1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 
6 #include <linux/bsearch.h>
7 
8 DEFINE_MUTEX(sched_domains_mutex);
9 void sched_domains_mutex_lock(void)
10 {
11 	mutex_lock(&sched_domains_mutex);
12 }
13 void sched_domains_mutex_unlock(void)
14 {
15 	mutex_unlock(&sched_domains_mutex);
16 }
17 
18 /* Protected by sched_domains_mutex: */
19 static cpumask_var_t sched_domains_tmpmask;
20 static cpumask_var_t sched_domains_tmpmask2;
21 
22 static int __init sched_debug_setup(char *str)
23 {
24 	sched_debug_verbose = true;
25 
26 	return 0;
27 }
28 early_param("sched_verbose", sched_debug_setup);
29 
30 static inline bool sched_debug(void)
31 {
32 	return sched_debug_verbose;
33 }
34 
35 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
36 const struct sd_flag_debug sd_flag_debug[] = {
37 #include <linux/sched/sd_flags.h>
38 };
39 #undef SD_FLAG
40 
41 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
42 				  struct cpumask *groupmask)
43 {
44 	struct sched_group *group = sd->groups;
45 	unsigned long flags = sd->flags;
46 	unsigned int idx;
47 
48 	cpumask_clear(groupmask);
49 
50 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
51 	printk(KERN_CONT "span=%*pbl level=%s\n",
52 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
53 
54 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
55 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
56 	}
57 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
58 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
59 	}
60 
61 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
62 		unsigned int flag = BIT(idx);
63 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
64 
65 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
66 		    !(sd->child->flags & flag))
67 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
68 			       sd_flag_debug[idx].name);
69 
70 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
71 		    !(sd->parent->flags & flag))
72 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
73 			       sd_flag_debug[idx].name);
74 	}
75 
76 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
77 	do {
78 		if (!group) {
79 			printk("\n");
80 			printk(KERN_ERR "ERROR: group is NULL\n");
81 			break;
82 		}
83 
84 		if (cpumask_empty(sched_group_span(group))) {
85 			printk(KERN_CONT "\n");
86 			printk(KERN_ERR "ERROR: empty group\n");
87 			break;
88 		}
89 
90 		if (!(sd->flags & SD_OVERLAP) &&
91 		    cpumask_intersects(groupmask, sched_group_span(group))) {
92 			printk(KERN_CONT "\n");
93 			printk(KERN_ERR "ERROR: repeated CPUs\n");
94 			break;
95 		}
96 
97 		cpumask_or(groupmask, groupmask, sched_group_span(group));
98 
99 		printk(KERN_CONT " %d:{ span=%*pbl",
100 				group->sgc->id,
101 				cpumask_pr_args(sched_group_span(group)));
102 
103 		if ((sd->flags & SD_OVERLAP) &&
104 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
105 			printk(KERN_CONT " mask=%*pbl",
106 				cpumask_pr_args(group_balance_mask(group)));
107 		}
108 
109 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
110 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
111 
112 		if (group == sd->groups && sd->child &&
113 		    !cpumask_equal(sched_domain_span(sd->child),
114 				   sched_group_span(group))) {
115 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
116 		}
117 
118 		printk(KERN_CONT " }");
119 
120 		group = group->next;
121 
122 		if (group != sd->groups)
123 			printk(KERN_CONT ",");
124 
125 	} while (group != sd->groups);
126 	printk(KERN_CONT "\n");
127 
128 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
129 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
130 
131 	if (sd->parent &&
132 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
133 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
134 	return 0;
135 }
136 
137 static void sched_domain_debug(struct sched_domain *sd, int cpu)
138 {
139 	int level = 0;
140 
141 	if (!sched_debug_verbose)
142 		return;
143 
144 	if (!sd) {
145 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
146 		return;
147 	}
148 
149 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
150 
151 	for (;;) {
152 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
153 			break;
154 		level++;
155 		sd = sd->parent;
156 		if (!sd)
157 			break;
158 	}
159 }
160 
161 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
162 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
163 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
164 #include <linux/sched/sd_flags.h>
165 0;
166 #undef SD_FLAG
167 
168 static int sd_degenerate(struct sched_domain *sd)
169 {
170 	if (cpumask_weight(sched_domain_span(sd)) == 1)
171 		return 1;
172 
173 	/* Following flags need at least 2 groups */
174 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
175 	    (sd->groups != sd->groups->next))
176 		return 0;
177 
178 	/* Following flags don't use groups */
179 	if (sd->flags & (SD_WAKE_AFFINE))
180 		return 0;
181 
182 	return 1;
183 }
184 
185 static int
186 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
187 {
188 	unsigned long cflags = sd->flags, pflags = parent->flags;
189 
190 	if (sd_degenerate(parent))
191 		return 1;
192 
193 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
194 		return 0;
195 
196 	/* Flags needing groups don't count if only 1 group in parent */
197 	if (parent->groups == parent->groups->next)
198 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
199 
200 	if (~cflags & pflags)
201 		return 0;
202 
203 	return 1;
204 }
205 
206 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
207 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
208 static unsigned int sysctl_sched_energy_aware = 1;
209 static DEFINE_MUTEX(sched_energy_mutex);
210 static bool sched_energy_update;
211 
212 static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
213 {
214 	bool any_asym_capacity = false;
215 	int i;
216 
217 	/* EAS is enabled for asymmetric CPU capacity topologies. */
218 	for_each_cpu(i, cpu_mask) {
219 		if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
220 			any_asym_capacity = true;
221 			break;
222 		}
223 	}
224 	if (!any_asym_capacity) {
225 		if (sched_debug()) {
226 			pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
227 				cpumask_pr_args(cpu_mask));
228 		}
229 		return false;
230 	}
231 
232 	/* EAS definitely does *not* handle SMT */
233 	if (sched_smt_active()) {
234 		if (sched_debug()) {
235 			pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
236 				cpumask_pr_args(cpu_mask));
237 		}
238 		return false;
239 	}
240 
241 	if (!arch_scale_freq_invariant()) {
242 		if (sched_debug()) {
243 			pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
244 				cpumask_pr_args(cpu_mask));
245 		}
246 		return false;
247 	}
248 
249 	if (!cpufreq_ready_for_eas(cpu_mask)) {
250 		if (sched_debug()) {
251 			pr_info("rd %*pbl: Checking EAS: cpufreq is not ready\n",
252 				cpumask_pr_args(cpu_mask));
253 		}
254 		return false;
255 	}
256 
257 	return true;
258 }
259 
260 void rebuild_sched_domains_energy(void)
261 {
262 	mutex_lock(&sched_energy_mutex);
263 	sched_energy_update = true;
264 	rebuild_sched_domains();
265 	sched_energy_update = false;
266 	mutex_unlock(&sched_energy_mutex);
267 }
268 
269 #ifdef CONFIG_PROC_SYSCTL
270 static int sched_energy_aware_handler(const struct ctl_table *table, int write,
271 		void *buffer, size_t *lenp, loff_t *ppos)
272 {
273 	int ret, state;
274 
275 	if (write && !capable(CAP_SYS_ADMIN))
276 		return -EPERM;
277 
278 	if (!sched_is_eas_possible(cpu_active_mask)) {
279 		if (write) {
280 			return -EOPNOTSUPP;
281 		} else {
282 			*lenp = 0;
283 			return 0;
284 		}
285 	}
286 
287 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
288 	if (!ret && write) {
289 		state = static_branch_unlikely(&sched_energy_present);
290 		if (state != sysctl_sched_energy_aware)
291 			rebuild_sched_domains_energy();
292 	}
293 
294 	return ret;
295 }
296 
297 static const struct ctl_table sched_energy_aware_sysctls[] = {
298 	{
299 		.procname       = "sched_energy_aware",
300 		.data           = &sysctl_sched_energy_aware,
301 		.maxlen         = sizeof(unsigned int),
302 		.mode           = 0644,
303 		.proc_handler   = sched_energy_aware_handler,
304 		.extra1         = SYSCTL_ZERO,
305 		.extra2         = SYSCTL_ONE,
306 	},
307 };
308 
309 static int __init sched_energy_aware_sysctl_init(void)
310 {
311 	register_sysctl_init("kernel", sched_energy_aware_sysctls);
312 	return 0;
313 }
314 
315 late_initcall(sched_energy_aware_sysctl_init);
316 #endif
317 
318 static void free_pd(struct perf_domain *pd)
319 {
320 	struct perf_domain *tmp;
321 
322 	while (pd) {
323 		tmp = pd->next;
324 		kfree(pd);
325 		pd = tmp;
326 	}
327 }
328 
329 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
330 {
331 	while (pd) {
332 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
333 			return pd;
334 		pd = pd->next;
335 	}
336 
337 	return NULL;
338 }
339 
340 static struct perf_domain *pd_init(int cpu)
341 {
342 	struct em_perf_domain *obj = em_cpu_get(cpu);
343 	struct perf_domain *pd;
344 
345 	if (!obj) {
346 		if (sched_debug())
347 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
348 		return NULL;
349 	}
350 
351 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
352 	if (!pd)
353 		return NULL;
354 	pd->em_pd = obj;
355 
356 	return pd;
357 }
358 
359 static void perf_domain_debug(const struct cpumask *cpu_map,
360 						struct perf_domain *pd)
361 {
362 	if (!sched_debug() || !pd)
363 		return;
364 
365 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
366 
367 	while (pd) {
368 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
369 				cpumask_first(perf_domain_span(pd)),
370 				cpumask_pr_args(perf_domain_span(pd)),
371 				em_pd_nr_perf_states(pd->em_pd));
372 		pd = pd->next;
373 	}
374 
375 	printk(KERN_CONT "\n");
376 }
377 
378 static void destroy_perf_domain_rcu(struct rcu_head *rp)
379 {
380 	struct perf_domain *pd;
381 
382 	pd = container_of(rp, struct perf_domain, rcu);
383 	free_pd(pd);
384 }
385 
386 static void sched_energy_set(bool has_eas)
387 {
388 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
389 		if (sched_debug())
390 			pr_info("%s: stopping EAS\n", __func__);
391 		static_branch_disable_cpuslocked(&sched_energy_present);
392 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
393 		if (sched_debug())
394 			pr_info("%s: starting EAS\n", __func__);
395 		static_branch_enable_cpuslocked(&sched_energy_present);
396 	}
397 }
398 
399 /*
400  * EAS can be used on a root domain if it meets all the following conditions:
401  *    1. an Energy Model (EM) is available;
402  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
403  *    3. no SMT is detected.
404  *    4. schedutil is driving the frequency of all CPUs of the rd;
405  *    5. frequency invariance support is present;
406  */
407 static bool build_perf_domains(const struct cpumask *cpu_map)
408 {
409 	int i;
410 	struct perf_domain *pd = NULL, *tmp;
411 	int cpu = cpumask_first(cpu_map);
412 	struct root_domain *rd = cpu_rq(cpu)->rd;
413 
414 	if (!sysctl_sched_energy_aware)
415 		goto free;
416 
417 	if (!sched_is_eas_possible(cpu_map))
418 		goto free;
419 
420 	for_each_cpu(i, cpu_map) {
421 		/* Skip already covered CPUs. */
422 		if (find_pd(pd, i))
423 			continue;
424 
425 		/* Create the new pd and add it to the local list. */
426 		tmp = pd_init(i);
427 		if (!tmp)
428 			goto free;
429 		tmp->next = pd;
430 		pd = tmp;
431 	}
432 
433 	perf_domain_debug(cpu_map, pd);
434 
435 	/* Attach the new list of performance domains to the root domain. */
436 	tmp = rd->pd;
437 	rcu_assign_pointer(rd->pd, pd);
438 	if (tmp)
439 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
440 
441 	return !!pd;
442 
443 free:
444 	free_pd(pd);
445 	tmp = rd->pd;
446 	rcu_assign_pointer(rd->pd, NULL);
447 	if (tmp)
448 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
449 
450 	return false;
451 }
452 #else
453 static void free_pd(struct perf_domain *pd) { }
454 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
455 
456 static void free_rootdomain(struct rcu_head *rcu)
457 {
458 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
459 
460 	cpupri_cleanup(&rd->cpupri);
461 	cpudl_cleanup(&rd->cpudl);
462 	free_cpumask_var(rd->dlo_mask);
463 	free_cpumask_var(rd->rto_mask);
464 	free_cpumask_var(rd->online);
465 	free_cpumask_var(rd->span);
466 	free_pd(rd->pd);
467 	kfree(rd);
468 }
469 
470 void rq_attach_root(struct rq *rq, struct root_domain *rd)
471 {
472 	struct root_domain *old_rd = NULL;
473 	struct rq_flags rf;
474 
475 	rq_lock_irqsave(rq, &rf);
476 
477 	if (rq->rd) {
478 		old_rd = rq->rd;
479 
480 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
481 			set_rq_offline(rq);
482 
483 		cpumask_clear_cpu(rq->cpu, old_rd->span);
484 
485 		/*
486 		 * If we don't want to free the old_rd yet then
487 		 * set old_rd to NULL to skip the freeing later
488 		 * in this function:
489 		 */
490 		if (!atomic_dec_and_test(&old_rd->refcount))
491 			old_rd = NULL;
492 	}
493 
494 	atomic_inc(&rd->refcount);
495 	rq->rd = rd;
496 
497 	cpumask_set_cpu(rq->cpu, rd->span);
498 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
499 		set_rq_online(rq);
500 
501 	/*
502 	 * Because the rq is not a task, dl_add_task_root_domain() did not
503 	 * move the fair server bw to the rd if it already started.
504 	 * Add it now.
505 	 */
506 	if (rq->fair_server.dl_server)
507 		__dl_server_attach_root(&rq->fair_server, rq);
508 
509 	rq_unlock_irqrestore(rq, &rf);
510 
511 	if (old_rd)
512 		call_rcu(&old_rd->rcu, free_rootdomain);
513 }
514 
515 void sched_get_rd(struct root_domain *rd)
516 {
517 	atomic_inc(&rd->refcount);
518 }
519 
520 void sched_put_rd(struct root_domain *rd)
521 {
522 	if (!atomic_dec_and_test(&rd->refcount))
523 		return;
524 
525 	call_rcu(&rd->rcu, free_rootdomain);
526 }
527 
528 static int init_rootdomain(struct root_domain *rd)
529 {
530 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
531 		goto out;
532 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
533 		goto free_span;
534 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
535 		goto free_online;
536 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
537 		goto free_dlo_mask;
538 
539 #ifdef HAVE_RT_PUSH_IPI
540 	rd->rto_cpu = -1;
541 	raw_spin_lock_init(&rd->rto_lock);
542 	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
543 #endif
544 
545 	rd->visit_cookie = 0;
546 	init_dl_bw(&rd->dl_bw);
547 	if (cpudl_init(&rd->cpudl) != 0)
548 		goto free_rto_mask;
549 
550 	if (cpupri_init(&rd->cpupri) != 0)
551 		goto free_cpudl;
552 	return 0;
553 
554 free_cpudl:
555 	cpudl_cleanup(&rd->cpudl);
556 free_rto_mask:
557 	free_cpumask_var(rd->rto_mask);
558 free_dlo_mask:
559 	free_cpumask_var(rd->dlo_mask);
560 free_online:
561 	free_cpumask_var(rd->online);
562 free_span:
563 	free_cpumask_var(rd->span);
564 out:
565 	return -ENOMEM;
566 }
567 
568 /*
569  * By default the system creates a single root-domain with all CPUs as
570  * members (mimicking the global state we have today).
571  */
572 struct root_domain def_root_domain;
573 
574 void __init init_defrootdomain(void)
575 {
576 	init_rootdomain(&def_root_domain);
577 
578 	atomic_set(&def_root_domain.refcount, 1);
579 }
580 
581 static struct root_domain *alloc_rootdomain(void)
582 {
583 	struct root_domain *rd;
584 
585 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
586 	if (!rd)
587 		return NULL;
588 
589 	if (init_rootdomain(rd) != 0) {
590 		kfree(rd);
591 		return NULL;
592 	}
593 
594 	return rd;
595 }
596 
597 static void free_sched_groups(struct sched_group *sg, int free_sgc)
598 {
599 	struct sched_group *tmp, *first;
600 
601 	if (!sg)
602 		return;
603 
604 	first = sg;
605 	do {
606 		tmp = sg->next;
607 
608 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
609 			kfree(sg->sgc);
610 
611 		if (atomic_dec_and_test(&sg->ref))
612 			kfree(sg);
613 		sg = tmp;
614 	} while (sg != first);
615 }
616 
617 static void destroy_sched_domain(struct sched_domain *sd)
618 {
619 	/*
620 	 * A normal sched domain may have multiple group references, an
621 	 * overlapping domain, having private groups, only one.  Iterate,
622 	 * dropping group/capacity references, freeing where none remain.
623 	 */
624 	free_sched_groups(sd->groups, 1);
625 
626 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
627 		kfree(sd->shared);
628 	kfree(sd);
629 }
630 
631 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
632 {
633 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
634 
635 	while (sd) {
636 		struct sched_domain *parent = sd->parent;
637 		destroy_sched_domain(sd);
638 		sd = parent;
639 	}
640 }
641 
642 static void destroy_sched_domains(struct sched_domain *sd)
643 {
644 	if (sd)
645 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
646 }
647 
648 /*
649  * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set
650  * (Last Level Cache Domain) for this allows us to avoid some pointer chasing
651  * select_idle_sibling().
652  *
653  * Also keep a unique ID per domain (we use the first CPU number in the cpumask
654  * of the domain), this allows us to quickly tell if two CPUs are in the same
655  * cache domain, see cpus_share_cache().
656  */
657 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
658 DEFINE_PER_CPU(int, sd_llc_size);
659 DEFINE_PER_CPU(int, sd_llc_id);
660 DEFINE_PER_CPU(int, sd_share_id);
661 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
662 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
663 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
664 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
665 
666 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
667 DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
668 
669 static void update_top_cache_domain(int cpu)
670 {
671 	struct sched_domain_shared *sds = NULL;
672 	struct sched_domain *sd;
673 	int id = cpu;
674 	int size = 1;
675 
676 	sd = highest_flag_domain(cpu, SD_SHARE_LLC);
677 	if (sd) {
678 		id = cpumask_first(sched_domain_span(sd));
679 		size = cpumask_weight(sched_domain_span(sd));
680 		sds = sd->shared;
681 	}
682 
683 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
684 	per_cpu(sd_llc_size, cpu) = size;
685 	per_cpu(sd_llc_id, cpu) = id;
686 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
687 
688 	sd = lowest_flag_domain(cpu, SD_CLUSTER);
689 	if (sd)
690 		id = cpumask_first(sched_domain_span(sd));
691 
692 	/*
693 	 * This assignment should be placed after the sd_llc_id as
694 	 * we want this id equals to cluster id on cluster machines
695 	 * but equals to LLC id on non-Cluster machines.
696 	 */
697 	per_cpu(sd_share_id, cpu) = id;
698 
699 	sd = lowest_flag_domain(cpu, SD_NUMA);
700 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
701 
702 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
703 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
704 
705 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
706 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
707 }
708 
709 /*
710  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
711  * hold the hotplug lock.
712  */
713 static void
714 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
715 {
716 	struct rq *rq = cpu_rq(cpu);
717 	struct sched_domain *tmp;
718 
719 	/* Remove the sched domains which do not contribute to scheduling. */
720 	for (tmp = sd; tmp; ) {
721 		struct sched_domain *parent = tmp->parent;
722 		if (!parent)
723 			break;
724 
725 		if (sd_parent_degenerate(tmp, parent)) {
726 			tmp->parent = parent->parent;
727 
728 			if (parent->parent) {
729 				parent->parent->child = tmp;
730 				parent->parent->groups->flags = tmp->flags;
731 			}
732 
733 			/*
734 			 * Transfer SD_PREFER_SIBLING down in case of a
735 			 * degenerate parent; the spans match for this
736 			 * so the property transfers.
737 			 */
738 			if (parent->flags & SD_PREFER_SIBLING)
739 				tmp->flags |= SD_PREFER_SIBLING;
740 			destroy_sched_domain(parent);
741 		} else
742 			tmp = tmp->parent;
743 	}
744 
745 	if (sd && sd_degenerate(sd)) {
746 		tmp = sd;
747 		sd = sd->parent;
748 		destroy_sched_domain(tmp);
749 		if (sd) {
750 			struct sched_group *sg = sd->groups;
751 
752 			/*
753 			 * sched groups hold the flags of the child sched
754 			 * domain for convenience. Clear such flags since
755 			 * the child is being destroyed.
756 			 */
757 			do {
758 				sg->flags = 0;
759 			} while (sg != sd->groups);
760 
761 			sd->child = NULL;
762 		}
763 	}
764 
765 	sched_domain_debug(sd, cpu);
766 
767 	rq_attach_root(rq, rd);
768 	tmp = rq->sd;
769 	rcu_assign_pointer(rq->sd, sd);
770 	dirty_sched_domain_sysctl(cpu);
771 	destroy_sched_domains(tmp);
772 
773 	update_top_cache_domain(cpu);
774 }
775 
776 struct s_data {
777 	struct sched_domain * __percpu *sd;
778 	struct root_domain	*rd;
779 };
780 
781 enum s_alloc {
782 	sa_rootdomain,
783 	sa_sd,
784 	sa_sd_storage,
785 	sa_none,
786 };
787 
788 /*
789  * Return the canonical balance CPU for this group, this is the first CPU
790  * of this group that's also in the balance mask.
791  *
792  * The balance mask are all those CPUs that could actually end up at this
793  * group. See build_balance_mask().
794  *
795  * Also see should_we_balance().
796  */
797 int group_balance_cpu(struct sched_group *sg)
798 {
799 	return cpumask_first(group_balance_mask(sg));
800 }
801 
802 
803 /*
804  * NUMA topology (first read the regular topology blurb below)
805  *
806  * Given a node-distance table, for example:
807  *
808  *   node   0   1   2   3
809  *     0:  10  20  30  20
810  *     1:  20  10  20  30
811  *     2:  30  20  10  20
812  *     3:  20  30  20  10
813  *
814  * which represents a 4 node ring topology like:
815  *
816  *   0 ----- 1
817  *   |       |
818  *   |       |
819  *   |       |
820  *   3 ----- 2
821  *
822  * We want to construct domains and groups to represent this. The way we go
823  * about doing this is to build the domains on 'hops'. For each NUMA level we
824  * construct the mask of all nodes reachable in @level hops.
825  *
826  * For the above NUMA topology that gives 3 levels:
827  *
828  * NUMA-2	0-3		0-3		0-3		0-3
829  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
830  *
831  * NUMA-1	0-1,3		0-2		1-3		0,2-3
832  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
833  *
834  * NUMA-0	0		1		2		3
835  *
836  *
837  * As can be seen; things don't nicely line up as with the regular topology.
838  * When we iterate a domain in child domain chunks some nodes can be
839  * represented multiple times -- hence the "overlap" naming for this part of
840  * the topology.
841  *
842  * In order to minimize this overlap, we only build enough groups to cover the
843  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
844  *
845  * Because:
846  *
847  *  - the first group of each domain is its child domain; this
848  *    gets us the first 0-1,3
849  *  - the only uncovered node is 2, who's child domain is 1-3.
850  *
851  * However, because of the overlap, computing a unique CPU for each group is
852  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
853  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
854  * end up at those groups (they would end up in group: 0-1,3).
855  *
856  * To correct this we have to introduce the group balance mask. This mask
857  * will contain those CPUs in the group that can reach this group given the
858  * (child) domain tree.
859  *
860  * With this we can once again compute balance_cpu and sched_group_capacity
861  * relations.
862  *
863  * XXX include words on how balance_cpu is unique and therefore can be
864  * used for sched_group_capacity links.
865  *
866  *
867  * Another 'interesting' topology is:
868  *
869  *   node   0   1   2   3
870  *     0:  10  20  20  30
871  *     1:  20  10  20  20
872  *     2:  20  20  10  20
873  *     3:  30  20  20  10
874  *
875  * Which looks a little like:
876  *
877  *   0 ----- 1
878  *   |     / |
879  *   |   /   |
880  *   | /     |
881  *   2 ----- 3
882  *
883  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
884  * are not.
885  *
886  * This leads to a few particularly weird cases where the sched_domain's are
887  * not of the same number for each CPU. Consider:
888  *
889  * NUMA-2	0-3						0-3
890  *  groups:	{0-2},{1-3}					{1-3},{0-2}
891  *
892  * NUMA-1	0-2		0-3		0-3		1-3
893  *
894  * NUMA-0	0		1		2		3
895  *
896  */
897 
898 
899 /*
900  * Build the balance mask; it contains only those CPUs that can arrive at this
901  * group and should be considered to continue balancing.
902  *
903  * We do this during the group creation pass, therefore the group information
904  * isn't complete yet, however since each group represents a (child) domain we
905  * can fully construct this using the sched_domain bits (which are already
906  * complete).
907  */
908 static void
909 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
910 {
911 	const struct cpumask *sg_span = sched_group_span(sg);
912 	struct sd_data *sdd = sd->private;
913 	struct sched_domain *sibling;
914 	int i;
915 
916 	cpumask_clear(mask);
917 
918 	for_each_cpu(i, sg_span) {
919 		sibling = *per_cpu_ptr(sdd->sd, i);
920 
921 		/*
922 		 * Can happen in the asymmetric case, where these siblings are
923 		 * unused. The mask will not be empty because those CPUs that
924 		 * do have the top domain _should_ span the domain.
925 		 */
926 		if (!sibling->child)
927 			continue;
928 
929 		/* If we would not end up here, we can't continue from here */
930 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
931 			continue;
932 
933 		cpumask_set_cpu(i, mask);
934 	}
935 
936 	/* We must not have empty masks here */
937 	WARN_ON_ONCE(cpumask_empty(mask));
938 }
939 
940 /*
941  * XXX: This creates per-node group entries; since the load-balancer will
942  * immediately access remote memory to construct this group's load-balance
943  * statistics having the groups node local is of dubious benefit.
944  */
945 static struct sched_group *
946 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
947 {
948 	struct sched_group *sg;
949 	struct cpumask *sg_span;
950 
951 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
952 			GFP_KERNEL, cpu_to_node(cpu));
953 
954 	if (!sg)
955 		return NULL;
956 
957 	sg_span = sched_group_span(sg);
958 	if (sd->child) {
959 		cpumask_copy(sg_span, sched_domain_span(sd->child));
960 		sg->flags = sd->child->flags;
961 	} else {
962 		cpumask_copy(sg_span, sched_domain_span(sd));
963 	}
964 
965 	atomic_inc(&sg->ref);
966 	return sg;
967 }
968 
969 static void init_overlap_sched_group(struct sched_domain *sd,
970 				     struct sched_group *sg)
971 {
972 	struct cpumask *mask = sched_domains_tmpmask2;
973 	struct sd_data *sdd = sd->private;
974 	struct cpumask *sg_span;
975 	int cpu;
976 
977 	build_balance_mask(sd, sg, mask);
978 	cpu = cpumask_first(mask);
979 
980 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
981 	if (atomic_inc_return(&sg->sgc->ref) == 1)
982 		cpumask_copy(group_balance_mask(sg), mask);
983 	else
984 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
985 
986 	/*
987 	 * Initialize sgc->capacity such that even if we mess up the
988 	 * domains and no possible iteration will get us here, we won't
989 	 * die on a /0 trap.
990 	 */
991 	sg_span = sched_group_span(sg);
992 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
993 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
994 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
995 }
996 
997 static struct sched_domain *
998 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
999 {
1000 	/*
1001 	 * The proper descendant would be the one whose child won't span out
1002 	 * of sd
1003 	 */
1004 	while (sibling->child &&
1005 	       !cpumask_subset(sched_domain_span(sibling->child),
1006 			       sched_domain_span(sd)))
1007 		sibling = sibling->child;
1008 
1009 	/*
1010 	 * As we are referencing sgc across different topology level, we need
1011 	 * to go down to skip those sched_domains which don't contribute to
1012 	 * scheduling because they will be degenerated in cpu_attach_domain
1013 	 */
1014 	while (sibling->child &&
1015 	       cpumask_equal(sched_domain_span(sibling->child),
1016 			     sched_domain_span(sibling)))
1017 		sibling = sibling->child;
1018 
1019 	return sibling;
1020 }
1021 
1022 static int
1023 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1024 {
1025 	struct sched_group *first = NULL, *last = NULL, *sg;
1026 	const struct cpumask *span = sched_domain_span(sd);
1027 	struct cpumask *covered = sched_domains_tmpmask;
1028 	struct sd_data *sdd = sd->private;
1029 	struct sched_domain *sibling;
1030 	int i;
1031 
1032 	cpumask_clear(covered);
1033 
1034 	for_each_cpu_wrap(i, span, cpu) {
1035 		struct cpumask *sg_span;
1036 
1037 		if (cpumask_test_cpu(i, covered))
1038 			continue;
1039 
1040 		sibling = *per_cpu_ptr(sdd->sd, i);
1041 
1042 		/*
1043 		 * Asymmetric node setups can result in situations where the
1044 		 * domain tree is of unequal depth, make sure to skip domains
1045 		 * that already cover the entire range.
1046 		 *
1047 		 * In that case build_sched_domains() will have terminated the
1048 		 * iteration early and our sibling sd spans will be empty.
1049 		 * Domains should always include the CPU they're built on, so
1050 		 * check that.
1051 		 */
1052 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1053 			continue;
1054 
1055 		/*
1056 		 * Usually we build sched_group by sibling's child sched_domain
1057 		 * But for machines whose NUMA diameter are 3 or above, we move
1058 		 * to build sched_group by sibling's proper descendant's child
1059 		 * domain because sibling's child sched_domain will span out of
1060 		 * the sched_domain being built as below.
1061 		 *
1062 		 * Smallest diameter=3 topology is:
1063 		 *
1064 		 *   node   0   1   2   3
1065 		 *     0:  10  20  30  40
1066 		 *     1:  20  10  20  30
1067 		 *     2:  30  20  10  20
1068 		 *     3:  40  30  20  10
1069 		 *
1070 		 *   0 --- 1 --- 2 --- 3
1071 		 *
1072 		 * NUMA-3       0-3             N/A             N/A             0-3
1073 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1074 		 *
1075 		 * NUMA-2       0-2             0-3             0-3             1-3
1076 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1077 		 *
1078 		 * NUMA-1       0-1             0-2             1-3             2-3
1079 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1080 		 *
1081 		 * NUMA-0       0               1               2               3
1082 		 *
1083 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1084 		 * group span isn't a subset of the domain span.
1085 		 */
1086 		if (sibling->child &&
1087 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1088 			sibling = find_descended_sibling(sd, sibling);
1089 
1090 		sg = build_group_from_child_sched_domain(sibling, cpu);
1091 		if (!sg)
1092 			goto fail;
1093 
1094 		sg_span = sched_group_span(sg);
1095 		cpumask_or(covered, covered, sg_span);
1096 
1097 		init_overlap_sched_group(sibling, sg);
1098 
1099 		if (!first)
1100 			first = sg;
1101 		if (last)
1102 			last->next = sg;
1103 		last = sg;
1104 		last->next = first;
1105 	}
1106 	sd->groups = first;
1107 
1108 	return 0;
1109 
1110 fail:
1111 	free_sched_groups(first, 0);
1112 
1113 	return -ENOMEM;
1114 }
1115 
1116 
1117 /*
1118  * Package topology (also see the load-balance blurb in fair.c)
1119  *
1120  * The scheduler builds a tree structure to represent a number of important
1121  * topology features. By default (default_topology[]) these include:
1122  *
1123  *  - Simultaneous multithreading (SMT)
1124  *  - Multi-Core Cache (MC)
1125  *  - Package (PKG)
1126  *
1127  * Where the last one more or less denotes everything up to a NUMA node.
1128  *
1129  * The tree consists of 3 primary data structures:
1130  *
1131  *	sched_domain -> sched_group -> sched_group_capacity
1132  *	    ^ ^             ^ ^
1133  *          `-'             `-'
1134  *
1135  * The sched_domains are per-CPU and have a two way link (parent & child) and
1136  * denote the ever growing mask of CPUs belonging to that level of topology.
1137  *
1138  * Each sched_domain has a circular (double) linked list of sched_group's, each
1139  * denoting the domains of the level below (or individual CPUs in case of the
1140  * first domain level). The sched_group linked by a sched_domain includes the
1141  * CPU of that sched_domain [*].
1142  *
1143  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1144  *
1145  * CPU   0   1   2   3   4   5   6   7
1146  *
1147  * PKG  [                             ]
1148  * MC   [             ] [             ]
1149  * SMT  [     ] [     ] [     ] [     ]
1150  *
1151  *  - or -
1152  *
1153  * PKG  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1154  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1155  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1156  *
1157  * CPU   0   1   2   3   4   5   6   7
1158  *
1159  * One way to think about it is: sched_domain moves you up and down among these
1160  * topology levels, while sched_group moves you sideways through it, at child
1161  * domain granularity.
1162  *
1163  * sched_group_capacity ensures each unique sched_group has shared storage.
1164  *
1165  * There are two related construction problems, both require a CPU that
1166  * uniquely identify each group (for a given domain):
1167  *
1168  *  - The first is the balance_cpu (see should_we_balance() and the
1169  *    load-balance blurb in fair.c); for each group we only want 1 CPU to
1170  *    continue balancing at a higher domain.
1171  *
1172  *  - The second is the sched_group_capacity; we want all identical groups
1173  *    to share a single sched_group_capacity.
1174  *
1175  * Since these topologies are exclusive by construction. That is, its
1176  * impossible for an SMT thread to belong to multiple cores, and cores to
1177  * be part of multiple caches. There is a very clear and unique location
1178  * for each CPU in the hierarchy.
1179  *
1180  * Therefore computing a unique CPU for each group is trivial (the iteration
1181  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1182  * group), we can simply pick the first CPU in each group.
1183  *
1184  *
1185  * [*] in other words, the first group of each domain is its child domain.
1186  */
1187 
1188 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1189 {
1190 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1191 	struct sched_domain *child = sd->child;
1192 	struct sched_group *sg;
1193 	bool already_visited;
1194 
1195 	if (child)
1196 		cpu = cpumask_first(sched_domain_span(child));
1197 
1198 	sg = *per_cpu_ptr(sdd->sg, cpu);
1199 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1200 
1201 	/* Increase refcounts for claim_allocations: */
1202 	already_visited = atomic_inc_return(&sg->ref) > 1;
1203 	/* sgc visits should follow a similar trend as sg */
1204 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1205 
1206 	/* If we have already visited that group, it's already initialized. */
1207 	if (already_visited)
1208 		return sg;
1209 
1210 	if (child) {
1211 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1212 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1213 		sg->flags = child->flags;
1214 	} else {
1215 		cpumask_set_cpu(cpu, sched_group_span(sg));
1216 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1217 	}
1218 
1219 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1220 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1221 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1222 
1223 	return sg;
1224 }
1225 
1226 /*
1227  * build_sched_groups will build a circular linked list of the groups
1228  * covered by the given span, will set each group's ->cpumask correctly,
1229  * and will initialize their ->sgc.
1230  *
1231  * Assumes the sched_domain tree is fully constructed
1232  */
1233 static int
1234 build_sched_groups(struct sched_domain *sd, int cpu)
1235 {
1236 	struct sched_group *first = NULL, *last = NULL;
1237 	struct sd_data *sdd = sd->private;
1238 	const struct cpumask *span = sched_domain_span(sd);
1239 	struct cpumask *covered;
1240 	int i;
1241 
1242 	lockdep_assert_held(&sched_domains_mutex);
1243 	covered = sched_domains_tmpmask;
1244 
1245 	cpumask_clear(covered);
1246 
1247 	for_each_cpu_wrap(i, span, cpu) {
1248 		struct sched_group *sg;
1249 
1250 		if (cpumask_test_cpu(i, covered))
1251 			continue;
1252 
1253 		sg = get_group(i, sdd);
1254 
1255 		cpumask_or(covered, covered, sched_group_span(sg));
1256 
1257 		if (!first)
1258 			first = sg;
1259 		if (last)
1260 			last->next = sg;
1261 		last = sg;
1262 	}
1263 	last->next = first;
1264 	sd->groups = first;
1265 
1266 	return 0;
1267 }
1268 
1269 /*
1270  * Initialize sched groups cpu_capacity.
1271  *
1272  * cpu_capacity indicates the capacity of sched group, which is used while
1273  * distributing the load between different sched groups in a sched domain.
1274  * Typically cpu_capacity for all the groups in a sched domain will be same
1275  * unless there are asymmetries in the topology. If there are asymmetries,
1276  * group having more cpu_capacity will pickup more load compared to the
1277  * group having less cpu_capacity.
1278  */
1279 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1280 {
1281 	struct sched_group *sg = sd->groups;
1282 	struct cpumask *mask = sched_domains_tmpmask2;
1283 
1284 	WARN_ON(!sg);
1285 
1286 	do {
1287 		int cpu, cores = 0, max_cpu = -1;
1288 
1289 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1290 
1291 		cpumask_copy(mask, sched_group_span(sg));
1292 		for_each_cpu(cpu, mask) {
1293 			cores++;
1294 #ifdef CONFIG_SCHED_SMT
1295 			cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1296 #endif
1297 		}
1298 		sg->cores = cores;
1299 
1300 		if (!(sd->flags & SD_ASYM_PACKING))
1301 			goto next;
1302 
1303 		for_each_cpu(cpu, sched_group_span(sg)) {
1304 			if (max_cpu < 0)
1305 				max_cpu = cpu;
1306 			else if (sched_asym_prefer(cpu, max_cpu))
1307 				max_cpu = cpu;
1308 		}
1309 		sg->asym_prefer_cpu = max_cpu;
1310 
1311 next:
1312 		sg = sg->next;
1313 	} while (sg != sd->groups);
1314 
1315 	if (cpu != group_balance_cpu(sg))
1316 		return;
1317 
1318 	update_group_capacity(sd, cpu);
1319 }
1320 
1321 #ifdef CONFIG_SMP
1322 
1323 /* Update the "asym_prefer_cpu" when arch_asym_cpu_priority() changes. */
1324 void sched_update_asym_prefer_cpu(int cpu, int old_prio, int new_prio)
1325 {
1326 	int asym_prefer_cpu = cpu;
1327 	struct sched_domain *sd;
1328 
1329 	guard(rcu)();
1330 
1331 	for_each_domain(cpu, sd) {
1332 		struct sched_group *sg;
1333 		int group_cpu;
1334 
1335 		if (!(sd->flags & SD_ASYM_PACKING))
1336 			continue;
1337 
1338 		/*
1339 		 * Groups of overlapping domain are replicated per NUMA
1340 		 * node and will require updating "asym_prefer_cpu" on
1341 		 * each local copy.
1342 		 *
1343 		 * If you are hitting this warning, consider moving
1344 		 * "sg->asym_prefer_cpu" to "sg->sgc->asym_prefer_cpu"
1345 		 * which is shared by all the overlapping groups.
1346 		 */
1347 		WARN_ON_ONCE(sd->flags & SD_OVERLAP);
1348 
1349 		sg = sd->groups;
1350 		if (cpu != sg->asym_prefer_cpu) {
1351 			/*
1352 			 * Since the parent is a superset of the current group,
1353 			 * if the cpu is not the "asym_prefer_cpu" at the
1354 			 * current level, it cannot be the preferred CPU at a
1355 			 * higher levels either.
1356 			 */
1357 			if (!sched_asym_prefer(cpu, sg->asym_prefer_cpu))
1358 				return;
1359 
1360 			WRITE_ONCE(sg->asym_prefer_cpu, cpu);
1361 			continue;
1362 		}
1363 
1364 		/* Ranking has improved; CPU is still the preferred one. */
1365 		if (new_prio >= old_prio)
1366 			continue;
1367 
1368 		for_each_cpu(group_cpu, sched_group_span(sg)) {
1369 			if (sched_asym_prefer(group_cpu, asym_prefer_cpu))
1370 				asym_prefer_cpu = group_cpu;
1371 		}
1372 
1373 		WRITE_ONCE(sg->asym_prefer_cpu, asym_prefer_cpu);
1374 	}
1375 }
1376 
1377 #endif /* CONFIG_SMP */
1378 
1379 /*
1380  * Set of available CPUs grouped by their corresponding capacities
1381  * Each list entry contains a CPU mask reflecting CPUs that share the same
1382  * capacity.
1383  * The lifespan of data is unlimited.
1384  */
1385 LIST_HEAD(asym_cap_list);
1386 
1387 /*
1388  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1389  * Provides sd_flags reflecting the asymmetry scope.
1390  */
1391 static inline int
1392 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1393 			   const struct cpumask *cpu_map)
1394 {
1395 	struct asym_cap_data *entry;
1396 	int count = 0, miss = 0;
1397 
1398 	/*
1399 	 * Count how many unique CPU capacities this domain spans across
1400 	 * (compare sched_domain CPUs mask with ones representing  available
1401 	 * CPUs capacities). Take into account CPUs that might be offline:
1402 	 * skip those.
1403 	 */
1404 	list_for_each_entry(entry, &asym_cap_list, link) {
1405 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1406 			++count;
1407 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1408 			++miss;
1409 	}
1410 
1411 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1412 
1413 	/* No asymmetry detected */
1414 	if (count < 2)
1415 		return 0;
1416 	/* Some of the available CPU capacity values have not been detected */
1417 	if (miss)
1418 		return SD_ASYM_CPUCAPACITY;
1419 
1420 	/* Full asymmetry */
1421 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1422 
1423 }
1424 
1425 static void free_asym_cap_entry(struct rcu_head *head)
1426 {
1427 	struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu);
1428 	kfree(entry);
1429 }
1430 
1431 static inline void asym_cpu_capacity_update_data(int cpu)
1432 {
1433 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1434 	struct asym_cap_data *insert_entry = NULL;
1435 	struct asym_cap_data *entry;
1436 
1437 	/*
1438 	 * Search if capacity already exits. If not, track which the entry
1439 	 * where we should insert to keep the list ordered descending.
1440 	 */
1441 	list_for_each_entry(entry, &asym_cap_list, link) {
1442 		if (capacity == entry->capacity)
1443 			goto done;
1444 		else if (!insert_entry && capacity > entry->capacity)
1445 			insert_entry = list_prev_entry(entry, link);
1446 	}
1447 
1448 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1449 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1450 		return;
1451 	entry->capacity = capacity;
1452 
1453 	/* If NULL then the new capacity is the smallest, add last. */
1454 	if (!insert_entry)
1455 		list_add_tail_rcu(&entry->link, &asym_cap_list);
1456 	else
1457 		list_add_rcu(&entry->link, &insert_entry->link);
1458 done:
1459 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1460 }
1461 
1462 /*
1463  * Build-up/update list of CPUs grouped by their capacities
1464  * An update requires explicit request to rebuild sched domains
1465  * with state indicating CPU topology changes.
1466  */
1467 static void asym_cpu_capacity_scan(void)
1468 {
1469 	struct asym_cap_data *entry, *next;
1470 	int cpu;
1471 
1472 	list_for_each_entry(entry, &asym_cap_list, link)
1473 		cpumask_clear(cpu_capacity_span(entry));
1474 
1475 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1476 		asym_cpu_capacity_update_data(cpu);
1477 
1478 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1479 		if (cpumask_empty(cpu_capacity_span(entry))) {
1480 			list_del_rcu(&entry->link);
1481 			call_rcu(&entry->rcu, free_asym_cap_entry);
1482 		}
1483 	}
1484 
1485 	/*
1486 	 * Only one capacity value has been detected i.e. this system is symmetric.
1487 	 * No need to keep this data around.
1488 	 */
1489 	if (list_is_singular(&asym_cap_list)) {
1490 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1491 		list_del_rcu(&entry->link);
1492 		call_rcu(&entry->rcu, free_asym_cap_entry);
1493 	}
1494 }
1495 
1496 /*
1497  * Initializers for schedule domains
1498  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1499  */
1500 
1501 static int default_relax_domain_level = -1;
1502 int sched_domain_level_max;
1503 
1504 static int __init setup_relax_domain_level(char *str)
1505 {
1506 	if (kstrtoint(str, 0, &default_relax_domain_level))
1507 		pr_warn("Unable to set relax_domain_level\n");
1508 
1509 	return 1;
1510 }
1511 __setup("relax_domain_level=", setup_relax_domain_level);
1512 
1513 static void set_domain_attribute(struct sched_domain *sd,
1514 				 struct sched_domain_attr *attr)
1515 {
1516 	int request;
1517 
1518 	if (!attr || attr->relax_domain_level < 0) {
1519 		if (default_relax_domain_level < 0)
1520 			return;
1521 		request = default_relax_domain_level;
1522 	} else
1523 		request = attr->relax_domain_level;
1524 
1525 	if (sd->level >= request) {
1526 		/* Turn off idle balance on this domain: */
1527 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1528 	}
1529 }
1530 
1531 static void __sdt_free(const struct cpumask *cpu_map);
1532 static int __sdt_alloc(const struct cpumask *cpu_map);
1533 
1534 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1535 				 const struct cpumask *cpu_map)
1536 {
1537 	switch (what) {
1538 	case sa_rootdomain:
1539 		if (!atomic_read(&d->rd->refcount))
1540 			free_rootdomain(&d->rd->rcu);
1541 		fallthrough;
1542 	case sa_sd:
1543 		free_percpu(d->sd);
1544 		fallthrough;
1545 	case sa_sd_storage:
1546 		__sdt_free(cpu_map);
1547 		fallthrough;
1548 	case sa_none:
1549 		break;
1550 	}
1551 }
1552 
1553 static enum s_alloc
1554 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1555 {
1556 	memset(d, 0, sizeof(*d));
1557 
1558 	if (__sdt_alloc(cpu_map))
1559 		return sa_sd_storage;
1560 	d->sd = alloc_percpu(struct sched_domain *);
1561 	if (!d->sd)
1562 		return sa_sd_storage;
1563 	d->rd = alloc_rootdomain();
1564 	if (!d->rd)
1565 		return sa_sd;
1566 
1567 	return sa_rootdomain;
1568 }
1569 
1570 /*
1571  * NULL the sd_data elements we've used to build the sched_domain and
1572  * sched_group structure so that the subsequent __free_domain_allocs()
1573  * will not free the data we're using.
1574  */
1575 static void claim_allocations(int cpu, struct sched_domain *sd)
1576 {
1577 	struct sd_data *sdd = sd->private;
1578 
1579 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1580 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1581 
1582 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1583 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1584 
1585 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1586 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1587 
1588 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1589 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1590 }
1591 
1592 #ifdef CONFIG_NUMA
1593 enum numa_topology_type sched_numa_topology_type;
1594 
1595 static int			sched_domains_numa_levels;
1596 static int			sched_domains_curr_level;
1597 
1598 int				sched_max_numa_distance;
1599 static int			*sched_domains_numa_distance;
1600 static struct cpumask		***sched_domains_numa_masks;
1601 #endif
1602 
1603 /*
1604  * SD_flags allowed in topology descriptions.
1605  *
1606  * These flags are purely descriptive of the topology and do not prescribe
1607  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1608  * function. For details, see include/linux/sched/sd_flags.h.
1609  *
1610  *   SD_SHARE_CPUCAPACITY
1611  *   SD_SHARE_LLC
1612  *   SD_CLUSTER
1613  *   SD_NUMA
1614  *
1615  * Odd one out, which beside describing the topology has a quirk also
1616  * prescribes the desired behaviour that goes along with it:
1617  *
1618  *   SD_ASYM_PACKING        - describes SMT quirks
1619  */
1620 #define TOPOLOGY_SD_FLAGS		\
1621 	(SD_SHARE_CPUCAPACITY	|	\
1622 	 SD_CLUSTER		|	\
1623 	 SD_SHARE_LLC		|	\
1624 	 SD_NUMA		|	\
1625 	 SD_ASYM_PACKING)
1626 
1627 static struct sched_domain *
1628 sd_init(struct sched_domain_topology_level *tl,
1629 	const struct cpumask *cpu_map,
1630 	struct sched_domain *child, int cpu)
1631 {
1632 	struct sd_data *sdd = &tl->data;
1633 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1634 	int sd_id, sd_weight, sd_flags = 0;
1635 	struct cpumask *sd_span;
1636 
1637 #ifdef CONFIG_NUMA
1638 	/*
1639 	 * Ugly hack to pass state to sd_numa_mask()...
1640 	 */
1641 	sched_domains_curr_level = tl->numa_level;
1642 #endif
1643 
1644 	sd_weight = cpumask_weight(tl->mask(cpu));
1645 
1646 	if (tl->sd_flags)
1647 		sd_flags = (*tl->sd_flags)();
1648 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1649 			"wrong sd_flags in topology description\n"))
1650 		sd_flags &= TOPOLOGY_SD_FLAGS;
1651 
1652 	*sd = (struct sched_domain){
1653 		.min_interval		= sd_weight,
1654 		.max_interval		= 2*sd_weight,
1655 		.busy_factor		= 16,
1656 		.imbalance_pct		= 117,
1657 
1658 		.cache_nice_tries	= 0,
1659 
1660 		.flags			= 1*SD_BALANCE_NEWIDLE
1661 					| 1*SD_BALANCE_EXEC
1662 					| 1*SD_BALANCE_FORK
1663 					| 0*SD_BALANCE_WAKE
1664 					| 1*SD_WAKE_AFFINE
1665 					| 0*SD_SHARE_CPUCAPACITY
1666 					| 0*SD_SHARE_LLC
1667 					| 0*SD_SERIALIZE
1668 					| 1*SD_PREFER_SIBLING
1669 					| 0*SD_NUMA
1670 					| sd_flags
1671 					,
1672 
1673 		.last_balance		= jiffies,
1674 		.balance_interval	= sd_weight,
1675 		.max_newidle_lb_cost	= 0,
1676 		.last_decay_max_lb_cost	= jiffies,
1677 		.child			= child,
1678 		.name			= tl->name,
1679 	};
1680 
1681 	sd_span = sched_domain_span(sd);
1682 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1683 	sd_id = cpumask_first(sd_span);
1684 
1685 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1686 
1687 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1688 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1689 		  "CPU capacity asymmetry not supported on SMT\n");
1690 
1691 	/*
1692 	 * Convert topological properties into behaviour.
1693 	 */
1694 	/* Don't attempt to spread across CPUs of different capacities. */
1695 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1696 		sd->child->flags &= ~SD_PREFER_SIBLING;
1697 
1698 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1699 		sd->imbalance_pct = 110;
1700 
1701 	} else if (sd->flags & SD_SHARE_LLC) {
1702 		sd->imbalance_pct = 117;
1703 		sd->cache_nice_tries = 1;
1704 
1705 #ifdef CONFIG_NUMA
1706 	} else if (sd->flags & SD_NUMA) {
1707 		sd->cache_nice_tries = 2;
1708 
1709 		sd->flags &= ~SD_PREFER_SIBLING;
1710 		sd->flags |= SD_SERIALIZE;
1711 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1712 			sd->flags &= ~(SD_BALANCE_EXEC |
1713 				       SD_BALANCE_FORK |
1714 				       SD_WAKE_AFFINE);
1715 		}
1716 
1717 #endif
1718 	} else {
1719 		sd->cache_nice_tries = 1;
1720 	}
1721 
1722 	/*
1723 	 * For all levels sharing cache; connect a sched_domain_shared
1724 	 * instance.
1725 	 */
1726 	if (sd->flags & SD_SHARE_LLC) {
1727 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1728 		atomic_inc(&sd->shared->ref);
1729 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1730 	}
1731 
1732 	sd->private = sdd;
1733 
1734 	return sd;
1735 }
1736 
1737 /*
1738  * Topology list, bottom-up.
1739  */
1740 static struct sched_domain_topology_level default_topology[] = {
1741 #ifdef CONFIG_SCHED_SMT
1742 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1743 #endif
1744 
1745 #ifdef CONFIG_SCHED_CLUSTER
1746 	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1747 #endif
1748 
1749 #ifdef CONFIG_SCHED_MC
1750 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1751 #endif
1752 	{ cpu_cpu_mask, SD_INIT_NAME(PKG) },
1753 	{ NULL, },
1754 };
1755 
1756 static struct sched_domain_topology_level *sched_domain_topology =
1757 	default_topology;
1758 static struct sched_domain_topology_level *sched_domain_topology_saved;
1759 
1760 #define for_each_sd_topology(tl)			\
1761 	for (tl = sched_domain_topology; tl->mask; tl++)
1762 
1763 void __init set_sched_topology(struct sched_domain_topology_level *tl)
1764 {
1765 	if (WARN_ON_ONCE(sched_smp_initialized))
1766 		return;
1767 
1768 	sched_domain_topology = tl;
1769 	sched_domain_topology_saved = NULL;
1770 }
1771 
1772 #ifdef CONFIG_NUMA
1773 
1774 static const struct cpumask *sd_numa_mask(int cpu)
1775 {
1776 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1777 }
1778 
1779 static void sched_numa_warn(const char *str)
1780 {
1781 	static int done = false;
1782 	int i,j;
1783 
1784 	if (done)
1785 		return;
1786 
1787 	done = true;
1788 
1789 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1790 
1791 	for (i = 0; i < nr_node_ids; i++) {
1792 		printk(KERN_WARNING "  ");
1793 		for (j = 0; j < nr_node_ids; j++) {
1794 			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1795 				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1796 			else
1797 				printk(KERN_CONT " %02d  ", node_distance(i,j));
1798 		}
1799 		printk(KERN_CONT "\n");
1800 	}
1801 	printk(KERN_WARNING "\n");
1802 }
1803 
1804 bool find_numa_distance(int distance)
1805 {
1806 	bool found = false;
1807 	int i, *distances;
1808 
1809 	if (distance == node_distance(0, 0))
1810 		return true;
1811 
1812 	rcu_read_lock();
1813 	distances = rcu_dereference(sched_domains_numa_distance);
1814 	if (!distances)
1815 		goto unlock;
1816 	for (i = 0; i < sched_domains_numa_levels; i++) {
1817 		if (distances[i] == distance) {
1818 			found = true;
1819 			break;
1820 		}
1821 	}
1822 unlock:
1823 	rcu_read_unlock();
1824 
1825 	return found;
1826 }
1827 
1828 #define for_each_cpu_node_but(n, nbut)		\
1829 	for_each_node_state(n, N_CPU)		\
1830 		if (n == nbut)			\
1831 			continue;		\
1832 		else
1833 
1834 /*
1835  * A system can have three types of NUMA topology:
1836  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1837  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1838  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1839  *
1840  * The difference between a glueless mesh topology and a backplane
1841  * topology lies in whether communication between not directly
1842  * connected nodes goes through intermediary nodes (where programs
1843  * could run), or through backplane controllers. This affects
1844  * placement of programs.
1845  *
1846  * The type of topology can be discerned with the following tests:
1847  * - If the maximum distance between any nodes is 1 hop, the system
1848  *   is directly connected.
1849  * - If for two nodes A and B, located N > 1 hops away from each other,
1850  *   there is an intermediary node C, which is < N hops away from both
1851  *   nodes A and B, the system is a glueless mesh.
1852  */
1853 static void init_numa_topology_type(int offline_node)
1854 {
1855 	int a, b, c, n;
1856 
1857 	n = sched_max_numa_distance;
1858 
1859 	if (sched_domains_numa_levels <= 2) {
1860 		sched_numa_topology_type = NUMA_DIRECT;
1861 		return;
1862 	}
1863 
1864 	for_each_cpu_node_but(a, offline_node) {
1865 		for_each_cpu_node_but(b, offline_node) {
1866 			/* Find two nodes furthest removed from each other. */
1867 			if (node_distance(a, b) < n)
1868 				continue;
1869 
1870 			/* Is there an intermediary node between a and b? */
1871 			for_each_cpu_node_but(c, offline_node) {
1872 				if (node_distance(a, c) < n &&
1873 				    node_distance(b, c) < n) {
1874 					sched_numa_topology_type =
1875 							NUMA_GLUELESS_MESH;
1876 					return;
1877 				}
1878 			}
1879 
1880 			sched_numa_topology_type = NUMA_BACKPLANE;
1881 			return;
1882 		}
1883 	}
1884 
1885 	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1886 	sched_numa_topology_type = NUMA_DIRECT;
1887 }
1888 
1889 
1890 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1891 
1892 void sched_init_numa(int offline_node)
1893 {
1894 	struct sched_domain_topology_level *tl;
1895 	unsigned long *distance_map;
1896 	int nr_levels = 0;
1897 	int i, j;
1898 	int *distances;
1899 	struct cpumask ***masks;
1900 
1901 	/*
1902 	 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the
1903 	 * unique distances in the node_distance() table.
1904 	 */
1905 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1906 	if (!distance_map)
1907 		return;
1908 
1909 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1910 	for_each_cpu_node_but(i, offline_node) {
1911 		for_each_cpu_node_but(j, offline_node) {
1912 			int distance = node_distance(i, j);
1913 
1914 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1915 				sched_numa_warn("Invalid distance value range");
1916 				bitmap_free(distance_map);
1917 				return;
1918 			}
1919 
1920 			bitmap_set(distance_map, distance, 1);
1921 		}
1922 	}
1923 	/*
1924 	 * We can now figure out how many unique distance values there are and
1925 	 * allocate memory accordingly.
1926 	 */
1927 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1928 
1929 	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1930 	if (!distances) {
1931 		bitmap_free(distance_map);
1932 		return;
1933 	}
1934 
1935 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1936 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1937 		distances[i] = j;
1938 	}
1939 	rcu_assign_pointer(sched_domains_numa_distance, distances);
1940 
1941 	bitmap_free(distance_map);
1942 
1943 	/*
1944 	 * 'nr_levels' contains the number of unique distances
1945 	 *
1946 	 * The sched_domains_numa_distance[] array includes the actual distance
1947 	 * numbers.
1948 	 */
1949 
1950 	/*
1951 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1952 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1953 	 * the array will contain less then 'nr_levels' members. This could be
1954 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1955 	 * in other functions.
1956 	 *
1957 	 * We reset it to 'nr_levels' at the end of this function.
1958 	 */
1959 	sched_domains_numa_levels = 0;
1960 
1961 	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1962 	if (!masks)
1963 		return;
1964 
1965 	/*
1966 	 * Now for each level, construct a mask per node which contains all
1967 	 * CPUs of nodes that are that many hops away from us.
1968 	 */
1969 	for (i = 0; i < nr_levels; i++) {
1970 		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1971 		if (!masks[i])
1972 			return;
1973 
1974 		for_each_cpu_node_but(j, offline_node) {
1975 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1976 			int k;
1977 
1978 			if (!mask)
1979 				return;
1980 
1981 			masks[i][j] = mask;
1982 
1983 			for_each_cpu_node_but(k, offline_node) {
1984 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1985 					sched_numa_warn("Node-distance not symmetric");
1986 
1987 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1988 					continue;
1989 
1990 				cpumask_or(mask, mask, cpumask_of_node(k));
1991 			}
1992 		}
1993 	}
1994 	rcu_assign_pointer(sched_domains_numa_masks, masks);
1995 
1996 	/* Compute default topology size */
1997 	for (i = 0; sched_domain_topology[i].mask; i++);
1998 
1999 	tl = kzalloc((i + nr_levels + 1) *
2000 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
2001 	if (!tl)
2002 		return;
2003 
2004 	/*
2005 	 * Copy the default topology bits..
2006 	 */
2007 	for (i = 0; sched_domain_topology[i].mask; i++)
2008 		tl[i] = sched_domain_topology[i];
2009 
2010 	/*
2011 	 * Add the NUMA identity distance, aka single NODE.
2012 	 */
2013 	tl[i++] = (struct sched_domain_topology_level){
2014 		.mask = sd_numa_mask,
2015 		.numa_level = 0,
2016 		SD_INIT_NAME(NODE)
2017 	};
2018 
2019 	/*
2020 	 * .. and append 'j' levels of NUMA goodness.
2021 	 */
2022 	for (j = 1; j < nr_levels; i++, j++) {
2023 		tl[i] = (struct sched_domain_topology_level){
2024 			.mask = sd_numa_mask,
2025 			.sd_flags = cpu_numa_flags,
2026 			.flags = SDTL_OVERLAP,
2027 			.numa_level = j,
2028 			SD_INIT_NAME(NUMA)
2029 		};
2030 	}
2031 
2032 	sched_domain_topology_saved = sched_domain_topology;
2033 	sched_domain_topology = tl;
2034 
2035 	sched_domains_numa_levels = nr_levels;
2036 	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
2037 
2038 	init_numa_topology_type(offline_node);
2039 }
2040 
2041 
2042 static void sched_reset_numa(void)
2043 {
2044 	int nr_levels, *distances;
2045 	struct cpumask ***masks;
2046 
2047 	nr_levels = sched_domains_numa_levels;
2048 	sched_domains_numa_levels = 0;
2049 	sched_max_numa_distance = 0;
2050 	sched_numa_topology_type = NUMA_DIRECT;
2051 	distances = sched_domains_numa_distance;
2052 	rcu_assign_pointer(sched_domains_numa_distance, NULL);
2053 	masks = sched_domains_numa_masks;
2054 	rcu_assign_pointer(sched_domains_numa_masks, NULL);
2055 	if (distances || masks) {
2056 		int i, j;
2057 
2058 		synchronize_rcu();
2059 		kfree(distances);
2060 		for (i = 0; i < nr_levels && masks; i++) {
2061 			if (!masks[i])
2062 				continue;
2063 			for_each_node(j)
2064 				kfree(masks[i][j]);
2065 			kfree(masks[i]);
2066 		}
2067 		kfree(masks);
2068 	}
2069 	if (sched_domain_topology_saved) {
2070 		kfree(sched_domain_topology);
2071 		sched_domain_topology = sched_domain_topology_saved;
2072 		sched_domain_topology_saved = NULL;
2073 	}
2074 }
2075 
2076 /*
2077  * Call with hotplug lock held
2078  */
2079 void sched_update_numa(int cpu, bool online)
2080 {
2081 	int node;
2082 
2083 	node = cpu_to_node(cpu);
2084 	/*
2085 	 * Scheduler NUMA topology is updated when the first CPU of a
2086 	 * node is onlined or the last CPU of a node is offlined.
2087 	 */
2088 	if (cpumask_weight(cpumask_of_node(node)) != 1)
2089 		return;
2090 
2091 	sched_reset_numa();
2092 	sched_init_numa(online ? NUMA_NO_NODE : node);
2093 }
2094 
2095 void sched_domains_numa_masks_set(unsigned int cpu)
2096 {
2097 	int node = cpu_to_node(cpu);
2098 	int i, j;
2099 
2100 	for (i = 0; i < sched_domains_numa_levels; i++) {
2101 		for (j = 0; j < nr_node_ids; j++) {
2102 			if (!node_state(j, N_CPU))
2103 				continue;
2104 
2105 			/* Set ourselves in the remote node's masks */
2106 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2107 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2108 		}
2109 	}
2110 }
2111 
2112 void sched_domains_numa_masks_clear(unsigned int cpu)
2113 {
2114 	int i, j;
2115 
2116 	for (i = 0; i < sched_domains_numa_levels; i++) {
2117 		for (j = 0; j < nr_node_ids; j++) {
2118 			if (sched_domains_numa_masks[i][j])
2119 				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2120 		}
2121 	}
2122 }
2123 
2124 /*
2125  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2126  *                             closest to @cpu from @cpumask.
2127  * cpumask: cpumask to find a cpu from
2128  * cpu: cpu to be close to
2129  *
2130  * returns: cpu, or nr_cpu_ids when nothing found.
2131  */
2132 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2133 {
2134 	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2135 	struct cpumask ***masks;
2136 
2137 	rcu_read_lock();
2138 	masks = rcu_dereference(sched_domains_numa_masks);
2139 	if (!masks)
2140 		goto unlock;
2141 	for (i = 0; i < sched_domains_numa_levels; i++) {
2142 		if (!masks[i][j])
2143 			break;
2144 		cpu = cpumask_any_and_distribute(cpus, masks[i][j]);
2145 		if (cpu < nr_cpu_ids) {
2146 			found = cpu;
2147 			break;
2148 		}
2149 	}
2150 unlock:
2151 	rcu_read_unlock();
2152 
2153 	return found;
2154 }
2155 
2156 struct __cmp_key {
2157 	const struct cpumask *cpus;
2158 	struct cpumask ***masks;
2159 	int node;
2160 	int cpu;
2161 	int w;
2162 };
2163 
2164 static int hop_cmp(const void *a, const void *b)
2165 {
2166 	struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2167 	struct __cmp_key *k = (struct __cmp_key *)a;
2168 
2169 	if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2170 		return 1;
2171 
2172 	if (b == k->masks) {
2173 		k->w = 0;
2174 		return 0;
2175 	}
2176 
2177 	prev_hop = *((struct cpumask ***)b - 1);
2178 	k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2179 	if (k->w <= k->cpu)
2180 		return 0;
2181 
2182 	return -1;
2183 }
2184 
2185 /**
2186  * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2187  *                             from @cpus to @cpu, taking into account distance
2188  *                             from a given @node.
2189  * @cpus: cpumask to find a cpu from
2190  * @cpu: CPU to start searching
2191  * @node: NUMA node to order CPUs by distance
2192  *
2193  * Return: cpu, or nr_cpu_ids when nothing found.
2194  */
2195 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2196 {
2197 	struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2198 	struct cpumask ***hop_masks;
2199 	int hop, ret = nr_cpu_ids;
2200 
2201 	if (node == NUMA_NO_NODE)
2202 		return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2203 
2204 	rcu_read_lock();
2205 
2206 	/* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2207 	node = numa_nearest_node(node, N_CPU);
2208 	k.node = node;
2209 
2210 	k.masks = rcu_dereference(sched_domains_numa_masks);
2211 	if (!k.masks)
2212 		goto unlock;
2213 
2214 	hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2215 	hop = hop_masks	- k.masks;
2216 
2217 	ret = hop ?
2218 		cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2219 		cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2220 unlock:
2221 	rcu_read_unlock();
2222 	return ret;
2223 }
2224 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2225 
2226 /**
2227  * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2228  *                         @node
2229  * @node: The node to count hops from.
2230  * @hops: Include CPUs up to that many hops away. 0 means local node.
2231  *
2232  * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2233  * @node, an error value otherwise.
2234  *
2235  * Requires rcu_lock to be held. Returned cpumask is only valid within that
2236  * read-side section, copy it if required beyond that.
2237  *
2238  * Note that not all hops are equal in distance; see sched_init_numa() for how
2239  * distances and masks are handled.
2240  * Also note that this is a reflection of sched_domains_numa_masks, which may change
2241  * during the lifetime of the system (offline nodes are taken out of the masks).
2242  */
2243 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2244 {
2245 	struct cpumask ***masks;
2246 
2247 	if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2248 		return ERR_PTR(-EINVAL);
2249 
2250 	masks = rcu_dereference(sched_domains_numa_masks);
2251 	if (!masks)
2252 		return ERR_PTR(-EBUSY);
2253 
2254 	return masks[hops][node];
2255 }
2256 EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2257 
2258 #endif /* CONFIG_NUMA */
2259 
2260 static int __sdt_alloc(const struct cpumask *cpu_map)
2261 {
2262 	struct sched_domain_topology_level *tl;
2263 	int j;
2264 
2265 	for_each_sd_topology(tl) {
2266 		struct sd_data *sdd = &tl->data;
2267 
2268 		sdd->sd = alloc_percpu(struct sched_domain *);
2269 		if (!sdd->sd)
2270 			return -ENOMEM;
2271 
2272 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2273 		if (!sdd->sds)
2274 			return -ENOMEM;
2275 
2276 		sdd->sg = alloc_percpu(struct sched_group *);
2277 		if (!sdd->sg)
2278 			return -ENOMEM;
2279 
2280 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2281 		if (!sdd->sgc)
2282 			return -ENOMEM;
2283 
2284 		for_each_cpu(j, cpu_map) {
2285 			struct sched_domain *sd;
2286 			struct sched_domain_shared *sds;
2287 			struct sched_group *sg;
2288 			struct sched_group_capacity *sgc;
2289 
2290 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2291 					GFP_KERNEL, cpu_to_node(j));
2292 			if (!sd)
2293 				return -ENOMEM;
2294 
2295 			*per_cpu_ptr(sdd->sd, j) = sd;
2296 
2297 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2298 					GFP_KERNEL, cpu_to_node(j));
2299 			if (!sds)
2300 				return -ENOMEM;
2301 
2302 			*per_cpu_ptr(sdd->sds, j) = sds;
2303 
2304 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2305 					GFP_KERNEL, cpu_to_node(j));
2306 			if (!sg)
2307 				return -ENOMEM;
2308 
2309 			sg->next = sg;
2310 
2311 			*per_cpu_ptr(sdd->sg, j) = sg;
2312 
2313 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2314 					GFP_KERNEL, cpu_to_node(j));
2315 			if (!sgc)
2316 				return -ENOMEM;
2317 
2318 			sgc->id = j;
2319 
2320 			*per_cpu_ptr(sdd->sgc, j) = sgc;
2321 		}
2322 	}
2323 
2324 	return 0;
2325 }
2326 
2327 static void __sdt_free(const struct cpumask *cpu_map)
2328 {
2329 	struct sched_domain_topology_level *tl;
2330 	int j;
2331 
2332 	for_each_sd_topology(tl) {
2333 		struct sd_data *sdd = &tl->data;
2334 
2335 		for_each_cpu(j, cpu_map) {
2336 			struct sched_domain *sd;
2337 
2338 			if (sdd->sd) {
2339 				sd = *per_cpu_ptr(sdd->sd, j);
2340 				if (sd && (sd->flags & SD_OVERLAP))
2341 					free_sched_groups(sd->groups, 0);
2342 				kfree(*per_cpu_ptr(sdd->sd, j));
2343 			}
2344 
2345 			if (sdd->sds)
2346 				kfree(*per_cpu_ptr(sdd->sds, j));
2347 			if (sdd->sg)
2348 				kfree(*per_cpu_ptr(sdd->sg, j));
2349 			if (sdd->sgc)
2350 				kfree(*per_cpu_ptr(sdd->sgc, j));
2351 		}
2352 		free_percpu(sdd->sd);
2353 		sdd->sd = NULL;
2354 		free_percpu(sdd->sds);
2355 		sdd->sds = NULL;
2356 		free_percpu(sdd->sg);
2357 		sdd->sg = NULL;
2358 		free_percpu(sdd->sgc);
2359 		sdd->sgc = NULL;
2360 	}
2361 }
2362 
2363 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2364 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2365 		struct sched_domain *child, int cpu)
2366 {
2367 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2368 
2369 	if (child) {
2370 		sd->level = child->level + 1;
2371 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2372 		child->parent = sd;
2373 
2374 		if (!cpumask_subset(sched_domain_span(child),
2375 				    sched_domain_span(sd))) {
2376 			pr_err("BUG: arch topology borken\n");
2377 			pr_err("     the %s domain not a subset of the %s domain\n",
2378 					child->name, sd->name);
2379 			/* Fixup, ensure @sd has at least @child CPUs. */
2380 			cpumask_or(sched_domain_span(sd),
2381 				   sched_domain_span(sd),
2382 				   sched_domain_span(child));
2383 		}
2384 
2385 	}
2386 	set_domain_attribute(sd, attr);
2387 
2388 	return sd;
2389 }
2390 
2391 /*
2392  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2393  * any two given CPUs on non-NUMA topology levels.
2394  */
2395 static bool topology_span_sane(const struct cpumask *cpu_map)
2396 {
2397 	struct sched_domain_topology_level *tl;
2398 	struct cpumask *covered, *id_seen;
2399 	int cpu;
2400 
2401 	lockdep_assert_held(&sched_domains_mutex);
2402 	covered = sched_domains_tmpmask;
2403 	id_seen = sched_domains_tmpmask2;
2404 
2405 	for_each_sd_topology(tl) {
2406 
2407 		/* NUMA levels are allowed to overlap */
2408 		if (tl->flags & SDTL_OVERLAP)
2409 			continue;
2410 
2411 		cpumask_clear(covered);
2412 		cpumask_clear(id_seen);
2413 
2414 		/*
2415 		 * Non-NUMA levels cannot partially overlap - they must be either
2416 		 * completely equal or completely disjoint. Otherwise we can end up
2417 		 * breaking the sched_group lists - i.e. a later get_group() pass
2418 		 * breaks the linking done for an earlier span.
2419 		 */
2420 		for_each_cpu(cpu, cpu_map) {
2421 			const struct cpumask *tl_cpu_mask = tl->mask(cpu);
2422 			int id;
2423 
2424 			/* lowest bit set in this mask is used as a unique id */
2425 			id = cpumask_first(tl_cpu_mask);
2426 
2427 			if (cpumask_test_cpu(id, id_seen)) {
2428 				/* First CPU has already been seen, ensure identical spans */
2429 				if (!cpumask_equal(tl->mask(id), tl_cpu_mask))
2430 					return false;
2431 			} else {
2432 				/* First CPU hasn't been seen before, ensure it's a completely new span */
2433 				if (cpumask_intersects(tl_cpu_mask, covered))
2434 					return false;
2435 
2436 				cpumask_or(covered, covered, tl_cpu_mask);
2437 				cpumask_set_cpu(id, id_seen);
2438 			}
2439 		}
2440 	}
2441 	return true;
2442 }
2443 
2444 /*
2445  * Build sched domains for a given set of CPUs and attach the sched domains
2446  * to the individual CPUs
2447  */
2448 static int
2449 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2450 {
2451 	enum s_alloc alloc_state = sa_none;
2452 	struct sched_domain *sd;
2453 	struct s_data d;
2454 	struct rq *rq = NULL;
2455 	int i, ret = -ENOMEM;
2456 	bool has_asym = false;
2457 	bool has_cluster = false;
2458 
2459 	if (WARN_ON(cpumask_empty(cpu_map)))
2460 		goto error;
2461 
2462 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2463 	if (alloc_state != sa_rootdomain)
2464 		goto error;
2465 
2466 	/* Set up domains for CPUs specified by the cpu_map: */
2467 	for_each_cpu(i, cpu_map) {
2468 		struct sched_domain_topology_level *tl;
2469 
2470 		sd = NULL;
2471 		for_each_sd_topology(tl) {
2472 
2473 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2474 
2475 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2476 
2477 			if (tl == sched_domain_topology)
2478 				*per_cpu_ptr(d.sd, i) = sd;
2479 			if (tl->flags & SDTL_OVERLAP)
2480 				sd->flags |= SD_OVERLAP;
2481 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2482 				break;
2483 		}
2484 	}
2485 
2486 	if (WARN_ON(!topology_span_sane(cpu_map)))
2487 		goto error;
2488 
2489 	/* Build the groups for the domains */
2490 	for_each_cpu(i, cpu_map) {
2491 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2492 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2493 			if (sd->flags & SD_OVERLAP) {
2494 				if (build_overlap_sched_groups(sd, i))
2495 					goto error;
2496 			} else {
2497 				if (build_sched_groups(sd, i))
2498 					goto error;
2499 			}
2500 		}
2501 	}
2502 
2503 	/*
2504 	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2505 	 * imbalanced.
2506 	 */
2507 	for_each_cpu(i, cpu_map) {
2508 		unsigned int imb = 0;
2509 		unsigned int imb_span = 1;
2510 
2511 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2512 			struct sched_domain *child = sd->child;
2513 
2514 			if (!(sd->flags & SD_SHARE_LLC) && child &&
2515 			    (child->flags & SD_SHARE_LLC)) {
2516 				struct sched_domain __rcu *top_p;
2517 				unsigned int nr_llcs;
2518 
2519 				/*
2520 				 * For a single LLC per node, allow an
2521 				 * imbalance up to 12.5% of the node. This is
2522 				 * arbitrary cutoff based two factors -- SMT and
2523 				 * memory channels. For SMT-2, the intent is to
2524 				 * avoid premature sharing of HT resources but
2525 				 * SMT-4 or SMT-8 *may* benefit from a different
2526 				 * cutoff. For memory channels, this is a very
2527 				 * rough estimate of how many channels may be
2528 				 * active and is based on recent CPUs with
2529 				 * many cores.
2530 				 *
2531 				 * For multiple LLCs, allow an imbalance
2532 				 * until multiple tasks would share an LLC
2533 				 * on one node while LLCs on another node
2534 				 * remain idle. This assumes that there are
2535 				 * enough logical CPUs per LLC to avoid SMT
2536 				 * factors and that there is a correlation
2537 				 * between LLCs and memory channels.
2538 				 */
2539 				nr_llcs = sd->span_weight / child->span_weight;
2540 				if (nr_llcs == 1)
2541 					imb = sd->span_weight >> 3;
2542 				else
2543 					imb = nr_llcs;
2544 				imb = max(1U, imb);
2545 				sd->imb_numa_nr = imb;
2546 
2547 				/* Set span based on the first NUMA domain. */
2548 				top_p = sd->parent;
2549 				while (top_p && !(top_p->flags & SD_NUMA)) {
2550 					top_p = top_p->parent;
2551 				}
2552 				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2553 			} else {
2554 				int factor = max(1U, (sd->span_weight / imb_span));
2555 
2556 				sd->imb_numa_nr = imb * factor;
2557 			}
2558 		}
2559 	}
2560 
2561 	/* Calculate CPU capacity for physical packages and nodes */
2562 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2563 		if (!cpumask_test_cpu(i, cpu_map))
2564 			continue;
2565 
2566 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2567 			claim_allocations(i, sd);
2568 			init_sched_groups_capacity(i, sd);
2569 		}
2570 	}
2571 
2572 	/* Attach the domains */
2573 	rcu_read_lock();
2574 	for_each_cpu(i, cpu_map) {
2575 		rq = cpu_rq(i);
2576 		sd = *per_cpu_ptr(d.sd, i);
2577 
2578 		cpu_attach_domain(sd, d.rd, i);
2579 
2580 		if (lowest_flag_domain(i, SD_CLUSTER))
2581 			has_cluster = true;
2582 	}
2583 	rcu_read_unlock();
2584 
2585 	if (has_asym)
2586 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2587 
2588 	if (has_cluster)
2589 		static_branch_inc_cpuslocked(&sched_cluster_active);
2590 
2591 	if (rq && sched_debug_verbose)
2592 		pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map));
2593 
2594 	ret = 0;
2595 error:
2596 	__free_domain_allocs(&d, alloc_state, cpu_map);
2597 
2598 	return ret;
2599 }
2600 
2601 /* Current sched domains: */
2602 static cpumask_var_t			*doms_cur;
2603 
2604 /* Number of sched domains in 'doms_cur': */
2605 static int				ndoms_cur;
2606 
2607 /* Attributes of custom domains in 'doms_cur' */
2608 static struct sched_domain_attr		*dattr_cur;
2609 
2610 /*
2611  * Special case: If a kmalloc() of a doms_cur partition (array of
2612  * cpumask) fails, then fallback to a single sched domain,
2613  * as determined by the single cpumask fallback_doms.
2614  */
2615 static cpumask_var_t			fallback_doms;
2616 
2617 /*
2618  * arch_update_cpu_topology lets virtualized architectures update the
2619  * CPU core maps. It is supposed to return 1 if the topology changed
2620  * or 0 if it stayed the same.
2621  */
2622 int __weak arch_update_cpu_topology(void)
2623 {
2624 	return 0;
2625 }
2626 
2627 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2628 {
2629 	int i;
2630 	cpumask_var_t *doms;
2631 
2632 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2633 	if (!doms)
2634 		return NULL;
2635 	for (i = 0; i < ndoms; i++) {
2636 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2637 			free_sched_domains(doms, i);
2638 			return NULL;
2639 		}
2640 	}
2641 	return doms;
2642 }
2643 
2644 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2645 {
2646 	unsigned int i;
2647 	for (i = 0; i < ndoms; i++)
2648 		free_cpumask_var(doms[i]);
2649 	kfree(doms);
2650 }
2651 
2652 /*
2653  * Set up scheduler domains and groups.  For now this just excludes isolated
2654  * CPUs, but could be used to exclude other special cases in the future.
2655  */
2656 int __init sched_init_domains(const struct cpumask *cpu_map)
2657 {
2658 	int err;
2659 
2660 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2661 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2662 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2663 
2664 	arch_update_cpu_topology();
2665 	asym_cpu_capacity_scan();
2666 	ndoms_cur = 1;
2667 	doms_cur = alloc_sched_domains(ndoms_cur);
2668 	if (!doms_cur)
2669 		doms_cur = &fallback_doms;
2670 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2671 	err = build_sched_domains(doms_cur[0], NULL);
2672 
2673 	return err;
2674 }
2675 
2676 /*
2677  * Detach sched domains from a group of CPUs specified in cpu_map
2678  * These CPUs will now be attached to the NULL domain
2679  */
2680 static void detach_destroy_domains(const struct cpumask *cpu_map)
2681 {
2682 	unsigned int cpu = cpumask_any(cpu_map);
2683 	int i;
2684 
2685 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2686 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2687 
2688 	if (static_branch_unlikely(&sched_cluster_active))
2689 		static_branch_dec_cpuslocked(&sched_cluster_active);
2690 
2691 	rcu_read_lock();
2692 	for_each_cpu(i, cpu_map)
2693 		cpu_attach_domain(NULL, &def_root_domain, i);
2694 	rcu_read_unlock();
2695 }
2696 
2697 /* handle null as "default" */
2698 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2699 			struct sched_domain_attr *new, int idx_new)
2700 {
2701 	struct sched_domain_attr tmp;
2702 
2703 	/* Fast path: */
2704 	if (!new && !cur)
2705 		return 1;
2706 
2707 	tmp = SD_ATTR_INIT;
2708 
2709 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2710 			new ? (new + idx_new) : &tmp,
2711 			sizeof(struct sched_domain_attr));
2712 }
2713 
2714 /*
2715  * Partition sched domains as specified by the 'ndoms_new'
2716  * cpumasks in the array doms_new[] of cpumasks. This compares
2717  * doms_new[] to the current sched domain partitioning, doms_cur[].
2718  * It destroys each deleted domain and builds each new domain.
2719  *
2720  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2721  * The masks don't intersect (don't overlap.) We should setup one
2722  * sched domain for each mask. CPUs not in any of the cpumasks will
2723  * not be load balanced. If the same cpumask appears both in the
2724  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2725  * it as it is.
2726  *
2727  * The passed in 'doms_new' should be allocated using
2728  * alloc_sched_domains.  This routine takes ownership of it and will
2729  * free_sched_domains it when done with it. If the caller failed the
2730  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2731  * and partition_sched_domains() will fallback to the single partition
2732  * 'fallback_doms', it also forces the domains to be rebuilt.
2733  *
2734  * If doms_new == NULL it will be replaced with cpu_online_mask.
2735  * ndoms_new == 0 is a special case for destroying existing domains,
2736  * and it will not create the default domain.
2737  *
2738  * Call with hotplug lock and sched_domains_mutex held
2739  */
2740 static void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2741 				    struct sched_domain_attr *dattr_new)
2742 {
2743 	bool __maybe_unused has_eas = false;
2744 	int i, j, n;
2745 	int new_topology;
2746 
2747 	lockdep_assert_held(&sched_domains_mutex);
2748 
2749 	/* Let the architecture update CPU core mappings: */
2750 	new_topology = arch_update_cpu_topology();
2751 	/* Trigger rebuilding CPU capacity asymmetry data */
2752 	if (new_topology)
2753 		asym_cpu_capacity_scan();
2754 
2755 	if (!doms_new) {
2756 		WARN_ON_ONCE(dattr_new);
2757 		n = 0;
2758 		doms_new = alloc_sched_domains(1);
2759 		if (doms_new) {
2760 			n = 1;
2761 			cpumask_and(doms_new[0], cpu_active_mask,
2762 				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2763 		}
2764 	} else {
2765 		n = ndoms_new;
2766 	}
2767 
2768 	/* Destroy deleted domains: */
2769 	for (i = 0; i < ndoms_cur; i++) {
2770 		for (j = 0; j < n && !new_topology; j++) {
2771 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2772 			    dattrs_equal(dattr_cur, i, dattr_new, j))
2773 				goto match1;
2774 		}
2775 		/* No match - a current sched domain not in new doms_new[] */
2776 		detach_destroy_domains(doms_cur[i]);
2777 match1:
2778 		;
2779 	}
2780 
2781 	n = ndoms_cur;
2782 	if (!doms_new) {
2783 		n = 0;
2784 		doms_new = &fallback_doms;
2785 		cpumask_and(doms_new[0], cpu_active_mask,
2786 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2787 	}
2788 
2789 	/* Build new domains: */
2790 	for (i = 0; i < ndoms_new; i++) {
2791 		for (j = 0; j < n && !new_topology; j++) {
2792 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2793 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2794 				goto match2;
2795 		}
2796 		/* No match - add a new doms_new */
2797 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2798 match2:
2799 		;
2800 	}
2801 
2802 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2803 	/* Build perf domains: */
2804 	for (i = 0; i < ndoms_new; i++) {
2805 		for (j = 0; j < n && !sched_energy_update; j++) {
2806 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2807 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2808 				has_eas = true;
2809 				goto match3;
2810 			}
2811 		}
2812 		/* No match - add perf domains for a new rd */
2813 		has_eas |= build_perf_domains(doms_new[i]);
2814 match3:
2815 		;
2816 	}
2817 	sched_energy_set(has_eas);
2818 #endif
2819 
2820 	/* Remember the new sched domains: */
2821 	if (doms_cur != &fallback_doms)
2822 		free_sched_domains(doms_cur, ndoms_cur);
2823 
2824 	kfree(dattr_cur);
2825 	doms_cur = doms_new;
2826 	dattr_cur = dattr_new;
2827 	ndoms_cur = ndoms_new;
2828 
2829 	update_sched_domain_debugfs();
2830 	dl_rebuild_rd_accounting();
2831 }
2832 
2833 /*
2834  * Call with hotplug lock held
2835  */
2836 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2837 			     struct sched_domain_attr *dattr_new)
2838 {
2839 	sched_domains_mutex_lock();
2840 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2841 	sched_domains_mutex_unlock();
2842 }
2843