1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/timer.h>
43 #include <linux/freezer.h>
44 #include <linux/compat.h>
45 
46 #include <linux/uaccess.h>
47 
48 #include <trace/events/timer.h>
49 
50 #include "tick-internal.h"
51 
52 /*
53  * Masks for selecting the soft and hard context timers from
54  * cpu_base->active
55  */
56 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
57 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
58 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
59 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
60 
61 static void retrigger_next_event(void *arg);
62 
63 /*
64  * The timer bases:
65  *
66  * There are more clockids than hrtimer bases. Thus, we index
67  * into the timer bases by the hrtimer_base_type enum. When trying
68  * to reach a base using a clockid, hrtimer_clockid_to_base()
69  * is used to convert from clockid to the proper hrtimer_base_type.
70  */
71 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
72 {
73 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
74 	.clock_base =
75 	{
76 		{
77 			.index = HRTIMER_BASE_MONOTONIC,
78 			.clockid = CLOCK_MONOTONIC,
79 			.get_time = &ktime_get,
80 		},
81 		{
82 			.index = HRTIMER_BASE_REALTIME,
83 			.clockid = CLOCK_REALTIME,
84 			.get_time = &ktime_get_real,
85 		},
86 		{
87 			.index = HRTIMER_BASE_BOOTTIME,
88 			.clockid = CLOCK_BOOTTIME,
89 			.get_time = &ktime_get_boottime,
90 		},
91 		{
92 			.index = HRTIMER_BASE_TAI,
93 			.clockid = CLOCK_TAI,
94 			.get_time = &ktime_get_clocktai,
95 		},
96 		{
97 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
98 			.clockid = CLOCK_MONOTONIC,
99 			.get_time = &ktime_get,
100 		},
101 		{
102 			.index = HRTIMER_BASE_REALTIME_SOFT,
103 			.clockid = CLOCK_REALTIME,
104 			.get_time = &ktime_get_real,
105 		},
106 		{
107 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
108 			.clockid = CLOCK_BOOTTIME,
109 			.get_time = &ktime_get_boottime,
110 		},
111 		{
112 			.index = HRTIMER_BASE_TAI_SOFT,
113 			.clockid = CLOCK_TAI,
114 			.get_time = &ktime_get_clocktai,
115 		},
116 	},
117 	.csd = CSD_INIT(retrigger_next_event, NULL)
118 };
119 
120 static inline bool hrtimer_base_is_online(struct hrtimer_cpu_base *base)
121 {
122 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
123 		return true;
124 	else
125 		return likely(base->online);
126 }
127 
128 /*
129  * Functions and macros which are different for UP/SMP systems are kept in a
130  * single place
131  */
132 #ifdef CONFIG_SMP
133 
134 /*
135  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
136  * such that hrtimer_callback_running() can unconditionally dereference
137  * timer->base->cpu_base
138  */
139 static struct hrtimer_cpu_base migration_cpu_base = {
140 	.clock_base = { {
141 		.cpu_base = &migration_cpu_base,
142 		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
143 						     &migration_cpu_base.lock),
144 	}, },
145 };
146 
147 #define migration_base	migration_cpu_base.clock_base[0]
148 
149 /*
150  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
151  * means that all timers which are tied to this base via timer->base are
152  * locked, and the base itself is locked too.
153  *
154  * So __run_timers/migrate_timers can safely modify all timers which could
155  * be found on the lists/queues.
156  *
157  * When the timer's base is locked, and the timer removed from list, it is
158  * possible to set timer->base = &migration_base and drop the lock: the timer
159  * remains locked.
160  */
161 static
162 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
163 					     unsigned long *flags)
164 	__acquires(&timer->base->lock)
165 {
166 	struct hrtimer_clock_base *base;
167 
168 	for (;;) {
169 		base = READ_ONCE(timer->base);
170 		if (likely(base != &migration_base)) {
171 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
172 			if (likely(base == timer->base))
173 				return base;
174 			/* The timer has migrated to another CPU: */
175 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
176 		}
177 		cpu_relax();
178 	}
179 }
180 
181 /*
182  * Check if the elected target is suitable considering its next
183  * event and the hotplug state of the current CPU.
184  *
185  * If the elected target is remote and its next event is after the timer
186  * to queue, then a remote reprogram is necessary. However there is no
187  * guarantee the IPI handling the operation would arrive in time to meet
188  * the high resolution deadline. In this case the local CPU becomes a
189  * preferred target, unless it is offline.
190  *
191  * High and low resolution modes are handled the same way for simplicity.
192  *
193  * Called with cpu_base->lock of target cpu held.
194  */
195 static bool hrtimer_suitable_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base,
196 				    struct hrtimer_cpu_base *new_cpu_base,
197 				    struct hrtimer_cpu_base *this_cpu_base)
198 {
199 	ktime_t expires;
200 
201 	/*
202 	 * The local CPU clockevent can be reprogrammed. Also get_target_base()
203 	 * guarantees it is online.
204 	 */
205 	if (new_cpu_base == this_cpu_base)
206 		return true;
207 
208 	/*
209 	 * The offline local CPU can't be the default target if the
210 	 * next remote target event is after this timer. Keep the
211 	 * elected new base. An IPI will we issued to reprogram
212 	 * it as a last resort.
213 	 */
214 	if (!hrtimer_base_is_online(this_cpu_base))
215 		return true;
216 
217 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
218 
219 	return expires >= new_base->cpu_base->expires_next;
220 }
221 
222 static inline struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, int pinned)
223 {
224 	if (!hrtimer_base_is_online(base)) {
225 		int cpu = cpumask_any_and(cpu_online_mask, housekeeping_cpumask(HK_TYPE_TIMER));
226 
227 		return &per_cpu(hrtimer_bases, cpu);
228 	}
229 
230 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
231 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
232 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
233 #endif
234 	return base;
235 }
236 
237 /*
238  * We switch the timer base to a power-optimized selected CPU target,
239  * if:
240  *	- NO_HZ_COMMON is enabled
241  *	- timer migration is enabled
242  *	- the timer callback is not running
243  *	- the timer is not the first expiring timer on the new target
244  *
245  * If one of the above requirements is not fulfilled we move the timer
246  * to the current CPU or leave it on the previously assigned CPU if
247  * the timer callback is currently running.
248  */
249 static inline struct hrtimer_clock_base *
250 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
251 		    int pinned)
252 {
253 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
254 	struct hrtimer_clock_base *new_base;
255 	int basenum = base->index;
256 
257 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
258 	new_cpu_base = get_target_base(this_cpu_base, pinned);
259 again:
260 	new_base = &new_cpu_base->clock_base[basenum];
261 
262 	if (base != new_base) {
263 		/*
264 		 * We are trying to move timer to new_base.
265 		 * However we can't change timer's base while it is running,
266 		 * so we keep it on the same CPU. No hassle vs. reprogramming
267 		 * the event source in the high resolution case. The softirq
268 		 * code will take care of this when the timer function has
269 		 * completed. There is no conflict as we hold the lock until
270 		 * the timer is enqueued.
271 		 */
272 		if (unlikely(hrtimer_callback_running(timer)))
273 			return base;
274 
275 		/* See the comment in lock_hrtimer_base() */
276 		WRITE_ONCE(timer->base, &migration_base);
277 		raw_spin_unlock(&base->cpu_base->lock);
278 		raw_spin_lock(&new_base->cpu_base->lock);
279 
280 		if (!hrtimer_suitable_target(timer, new_base, new_cpu_base,
281 					     this_cpu_base)) {
282 			raw_spin_unlock(&new_base->cpu_base->lock);
283 			raw_spin_lock(&base->cpu_base->lock);
284 			new_cpu_base = this_cpu_base;
285 			WRITE_ONCE(timer->base, base);
286 			goto again;
287 		}
288 		WRITE_ONCE(timer->base, new_base);
289 	} else {
290 		if (!hrtimer_suitable_target(timer, new_base,  new_cpu_base, this_cpu_base)) {
291 			new_cpu_base = this_cpu_base;
292 			goto again;
293 		}
294 	}
295 	return new_base;
296 }
297 
298 #else /* CONFIG_SMP */
299 
300 static inline struct hrtimer_clock_base *
301 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
302 	__acquires(&timer->base->cpu_base->lock)
303 {
304 	struct hrtimer_clock_base *base = timer->base;
305 
306 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
307 
308 	return base;
309 }
310 
311 # define switch_hrtimer_base(t, b, p)	(b)
312 
313 #endif	/* !CONFIG_SMP */
314 
315 /*
316  * Functions for the union type storage format of ktime_t which are
317  * too large for inlining:
318  */
319 #if BITS_PER_LONG < 64
320 /*
321  * Divide a ktime value by a nanosecond value
322  */
323 s64 __ktime_divns(const ktime_t kt, s64 div)
324 {
325 	int sft = 0;
326 	s64 dclc;
327 	u64 tmp;
328 
329 	dclc = ktime_to_ns(kt);
330 	tmp = dclc < 0 ? -dclc : dclc;
331 
332 	/* Make sure the divisor is less than 2^32: */
333 	while (div >> 32) {
334 		sft++;
335 		div >>= 1;
336 	}
337 	tmp >>= sft;
338 	do_div(tmp, (u32) div);
339 	return dclc < 0 ? -tmp : tmp;
340 }
341 EXPORT_SYMBOL_GPL(__ktime_divns);
342 #endif /* BITS_PER_LONG >= 64 */
343 
344 /*
345  * Add two ktime values and do a safety check for overflow:
346  */
347 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
348 {
349 	ktime_t res = ktime_add_unsafe(lhs, rhs);
350 
351 	/*
352 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
353 	 * return to user space in a timespec:
354 	 */
355 	if (res < 0 || res < lhs || res < rhs)
356 		res = ktime_set(KTIME_SEC_MAX, 0);
357 
358 	return res;
359 }
360 
361 EXPORT_SYMBOL_GPL(ktime_add_safe);
362 
363 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
364 
365 static const struct debug_obj_descr hrtimer_debug_descr;
366 
367 static void *hrtimer_debug_hint(void *addr)
368 {
369 	return ACCESS_PRIVATE((struct hrtimer *)addr, function);
370 }
371 
372 /*
373  * fixup_init is called when:
374  * - an active object is initialized
375  */
376 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
377 {
378 	struct hrtimer *timer = addr;
379 
380 	switch (state) {
381 	case ODEBUG_STATE_ACTIVE:
382 		hrtimer_cancel(timer);
383 		debug_object_init(timer, &hrtimer_debug_descr);
384 		return true;
385 	default:
386 		return false;
387 	}
388 }
389 
390 /*
391  * fixup_activate is called when:
392  * - an active object is activated
393  * - an unknown non-static object is activated
394  */
395 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
396 {
397 	switch (state) {
398 	case ODEBUG_STATE_ACTIVE:
399 		WARN_ON(1);
400 		fallthrough;
401 	default:
402 		return false;
403 	}
404 }
405 
406 /*
407  * fixup_free is called when:
408  * - an active object is freed
409  */
410 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
411 {
412 	struct hrtimer *timer = addr;
413 
414 	switch (state) {
415 	case ODEBUG_STATE_ACTIVE:
416 		hrtimer_cancel(timer);
417 		debug_object_free(timer, &hrtimer_debug_descr);
418 		return true;
419 	default:
420 		return false;
421 	}
422 }
423 
424 static const struct debug_obj_descr hrtimer_debug_descr = {
425 	.name		= "hrtimer",
426 	.debug_hint	= hrtimer_debug_hint,
427 	.fixup_init	= hrtimer_fixup_init,
428 	.fixup_activate	= hrtimer_fixup_activate,
429 	.fixup_free	= hrtimer_fixup_free,
430 };
431 
432 static inline void debug_hrtimer_init(struct hrtimer *timer)
433 {
434 	debug_object_init(timer, &hrtimer_debug_descr);
435 }
436 
437 static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer)
438 {
439 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
440 }
441 
442 static inline void debug_hrtimer_activate(struct hrtimer *timer,
443 					  enum hrtimer_mode mode)
444 {
445 	debug_object_activate(timer, &hrtimer_debug_descr);
446 }
447 
448 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
449 {
450 	debug_object_deactivate(timer, &hrtimer_debug_descr);
451 }
452 
453 void destroy_hrtimer_on_stack(struct hrtimer *timer)
454 {
455 	debug_object_free(timer, &hrtimer_debug_descr);
456 }
457 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
458 
459 #else
460 
461 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
462 static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { }
463 static inline void debug_hrtimer_activate(struct hrtimer *timer,
464 					  enum hrtimer_mode mode) { }
465 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
466 #endif
467 
468 static inline void debug_setup(struct hrtimer *timer, clockid_t clockid, enum hrtimer_mode mode)
469 {
470 	debug_hrtimer_init(timer);
471 	trace_hrtimer_setup(timer, clockid, mode);
472 }
473 
474 static inline void debug_setup_on_stack(struct hrtimer *timer, clockid_t clockid,
475 					enum hrtimer_mode mode)
476 {
477 	debug_hrtimer_init_on_stack(timer);
478 	trace_hrtimer_setup(timer, clockid, mode);
479 }
480 
481 static inline void debug_activate(struct hrtimer *timer,
482 				  enum hrtimer_mode mode)
483 {
484 	debug_hrtimer_activate(timer, mode);
485 	trace_hrtimer_start(timer, mode);
486 }
487 
488 static inline void debug_deactivate(struct hrtimer *timer)
489 {
490 	debug_hrtimer_deactivate(timer);
491 	trace_hrtimer_cancel(timer);
492 }
493 
494 static struct hrtimer_clock_base *
495 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
496 {
497 	unsigned int idx;
498 
499 	if (!*active)
500 		return NULL;
501 
502 	idx = __ffs(*active);
503 	*active &= ~(1U << idx);
504 
505 	return &cpu_base->clock_base[idx];
506 }
507 
508 #define for_each_active_base(base, cpu_base, active)	\
509 	while ((base = __next_base((cpu_base), &(active))))
510 
511 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
512 					 const struct hrtimer *exclude,
513 					 unsigned int active,
514 					 ktime_t expires_next)
515 {
516 	struct hrtimer_clock_base *base;
517 	ktime_t expires;
518 
519 	for_each_active_base(base, cpu_base, active) {
520 		struct timerqueue_node *next;
521 		struct hrtimer *timer;
522 
523 		next = timerqueue_getnext(&base->active);
524 		timer = container_of(next, struct hrtimer, node);
525 		if (timer == exclude) {
526 			/* Get to the next timer in the queue. */
527 			next = timerqueue_iterate_next(next);
528 			if (!next)
529 				continue;
530 
531 			timer = container_of(next, struct hrtimer, node);
532 		}
533 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
534 		if (expires < expires_next) {
535 			expires_next = expires;
536 
537 			/* Skip cpu_base update if a timer is being excluded. */
538 			if (exclude)
539 				continue;
540 
541 			if (timer->is_soft)
542 				cpu_base->softirq_next_timer = timer;
543 			else
544 				cpu_base->next_timer = timer;
545 		}
546 	}
547 	/*
548 	 * clock_was_set() might have changed base->offset of any of
549 	 * the clock bases so the result might be negative. Fix it up
550 	 * to prevent a false positive in clockevents_program_event().
551 	 */
552 	if (expires_next < 0)
553 		expires_next = 0;
554 	return expires_next;
555 }
556 
557 /*
558  * Recomputes cpu_base::*next_timer and returns the earliest expires_next
559  * but does not set cpu_base::*expires_next, that is done by
560  * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
561  * cpu_base::*expires_next right away, reprogramming logic would no longer
562  * work.
563  *
564  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
565  * those timers will get run whenever the softirq gets handled, at the end of
566  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
567  *
568  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
569  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
570  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
571  *
572  * @active_mask must be one of:
573  *  - HRTIMER_ACTIVE_ALL,
574  *  - HRTIMER_ACTIVE_SOFT, or
575  *  - HRTIMER_ACTIVE_HARD.
576  */
577 static ktime_t
578 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
579 {
580 	unsigned int active;
581 	struct hrtimer *next_timer = NULL;
582 	ktime_t expires_next = KTIME_MAX;
583 
584 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
585 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
586 		cpu_base->softirq_next_timer = NULL;
587 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
588 							 active, KTIME_MAX);
589 
590 		next_timer = cpu_base->softirq_next_timer;
591 	}
592 
593 	if (active_mask & HRTIMER_ACTIVE_HARD) {
594 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
595 		cpu_base->next_timer = next_timer;
596 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
597 							 expires_next);
598 	}
599 
600 	return expires_next;
601 }
602 
603 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
604 {
605 	ktime_t expires_next, soft = KTIME_MAX;
606 
607 	/*
608 	 * If the soft interrupt has already been activated, ignore the
609 	 * soft bases. They will be handled in the already raised soft
610 	 * interrupt.
611 	 */
612 	if (!cpu_base->softirq_activated) {
613 		soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
614 		/*
615 		 * Update the soft expiry time. clock_settime() might have
616 		 * affected it.
617 		 */
618 		cpu_base->softirq_expires_next = soft;
619 	}
620 
621 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
622 	/*
623 	 * If a softirq timer is expiring first, update cpu_base->next_timer
624 	 * and program the hardware with the soft expiry time.
625 	 */
626 	if (expires_next > soft) {
627 		cpu_base->next_timer = cpu_base->softirq_next_timer;
628 		expires_next = soft;
629 	}
630 
631 	return expires_next;
632 }
633 
634 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
635 {
636 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
637 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
638 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
639 
640 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
641 					    offs_real, offs_boot, offs_tai);
642 
643 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
644 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
645 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
646 
647 	return now;
648 }
649 
650 /*
651  * Is the high resolution mode active ?
652  */
653 static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
654 {
655 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
656 		cpu_base->hres_active : 0;
657 }
658 
659 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
660 				struct hrtimer *next_timer,
661 				ktime_t expires_next)
662 {
663 	cpu_base->expires_next = expires_next;
664 
665 	/*
666 	 * If hres is not active, hardware does not have to be
667 	 * reprogrammed yet.
668 	 *
669 	 * If a hang was detected in the last timer interrupt then we
670 	 * leave the hang delay active in the hardware. We want the
671 	 * system to make progress. That also prevents the following
672 	 * scenario:
673 	 * T1 expires 50ms from now
674 	 * T2 expires 5s from now
675 	 *
676 	 * T1 is removed, so this code is called and would reprogram
677 	 * the hardware to 5s from now. Any hrtimer_start after that
678 	 * will not reprogram the hardware due to hang_detected being
679 	 * set. So we'd effectively block all timers until the T2 event
680 	 * fires.
681 	 */
682 	if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
683 		return;
684 
685 	tick_program_event(expires_next, 1);
686 }
687 
688 /*
689  * Reprogram the event source with checking both queues for the
690  * next event
691  * Called with interrupts disabled and base->lock held
692  */
693 static void
694 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
695 {
696 	ktime_t expires_next;
697 
698 	expires_next = hrtimer_update_next_event(cpu_base);
699 
700 	if (skip_equal && expires_next == cpu_base->expires_next)
701 		return;
702 
703 	__hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
704 }
705 
706 /* High resolution timer related functions */
707 #ifdef CONFIG_HIGH_RES_TIMERS
708 
709 /*
710  * High resolution timer enabled ?
711  */
712 static bool hrtimer_hres_enabled __read_mostly  = true;
713 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
714 EXPORT_SYMBOL_GPL(hrtimer_resolution);
715 
716 /*
717  * Enable / Disable high resolution mode
718  */
719 static int __init setup_hrtimer_hres(char *str)
720 {
721 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
722 }
723 
724 __setup("highres=", setup_hrtimer_hres);
725 
726 /*
727  * hrtimer_high_res_enabled - query, if the highres mode is enabled
728  */
729 static inline int hrtimer_is_hres_enabled(void)
730 {
731 	return hrtimer_hres_enabled;
732 }
733 
734 /*
735  * Switch to high resolution mode
736  */
737 static void hrtimer_switch_to_hres(void)
738 {
739 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
740 
741 	if (tick_init_highres()) {
742 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
743 			base->cpu);
744 		return;
745 	}
746 	base->hres_active = 1;
747 	hrtimer_resolution = HIGH_RES_NSEC;
748 
749 	tick_setup_sched_timer(true);
750 	/* "Retrigger" the interrupt to get things going */
751 	retrigger_next_event(NULL);
752 }
753 
754 #else
755 
756 static inline int hrtimer_is_hres_enabled(void) { return 0; }
757 static inline void hrtimer_switch_to_hres(void) { }
758 
759 #endif /* CONFIG_HIGH_RES_TIMERS */
760 /*
761  * Retrigger next event is called after clock was set with interrupts
762  * disabled through an SMP function call or directly from low level
763  * resume code.
764  *
765  * This is only invoked when:
766  *	- CONFIG_HIGH_RES_TIMERS is enabled.
767  *	- CONFIG_NOHZ_COMMON is enabled
768  *
769  * For the other cases this function is empty and because the call sites
770  * are optimized out it vanishes as well, i.e. no need for lots of
771  * #ifdeffery.
772  */
773 static void retrigger_next_event(void *arg)
774 {
775 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
776 
777 	/*
778 	 * When high resolution mode or nohz is active, then the offsets of
779 	 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
780 	 * next tick will take care of that.
781 	 *
782 	 * If high resolution mode is active then the next expiring timer
783 	 * must be reevaluated and the clock event device reprogrammed if
784 	 * necessary.
785 	 *
786 	 * In the NOHZ case the update of the offset and the reevaluation
787 	 * of the next expiring timer is enough. The return from the SMP
788 	 * function call will take care of the reprogramming in case the
789 	 * CPU was in a NOHZ idle sleep.
790 	 */
791 	if (!hrtimer_hres_active(base) && !tick_nohz_active)
792 		return;
793 
794 	raw_spin_lock(&base->lock);
795 	hrtimer_update_base(base);
796 	if (hrtimer_hres_active(base))
797 		hrtimer_force_reprogram(base, 0);
798 	else
799 		hrtimer_update_next_event(base);
800 	raw_spin_unlock(&base->lock);
801 }
802 
803 /*
804  * When a timer is enqueued and expires earlier than the already enqueued
805  * timers, we have to check, whether it expires earlier than the timer for
806  * which the clock event device was armed.
807  *
808  * Called with interrupts disabled and base->cpu_base.lock held
809  */
810 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
811 {
812 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
813 	struct hrtimer_clock_base *base = timer->base;
814 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
815 
816 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
817 
818 	/*
819 	 * CLOCK_REALTIME timer might be requested with an absolute
820 	 * expiry time which is less than base->offset. Set it to 0.
821 	 */
822 	if (expires < 0)
823 		expires = 0;
824 
825 	if (timer->is_soft) {
826 		/*
827 		 * soft hrtimer could be started on a remote CPU. In this
828 		 * case softirq_expires_next needs to be updated on the
829 		 * remote CPU. The soft hrtimer will not expire before the
830 		 * first hard hrtimer on the remote CPU -
831 		 * hrtimer_check_target() prevents this case.
832 		 */
833 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
834 
835 		if (timer_cpu_base->softirq_activated)
836 			return;
837 
838 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
839 			return;
840 
841 		timer_cpu_base->softirq_next_timer = timer;
842 		timer_cpu_base->softirq_expires_next = expires;
843 
844 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
845 		    !reprogram)
846 			return;
847 	}
848 
849 	/*
850 	 * If the timer is not on the current cpu, we cannot reprogram
851 	 * the other cpus clock event device.
852 	 */
853 	if (base->cpu_base != cpu_base)
854 		return;
855 
856 	if (expires >= cpu_base->expires_next)
857 		return;
858 
859 	/*
860 	 * If the hrtimer interrupt is running, then it will reevaluate the
861 	 * clock bases and reprogram the clock event device.
862 	 */
863 	if (cpu_base->in_hrtirq)
864 		return;
865 
866 	cpu_base->next_timer = timer;
867 
868 	__hrtimer_reprogram(cpu_base, timer, expires);
869 }
870 
871 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
872 			     unsigned int active)
873 {
874 	struct hrtimer_clock_base *base;
875 	unsigned int seq;
876 	ktime_t expires;
877 
878 	/*
879 	 * Update the base offsets unconditionally so the following
880 	 * checks whether the SMP function call is required works.
881 	 *
882 	 * The update is safe even when the remote CPU is in the hrtimer
883 	 * interrupt or the hrtimer soft interrupt and expiring affected
884 	 * bases. Either it will see the update before handling a base or
885 	 * it will see it when it finishes the processing and reevaluates
886 	 * the next expiring timer.
887 	 */
888 	seq = cpu_base->clock_was_set_seq;
889 	hrtimer_update_base(cpu_base);
890 
891 	/*
892 	 * If the sequence did not change over the update then the
893 	 * remote CPU already handled it.
894 	 */
895 	if (seq == cpu_base->clock_was_set_seq)
896 		return false;
897 
898 	/*
899 	 * If the remote CPU is currently handling an hrtimer interrupt, it
900 	 * will reevaluate the first expiring timer of all clock bases
901 	 * before reprogramming. Nothing to do here.
902 	 */
903 	if (cpu_base->in_hrtirq)
904 		return false;
905 
906 	/*
907 	 * Walk the affected clock bases and check whether the first expiring
908 	 * timer in a clock base is moving ahead of the first expiring timer of
909 	 * @cpu_base. If so, the IPI must be invoked because per CPU clock
910 	 * event devices cannot be remotely reprogrammed.
911 	 */
912 	active &= cpu_base->active_bases;
913 
914 	for_each_active_base(base, cpu_base, active) {
915 		struct timerqueue_node *next;
916 
917 		next = timerqueue_getnext(&base->active);
918 		expires = ktime_sub(next->expires, base->offset);
919 		if (expires < cpu_base->expires_next)
920 			return true;
921 
922 		/* Extra check for softirq clock bases */
923 		if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
924 			continue;
925 		if (cpu_base->softirq_activated)
926 			continue;
927 		if (expires < cpu_base->softirq_expires_next)
928 			return true;
929 	}
930 	return false;
931 }
932 
933 /*
934  * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
935  * CLOCK_BOOTTIME (for late sleep time injection).
936  *
937  * This requires to update the offsets for these clocks
938  * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
939  * also requires to eventually reprogram the per CPU clock event devices
940  * when the change moves an affected timer ahead of the first expiring
941  * timer on that CPU. Obviously remote per CPU clock event devices cannot
942  * be reprogrammed. The other reason why an IPI has to be sent is when the
943  * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
944  * in the tick, which obviously might be stopped, so this has to bring out
945  * the remote CPU which might sleep in idle to get this sorted.
946  */
947 void clock_was_set(unsigned int bases)
948 {
949 	struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
950 	cpumask_var_t mask;
951 	int cpu;
952 
953 	if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active)
954 		goto out_timerfd;
955 
956 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
957 		on_each_cpu(retrigger_next_event, NULL, 1);
958 		goto out_timerfd;
959 	}
960 
961 	/* Avoid interrupting CPUs if possible */
962 	cpus_read_lock();
963 	for_each_online_cpu(cpu) {
964 		unsigned long flags;
965 
966 		cpu_base = &per_cpu(hrtimer_bases, cpu);
967 		raw_spin_lock_irqsave(&cpu_base->lock, flags);
968 
969 		if (update_needs_ipi(cpu_base, bases))
970 			cpumask_set_cpu(cpu, mask);
971 
972 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
973 	}
974 
975 	preempt_disable();
976 	smp_call_function_many(mask, retrigger_next_event, NULL, 1);
977 	preempt_enable();
978 	cpus_read_unlock();
979 	free_cpumask_var(mask);
980 
981 out_timerfd:
982 	timerfd_clock_was_set();
983 }
984 
985 static void clock_was_set_work(struct work_struct *work)
986 {
987 	clock_was_set(CLOCK_SET_WALL);
988 }
989 
990 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
991 
992 /*
993  * Called from timekeeping code to reprogram the hrtimer interrupt device
994  * on all cpus and to notify timerfd.
995  */
996 void clock_was_set_delayed(void)
997 {
998 	schedule_work(&hrtimer_work);
999 }
1000 
1001 /*
1002  * Called during resume either directly from via timekeeping_resume()
1003  * or in the case of s2idle from tick_unfreeze() to ensure that the
1004  * hrtimers are up to date.
1005  */
1006 void hrtimers_resume_local(void)
1007 {
1008 	lockdep_assert_irqs_disabled();
1009 	/* Retrigger on the local CPU */
1010 	retrigger_next_event(NULL);
1011 }
1012 
1013 /*
1014  * Counterpart to lock_hrtimer_base above:
1015  */
1016 static inline
1017 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1018 	__releases(&timer->base->cpu_base->lock)
1019 {
1020 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1021 }
1022 
1023 /**
1024  * hrtimer_forward() - forward the timer expiry
1025  * @timer:	hrtimer to forward
1026  * @now:	forward past this time
1027  * @interval:	the interval to forward
1028  *
1029  * Forward the timer expiry so it will expire in the future.
1030  *
1031  * .. note::
1032  *  This only updates the timer expiry value and does not requeue the timer.
1033  *
1034  * There is also a variant of the function hrtimer_forward_now().
1035  *
1036  * Context: Can be safely called from the callback function of @timer. If called
1037  *          from other contexts @timer must neither be enqueued nor running the
1038  *          callback and the caller needs to take care of serialization.
1039  *
1040  * Return: The number of overruns are returned.
1041  */
1042 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1043 {
1044 	u64 orun = 1;
1045 	ktime_t delta;
1046 
1047 	delta = ktime_sub(now, hrtimer_get_expires(timer));
1048 
1049 	if (delta < 0)
1050 		return 0;
1051 
1052 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1053 		return 0;
1054 
1055 	if (interval < hrtimer_resolution)
1056 		interval = hrtimer_resolution;
1057 
1058 	if (unlikely(delta >= interval)) {
1059 		s64 incr = ktime_to_ns(interval);
1060 
1061 		orun = ktime_divns(delta, incr);
1062 		hrtimer_add_expires_ns(timer, incr * orun);
1063 		if (hrtimer_get_expires_tv64(timer) > now)
1064 			return orun;
1065 		/*
1066 		 * This (and the ktime_add() below) is the
1067 		 * correction for exact:
1068 		 */
1069 		orun++;
1070 	}
1071 	hrtimer_add_expires(timer, interval);
1072 
1073 	return orun;
1074 }
1075 EXPORT_SYMBOL_GPL(hrtimer_forward);
1076 
1077 /*
1078  * enqueue_hrtimer - internal function to (re)start a timer
1079  *
1080  * The timer is inserted in expiry order. Insertion into the
1081  * red black tree is O(log(n)). Must hold the base lock.
1082  *
1083  * Returns true when the new timer is the leftmost timer in the tree.
1084  */
1085 static bool enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1086 			    enum hrtimer_mode mode)
1087 {
1088 	debug_activate(timer, mode);
1089 	WARN_ON_ONCE(!base->cpu_base->online);
1090 
1091 	base->cpu_base->active_bases |= 1 << base->index;
1092 
1093 	/* Pairs with the lockless read in hrtimer_is_queued() */
1094 	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1095 
1096 	return timerqueue_add(&base->active, &timer->node);
1097 }
1098 
1099 /*
1100  * __remove_hrtimer - internal function to remove a timer
1101  *
1102  * Caller must hold the base lock.
1103  *
1104  * High resolution timer mode reprograms the clock event device when the
1105  * timer is the one which expires next. The caller can disable this by setting
1106  * reprogram to zero. This is useful, when the context does a reprogramming
1107  * anyway (e.g. timer interrupt)
1108  */
1109 static void __remove_hrtimer(struct hrtimer *timer,
1110 			     struct hrtimer_clock_base *base,
1111 			     u8 newstate, int reprogram)
1112 {
1113 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1114 	u8 state = timer->state;
1115 
1116 	/* Pairs with the lockless read in hrtimer_is_queued() */
1117 	WRITE_ONCE(timer->state, newstate);
1118 	if (!(state & HRTIMER_STATE_ENQUEUED))
1119 		return;
1120 
1121 	if (!timerqueue_del(&base->active, &timer->node))
1122 		cpu_base->active_bases &= ~(1 << base->index);
1123 
1124 	/*
1125 	 * Note: If reprogram is false we do not update
1126 	 * cpu_base->next_timer. This happens when we remove the first
1127 	 * timer on a remote cpu. No harm as we never dereference
1128 	 * cpu_base->next_timer. So the worst thing what can happen is
1129 	 * an superfluous call to hrtimer_force_reprogram() on the
1130 	 * remote cpu later on if the same timer gets enqueued again.
1131 	 */
1132 	if (reprogram && timer == cpu_base->next_timer)
1133 		hrtimer_force_reprogram(cpu_base, 1);
1134 }
1135 
1136 /*
1137  * remove hrtimer, called with base lock held
1138  */
1139 static inline int
1140 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1141 	       bool restart, bool keep_local)
1142 {
1143 	u8 state = timer->state;
1144 
1145 	if (state & HRTIMER_STATE_ENQUEUED) {
1146 		bool reprogram;
1147 
1148 		/*
1149 		 * Remove the timer and force reprogramming when high
1150 		 * resolution mode is active and the timer is on the current
1151 		 * CPU. If we remove a timer on another CPU, reprogramming is
1152 		 * skipped. The interrupt event on this CPU is fired and
1153 		 * reprogramming happens in the interrupt handler. This is a
1154 		 * rare case and less expensive than a smp call.
1155 		 */
1156 		debug_deactivate(timer);
1157 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1158 
1159 		/*
1160 		 * If the timer is not restarted then reprogramming is
1161 		 * required if the timer is local. If it is local and about
1162 		 * to be restarted, avoid programming it twice (on removal
1163 		 * and a moment later when it's requeued).
1164 		 */
1165 		if (!restart)
1166 			state = HRTIMER_STATE_INACTIVE;
1167 		else
1168 			reprogram &= !keep_local;
1169 
1170 		__remove_hrtimer(timer, base, state, reprogram);
1171 		return 1;
1172 	}
1173 	return 0;
1174 }
1175 
1176 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1177 					    const enum hrtimer_mode mode)
1178 {
1179 #ifdef CONFIG_TIME_LOW_RES
1180 	/*
1181 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1182 	 * granular time values. For relative timers we add hrtimer_resolution
1183 	 * (i.e. one jiffy) to prevent short timeouts.
1184 	 */
1185 	timer->is_rel = mode & HRTIMER_MODE_REL;
1186 	if (timer->is_rel)
1187 		tim = ktime_add_safe(tim, hrtimer_resolution);
1188 #endif
1189 	return tim;
1190 }
1191 
1192 static void
1193 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1194 {
1195 	ktime_t expires;
1196 
1197 	/*
1198 	 * Find the next SOFT expiration.
1199 	 */
1200 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1201 
1202 	/*
1203 	 * reprogramming needs to be triggered, even if the next soft
1204 	 * hrtimer expires at the same time than the next hard
1205 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1206 	 */
1207 	if (expires == KTIME_MAX)
1208 		return;
1209 
1210 	/*
1211 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1212 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1213 	 */
1214 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1215 }
1216 
1217 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1218 				    u64 delta_ns, const enum hrtimer_mode mode,
1219 				    struct hrtimer_clock_base *base)
1220 {
1221 	struct hrtimer_cpu_base *this_cpu_base = this_cpu_ptr(&hrtimer_bases);
1222 	struct hrtimer_clock_base *new_base;
1223 	bool force_local, first;
1224 
1225 	/*
1226 	 * If the timer is on the local cpu base and is the first expiring
1227 	 * timer then this might end up reprogramming the hardware twice
1228 	 * (on removal and on enqueue). To avoid that by prevent the
1229 	 * reprogram on removal, keep the timer local to the current CPU
1230 	 * and enforce reprogramming after it is queued no matter whether
1231 	 * it is the new first expiring timer again or not.
1232 	 */
1233 	force_local = base->cpu_base == this_cpu_base;
1234 	force_local &= base->cpu_base->next_timer == timer;
1235 
1236 	/*
1237 	 * Don't force local queuing if this enqueue happens on a unplugged
1238 	 * CPU after hrtimer_cpu_dying() has been invoked.
1239 	 */
1240 	force_local &= this_cpu_base->online;
1241 
1242 	/*
1243 	 * Remove an active timer from the queue. In case it is not queued
1244 	 * on the current CPU, make sure that remove_hrtimer() updates the
1245 	 * remote data correctly.
1246 	 *
1247 	 * If it's on the current CPU and the first expiring timer, then
1248 	 * skip reprogramming, keep the timer local and enforce
1249 	 * reprogramming later if it was the first expiring timer.  This
1250 	 * avoids programming the underlying clock event twice (once at
1251 	 * removal and once after enqueue).
1252 	 */
1253 	remove_hrtimer(timer, base, true, force_local);
1254 
1255 	if (mode & HRTIMER_MODE_REL)
1256 		tim = ktime_add_safe(tim, base->get_time());
1257 
1258 	tim = hrtimer_update_lowres(timer, tim, mode);
1259 
1260 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1261 
1262 	/* Switch the timer base, if necessary: */
1263 	if (!force_local) {
1264 		new_base = switch_hrtimer_base(timer, base,
1265 					       mode & HRTIMER_MODE_PINNED);
1266 	} else {
1267 		new_base = base;
1268 	}
1269 
1270 	first = enqueue_hrtimer(timer, new_base, mode);
1271 	if (!force_local) {
1272 		/*
1273 		 * If the current CPU base is online, then the timer is
1274 		 * never queued on a remote CPU if it would be the first
1275 		 * expiring timer there.
1276 		 */
1277 		if (hrtimer_base_is_online(this_cpu_base))
1278 			return first;
1279 
1280 		/*
1281 		 * Timer was enqueued remote because the current base is
1282 		 * already offline. If the timer is the first to expire,
1283 		 * kick the remote CPU to reprogram the clock event.
1284 		 */
1285 		if (first) {
1286 			struct hrtimer_cpu_base *new_cpu_base = new_base->cpu_base;
1287 
1288 			smp_call_function_single_async(new_cpu_base->cpu, &new_cpu_base->csd);
1289 		}
1290 		return 0;
1291 	}
1292 
1293 	/*
1294 	 * Timer was forced to stay on the current CPU to avoid
1295 	 * reprogramming on removal and enqueue. Force reprogram the
1296 	 * hardware by evaluating the new first expiring timer.
1297 	 */
1298 	hrtimer_force_reprogram(new_base->cpu_base, 1);
1299 	return 0;
1300 }
1301 
1302 /**
1303  * hrtimer_start_range_ns - (re)start an hrtimer
1304  * @timer:	the timer to be added
1305  * @tim:	expiry time
1306  * @delta_ns:	"slack" range for the timer
1307  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1308  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1309  *		softirq based mode is considered for debug purpose only!
1310  */
1311 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1312 			    u64 delta_ns, const enum hrtimer_mode mode)
1313 {
1314 	struct hrtimer_clock_base *base;
1315 	unsigned long flags;
1316 
1317 	/*
1318 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1319 	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1320 	 * expiry mode because unmarked timers are moved to softirq expiry.
1321 	 */
1322 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1323 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1324 	else
1325 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1326 
1327 	base = lock_hrtimer_base(timer, &flags);
1328 
1329 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1330 		hrtimer_reprogram(timer, true);
1331 
1332 	unlock_hrtimer_base(timer, &flags);
1333 }
1334 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1335 
1336 /**
1337  * hrtimer_try_to_cancel - try to deactivate a timer
1338  * @timer:	hrtimer to stop
1339  *
1340  * Returns:
1341  *
1342  *  *  0 when the timer was not active
1343  *  *  1 when the timer was active
1344  *  * -1 when the timer is currently executing the callback function and
1345  *    cannot be stopped
1346  */
1347 int hrtimer_try_to_cancel(struct hrtimer *timer)
1348 {
1349 	struct hrtimer_clock_base *base;
1350 	unsigned long flags;
1351 	int ret = -1;
1352 
1353 	/*
1354 	 * Check lockless first. If the timer is not active (neither
1355 	 * enqueued nor running the callback, nothing to do here.  The
1356 	 * base lock does not serialize against a concurrent enqueue,
1357 	 * so we can avoid taking it.
1358 	 */
1359 	if (!hrtimer_active(timer))
1360 		return 0;
1361 
1362 	base = lock_hrtimer_base(timer, &flags);
1363 
1364 	if (!hrtimer_callback_running(timer))
1365 		ret = remove_hrtimer(timer, base, false, false);
1366 
1367 	unlock_hrtimer_base(timer, &flags);
1368 
1369 	return ret;
1370 
1371 }
1372 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1373 
1374 #ifdef CONFIG_PREEMPT_RT
1375 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1376 {
1377 	spin_lock_init(&base->softirq_expiry_lock);
1378 }
1379 
1380 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1381 	__acquires(&base->softirq_expiry_lock)
1382 {
1383 	spin_lock(&base->softirq_expiry_lock);
1384 }
1385 
1386 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1387 	__releases(&base->softirq_expiry_lock)
1388 {
1389 	spin_unlock(&base->softirq_expiry_lock);
1390 }
1391 
1392 /*
1393  * The counterpart to hrtimer_cancel_wait_running().
1394  *
1395  * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1396  * the timer callback to finish. Drop expiry_lock and reacquire it. That
1397  * allows the waiter to acquire the lock and make progress.
1398  */
1399 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1400 				      unsigned long flags)
1401 {
1402 	if (atomic_read(&cpu_base->timer_waiters)) {
1403 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1404 		spin_unlock(&cpu_base->softirq_expiry_lock);
1405 		spin_lock(&cpu_base->softirq_expiry_lock);
1406 		raw_spin_lock_irq(&cpu_base->lock);
1407 	}
1408 }
1409 
1410 #ifdef CONFIG_SMP
1411 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base)
1412 {
1413 	return base == &migration_base;
1414 }
1415 #else
1416 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base)
1417 {
1418 	return false;
1419 }
1420 #endif
1421 
1422 /*
1423  * This function is called on PREEMPT_RT kernels when the fast path
1424  * deletion of a timer failed because the timer callback function was
1425  * running.
1426  *
1427  * This prevents priority inversion: if the soft irq thread is preempted
1428  * in the middle of a timer callback, then calling hrtimer_cancel() can
1429  * lead to two issues:
1430  *
1431  *  - If the caller is on a remote CPU then it has to spin wait for the timer
1432  *    handler to complete. This can result in unbound priority inversion.
1433  *
1434  *  - If the caller originates from the task which preempted the timer
1435  *    handler on the same CPU, then spin waiting for the timer handler to
1436  *    complete is never going to end.
1437  */
1438 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1439 {
1440 	/* Lockless read. Prevent the compiler from reloading it below */
1441 	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1442 
1443 	/*
1444 	 * Just relax if the timer expires in hard interrupt context or if
1445 	 * it is currently on the migration base.
1446 	 */
1447 	if (!timer->is_soft || is_migration_base(base)) {
1448 		cpu_relax();
1449 		return;
1450 	}
1451 
1452 	/*
1453 	 * Mark the base as contended and grab the expiry lock, which is
1454 	 * held by the softirq across the timer callback. Drop the lock
1455 	 * immediately so the softirq can expire the next timer. In theory
1456 	 * the timer could already be running again, but that's more than
1457 	 * unlikely and just causes another wait loop.
1458 	 */
1459 	atomic_inc(&base->cpu_base->timer_waiters);
1460 	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1461 	atomic_dec(&base->cpu_base->timer_waiters);
1462 	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1463 }
1464 #else
1465 static inline void
1466 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1467 static inline void
1468 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1469 static inline void
1470 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1471 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1472 					     unsigned long flags) { }
1473 #endif
1474 
1475 /**
1476  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1477  * @timer:	the timer to be cancelled
1478  *
1479  * Returns:
1480  *  0 when the timer was not active
1481  *  1 when the timer was active
1482  */
1483 int hrtimer_cancel(struct hrtimer *timer)
1484 {
1485 	int ret;
1486 
1487 	do {
1488 		ret = hrtimer_try_to_cancel(timer);
1489 
1490 		if (ret < 0)
1491 			hrtimer_cancel_wait_running(timer);
1492 	} while (ret < 0);
1493 	return ret;
1494 }
1495 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1496 
1497 /**
1498  * __hrtimer_get_remaining - get remaining time for the timer
1499  * @timer:	the timer to read
1500  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1501  */
1502 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1503 {
1504 	unsigned long flags;
1505 	ktime_t rem;
1506 
1507 	lock_hrtimer_base(timer, &flags);
1508 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1509 		rem = hrtimer_expires_remaining_adjusted(timer);
1510 	else
1511 		rem = hrtimer_expires_remaining(timer);
1512 	unlock_hrtimer_base(timer, &flags);
1513 
1514 	return rem;
1515 }
1516 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1517 
1518 #ifdef CONFIG_NO_HZ_COMMON
1519 /**
1520  * hrtimer_get_next_event - get the time until next expiry event
1521  *
1522  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1523  */
1524 u64 hrtimer_get_next_event(void)
1525 {
1526 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1527 	u64 expires = KTIME_MAX;
1528 	unsigned long flags;
1529 
1530 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1531 
1532 	if (!hrtimer_hres_active(cpu_base))
1533 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1534 
1535 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1536 
1537 	return expires;
1538 }
1539 
1540 /**
1541  * hrtimer_next_event_without - time until next expiry event w/o one timer
1542  * @exclude:	timer to exclude
1543  *
1544  * Returns the next expiry time over all timers except for the @exclude one or
1545  * KTIME_MAX if none of them is pending.
1546  */
1547 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1548 {
1549 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1550 	u64 expires = KTIME_MAX;
1551 	unsigned long flags;
1552 
1553 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1554 
1555 	if (hrtimer_hres_active(cpu_base)) {
1556 		unsigned int active;
1557 
1558 		if (!cpu_base->softirq_activated) {
1559 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1560 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1561 							    active, KTIME_MAX);
1562 		}
1563 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1564 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1565 						    expires);
1566 	}
1567 
1568 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1569 
1570 	return expires;
1571 }
1572 #endif
1573 
1574 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1575 {
1576 	switch (clock_id) {
1577 	case CLOCK_REALTIME:
1578 		return HRTIMER_BASE_REALTIME;
1579 	case CLOCK_MONOTONIC:
1580 		return HRTIMER_BASE_MONOTONIC;
1581 	case CLOCK_BOOTTIME:
1582 		return HRTIMER_BASE_BOOTTIME;
1583 	case CLOCK_TAI:
1584 		return HRTIMER_BASE_TAI;
1585 	default:
1586 		WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1587 		return HRTIMER_BASE_MONOTONIC;
1588 	}
1589 }
1590 
1591 static void __hrtimer_setup(struct hrtimer *timer,
1592 			    enum hrtimer_restart (*function)(struct hrtimer *),
1593 			    clockid_t clock_id, enum hrtimer_mode mode)
1594 {
1595 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1596 	struct hrtimer_cpu_base *cpu_base;
1597 	int base;
1598 
1599 	/*
1600 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1601 	 * marked for hard interrupt expiry mode are moved into soft
1602 	 * interrupt context for latency reasons and because the callbacks
1603 	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1604 	 */
1605 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1606 		softtimer = true;
1607 
1608 	memset(timer, 0, sizeof(struct hrtimer));
1609 
1610 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1611 
1612 	/*
1613 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1614 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1615 	 * ensure POSIX compliance.
1616 	 */
1617 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1618 		clock_id = CLOCK_MONOTONIC;
1619 
1620 	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1621 	base += hrtimer_clockid_to_base(clock_id);
1622 	timer->is_soft = softtimer;
1623 	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1624 	timer->base = &cpu_base->clock_base[base];
1625 	timerqueue_init(&timer->node);
1626 
1627 	if (WARN_ON_ONCE(!function))
1628 		ACCESS_PRIVATE(timer, function) = hrtimer_dummy_timeout;
1629 	else
1630 		ACCESS_PRIVATE(timer, function) = function;
1631 }
1632 
1633 /**
1634  * hrtimer_setup - initialize a timer to the given clock
1635  * @timer:	the timer to be initialized
1636  * @function:	the callback function
1637  * @clock_id:	the clock to be used
1638  * @mode:       The modes which are relevant for initialization:
1639  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1640  *              HRTIMER_MODE_REL_SOFT
1641  *
1642  *              The PINNED variants of the above can be handed in,
1643  *              but the PINNED bit is ignored as pinning happens
1644  *              when the hrtimer is started
1645  */
1646 void hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *),
1647 		   clockid_t clock_id, enum hrtimer_mode mode)
1648 {
1649 	debug_setup(timer, clock_id, mode);
1650 	__hrtimer_setup(timer, function, clock_id, mode);
1651 }
1652 EXPORT_SYMBOL_GPL(hrtimer_setup);
1653 
1654 /**
1655  * hrtimer_setup_on_stack - initialize a timer on stack memory
1656  * @timer:	The timer to be initialized
1657  * @function:	the callback function
1658  * @clock_id:	The clock to be used
1659  * @mode:       The timer mode
1660  *
1661  * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack
1662  * memory.
1663  */
1664 void hrtimer_setup_on_stack(struct hrtimer *timer,
1665 			    enum hrtimer_restart (*function)(struct hrtimer *),
1666 			    clockid_t clock_id, enum hrtimer_mode mode)
1667 {
1668 	debug_setup_on_stack(timer, clock_id, mode);
1669 	__hrtimer_setup(timer, function, clock_id, mode);
1670 }
1671 EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack);
1672 
1673 /*
1674  * A timer is active, when it is enqueued into the rbtree or the
1675  * callback function is running or it's in the state of being migrated
1676  * to another cpu.
1677  *
1678  * It is important for this function to not return a false negative.
1679  */
1680 bool hrtimer_active(const struct hrtimer *timer)
1681 {
1682 	struct hrtimer_clock_base *base;
1683 	unsigned int seq;
1684 
1685 	do {
1686 		base = READ_ONCE(timer->base);
1687 		seq = raw_read_seqcount_begin(&base->seq);
1688 
1689 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1690 		    base->running == timer)
1691 			return true;
1692 
1693 	} while (read_seqcount_retry(&base->seq, seq) ||
1694 		 base != READ_ONCE(timer->base));
1695 
1696 	return false;
1697 }
1698 EXPORT_SYMBOL_GPL(hrtimer_active);
1699 
1700 /*
1701  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1702  * distinct sections:
1703  *
1704  *  - queued:	the timer is queued
1705  *  - callback:	the timer is being ran
1706  *  - post:	the timer is inactive or (re)queued
1707  *
1708  * On the read side we ensure we observe timer->state and cpu_base->running
1709  * from the same section, if anything changed while we looked at it, we retry.
1710  * This includes timer->base changing because sequence numbers alone are
1711  * insufficient for that.
1712  *
1713  * The sequence numbers are required because otherwise we could still observe
1714  * a false negative if the read side got smeared over multiple consecutive
1715  * __run_hrtimer() invocations.
1716  */
1717 
1718 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1719 			  struct hrtimer_clock_base *base,
1720 			  struct hrtimer *timer, ktime_t *now,
1721 			  unsigned long flags) __must_hold(&cpu_base->lock)
1722 {
1723 	enum hrtimer_restart (*fn)(struct hrtimer *);
1724 	bool expires_in_hardirq;
1725 	int restart;
1726 
1727 	lockdep_assert_held(&cpu_base->lock);
1728 
1729 	debug_deactivate(timer);
1730 	base->running = timer;
1731 
1732 	/*
1733 	 * Separate the ->running assignment from the ->state assignment.
1734 	 *
1735 	 * As with a regular write barrier, this ensures the read side in
1736 	 * hrtimer_active() cannot observe base->running == NULL &&
1737 	 * timer->state == INACTIVE.
1738 	 */
1739 	raw_write_seqcount_barrier(&base->seq);
1740 
1741 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1742 	fn = ACCESS_PRIVATE(timer, function);
1743 
1744 	/*
1745 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1746 	 * timer is restarted with a period then it becomes an absolute
1747 	 * timer. If its not restarted it does not matter.
1748 	 */
1749 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1750 		timer->is_rel = false;
1751 
1752 	/*
1753 	 * The timer is marked as running in the CPU base, so it is
1754 	 * protected against migration to a different CPU even if the lock
1755 	 * is dropped.
1756 	 */
1757 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1758 	trace_hrtimer_expire_entry(timer, now);
1759 	expires_in_hardirq = lockdep_hrtimer_enter(timer);
1760 
1761 	restart = fn(timer);
1762 
1763 	lockdep_hrtimer_exit(expires_in_hardirq);
1764 	trace_hrtimer_expire_exit(timer);
1765 	raw_spin_lock_irq(&cpu_base->lock);
1766 
1767 	/*
1768 	 * Note: We clear the running state after enqueue_hrtimer and
1769 	 * we do not reprogram the event hardware. Happens either in
1770 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1771 	 *
1772 	 * Note: Because we dropped the cpu_base->lock above,
1773 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1774 	 * for us already.
1775 	 */
1776 	if (restart != HRTIMER_NORESTART &&
1777 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1778 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1779 
1780 	/*
1781 	 * Separate the ->running assignment from the ->state assignment.
1782 	 *
1783 	 * As with a regular write barrier, this ensures the read side in
1784 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1785 	 * timer->state == INACTIVE.
1786 	 */
1787 	raw_write_seqcount_barrier(&base->seq);
1788 
1789 	WARN_ON_ONCE(base->running != timer);
1790 	base->running = NULL;
1791 }
1792 
1793 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1794 				 unsigned long flags, unsigned int active_mask)
1795 {
1796 	struct hrtimer_clock_base *base;
1797 	unsigned int active = cpu_base->active_bases & active_mask;
1798 
1799 	for_each_active_base(base, cpu_base, active) {
1800 		struct timerqueue_node *node;
1801 		ktime_t basenow;
1802 
1803 		basenow = ktime_add(now, base->offset);
1804 
1805 		while ((node = timerqueue_getnext(&base->active))) {
1806 			struct hrtimer *timer;
1807 
1808 			timer = container_of(node, struct hrtimer, node);
1809 
1810 			/*
1811 			 * The immediate goal for using the softexpires is
1812 			 * minimizing wakeups, not running timers at the
1813 			 * earliest interrupt after their soft expiration.
1814 			 * This allows us to avoid using a Priority Search
1815 			 * Tree, which can answer a stabbing query for
1816 			 * overlapping intervals and instead use the simple
1817 			 * BST we already have.
1818 			 * We don't add extra wakeups by delaying timers that
1819 			 * are right-of a not yet expired timer, because that
1820 			 * timer will have to trigger a wakeup anyway.
1821 			 */
1822 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1823 				break;
1824 
1825 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1826 			if (active_mask == HRTIMER_ACTIVE_SOFT)
1827 				hrtimer_sync_wait_running(cpu_base, flags);
1828 		}
1829 	}
1830 }
1831 
1832 static __latent_entropy void hrtimer_run_softirq(void)
1833 {
1834 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1835 	unsigned long flags;
1836 	ktime_t now;
1837 
1838 	hrtimer_cpu_base_lock_expiry(cpu_base);
1839 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1840 
1841 	now = hrtimer_update_base(cpu_base);
1842 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1843 
1844 	cpu_base->softirq_activated = 0;
1845 	hrtimer_update_softirq_timer(cpu_base, true);
1846 
1847 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1848 	hrtimer_cpu_base_unlock_expiry(cpu_base);
1849 }
1850 
1851 #ifdef CONFIG_HIGH_RES_TIMERS
1852 
1853 /*
1854  * High resolution timer interrupt
1855  * Called with interrupts disabled
1856  */
1857 void hrtimer_interrupt(struct clock_event_device *dev)
1858 {
1859 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1860 	ktime_t expires_next, now, entry_time, delta;
1861 	unsigned long flags;
1862 	int retries = 0;
1863 
1864 	BUG_ON(!cpu_base->hres_active);
1865 	cpu_base->nr_events++;
1866 	dev->next_event = KTIME_MAX;
1867 
1868 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1869 	entry_time = now = hrtimer_update_base(cpu_base);
1870 retry:
1871 	cpu_base->in_hrtirq = 1;
1872 	/*
1873 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1874 	 * held to prevent that a timer is enqueued in our queue via
1875 	 * the migration code. This does not affect enqueueing of
1876 	 * timers which run their callback and need to be requeued on
1877 	 * this CPU.
1878 	 */
1879 	cpu_base->expires_next = KTIME_MAX;
1880 
1881 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1882 		cpu_base->softirq_expires_next = KTIME_MAX;
1883 		cpu_base->softirq_activated = 1;
1884 		raise_timer_softirq(HRTIMER_SOFTIRQ);
1885 	}
1886 
1887 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1888 
1889 	/* Reevaluate the clock bases for the [soft] next expiry */
1890 	expires_next = hrtimer_update_next_event(cpu_base);
1891 	/*
1892 	 * Store the new expiry value so the migration code can verify
1893 	 * against it.
1894 	 */
1895 	cpu_base->expires_next = expires_next;
1896 	cpu_base->in_hrtirq = 0;
1897 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1898 
1899 	/* Reprogramming necessary ? */
1900 	if (!tick_program_event(expires_next, 0)) {
1901 		cpu_base->hang_detected = 0;
1902 		return;
1903 	}
1904 
1905 	/*
1906 	 * The next timer was already expired due to:
1907 	 * - tracing
1908 	 * - long lasting callbacks
1909 	 * - being scheduled away when running in a VM
1910 	 *
1911 	 * We need to prevent that we loop forever in the hrtimer
1912 	 * interrupt routine. We give it 3 attempts to avoid
1913 	 * overreacting on some spurious event.
1914 	 *
1915 	 * Acquire base lock for updating the offsets and retrieving
1916 	 * the current time.
1917 	 */
1918 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1919 	now = hrtimer_update_base(cpu_base);
1920 	cpu_base->nr_retries++;
1921 	if (++retries < 3)
1922 		goto retry;
1923 	/*
1924 	 * Give the system a chance to do something else than looping
1925 	 * here. We stored the entry time, so we know exactly how long
1926 	 * we spent here. We schedule the next event this amount of
1927 	 * time away.
1928 	 */
1929 	cpu_base->nr_hangs++;
1930 	cpu_base->hang_detected = 1;
1931 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1932 
1933 	delta = ktime_sub(now, entry_time);
1934 	if ((unsigned int)delta > cpu_base->max_hang_time)
1935 		cpu_base->max_hang_time = (unsigned int) delta;
1936 	/*
1937 	 * Limit it to a sensible value as we enforce a longer
1938 	 * delay. Give the CPU at least 100ms to catch up.
1939 	 */
1940 	if (delta > 100 * NSEC_PER_MSEC)
1941 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1942 	else
1943 		expires_next = ktime_add(now, delta);
1944 	tick_program_event(expires_next, 1);
1945 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1946 }
1947 #endif /* !CONFIG_HIGH_RES_TIMERS */
1948 
1949 /*
1950  * Called from run_local_timers in hardirq context every jiffy
1951  */
1952 void hrtimer_run_queues(void)
1953 {
1954 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1955 	unsigned long flags;
1956 	ktime_t now;
1957 
1958 	if (hrtimer_hres_active(cpu_base))
1959 		return;
1960 
1961 	/*
1962 	 * This _is_ ugly: We have to check periodically, whether we
1963 	 * can switch to highres and / or nohz mode. The clocksource
1964 	 * switch happens with xtime_lock held. Notification from
1965 	 * there only sets the check bit in the tick_oneshot code,
1966 	 * otherwise we might deadlock vs. xtime_lock.
1967 	 */
1968 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1969 		hrtimer_switch_to_hres();
1970 		return;
1971 	}
1972 
1973 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1974 	now = hrtimer_update_base(cpu_base);
1975 
1976 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1977 		cpu_base->softirq_expires_next = KTIME_MAX;
1978 		cpu_base->softirq_activated = 1;
1979 		raise_timer_softirq(HRTIMER_SOFTIRQ);
1980 	}
1981 
1982 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1983 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1984 }
1985 
1986 /*
1987  * Sleep related functions:
1988  */
1989 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1990 {
1991 	struct hrtimer_sleeper *t =
1992 		container_of(timer, struct hrtimer_sleeper, timer);
1993 	struct task_struct *task = t->task;
1994 
1995 	t->task = NULL;
1996 	if (task)
1997 		wake_up_process(task);
1998 
1999 	return HRTIMER_NORESTART;
2000 }
2001 
2002 /**
2003  * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
2004  * @sl:		sleeper to be started
2005  * @mode:	timer mode abs/rel
2006  *
2007  * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
2008  * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
2009  */
2010 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
2011 				   enum hrtimer_mode mode)
2012 {
2013 	/*
2014 	 * Make the enqueue delivery mode check work on RT. If the sleeper
2015 	 * was initialized for hard interrupt delivery, force the mode bit.
2016 	 * This is a special case for hrtimer_sleepers because
2017 	 * __hrtimer_setup_sleeper() determines the delivery mode on RT so the
2018 	 * fiddling with this decision is avoided at the call sites.
2019 	 */
2020 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
2021 		mode |= HRTIMER_MODE_HARD;
2022 
2023 	hrtimer_start_expires(&sl->timer, mode);
2024 }
2025 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
2026 
2027 static void __hrtimer_setup_sleeper(struct hrtimer_sleeper *sl,
2028 				    clockid_t clock_id, enum hrtimer_mode mode)
2029 {
2030 	/*
2031 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
2032 	 * marked for hard interrupt expiry mode are moved into soft
2033 	 * interrupt context either for latency reasons or because the
2034 	 * hrtimer callback takes regular spinlocks or invokes other
2035 	 * functions which are not suitable for hard interrupt context on
2036 	 * PREEMPT_RT.
2037 	 *
2038 	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
2039 	 * context, but there is a latency concern: Untrusted userspace can
2040 	 * spawn many threads which arm timers for the same expiry time on
2041 	 * the same CPU. That causes a latency spike due to the wakeup of
2042 	 * a gazillion threads.
2043 	 *
2044 	 * OTOH, privileged real-time user space applications rely on the
2045 	 * low latency of hard interrupt wakeups. If the current task is in
2046 	 * a real-time scheduling class, mark the mode for hard interrupt
2047 	 * expiry.
2048 	 */
2049 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2050 		if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT))
2051 			mode |= HRTIMER_MODE_HARD;
2052 	}
2053 
2054 	__hrtimer_setup(&sl->timer, hrtimer_wakeup, clock_id, mode);
2055 	sl->task = current;
2056 }
2057 
2058 /**
2059  * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory
2060  * @sl:		sleeper to be initialized
2061  * @clock_id:	the clock to be used
2062  * @mode:	timer mode abs/rel
2063  */
2064 void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper *sl,
2065 				    clockid_t clock_id, enum hrtimer_mode mode)
2066 {
2067 	debug_setup_on_stack(&sl->timer, clock_id, mode);
2068 	__hrtimer_setup_sleeper(sl, clock_id, mode);
2069 }
2070 EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack);
2071 
2072 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2073 {
2074 	switch(restart->nanosleep.type) {
2075 #ifdef CONFIG_COMPAT_32BIT_TIME
2076 	case TT_COMPAT:
2077 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2078 			return -EFAULT;
2079 		break;
2080 #endif
2081 	case TT_NATIVE:
2082 		if (put_timespec64(ts, restart->nanosleep.rmtp))
2083 			return -EFAULT;
2084 		break;
2085 	default:
2086 		BUG();
2087 	}
2088 	return -ERESTART_RESTARTBLOCK;
2089 }
2090 
2091 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2092 {
2093 	struct restart_block *restart;
2094 
2095 	do {
2096 		set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2097 		hrtimer_sleeper_start_expires(t, mode);
2098 
2099 		if (likely(t->task))
2100 			schedule();
2101 
2102 		hrtimer_cancel(&t->timer);
2103 		mode = HRTIMER_MODE_ABS;
2104 
2105 	} while (t->task && !signal_pending(current));
2106 
2107 	__set_current_state(TASK_RUNNING);
2108 
2109 	if (!t->task)
2110 		return 0;
2111 
2112 	restart = &current->restart_block;
2113 	if (restart->nanosleep.type != TT_NONE) {
2114 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
2115 		struct timespec64 rmt;
2116 
2117 		if (rem <= 0)
2118 			return 0;
2119 		rmt = ktime_to_timespec64(rem);
2120 
2121 		return nanosleep_copyout(restart, &rmt);
2122 	}
2123 	return -ERESTART_RESTARTBLOCK;
2124 }
2125 
2126 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2127 {
2128 	struct hrtimer_sleeper t;
2129 	int ret;
2130 
2131 	hrtimer_setup_sleeper_on_stack(&t, restart->nanosleep.clockid, HRTIMER_MODE_ABS);
2132 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2133 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2134 	destroy_hrtimer_on_stack(&t.timer);
2135 	return ret;
2136 }
2137 
2138 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2139 		       const clockid_t clockid)
2140 {
2141 	struct restart_block *restart;
2142 	struct hrtimer_sleeper t;
2143 	int ret = 0;
2144 
2145 	hrtimer_setup_sleeper_on_stack(&t, clockid, mode);
2146 	hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns);
2147 	ret = do_nanosleep(&t, mode);
2148 	if (ret != -ERESTART_RESTARTBLOCK)
2149 		goto out;
2150 
2151 	/* Absolute timers do not update the rmtp value and restart: */
2152 	if (mode == HRTIMER_MODE_ABS) {
2153 		ret = -ERESTARTNOHAND;
2154 		goto out;
2155 	}
2156 
2157 	restart = &current->restart_block;
2158 	restart->nanosleep.clockid = t.timer.base->clockid;
2159 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2160 	set_restart_fn(restart, hrtimer_nanosleep_restart);
2161 out:
2162 	destroy_hrtimer_on_stack(&t.timer);
2163 	return ret;
2164 }
2165 
2166 #ifdef CONFIG_64BIT
2167 
2168 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2169 		struct __kernel_timespec __user *, rmtp)
2170 {
2171 	struct timespec64 tu;
2172 
2173 	if (get_timespec64(&tu, rqtp))
2174 		return -EFAULT;
2175 
2176 	if (!timespec64_valid(&tu))
2177 		return -EINVAL;
2178 
2179 	current->restart_block.fn = do_no_restart_syscall;
2180 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2181 	current->restart_block.nanosleep.rmtp = rmtp;
2182 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2183 				 CLOCK_MONOTONIC);
2184 }
2185 
2186 #endif
2187 
2188 #ifdef CONFIG_COMPAT_32BIT_TIME
2189 
2190 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2191 		       struct old_timespec32 __user *, rmtp)
2192 {
2193 	struct timespec64 tu;
2194 
2195 	if (get_old_timespec32(&tu, rqtp))
2196 		return -EFAULT;
2197 
2198 	if (!timespec64_valid(&tu))
2199 		return -EINVAL;
2200 
2201 	current->restart_block.fn = do_no_restart_syscall;
2202 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2203 	current->restart_block.nanosleep.compat_rmtp = rmtp;
2204 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2205 				 CLOCK_MONOTONIC);
2206 }
2207 #endif
2208 
2209 /*
2210  * Functions related to boot-time initialization:
2211  */
2212 int hrtimers_prepare_cpu(unsigned int cpu)
2213 {
2214 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2215 	int i;
2216 
2217 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2218 		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2219 
2220 		clock_b->cpu_base = cpu_base;
2221 		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2222 		timerqueue_init_head(&clock_b->active);
2223 	}
2224 
2225 	cpu_base->cpu = cpu;
2226 	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2227 	return 0;
2228 }
2229 
2230 int hrtimers_cpu_starting(unsigned int cpu)
2231 {
2232 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
2233 
2234 	/* Clear out any left over state from a CPU down operation */
2235 	cpu_base->active_bases = 0;
2236 	cpu_base->hres_active = 0;
2237 	cpu_base->hang_detected = 0;
2238 	cpu_base->next_timer = NULL;
2239 	cpu_base->softirq_next_timer = NULL;
2240 	cpu_base->expires_next = KTIME_MAX;
2241 	cpu_base->softirq_expires_next = KTIME_MAX;
2242 	cpu_base->online = 1;
2243 	return 0;
2244 }
2245 
2246 #ifdef CONFIG_HOTPLUG_CPU
2247 
2248 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2249 				struct hrtimer_clock_base *new_base)
2250 {
2251 	struct hrtimer *timer;
2252 	struct timerqueue_node *node;
2253 
2254 	while ((node = timerqueue_getnext(&old_base->active))) {
2255 		timer = container_of(node, struct hrtimer, node);
2256 		BUG_ON(hrtimer_callback_running(timer));
2257 		debug_deactivate(timer);
2258 
2259 		/*
2260 		 * Mark it as ENQUEUED not INACTIVE otherwise the
2261 		 * timer could be seen as !active and just vanish away
2262 		 * under us on another CPU
2263 		 */
2264 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2265 		timer->base = new_base;
2266 		/*
2267 		 * Enqueue the timers on the new cpu. This does not
2268 		 * reprogram the event device in case the timer
2269 		 * expires before the earliest on this CPU, but we run
2270 		 * hrtimer_interrupt after we migrated everything to
2271 		 * sort out already expired timers and reprogram the
2272 		 * event device.
2273 		 */
2274 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2275 	}
2276 }
2277 
2278 int hrtimers_cpu_dying(unsigned int dying_cpu)
2279 {
2280 	int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2281 	struct hrtimer_cpu_base *old_base, *new_base;
2282 
2283 	old_base = this_cpu_ptr(&hrtimer_bases);
2284 	new_base = &per_cpu(hrtimer_bases, ncpu);
2285 
2286 	/*
2287 	 * The caller is globally serialized and nobody else
2288 	 * takes two locks at once, deadlock is not possible.
2289 	 */
2290 	raw_spin_lock(&old_base->lock);
2291 	raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2292 
2293 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2294 		migrate_hrtimer_list(&old_base->clock_base[i],
2295 				     &new_base->clock_base[i]);
2296 	}
2297 
2298 	/*
2299 	 * The migration might have changed the first expiring softirq
2300 	 * timer on this CPU. Update it.
2301 	 */
2302 	__hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2303 	/* Tell the other CPU to retrigger the next event */
2304 	smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2305 
2306 	raw_spin_unlock(&new_base->lock);
2307 	old_base->online = 0;
2308 	raw_spin_unlock(&old_base->lock);
2309 
2310 	return 0;
2311 }
2312 
2313 #endif /* CONFIG_HOTPLUG_CPU */
2314 
2315 void __init hrtimers_init(void)
2316 {
2317 	hrtimers_prepare_cpu(smp_processor_id());
2318 	hrtimers_cpu_starting(smp_processor_id());
2319 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2320 }
2321