1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/err.h> 34 #include <linux/debugobjects.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/debug.h> 41 #include <linux/sched/isolation.h> 42 #include <linux/timer.h> 43 #include <linux/freezer.h> 44 #include <linux/compat.h> 45 46 #include <linux/uaccess.h> 47 48 #include <trace/events/timer.h> 49 50 #include "tick-internal.h" 51 52 /* 53 * Masks for selecting the soft and hard context timers from 54 * cpu_base->active 55 */ 56 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 57 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 58 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 59 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 60 61 static void retrigger_next_event(void *arg); 62 63 /* 64 * The timer bases: 65 * 66 * There are more clockids than hrtimer bases. Thus, we index 67 * into the timer bases by the hrtimer_base_type enum. When trying 68 * to reach a base using a clockid, hrtimer_clockid_to_base() 69 * is used to convert from clockid to the proper hrtimer_base_type. 70 */ 71 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 72 { 73 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 74 .clock_base = 75 { 76 { 77 .index = HRTIMER_BASE_MONOTONIC, 78 .clockid = CLOCK_MONOTONIC, 79 .get_time = &ktime_get, 80 }, 81 { 82 .index = HRTIMER_BASE_REALTIME, 83 .clockid = CLOCK_REALTIME, 84 .get_time = &ktime_get_real, 85 }, 86 { 87 .index = HRTIMER_BASE_BOOTTIME, 88 .clockid = CLOCK_BOOTTIME, 89 .get_time = &ktime_get_boottime, 90 }, 91 { 92 .index = HRTIMER_BASE_TAI, 93 .clockid = CLOCK_TAI, 94 .get_time = &ktime_get_clocktai, 95 }, 96 { 97 .index = HRTIMER_BASE_MONOTONIC_SOFT, 98 .clockid = CLOCK_MONOTONIC, 99 .get_time = &ktime_get, 100 }, 101 { 102 .index = HRTIMER_BASE_REALTIME_SOFT, 103 .clockid = CLOCK_REALTIME, 104 .get_time = &ktime_get_real, 105 }, 106 { 107 .index = HRTIMER_BASE_BOOTTIME_SOFT, 108 .clockid = CLOCK_BOOTTIME, 109 .get_time = &ktime_get_boottime, 110 }, 111 { 112 .index = HRTIMER_BASE_TAI_SOFT, 113 .clockid = CLOCK_TAI, 114 .get_time = &ktime_get_clocktai, 115 }, 116 }, 117 .csd = CSD_INIT(retrigger_next_event, NULL) 118 }; 119 120 static inline bool hrtimer_base_is_online(struct hrtimer_cpu_base *base) 121 { 122 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 123 return true; 124 else 125 return likely(base->online); 126 } 127 128 /* 129 * Functions and macros which are different for UP/SMP systems are kept in a 130 * single place 131 */ 132 #ifdef CONFIG_SMP 133 134 /* 135 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 136 * such that hrtimer_callback_running() can unconditionally dereference 137 * timer->base->cpu_base 138 */ 139 static struct hrtimer_cpu_base migration_cpu_base = { 140 .clock_base = { { 141 .cpu_base = &migration_cpu_base, 142 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, 143 &migration_cpu_base.lock), 144 }, }, 145 }; 146 147 #define migration_base migration_cpu_base.clock_base[0] 148 149 /* 150 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 151 * means that all timers which are tied to this base via timer->base are 152 * locked, and the base itself is locked too. 153 * 154 * So __run_timers/migrate_timers can safely modify all timers which could 155 * be found on the lists/queues. 156 * 157 * When the timer's base is locked, and the timer removed from list, it is 158 * possible to set timer->base = &migration_base and drop the lock: the timer 159 * remains locked. 160 */ 161 static 162 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 163 unsigned long *flags) 164 __acquires(&timer->base->lock) 165 { 166 struct hrtimer_clock_base *base; 167 168 for (;;) { 169 base = READ_ONCE(timer->base); 170 if (likely(base != &migration_base)) { 171 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 172 if (likely(base == timer->base)) 173 return base; 174 /* The timer has migrated to another CPU: */ 175 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 176 } 177 cpu_relax(); 178 } 179 } 180 181 /* 182 * Check if the elected target is suitable considering its next 183 * event and the hotplug state of the current CPU. 184 * 185 * If the elected target is remote and its next event is after the timer 186 * to queue, then a remote reprogram is necessary. However there is no 187 * guarantee the IPI handling the operation would arrive in time to meet 188 * the high resolution deadline. In this case the local CPU becomes a 189 * preferred target, unless it is offline. 190 * 191 * High and low resolution modes are handled the same way for simplicity. 192 * 193 * Called with cpu_base->lock of target cpu held. 194 */ 195 static bool hrtimer_suitable_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base, 196 struct hrtimer_cpu_base *new_cpu_base, 197 struct hrtimer_cpu_base *this_cpu_base) 198 { 199 ktime_t expires; 200 201 /* 202 * The local CPU clockevent can be reprogrammed. Also get_target_base() 203 * guarantees it is online. 204 */ 205 if (new_cpu_base == this_cpu_base) 206 return true; 207 208 /* 209 * The offline local CPU can't be the default target if the 210 * next remote target event is after this timer. Keep the 211 * elected new base. An IPI will we issued to reprogram 212 * it as a last resort. 213 */ 214 if (!hrtimer_base_is_online(this_cpu_base)) 215 return true; 216 217 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 218 219 return expires >= new_base->cpu_base->expires_next; 220 } 221 222 static inline struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, int pinned) 223 { 224 if (!hrtimer_base_is_online(base)) { 225 int cpu = cpumask_any_and(cpu_online_mask, housekeeping_cpumask(HK_TYPE_TIMER)); 226 227 return &per_cpu(hrtimer_bases, cpu); 228 } 229 230 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 231 if (static_branch_likely(&timers_migration_enabled) && !pinned) 232 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 233 #endif 234 return base; 235 } 236 237 /* 238 * We switch the timer base to a power-optimized selected CPU target, 239 * if: 240 * - NO_HZ_COMMON is enabled 241 * - timer migration is enabled 242 * - the timer callback is not running 243 * - the timer is not the first expiring timer on the new target 244 * 245 * If one of the above requirements is not fulfilled we move the timer 246 * to the current CPU or leave it on the previously assigned CPU if 247 * the timer callback is currently running. 248 */ 249 static inline struct hrtimer_clock_base * 250 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 251 int pinned) 252 { 253 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 254 struct hrtimer_clock_base *new_base; 255 int basenum = base->index; 256 257 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 258 new_cpu_base = get_target_base(this_cpu_base, pinned); 259 again: 260 new_base = &new_cpu_base->clock_base[basenum]; 261 262 if (base != new_base) { 263 /* 264 * We are trying to move timer to new_base. 265 * However we can't change timer's base while it is running, 266 * so we keep it on the same CPU. No hassle vs. reprogramming 267 * the event source in the high resolution case. The softirq 268 * code will take care of this when the timer function has 269 * completed. There is no conflict as we hold the lock until 270 * the timer is enqueued. 271 */ 272 if (unlikely(hrtimer_callback_running(timer))) 273 return base; 274 275 /* See the comment in lock_hrtimer_base() */ 276 WRITE_ONCE(timer->base, &migration_base); 277 raw_spin_unlock(&base->cpu_base->lock); 278 raw_spin_lock(&new_base->cpu_base->lock); 279 280 if (!hrtimer_suitable_target(timer, new_base, new_cpu_base, 281 this_cpu_base)) { 282 raw_spin_unlock(&new_base->cpu_base->lock); 283 raw_spin_lock(&base->cpu_base->lock); 284 new_cpu_base = this_cpu_base; 285 WRITE_ONCE(timer->base, base); 286 goto again; 287 } 288 WRITE_ONCE(timer->base, new_base); 289 } else { 290 if (!hrtimer_suitable_target(timer, new_base, new_cpu_base, this_cpu_base)) { 291 new_cpu_base = this_cpu_base; 292 goto again; 293 } 294 } 295 return new_base; 296 } 297 298 #else /* CONFIG_SMP */ 299 300 static inline struct hrtimer_clock_base * 301 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 302 __acquires(&timer->base->cpu_base->lock) 303 { 304 struct hrtimer_clock_base *base = timer->base; 305 306 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 307 308 return base; 309 } 310 311 # define switch_hrtimer_base(t, b, p) (b) 312 313 #endif /* !CONFIG_SMP */ 314 315 /* 316 * Functions for the union type storage format of ktime_t which are 317 * too large for inlining: 318 */ 319 #if BITS_PER_LONG < 64 320 /* 321 * Divide a ktime value by a nanosecond value 322 */ 323 s64 __ktime_divns(const ktime_t kt, s64 div) 324 { 325 int sft = 0; 326 s64 dclc; 327 u64 tmp; 328 329 dclc = ktime_to_ns(kt); 330 tmp = dclc < 0 ? -dclc : dclc; 331 332 /* Make sure the divisor is less than 2^32: */ 333 while (div >> 32) { 334 sft++; 335 div >>= 1; 336 } 337 tmp >>= sft; 338 do_div(tmp, (u32) div); 339 return dclc < 0 ? -tmp : tmp; 340 } 341 EXPORT_SYMBOL_GPL(__ktime_divns); 342 #endif /* BITS_PER_LONG >= 64 */ 343 344 /* 345 * Add two ktime values and do a safety check for overflow: 346 */ 347 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 348 { 349 ktime_t res = ktime_add_unsafe(lhs, rhs); 350 351 /* 352 * We use KTIME_SEC_MAX here, the maximum timeout which we can 353 * return to user space in a timespec: 354 */ 355 if (res < 0 || res < lhs || res < rhs) 356 res = ktime_set(KTIME_SEC_MAX, 0); 357 358 return res; 359 } 360 361 EXPORT_SYMBOL_GPL(ktime_add_safe); 362 363 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 364 365 static const struct debug_obj_descr hrtimer_debug_descr; 366 367 static void *hrtimer_debug_hint(void *addr) 368 { 369 return ACCESS_PRIVATE((struct hrtimer *)addr, function); 370 } 371 372 /* 373 * fixup_init is called when: 374 * - an active object is initialized 375 */ 376 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 377 { 378 struct hrtimer *timer = addr; 379 380 switch (state) { 381 case ODEBUG_STATE_ACTIVE: 382 hrtimer_cancel(timer); 383 debug_object_init(timer, &hrtimer_debug_descr); 384 return true; 385 default: 386 return false; 387 } 388 } 389 390 /* 391 * fixup_activate is called when: 392 * - an active object is activated 393 * - an unknown non-static object is activated 394 */ 395 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 396 { 397 switch (state) { 398 case ODEBUG_STATE_ACTIVE: 399 WARN_ON(1); 400 fallthrough; 401 default: 402 return false; 403 } 404 } 405 406 /* 407 * fixup_free is called when: 408 * - an active object is freed 409 */ 410 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 411 { 412 struct hrtimer *timer = addr; 413 414 switch (state) { 415 case ODEBUG_STATE_ACTIVE: 416 hrtimer_cancel(timer); 417 debug_object_free(timer, &hrtimer_debug_descr); 418 return true; 419 default: 420 return false; 421 } 422 } 423 424 static const struct debug_obj_descr hrtimer_debug_descr = { 425 .name = "hrtimer", 426 .debug_hint = hrtimer_debug_hint, 427 .fixup_init = hrtimer_fixup_init, 428 .fixup_activate = hrtimer_fixup_activate, 429 .fixup_free = hrtimer_fixup_free, 430 }; 431 432 static inline void debug_hrtimer_init(struct hrtimer *timer) 433 { 434 debug_object_init(timer, &hrtimer_debug_descr); 435 } 436 437 static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) 438 { 439 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 440 } 441 442 static inline void debug_hrtimer_activate(struct hrtimer *timer, 443 enum hrtimer_mode mode) 444 { 445 debug_object_activate(timer, &hrtimer_debug_descr); 446 } 447 448 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 449 { 450 debug_object_deactivate(timer, &hrtimer_debug_descr); 451 } 452 453 void destroy_hrtimer_on_stack(struct hrtimer *timer) 454 { 455 debug_object_free(timer, &hrtimer_debug_descr); 456 } 457 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 458 459 #else 460 461 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 462 static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { } 463 static inline void debug_hrtimer_activate(struct hrtimer *timer, 464 enum hrtimer_mode mode) { } 465 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 466 #endif 467 468 static inline void debug_setup(struct hrtimer *timer, clockid_t clockid, enum hrtimer_mode mode) 469 { 470 debug_hrtimer_init(timer); 471 trace_hrtimer_setup(timer, clockid, mode); 472 } 473 474 static inline void debug_setup_on_stack(struct hrtimer *timer, clockid_t clockid, 475 enum hrtimer_mode mode) 476 { 477 debug_hrtimer_init_on_stack(timer); 478 trace_hrtimer_setup(timer, clockid, mode); 479 } 480 481 static inline void debug_activate(struct hrtimer *timer, 482 enum hrtimer_mode mode) 483 { 484 debug_hrtimer_activate(timer, mode); 485 trace_hrtimer_start(timer, mode); 486 } 487 488 static inline void debug_deactivate(struct hrtimer *timer) 489 { 490 debug_hrtimer_deactivate(timer); 491 trace_hrtimer_cancel(timer); 492 } 493 494 static struct hrtimer_clock_base * 495 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 496 { 497 unsigned int idx; 498 499 if (!*active) 500 return NULL; 501 502 idx = __ffs(*active); 503 *active &= ~(1U << idx); 504 505 return &cpu_base->clock_base[idx]; 506 } 507 508 #define for_each_active_base(base, cpu_base, active) \ 509 while ((base = __next_base((cpu_base), &(active)))) 510 511 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 512 const struct hrtimer *exclude, 513 unsigned int active, 514 ktime_t expires_next) 515 { 516 struct hrtimer_clock_base *base; 517 ktime_t expires; 518 519 for_each_active_base(base, cpu_base, active) { 520 struct timerqueue_node *next; 521 struct hrtimer *timer; 522 523 next = timerqueue_getnext(&base->active); 524 timer = container_of(next, struct hrtimer, node); 525 if (timer == exclude) { 526 /* Get to the next timer in the queue. */ 527 next = timerqueue_iterate_next(next); 528 if (!next) 529 continue; 530 531 timer = container_of(next, struct hrtimer, node); 532 } 533 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 534 if (expires < expires_next) { 535 expires_next = expires; 536 537 /* Skip cpu_base update if a timer is being excluded. */ 538 if (exclude) 539 continue; 540 541 if (timer->is_soft) 542 cpu_base->softirq_next_timer = timer; 543 else 544 cpu_base->next_timer = timer; 545 } 546 } 547 /* 548 * clock_was_set() might have changed base->offset of any of 549 * the clock bases so the result might be negative. Fix it up 550 * to prevent a false positive in clockevents_program_event(). 551 */ 552 if (expires_next < 0) 553 expires_next = 0; 554 return expires_next; 555 } 556 557 /* 558 * Recomputes cpu_base::*next_timer and returns the earliest expires_next 559 * but does not set cpu_base::*expires_next, that is done by 560 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating 561 * cpu_base::*expires_next right away, reprogramming logic would no longer 562 * work. 563 * 564 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 565 * those timers will get run whenever the softirq gets handled, at the end of 566 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 567 * 568 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 569 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 570 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 571 * 572 * @active_mask must be one of: 573 * - HRTIMER_ACTIVE_ALL, 574 * - HRTIMER_ACTIVE_SOFT, or 575 * - HRTIMER_ACTIVE_HARD. 576 */ 577 static ktime_t 578 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 579 { 580 unsigned int active; 581 struct hrtimer *next_timer = NULL; 582 ktime_t expires_next = KTIME_MAX; 583 584 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 585 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 586 cpu_base->softirq_next_timer = NULL; 587 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 588 active, KTIME_MAX); 589 590 next_timer = cpu_base->softirq_next_timer; 591 } 592 593 if (active_mask & HRTIMER_ACTIVE_HARD) { 594 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 595 cpu_base->next_timer = next_timer; 596 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 597 expires_next); 598 } 599 600 return expires_next; 601 } 602 603 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base) 604 { 605 ktime_t expires_next, soft = KTIME_MAX; 606 607 /* 608 * If the soft interrupt has already been activated, ignore the 609 * soft bases. They will be handled in the already raised soft 610 * interrupt. 611 */ 612 if (!cpu_base->softirq_activated) { 613 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 614 /* 615 * Update the soft expiry time. clock_settime() might have 616 * affected it. 617 */ 618 cpu_base->softirq_expires_next = soft; 619 } 620 621 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD); 622 /* 623 * If a softirq timer is expiring first, update cpu_base->next_timer 624 * and program the hardware with the soft expiry time. 625 */ 626 if (expires_next > soft) { 627 cpu_base->next_timer = cpu_base->softirq_next_timer; 628 expires_next = soft; 629 } 630 631 return expires_next; 632 } 633 634 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 635 { 636 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 637 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 638 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 639 640 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 641 offs_real, offs_boot, offs_tai); 642 643 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 644 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 645 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 646 647 return now; 648 } 649 650 /* 651 * Is the high resolution mode active ? 652 */ 653 static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 654 { 655 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 656 cpu_base->hres_active : 0; 657 } 658 659 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base, 660 struct hrtimer *next_timer, 661 ktime_t expires_next) 662 { 663 cpu_base->expires_next = expires_next; 664 665 /* 666 * If hres is not active, hardware does not have to be 667 * reprogrammed yet. 668 * 669 * If a hang was detected in the last timer interrupt then we 670 * leave the hang delay active in the hardware. We want the 671 * system to make progress. That also prevents the following 672 * scenario: 673 * T1 expires 50ms from now 674 * T2 expires 5s from now 675 * 676 * T1 is removed, so this code is called and would reprogram 677 * the hardware to 5s from now. Any hrtimer_start after that 678 * will not reprogram the hardware due to hang_detected being 679 * set. So we'd effectively block all timers until the T2 event 680 * fires. 681 */ 682 if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 683 return; 684 685 tick_program_event(expires_next, 1); 686 } 687 688 /* 689 * Reprogram the event source with checking both queues for the 690 * next event 691 * Called with interrupts disabled and base->lock held 692 */ 693 static void 694 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 695 { 696 ktime_t expires_next; 697 698 expires_next = hrtimer_update_next_event(cpu_base); 699 700 if (skip_equal && expires_next == cpu_base->expires_next) 701 return; 702 703 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next); 704 } 705 706 /* High resolution timer related functions */ 707 #ifdef CONFIG_HIGH_RES_TIMERS 708 709 /* 710 * High resolution timer enabled ? 711 */ 712 static bool hrtimer_hres_enabled __read_mostly = true; 713 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 714 EXPORT_SYMBOL_GPL(hrtimer_resolution); 715 716 /* 717 * Enable / Disable high resolution mode 718 */ 719 static int __init setup_hrtimer_hres(char *str) 720 { 721 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 722 } 723 724 __setup("highres=", setup_hrtimer_hres); 725 726 /* 727 * hrtimer_high_res_enabled - query, if the highres mode is enabled 728 */ 729 static inline int hrtimer_is_hres_enabled(void) 730 { 731 return hrtimer_hres_enabled; 732 } 733 734 /* 735 * Switch to high resolution mode 736 */ 737 static void hrtimer_switch_to_hres(void) 738 { 739 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 740 741 if (tick_init_highres()) { 742 pr_warn("Could not switch to high resolution mode on CPU %u\n", 743 base->cpu); 744 return; 745 } 746 base->hres_active = 1; 747 hrtimer_resolution = HIGH_RES_NSEC; 748 749 tick_setup_sched_timer(true); 750 /* "Retrigger" the interrupt to get things going */ 751 retrigger_next_event(NULL); 752 } 753 754 #else 755 756 static inline int hrtimer_is_hres_enabled(void) { return 0; } 757 static inline void hrtimer_switch_to_hres(void) { } 758 759 #endif /* CONFIG_HIGH_RES_TIMERS */ 760 /* 761 * Retrigger next event is called after clock was set with interrupts 762 * disabled through an SMP function call or directly from low level 763 * resume code. 764 * 765 * This is only invoked when: 766 * - CONFIG_HIGH_RES_TIMERS is enabled. 767 * - CONFIG_NOHZ_COMMON is enabled 768 * 769 * For the other cases this function is empty and because the call sites 770 * are optimized out it vanishes as well, i.e. no need for lots of 771 * #ifdeffery. 772 */ 773 static void retrigger_next_event(void *arg) 774 { 775 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 776 777 /* 778 * When high resolution mode or nohz is active, then the offsets of 779 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the 780 * next tick will take care of that. 781 * 782 * If high resolution mode is active then the next expiring timer 783 * must be reevaluated and the clock event device reprogrammed if 784 * necessary. 785 * 786 * In the NOHZ case the update of the offset and the reevaluation 787 * of the next expiring timer is enough. The return from the SMP 788 * function call will take care of the reprogramming in case the 789 * CPU was in a NOHZ idle sleep. 790 */ 791 if (!hrtimer_hres_active(base) && !tick_nohz_active) 792 return; 793 794 raw_spin_lock(&base->lock); 795 hrtimer_update_base(base); 796 if (hrtimer_hres_active(base)) 797 hrtimer_force_reprogram(base, 0); 798 else 799 hrtimer_update_next_event(base); 800 raw_spin_unlock(&base->lock); 801 } 802 803 /* 804 * When a timer is enqueued and expires earlier than the already enqueued 805 * timers, we have to check, whether it expires earlier than the timer for 806 * which the clock event device was armed. 807 * 808 * Called with interrupts disabled and base->cpu_base.lock held 809 */ 810 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 811 { 812 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 813 struct hrtimer_clock_base *base = timer->base; 814 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 815 816 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 817 818 /* 819 * CLOCK_REALTIME timer might be requested with an absolute 820 * expiry time which is less than base->offset. Set it to 0. 821 */ 822 if (expires < 0) 823 expires = 0; 824 825 if (timer->is_soft) { 826 /* 827 * soft hrtimer could be started on a remote CPU. In this 828 * case softirq_expires_next needs to be updated on the 829 * remote CPU. The soft hrtimer will not expire before the 830 * first hard hrtimer on the remote CPU - 831 * hrtimer_check_target() prevents this case. 832 */ 833 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 834 835 if (timer_cpu_base->softirq_activated) 836 return; 837 838 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 839 return; 840 841 timer_cpu_base->softirq_next_timer = timer; 842 timer_cpu_base->softirq_expires_next = expires; 843 844 if (!ktime_before(expires, timer_cpu_base->expires_next) || 845 !reprogram) 846 return; 847 } 848 849 /* 850 * If the timer is not on the current cpu, we cannot reprogram 851 * the other cpus clock event device. 852 */ 853 if (base->cpu_base != cpu_base) 854 return; 855 856 if (expires >= cpu_base->expires_next) 857 return; 858 859 /* 860 * If the hrtimer interrupt is running, then it will reevaluate the 861 * clock bases and reprogram the clock event device. 862 */ 863 if (cpu_base->in_hrtirq) 864 return; 865 866 cpu_base->next_timer = timer; 867 868 __hrtimer_reprogram(cpu_base, timer, expires); 869 } 870 871 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base, 872 unsigned int active) 873 { 874 struct hrtimer_clock_base *base; 875 unsigned int seq; 876 ktime_t expires; 877 878 /* 879 * Update the base offsets unconditionally so the following 880 * checks whether the SMP function call is required works. 881 * 882 * The update is safe even when the remote CPU is in the hrtimer 883 * interrupt or the hrtimer soft interrupt and expiring affected 884 * bases. Either it will see the update before handling a base or 885 * it will see it when it finishes the processing and reevaluates 886 * the next expiring timer. 887 */ 888 seq = cpu_base->clock_was_set_seq; 889 hrtimer_update_base(cpu_base); 890 891 /* 892 * If the sequence did not change over the update then the 893 * remote CPU already handled it. 894 */ 895 if (seq == cpu_base->clock_was_set_seq) 896 return false; 897 898 /* 899 * If the remote CPU is currently handling an hrtimer interrupt, it 900 * will reevaluate the first expiring timer of all clock bases 901 * before reprogramming. Nothing to do here. 902 */ 903 if (cpu_base->in_hrtirq) 904 return false; 905 906 /* 907 * Walk the affected clock bases and check whether the first expiring 908 * timer in a clock base is moving ahead of the first expiring timer of 909 * @cpu_base. If so, the IPI must be invoked because per CPU clock 910 * event devices cannot be remotely reprogrammed. 911 */ 912 active &= cpu_base->active_bases; 913 914 for_each_active_base(base, cpu_base, active) { 915 struct timerqueue_node *next; 916 917 next = timerqueue_getnext(&base->active); 918 expires = ktime_sub(next->expires, base->offset); 919 if (expires < cpu_base->expires_next) 920 return true; 921 922 /* Extra check for softirq clock bases */ 923 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT) 924 continue; 925 if (cpu_base->softirq_activated) 926 continue; 927 if (expires < cpu_base->softirq_expires_next) 928 return true; 929 } 930 return false; 931 } 932 933 /* 934 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and 935 * CLOCK_BOOTTIME (for late sleep time injection). 936 * 937 * This requires to update the offsets for these clocks 938 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this 939 * also requires to eventually reprogram the per CPU clock event devices 940 * when the change moves an affected timer ahead of the first expiring 941 * timer on that CPU. Obviously remote per CPU clock event devices cannot 942 * be reprogrammed. The other reason why an IPI has to be sent is when the 943 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets 944 * in the tick, which obviously might be stopped, so this has to bring out 945 * the remote CPU which might sleep in idle to get this sorted. 946 */ 947 void clock_was_set(unsigned int bases) 948 { 949 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases); 950 cpumask_var_t mask; 951 int cpu; 952 953 if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active) 954 goto out_timerfd; 955 956 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 957 on_each_cpu(retrigger_next_event, NULL, 1); 958 goto out_timerfd; 959 } 960 961 /* Avoid interrupting CPUs if possible */ 962 cpus_read_lock(); 963 for_each_online_cpu(cpu) { 964 unsigned long flags; 965 966 cpu_base = &per_cpu(hrtimer_bases, cpu); 967 raw_spin_lock_irqsave(&cpu_base->lock, flags); 968 969 if (update_needs_ipi(cpu_base, bases)) 970 cpumask_set_cpu(cpu, mask); 971 972 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 973 } 974 975 preempt_disable(); 976 smp_call_function_many(mask, retrigger_next_event, NULL, 1); 977 preempt_enable(); 978 cpus_read_unlock(); 979 free_cpumask_var(mask); 980 981 out_timerfd: 982 timerfd_clock_was_set(); 983 } 984 985 static void clock_was_set_work(struct work_struct *work) 986 { 987 clock_was_set(CLOCK_SET_WALL); 988 } 989 990 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 991 992 /* 993 * Called from timekeeping code to reprogram the hrtimer interrupt device 994 * on all cpus and to notify timerfd. 995 */ 996 void clock_was_set_delayed(void) 997 { 998 schedule_work(&hrtimer_work); 999 } 1000 1001 /* 1002 * Called during resume either directly from via timekeeping_resume() 1003 * or in the case of s2idle from tick_unfreeze() to ensure that the 1004 * hrtimers are up to date. 1005 */ 1006 void hrtimers_resume_local(void) 1007 { 1008 lockdep_assert_irqs_disabled(); 1009 /* Retrigger on the local CPU */ 1010 retrigger_next_event(NULL); 1011 } 1012 1013 /* 1014 * Counterpart to lock_hrtimer_base above: 1015 */ 1016 static inline 1017 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 1018 __releases(&timer->base->cpu_base->lock) 1019 { 1020 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 1021 } 1022 1023 /** 1024 * hrtimer_forward() - forward the timer expiry 1025 * @timer: hrtimer to forward 1026 * @now: forward past this time 1027 * @interval: the interval to forward 1028 * 1029 * Forward the timer expiry so it will expire in the future. 1030 * 1031 * .. note:: 1032 * This only updates the timer expiry value and does not requeue the timer. 1033 * 1034 * There is also a variant of the function hrtimer_forward_now(). 1035 * 1036 * Context: Can be safely called from the callback function of @timer. If called 1037 * from other contexts @timer must neither be enqueued nor running the 1038 * callback and the caller needs to take care of serialization. 1039 * 1040 * Return: The number of overruns are returned. 1041 */ 1042 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 1043 { 1044 u64 orun = 1; 1045 ktime_t delta; 1046 1047 delta = ktime_sub(now, hrtimer_get_expires(timer)); 1048 1049 if (delta < 0) 1050 return 0; 1051 1052 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 1053 return 0; 1054 1055 if (interval < hrtimer_resolution) 1056 interval = hrtimer_resolution; 1057 1058 if (unlikely(delta >= interval)) { 1059 s64 incr = ktime_to_ns(interval); 1060 1061 orun = ktime_divns(delta, incr); 1062 hrtimer_add_expires_ns(timer, incr * orun); 1063 if (hrtimer_get_expires_tv64(timer) > now) 1064 return orun; 1065 /* 1066 * This (and the ktime_add() below) is the 1067 * correction for exact: 1068 */ 1069 orun++; 1070 } 1071 hrtimer_add_expires(timer, interval); 1072 1073 return orun; 1074 } 1075 EXPORT_SYMBOL_GPL(hrtimer_forward); 1076 1077 /* 1078 * enqueue_hrtimer - internal function to (re)start a timer 1079 * 1080 * The timer is inserted in expiry order. Insertion into the 1081 * red black tree is O(log(n)). Must hold the base lock. 1082 * 1083 * Returns true when the new timer is the leftmost timer in the tree. 1084 */ 1085 static bool enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, 1086 enum hrtimer_mode mode) 1087 { 1088 debug_activate(timer, mode); 1089 WARN_ON_ONCE(!base->cpu_base->online); 1090 1091 base->cpu_base->active_bases |= 1 << base->index; 1092 1093 /* Pairs with the lockless read in hrtimer_is_queued() */ 1094 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); 1095 1096 return timerqueue_add(&base->active, &timer->node); 1097 } 1098 1099 /* 1100 * __remove_hrtimer - internal function to remove a timer 1101 * 1102 * Caller must hold the base lock. 1103 * 1104 * High resolution timer mode reprograms the clock event device when the 1105 * timer is the one which expires next. The caller can disable this by setting 1106 * reprogram to zero. This is useful, when the context does a reprogramming 1107 * anyway (e.g. timer interrupt) 1108 */ 1109 static void __remove_hrtimer(struct hrtimer *timer, 1110 struct hrtimer_clock_base *base, 1111 u8 newstate, int reprogram) 1112 { 1113 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1114 u8 state = timer->state; 1115 1116 /* Pairs with the lockless read in hrtimer_is_queued() */ 1117 WRITE_ONCE(timer->state, newstate); 1118 if (!(state & HRTIMER_STATE_ENQUEUED)) 1119 return; 1120 1121 if (!timerqueue_del(&base->active, &timer->node)) 1122 cpu_base->active_bases &= ~(1 << base->index); 1123 1124 /* 1125 * Note: If reprogram is false we do not update 1126 * cpu_base->next_timer. This happens when we remove the first 1127 * timer on a remote cpu. No harm as we never dereference 1128 * cpu_base->next_timer. So the worst thing what can happen is 1129 * an superfluous call to hrtimer_force_reprogram() on the 1130 * remote cpu later on if the same timer gets enqueued again. 1131 */ 1132 if (reprogram && timer == cpu_base->next_timer) 1133 hrtimer_force_reprogram(cpu_base, 1); 1134 } 1135 1136 /* 1137 * remove hrtimer, called with base lock held 1138 */ 1139 static inline int 1140 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, 1141 bool restart, bool keep_local) 1142 { 1143 u8 state = timer->state; 1144 1145 if (state & HRTIMER_STATE_ENQUEUED) { 1146 bool reprogram; 1147 1148 /* 1149 * Remove the timer and force reprogramming when high 1150 * resolution mode is active and the timer is on the current 1151 * CPU. If we remove a timer on another CPU, reprogramming is 1152 * skipped. The interrupt event on this CPU is fired and 1153 * reprogramming happens in the interrupt handler. This is a 1154 * rare case and less expensive than a smp call. 1155 */ 1156 debug_deactivate(timer); 1157 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1158 1159 /* 1160 * If the timer is not restarted then reprogramming is 1161 * required if the timer is local. If it is local and about 1162 * to be restarted, avoid programming it twice (on removal 1163 * and a moment later when it's requeued). 1164 */ 1165 if (!restart) 1166 state = HRTIMER_STATE_INACTIVE; 1167 else 1168 reprogram &= !keep_local; 1169 1170 __remove_hrtimer(timer, base, state, reprogram); 1171 return 1; 1172 } 1173 return 0; 1174 } 1175 1176 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1177 const enum hrtimer_mode mode) 1178 { 1179 #ifdef CONFIG_TIME_LOW_RES 1180 /* 1181 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1182 * granular time values. For relative timers we add hrtimer_resolution 1183 * (i.e. one jiffy) to prevent short timeouts. 1184 */ 1185 timer->is_rel = mode & HRTIMER_MODE_REL; 1186 if (timer->is_rel) 1187 tim = ktime_add_safe(tim, hrtimer_resolution); 1188 #endif 1189 return tim; 1190 } 1191 1192 static void 1193 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1194 { 1195 ktime_t expires; 1196 1197 /* 1198 * Find the next SOFT expiration. 1199 */ 1200 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1201 1202 /* 1203 * reprogramming needs to be triggered, even if the next soft 1204 * hrtimer expires at the same time than the next hard 1205 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1206 */ 1207 if (expires == KTIME_MAX) 1208 return; 1209 1210 /* 1211 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1212 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1213 */ 1214 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1215 } 1216 1217 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1218 u64 delta_ns, const enum hrtimer_mode mode, 1219 struct hrtimer_clock_base *base) 1220 { 1221 struct hrtimer_cpu_base *this_cpu_base = this_cpu_ptr(&hrtimer_bases); 1222 struct hrtimer_clock_base *new_base; 1223 bool force_local, first; 1224 1225 /* 1226 * If the timer is on the local cpu base and is the first expiring 1227 * timer then this might end up reprogramming the hardware twice 1228 * (on removal and on enqueue). To avoid that by prevent the 1229 * reprogram on removal, keep the timer local to the current CPU 1230 * and enforce reprogramming after it is queued no matter whether 1231 * it is the new first expiring timer again or not. 1232 */ 1233 force_local = base->cpu_base == this_cpu_base; 1234 force_local &= base->cpu_base->next_timer == timer; 1235 1236 /* 1237 * Don't force local queuing if this enqueue happens on a unplugged 1238 * CPU after hrtimer_cpu_dying() has been invoked. 1239 */ 1240 force_local &= this_cpu_base->online; 1241 1242 /* 1243 * Remove an active timer from the queue. In case it is not queued 1244 * on the current CPU, make sure that remove_hrtimer() updates the 1245 * remote data correctly. 1246 * 1247 * If it's on the current CPU and the first expiring timer, then 1248 * skip reprogramming, keep the timer local and enforce 1249 * reprogramming later if it was the first expiring timer. This 1250 * avoids programming the underlying clock event twice (once at 1251 * removal and once after enqueue). 1252 */ 1253 remove_hrtimer(timer, base, true, force_local); 1254 1255 if (mode & HRTIMER_MODE_REL) 1256 tim = ktime_add_safe(tim, base->get_time()); 1257 1258 tim = hrtimer_update_lowres(timer, tim, mode); 1259 1260 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1261 1262 /* Switch the timer base, if necessary: */ 1263 if (!force_local) { 1264 new_base = switch_hrtimer_base(timer, base, 1265 mode & HRTIMER_MODE_PINNED); 1266 } else { 1267 new_base = base; 1268 } 1269 1270 first = enqueue_hrtimer(timer, new_base, mode); 1271 if (!force_local) { 1272 /* 1273 * If the current CPU base is online, then the timer is 1274 * never queued on a remote CPU if it would be the first 1275 * expiring timer there. 1276 */ 1277 if (hrtimer_base_is_online(this_cpu_base)) 1278 return first; 1279 1280 /* 1281 * Timer was enqueued remote because the current base is 1282 * already offline. If the timer is the first to expire, 1283 * kick the remote CPU to reprogram the clock event. 1284 */ 1285 if (first) { 1286 struct hrtimer_cpu_base *new_cpu_base = new_base->cpu_base; 1287 1288 smp_call_function_single_async(new_cpu_base->cpu, &new_cpu_base->csd); 1289 } 1290 return 0; 1291 } 1292 1293 /* 1294 * Timer was forced to stay on the current CPU to avoid 1295 * reprogramming on removal and enqueue. Force reprogram the 1296 * hardware by evaluating the new first expiring timer. 1297 */ 1298 hrtimer_force_reprogram(new_base->cpu_base, 1); 1299 return 0; 1300 } 1301 1302 /** 1303 * hrtimer_start_range_ns - (re)start an hrtimer 1304 * @timer: the timer to be added 1305 * @tim: expiry time 1306 * @delta_ns: "slack" range for the timer 1307 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1308 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1309 * softirq based mode is considered for debug purpose only! 1310 */ 1311 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1312 u64 delta_ns, const enum hrtimer_mode mode) 1313 { 1314 struct hrtimer_clock_base *base; 1315 unsigned long flags; 1316 1317 /* 1318 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1319 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard 1320 * expiry mode because unmarked timers are moved to softirq expiry. 1321 */ 1322 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1323 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1324 else 1325 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); 1326 1327 base = lock_hrtimer_base(timer, &flags); 1328 1329 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1330 hrtimer_reprogram(timer, true); 1331 1332 unlock_hrtimer_base(timer, &flags); 1333 } 1334 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1335 1336 /** 1337 * hrtimer_try_to_cancel - try to deactivate a timer 1338 * @timer: hrtimer to stop 1339 * 1340 * Returns: 1341 * 1342 * * 0 when the timer was not active 1343 * * 1 when the timer was active 1344 * * -1 when the timer is currently executing the callback function and 1345 * cannot be stopped 1346 */ 1347 int hrtimer_try_to_cancel(struct hrtimer *timer) 1348 { 1349 struct hrtimer_clock_base *base; 1350 unsigned long flags; 1351 int ret = -1; 1352 1353 /* 1354 * Check lockless first. If the timer is not active (neither 1355 * enqueued nor running the callback, nothing to do here. The 1356 * base lock does not serialize against a concurrent enqueue, 1357 * so we can avoid taking it. 1358 */ 1359 if (!hrtimer_active(timer)) 1360 return 0; 1361 1362 base = lock_hrtimer_base(timer, &flags); 1363 1364 if (!hrtimer_callback_running(timer)) 1365 ret = remove_hrtimer(timer, base, false, false); 1366 1367 unlock_hrtimer_base(timer, &flags); 1368 1369 return ret; 1370 1371 } 1372 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1373 1374 #ifdef CONFIG_PREEMPT_RT 1375 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) 1376 { 1377 spin_lock_init(&base->softirq_expiry_lock); 1378 } 1379 1380 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) 1381 __acquires(&base->softirq_expiry_lock) 1382 { 1383 spin_lock(&base->softirq_expiry_lock); 1384 } 1385 1386 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) 1387 __releases(&base->softirq_expiry_lock) 1388 { 1389 spin_unlock(&base->softirq_expiry_lock); 1390 } 1391 1392 /* 1393 * The counterpart to hrtimer_cancel_wait_running(). 1394 * 1395 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for 1396 * the timer callback to finish. Drop expiry_lock and reacquire it. That 1397 * allows the waiter to acquire the lock and make progress. 1398 */ 1399 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, 1400 unsigned long flags) 1401 { 1402 if (atomic_read(&cpu_base->timer_waiters)) { 1403 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1404 spin_unlock(&cpu_base->softirq_expiry_lock); 1405 spin_lock(&cpu_base->softirq_expiry_lock); 1406 raw_spin_lock_irq(&cpu_base->lock); 1407 } 1408 } 1409 1410 #ifdef CONFIG_SMP 1411 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base) 1412 { 1413 return base == &migration_base; 1414 } 1415 #else 1416 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base) 1417 { 1418 return false; 1419 } 1420 #endif 1421 1422 /* 1423 * This function is called on PREEMPT_RT kernels when the fast path 1424 * deletion of a timer failed because the timer callback function was 1425 * running. 1426 * 1427 * This prevents priority inversion: if the soft irq thread is preempted 1428 * in the middle of a timer callback, then calling hrtimer_cancel() can 1429 * lead to two issues: 1430 * 1431 * - If the caller is on a remote CPU then it has to spin wait for the timer 1432 * handler to complete. This can result in unbound priority inversion. 1433 * 1434 * - If the caller originates from the task which preempted the timer 1435 * handler on the same CPU, then spin waiting for the timer handler to 1436 * complete is never going to end. 1437 */ 1438 void hrtimer_cancel_wait_running(const struct hrtimer *timer) 1439 { 1440 /* Lockless read. Prevent the compiler from reloading it below */ 1441 struct hrtimer_clock_base *base = READ_ONCE(timer->base); 1442 1443 /* 1444 * Just relax if the timer expires in hard interrupt context or if 1445 * it is currently on the migration base. 1446 */ 1447 if (!timer->is_soft || is_migration_base(base)) { 1448 cpu_relax(); 1449 return; 1450 } 1451 1452 /* 1453 * Mark the base as contended and grab the expiry lock, which is 1454 * held by the softirq across the timer callback. Drop the lock 1455 * immediately so the softirq can expire the next timer. In theory 1456 * the timer could already be running again, but that's more than 1457 * unlikely and just causes another wait loop. 1458 */ 1459 atomic_inc(&base->cpu_base->timer_waiters); 1460 spin_lock_bh(&base->cpu_base->softirq_expiry_lock); 1461 atomic_dec(&base->cpu_base->timer_waiters); 1462 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); 1463 } 1464 #else 1465 static inline void 1466 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } 1467 static inline void 1468 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } 1469 static inline void 1470 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } 1471 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, 1472 unsigned long flags) { } 1473 #endif 1474 1475 /** 1476 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1477 * @timer: the timer to be cancelled 1478 * 1479 * Returns: 1480 * 0 when the timer was not active 1481 * 1 when the timer was active 1482 */ 1483 int hrtimer_cancel(struct hrtimer *timer) 1484 { 1485 int ret; 1486 1487 do { 1488 ret = hrtimer_try_to_cancel(timer); 1489 1490 if (ret < 0) 1491 hrtimer_cancel_wait_running(timer); 1492 } while (ret < 0); 1493 return ret; 1494 } 1495 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1496 1497 /** 1498 * __hrtimer_get_remaining - get remaining time for the timer 1499 * @timer: the timer to read 1500 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1501 */ 1502 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1503 { 1504 unsigned long flags; 1505 ktime_t rem; 1506 1507 lock_hrtimer_base(timer, &flags); 1508 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1509 rem = hrtimer_expires_remaining_adjusted(timer); 1510 else 1511 rem = hrtimer_expires_remaining(timer); 1512 unlock_hrtimer_base(timer, &flags); 1513 1514 return rem; 1515 } 1516 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1517 1518 #ifdef CONFIG_NO_HZ_COMMON 1519 /** 1520 * hrtimer_get_next_event - get the time until next expiry event 1521 * 1522 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1523 */ 1524 u64 hrtimer_get_next_event(void) 1525 { 1526 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1527 u64 expires = KTIME_MAX; 1528 unsigned long flags; 1529 1530 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1531 1532 if (!hrtimer_hres_active(cpu_base)) 1533 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1534 1535 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1536 1537 return expires; 1538 } 1539 1540 /** 1541 * hrtimer_next_event_without - time until next expiry event w/o one timer 1542 * @exclude: timer to exclude 1543 * 1544 * Returns the next expiry time over all timers except for the @exclude one or 1545 * KTIME_MAX if none of them is pending. 1546 */ 1547 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1548 { 1549 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1550 u64 expires = KTIME_MAX; 1551 unsigned long flags; 1552 1553 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1554 1555 if (hrtimer_hres_active(cpu_base)) { 1556 unsigned int active; 1557 1558 if (!cpu_base->softirq_activated) { 1559 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1560 expires = __hrtimer_next_event_base(cpu_base, exclude, 1561 active, KTIME_MAX); 1562 } 1563 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1564 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1565 expires); 1566 } 1567 1568 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1569 1570 return expires; 1571 } 1572 #endif 1573 1574 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1575 { 1576 switch (clock_id) { 1577 case CLOCK_REALTIME: 1578 return HRTIMER_BASE_REALTIME; 1579 case CLOCK_MONOTONIC: 1580 return HRTIMER_BASE_MONOTONIC; 1581 case CLOCK_BOOTTIME: 1582 return HRTIMER_BASE_BOOTTIME; 1583 case CLOCK_TAI: 1584 return HRTIMER_BASE_TAI; 1585 default: 1586 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1587 return HRTIMER_BASE_MONOTONIC; 1588 } 1589 } 1590 1591 static void __hrtimer_setup(struct hrtimer *timer, 1592 enum hrtimer_restart (*function)(struct hrtimer *), 1593 clockid_t clock_id, enum hrtimer_mode mode) 1594 { 1595 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1596 struct hrtimer_cpu_base *cpu_base; 1597 int base; 1598 1599 /* 1600 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 1601 * marked for hard interrupt expiry mode are moved into soft 1602 * interrupt context for latency reasons and because the callbacks 1603 * can invoke functions which might sleep on RT, e.g. spin_lock(). 1604 */ 1605 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) 1606 softtimer = true; 1607 1608 memset(timer, 0, sizeof(struct hrtimer)); 1609 1610 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1611 1612 /* 1613 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1614 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1615 * ensure POSIX compliance. 1616 */ 1617 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1618 clock_id = CLOCK_MONOTONIC; 1619 1620 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1621 base += hrtimer_clockid_to_base(clock_id); 1622 timer->is_soft = softtimer; 1623 timer->is_hard = !!(mode & HRTIMER_MODE_HARD); 1624 timer->base = &cpu_base->clock_base[base]; 1625 timerqueue_init(&timer->node); 1626 1627 if (WARN_ON_ONCE(!function)) 1628 ACCESS_PRIVATE(timer, function) = hrtimer_dummy_timeout; 1629 else 1630 ACCESS_PRIVATE(timer, function) = function; 1631 } 1632 1633 /** 1634 * hrtimer_setup - initialize a timer to the given clock 1635 * @timer: the timer to be initialized 1636 * @function: the callback function 1637 * @clock_id: the clock to be used 1638 * @mode: The modes which are relevant for initialization: 1639 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1640 * HRTIMER_MODE_REL_SOFT 1641 * 1642 * The PINNED variants of the above can be handed in, 1643 * but the PINNED bit is ignored as pinning happens 1644 * when the hrtimer is started 1645 */ 1646 void hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *), 1647 clockid_t clock_id, enum hrtimer_mode mode) 1648 { 1649 debug_setup(timer, clock_id, mode); 1650 __hrtimer_setup(timer, function, clock_id, mode); 1651 } 1652 EXPORT_SYMBOL_GPL(hrtimer_setup); 1653 1654 /** 1655 * hrtimer_setup_on_stack - initialize a timer on stack memory 1656 * @timer: The timer to be initialized 1657 * @function: the callback function 1658 * @clock_id: The clock to be used 1659 * @mode: The timer mode 1660 * 1661 * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack 1662 * memory. 1663 */ 1664 void hrtimer_setup_on_stack(struct hrtimer *timer, 1665 enum hrtimer_restart (*function)(struct hrtimer *), 1666 clockid_t clock_id, enum hrtimer_mode mode) 1667 { 1668 debug_setup_on_stack(timer, clock_id, mode); 1669 __hrtimer_setup(timer, function, clock_id, mode); 1670 } 1671 EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack); 1672 1673 /* 1674 * A timer is active, when it is enqueued into the rbtree or the 1675 * callback function is running or it's in the state of being migrated 1676 * to another cpu. 1677 * 1678 * It is important for this function to not return a false negative. 1679 */ 1680 bool hrtimer_active(const struct hrtimer *timer) 1681 { 1682 struct hrtimer_clock_base *base; 1683 unsigned int seq; 1684 1685 do { 1686 base = READ_ONCE(timer->base); 1687 seq = raw_read_seqcount_begin(&base->seq); 1688 1689 if (timer->state != HRTIMER_STATE_INACTIVE || 1690 base->running == timer) 1691 return true; 1692 1693 } while (read_seqcount_retry(&base->seq, seq) || 1694 base != READ_ONCE(timer->base)); 1695 1696 return false; 1697 } 1698 EXPORT_SYMBOL_GPL(hrtimer_active); 1699 1700 /* 1701 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1702 * distinct sections: 1703 * 1704 * - queued: the timer is queued 1705 * - callback: the timer is being ran 1706 * - post: the timer is inactive or (re)queued 1707 * 1708 * On the read side we ensure we observe timer->state and cpu_base->running 1709 * from the same section, if anything changed while we looked at it, we retry. 1710 * This includes timer->base changing because sequence numbers alone are 1711 * insufficient for that. 1712 * 1713 * The sequence numbers are required because otherwise we could still observe 1714 * a false negative if the read side got smeared over multiple consecutive 1715 * __run_hrtimer() invocations. 1716 */ 1717 1718 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1719 struct hrtimer_clock_base *base, 1720 struct hrtimer *timer, ktime_t *now, 1721 unsigned long flags) __must_hold(&cpu_base->lock) 1722 { 1723 enum hrtimer_restart (*fn)(struct hrtimer *); 1724 bool expires_in_hardirq; 1725 int restart; 1726 1727 lockdep_assert_held(&cpu_base->lock); 1728 1729 debug_deactivate(timer); 1730 base->running = timer; 1731 1732 /* 1733 * Separate the ->running assignment from the ->state assignment. 1734 * 1735 * As with a regular write barrier, this ensures the read side in 1736 * hrtimer_active() cannot observe base->running == NULL && 1737 * timer->state == INACTIVE. 1738 */ 1739 raw_write_seqcount_barrier(&base->seq); 1740 1741 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1742 fn = ACCESS_PRIVATE(timer, function); 1743 1744 /* 1745 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1746 * timer is restarted with a period then it becomes an absolute 1747 * timer. If its not restarted it does not matter. 1748 */ 1749 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1750 timer->is_rel = false; 1751 1752 /* 1753 * The timer is marked as running in the CPU base, so it is 1754 * protected against migration to a different CPU even if the lock 1755 * is dropped. 1756 */ 1757 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1758 trace_hrtimer_expire_entry(timer, now); 1759 expires_in_hardirq = lockdep_hrtimer_enter(timer); 1760 1761 restart = fn(timer); 1762 1763 lockdep_hrtimer_exit(expires_in_hardirq); 1764 trace_hrtimer_expire_exit(timer); 1765 raw_spin_lock_irq(&cpu_base->lock); 1766 1767 /* 1768 * Note: We clear the running state after enqueue_hrtimer and 1769 * we do not reprogram the event hardware. Happens either in 1770 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1771 * 1772 * Note: Because we dropped the cpu_base->lock above, 1773 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1774 * for us already. 1775 */ 1776 if (restart != HRTIMER_NORESTART && 1777 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1778 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1779 1780 /* 1781 * Separate the ->running assignment from the ->state assignment. 1782 * 1783 * As with a regular write barrier, this ensures the read side in 1784 * hrtimer_active() cannot observe base->running.timer == NULL && 1785 * timer->state == INACTIVE. 1786 */ 1787 raw_write_seqcount_barrier(&base->seq); 1788 1789 WARN_ON_ONCE(base->running != timer); 1790 base->running = NULL; 1791 } 1792 1793 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1794 unsigned long flags, unsigned int active_mask) 1795 { 1796 struct hrtimer_clock_base *base; 1797 unsigned int active = cpu_base->active_bases & active_mask; 1798 1799 for_each_active_base(base, cpu_base, active) { 1800 struct timerqueue_node *node; 1801 ktime_t basenow; 1802 1803 basenow = ktime_add(now, base->offset); 1804 1805 while ((node = timerqueue_getnext(&base->active))) { 1806 struct hrtimer *timer; 1807 1808 timer = container_of(node, struct hrtimer, node); 1809 1810 /* 1811 * The immediate goal for using the softexpires is 1812 * minimizing wakeups, not running timers at the 1813 * earliest interrupt after their soft expiration. 1814 * This allows us to avoid using a Priority Search 1815 * Tree, which can answer a stabbing query for 1816 * overlapping intervals and instead use the simple 1817 * BST we already have. 1818 * We don't add extra wakeups by delaying timers that 1819 * are right-of a not yet expired timer, because that 1820 * timer will have to trigger a wakeup anyway. 1821 */ 1822 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1823 break; 1824 1825 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1826 if (active_mask == HRTIMER_ACTIVE_SOFT) 1827 hrtimer_sync_wait_running(cpu_base, flags); 1828 } 1829 } 1830 } 1831 1832 static __latent_entropy void hrtimer_run_softirq(void) 1833 { 1834 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1835 unsigned long flags; 1836 ktime_t now; 1837 1838 hrtimer_cpu_base_lock_expiry(cpu_base); 1839 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1840 1841 now = hrtimer_update_base(cpu_base); 1842 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1843 1844 cpu_base->softirq_activated = 0; 1845 hrtimer_update_softirq_timer(cpu_base, true); 1846 1847 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1848 hrtimer_cpu_base_unlock_expiry(cpu_base); 1849 } 1850 1851 #ifdef CONFIG_HIGH_RES_TIMERS 1852 1853 /* 1854 * High resolution timer interrupt 1855 * Called with interrupts disabled 1856 */ 1857 void hrtimer_interrupt(struct clock_event_device *dev) 1858 { 1859 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1860 ktime_t expires_next, now, entry_time, delta; 1861 unsigned long flags; 1862 int retries = 0; 1863 1864 BUG_ON(!cpu_base->hres_active); 1865 cpu_base->nr_events++; 1866 dev->next_event = KTIME_MAX; 1867 1868 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1869 entry_time = now = hrtimer_update_base(cpu_base); 1870 retry: 1871 cpu_base->in_hrtirq = 1; 1872 /* 1873 * We set expires_next to KTIME_MAX here with cpu_base->lock 1874 * held to prevent that a timer is enqueued in our queue via 1875 * the migration code. This does not affect enqueueing of 1876 * timers which run their callback and need to be requeued on 1877 * this CPU. 1878 */ 1879 cpu_base->expires_next = KTIME_MAX; 1880 1881 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1882 cpu_base->softirq_expires_next = KTIME_MAX; 1883 cpu_base->softirq_activated = 1; 1884 raise_timer_softirq(HRTIMER_SOFTIRQ); 1885 } 1886 1887 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1888 1889 /* Reevaluate the clock bases for the [soft] next expiry */ 1890 expires_next = hrtimer_update_next_event(cpu_base); 1891 /* 1892 * Store the new expiry value so the migration code can verify 1893 * against it. 1894 */ 1895 cpu_base->expires_next = expires_next; 1896 cpu_base->in_hrtirq = 0; 1897 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1898 1899 /* Reprogramming necessary ? */ 1900 if (!tick_program_event(expires_next, 0)) { 1901 cpu_base->hang_detected = 0; 1902 return; 1903 } 1904 1905 /* 1906 * The next timer was already expired due to: 1907 * - tracing 1908 * - long lasting callbacks 1909 * - being scheduled away when running in a VM 1910 * 1911 * We need to prevent that we loop forever in the hrtimer 1912 * interrupt routine. We give it 3 attempts to avoid 1913 * overreacting on some spurious event. 1914 * 1915 * Acquire base lock for updating the offsets and retrieving 1916 * the current time. 1917 */ 1918 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1919 now = hrtimer_update_base(cpu_base); 1920 cpu_base->nr_retries++; 1921 if (++retries < 3) 1922 goto retry; 1923 /* 1924 * Give the system a chance to do something else than looping 1925 * here. We stored the entry time, so we know exactly how long 1926 * we spent here. We schedule the next event this amount of 1927 * time away. 1928 */ 1929 cpu_base->nr_hangs++; 1930 cpu_base->hang_detected = 1; 1931 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1932 1933 delta = ktime_sub(now, entry_time); 1934 if ((unsigned int)delta > cpu_base->max_hang_time) 1935 cpu_base->max_hang_time = (unsigned int) delta; 1936 /* 1937 * Limit it to a sensible value as we enforce a longer 1938 * delay. Give the CPU at least 100ms to catch up. 1939 */ 1940 if (delta > 100 * NSEC_PER_MSEC) 1941 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1942 else 1943 expires_next = ktime_add(now, delta); 1944 tick_program_event(expires_next, 1); 1945 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1946 } 1947 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1948 1949 /* 1950 * Called from run_local_timers in hardirq context every jiffy 1951 */ 1952 void hrtimer_run_queues(void) 1953 { 1954 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1955 unsigned long flags; 1956 ktime_t now; 1957 1958 if (hrtimer_hres_active(cpu_base)) 1959 return; 1960 1961 /* 1962 * This _is_ ugly: We have to check periodically, whether we 1963 * can switch to highres and / or nohz mode. The clocksource 1964 * switch happens with xtime_lock held. Notification from 1965 * there only sets the check bit in the tick_oneshot code, 1966 * otherwise we might deadlock vs. xtime_lock. 1967 */ 1968 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1969 hrtimer_switch_to_hres(); 1970 return; 1971 } 1972 1973 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1974 now = hrtimer_update_base(cpu_base); 1975 1976 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1977 cpu_base->softirq_expires_next = KTIME_MAX; 1978 cpu_base->softirq_activated = 1; 1979 raise_timer_softirq(HRTIMER_SOFTIRQ); 1980 } 1981 1982 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1983 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1984 } 1985 1986 /* 1987 * Sleep related functions: 1988 */ 1989 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1990 { 1991 struct hrtimer_sleeper *t = 1992 container_of(timer, struct hrtimer_sleeper, timer); 1993 struct task_struct *task = t->task; 1994 1995 t->task = NULL; 1996 if (task) 1997 wake_up_process(task); 1998 1999 return HRTIMER_NORESTART; 2000 } 2001 2002 /** 2003 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer 2004 * @sl: sleeper to be started 2005 * @mode: timer mode abs/rel 2006 * 2007 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers 2008 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) 2009 */ 2010 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, 2011 enum hrtimer_mode mode) 2012 { 2013 /* 2014 * Make the enqueue delivery mode check work on RT. If the sleeper 2015 * was initialized for hard interrupt delivery, force the mode bit. 2016 * This is a special case for hrtimer_sleepers because 2017 * __hrtimer_setup_sleeper() determines the delivery mode on RT so the 2018 * fiddling with this decision is avoided at the call sites. 2019 */ 2020 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) 2021 mode |= HRTIMER_MODE_HARD; 2022 2023 hrtimer_start_expires(&sl->timer, mode); 2024 } 2025 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); 2026 2027 static void __hrtimer_setup_sleeper(struct hrtimer_sleeper *sl, 2028 clockid_t clock_id, enum hrtimer_mode mode) 2029 { 2030 /* 2031 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 2032 * marked for hard interrupt expiry mode are moved into soft 2033 * interrupt context either for latency reasons or because the 2034 * hrtimer callback takes regular spinlocks or invokes other 2035 * functions which are not suitable for hard interrupt context on 2036 * PREEMPT_RT. 2037 * 2038 * The hrtimer_sleeper callback is RT compatible in hard interrupt 2039 * context, but there is a latency concern: Untrusted userspace can 2040 * spawn many threads which arm timers for the same expiry time on 2041 * the same CPU. That causes a latency spike due to the wakeup of 2042 * a gazillion threads. 2043 * 2044 * OTOH, privileged real-time user space applications rely on the 2045 * low latency of hard interrupt wakeups. If the current task is in 2046 * a real-time scheduling class, mark the mode for hard interrupt 2047 * expiry. 2048 */ 2049 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 2050 if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT)) 2051 mode |= HRTIMER_MODE_HARD; 2052 } 2053 2054 __hrtimer_setup(&sl->timer, hrtimer_wakeup, clock_id, mode); 2055 sl->task = current; 2056 } 2057 2058 /** 2059 * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory 2060 * @sl: sleeper to be initialized 2061 * @clock_id: the clock to be used 2062 * @mode: timer mode abs/rel 2063 */ 2064 void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper *sl, 2065 clockid_t clock_id, enum hrtimer_mode mode) 2066 { 2067 debug_setup_on_stack(&sl->timer, clock_id, mode); 2068 __hrtimer_setup_sleeper(sl, clock_id, mode); 2069 } 2070 EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack); 2071 2072 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 2073 { 2074 switch(restart->nanosleep.type) { 2075 #ifdef CONFIG_COMPAT_32BIT_TIME 2076 case TT_COMPAT: 2077 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 2078 return -EFAULT; 2079 break; 2080 #endif 2081 case TT_NATIVE: 2082 if (put_timespec64(ts, restart->nanosleep.rmtp)) 2083 return -EFAULT; 2084 break; 2085 default: 2086 BUG(); 2087 } 2088 return -ERESTART_RESTARTBLOCK; 2089 } 2090 2091 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 2092 { 2093 struct restart_block *restart; 2094 2095 do { 2096 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2097 hrtimer_sleeper_start_expires(t, mode); 2098 2099 if (likely(t->task)) 2100 schedule(); 2101 2102 hrtimer_cancel(&t->timer); 2103 mode = HRTIMER_MODE_ABS; 2104 2105 } while (t->task && !signal_pending(current)); 2106 2107 __set_current_state(TASK_RUNNING); 2108 2109 if (!t->task) 2110 return 0; 2111 2112 restart = ¤t->restart_block; 2113 if (restart->nanosleep.type != TT_NONE) { 2114 ktime_t rem = hrtimer_expires_remaining(&t->timer); 2115 struct timespec64 rmt; 2116 2117 if (rem <= 0) 2118 return 0; 2119 rmt = ktime_to_timespec64(rem); 2120 2121 return nanosleep_copyout(restart, &rmt); 2122 } 2123 return -ERESTART_RESTARTBLOCK; 2124 } 2125 2126 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 2127 { 2128 struct hrtimer_sleeper t; 2129 int ret; 2130 2131 hrtimer_setup_sleeper_on_stack(&t, restart->nanosleep.clockid, HRTIMER_MODE_ABS); 2132 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 2133 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 2134 destroy_hrtimer_on_stack(&t.timer); 2135 return ret; 2136 } 2137 2138 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, 2139 const clockid_t clockid) 2140 { 2141 struct restart_block *restart; 2142 struct hrtimer_sleeper t; 2143 int ret = 0; 2144 2145 hrtimer_setup_sleeper_on_stack(&t, clockid, mode); 2146 hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns); 2147 ret = do_nanosleep(&t, mode); 2148 if (ret != -ERESTART_RESTARTBLOCK) 2149 goto out; 2150 2151 /* Absolute timers do not update the rmtp value and restart: */ 2152 if (mode == HRTIMER_MODE_ABS) { 2153 ret = -ERESTARTNOHAND; 2154 goto out; 2155 } 2156 2157 restart = ¤t->restart_block; 2158 restart->nanosleep.clockid = t.timer.base->clockid; 2159 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 2160 set_restart_fn(restart, hrtimer_nanosleep_restart); 2161 out: 2162 destroy_hrtimer_on_stack(&t.timer); 2163 return ret; 2164 } 2165 2166 #ifdef CONFIG_64BIT 2167 2168 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 2169 struct __kernel_timespec __user *, rmtp) 2170 { 2171 struct timespec64 tu; 2172 2173 if (get_timespec64(&tu, rqtp)) 2174 return -EFAULT; 2175 2176 if (!timespec64_valid(&tu)) 2177 return -EINVAL; 2178 2179 current->restart_block.fn = do_no_restart_syscall; 2180 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 2181 current->restart_block.nanosleep.rmtp = rmtp; 2182 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2183 CLOCK_MONOTONIC); 2184 } 2185 2186 #endif 2187 2188 #ifdef CONFIG_COMPAT_32BIT_TIME 2189 2190 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 2191 struct old_timespec32 __user *, rmtp) 2192 { 2193 struct timespec64 tu; 2194 2195 if (get_old_timespec32(&tu, rqtp)) 2196 return -EFAULT; 2197 2198 if (!timespec64_valid(&tu)) 2199 return -EINVAL; 2200 2201 current->restart_block.fn = do_no_restart_syscall; 2202 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 2203 current->restart_block.nanosleep.compat_rmtp = rmtp; 2204 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2205 CLOCK_MONOTONIC); 2206 } 2207 #endif 2208 2209 /* 2210 * Functions related to boot-time initialization: 2211 */ 2212 int hrtimers_prepare_cpu(unsigned int cpu) 2213 { 2214 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 2215 int i; 2216 2217 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2218 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; 2219 2220 clock_b->cpu_base = cpu_base; 2221 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); 2222 timerqueue_init_head(&clock_b->active); 2223 } 2224 2225 cpu_base->cpu = cpu; 2226 hrtimer_cpu_base_init_expiry_lock(cpu_base); 2227 return 0; 2228 } 2229 2230 int hrtimers_cpu_starting(unsigned int cpu) 2231 { 2232 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 2233 2234 /* Clear out any left over state from a CPU down operation */ 2235 cpu_base->active_bases = 0; 2236 cpu_base->hres_active = 0; 2237 cpu_base->hang_detected = 0; 2238 cpu_base->next_timer = NULL; 2239 cpu_base->softirq_next_timer = NULL; 2240 cpu_base->expires_next = KTIME_MAX; 2241 cpu_base->softirq_expires_next = KTIME_MAX; 2242 cpu_base->online = 1; 2243 return 0; 2244 } 2245 2246 #ifdef CONFIG_HOTPLUG_CPU 2247 2248 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 2249 struct hrtimer_clock_base *new_base) 2250 { 2251 struct hrtimer *timer; 2252 struct timerqueue_node *node; 2253 2254 while ((node = timerqueue_getnext(&old_base->active))) { 2255 timer = container_of(node, struct hrtimer, node); 2256 BUG_ON(hrtimer_callback_running(timer)); 2257 debug_deactivate(timer); 2258 2259 /* 2260 * Mark it as ENQUEUED not INACTIVE otherwise the 2261 * timer could be seen as !active and just vanish away 2262 * under us on another CPU 2263 */ 2264 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 2265 timer->base = new_base; 2266 /* 2267 * Enqueue the timers on the new cpu. This does not 2268 * reprogram the event device in case the timer 2269 * expires before the earliest on this CPU, but we run 2270 * hrtimer_interrupt after we migrated everything to 2271 * sort out already expired timers and reprogram the 2272 * event device. 2273 */ 2274 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 2275 } 2276 } 2277 2278 int hrtimers_cpu_dying(unsigned int dying_cpu) 2279 { 2280 int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER)); 2281 struct hrtimer_cpu_base *old_base, *new_base; 2282 2283 old_base = this_cpu_ptr(&hrtimer_bases); 2284 new_base = &per_cpu(hrtimer_bases, ncpu); 2285 2286 /* 2287 * The caller is globally serialized and nobody else 2288 * takes two locks at once, deadlock is not possible. 2289 */ 2290 raw_spin_lock(&old_base->lock); 2291 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING); 2292 2293 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2294 migrate_hrtimer_list(&old_base->clock_base[i], 2295 &new_base->clock_base[i]); 2296 } 2297 2298 /* 2299 * The migration might have changed the first expiring softirq 2300 * timer on this CPU. Update it. 2301 */ 2302 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT); 2303 /* Tell the other CPU to retrigger the next event */ 2304 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0); 2305 2306 raw_spin_unlock(&new_base->lock); 2307 old_base->online = 0; 2308 raw_spin_unlock(&old_base->lock); 2309 2310 return 0; 2311 } 2312 2313 #endif /* CONFIG_HOTPLUG_CPU */ 2314 2315 void __init hrtimers_init(void) 2316 { 2317 hrtimers_prepare_cpu(smp_processor_id()); 2318 hrtimers_cpu_starting(smp_processor_id()); 2319 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 2320 } 2321