1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/syscalls.c
4  *
5  *  Core kernel scheduler syscalls related code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/sched.h>
11 #include <linux/cpuset.h>
12 #include <linux/sched/debug.h>
13 
14 #include <uapi/linux/sched/types.h>
15 
16 #include "sched.h"
17 #include "autogroup.h"
18 
19 static inline int __normal_prio(int policy, int rt_prio, int nice)
20 {
21 	int prio;
22 
23 	if (dl_policy(policy))
24 		prio = MAX_DL_PRIO - 1;
25 	else if (rt_policy(policy))
26 		prio = MAX_RT_PRIO - 1 - rt_prio;
27 	else
28 		prio = NICE_TO_PRIO(nice);
29 
30 	return prio;
31 }
32 
33 /*
34  * Calculate the expected normal priority: i.e. priority
35  * without taking RT-inheritance into account. Might be
36  * boosted by interactivity modifiers. Changes upon fork,
37  * setprio syscalls, and whenever the interactivity
38  * estimator recalculates.
39  */
40 static inline int normal_prio(struct task_struct *p)
41 {
42 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
43 }
44 
45 /*
46  * Calculate the current priority, i.e. the priority
47  * taken into account by the scheduler. This value might
48  * be boosted by RT tasks, or might be boosted by
49  * interactivity modifiers. Will be RT if the task got
50  * RT-boosted. If not then it returns p->normal_prio.
51  */
52 static int effective_prio(struct task_struct *p)
53 {
54 	p->normal_prio = normal_prio(p);
55 	/*
56 	 * If we are RT tasks or we were boosted to RT priority,
57 	 * keep the priority unchanged. Otherwise, update priority
58 	 * to the normal priority:
59 	 */
60 	if (!rt_or_dl_prio(p->prio))
61 		return p->normal_prio;
62 	return p->prio;
63 }
64 
65 void set_user_nice(struct task_struct *p, long nice)
66 {
67 	bool queued, running;
68 	struct rq *rq;
69 	int old_prio;
70 
71 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
72 		return;
73 	/*
74 	 * We have to be careful, if called from sys_setpriority(),
75 	 * the task might be in the middle of scheduling on another CPU.
76 	 */
77 	CLASS(task_rq_lock, rq_guard)(p);
78 	rq = rq_guard.rq;
79 
80 	update_rq_clock(rq);
81 
82 	/*
83 	 * The RT priorities are set via sched_setscheduler(), but we still
84 	 * allow the 'normal' nice value to be set - but as expected
85 	 * it won't have any effect on scheduling until the task is
86 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
87 	 */
88 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
89 		p->static_prio = NICE_TO_PRIO(nice);
90 		return;
91 	}
92 
93 	queued = task_on_rq_queued(p);
94 	running = task_current_donor(rq, p);
95 	if (queued)
96 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
97 	if (running)
98 		put_prev_task(rq, p);
99 
100 	p->static_prio = NICE_TO_PRIO(nice);
101 	set_load_weight(p, true);
102 	old_prio = p->prio;
103 	p->prio = effective_prio(p);
104 
105 	if (queued)
106 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
107 	if (running)
108 		set_next_task(rq, p);
109 
110 	/*
111 	 * If the task increased its priority or is running and
112 	 * lowered its priority, then reschedule its CPU:
113 	 */
114 	p->sched_class->prio_changed(rq, p, old_prio);
115 }
116 EXPORT_SYMBOL(set_user_nice);
117 
118 /*
119  * is_nice_reduction - check if nice value is an actual reduction
120  *
121  * Similar to can_nice() but does not perform a capability check.
122  *
123  * @p: task
124  * @nice: nice value
125  */
126 static bool is_nice_reduction(const struct task_struct *p, const int nice)
127 {
128 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
129 	int nice_rlim = nice_to_rlimit(nice);
130 
131 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
132 }
133 
134 /*
135  * can_nice - check if a task can reduce its nice value
136  * @p: task
137  * @nice: nice value
138  */
139 int can_nice(const struct task_struct *p, const int nice)
140 {
141 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
142 }
143 
144 #ifdef __ARCH_WANT_SYS_NICE
145 
146 /*
147  * sys_nice - change the priority of the current process.
148  * @increment: priority increment
149  *
150  * sys_setpriority is a more generic, but much slower function that
151  * does similar things.
152  */
153 SYSCALL_DEFINE1(nice, int, increment)
154 {
155 	long nice, retval;
156 
157 	/*
158 	 * Setpriority might change our priority at the same moment.
159 	 * We don't have to worry. Conceptually one call occurs first
160 	 * and we have a single winner.
161 	 */
162 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
163 	nice = task_nice(current) + increment;
164 
165 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
166 	if (increment < 0 && !can_nice(current, nice))
167 		return -EPERM;
168 
169 	retval = security_task_setnice(current, nice);
170 	if (retval)
171 		return retval;
172 
173 	set_user_nice(current, nice);
174 	return 0;
175 }
176 
177 #endif
178 
179 /**
180  * task_prio - return the priority value of a given task.
181  * @p: the task in question.
182  *
183  * Return: The priority value as seen by users in /proc.
184  *
185  * sched policy         return value   kernel prio    user prio/nice
186  *
187  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
188  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
189  * deadline                     -101             -1           0
190  */
191 int task_prio(const struct task_struct *p)
192 {
193 	return p->prio - MAX_RT_PRIO;
194 }
195 
196 /**
197  * idle_cpu - is a given CPU idle currently?
198  * @cpu: the processor in question.
199  *
200  * Return: 1 if the CPU is currently idle. 0 otherwise.
201  */
202 int idle_cpu(int cpu)
203 {
204 	struct rq *rq = cpu_rq(cpu);
205 
206 	if (rq->curr != rq->idle)
207 		return 0;
208 
209 	if (rq->nr_running)
210 		return 0;
211 
212 #ifdef CONFIG_SMP
213 	if (rq->ttwu_pending)
214 		return 0;
215 #endif
216 
217 	return 1;
218 }
219 
220 /**
221  * available_idle_cpu - is a given CPU idle for enqueuing work.
222  * @cpu: the CPU in question.
223  *
224  * Return: 1 if the CPU is currently idle. 0 otherwise.
225  */
226 int available_idle_cpu(int cpu)
227 {
228 	if (!idle_cpu(cpu))
229 		return 0;
230 
231 	if (vcpu_is_preempted(cpu))
232 		return 0;
233 
234 	return 1;
235 }
236 
237 /**
238  * idle_task - return the idle task for a given CPU.
239  * @cpu: the processor in question.
240  *
241  * Return: The idle task for the CPU @cpu.
242  */
243 struct task_struct *idle_task(int cpu)
244 {
245 	return cpu_rq(cpu)->idle;
246 }
247 
248 #ifdef CONFIG_SCHED_CORE
249 int sched_core_idle_cpu(int cpu)
250 {
251 	struct rq *rq = cpu_rq(cpu);
252 
253 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
254 		return 1;
255 
256 	return idle_cpu(cpu);
257 }
258 
259 #endif
260 
261 /**
262  * find_process_by_pid - find a process with a matching PID value.
263  * @pid: the pid in question.
264  *
265  * The task of @pid, if found. %NULL otherwise.
266  */
267 static struct task_struct *find_process_by_pid(pid_t pid)
268 {
269 	return pid ? find_task_by_vpid(pid) : current;
270 }
271 
272 static struct task_struct *find_get_task(pid_t pid)
273 {
274 	struct task_struct *p;
275 	guard(rcu)();
276 
277 	p = find_process_by_pid(pid);
278 	if (likely(p))
279 		get_task_struct(p);
280 
281 	return p;
282 }
283 
284 DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
285 	     find_get_task(pid), pid_t pid)
286 
287 /*
288  * sched_setparam() passes in -1 for its policy, to let the functions
289  * it calls know not to change it.
290  */
291 #define SETPARAM_POLICY	-1
292 
293 static void __setscheduler_params(struct task_struct *p,
294 		const struct sched_attr *attr)
295 {
296 	int policy = attr->sched_policy;
297 
298 	if (policy == SETPARAM_POLICY)
299 		policy = p->policy;
300 
301 	p->policy = policy;
302 
303 	if (dl_policy(policy))
304 		__setparam_dl(p, attr);
305 	else if (fair_policy(policy))
306 		__setparam_fair(p, attr);
307 
308 	/* rt-policy tasks do not have a timerslack */
309 	if (rt_or_dl_task_policy(p)) {
310 		p->timer_slack_ns = 0;
311 	} else if (p->timer_slack_ns == 0) {
312 		/* when switching back to non-rt policy, restore timerslack */
313 		p->timer_slack_ns = p->default_timer_slack_ns;
314 	}
315 
316 	/*
317 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
318 	 * !rt_policy. Always setting this ensures that things like
319 	 * getparam()/getattr() don't report silly values for !rt tasks.
320 	 */
321 	p->rt_priority = attr->sched_priority;
322 	p->normal_prio = normal_prio(p);
323 	set_load_weight(p, true);
324 }
325 
326 /*
327  * Check the target process has a UID that matches the current process's:
328  */
329 static bool check_same_owner(struct task_struct *p)
330 {
331 	const struct cred *cred = current_cred(), *pcred;
332 	guard(rcu)();
333 
334 	pcred = __task_cred(p);
335 	return (uid_eq(cred->euid, pcred->euid) ||
336 		uid_eq(cred->euid, pcred->uid));
337 }
338 
339 #ifdef CONFIG_UCLAMP_TASK
340 
341 static int uclamp_validate(struct task_struct *p,
342 			   const struct sched_attr *attr)
343 {
344 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
345 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
346 
347 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
348 		util_min = attr->sched_util_min;
349 
350 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
351 			return -EINVAL;
352 	}
353 
354 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
355 		util_max = attr->sched_util_max;
356 
357 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
358 			return -EINVAL;
359 	}
360 
361 	if (util_min != -1 && util_max != -1 && util_min > util_max)
362 		return -EINVAL;
363 
364 	/*
365 	 * We have valid uclamp attributes; make sure uclamp is enabled.
366 	 *
367 	 * We need to do that here, because enabling static branches is a
368 	 * blocking operation which obviously cannot be done while holding
369 	 * scheduler locks.
370 	 */
371 	sched_uclamp_enable();
372 
373 	return 0;
374 }
375 
376 static bool uclamp_reset(const struct sched_attr *attr,
377 			 enum uclamp_id clamp_id,
378 			 struct uclamp_se *uc_se)
379 {
380 	/* Reset on sched class change for a non user-defined clamp value. */
381 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
382 	    !uc_se->user_defined)
383 		return true;
384 
385 	/* Reset on sched_util_{min,max} == -1. */
386 	if (clamp_id == UCLAMP_MIN &&
387 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
388 	    attr->sched_util_min == -1) {
389 		return true;
390 	}
391 
392 	if (clamp_id == UCLAMP_MAX &&
393 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
394 	    attr->sched_util_max == -1) {
395 		return true;
396 	}
397 
398 	return false;
399 }
400 
401 static void __setscheduler_uclamp(struct task_struct *p,
402 				  const struct sched_attr *attr)
403 {
404 	enum uclamp_id clamp_id;
405 
406 	for_each_clamp_id(clamp_id) {
407 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
408 		unsigned int value;
409 
410 		if (!uclamp_reset(attr, clamp_id, uc_se))
411 			continue;
412 
413 		/*
414 		 * RT by default have a 100% boost value that could be modified
415 		 * at runtime.
416 		 */
417 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
418 			value = sysctl_sched_uclamp_util_min_rt_default;
419 		else
420 			value = uclamp_none(clamp_id);
421 
422 		uclamp_se_set(uc_se, value, false);
423 
424 	}
425 
426 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
427 		return;
428 
429 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
430 	    attr->sched_util_min != -1) {
431 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
432 			      attr->sched_util_min, true);
433 	}
434 
435 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
436 	    attr->sched_util_max != -1) {
437 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
438 			      attr->sched_util_max, true);
439 	}
440 }
441 
442 #else /* !CONFIG_UCLAMP_TASK: */
443 
444 static inline int uclamp_validate(struct task_struct *p,
445 				  const struct sched_attr *attr)
446 {
447 	return -EOPNOTSUPP;
448 }
449 static void __setscheduler_uclamp(struct task_struct *p,
450 				  const struct sched_attr *attr) { }
451 #endif
452 
453 /*
454  * Allow unprivileged RT tasks to decrease priority.
455  * Only issue a capable test if needed and only once to avoid an audit
456  * event on permitted non-privileged operations:
457  */
458 static int user_check_sched_setscheduler(struct task_struct *p,
459 					 const struct sched_attr *attr,
460 					 int policy, int reset_on_fork)
461 {
462 	if (fair_policy(policy)) {
463 		if (attr->sched_nice < task_nice(p) &&
464 		    !is_nice_reduction(p, attr->sched_nice))
465 			goto req_priv;
466 	}
467 
468 	if (rt_policy(policy)) {
469 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
470 
471 		/* Can't set/change the rt policy: */
472 		if (policy != p->policy && !rlim_rtprio)
473 			goto req_priv;
474 
475 		/* Can't increase priority: */
476 		if (attr->sched_priority > p->rt_priority &&
477 		    attr->sched_priority > rlim_rtprio)
478 			goto req_priv;
479 	}
480 
481 	/*
482 	 * Can't set/change SCHED_DEADLINE policy at all for now
483 	 * (safest behavior); in the future we would like to allow
484 	 * unprivileged DL tasks to increase their relative deadline
485 	 * or reduce their runtime (both ways reducing utilization)
486 	 */
487 	if (dl_policy(policy))
488 		goto req_priv;
489 
490 	/*
491 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
492 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
493 	 */
494 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
495 		if (!is_nice_reduction(p, task_nice(p)))
496 			goto req_priv;
497 	}
498 
499 	/* Can't change other user's priorities: */
500 	if (!check_same_owner(p))
501 		goto req_priv;
502 
503 	/* Normal users shall not reset the sched_reset_on_fork flag: */
504 	if (p->sched_reset_on_fork && !reset_on_fork)
505 		goto req_priv;
506 
507 	return 0;
508 
509 req_priv:
510 	if (!capable(CAP_SYS_NICE))
511 		return -EPERM;
512 
513 	return 0;
514 }
515 
516 int __sched_setscheduler(struct task_struct *p,
517 			 const struct sched_attr *attr,
518 			 bool user, bool pi)
519 {
520 	int oldpolicy = -1, policy = attr->sched_policy;
521 	int retval, oldprio, newprio, queued, running;
522 	const struct sched_class *prev_class, *next_class;
523 	struct balance_callback *head;
524 	struct rq_flags rf;
525 	int reset_on_fork;
526 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
527 	struct rq *rq;
528 	bool cpuset_locked = false;
529 
530 	/* The pi code expects interrupts enabled */
531 	BUG_ON(pi && in_interrupt());
532 recheck:
533 	/* Double check policy once rq lock held: */
534 	if (policy < 0) {
535 		reset_on_fork = p->sched_reset_on_fork;
536 		policy = oldpolicy = p->policy;
537 	} else {
538 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
539 
540 		if (!valid_policy(policy))
541 			return -EINVAL;
542 	}
543 
544 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
545 		return -EINVAL;
546 
547 	/*
548 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
549 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
550 	 * SCHED_BATCH and SCHED_IDLE is 0.
551 	 */
552 	if (attr->sched_priority > MAX_RT_PRIO-1)
553 		return -EINVAL;
554 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
555 	    (rt_policy(policy) != (attr->sched_priority != 0)))
556 		return -EINVAL;
557 
558 	if (user) {
559 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
560 		if (retval)
561 			return retval;
562 
563 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
564 			return -EINVAL;
565 
566 		retval = security_task_setscheduler(p);
567 		if (retval)
568 			return retval;
569 	}
570 
571 	/* Update task specific "requested" clamps */
572 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
573 		retval = uclamp_validate(p, attr);
574 		if (retval)
575 			return retval;
576 	}
577 
578 	/*
579 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
580 	 * information.
581 	 */
582 	if (dl_policy(policy) || dl_policy(p->policy)) {
583 		cpuset_locked = true;
584 		cpuset_lock();
585 	}
586 
587 	/*
588 	 * Make sure no PI-waiters arrive (or leave) while we are
589 	 * changing the priority of the task:
590 	 *
591 	 * To be able to change p->policy safely, the appropriate
592 	 * runqueue lock must be held.
593 	 */
594 	rq = task_rq_lock(p, &rf);
595 	update_rq_clock(rq);
596 
597 	/*
598 	 * Changing the policy of the stop threads its a very bad idea:
599 	 */
600 	if (p == rq->stop) {
601 		retval = -EINVAL;
602 		goto unlock;
603 	}
604 
605 	retval = scx_check_setscheduler(p, policy);
606 	if (retval)
607 		goto unlock;
608 
609 	/*
610 	 * If not changing anything there's no need to proceed further,
611 	 * but store a possible modification of reset_on_fork.
612 	 */
613 	if (unlikely(policy == p->policy)) {
614 		if (fair_policy(policy) &&
615 		    (attr->sched_nice != task_nice(p) ||
616 		     (attr->sched_runtime != p->se.slice)))
617 			goto change;
618 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
619 			goto change;
620 		if (dl_policy(policy) && dl_param_changed(p, attr))
621 			goto change;
622 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
623 			goto change;
624 
625 		p->sched_reset_on_fork = reset_on_fork;
626 		retval = 0;
627 		goto unlock;
628 	}
629 change:
630 
631 	if (user) {
632 #ifdef CONFIG_RT_GROUP_SCHED
633 		/*
634 		 * Do not allow real-time tasks into groups that have no runtime
635 		 * assigned.
636 		 */
637 		if (rt_group_sched_enabled() &&
638 				rt_bandwidth_enabled() && rt_policy(policy) &&
639 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
640 				!task_group_is_autogroup(task_group(p))) {
641 			retval = -EPERM;
642 			goto unlock;
643 		}
644 #endif /* CONFIG_RT_GROUP_SCHED */
645 #ifdef CONFIG_SMP
646 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
647 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
648 			cpumask_t *span = rq->rd->span;
649 
650 			/*
651 			 * Don't allow tasks with an affinity mask smaller than
652 			 * the entire root_domain to become SCHED_DEADLINE. We
653 			 * will also fail if there's no bandwidth available.
654 			 */
655 			if (!cpumask_subset(span, p->cpus_ptr) ||
656 			    rq->rd->dl_bw.bw == 0) {
657 				retval = -EPERM;
658 				goto unlock;
659 			}
660 		}
661 #endif
662 	}
663 
664 	/* Re-check policy now with rq lock held: */
665 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
666 		policy = oldpolicy = -1;
667 		task_rq_unlock(rq, p, &rf);
668 		if (cpuset_locked)
669 			cpuset_unlock();
670 		goto recheck;
671 	}
672 
673 	/*
674 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
675 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
676 	 * is available.
677 	 */
678 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
679 		retval = -EBUSY;
680 		goto unlock;
681 	}
682 
683 	p->sched_reset_on_fork = reset_on_fork;
684 	oldprio = p->prio;
685 
686 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
687 	if (pi) {
688 		/*
689 		 * Take priority boosted tasks into account. If the new
690 		 * effective priority is unchanged, we just store the new
691 		 * normal parameters and do not touch the scheduler class and
692 		 * the runqueue. This will be done when the task deboost
693 		 * itself.
694 		 */
695 		newprio = rt_effective_prio(p, newprio);
696 		if (newprio == oldprio)
697 			queue_flags &= ~DEQUEUE_MOVE;
698 	}
699 
700 	prev_class = p->sched_class;
701 	next_class = __setscheduler_class(policy, newprio);
702 
703 	if (prev_class != next_class && p->se.sched_delayed)
704 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
705 
706 	queued = task_on_rq_queued(p);
707 	running = task_current_donor(rq, p);
708 	if (queued)
709 		dequeue_task(rq, p, queue_flags);
710 	if (running)
711 		put_prev_task(rq, p);
712 
713 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
714 		__setscheduler_params(p, attr);
715 		p->sched_class = next_class;
716 		p->prio = newprio;
717 	}
718 	__setscheduler_uclamp(p, attr);
719 	check_class_changing(rq, p, prev_class);
720 
721 	if (queued) {
722 		/*
723 		 * We enqueue to tail when the priority of a task is
724 		 * increased (user space view).
725 		 */
726 		if (oldprio < p->prio)
727 			queue_flags |= ENQUEUE_HEAD;
728 
729 		enqueue_task(rq, p, queue_flags);
730 	}
731 	if (running)
732 		set_next_task(rq, p);
733 
734 	check_class_changed(rq, p, prev_class, oldprio);
735 
736 	/* Avoid rq from going away on us: */
737 	preempt_disable();
738 	head = splice_balance_callbacks(rq);
739 	task_rq_unlock(rq, p, &rf);
740 
741 	if (pi) {
742 		if (cpuset_locked)
743 			cpuset_unlock();
744 		rt_mutex_adjust_pi(p);
745 	}
746 
747 	/* Run balance callbacks after we've adjusted the PI chain: */
748 	balance_callbacks(rq, head);
749 	preempt_enable();
750 
751 	return 0;
752 
753 unlock:
754 	task_rq_unlock(rq, p, &rf);
755 	if (cpuset_locked)
756 		cpuset_unlock();
757 	return retval;
758 }
759 
760 static int _sched_setscheduler(struct task_struct *p, int policy,
761 			       const struct sched_param *param, bool check)
762 {
763 	struct sched_attr attr = {
764 		.sched_policy   = policy,
765 		.sched_priority = param->sched_priority,
766 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
767 	};
768 
769 	if (p->se.custom_slice)
770 		attr.sched_runtime = p->se.slice;
771 
772 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
773 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
774 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
775 		policy &= ~SCHED_RESET_ON_FORK;
776 		attr.sched_policy = policy;
777 	}
778 
779 	return __sched_setscheduler(p, &attr, check, true);
780 }
781 /**
782  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
783  * @p: the task in question.
784  * @policy: new policy.
785  * @param: structure containing the new RT priority.
786  *
787  * Use sched_set_fifo(), read its comment.
788  *
789  * Return: 0 on success. An error code otherwise.
790  *
791  * NOTE that the task may be already dead.
792  */
793 int sched_setscheduler(struct task_struct *p, int policy,
794 		       const struct sched_param *param)
795 {
796 	return _sched_setscheduler(p, policy, param, true);
797 }
798 
799 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
800 {
801 	return __sched_setscheduler(p, attr, true, true);
802 }
803 
804 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
805 {
806 	return __sched_setscheduler(p, attr, false, true);
807 }
808 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
809 
810 /**
811  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space.
812  * @p: the task in question.
813  * @policy: new policy.
814  * @param: structure containing the new RT priority.
815  *
816  * Just like sched_setscheduler, only don't bother checking if the
817  * current context has permission.  For example, this is needed in
818  * stop_machine(): we create temporary high priority worker threads,
819  * but our caller might not have that capability.
820  *
821  * Return: 0 on success. An error code otherwise.
822  */
823 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
824 			       const struct sched_param *param)
825 {
826 	return _sched_setscheduler(p, policy, param, false);
827 }
828 
829 /*
830  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
831  * incapable of resource management, which is the one thing an OS really should
832  * be doing.
833  *
834  * This is of course the reason it is limited to privileged users only.
835  *
836  * Worse still; it is fundamentally impossible to compose static priority
837  * workloads. You cannot take two correctly working static prio workloads
838  * and smash them together and still expect them to work.
839  *
840  * For this reason 'all' FIFO tasks the kernel creates are basically at:
841  *
842  *   MAX_RT_PRIO / 2
843  *
844  * The administrator _MUST_ configure the system, the kernel simply doesn't
845  * know enough information to make a sensible choice.
846  */
847 void sched_set_fifo(struct task_struct *p)
848 {
849 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
850 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
851 }
852 EXPORT_SYMBOL_GPL(sched_set_fifo);
853 
854 /*
855  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
856  */
857 void sched_set_fifo_low(struct task_struct *p)
858 {
859 	struct sched_param sp = { .sched_priority = 1 };
860 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
861 }
862 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
863 
864 void sched_set_normal(struct task_struct *p, int nice)
865 {
866 	struct sched_attr attr = {
867 		.sched_policy = SCHED_NORMAL,
868 		.sched_nice = nice,
869 	};
870 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
871 }
872 EXPORT_SYMBOL_GPL(sched_set_normal);
873 
874 static int
875 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
876 {
877 	struct sched_param lparam;
878 
879 	if (unlikely(!param || pid < 0))
880 		return -EINVAL;
881 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
882 		return -EFAULT;
883 
884 	CLASS(find_get_task, p)(pid);
885 	if (!p)
886 		return -ESRCH;
887 
888 	return sched_setscheduler(p, policy, &lparam);
889 }
890 
891 /*
892  * Mimics kernel/events/core.c perf_copy_attr().
893  */
894 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
895 {
896 	u32 size;
897 	int ret;
898 
899 	/* Zero the full structure, so that a short copy will be nice: */
900 	memset(attr, 0, sizeof(*attr));
901 
902 	ret = get_user(size, &uattr->size);
903 	if (ret)
904 		return ret;
905 
906 	/* ABI compatibility quirk: */
907 	if (!size)
908 		size = SCHED_ATTR_SIZE_VER0;
909 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
910 		goto err_size;
911 
912 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
913 	if (ret) {
914 		if (ret == -E2BIG)
915 			goto err_size;
916 		return ret;
917 	}
918 
919 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
920 	    size < SCHED_ATTR_SIZE_VER1)
921 		return -EINVAL;
922 
923 	/*
924 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
925 	 * to be strict and return an error on out-of-bounds values?
926 	 */
927 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
928 
929 	return 0;
930 
931 err_size:
932 	put_user(sizeof(*attr), &uattr->size);
933 	return -E2BIG;
934 }
935 
936 static void get_params(struct task_struct *p, struct sched_attr *attr)
937 {
938 	if (task_has_dl_policy(p)) {
939 		__getparam_dl(p, attr);
940 	} else if (task_has_rt_policy(p)) {
941 		attr->sched_priority = p->rt_priority;
942 	} else {
943 		attr->sched_nice = task_nice(p);
944 		attr->sched_runtime = p->se.slice;
945 	}
946 }
947 
948 /**
949  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
950  * @pid: the pid in question.
951  * @policy: new policy.
952  * @param: structure containing the new RT priority.
953  *
954  * Return: 0 on success. An error code otherwise.
955  */
956 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
957 {
958 	if (policy < 0)
959 		return -EINVAL;
960 
961 	return do_sched_setscheduler(pid, policy, param);
962 }
963 
964 /**
965  * sys_sched_setparam - set/change the RT priority of a thread
966  * @pid: the pid in question.
967  * @param: structure containing the new RT priority.
968  *
969  * Return: 0 on success. An error code otherwise.
970  */
971 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
972 {
973 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
974 }
975 
976 /**
977  * sys_sched_setattr - same as above, but with extended sched_attr
978  * @pid: the pid in question.
979  * @uattr: structure containing the extended parameters.
980  * @flags: for future extension.
981  */
982 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
983 			       unsigned int, flags)
984 {
985 	struct sched_attr attr;
986 	int retval;
987 
988 	if (unlikely(!uattr || pid < 0 || flags))
989 		return -EINVAL;
990 
991 	retval = sched_copy_attr(uattr, &attr);
992 	if (retval)
993 		return retval;
994 
995 	if ((int)attr.sched_policy < 0)
996 		return -EINVAL;
997 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
998 		attr.sched_policy = SETPARAM_POLICY;
999 
1000 	CLASS(find_get_task, p)(pid);
1001 	if (!p)
1002 		return -ESRCH;
1003 
1004 	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
1005 		get_params(p, &attr);
1006 
1007 	return sched_setattr(p, &attr);
1008 }
1009 
1010 /**
1011  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
1012  * @pid: the pid in question.
1013  *
1014  * Return: On success, the policy of the thread. Otherwise, a negative error
1015  * code.
1016  */
1017 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1018 {
1019 	struct task_struct *p;
1020 	int retval;
1021 
1022 	if (pid < 0)
1023 		return -EINVAL;
1024 
1025 	guard(rcu)();
1026 	p = find_process_by_pid(pid);
1027 	if (!p)
1028 		return -ESRCH;
1029 
1030 	retval = security_task_getscheduler(p);
1031 	if (!retval) {
1032 		retval = p->policy;
1033 		if (p->sched_reset_on_fork)
1034 			retval |= SCHED_RESET_ON_FORK;
1035 	}
1036 	return retval;
1037 }
1038 
1039 /**
1040  * sys_sched_getparam - get the RT priority of a thread
1041  * @pid: the pid in question.
1042  * @param: structure containing the RT priority.
1043  *
1044  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
1045  * code.
1046  */
1047 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1048 {
1049 	struct sched_param lp = { .sched_priority = 0 };
1050 	struct task_struct *p;
1051 	int retval;
1052 
1053 	if (unlikely(!param || pid < 0))
1054 		return -EINVAL;
1055 
1056 	scoped_guard (rcu) {
1057 		p = find_process_by_pid(pid);
1058 		if (!p)
1059 			return -ESRCH;
1060 
1061 		retval = security_task_getscheduler(p);
1062 		if (retval)
1063 			return retval;
1064 
1065 		if (task_has_rt_policy(p))
1066 			lp.sched_priority = p->rt_priority;
1067 	}
1068 
1069 	/*
1070 	 * This one might sleep, we cannot do it with a spinlock held ...
1071 	 */
1072 	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
1073 }
1074 
1075 /**
1076  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
1077  * @pid: the pid in question.
1078  * @uattr: structure containing the extended parameters.
1079  * @usize: sizeof(attr) for fwd/bwd comp.
1080  * @flags: for future extension.
1081  */
1082 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1083 		unsigned int, usize, unsigned int, flags)
1084 {
1085 	struct sched_attr kattr = { };
1086 	struct task_struct *p;
1087 	int retval;
1088 
1089 	if (unlikely(!uattr || pid < 0 || usize > PAGE_SIZE ||
1090 		      usize < SCHED_ATTR_SIZE_VER0 || flags))
1091 		return -EINVAL;
1092 
1093 	scoped_guard (rcu) {
1094 		p = find_process_by_pid(pid);
1095 		if (!p)
1096 			return -ESRCH;
1097 
1098 		retval = security_task_getscheduler(p);
1099 		if (retval)
1100 			return retval;
1101 
1102 		kattr.sched_policy = p->policy;
1103 		if (p->sched_reset_on_fork)
1104 			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
1105 		get_params(p, &kattr);
1106 		kattr.sched_flags &= SCHED_FLAG_ALL;
1107 
1108 #ifdef CONFIG_UCLAMP_TASK
1109 		/*
1110 		 * This could race with another potential updater, but this is fine
1111 		 * because it'll correctly read the old or the new value. We don't need
1112 		 * to guarantee who wins the race as long as it doesn't return garbage.
1113 		 */
1114 		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
1115 		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
1116 #endif
1117 	}
1118 
1119 	kattr.size = min(usize, sizeof(kattr));
1120 	return copy_struct_to_user(uattr, usize, &kattr, sizeof(kattr), NULL);
1121 }
1122 
1123 #ifdef CONFIG_SMP
1124 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1125 {
1126 	/*
1127 	 * If the task isn't a deadline task or admission control is
1128 	 * disabled then we don't care about affinity changes.
1129 	 */
1130 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
1131 		return 0;
1132 
1133 	/*
1134 	 * The special/sugov task isn't part of regular bandwidth/admission
1135 	 * control so let userspace change affinities.
1136 	 */
1137 	if (dl_entity_is_special(&p->dl))
1138 		return 0;
1139 
1140 	/*
1141 	 * Since bandwidth control happens on root_domain basis,
1142 	 * if admission test is enabled, we only admit -deadline
1143 	 * tasks allowed to run on all the CPUs in the task's
1144 	 * root_domain.
1145 	 */
1146 	guard(rcu)();
1147 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
1148 		return -EBUSY;
1149 
1150 	return 0;
1151 }
1152 #endif /* CONFIG_SMP */
1153 
1154 int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
1155 {
1156 	int retval;
1157 	cpumask_var_t cpus_allowed, new_mask;
1158 
1159 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
1160 		return -ENOMEM;
1161 
1162 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
1163 		retval = -ENOMEM;
1164 		goto out_free_cpus_allowed;
1165 	}
1166 
1167 	cpuset_cpus_allowed(p, cpus_allowed);
1168 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
1169 
1170 	ctx->new_mask = new_mask;
1171 	ctx->flags |= SCA_CHECK;
1172 
1173 	retval = dl_task_check_affinity(p, new_mask);
1174 	if (retval)
1175 		goto out_free_new_mask;
1176 
1177 	retval = __set_cpus_allowed_ptr(p, ctx);
1178 	if (retval)
1179 		goto out_free_new_mask;
1180 
1181 	cpuset_cpus_allowed(p, cpus_allowed);
1182 	if (!cpumask_subset(new_mask, cpus_allowed)) {
1183 		/*
1184 		 * We must have raced with a concurrent cpuset update.
1185 		 * Just reset the cpumask to the cpuset's cpus_allowed.
1186 		 */
1187 		cpumask_copy(new_mask, cpus_allowed);
1188 
1189 		/*
1190 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
1191 		 * will restore the previous user_cpus_ptr value.
1192 		 *
1193 		 * In the unlikely event a previous user_cpus_ptr exists,
1194 		 * we need to further restrict the mask to what is allowed
1195 		 * by that old user_cpus_ptr.
1196 		 */
1197 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
1198 			bool empty = !cpumask_and(new_mask, new_mask,
1199 						  ctx->user_mask);
1200 
1201 			if (empty)
1202 				cpumask_copy(new_mask, cpus_allowed);
1203 		}
1204 		__set_cpus_allowed_ptr(p, ctx);
1205 		retval = -EINVAL;
1206 	}
1207 
1208 out_free_new_mask:
1209 	free_cpumask_var(new_mask);
1210 out_free_cpus_allowed:
1211 	free_cpumask_var(cpus_allowed);
1212 	return retval;
1213 }
1214 
1215 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1216 {
1217 	struct affinity_context ac;
1218 	struct cpumask *user_mask;
1219 	int retval;
1220 
1221 	CLASS(find_get_task, p)(pid);
1222 	if (!p)
1223 		return -ESRCH;
1224 
1225 	if (p->flags & PF_NO_SETAFFINITY)
1226 		return -EINVAL;
1227 
1228 	if (!check_same_owner(p)) {
1229 		guard(rcu)();
1230 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1231 			return -EPERM;
1232 	}
1233 
1234 	retval = security_task_setscheduler(p);
1235 	if (retval)
1236 		return retval;
1237 
1238 	/*
1239 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
1240 	 * alloc_user_cpus_ptr() returns NULL.
1241 	 */
1242 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
1243 	if (user_mask) {
1244 		cpumask_copy(user_mask, in_mask);
1245 	} else if (IS_ENABLED(CONFIG_SMP)) {
1246 		return -ENOMEM;
1247 	}
1248 
1249 	ac = (struct affinity_context){
1250 		.new_mask  = in_mask,
1251 		.user_mask = user_mask,
1252 		.flags     = SCA_USER,
1253 	};
1254 
1255 	retval = __sched_setaffinity(p, &ac);
1256 	kfree(ac.user_mask);
1257 
1258 	return retval;
1259 }
1260 
1261 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
1262 			     struct cpumask *new_mask)
1263 {
1264 	if (len < cpumask_size())
1265 		cpumask_clear(new_mask);
1266 	else if (len > cpumask_size())
1267 		len = cpumask_size();
1268 
1269 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
1270 }
1271 
1272 /**
1273  * sys_sched_setaffinity - set the CPU affinity of a process
1274  * @pid: pid of the process
1275  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
1276  * @user_mask_ptr: user-space pointer to the new CPU mask
1277  *
1278  * Return: 0 on success. An error code otherwise.
1279  */
1280 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
1281 		unsigned long __user *, user_mask_ptr)
1282 {
1283 	cpumask_var_t new_mask;
1284 	int retval;
1285 
1286 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
1287 		return -ENOMEM;
1288 
1289 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
1290 	if (retval == 0)
1291 		retval = sched_setaffinity(pid, new_mask);
1292 	free_cpumask_var(new_mask);
1293 	return retval;
1294 }
1295 
1296 long sched_getaffinity(pid_t pid, struct cpumask *mask)
1297 {
1298 	struct task_struct *p;
1299 	int retval;
1300 
1301 	guard(rcu)();
1302 	p = find_process_by_pid(pid);
1303 	if (!p)
1304 		return -ESRCH;
1305 
1306 	retval = security_task_getscheduler(p);
1307 	if (retval)
1308 		return retval;
1309 
1310 	guard(raw_spinlock_irqsave)(&p->pi_lock);
1311 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
1312 
1313 	return 0;
1314 }
1315 
1316 /**
1317  * sys_sched_getaffinity - get the CPU affinity of a process
1318  * @pid: pid of the process
1319  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
1320  * @user_mask_ptr: user-space pointer to hold the current CPU mask
1321  *
1322  * Return: size of CPU mask copied to user_mask_ptr on success. An
1323  * error code otherwise.
1324  */
1325 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
1326 		unsigned long __user *, user_mask_ptr)
1327 {
1328 	int ret;
1329 	cpumask_var_t mask;
1330 
1331 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
1332 		return -EINVAL;
1333 	if (len & (sizeof(unsigned long)-1))
1334 		return -EINVAL;
1335 
1336 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
1337 		return -ENOMEM;
1338 
1339 	ret = sched_getaffinity(pid, mask);
1340 	if (ret == 0) {
1341 		unsigned int retlen = min(len, cpumask_size());
1342 
1343 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
1344 			ret = -EFAULT;
1345 		else
1346 			ret = retlen;
1347 	}
1348 	free_cpumask_var(mask);
1349 
1350 	return ret;
1351 }
1352 
1353 static void do_sched_yield(void)
1354 {
1355 	struct rq_flags rf;
1356 	struct rq *rq;
1357 
1358 	rq = this_rq_lock_irq(&rf);
1359 
1360 	schedstat_inc(rq->yld_count);
1361 	current->sched_class->yield_task(rq);
1362 
1363 	preempt_disable();
1364 	rq_unlock_irq(rq, &rf);
1365 	sched_preempt_enable_no_resched();
1366 
1367 	schedule();
1368 }
1369 
1370 /**
1371  * sys_sched_yield - yield the current processor to other threads.
1372  *
1373  * This function yields the current CPU to other tasks. If there are no
1374  * other threads running on this CPU then this function will return.
1375  *
1376  * Return: 0.
1377  */
1378 SYSCALL_DEFINE0(sched_yield)
1379 {
1380 	do_sched_yield();
1381 	return 0;
1382 }
1383 
1384 /**
1385  * yield - yield the current processor to other threads.
1386  *
1387  * Do not ever use this function, there's a 99% chance you're doing it wrong.
1388  *
1389  * The scheduler is at all times free to pick the calling task as the most
1390  * eligible task to run, if removing the yield() call from your code breaks
1391  * it, it's already broken.
1392  *
1393  * Typical broken usage is:
1394  *
1395  * while (!event)
1396  *	yield();
1397  *
1398  * where one assumes that yield() will let 'the other' process run that will
1399  * make event true. If the current task is a SCHED_FIFO task that will never
1400  * happen. Never use yield() as a progress guarantee!!
1401  *
1402  * If you want to use yield() to wait for something, use wait_event().
1403  * If you want to use yield() to be 'nice' for others, use cond_resched().
1404  * If you still want to use yield(), do not!
1405  */
1406 void __sched yield(void)
1407 {
1408 	set_current_state(TASK_RUNNING);
1409 	do_sched_yield();
1410 }
1411 EXPORT_SYMBOL(yield);
1412 
1413 /**
1414  * yield_to - yield the current processor to another thread in
1415  * your thread group, or accelerate that thread toward the
1416  * processor it's on.
1417  * @p: target task
1418  * @preempt: whether task preemption is allowed or not
1419  *
1420  * It's the caller's job to ensure that the target task struct
1421  * can't go away on us before we can do any checks.
1422  *
1423  * Return:
1424  *	true (>0) if we indeed boosted the target task.
1425  *	false (0) if we failed to boost the target.
1426  *	-ESRCH if there's no task to yield to.
1427  */
1428 int __sched yield_to(struct task_struct *p, bool preempt)
1429 {
1430 	struct task_struct *curr = current;
1431 	struct rq *rq, *p_rq;
1432 	int yielded = 0;
1433 
1434 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
1435 		rq = this_rq();
1436 
1437 again:
1438 		p_rq = task_rq(p);
1439 		/*
1440 		 * If we're the only runnable task on the rq and target rq also
1441 		 * has only one task, there's absolutely no point in yielding.
1442 		 */
1443 		if (rq->nr_running == 1 && p_rq->nr_running == 1)
1444 			return -ESRCH;
1445 
1446 		guard(double_rq_lock)(rq, p_rq);
1447 		if (task_rq(p) != p_rq)
1448 			goto again;
1449 
1450 		if (!curr->sched_class->yield_to_task)
1451 			return 0;
1452 
1453 		if (curr->sched_class != p->sched_class)
1454 			return 0;
1455 
1456 		if (task_on_cpu(p_rq, p) || !task_is_running(p))
1457 			return 0;
1458 
1459 		yielded = curr->sched_class->yield_to_task(rq, p);
1460 		if (yielded) {
1461 			schedstat_inc(rq->yld_count);
1462 			/*
1463 			 * Make p's CPU reschedule; pick_next_entity
1464 			 * takes care of fairness.
1465 			 */
1466 			if (preempt && rq != p_rq)
1467 				resched_curr(p_rq);
1468 		}
1469 	}
1470 
1471 	if (yielded)
1472 		schedule();
1473 
1474 	return yielded;
1475 }
1476 EXPORT_SYMBOL_GPL(yield_to);
1477 
1478 /**
1479  * sys_sched_get_priority_max - return maximum RT priority.
1480  * @policy: scheduling class.
1481  *
1482  * Return: On success, this syscall returns the maximum
1483  * rt_priority that can be used by a given scheduling class.
1484  * On failure, a negative error code is returned.
1485  */
1486 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1487 {
1488 	int ret = -EINVAL;
1489 
1490 	switch (policy) {
1491 	case SCHED_FIFO:
1492 	case SCHED_RR:
1493 		ret = MAX_RT_PRIO-1;
1494 		break;
1495 	case SCHED_DEADLINE:
1496 	case SCHED_NORMAL:
1497 	case SCHED_BATCH:
1498 	case SCHED_IDLE:
1499 	case SCHED_EXT:
1500 		ret = 0;
1501 		break;
1502 	}
1503 	return ret;
1504 }
1505 
1506 /**
1507  * sys_sched_get_priority_min - return minimum RT priority.
1508  * @policy: scheduling class.
1509  *
1510  * Return: On success, this syscall returns the minimum
1511  * rt_priority that can be used by a given scheduling class.
1512  * On failure, a negative error code is returned.
1513  */
1514 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1515 {
1516 	int ret = -EINVAL;
1517 
1518 	switch (policy) {
1519 	case SCHED_FIFO:
1520 	case SCHED_RR:
1521 		ret = 1;
1522 		break;
1523 	case SCHED_DEADLINE:
1524 	case SCHED_NORMAL:
1525 	case SCHED_BATCH:
1526 	case SCHED_IDLE:
1527 	case SCHED_EXT:
1528 		ret = 0;
1529 	}
1530 	return ret;
1531 }
1532 
1533 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1534 {
1535 	unsigned int time_slice = 0;
1536 	int retval;
1537 
1538 	if (pid < 0)
1539 		return -EINVAL;
1540 
1541 	scoped_guard (rcu) {
1542 		struct task_struct *p = find_process_by_pid(pid);
1543 		if (!p)
1544 			return -ESRCH;
1545 
1546 		retval = security_task_getscheduler(p);
1547 		if (retval)
1548 			return retval;
1549 
1550 		scoped_guard (task_rq_lock, p) {
1551 			struct rq *rq = scope.rq;
1552 			if (p->sched_class->get_rr_interval)
1553 				time_slice = p->sched_class->get_rr_interval(rq, p);
1554 		}
1555 	}
1556 
1557 	jiffies_to_timespec64(time_slice, t);
1558 	return 0;
1559 }
1560 
1561 /**
1562  * sys_sched_rr_get_interval - return the default time-slice of a process.
1563  * @pid: pid of the process.
1564  * @interval: userspace pointer to the time-slice value.
1565  *
1566  * this syscall writes the default time-slice value of a given process
1567  * into the user-space timespec buffer. A value of '0' means infinity.
1568  *
1569  * Return: On success, 0 and the time-slice is in @interval. Otherwise,
1570  * an error code.
1571  */
1572 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
1573 		struct __kernel_timespec __user *, interval)
1574 {
1575 	struct timespec64 t;
1576 	int retval = sched_rr_get_interval(pid, &t);
1577 
1578 	if (retval == 0)
1579 		retval = put_timespec64(&t, interval);
1580 
1581 	return retval;
1582 }
1583 
1584 #ifdef CONFIG_COMPAT_32BIT_TIME
1585 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
1586 		struct old_timespec32 __user *, interval)
1587 {
1588 	struct timespec64 t;
1589 	int retval = sched_rr_get_interval(pid, &t);
1590 
1591 	if (retval == 0)
1592 		retval = put_old_timespec32(&t, interval);
1593 	return retval;
1594 }
1595 #endif
1596