeping_suspended); 774 775 do { 776 seq = read_seqcount_begin(&tk_core.seq); 777 base = tk->tkr_mono.base; 778 nsecs = timekeeping_get_ns(&tk->tkr_mono); 779 780 } while (read_seqcount_retry(&tk_core.seq, seq)); 781 782 return ktime_add_ns(base, nsecs); 783 } 784 EXPORT_SYMBOL_GPL(ktime_get); 785 786 u32 ktime_get_resolution_ns(void) 787 { 788 struct timekeeper *tk = &tk_core.timekeeper; 789 unsigned int seq; 790 u32 nsecs; 791 792 WARN_ON(timekeeping_suspended); 793 794 do { 795 seq = read_seqcount_begin(&tk_core.seq); 796 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 797 } while (read_seqcount_retry(&tk_core.seq, seq)); 798 799 return nsecs; 800 } 801 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 802 803 static ktime_t *offsets[TK_OFFS_MAX] = { 804 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 805 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 806 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 807 }; 808 809 ktime_t ktime_get_with_offset(enum tk_offsets offs) 810 { 811 struct timekeeper *tk = &tk_core.timekeeper; 812 unsigned int seq; 813 ktime_t base, *offset = offsets[offs]; 814 u64 nsecs; 815 816 WARN_ON(timekeeping_suspended); 817 818 do { 819 seq = read_seqcount_begin(&tk_core.seq); 820 base = ktime_add(tk->tkr_mono.base, *offset); 821 nsecs = timekeeping_get_ns(&tk->tkr_mono); 822 823 } while (read_seqcount_retry(&tk_core.seq, seq)); 824 825 return ktime_add_ns(base, nsecs); 826 827 } 828 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 829 830 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 831 { 832 struct timekeeper *tk = &tk_core.timekeeper; 833 ktime_t base, *offset = offsets[offs]; 834 unsigned int seq; 835 u64 nsecs; 836 837 WARN_ON(timekeeping_suspended); 838 839 do { 840 seq = read_seqcount_begin(&tk_core.seq); 841 base = ktime_add(tk->tkr_mono.base, *offset); 842 nsecs = tk->coarse_nsec; 843 844 } while (read_seqcount_retry(&tk_core.seq, seq)); 845 846 return ktime_add_ns(base, nsecs); 847 } 848 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 849 850 /** 851 * ktime_mono_to_any() - convert monotonic time to any other time 852 * @tmono: time to convert. 853 * @offs: which offset to use 854 */ 855 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 856 { 857 ktime_t *offset = offsets[offs]; 858 unsigned int seq; 859 ktime_t tconv; 860 861 if (IS_ENABLED(CONFIG_64BIT)) { 862 /* 863 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and 864 * tk_update_sleep_time(). 865 */ 866 return ktime_add(tmono, READ_ONCE(*offset)); 867 } 868 869 do { 870 seq = read_seqcount_begin(&tk_core.seq); 871 tconv = ktime_add(tmono, *offset); 872 } while (read_seqcount_retry(&tk_core.seq, seq)); 873 874 return tconv; 875 } 876 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 877 878 /** 879 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 880 */ 881 ktime_t ktime_get_raw(void) 882 { 883 struct timekeeper *tk = &tk_core.timekeeper; 884 unsigned int seq; 885 ktime_t base; 886 u64 nsecs; 887 888 do { 889 seq = read_seqcount_begin(&tk_core.seq); 890 base = tk->tkr_raw.base; 891 nsecs = timekeeping_get_ns(&tk->tkr_raw); 892 893 } while (read_seqcount_retry(&tk_core.seq, seq)); 894 895 return ktime_add_ns(base, nsecs); 896 } 897 EXPORT_SYMBOL_GPL(ktime_get_raw); 898 899 /** 900 * ktime_get_ts64 - get the monotonic clock in timespec64 format 901 * @ts: pointer to timespec variable 902 * 903 * The function calculates the monotonic clock from the realtime 904 * clock and the wall_to_monotonic offset and stores the result 905 * in normalized timespec64 format in the variable pointed to by @ts. 906 */ 907 void ktime_get_ts64(struct timespec64 *ts) 908 { 909 struct timekeeper *tk = &tk_core.timekeeper; 910 struct timespec64 tomono; 911 unsigned int seq; 912 u64 nsec; 913 914 WARN_ON(timekeeping_suspended); 915 916 do { 917 seq = read_seqcount_begin(&tk_core.seq); 918 ts->tv_sec = tk->xtime_sec; 919 nsec = timekeeping_get_ns(&tk->tkr_mono); 920 tomono = tk->wall_to_monotonic; 921 922 } while (read_seqcount_retry(&tk_core.seq, seq)); 923 924 ts->tv_sec += tomono.tv_sec; 925 ts->tv_nsec = 0; 926 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 927 } 928 EXPORT_SYMBOL_GPL(ktime_get_ts64); 929 930 /** 931 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 932 * 933 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 934 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 935 * works on both 32 and 64 bit systems. On 32 bit systems the readout 936 * covers ~136 years of uptime which should be enough to prevent 937 * premature wrap arounds. 938 */ 939 time64_t ktime_get_seconds(void) 940 { 941 struct timekeeper *tk = &tk_core.timekeeper; 942 943 WARN_ON(timekeeping_suspended); 944 return tk->ktime_sec; 945 } 946 EXPORT_SYMBOL_GPL(ktime_get_seconds); 947 948 /** 949 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 950 * 951 * Returns the wall clock seconds since 1970. 952 * 953 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 954 * 32bit systems the access must be protected with the sequence 955 * counter to provide "atomic" access to the 64bit tk->xtime_sec 956 * value. 957 */ 958 time64_t ktime_get_real_seconds(void) 959 { 960 struct timekeeper *tk = &tk_core.timekeeper; 961 time64_t seconds; 962 unsigned int seq; 963 964 if (IS_ENABLED(CONFIG_64BIT)) 965 return tk->xtime_sec; 966 967 do { 968 seq = read_seqcount_begin(&tk_core.seq); 969 seconds = tk->xtime_sec; 970 971 } while (read_seqcount_retry(&tk_core.seq, seq)); 972 973 return seconds; 974 } 975 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 976 977 /** 978 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 979 * but without the sequence counter protect. This internal function 980 * is called just when timekeeping lock is already held. 981 */ 982 noinstr time64_t __ktime_get_real_seconds(void) 983 { 984 struct timekeeper *tk = &tk_core.timekeeper; 985 986 return tk->xtime_sec; 987 } 988 989 /** 990 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 991 * @systime_snapshot: pointer to struct receiving the system time snapshot 992 */ 993 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 994 { 995 struct timekeeper *tk = &tk_core.timekeeper; 996 unsigned int seq; 997 ktime_t base_raw; 998 ktime_t base_real; 999 ktime_t base_boot; 1000 u64 nsec_raw; 1001 u64 nsec_real; 1002 u64 now; 1003 1004 WARN_ON_ONCE(timekeeping_suspended); 1005 1006 do { 1007 seq = read_seqcount_begin(&tk_core.seq); 1008 now = tk_clock_read(&tk->tkr_mono); 1009 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1010 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1011 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1012 base_real = ktime_add(tk->tkr_mono.base, 1013 tk_core.timekeeper.offs_real); 1014 base_boot = ktime_add(tk->tkr_mono.base, 1015 tk_core.timekeeper.offs_boot); 1016 base_raw = tk->tkr_raw.base; 1017 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1018 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1019 } while (read_seqcount_retry(&tk_core.seq, seq)); 1020 1021 systime_snapshot->cycles = now; 1022 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1023 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); 1024 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1025 } 1026 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1027 1028 /* Scale base by mult/div checking for overflow */ 1029 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1030 { 1031 u64 tmp, rem; 1032 1033 tmp = div64_u64_rem(*base, div, &rem); 1034 1035 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1036 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1037 return -EOVERFLOW; 1038 tmp *= mult; 1039 1040 rem = div64_u64(rem * mult, div); 1041 *base = tmp + rem; 1042 return 0; 1043 } 1044 1045 /** 1046 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1047 * @history: Snapshot representing start of history 1048 * @partial_history_cycles: Cycle offset into history (fractional part) 1049 * @total_history_cycles: Total history length in cycles 1050 * @discontinuity: True indicates clock was set on history period 1051 * @ts: Cross timestamp that should be adjusted using 1052 * partial/total ratio 1053 * 1054 * Helper function used by get_device_system_crosststamp() to correct the 1055 * crosstimestamp corresponding to the start of the current interval to the 1056 * system counter value (timestamp point) provided by the driver. The 1057 * total_history_* quantities are the total history starting at the provided 1058 * reference point and ending at the start of the current interval. The cycle 1059 * count between the driver timestamp point and the start of the current 1060 * interval is partial_history_cycles. 1061 */ 1062 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1063 u64 partial_history_cycles, 1064 u64 total_history_cycles, 1065 bool discontinuity, 1066 struct system_device_crosststamp *ts) 1067 { 1068 struct timekeeper *tk = &tk_core.timekeeper; 1069 u64 corr_raw, corr_real; 1070 bool interp_forward; 1071 int ret; 1072 1073 if (total_history_cycles == 0 || partial_history_cycles == 0) 1074 return 0; 1075 1076 /* Interpolate shortest distance from beginning or end of history */ 1077 interp_forward = partial_history_cycles > total_history_cycles / 2; 1078 partial_history_cycles = interp_forward ? 1079 total_history_cycles - partial_history_cycles : 1080 partial_history_cycles; 1081 1082 /* 1083 * Scale the monotonic raw time delta by: 1084 * partial_history_cycles / total_history_cycles 1085 */ 1086 corr_raw = (u64)ktime_to_ns( 1087 ktime_sub(ts->sys_monoraw, history->raw)); 1088 ret = scale64_check_overflow(partial_history_cycles, 1089 total_history_cycles, &corr_raw); 1090 if (ret) 1091 return ret; 1092 1093 /* 1094 * If there is a discontinuity in the history, scale monotonic raw 1095 * correction by: 1096 * mult(real)/mult(raw) yielding the realtime correction 1097 * Otherwise, calculate the realtime correction similar to monotonic 1098 * raw calculation 1099 */ 1100 if (discontinuity) { 1101 corr_real = mul_u64_u32_div 1102 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1103 } else { 1104 corr_real = (u64)ktime_to_ns( 1105 ktime_sub(ts->sys_realtime, history->real)); 1106 ret = scale64_check_overflow(partial_history_cycles, 1107 total_history_cycles, &corr_real); 1108 if (ret) 1109 return ret; 1110 } 1111 1112 /* Fixup monotonic raw and real time time values */ 1113 if (interp_forward) { 1114 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1115 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1116 } else { 1117 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1118 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1119 } 1120 1121 return 0; 1122 } 1123 1124 /* 1125 * timestamp_in_interval - true if ts is chronologically in [start, end] 1126 * 1127 * True if ts occurs chronologically at or after start, and before or at end. 1128 */ 1129 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1130 { 1131 if (ts >= start && ts <= end) 1132 return true; 1133 if (start > end && (ts >= start || ts <= end)) 1134 return true; 1135 return false; 1136 } 1137 1138 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1139 { 1140 u64 rem, res; 1141 1142 if (!numerator || !denominator) 1143 return false; 1144 1145 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1146 *val = res + div_u64(rem * numerator, denominator); 1147 return true; 1148 } 1149 1150 static bool convert_base_to_cs(struct system_counterval_t *scv) 1151 { 1152 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1153 struct clocksource_base *base; 1154 u32 num, den; 1155 1156 /* The timestamp was taken from the time keeper clock source */ 1157 if (cs->id == scv->cs_id) 1158 return true; 1159 1160 /* 1161 * Check whether cs_id matches the base clock. Prevent the compiler from 1162 * re-evaluating @base as the clocksource might change concurrently. 1163 */ 1164 base = READ_ONCE(cs->base); 1165 if (!base || base->id != scv->cs_id) 1166 return false; 1167 1168 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1169 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1170 1171 if (!convert_clock(&scv->cycles, num, den)) 1172 return false; 1173 1174 scv->cycles += base->offset; 1175 return true; 1176 } 1177 1178 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1179 { 1180 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1181 struct clocksource_base *base; 1182 1183 /* 1184 * Check whether base_id matches the base clock. Prevent the compiler from 1185 * re-evaluating @base as the clocksource might change concurrently. 1186 */ 1187 base = READ_ONCE(cs->base); 1188 if (!base || base->id != base_id) 1189 return false; 1190 1191 *cycles -= base->offset; 1192 if (!convert_clock(cycles, base->denominator, base->numerator)) 1193 return false; 1194 return true; 1195 } 1196 1197 static bool convert_ns_to_cs(u64 *delta) 1198 { 1199 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1200 1201 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1202 return false; 1203 1204 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1205 return true; 1206 } 1207 1208 /** 1209 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1210 * @treal: CLOCK_REALTIME timestamp to convert 1211 * @base_id: base clocksource id 1212 * @cycles: pointer to store the converted base clock timestamp 1213 * 1214 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1215 * 1216 * Return: true if the conversion is successful, false otherwise. 1217 */ 1218 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1219 { 1220 struct timekeeper *tk = &tk_core.timekeeper; 1221 unsigned int seq; 1222 u64 delta; 1223 1224 do { 1225 seq = read_seqcount_begin(&tk_core.seq); 1226 if ((u64)treal < tk->tkr_mono.base_real) 1227 return false; 1228 delta = (u64)treal - tk->tkr_mono.base_real; 1229 if (!convert_ns_to_cs(&delta)) 1230 return false; 1231 *cycles = tk->tkr_mono.cycle_last + delta; 1232 if (!convert_cs_to_base(cycles, base_id)) 1233 return false; 1234 } while (read_seqcount_retry(&tk_core.seq, seq)); 1235 1236 return true; 1237 } 1238 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1239 1240 /** 1241 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1242 * @get_time_fn: Callback to get simultaneous device time and 1243 * system counter from the device driver 1244 * @ctx: Context passed to get_time_fn() 1245 * @history_begin: Historical reference point used to interpolate system 1246 * time when counter provided by the driver is before the current interval 1247 * @xtstamp: Receives simultaneously captured system and device time 1248 * 1249 * Reads a timestamp from a device and correlates it to system time 1250 */ 1251 int get_device_system_crosststamp(int (*get_time_fn) 1252 (ktime_t *device_time, 1253 struct system_counterval_t *sys_counterval, 1254 void *ctx), 1255 void *ctx, 1256 struct system_time_snapshot *history_begin, 1257 struct system_device_crosststamp *xtstamp) 1258 { 1259 struct system_counterval_t system_counterval; 1260 struct timekeeper *tk = &tk_core.timekeeper; 1261 u64 cycles, now, interval_start; 1262 unsigned int clock_was_set_seq = 0; 1263 ktime_t base_real, base_raw; 1264 u64 nsec_real, nsec_raw; 1265 u8 cs_was_changed_seq; 1266 unsigned int seq; 1267 bool do_interp; 1268 int ret; 1269 1270 do { 1271 seq = read_seqcount_begin(&tk_core.seq); 1272 /* 1273 * Try to synchronously capture device time and a system 1274 * counter value calling back into the device driver 1275 */ 1276 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1277 if (ret) 1278 return ret; 1279 1280 /* 1281 * Verify that the clocksource ID associated with the captured 1282 * system counter value is the same as for the currently 1283 * installed timekeeper clocksource 1284 */ 1285 if (system_counterval.cs_id == CSID_GENERIC || 1286 !convert_base_to_cs(&system_counterval)) 1287 return -ENODEV; 1288 cycles = system_counterval.cycles; 1289 1290 /* 1291 * Check whether the system counter value provided by the 1292 * device driver is on the current timekeeping interval. 1293 */ 1294 now = tk_clock_read(&tk->tkr_mono); 1295 interval_start = tk->tkr_mono.cycle_last; 1296 if (!timestamp_in_interval(interval_start, now, cycles)) { 1297 clock_was_set_seq = tk->clock_was_set_seq; 1298 cs_was_changed_seq = tk->cs_was_changed_seq; 1299 cycles = interval_start; 1300 do_interp = true; 1301 } else { 1302 do_interp = false; 1303 } 1304 1305 base_real = ktime_add(tk->tkr_mono.base, 1306 tk_core.timekeeper.offs_real); 1307 base_raw = tk->tkr_raw.base; 1308 1309 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1310 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1311 } while (read_seqcount_retry(&tk_core.seq, seq)); 1312 1313 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1314 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1315 1316 /* 1317 * Interpolate if necessary, adjusting back from the start of the 1318 * current interval 1319 */ 1320 if (do_interp) { 1321 u64 partial_history_cycles, total_history_cycles; 1322 bool discontinuity; 1323 1324 /* 1325 * Check that the counter value is not before the provided 1326 * history reference and that the history doesn't cross a 1327 * clocksource change 1328 */ 1329 if (!history_begin || 1330 !timestamp_in_interval(history_begin->cycles, 1331 cycles, system_counterval.cycles) || 1332 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1333 return -EINVAL; 1334 partial_history_cycles = cycles - system_counterval.cycles; 1335 total_history_cycles = cycles - history_begin->cycles; 1336 discontinuity = 1337 history_begin->clock_was_set_seq != clock_was_set_seq; 1338 1339 ret = adjust_historical_crosststamp(history_begin, 1340 partial_history_cycles, 1341 total_history_cycles, 1342 discontinuity, xtstamp); 1343 if (ret) 1344 return ret; 1345 } 1346 1347 return 0; 1348 } 1349 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1350 1351 /** 1352 * timekeeping_clocksource_has_base - Check whether the current clocksource 1353 * is based on given a base clock 1354 * @id: base clocksource ID 1355 * 1356 * Note: The return value is a snapshot which can become invalid right 1357 * after the function returns. 1358 * 1359 * Return: true if the timekeeper clocksource has a base clock with @id, 1360 * false otherwise 1361 */ 1362 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1363 { 1364 /* 1365 * This is a snapshot, so no point in using the sequence 1366 * count. Just prevent the compiler from re-evaluating @base as the 1367 * clocksource might change concurrently. 1368 */ 1369 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1370 1371 return base ? base->id == id : false; 1372 } 1373 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1374 1375 /** 1376 * do_settimeofday64 - Sets the time of day. 1377 * @ts: pointer to the timespec64 variable containing the new time 1378 * 1379 * Sets the time of day to the new time and update NTP and notify hrtimers 1380 */ 1381 int do_settimeofday64(const struct timespec64 *ts) 1382 { 1383 struct timespec64 ts_delta, xt; 1384 1385 if (!timespec64_valid_settod(ts)) 1386 return -EINVAL; 1387 1388 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1389 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1390 1391 timekeeping_forward_now(tks); 1392 1393 xt = tk_xtime(tks); 1394 ts_delta = timespec64_sub(*ts, xt); 1395 1396 if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) { 1397 timekeeping_restore_shadow(&tk_core); 1398 return -EINVAL; 1399 } 1400 1401 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta)); 1402 tk_set_xtime(tks, ts); 1403 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1404 } 1405 1406 /* Signal hrtimers about time change */ 1407 clock_was_set(CLOCK_SET_WALL); 1408 1409 audit_tk_injoffset(ts_delta); 1410 add_device_randomness(ts, sizeof(*ts)); 1411 return 0; 1412 } 1413 EXPORT_SYMBOL(do_settimeofday64); 1414 1415 /** 1416 * timekeeping_inject_offset - Adds or subtracts from the current time. 1417 * @ts: Pointer to the timespec variable containing the offset 1418 * 1419 * Adds or subtracts an offset value from the current time. 1420 */ 1421 static int timekeeping_inject_offset(const struct timespec64 *ts) 1422 { 1423 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1424 return -EINVAL; 1425 1426 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1427 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1428 struct timespec64 tmp; 1429 1430 timekeeping_forward_now(tks); 1431 1432 /* Make sure the proposed value is valid */ 1433 tmp = timespec64_add(tk_xtime(tks), *ts); 1434 if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 || 1435 !timespec64_valid_settod(&tmp)) { 1436 timekeeping_restore_shadow(&tk_core); 1437 return -EINVAL; 1438 } 1439 1440 tk_xtime_add(tks, ts); 1441 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts)); 1442 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1443 } 1444 1445 /* Signal hrtimers about time change */ 1446 clock_was_set(CLOCK_SET_WALL); 1447 return 0; 1448 } 1449 1450 /* 1451 * Indicates if there is an offset between the system clock and the hardware 1452 * clock/persistent clock/rtc. 1453 */ 1454 int persistent_clock_is_local; 1455 1456 /* 1457 * Adjust the time obtained from the CMOS to be UTC time instead of 1458 * local time. 1459 * 1460 * This is ugly, but preferable to the alternatives. Otherwise we 1461 * would either need to write a program to do it in /etc/rc (and risk 1462 * confusion if the program gets run more than once; it would also be 1463 * hard to make the program warp the clock precisely n hours) or 1464 * compile in the timezone information into the kernel. Bad, bad.... 1465 * 1466 * - TYT, 1992-01-01 1467 * 1468 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1469 * as real UNIX machines always do it. This avoids all headaches about 1470 * daylight saving times and warping kernel clocks. 1471 */ 1472 void timekeeping_warp_clock(void) 1473 { 1474 if (sys_tz.tz_minuteswest != 0) { 1475 struct timespec64 adjust; 1476 1477 persistent_clock_is_local = 1; 1478 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1479 adjust.tv_nsec = 0; 1480 timekeeping_inject_offset(&adjust); 1481 } 1482 } 1483 1484 /* 1485 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1486 */ 1487 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1488 { 1489 tk->tai_offset = tai_offset; 1490 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1491 } 1492 1493 /* 1494 * change_clocksource - Swaps clocksources if a new one is available 1495 * 1496 * Accumulates current time interval and initializes new clocksource 1497 */ 1498 static int change_clocksource(void *data) 1499 { 1500 struct clocksource *new = data, *old = NULL; 1501 1502 /* 1503 * If the clocksource is in a module, get a module reference. 1504 * Succeeds for built-in code (owner == NULL) as well. Abort if the 1505 * reference can't be acquired. 1506 */ 1507 if (!try_module_get(new->owner)) 1508 return 0; 1509 1510 /* Abort if the device can't be enabled */ 1511 if (new->enable && new->enable(new) != 0) { 1512 module_put(new->owner); 1513 return 0; 1514 } 1515 1516 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1517 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1518 1519 timekeeping_forward_now(tks); 1520 old = tks->tkr_mono.clock; 1521 tk_setup_internals(tks, new); 1522 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1523 } 1524 1525 if (old) { 1526 if (old->disable) 1527 old->disable(old); 1528 module_put(old->owner); 1529 } 1530 1531 return 0; 1532 } 1533 1534 /** 1535 * timekeeping_notify - Install a new clock source 1536 * @clock: pointer to the clock source 1537 * 1538 * This function is called from clocksource.c after a new, better clock 1539 * source has been registered. The caller holds the clocksource_mutex. 1540 */ 1541 int timekeeping_notify(struct clocksource *clock) 1542 { 1543 struct timekeeper *tk = &tk_core.timekeeper; 1544 1545 if (tk->tkr_mono.clock == clock) 1546 return 0; 1547 stop_machine(change_clocksource, clock, NULL); 1548 tick_clock_notify(); 1549 return tk->tkr_mono.clock == clock ? 0 : -1; 1550 } 1551 1552 /** 1553 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1554 * @ts: pointer to the timespec64 to be set 1555 * 1556 * Returns the raw monotonic time (completely un-modified by ntp) 1557 */ 1558 void ktime_get_raw_ts64(struct timespec64 *ts) 1559 { 1560 struct timekeeper *tk = &tk_core.timekeeper; 1561 unsigned int seq; 1562 u64 nsecs; 1563 1564 do { 1565 seq = read_seqcount_begin(&tk_core.seq); 1566 ts->tv_sec = tk->raw_sec; 1567 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1568 1569 } while (read_seqcount_retry(&tk_core.seq, seq)); 1570 1571 ts->tv_nsec = 0; 1572 timespec64_add_ns(ts, nsecs); 1573 } 1574 EXPORT_SYMBOL(ktime_get_raw_ts64); 1575 1576 1577 /** 1578 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1579 */ 1580 int timekeeping_valid_for_hres(void) 1581 { 1582 struct timekeeper *tk = &tk_core.timekeeper; 1583 unsigned int seq; 1584 int ret; 1585 1586 do { 1587 seq = read_seqcount_begin(&tk_core.seq); 1588 1589 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1590 1591 } while (read_seqcount_retry(&tk_core.seq, seq)); 1592 1593 return ret; 1594 } 1595 1596 /** 1597 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1598 */ 1599 u64 timekeeping_max_deferment(void) 1600 { 1601 struct timekeeper *tk = &tk_core.timekeeper; 1602 unsigned int seq; 1603 u64 ret; 1604 1605 do { 1606 seq = read_seqcount_begin(&tk_core.seq); 1607 1608 ret = tk->tkr_mono.clock->max_idle_ns; 1609 1610 } while (read_seqcount_retry(&tk_core.seq, seq)); 1611 1612 return ret; 1613 } 1614 1615 /** 1616 * read_persistent_clock64 - Return time from the persistent clock. 1617 * @ts: Pointer to the storage for the readout value 1618 * 1619 * Weak dummy function for arches that do not yet support it. 1620 * Reads the time from the battery backed persistent clock. 1621 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1622 * 1623 * XXX - Do be sure to remove it once all arches implement it. 1624 */ 1625 void __weak read_persistent_clock64(struct timespec64 *ts) 1626 { 1627 ts->tv_sec = 0; 1628 ts->tv_nsec = 0; 1629 } 1630 1631 /** 1632 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1633 * from the boot. 1634 * @wall_time: current time as returned by persistent clock 1635 * @boot_offset: offset that is defined as wall_time - boot_time 1636 * 1637 * Weak dummy function for arches that do not yet support it. 1638 * 1639 * The default function calculates offset based on the current value of 1640 * local_clock(). This way architectures that support sched_clock() but don't 1641 * support dedicated boot time clock will provide the best estimate of the 1642 * boot time. 1643 */ 1644 void __weak __init 1645 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1646 struct timespec64 *boot_offset) 1647 { 1648 read_persistent_clock64(wall_time); 1649 *boot_offset = ns_to_timespec64(local_clock()); 1650 } 1651 1652 static __init void tkd_basic_setup(struct tk_data *tkd) 1653 { 1654 raw_spin_lock_init(&tkd->lock); 1655 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock); 1656 } 1657 1658 /* 1659 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1660 * 1661 * The flag starts of false and is only set when a suspend reaches 1662 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1663 * timekeeper clocksource is not stopping across suspend and has been 1664 * used to update sleep time. If the timekeeper clocksource has stopped 1665 * then the flag stays true and is used by the RTC resume code to decide 1666 * whether sleeptime must be injected and if so the flag gets false then. 1667 * 1668 * If a suspend fails before reaching timekeeping_resume() then the flag 1669 * stays false and prevents erroneous sleeptime injection. 1670 */ 1671 static bool suspend_timing_needed; 1672 1673 /* Flag for if there is a persistent clock on this platform */ 1674 static bool persistent_clock_exists; 1675 1676 /* 1677 * timekeeping_init - Initializes the clocksource and common timekeeping values 1678 */ 1679 void __init timekeeping_init(void) 1680 { 1681 struct timespec64 wall_time, boot_offset, wall_to_mono; 1682 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1683 struct clocksource *clock; 1684 1685 tkd_basic_setup(&tk_core); 1686 1687 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1688 if (timespec64_valid_settod(&wall_time) && 1689 timespec64_to_ns(&wall_time) > 0) { 1690 persistent_clock_exists = true; 1691 } else if (timespec64_to_ns(&wall_time) != 0) { 1692 pr_warn("Persistent clock returned invalid value"); 1693 wall_time = (struct timespec64){0}; 1694 } 1695 1696 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1697 boot_offset = (struct timespec64){0}; 1698 1699 /* 1700 * We want set wall_to_mono, so the following is true: 1701 * wall time + wall_to_mono = boot time 1702 */ 1703 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1704 1705 guard(raw_spinlock_irqsave)(&tk_core.lock); 1706 1707 ntp_init(); 1708 1709 clock = clocksource_default_clock(); 1710 if (clock->enable) 1711 clock->enable(clock); 1712 tk_setup_internals(tks, clock); 1713 1714 tk_set_xtime(tks, &wall_time); 1715 tks->raw_sec = 0; 1716 1717 tk_set_wall_to_mono(tks, wall_to_mono); 1718 1719 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1720 } 1721 1722 /* time in seconds when suspend began for persistent clock */ 1723 static struct timespec64 timekeeping_suspend_time; 1724 1725 /** 1726 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1727 * @tk: Pointer to the timekeeper to be updated 1728 * @delta: Pointer to the delta value in timespec64 format 1729 * 1730 * Takes a timespec offset measuring a suspend interval and properly 1731 * adds the sleep offset to the timekeeping variables. 1732 */ 1733 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1734 const struct timespec64 *delta) 1735 { 1736 if (!timespec64_valid_strict(delta)) { 1737 printk_deferred(KERN_WARNING 1738 "__timekeeping_inject_sleeptime: Invalid " 1739 "sleep delta value!\n"); 1740 return; 1741 } 1742 tk_xtime_add(tk, delta); 1743 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1744 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1745 tk_debug_account_sleep_time(delta); 1746 } 1747 1748 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1749 /* 1750 * We have three kinds of time sources to use for sleep time 1751 * injection, the preference order is: 1752 * 1) non-stop clocksource 1753 * 2) persistent clock (ie: RTC accessible when irqs are off) 1754 * 3) RTC 1755 * 1756 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1757 * If system has neither 1) nor 2), 3) will be used finally. 1758 * 1759 * 1760 * If timekeeping has injected sleeptime via either 1) or 2), 1761 * 3) becomes needless, so in this case we don't need to call 1762 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1763 * means. 1764 */ 1765 bool timekeeping_rtc_skipresume(void) 1766 { 1767 return !suspend_timing_needed; 1768 } 1769 1770 /* 1771 * 1) can be determined whether to use or not only when doing 1772 * timekeeping_resume() which is invoked after rtc_suspend(), 1773 * so we can't skip rtc_suspend() surely if system has 1). 1774 * 1775 * But if system has 2), 2) will definitely be used, so in this 1776 * case we don't need to call rtc_suspend(), and this is what 1777 * timekeeping_rtc_skipsuspend() means. 1778 */ 1779 bool timekeeping_rtc_skipsuspend(void) 1780 { 1781 return persistent_clock_exists; 1782 } 1783 1784 /** 1785 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1786 * @delta: pointer to a timespec64 delta value 1787 * 1788 * This hook is for architectures that cannot support read_persistent_clock64 1789 * because their RTC/persistent clock is only accessible when irqs are enabled. 1790 * and also don't have an effective nonstop clocksource. 1791 * 1792 * This function should only be called by rtc_resume(), and allows 1793 * a suspend offset to be injected into the timekeeping values. 1794 */ 1795 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1796 { 1797 scoped_guard(raw_spinlock_irqsave, &tk_core.lock) { 1798 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1799 1800 suspend_timing_needed = false; 1801 timekeeping_forward_now(tks); 1802 __timekeeping_inject_sleeptime(tks, delta); 1803 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1804 } 1805 1806 /* Signal hrtimers about time change */ 1807 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1808 } 1809 #endif 1810 1811 /** 1812 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1813 */ 1814 void timekeeping_resume(void) 1815 { 1816 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1817 struct clocksource *clock = tks->tkr_mono.clock; 1818 struct timespec64 ts_new, ts_delta; 1819 bool inject_sleeptime = false; 1820 u64 cycle_now, nsec; 1821 unsigned long flags; 1822 1823 read_persistent_clock64(&ts_new); 1824 1825 clockevents_resume(); 1826 clocksource_resume(); 1827 1828 raw_spin_lock_irqsave(&tk_core.lock, flags); 1829 1830 /* 1831 * After system resumes, we need to calculate the suspended time and 1832 * compensate it for the OS time. There are 3 sources that could be 1833 * used: Nonstop clocksource during suspend, persistent clock and rtc 1834 * device. 1835 * 1836 * One specific platform may have 1 or 2 or all of them, and the 1837 * preference will be: 1838 * suspend-nonstop clocksource -> persistent clock -> rtc 1839 * The less preferred source will only be tried if there is no better 1840 * usable source. The rtc part is handled separately in rtc core code. 1841 */ 1842 cycle_now = tk_clock_read(&tks->tkr_mono); 1843 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1844 if (nsec > 0) { 1845 ts_delta = ns_to_timespec64(nsec); 1846 inject_sleeptime = true; 1847 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1848 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1849 inject_sleeptime = true; 1850 } 1851 1852 if (inject_sleeptime) { 1853 suspend_timing_needed = false; 1854 __timekeeping_inject_sleeptime(tks, &ts_delta); 1855 } 1856 1857 /* Re-base the last cycle value */ 1858 tks->tkr_mono.cycle_last = cycle_now; 1859 tks->tkr_raw.cycle_last = cycle_now; 1860 1861 tks->ntp_error = 0; 1862 timekeeping_suspended = 0; 1863 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1864 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1865 1866 touch_softlockup_watchdog(); 1867 1868 /* Resume the clockevent device(s) and hrtimers */ 1869 tick_resume(); 1870 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1871 timerfd_resume(); 1872 } 1873 1874 int timekeeping_suspend(void) 1875 { 1876 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1877 struct timespec64 delta, delta_delta; 1878 static struct timespec64 old_delta; 1879 struct clocksource *curr_clock; 1880 unsigned long flags; 1881 u64 cycle_now; 1882 1883 read_persistent_clock64(&timekeeping_suspend_time); 1884 1885 /* 1886 * On some systems the persistent_clock can not be detected at 1887 * timekeeping_init by its return value, so if we see a valid 1888 * value returned, update the persistent_clock_exists flag. 1889 */ 1890 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1891 persistent_clock_exists = true; 1892 1893 suspend_timing_needed = true; 1894 1895 raw_spin_lock_irqsave(&tk_core.lock, flags); 1896 timekeeping_forward_now(tks); 1897 timekeeping_suspended = 1; 1898 1899 /* 1900 * Since we've called forward_now, cycle_last stores the value 1901 * just read from the current clocksource. Save this to potentially 1902 * use in suspend timing. 1903 */ 1904 curr_clock = tks->tkr_mono.clock; 1905 cycle_now = tks->tkr_mono.cycle_last; 1906 clocksource_start_suspend_timing(curr_clock, cycle_now); 1907 1908 if (persistent_clock_exists) { 1909 /* 1910 * To avoid drift caused by repeated suspend/resumes, 1911 * which each can add ~1 second drift error, 1912 * try to compensate so the difference in system time 1913 * and persistent_clock time stays close to constant. 1914 */ 1915 delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time); 1916 delta_delta = timespec64_sub(delta, old_delta); 1917 if (abs(delta_delta.tv_sec) >= 2) { 1918 /* 1919 * if delta_delta is too large, assume time correction 1920 * has occurred and set old_delta to the current delta. 1921 */ 1922 old_delta = delta; 1923 } else { 1924 /* Otherwise try to adjust old_system to compensate */ 1925 timekeeping_suspend_time = 1926 timespec64_add(timekeeping_suspend_time, delta_delta); 1927 } 1928 } 1929 1930 timekeeping_update_from_shadow(&tk_core, 0); 1931 halt_fast_timekeeper(tks); 1932 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1933 1934 tick_suspend(); 1935 clocksource_suspend(); 1936 clockevents_suspend(); 1937 1938 return 0; 1939 } 1940 1941 /* sysfs resume/suspend bits for timekeeping */ 1942 static struct syscore_ops timekeeping_syscore_ops = { 1943 .resume = timekeeping_resume, 1944 .suspend = timekeeping_suspend, 1945 }; 1946 1947 static int __init timekeeping_init_ops(void) 1948 { 1949 register_syscore_ops(&timekeeping_syscore_ops); 1950 return 0; 1951 } 1952 device_initcall(timekeeping_init_ops); 1953 1954 /* 1955 * Apply a multiplier adjustment to the timekeeper 1956 */ 1957 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1958 s64 offset, 1959 s32 mult_adj) 1960 { 1961 s64 interval = tk->cycle_interval; 1962 1963 if (mult_adj == 0) { 1964 return; 1965 } else if (mult_adj == -1) { 1966 interval = -interval; 1967 offset = -offset; 1968 } else if (mult_adj != 1) { 1969 interval *= mult_adj; 1970 offset *= mult_adj; 1971 } 1972 1973 /* 1974 * So the following can be confusing. 1975 * 1976 * To keep things simple, lets assume mult_adj == 1 for now. 1977 * 1978 * When mult_adj != 1, remember that the interval and offset values 1979 * have been appropriately scaled so the math is the same. 1980 * 1981 * The basic idea here is that we're increasing the multiplier 1982 * by one, this causes the xtime_interval to be incremented by 1983 * one cycle_interval. This is because: 1984 * xtime_interval = cycle_interval * mult 1985 * So if mult is being incremented by one: 1986 * xtime_interval = cycle_interval * (mult + 1) 1987 * Its the same as: 1988 * xtime_interval = (cycle_interval * mult) + cycle_interval 1989 * Which can be shortened to: 1990 * xtime_interval += cycle_interval 1991 * 1992 * So offset stores the non-accumulated cycles. Thus the current 1993 * time (in shifted nanoseconds) is: 1994 * now = (offset * adj) + xtime_nsec 1995 * Now, even though we're adjusting the clock frequency, we have 1996 * to keep time consistent. In other words, we can't jump back 1997 * in time, and we also want to avoid jumping forward in time. 1998 * 1999 * So given the same offset value, we need the time to be the same 2000 * both before and after the freq adjustment. 2001 * now = (offset * adj_1) + xtime_nsec_1 2002 * now = (offset * adj_2) + xtime_nsec_2 2003 * So: 2004 * (offset * adj_1) + xtime_nsec_1 = 2005 * (offset * adj_2) + xtime_nsec_2 2006 * And we know: 2007 * adj_2 = adj_1 + 1 2008 * So: 2009 * (offset * adj_1) + xtime_nsec_1 = 2010 * (offset * (adj_1+1)) + xtime_nsec_2 2011 * (offset * adj_1) + xtime_nsec_1 = 2012 * (offset * adj_1) + offset + xtime_nsec_2 2013 * Canceling the sides: 2014 * xtime_nsec_1 = offset + xtime_nsec_2 2015 * Which gives us: 2016 * xtime_nsec_2 = xtime_nsec_1 - offset 2017 * Which simplifies to: 2018 * xtime_nsec -= offset 2019 */ 2020 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 2021 /* NTP adjustment caused clocksource mult overflow */ 2022 WARN_ON_ONCE(1); 2023 return; 2024 } 2025 2026 tk->tkr_mono.mult += mult_adj; 2027 tk->xtime_interval += interval; 2028 tk->tkr_mono.xtime_nsec -= offset; 2029 } 2030 2031 /* 2032 * Adjust the timekeeper's multiplier to the correct frequency 2033 * and also to reduce the accumulated error value. 2034 */ 2035 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2036 { 2037 u64 ntp_tl = ntp_tick_length(); 2038 u32 mult; 2039 2040 /* 2041 * Determine the multiplier from the current NTP tick length. 2042 * Avoid expensive division when the tick length doesn't change. 2043 */ 2044 if (likely(tk->ntp_tick == ntp_tl)) { 2045 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2046 } else { 2047 tk->ntp_tick = ntp_tl; 2048 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2049 tk->xtime_remainder, tk->cycle_interval); 2050 } 2051 2052 /* 2053 * If the clock is behind the NTP time, increase the multiplier by 1 2054 * to catch up with it. If it's ahead and there was a remainder in the 2055 * tick division, the clock will slow down. Otherwise it will stay 2056 * ahead until the tick length changes to a non-divisible value. 2057 */ 2058 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2059 mult += tk->ntp_err_mult; 2060 2061 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2062 2063 if (unlikely(tk->tkr_mono.clock->maxadj && 2064 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2065 > tk->tkr_mono.clock->maxadj))) { 2066 printk_once(KERN_WARNING 2067 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2068 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2069 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2070 } 2071 2072 /* 2073 * It may be possible that when we entered this function, xtime_nsec 2074 * was very small. Further, if we're slightly speeding the clocksource 2075 * in the code above, its possible the required corrective factor to 2076 * xtime_nsec could cause it to underflow. 2077 * 2078 * Now, since we have already accumulated the second and the NTP 2079 * subsystem has been notified via second_overflow(), we need to skip 2080 * the next update. 2081 */ 2082 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2083 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2084 tk->tkr_mono.shift; 2085 tk->xtime_sec--; 2086 tk->skip_second_overflow = 1; 2087 } 2088 } 2089 2090 /* 2091 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2092 * 2093 * Helper function that accumulates the nsecs greater than a second 2094 * from the xtime_nsec field to the xtime_secs field. 2095 * It also calls into the NTP code to handle leapsecond processing. 2096 */ 2097 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2098 { 2099 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2100 unsigned int clock_set = 0; 2101 2102 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2103 int leap; 2104 2105 tk->tkr_mono.xtime_nsec -= nsecps; 2106 tk->xtime_sec++; 2107 2108 /* 2109 * Skip NTP update if this second was accumulated before, 2110 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2111 */ 2112 if (unlikely(tk->skip_second_overflow)) { 2113 tk->skip_second_overflow = 0; 2114 continue; 2115 } 2116 2117 /* Figure out if its a leap sec and apply if needed */ 2118 leap = second_overflow(tk->xtime_sec); 2119 if (unlikely(leap)) { 2120 struct timespec64 ts; 2121 2122 tk->xtime_sec += leap; 2123 2124 ts.tv_sec = leap; 2125 ts.tv_nsec = 0; 2126 tk_set_wall_to_mono(tk, 2127 timespec64_sub(tk->wall_to_monotonic, ts)); 2128 2129 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2130 2131 clock_set = TK_CLOCK_WAS_SET; 2132 } 2133 } 2134 return clock_set; 2135 } 2136 2137 /* 2138 * logarithmic_accumulation - shifted accumulation of cycles 2139 * 2140 * This functions accumulates a shifted interval of cycles into 2141 * a shifted interval nanoseconds. Allows for O(log) accumulation 2142 * loop. 2143 * 2144 * Returns the unconsumed cycles. 2145 */ 2146 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2147 u32 shift, unsigned int *clock_set) 2148 { 2149 u64 interval = tk->cycle_interval << shift; 2150 u64 snsec_per_sec; 2151 2152 /* If the offset is smaller than a shifted interval, do nothing */ 2153 if (offset < interval) 2154 return offset; 2155 2156 /* Accumulate one shifted interval */ 2157 offset -= interval; 2158 tk->tkr_mono.cycle_last += interval; 2159 tk->tkr_raw.cycle_last += interval; 2160 2161 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2162 *clock_set |= accumulate_nsecs_to_secs(tk); 2163 2164 /* Accumulate raw time */ 2165 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2166 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2167 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2168 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2169 tk->raw_sec++; 2170 } 2171 2172 /* Accumulate error between NTP and clock interval */ 2173 tk->ntp_error += tk->ntp_tick << shift; 2174 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2175 (tk->ntp_error_shift + shift); 2176 2177 return offset; 2178 } 2179 2180 /* 2181 * timekeeping_advance - Updates the timekeeper to the current time and 2182 * current NTP tick length 2183 */ 2184 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2185 { 2186 struct timekeeper *tk = &tk_core.shadow_timekeeper; 2187 struct timekeeper *real_tk = &tk_core.timekeeper; 2188 unsigned int clock_set = 0; 2189 int shift = 0, maxshift; 2190 u64 offset, orig_offset; 2191 2192 guard(raw_spinlock_irqsave)(&tk_core.lock); 2193 2194 /* Make sure we're fully resumed: */ 2195 if (unlikely(timekeeping_suspended)) 2196 return false; 2197 2198 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2199 tk->tkr_mono.cycle_last, tk->tkr_mono.mask, 2200 tk->tkr_mono.clock->max_raw_delta); 2201 orig_offset = offset; 2202 /* Check if there's really nothing to do */ 2203 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2204 return false; 2205 2206 /* 2207 * With NO_HZ we may have to accumulate many cycle_intervals 2208 * (think "ticks") worth of time at once. To do this efficiently, 2209 * we calculate the largest doubling multiple of cycle_intervals 2210 * that is smaller than the offset. We then accumulate that 2211 * chunk in one go, and then try to consume the next smaller 2212 * doubled multiple. 2213 */ 2214 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2215 shift = max(0, shift); 2216 /* Bound shift to one less than what overflows tick_length */ 2217 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2218 shift = min(shift, maxshift); 2219 while (offset >= tk->cycle_interval) { 2220 offset = logarithmic_accumulation(tk, offset, shift, &clock_set); 2221 if (offset < tk->cycle_interval<<shift) 2222 shift--; 2223 } 2224 2225 /* Adjust the multiplier to correct NTP error */ 2226 timekeeping_adjust(tk, offset); 2227 2228 /* 2229 * Finally, make sure that after the rounding 2230 * xtime_nsec isn't larger than NSEC_PER_SEC 2231 */ 2232 clock_set |= accumulate_nsecs_to_secs(tk); 2233 2234 /* 2235 * To avoid inconsistencies caused adjtimex TK_ADV_FREQ calls 2236 * making small negative adjustments to the base xtime_nsec 2237 * value, only update the coarse clocks if we accumulated time 2238 */ 2239 if (orig_offset != offset) 2240 tk_update_coarse_nsecs(tk); 2241 2242 timekeeping_update_from_shadow(&tk_core, clock_set); 2243 2244 return !!clock_set; 2245 } 2246 2247 /** 2248 * update_wall_time - Uses the current clocksource to increment the wall time 2249 * 2250 */ 2251 void update_wall_time(void) 2252 { 2253 if (timekeeping_advance(TK_ADV_TICK)) 2254 clock_was_set_delayed(); 2255 } 2256 2257 /** 2258 * getboottime64 - Return the real time of system boot. 2259 * @ts: pointer to the timespec64 to be set 2260 * 2261 * Returns the wall-time of boot in a timespec64. 2262 * 2263 * This is based on the wall_to_monotonic offset and the total suspend 2264 * time. Calls to settimeofday will affect the value returned (which 2265 * basically means that however wrong your real time clock is at boot time, 2266 * you get the right time here). 2267 */ 2268 void getboottime64(struct timespec64 *ts) 2269 { 2270 struct timekeeper *tk = &tk_core.timekeeper; 2271 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2272 2273 *ts = ktime_to_timespec64(t); 2274 } 2275 EXPORT_SYMBOL_GPL(getboottime64); 2276 2277 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2278 { 2279 struct timekeeper *tk = &tk_core.timekeeper; 2280 unsigned int seq; 2281 2282 do { 2283 seq = read_seqcount_begin(&tk_core.seq); 2284 2285 *ts = tk_xtime_coarse(tk); 2286 } while (read_seqcount_retry(&tk_core.seq, seq)); 2287 } 2288 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2289 2290 /** 2291 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor 2292 * @ts: timespec64 to be filled 2293 * 2294 * Fetch the global mg_floor value, convert it to realtime and compare it 2295 * to the current coarse-grained time. Fill @ts with whichever is 2296 * latest. Note that this is a filesystem-specific interface and should be 2297 * avoided outside of that context. 2298 */ 2299 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) 2300 { 2301 struct timekeeper *tk = &tk_core.timekeeper; 2302 u64 floor = atomic64_read(&mg_floor); 2303 ktime_t f_real, offset, coarse; 2304 unsigned int seq; 2305 2306 do { 2307 seq = read_seqcount_begin(&tk_core.seq); 2308 *ts = tk_xtime_coarse(tk); 2309 offset = tk_core.timekeeper.offs_real; 2310 } while (read_seqcount_retry(&tk_core.seq, seq)); 2311 2312 coarse = timespec64_to_ktime(*ts); 2313 f_real = ktime_add(floor, offset); 2314 if (ktime_after(f_real, coarse)) 2315 *ts = ktime_to_timespec64(f_real); 2316 } 2317 2318 /** 2319 * ktime_get_real_ts64_mg - attempt to update floor value and return result 2320 * @ts: pointer to the timespec to be set 2321 * 2322 * Get a monotonic fine-grained time value and attempt to swap it into 2323 * mg_floor. If that succeeds then accept the new floor value. If it fails 2324 * then another task raced in during the interim time and updated the 2325 * floor. Since any update to the floor must be later than the previous 2326 * floor, either outcome is acceptable. 2327 * 2328 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), 2329 * and determining that the resulting coarse-grained timestamp did not effect 2330 * a change in ctime. Any more recent floor value would effect a change to 2331 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. 2332 * 2333 * @ts will be filled with the latest floor value, regardless of the outcome of 2334 * the cmpxchg. Note that this is a filesystem specific interface and should be 2335 * avoided outside of that context. 2336 */ 2337 void ktime_get_real_ts64_mg(struct timespec64 *ts) 2338 { 2339 struct timekeeper *tk = &tk_core.timekeeper; 2340 ktime_t old = atomic64_read(&mg_floor); 2341 ktime_t offset, mono; 2342 unsigned int seq; 2343 u64 nsecs; 2344 2345 do { 2346 seq = read_seqcount_begin(&tk_core.seq); 2347 2348 ts->tv_sec = tk->xtime_sec; 2349 mono = tk->tkr_mono.base; 2350 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2351 offset = tk_core.timekeeper.offs_real; 2352 } while (read_seqcount_retry(&tk_core.seq, seq)); 2353 2354 mono = ktime_add_ns(mono, nsecs); 2355 2356 /* 2357 * Attempt to update the floor with the new time value. As any 2358 * update must be later then the existing floor, and would effect 2359 * a change to ctime from the perspective of the current task, 2360 * accept the resulting floor value regardless of the outcome of 2361 * the swap. 2362 */ 2363 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { 2364 ts->tv_nsec = 0; 2365 timespec64_add_ns(ts, nsecs); 2366 timekeeping_inc_mg_floor_swaps(); 2367 } else { 2368 /* 2369 * Another task changed mg_floor since "old" was fetched. 2370 * "old" has been updated with the latest value of "mg_floor". 2371 * That value is newer than the previous floor value, which 2372 * is enough to effect a change to ctime. Accept it. 2373 */ 2374 *ts = ktime_to_timespec64(ktime_add(old, offset)); 2375 } 2376 } 2377 2378 void ktime_get_coarse_ts64(struct timespec64 *ts) 2379 { 2380 struct timekeeper *tk = &tk_core.timekeeper; 2381 struct timespec64 now, mono; 2382 unsigned int seq; 2383 2384 do { 2385 seq = read_seqcount_begin(&tk_core.seq); 2386 2387 now = tk_xtime_coarse(tk); 2388 mono = tk->wall_to_monotonic; 2389 } while (read_seqcount_retry(&tk_core.seq, seq)); 2390 2391 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2392 now.tv_nsec + mono.tv_nsec); 2393 } 2394 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2395 2396 /* 2397 * Must hold jiffies_lock 2398 */ 2399 void do_timer(unsigned long ticks) 2400 { 2401 jiffies_64 += ticks; 2402 calc_global_load(); 2403 } 2404 2405 /** 2406 * ktime_get_update_offsets_now - hrtimer helper 2407 * @cwsseq: pointer to check and store the clock was set sequence number 2408 * @offs_real: pointer to storage for monotonic -> realtime offset 2409 * @offs_boot: pointer to storage for monotonic -> boottime offset 2410 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2411 * 2412 * Returns current monotonic time and updates the offsets if the 2413 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2414 * different. 2415 * 2416 * Called from hrtimer_interrupt() or retrigger_next_event() 2417 */ 2418 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2419 ktime_t *offs_boot, ktime_t *offs_tai) 2420 { 2421 struct timekeeper *tk = &tk_core.timekeeper; 2422 unsigned int seq; 2423 ktime_t base; 2424 u64 nsecs; 2425 2426 do { 2427 seq = read_seqcount_begin(&tk_core.seq); 2428 2429 base = tk->tkr_mono.base; 2430 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2431 base = ktime_add_ns(base, nsecs); 2432 2433 if (*cwsseq != tk->clock_was_set_seq) { 2434 *cwsseq = tk->clock_was_set_seq; 2435 *offs_real = tk->offs_real; 2436 *offs_boot = tk->offs_boot; 2437 *offs_tai = tk->offs_tai; 2438 } 2439 2440 /* Handle leapsecond insertion adjustments */ 2441 if (unlikely(base >= tk->next_leap_ktime)) 2442 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2443 2444 } while (read_seqcount_retry(&tk_core.seq, seq)); 2445 2446 return base; 2447 } 2448 2449 /* 2450 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2451 */ 2452 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2453 { 2454 if (txc->modes & ADJ_ADJTIME) { 2455 /* singleshot must not be used with any other mode bits */ 2456 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2457 return -EINVAL; 2458 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2459 !capable(CAP_SYS_TIME)) 2460 return -EPERM; 2461 } else { 2462 /* In order to modify anything, you gotta be super-user! */ 2463 if (txc->modes && !capable(CAP_SYS_TIME)) 2464 return -EPERM; 2465 /* 2466 * if the quartz is off by more than 10% then 2467 * something is VERY wrong! 2468 */ 2469 if (txc->modes & ADJ_TICK && 2470 (txc->tick < 900000/USER_HZ || 2471 txc->tick > 1100000/USER_HZ)) 2472 return -EINVAL; 2473 } 2474 2475 if (txc->modes & ADJ_SETOFFSET) { 2476 /* In order to inject time, you gotta be super-user! */ 2477 if (!capable(CAP_SYS_TIME)) 2478 return -EPERM; 2479 2480 /* 2481 * Validate if a timespec/timeval used to inject a time 2482 * offset is valid. Offsets can be positive or negative, so 2483 * we don't check tv_sec. The value of the timeval/timespec 2484 * is the sum of its fields,but *NOTE*: 2485 * The field tv_usec/tv_nsec must always be non-negative and 2486 * we can't have more nanoseconds/microseconds than a second. 2487 */ 2488 if (txc->time.tv_usec < 0) 2489 return -EINVAL; 2490 2491 if (txc->modes & ADJ_NANO) { 2492 if (txc->time.tv_usec >= NSEC_PER_SEC) 2493 return -EINVAL; 2494 } else { 2495 if (txc->time.tv_usec >= USEC_PER_SEC) 2496 return -EINVAL; 2497 } 2498 } 2499 2500 /* 2501 * Check for potential multiplication overflows that can 2502 * only happen on 64-bit systems: 2503 */ 2504 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2505 if (LLONG_MIN / PPM_SCALE > txc->freq) 2506 return -EINVAL; 2507 if (LLONG_MAX / PPM_SCALE < txc->freq) 2508 return -EINVAL; 2509 } 2510 2511 return 0; 2512 } 2513 2514 /** 2515 * random_get_entropy_fallback - Returns the raw clock source value, 2516 * used by random.c for platforms with no valid random_get_entropy(). 2517 */ 2518 unsigned long random_get_entropy_fallback(void) 2519 { 2520 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2521 struct clocksource *clock = READ_ONCE(tkr->clock); 2522 2523 if (unlikely(timekeeping_suspended || !clock)) 2524 return 0; 2525 return clock->read(clock); 2526 } 2527 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2528 2529 /** 2530 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2531 * @txc: Pointer to kernel_timex structure containing NTP parameters 2532 */ 2533 int do_adjtimex(struct __kernel_timex *txc) 2534 { 2535 struct audit_ntp_data ad; 2536 bool offset_set = false; 2537 bool clock_set = false; 2538 struct timespec64 ts; 2539 int ret; 2540 2541 /* Validate the data before disabling interrupts */ 2542 ret = timekeeping_validate_timex(txc); 2543 if (ret) 2544 return ret; 2545 add_device_randomness(txc, sizeof(*txc)); 2546 2547 if (txc->modes & ADJ_SETOFFSET) { 2548 struct timespec64 delta; 2549 2550 delta.tv_sec = txc->time.tv_sec; 2551 delta.tv_nsec = txc->time.tv_usec; 2552 if (!(txc->modes & ADJ_NANO)) 2553 delta.tv_nsec *= 1000; 2554 ret = timekeeping_inject_offset(&delta); 2555 if (ret) 2556 return ret; 2557 2558 offset_set = delta.tv_sec != 0; 2559 audit_tk_injoffset(delta); 2560 } 2561 2562 audit_ntp_init(&ad); 2563 2564 ktime_get_real_ts64(&ts); 2565 add_device_randomness(&ts, sizeof(ts)); 2566 2567 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 2568 struct timekeeper *tks = &tk_core.shadow_timekeeper; 2569 s32 orig_tai, tai; 2570 2571 orig_tai = tai = tks->tai_offset; 2572 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2573 2574 if (tai != orig_tai) { 2575 __timekeeping_set_tai_offset(tks, tai); 2576 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 2577 clock_set = true; 2578 } else { 2579 tk_update_leap_state_all(&tk_core); 2580 } 2581 } 2582 2583 audit_ntp_log(&ad); 2584 2585 /* Update the multiplier immediately if frequency was set directly */ 2586 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2587 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2588 2589 if (clock_set) 2590 clock_was_set(CLOCK_SET_WALL); 2591 2592 ntp_notify_cmos_timer(offset_set); 2593 2594 return ret; 2595 } 2596 2597 #ifdef CONFIG_NTP_PPS 2598 /** 2599 * hardpps() - Accessor function to NTP __hardpps function 2600 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2601 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2602 */ 2603 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2604 { 2605 guard(raw_spinlock_irqsave)(&tk_core.lock); 2606 __hardpps(phase_ts, raw_ts); 2607 } 2608 EXPORT_SYMBOL(hardpps); 2609 #endif /* CONFIG_NTP_PPS */ 2610