1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/delayacct.h> 72 #include <linux/mmu_context.h> 73 74 #include <trace/events/power.h> 75 #include <trace/events/sched.h> 76 77 #include "../workqueue_internal.h" 78 79 struct rq; 80 struct cfs_rq; 81 struct rt_rq; 82 struct sched_group; 83 struct cpuidle_state; 84 85 #ifdef CONFIG_PARAVIRT 86 # include <asm/paravirt.h> 87 # include <asm/paravirt_api_clock.h> 88 #endif 89 90 #include <asm/barrier.h> 91 92 #include "cpupri.h" 93 #include "cpudeadline.h" 94 95 /* task_struct::on_rq states: */ 96 #define TASK_ON_RQ_QUEUED 1 97 #define TASK_ON_RQ_MIGRATING 2 98 99 extern __read_mostly int scheduler_running; 100 101 extern unsigned long calc_load_update; 102 extern atomic_long_t calc_load_tasks; 103 104 extern void calc_global_load_tick(struct rq *this_rq); 105 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 106 107 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 108 109 extern int sysctl_sched_rt_period; 110 extern int sysctl_sched_rt_runtime; 111 extern int sched_rr_timeslice; 112 113 /* 114 * Asymmetric CPU capacity bits 115 */ 116 struct asym_cap_data { 117 struct list_head link; 118 struct rcu_head rcu; 119 unsigned long capacity; 120 unsigned long cpus[]; 121 }; 122 123 extern struct list_head asym_cap_list; 124 125 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 126 127 /* 128 * Helpers for converting nanosecond timing to jiffy resolution 129 */ 130 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) 131 132 /* 133 * Increase resolution of nice-level calculations for 64-bit architectures. 134 * The extra resolution improves shares distribution and load balancing of 135 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group 136 * hierarchies, especially on larger systems. This is not a user-visible change 137 * and does not change the user-interface for setting shares/weights. 138 * 139 * We increase resolution only if we have enough bits to allow this increased 140 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 141 * are pretty high and the returns do not justify the increased costs. 142 * 143 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 144 * increase coverage and consistency always enable it on 64-bit platforms. 145 */ 146 #ifdef CONFIG_64BIT 147 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 148 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 149 # define scale_load_down(w) \ 150 ({ \ 151 unsigned long __w = (w); \ 152 \ 153 if (__w) \ 154 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 155 __w; \ 156 }) 157 #else 158 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 159 # define scale_load(w) (w) 160 # define scale_load_down(w) (w) 161 #endif 162 163 /* 164 * Task weight (visible to users) and its load (invisible to users) have 165 * independent resolution, but they should be well calibrated. We use 166 * scale_load() and scale_load_down(w) to convert between them. The 167 * following must be true: 168 * 169 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 170 * 171 */ 172 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 173 174 /* 175 * Single value that decides SCHED_DEADLINE internal math precision. 176 * 10 -> just above 1us 177 * 9 -> just above 0.5us 178 */ 179 #define DL_SCALE 10 180 181 /* 182 * Single value that denotes runtime == period, ie unlimited time. 183 */ 184 #define RUNTIME_INF ((u64)~0ULL) 185 186 static inline int idle_policy(int policy) 187 { 188 return policy == SCHED_IDLE; 189 } 190 191 static inline int normal_policy(int policy) 192 { 193 #ifdef CONFIG_SCHED_CLASS_EXT 194 if (policy == SCHED_EXT) 195 return true; 196 #endif 197 return policy == SCHED_NORMAL; 198 } 199 200 static inline int fair_policy(int policy) 201 { 202 return normal_policy(policy) || policy == SCHED_BATCH; 203 } 204 205 static inline int rt_policy(int policy) 206 { 207 return policy == SCHED_FIFO || policy == SCHED_RR; 208 } 209 210 static inline int dl_policy(int policy) 211 { 212 return policy == SCHED_DEADLINE; 213 } 214 215 static inline bool valid_policy(int policy) 216 { 217 return idle_policy(policy) || fair_policy(policy) || 218 rt_policy(policy) || dl_policy(policy); 219 } 220 221 static inline int task_has_idle_policy(struct task_struct *p) 222 { 223 return idle_policy(p->policy); 224 } 225 226 static inline int task_has_rt_policy(struct task_struct *p) 227 { 228 return rt_policy(p->policy); 229 } 230 231 static inline int task_has_dl_policy(struct task_struct *p) 232 { 233 return dl_policy(p->policy); 234 } 235 236 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 237 238 static inline void update_avg(u64 *avg, u64 sample) 239 { 240 s64 diff = sample - *avg; 241 242 *avg += diff / 8; 243 } 244 245 /* 246 * Shifting a value by an exponent greater *or equal* to the size of said value 247 * is UB; cap at size-1. 248 */ 249 #define shr_bound(val, shift) \ 250 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 251 252 /* 253 * cgroup weight knobs should use the common MIN, DFL and MAX values which are 254 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it 255 * maps pretty well onto the shares value used by scheduler and the round-trip 256 * conversions preserve the original value over the entire range. 257 */ 258 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) 259 { 260 return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); 261 } 262 263 static inline unsigned long sched_weight_to_cgroup(unsigned long weight) 264 { 265 return clamp_t(unsigned long, 266 DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), 267 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); 268 } 269 270 /* 271 * !! For sched_setattr_nocheck() (kernel) only !! 272 * 273 * This is actually gross. :( 274 * 275 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 276 * tasks, but still be able to sleep. We need this on platforms that cannot 277 * atomically change clock frequency. Remove once fast switching will be 278 * available on such platforms. 279 * 280 * SUGOV stands for SchedUtil GOVernor. 281 */ 282 #define SCHED_FLAG_SUGOV 0x10000000 283 284 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 285 286 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 287 { 288 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 289 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 290 #else 291 return false; 292 #endif 293 } 294 295 /* 296 * Tells if entity @a should preempt entity @b. 297 */ 298 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 299 const struct sched_dl_entity *b) 300 { 301 return dl_entity_is_special(a) || 302 dl_time_before(a->deadline, b->deadline); 303 } 304 305 /* 306 * This is the priority-queue data structure of the RT scheduling class: 307 */ 308 struct rt_prio_array { 309 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 310 struct list_head queue[MAX_RT_PRIO]; 311 }; 312 313 struct rt_bandwidth { 314 /* nests inside the rq lock: */ 315 raw_spinlock_t rt_runtime_lock; 316 ktime_t rt_period; 317 u64 rt_runtime; 318 struct hrtimer rt_period_timer; 319 unsigned int rt_period_active; 320 }; 321 322 static inline int dl_bandwidth_enabled(void) 323 { 324 return sysctl_sched_rt_runtime >= 0; 325 } 326 327 /* 328 * To keep the bandwidth of -deadline tasks under control 329 * we need some place where: 330 * - store the maximum -deadline bandwidth of each cpu; 331 * - cache the fraction of bandwidth that is currently allocated in 332 * each root domain; 333 * 334 * This is all done in the data structure below. It is similar to the 335 * one used for RT-throttling (rt_bandwidth), with the main difference 336 * that, since here we are only interested in admission control, we 337 * do not decrease any runtime while the group "executes", neither we 338 * need a timer to replenish it. 339 * 340 * With respect to SMP, bandwidth is given on a per root domain basis, 341 * meaning that: 342 * - bw (< 100%) is the deadline bandwidth of each CPU; 343 * - total_bw is the currently allocated bandwidth in each root domain; 344 */ 345 struct dl_bw { 346 raw_spinlock_t lock; 347 u64 bw; 348 u64 total_bw; 349 }; 350 351 extern void init_dl_bw(struct dl_bw *dl_b); 352 extern int sched_dl_global_validate(void); 353 extern void sched_dl_do_global(void); 354 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 355 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 356 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 357 extern bool __checkparam_dl(const struct sched_attr *attr); 358 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 359 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 360 extern int dl_bw_deactivate(int cpu); 361 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); 362 /* 363 * SCHED_DEADLINE supports servers (nested scheduling) with the following 364 * interface: 365 * 366 * dl_se::rq -- runqueue we belong to. 367 * 368 * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the 369 * server when it runs out of tasks to run. 370 * 371 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 372 * returns NULL. 373 * 374 * dl_server_update() -- called from update_curr_common(), propagates runtime 375 * to the server. 376 * 377 * dl_server_start() 378 * dl_server_stop() -- start/stop the server when it has (no) tasks. 379 * 380 * dl_server_init() -- initializes the server. 381 */ 382 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 383 extern void dl_server_start(struct sched_dl_entity *dl_se); 384 extern void dl_server_stop(struct sched_dl_entity *dl_se); 385 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 386 dl_server_has_tasks_f has_tasks, 387 dl_server_pick_f pick_task); 388 extern void sched_init_dl_servers(void); 389 390 extern void dl_server_update_idle_time(struct rq *rq, 391 struct task_struct *p); 392 extern void fair_server_init(struct rq *rq); 393 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); 394 extern int dl_server_apply_params(struct sched_dl_entity *dl_se, 395 u64 runtime, u64 period, bool init); 396 397 static inline bool dl_server_active(struct sched_dl_entity *dl_se) 398 { 399 return dl_se->dl_server_active; 400 } 401 402 #ifdef CONFIG_CGROUP_SCHED 403 404 extern struct list_head task_groups; 405 406 #ifdef CONFIG_CFS_BANDWIDTH 407 extern const u64 max_bw_quota_period_us; 408 409 /* 410 * default period for group bandwidth. 411 * default: 0.1s, units: microseconds 412 */ 413 static inline u64 default_bw_period_us(void) 414 { 415 return 100000ULL; 416 } 417 #endif /* CONFIG_CFS_BANDWIDTH */ 418 419 struct cfs_bandwidth { 420 #ifdef CONFIG_CFS_BANDWIDTH 421 raw_spinlock_t lock; 422 ktime_t period; 423 u64 quota; 424 u64 runtime; 425 u64 burst; 426 u64 runtime_snap; 427 s64 hierarchical_quota; 428 429 u8 idle; 430 u8 period_active; 431 u8 slack_started; 432 struct hrtimer period_timer; 433 struct hrtimer slack_timer; 434 struct list_head throttled_cfs_rq; 435 436 /* Statistics: */ 437 int nr_periods; 438 int nr_throttled; 439 int nr_burst; 440 u64 throttled_time; 441 u64 burst_time; 442 #endif /* CONFIG_CFS_BANDWIDTH */ 443 }; 444 445 /* Task group related information */ 446 struct task_group { 447 struct cgroup_subsys_state css; 448 449 #ifdef CONFIG_GROUP_SCHED_WEIGHT 450 /* A positive value indicates that this is a SCHED_IDLE group. */ 451 int idle; 452 #endif 453 454 #ifdef CONFIG_FAIR_GROUP_SCHED 455 /* schedulable entities of this group on each CPU */ 456 struct sched_entity **se; 457 /* runqueue "owned" by this group on each CPU */ 458 struct cfs_rq **cfs_rq; 459 unsigned long shares; 460 /* 461 * load_avg can be heavily contended at clock tick time, so put 462 * it in its own cache-line separated from the fields above which 463 * will also be accessed at each tick. 464 */ 465 atomic_long_t load_avg ____cacheline_aligned; 466 #endif /* CONFIG_FAIR_GROUP_SCHED */ 467 468 #ifdef CONFIG_RT_GROUP_SCHED 469 struct sched_rt_entity **rt_se; 470 struct rt_rq **rt_rq; 471 472 struct rt_bandwidth rt_bandwidth; 473 #endif 474 475 #ifdef CONFIG_EXT_GROUP_SCHED 476 u32 scx_flags; /* SCX_TG_* */ 477 u32 scx_weight; 478 #endif 479 480 struct rcu_head rcu; 481 struct list_head list; 482 483 struct task_group *parent; 484 struct list_head siblings; 485 struct list_head children; 486 487 #ifdef CONFIG_SCHED_AUTOGROUP 488 struct autogroup *autogroup; 489 #endif 490 491 struct cfs_bandwidth cfs_bandwidth; 492 493 #ifdef CONFIG_UCLAMP_TASK_GROUP 494 /* The two decimal precision [%] value requested from user-space */ 495 unsigned int uclamp_pct[UCLAMP_CNT]; 496 /* Clamp values requested for a task group */ 497 struct uclamp_se uclamp_req[UCLAMP_CNT]; 498 /* Effective clamp values used for a task group */ 499 struct uclamp_se uclamp[UCLAMP_CNT]; 500 #endif 501 502 }; 503 504 #ifdef CONFIG_GROUP_SCHED_WEIGHT 505 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 506 507 /* 508 * A weight of 0 or 1 can cause arithmetics problems. 509 * A weight of a cfs_rq is the sum of weights of which entities 510 * are queued on this cfs_rq, so a weight of a entity should not be 511 * too large, so as the shares value of a task group. 512 * (The default weight is 1024 - so there's no practical 513 * limitation from this.) 514 */ 515 #define MIN_SHARES (1UL << 1) 516 #define MAX_SHARES (1UL << 18) 517 #endif 518 519 typedef int (*tg_visitor)(struct task_group *, void *); 520 521 extern int walk_tg_tree_from(struct task_group *from, 522 tg_visitor down, tg_visitor up, void *data); 523 524 /* 525 * Iterate the full tree, calling @down when first entering a node and @up when 526 * leaving it for the final time. 527 * 528 * Caller must hold rcu_lock or sufficient equivalent. 529 */ 530 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 531 { 532 return walk_tg_tree_from(&root_task_group, down, up, data); 533 } 534 535 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 536 { 537 return css ? container_of(css, struct task_group, css) : NULL; 538 } 539 540 extern int tg_nop(struct task_group *tg, void *data); 541 542 #ifdef CONFIG_FAIR_GROUP_SCHED 543 extern void free_fair_sched_group(struct task_group *tg); 544 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 545 extern void online_fair_sched_group(struct task_group *tg); 546 extern void unregister_fair_sched_group(struct task_group *tg); 547 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 548 static inline void free_fair_sched_group(struct task_group *tg) { } 549 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 550 { 551 return 1; 552 } 553 static inline void online_fair_sched_group(struct task_group *tg) { } 554 static inline void unregister_fair_sched_group(struct task_group *tg) { } 555 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 556 557 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 558 struct sched_entity *se, int cpu, 559 struct sched_entity *parent); 560 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 561 562 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 563 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 564 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 565 extern bool cfs_task_bw_constrained(struct task_struct *p); 566 567 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 568 struct sched_rt_entity *rt_se, int cpu, 569 struct sched_rt_entity *parent); 570 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 571 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 572 extern long sched_group_rt_runtime(struct task_group *tg); 573 extern long sched_group_rt_period(struct task_group *tg); 574 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 575 576 extern struct task_group *sched_create_group(struct task_group *parent); 577 extern void sched_online_group(struct task_group *tg, 578 struct task_group *parent); 579 extern void sched_destroy_group(struct task_group *tg); 580 extern void sched_release_group(struct task_group *tg); 581 582 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup); 583 584 #ifdef CONFIG_FAIR_GROUP_SCHED 585 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 586 587 extern int sched_group_set_idle(struct task_group *tg, long idle); 588 589 extern void set_task_rq_fair(struct sched_entity *se, 590 struct cfs_rq *prev, struct cfs_rq *next); 591 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 592 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } 593 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } 594 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 595 596 #else /* !CONFIG_CGROUP_SCHED: */ 597 598 struct cfs_bandwidth { }; 599 600 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 601 602 #endif /* !CONFIG_CGROUP_SCHED */ 603 604 extern void unregister_rt_sched_group(struct task_group *tg); 605 extern void free_rt_sched_group(struct task_group *tg); 606 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 607 608 /* 609 * u64_u32_load/u64_u32_store 610 * 611 * Use a copy of a u64 value to protect against data race. This is only 612 * applicable for 32-bits architectures. 613 */ 614 #ifdef CONFIG_64BIT 615 # define u64_u32_load_copy(var, copy) var 616 # define u64_u32_store_copy(var, copy, val) (var = val) 617 #else 618 # define u64_u32_load_copy(var, copy) \ 619 ({ \ 620 u64 __val, __val_copy; \ 621 do { \ 622 __val_copy = copy; \ 623 /* \ 624 * paired with u64_u32_store_copy(), ordering access \ 625 * to var and copy. \ 626 */ \ 627 smp_rmb(); \ 628 __val = var; \ 629 } while (__val != __val_copy); \ 630 __val; \ 631 }) 632 # define u64_u32_store_copy(var, copy, val) \ 633 do { \ 634 typeof(val) __val = (val); \ 635 var = __val; \ 636 /* \ 637 * paired with u64_u32_load_copy(), ordering access to var and \ 638 * copy. \ 639 */ \ 640 smp_wmb(); \ 641 copy = __val; \ 642 } while (0) 643 #endif 644 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 645 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 646 647 struct balance_callback { 648 struct balance_callback *next; 649 void (*func)(struct rq *rq); 650 }; 651 652 /* CFS-related fields in a runqueue */ 653 struct cfs_rq { 654 struct load_weight load; 655 unsigned int nr_queued; 656 unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */ 657 unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */ 658 unsigned int h_nr_idle; /* SCHED_IDLE */ 659 660 s64 avg_vruntime; 661 u64 avg_load; 662 663 u64 min_vruntime; 664 #ifdef CONFIG_SCHED_CORE 665 unsigned int forceidle_seq; 666 u64 min_vruntime_fi; 667 #endif 668 669 struct rb_root_cached tasks_timeline; 670 671 /* 672 * 'curr' points to currently running entity on this cfs_rq. 673 * It is set to NULL otherwise (i.e when none are currently running). 674 */ 675 struct sched_entity *curr; 676 struct sched_entity *next; 677 678 /* 679 * CFS load tracking 680 */ 681 struct sched_avg avg; 682 #ifndef CONFIG_64BIT 683 u64 last_update_time_copy; 684 #endif 685 struct { 686 raw_spinlock_t lock ____cacheline_aligned; 687 int nr; 688 unsigned long load_avg; 689 unsigned long util_avg; 690 unsigned long runnable_avg; 691 } removed; 692 693 #ifdef CONFIG_FAIR_GROUP_SCHED 694 u64 last_update_tg_load_avg; 695 unsigned long tg_load_avg_contrib; 696 long propagate; 697 long prop_runnable_sum; 698 699 /* 700 * h_load = weight * f(tg) 701 * 702 * Where f(tg) is the recursive weight fraction assigned to 703 * this group. 704 */ 705 unsigned long h_load; 706 u64 last_h_load_update; 707 struct sched_entity *h_load_next; 708 #endif /* CONFIG_FAIR_GROUP_SCHED */ 709 710 #ifdef CONFIG_FAIR_GROUP_SCHED 711 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 712 713 /* 714 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 715 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 716 * (like users, containers etc.) 717 * 718 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 719 * This list is used during load balance. 720 */ 721 int on_list; 722 struct list_head leaf_cfs_rq_list; 723 struct task_group *tg; /* group that "owns" this runqueue */ 724 725 /* Locally cached copy of our task_group's idle value */ 726 int idle; 727 728 #ifdef CONFIG_CFS_BANDWIDTH 729 int runtime_enabled; 730 s64 runtime_remaining; 731 732 u64 throttled_pelt_idle; 733 #ifndef CONFIG_64BIT 734 u64 throttled_pelt_idle_copy; 735 #endif 736 u64 throttled_clock; 737 u64 throttled_clock_pelt; 738 u64 throttled_clock_pelt_time; 739 u64 throttled_clock_self; 740 u64 throttled_clock_self_time; 741 int throttled; 742 int throttle_count; 743 struct list_head throttled_list; 744 struct list_head throttled_csd_list; 745 #endif /* CONFIG_CFS_BANDWIDTH */ 746 #endif /* CONFIG_FAIR_GROUP_SCHED */ 747 }; 748 749 #ifdef CONFIG_SCHED_CLASS_EXT 750 /* scx_rq->flags, protected by the rq lock */ 751 enum scx_rq_flags { 752 /* 753 * A hotplugged CPU starts scheduling before rq_online_scx(). Track 754 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called 755 * only while the BPF scheduler considers the CPU to be online. 756 */ 757 SCX_RQ_ONLINE = 1 << 0, 758 SCX_RQ_CAN_STOP_TICK = 1 << 1, 759 SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */ 760 SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ 761 SCX_RQ_BYPASSING = 1 << 4, 762 SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */ 763 764 SCX_RQ_IN_WAKEUP = 1 << 16, 765 SCX_RQ_IN_BALANCE = 1 << 17, 766 }; 767 768 struct scx_rq { 769 struct scx_dispatch_q local_dsq; 770 struct list_head runnable_list; /* runnable tasks on this rq */ 771 struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ 772 unsigned long ops_qseq; 773 u64 extra_enq_flags; /* see move_task_to_local_dsq() */ 774 u32 nr_running; 775 u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ 776 bool cpu_released; 777 u32 flags; 778 u64 clock; /* current per-rq clock -- see scx_bpf_now() */ 779 cpumask_var_t cpus_to_kick; 780 cpumask_var_t cpus_to_kick_if_idle; 781 cpumask_var_t cpus_to_preempt; 782 cpumask_var_t cpus_to_wait; 783 unsigned long pnt_seq; 784 struct balance_callback deferred_bal_cb; 785 struct irq_work deferred_irq_work; 786 struct irq_work kick_cpus_irq_work; 787 }; 788 #endif /* CONFIG_SCHED_CLASS_EXT */ 789 790 static inline int rt_bandwidth_enabled(void) 791 { 792 return sysctl_sched_rt_runtime >= 0; 793 } 794 795 /* RT IPI pull logic requires IRQ_WORK */ 796 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 797 # define HAVE_RT_PUSH_IPI 798 #endif 799 800 /* Real-Time classes' related field in a runqueue: */ 801 struct rt_rq { 802 struct rt_prio_array active; 803 unsigned int rt_nr_running; 804 unsigned int rr_nr_running; 805 struct { 806 int curr; /* highest queued rt task prio */ 807 int next; /* next highest */ 808 } highest_prio; 809 bool overloaded; 810 struct plist_head pushable_tasks; 811 812 int rt_queued; 813 814 #ifdef CONFIG_RT_GROUP_SCHED 815 int rt_throttled; 816 u64 rt_time; /* consumed RT time, goes up in update_curr_rt */ 817 u64 rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */ 818 /* Nests inside the rq lock: */ 819 raw_spinlock_t rt_runtime_lock; 820 821 unsigned int rt_nr_boosted; 822 823 struct rq *rq; /* this is always top-level rq, cache? */ 824 #endif 825 #ifdef CONFIG_CGROUP_SCHED 826 struct task_group *tg; /* this tg has "this" rt_rq on given CPU for runnable entities */ 827 #endif 828 }; 829 830 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 831 { 832 return rt_rq->rt_queued && rt_rq->rt_nr_running; 833 } 834 835 /* Deadline class' related fields in a runqueue */ 836 struct dl_rq { 837 /* runqueue is an rbtree, ordered by deadline */ 838 struct rb_root_cached root; 839 840 unsigned int dl_nr_running; 841 842 /* 843 * Deadline values of the currently executing and the 844 * earliest ready task on this rq. Caching these facilitates 845 * the decision whether or not a ready but not running task 846 * should migrate somewhere else. 847 */ 848 struct { 849 u64 curr; 850 u64 next; 851 } earliest_dl; 852 853 bool overloaded; 854 855 /* 856 * Tasks on this rq that can be pushed away. They are kept in 857 * an rb-tree, ordered by tasks' deadlines, with caching 858 * of the leftmost (earliest deadline) element. 859 */ 860 struct rb_root_cached pushable_dl_tasks_root; 861 862 /* 863 * "Active utilization" for this runqueue: increased when a 864 * task wakes up (becomes TASK_RUNNING) and decreased when a 865 * task blocks 866 */ 867 u64 running_bw; 868 869 /* 870 * Utilization of the tasks "assigned" to this runqueue (including 871 * the tasks that are in runqueue and the tasks that executed on this 872 * CPU and blocked). Increased when a task moves to this runqueue, and 873 * decreased when the task moves away (migrates, changes scheduling 874 * policy, or terminates). 875 * This is needed to compute the "inactive utilization" for the 876 * runqueue (inactive utilization = this_bw - running_bw). 877 */ 878 u64 this_bw; 879 u64 extra_bw; 880 881 /* 882 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 883 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 884 */ 885 u64 max_bw; 886 887 /* 888 * Inverse of the fraction of CPU utilization that can be reclaimed 889 * by the GRUB algorithm. 890 */ 891 u64 bw_ratio; 892 }; 893 894 #ifdef CONFIG_FAIR_GROUP_SCHED 895 896 /* An entity is a task if it doesn't "own" a runqueue */ 897 #define entity_is_task(se) (!se->my_q) 898 899 static inline void se_update_runnable(struct sched_entity *se) 900 { 901 if (!entity_is_task(se)) 902 se->runnable_weight = se->my_q->h_nr_runnable; 903 } 904 905 static inline long se_runnable(struct sched_entity *se) 906 { 907 if (se->sched_delayed) 908 return false; 909 910 if (entity_is_task(se)) 911 return !!se->on_rq; 912 else 913 return se->runnable_weight; 914 } 915 916 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 917 918 #define entity_is_task(se) 1 919 920 static inline void se_update_runnable(struct sched_entity *se) { } 921 922 static inline long se_runnable(struct sched_entity *se) 923 { 924 if (se->sched_delayed) 925 return false; 926 927 return !!se->on_rq; 928 } 929 930 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 931 932 /* 933 * XXX we want to get rid of these helpers and use the full load resolution. 934 */ 935 static inline long se_weight(struct sched_entity *se) 936 { 937 return scale_load_down(se->load.weight); 938 } 939 940 941 static inline bool sched_asym_prefer(int a, int b) 942 { 943 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 944 } 945 946 struct perf_domain { 947 struct em_perf_domain *em_pd; 948 struct perf_domain *next; 949 struct rcu_head rcu; 950 }; 951 952 /* 953 * We add the notion of a root-domain which will be used to define per-domain 954 * variables. Each exclusive cpuset essentially defines an island domain by 955 * fully partitioning the member CPUs from any other cpuset. Whenever a new 956 * exclusive cpuset is created, we also create and attach a new root-domain 957 * object. 958 * 959 */ 960 struct root_domain { 961 atomic_t refcount; 962 atomic_t rto_count; 963 struct rcu_head rcu; 964 cpumask_var_t span; 965 cpumask_var_t online; 966 967 /* 968 * Indicate pullable load on at least one CPU, e.g: 969 * - More than one runnable task 970 * - Running task is misfit 971 */ 972 bool overloaded; 973 974 /* Indicate one or more CPUs over-utilized (tipping point) */ 975 bool overutilized; 976 977 /* 978 * The bit corresponding to a CPU gets set here if such CPU has more 979 * than one runnable -deadline task (as it is below for RT tasks). 980 */ 981 cpumask_var_t dlo_mask; 982 atomic_t dlo_count; 983 struct dl_bw dl_bw; 984 struct cpudl cpudl; 985 986 /* 987 * Indicate whether a root_domain's dl_bw has been checked or 988 * updated. It's monotonously increasing value. 989 * 990 * Also, some corner cases, like 'wrap around' is dangerous, but given 991 * that u64 is 'big enough'. So that shouldn't be a concern. 992 */ 993 u64 visit_cookie; 994 995 #ifdef HAVE_RT_PUSH_IPI 996 /* 997 * For IPI pull requests, loop across the rto_mask. 998 */ 999 struct irq_work rto_push_work; 1000 raw_spinlock_t rto_lock; 1001 /* These are only updated and read within rto_lock */ 1002 int rto_loop; 1003 int rto_cpu; 1004 /* These atomics are updated outside of a lock */ 1005 atomic_t rto_loop_next; 1006 atomic_t rto_loop_start; 1007 #endif /* HAVE_RT_PUSH_IPI */ 1008 /* 1009 * The "RT overload" flag: it gets set if a CPU has more than 1010 * one runnable RT task. 1011 */ 1012 cpumask_var_t rto_mask; 1013 struct cpupri cpupri; 1014 1015 /* 1016 * NULL-terminated list of performance domains intersecting with the 1017 * CPUs of the rd. Protected by RCU. 1018 */ 1019 struct perf_domain __rcu *pd; 1020 }; 1021 1022 extern void init_defrootdomain(void); 1023 extern int sched_init_domains(const struct cpumask *cpu_map); 1024 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 1025 extern void sched_get_rd(struct root_domain *rd); 1026 extern void sched_put_rd(struct root_domain *rd); 1027 1028 static inline int get_rd_overloaded(struct root_domain *rd) 1029 { 1030 return READ_ONCE(rd->overloaded); 1031 } 1032 1033 static inline void set_rd_overloaded(struct root_domain *rd, int status) 1034 { 1035 if (get_rd_overloaded(rd) != status) 1036 WRITE_ONCE(rd->overloaded, status); 1037 } 1038 1039 #ifdef HAVE_RT_PUSH_IPI 1040 extern void rto_push_irq_work_func(struct irq_work *work); 1041 #endif 1042 1043 #ifdef CONFIG_UCLAMP_TASK 1044 /* 1045 * struct uclamp_bucket - Utilization clamp bucket 1046 * @value: utilization clamp value for tasks on this clamp bucket 1047 * @tasks: number of RUNNABLE tasks on this clamp bucket 1048 * 1049 * Keep track of how many tasks are RUNNABLE for a given utilization 1050 * clamp value. 1051 */ 1052 struct uclamp_bucket { 1053 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 1054 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 1055 }; 1056 1057 /* 1058 * struct uclamp_rq - rq's utilization clamp 1059 * @value: currently active clamp values for a rq 1060 * @bucket: utilization clamp buckets affecting a rq 1061 * 1062 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 1063 * A clamp value is affecting a rq when there is at least one task RUNNABLE 1064 * (or actually running) with that value. 1065 * 1066 * There are up to UCLAMP_CNT possible different clamp values, currently there 1067 * are only two: minimum utilization and maximum utilization. 1068 * 1069 * All utilization clamping values are MAX aggregated, since: 1070 * - for util_min: we want to run the CPU at least at the max of the minimum 1071 * utilization required by its currently RUNNABLE tasks. 1072 * - for util_max: we want to allow the CPU to run up to the max of the 1073 * maximum utilization allowed by its currently RUNNABLE tasks. 1074 * 1075 * Since on each system we expect only a limited number of different 1076 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 1077 * the metrics required to compute all the per-rq utilization clamp values. 1078 */ 1079 struct uclamp_rq { 1080 unsigned int value; 1081 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 1082 }; 1083 1084 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 1085 #endif /* CONFIG_UCLAMP_TASK */ 1086 1087 /* 1088 * This is the main, per-CPU runqueue data structure. 1089 * 1090 * Locking rule: those places that want to lock multiple runqueues 1091 * (such as the load balancing or the thread migration code), lock 1092 * acquire operations must be ordered by ascending &runqueue. 1093 */ 1094 struct rq { 1095 /* runqueue lock: */ 1096 raw_spinlock_t __lock; 1097 1098 unsigned int nr_running; 1099 #ifdef CONFIG_NUMA_BALANCING 1100 unsigned int nr_numa_running; 1101 unsigned int nr_preferred_running; 1102 unsigned int numa_migrate_on; 1103 #endif 1104 #ifdef CONFIG_NO_HZ_COMMON 1105 unsigned long last_blocked_load_update_tick; 1106 unsigned int has_blocked_load; 1107 call_single_data_t nohz_csd; 1108 unsigned int nohz_tick_stopped; 1109 atomic_t nohz_flags; 1110 #endif /* CONFIG_NO_HZ_COMMON */ 1111 1112 unsigned int ttwu_pending; 1113 u64 nr_switches; 1114 1115 #ifdef CONFIG_UCLAMP_TASK 1116 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1117 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1118 unsigned int uclamp_flags; 1119 #define UCLAMP_FLAG_IDLE 0x01 1120 #endif 1121 1122 struct cfs_rq cfs; 1123 struct rt_rq rt; 1124 struct dl_rq dl; 1125 #ifdef CONFIG_SCHED_CLASS_EXT 1126 struct scx_rq scx; 1127 #endif 1128 1129 struct sched_dl_entity fair_server; 1130 1131 #ifdef CONFIG_FAIR_GROUP_SCHED 1132 /* list of leaf cfs_rq on this CPU: */ 1133 struct list_head leaf_cfs_rq_list; 1134 struct list_head *tmp_alone_branch; 1135 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1136 1137 /* 1138 * This is part of a global counter where only the total sum 1139 * over all CPUs matters. A task can increase this counter on 1140 * one CPU and if it got migrated afterwards it may decrease 1141 * it on another CPU. Always updated under the runqueue lock: 1142 */ 1143 unsigned long nr_uninterruptible; 1144 1145 #ifdef CONFIG_SCHED_PROXY_EXEC 1146 struct task_struct __rcu *donor; /* Scheduling context */ 1147 struct task_struct __rcu *curr; /* Execution context */ 1148 #else 1149 union { 1150 struct task_struct __rcu *donor; /* Scheduler context */ 1151 struct task_struct __rcu *curr; /* Execution context */ 1152 }; 1153 #endif 1154 struct sched_dl_entity *dl_server; 1155 struct task_struct *idle; 1156 struct task_struct *stop; 1157 unsigned long next_balance; 1158 struct mm_struct *prev_mm; 1159 1160 unsigned int clock_update_flags; 1161 u64 clock; 1162 /* Ensure that all clocks are in the same cache line */ 1163 u64 clock_task ____cacheline_aligned; 1164 u64 clock_pelt; 1165 unsigned long lost_idle_time; 1166 u64 clock_pelt_idle; 1167 u64 clock_idle; 1168 #ifndef CONFIG_64BIT 1169 u64 clock_pelt_idle_copy; 1170 u64 clock_idle_copy; 1171 #endif 1172 1173 atomic_t nr_iowait; 1174 1175 u64 last_seen_need_resched_ns; 1176 int ticks_without_resched; 1177 1178 #ifdef CONFIG_MEMBARRIER 1179 int membarrier_state; 1180 #endif 1181 1182 struct root_domain *rd; 1183 struct sched_domain __rcu *sd; 1184 1185 unsigned long cpu_capacity; 1186 1187 struct balance_callback *balance_callback; 1188 1189 unsigned char nohz_idle_balance; 1190 unsigned char idle_balance; 1191 1192 unsigned long misfit_task_load; 1193 1194 /* For active balancing */ 1195 int active_balance; 1196 int push_cpu; 1197 struct cpu_stop_work active_balance_work; 1198 1199 /* CPU of this runqueue: */ 1200 int cpu; 1201 int online; 1202 1203 struct list_head cfs_tasks; 1204 1205 struct sched_avg avg_rt; 1206 struct sched_avg avg_dl; 1207 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1208 struct sched_avg avg_irq; 1209 #endif 1210 #ifdef CONFIG_SCHED_HW_PRESSURE 1211 struct sched_avg avg_hw; 1212 #endif 1213 u64 idle_stamp; 1214 u64 avg_idle; 1215 1216 /* This is used to determine avg_idle's max value */ 1217 u64 max_idle_balance_cost; 1218 1219 #ifdef CONFIG_HOTPLUG_CPU 1220 struct rcuwait hotplug_wait; 1221 #endif 1222 1223 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1224 u64 prev_irq_time; 1225 u64 psi_irq_time; 1226 #endif 1227 #ifdef CONFIG_PARAVIRT 1228 u64 prev_steal_time; 1229 #endif 1230 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1231 u64 prev_steal_time_rq; 1232 #endif 1233 1234 /* calc_load related fields */ 1235 unsigned long calc_load_update; 1236 long calc_load_active; 1237 1238 #ifdef CONFIG_SCHED_HRTICK 1239 call_single_data_t hrtick_csd; 1240 struct hrtimer hrtick_timer; 1241 ktime_t hrtick_time; 1242 #endif 1243 1244 #ifdef CONFIG_SCHEDSTATS 1245 /* latency stats */ 1246 struct sched_info rq_sched_info; 1247 unsigned long long rq_cpu_time; 1248 1249 /* sys_sched_yield() stats */ 1250 unsigned int yld_count; 1251 1252 /* schedule() stats */ 1253 unsigned int sched_count; 1254 unsigned int sched_goidle; 1255 1256 /* try_to_wake_up() stats */ 1257 unsigned int ttwu_count; 1258 unsigned int ttwu_local; 1259 #endif 1260 1261 #ifdef CONFIG_CPU_IDLE 1262 /* Must be inspected within a RCU lock section */ 1263 struct cpuidle_state *idle_state; 1264 #endif 1265 1266 unsigned int nr_pinned; 1267 unsigned int push_busy; 1268 struct cpu_stop_work push_work; 1269 1270 #ifdef CONFIG_SCHED_CORE 1271 /* per rq */ 1272 struct rq *core; 1273 struct task_struct *core_pick; 1274 struct sched_dl_entity *core_dl_server; 1275 unsigned int core_enabled; 1276 unsigned int core_sched_seq; 1277 struct rb_root core_tree; 1278 1279 /* shared state -- careful with sched_core_cpu_deactivate() */ 1280 unsigned int core_task_seq; 1281 unsigned int core_pick_seq; 1282 unsigned long core_cookie; 1283 unsigned int core_forceidle_count; 1284 unsigned int core_forceidle_seq; 1285 unsigned int core_forceidle_occupation; 1286 u64 core_forceidle_start; 1287 #endif /* CONFIG_SCHED_CORE */ 1288 1289 /* Scratch cpumask to be temporarily used under rq_lock */ 1290 cpumask_var_t scratch_mask; 1291 1292 #ifdef CONFIG_CFS_BANDWIDTH 1293 call_single_data_t cfsb_csd; 1294 struct list_head cfsb_csd_list; 1295 #endif 1296 }; 1297 1298 #ifdef CONFIG_FAIR_GROUP_SCHED 1299 1300 /* CPU runqueue to which this cfs_rq is attached */ 1301 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1302 { 1303 return cfs_rq->rq; 1304 } 1305 1306 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1307 1308 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1309 { 1310 return container_of(cfs_rq, struct rq, cfs); 1311 } 1312 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1313 1314 static inline int cpu_of(struct rq *rq) 1315 { 1316 return rq->cpu; 1317 } 1318 1319 #define MDF_PUSH 0x01 1320 1321 static inline bool is_migration_disabled(struct task_struct *p) 1322 { 1323 return p->migration_disabled; 1324 } 1325 1326 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1327 1328 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1329 #define this_rq() this_cpu_ptr(&runqueues) 1330 #define task_rq(p) cpu_rq(task_cpu(p)) 1331 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1332 #define raw_rq() raw_cpu_ptr(&runqueues) 1333 1334 #ifdef CONFIG_SCHED_PROXY_EXEC 1335 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1336 { 1337 rcu_assign_pointer(rq->donor, t); 1338 } 1339 #else 1340 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1341 { 1342 /* Do nothing */ 1343 } 1344 #endif 1345 1346 #ifdef CONFIG_SCHED_CORE 1347 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1348 1349 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1350 1351 static inline bool sched_core_enabled(struct rq *rq) 1352 { 1353 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1354 } 1355 1356 static inline bool sched_core_disabled(void) 1357 { 1358 return !static_branch_unlikely(&__sched_core_enabled); 1359 } 1360 1361 /* 1362 * Be careful with this function; not for general use. The return value isn't 1363 * stable unless you actually hold a relevant rq->__lock. 1364 */ 1365 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1366 { 1367 if (sched_core_enabled(rq)) 1368 return &rq->core->__lock; 1369 1370 return &rq->__lock; 1371 } 1372 1373 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1374 { 1375 if (rq->core_enabled) 1376 return &rq->core->__lock; 1377 1378 return &rq->__lock; 1379 } 1380 1381 extern bool 1382 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); 1383 1384 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1385 1386 /* 1387 * Helpers to check if the CPU's core cookie matches with the task's cookie 1388 * when core scheduling is enabled. 1389 * A special case is that the task's cookie always matches with CPU's core 1390 * cookie if the CPU is in an idle core. 1391 */ 1392 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1393 { 1394 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1395 if (!sched_core_enabled(rq)) 1396 return true; 1397 1398 return rq->core->core_cookie == p->core_cookie; 1399 } 1400 1401 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1402 { 1403 bool idle_core = true; 1404 int cpu; 1405 1406 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1407 if (!sched_core_enabled(rq)) 1408 return true; 1409 1410 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1411 if (!available_idle_cpu(cpu)) { 1412 idle_core = false; 1413 break; 1414 } 1415 } 1416 1417 /* 1418 * A CPU in an idle core is always the best choice for tasks with 1419 * cookies. 1420 */ 1421 return idle_core || rq->core->core_cookie == p->core_cookie; 1422 } 1423 1424 static inline bool sched_group_cookie_match(struct rq *rq, 1425 struct task_struct *p, 1426 struct sched_group *group) 1427 { 1428 int cpu; 1429 1430 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1431 if (!sched_core_enabled(rq)) 1432 return true; 1433 1434 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1435 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1436 return true; 1437 } 1438 return false; 1439 } 1440 1441 static inline bool sched_core_enqueued(struct task_struct *p) 1442 { 1443 return !RB_EMPTY_NODE(&p->core_node); 1444 } 1445 1446 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1447 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1448 1449 extern void sched_core_get(void); 1450 extern void sched_core_put(void); 1451 1452 #else /* !CONFIG_SCHED_CORE: */ 1453 1454 static inline bool sched_core_enabled(struct rq *rq) 1455 { 1456 return false; 1457 } 1458 1459 static inline bool sched_core_disabled(void) 1460 { 1461 return true; 1462 } 1463 1464 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1465 { 1466 return &rq->__lock; 1467 } 1468 1469 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1470 { 1471 return &rq->__lock; 1472 } 1473 1474 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1475 { 1476 return true; 1477 } 1478 1479 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1480 { 1481 return true; 1482 } 1483 1484 static inline bool sched_group_cookie_match(struct rq *rq, 1485 struct task_struct *p, 1486 struct sched_group *group) 1487 { 1488 return true; 1489 } 1490 1491 #endif /* !CONFIG_SCHED_CORE */ 1492 1493 #ifdef CONFIG_RT_GROUP_SCHED 1494 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 1495 DECLARE_STATIC_KEY_FALSE(rt_group_sched); 1496 static inline bool rt_group_sched_enabled(void) 1497 { 1498 return static_branch_unlikely(&rt_group_sched); 1499 } 1500 # else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */ 1501 DECLARE_STATIC_KEY_TRUE(rt_group_sched); 1502 static inline bool rt_group_sched_enabled(void) 1503 { 1504 return static_branch_likely(&rt_group_sched); 1505 } 1506 # endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */ 1507 #else /* !CONFIG_RT_GROUP_SCHED: */ 1508 # define rt_group_sched_enabled() false 1509 #endif /* !CONFIG_RT_GROUP_SCHED */ 1510 1511 static inline void lockdep_assert_rq_held(struct rq *rq) 1512 { 1513 lockdep_assert_held(__rq_lockp(rq)); 1514 } 1515 1516 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1517 extern bool raw_spin_rq_trylock(struct rq *rq); 1518 extern void raw_spin_rq_unlock(struct rq *rq); 1519 1520 static inline void raw_spin_rq_lock(struct rq *rq) 1521 { 1522 raw_spin_rq_lock_nested(rq, 0); 1523 } 1524 1525 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1526 { 1527 local_irq_disable(); 1528 raw_spin_rq_lock(rq); 1529 } 1530 1531 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1532 { 1533 raw_spin_rq_unlock(rq); 1534 local_irq_enable(); 1535 } 1536 1537 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1538 { 1539 unsigned long flags; 1540 1541 local_irq_save(flags); 1542 raw_spin_rq_lock(rq); 1543 1544 return flags; 1545 } 1546 1547 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1548 { 1549 raw_spin_rq_unlock(rq); 1550 local_irq_restore(flags); 1551 } 1552 1553 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1554 do { \ 1555 flags = _raw_spin_rq_lock_irqsave(rq); \ 1556 } while (0) 1557 1558 #ifdef CONFIG_SCHED_SMT 1559 extern void __update_idle_core(struct rq *rq); 1560 1561 static inline void update_idle_core(struct rq *rq) 1562 { 1563 if (static_branch_unlikely(&sched_smt_present)) 1564 __update_idle_core(rq); 1565 } 1566 1567 #else /* !CONFIG_SCHED_SMT: */ 1568 static inline void update_idle_core(struct rq *rq) { } 1569 #endif /* !CONFIG_SCHED_SMT */ 1570 1571 #ifdef CONFIG_FAIR_GROUP_SCHED 1572 1573 static inline struct task_struct *task_of(struct sched_entity *se) 1574 { 1575 WARN_ON_ONCE(!entity_is_task(se)); 1576 return container_of(se, struct task_struct, se); 1577 } 1578 1579 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1580 { 1581 return p->se.cfs_rq; 1582 } 1583 1584 /* runqueue on which this entity is (to be) queued */ 1585 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1586 { 1587 return se->cfs_rq; 1588 } 1589 1590 /* runqueue "owned" by this group */ 1591 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1592 { 1593 return grp->my_q; 1594 } 1595 1596 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1597 1598 #define task_of(_se) container_of(_se, struct task_struct, se) 1599 1600 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1601 { 1602 return &task_rq(p)->cfs; 1603 } 1604 1605 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1606 { 1607 const struct task_struct *p = task_of(se); 1608 struct rq *rq = task_rq(p); 1609 1610 return &rq->cfs; 1611 } 1612 1613 /* runqueue "owned" by this group */ 1614 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1615 { 1616 return NULL; 1617 } 1618 1619 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1620 1621 extern void update_rq_clock(struct rq *rq); 1622 1623 /* 1624 * rq::clock_update_flags bits 1625 * 1626 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1627 * call to __schedule(). This is an optimisation to avoid 1628 * neighbouring rq clock updates. 1629 * 1630 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1631 * in effect and calls to update_rq_clock() are being ignored. 1632 * 1633 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1634 * made to update_rq_clock() since the last time rq::lock was pinned. 1635 * 1636 * If inside of __schedule(), clock_update_flags will have been 1637 * shifted left (a left shift is a cheap operation for the fast path 1638 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1639 * 1640 * if (rq-clock_update_flags >= RQCF_UPDATED) 1641 * 1642 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1643 * one position though, because the next rq_unpin_lock() will shift it 1644 * back. 1645 */ 1646 #define RQCF_REQ_SKIP 0x01 1647 #define RQCF_ACT_SKIP 0x02 1648 #define RQCF_UPDATED 0x04 1649 1650 static inline void assert_clock_updated(struct rq *rq) 1651 { 1652 /* 1653 * The only reason for not seeing a clock update since the 1654 * last rq_pin_lock() is if we're currently skipping updates. 1655 */ 1656 WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP); 1657 } 1658 1659 static inline u64 rq_clock(struct rq *rq) 1660 { 1661 lockdep_assert_rq_held(rq); 1662 assert_clock_updated(rq); 1663 1664 return rq->clock; 1665 } 1666 1667 static inline u64 rq_clock_task(struct rq *rq) 1668 { 1669 lockdep_assert_rq_held(rq); 1670 assert_clock_updated(rq); 1671 1672 return rq->clock_task; 1673 } 1674 1675 static inline void rq_clock_skip_update(struct rq *rq) 1676 { 1677 lockdep_assert_rq_held(rq); 1678 rq->clock_update_flags |= RQCF_REQ_SKIP; 1679 } 1680 1681 /* 1682 * See rt task throttling, which is the only time a skip 1683 * request is canceled. 1684 */ 1685 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1686 { 1687 lockdep_assert_rq_held(rq); 1688 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1689 } 1690 1691 /* 1692 * During cpu offlining and rq wide unthrottling, we can trigger 1693 * an update_rq_clock() for several cfs and rt runqueues (Typically 1694 * when using list_for_each_entry_*) 1695 * rq_clock_start_loop_update() can be called after updating the clock 1696 * once and before iterating over the list to prevent multiple update. 1697 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1698 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1699 */ 1700 static inline void rq_clock_start_loop_update(struct rq *rq) 1701 { 1702 lockdep_assert_rq_held(rq); 1703 WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP); 1704 rq->clock_update_flags |= RQCF_ACT_SKIP; 1705 } 1706 1707 static inline void rq_clock_stop_loop_update(struct rq *rq) 1708 { 1709 lockdep_assert_rq_held(rq); 1710 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1711 } 1712 1713 struct rq_flags { 1714 unsigned long flags; 1715 struct pin_cookie cookie; 1716 /* 1717 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1718 * current pin context is stashed here in case it needs to be 1719 * restored in rq_repin_lock(). 1720 */ 1721 unsigned int clock_update_flags; 1722 }; 1723 1724 extern struct balance_callback balance_push_callback; 1725 1726 #ifdef CONFIG_SCHED_CLASS_EXT 1727 extern const struct sched_class ext_sched_class; 1728 1729 DECLARE_STATIC_KEY_FALSE(__scx_enabled); /* SCX BPF scheduler loaded */ 1730 DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ 1731 1732 #define scx_enabled() static_branch_unlikely(&__scx_enabled) 1733 #define scx_switched_all() static_branch_unlikely(&__scx_switched_all) 1734 1735 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) 1736 { 1737 if (!scx_enabled()) 1738 return; 1739 WRITE_ONCE(rq->scx.clock, clock); 1740 smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID); 1741 } 1742 1743 static inline void scx_rq_clock_invalidate(struct rq *rq) 1744 { 1745 if (!scx_enabled()) 1746 return; 1747 WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID); 1748 } 1749 1750 #else /* !CONFIG_SCHED_CLASS_EXT: */ 1751 #define scx_enabled() false 1752 #define scx_switched_all() false 1753 1754 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {} 1755 static inline void scx_rq_clock_invalidate(struct rq *rq) {} 1756 #endif /* !CONFIG_SCHED_CLASS_EXT */ 1757 1758 /* 1759 * Lockdep annotation that avoids accidental unlocks; it's like a 1760 * sticky/continuous lockdep_assert_held(). 1761 * 1762 * This avoids code that has access to 'struct rq *rq' (basically everything in 1763 * the scheduler) from accidentally unlocking the rq if they do not also have a 1764 * copy of the (on-stack) 'struct rq_flags rf'. 1765 * 1766 * Also see Documentation/locking/lockdep-design.rst. 1767 */ 1768 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1769 { 1770 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1771 1772 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1773 rf->clock_update_flags = 0; 1774 WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1775 } 1776 1777 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1778 { 1779 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1780 rf->clock_update_flags = RQCF_UPDATED; 1781 1782 scx_rq_clock_invalidate(rq); 1783 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1784 } 1785 1786 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1787 { 1788 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1789 1790 /* 1791 * Restore the value we stashed in @rf for this pin context. 1792 */ 1793 rq->clock_update_flags |= rf->clock_update_flags; 1794 } 1795 1796 extern 1797 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1798 __acquires(rq->lock); 1799 1800 extern 1801 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1802 __acquires(p->pi_lock) 1803 __acquires(rq->lock); 1804 1805 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1806 __releases(rq->lock) 1807 { 1808 rq_unpin_lock(rq, rf); 1809 raw_spin_rq_unlock(rq); 1810 } 1811 1812 static inline void 1813 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1814 __releases(rq->lock) 1815 __releases(p->pi_lock) 1816 { 1817 rq_unpin_lock(rq, rf); 1818 raw_spin_rq_unlock(rq); 1819 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1820 } 1821 1822 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1823 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1824 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1825 struct rq *rq; struct rq_flags rf) 1826 1827 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1828 __acquires(rq->lock) 1829 { 1830 raw_spin_rq_lock_irqsave(rq, rf->flags); 1831 rq_pin_lock(rq, rf); 1832 } 1833 1834 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1835 __acquires(rq->lock) 1836 { 1837 raw_spin_rq_lock_irq(rq); 1838 rq_pin_lock(rq, rf); 1839 } 1840 1841 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) 1842 __acquires(rq->lock) 1843 { 1844 raw_spin_rq_lock(rq); 1845 rq_pin_lock(rq, rf); 1846 } 1847 1848 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1849 __releases(rq->lock) 1850 { 1851 rq_unpin_lock(rq, rf); 1852 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1853 } 1854 1855 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1856 __releases(rq->lock) 1857 { 1858 rq_unpin_lock(rq, rf); 1859 raw_spin_rq_unlock_irq(rq); 1860 } 1861 1862 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) 1863 __releases(rq->lock) 1864 { 1865 rq_unpin_lock(rq, rf); 1866 raw_spin_rq_unlock(rq); 1867 } 1868 1869 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1870 rq_lock(_T->lock, &_T->rf), 1871 rq_unlock(_T->lock, &_T->rf), 1872 struct rq_flags rf) 1873 1874 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1875 rq_lock_irq(_T->lock, &_T->rf), 1876 rq_unlock_irq(_T->lock, &_T->rf), 1877 struct rq_flags rf) 1878 1879 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1880 rq_lock_irqsave(_T->lock, &_T->rf), 1881 rq_unlock_irqrestore(_T->lock, &_T->rf), 1882 struct rq_flags rf) 1883 1884 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) 1885 __acquires(rq->lock) 1886 { 1887 struct rq *rq; 1888 1889 local_irq_disable(); 1890 rq = this_rq(); 1891 rq_lock(rq, rf); 1892 1893 return rq; 1894 } 1895 1896 #ifdef CONFIG_NUMA 1897 1898 enum numa_topology_type { 1899 NUMA_DIRECT, 1900 NUMA_GLUELESS_MESH, 1901 NUMA_BACKPLANE, 1902 }; 1903 1904 extern enum numa_topology_type sched_numa_topology_type; 1905 extern int sched_max_numa_distance; 1906 extern bool find_numa_distance(int distance); 1907 extern void sched_init_numa(int offline_node); 1908 extern void sched_update_numa(int cpu, bool online); 1909 extern void sched_domains_numa_masks_set(unsigned int cpu); 1910 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1911 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1912 1913 #else /* !CONFIG_NUMA: */ 1914 1915 static inline void sched_init_numa(int offline_node) { } 1916 static inline void sched_update_numa(int cpu, bool online) { } 1917 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1918 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1919 1920 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1921 { 1922 return nr_cpu_ids; 1923 } 1924 1925 #endif /* !CONFIG_NUMA */ 1926 1927 #ifdef CONFIG_NUMA_BALANCING 1928 1929 /* The regions in numa_faults array from task_struct */ 1930 enum numa_faults_stats { 1931 NUMA_MEM = 0, 1932 NUMA_CPU, 1933 NUMA_MEMBUF, 1934 NUMA_CPUBUF 1935 }; 1936 1937 extern void sched_setnuma(struct task_struct *p, int node); 1938 extern int migrate_task_to(struct task_struct *p, int cpu); 1939 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1940 int cpu, int scpu); 1941 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1942 1943 #else /* !CONFIG_NUMA_BALANCING: */ 1944 1945 static inline void 1946 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1947 { 1948 } 1949 1950 #endif /* !CONFIG_NUMA_BALANCING */ 1951 1952 static inline void 1953 queue_balance_callback(struct rq *rq, 1954 struct balance_callback *head, 1955 void (*func)(struct rq *rq)) 1956 { 1957 lockdep_assert_rq_held(rq); 1958 1959 /* 1960 * Don't (re)queue an already queued item; nor queue anything when 1961 * balance_push() is active, see the comment with 1962 * balance_push_callback. 1963 */ 1964 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1965 return; 1966 1967 head->func = func; 1968 head->next = rq->balance_callback; 1969 rq->balance_callback = head; 1970 } 1971 1972 #define rcu_dereference_check_sched_domain(p) \ 1973 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) 1974 1975 /* 1976 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1977 * See destroy_sched_domains: call_rcu for details. 1978 * 1979 * The domain tree of any CPU may only be accessed from within 1980 * preempt-disabled sections. 1981 */ 1982 #define for_each_domain(cpu, __sd) \ 1983 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1984 __sd; __sd = __sd->parent) 1985 1986 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 1987 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 1988 static const unsigned int SD_SHARED_CHILD_MASK = 1989 #include <linux/sched/sd_flags.h> 1990 0; 1991 #undef SD_FLAG 1992 1993 /** 1994 * highest_flag_domain - Return highest sched_domain containing flag. 1995 * @cpu: The CPU whose highest level of sched domain is to 1996 * be returned. 1997 * @flag: The flag to check for the highest sched_domain 1998 * for the given CPU. 1999 * 2000 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 2001 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 2002 */ 2003 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 2004 { 2005 struct sched_domain *sd, *hsd = NULL; 2006 2007 for_each_domain(cpu, sd) { 2008 if (sd->flags & flag) { 2009 hsd = sd; 2010 continue; 2011 } 2012 2013 /* 2014 * Stop the search if @flag is known to be shared at lower 2015 * levels. It will not be found further up. 2016 */ 2017 if (flag & SD_SHARED_CHILD_MASK) 2018 break; 2019 } 2020 2021 return hsd; 2022 } 2023 2024 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 2025 { 2026 struct sched_domain *sd; 2027 2028 for_each_domain(cpu, sd) { 2029 if (sd->flags & flag) 2030 break; 2031 } 2032 2033 return sd; 2034 } 2035 2036 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 2037 DECLARE_PER_CPU(int, sd_llc_size); 2038 DECLARE_PER_CPU(int, sd_llc_id); 2039 DECLARE_PER_CPU(int, sd_share_id); 2040 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 2041 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 2042 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 2043 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 2044 2045 extern struct static_key_false sched_asym_cpucapacity; 2046 extern struct static_key_false sched_cluster_active; 2047 2048 static __always_inline bool sched_asym_cpucap_active(void) 2049 { 2050 return static_branch_unlikely(&sched_asym_cpucapacity); 2051 } 2052 2053 struct sched_group_capacity { 2054 atomic_t ref; 2055 /* 2056 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 2057 * for a single CPU. 2058 */ 2059 unsigned long capacity; 2060 unsigned long min_capacity; /* Min per-CPU capacity in group */ 2061 unsigned long max_capacity; /* Max per-CPU capacity in group */ 2062 unsigned long next_update; 2063 int imbalance; /* XXX unrelated to capacity but shared group state */ 2064 2065 int id; 2066 2067 unsigned long cpumask[]; /* Balance mask */ 2068 }; 2069 2070 struct sched_group { 2071 struct sched_group *next; /* Must be a circular list */ 2072 atomic_t ref; 2073 2074 unsigned int group_weight; 2075 unsigned int cores; 2076 struct sched_group_capacity *sgc; 2077 int asym_prefer_cpu; /* CPU of highest priority in group */ 2078 int flags; 2079 2080 /* 2081 * The CPUs this group covers. 2082 * 2083 * NOTE: this field is variable length. (Allocated dynamically 2084 * by attaching extra space to the end of the structure, 2085 * depending on how many CPUs the kernel has booted up with) 2086 */ 2087 unsigned long cpumask[]; 2088 }; 2089 2090 static inline struct cpumask *sched_group_span(struct sched_group *sg) 2091 { 2092 return to_cpumask(sg->cpumask); 2093 } 2094 2095 /* 2096 * See build_balance_mask(). 2097 */ 2098 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 2099 { 2100 return to_cpumask(sg->sgc->cpumask); 2101 } 2102 2103 extern int group_balance_cpu(struct sched_group *sg); 2104 2105 extern void update_sched_domain_debugfs(void); 2106 extern void dirty_sched_domain_sysctl(int cpu); 2107 2108 extern int sched_update_scaling(void); 2109 2110 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 2111 { 2112 if (!p->user_cpus_ptr) 2113 return cpu_possible_mask; /* &init_task.cpus_mask */ 2114 return p->user_cpus_ptr; 2115 } 2116 2117 #ifdef CONFIG_CGROUP_SCHED 2118 2119 /* 2120 * Return the group to which this tasks belongs. 2121 * 2122 * We cannot use task_css() and friends because the cgroup subsystem 2123 * changes that value before the cgroup_subsys::attach() method is called, 2124 * therefore we cannot pin it and might observe the wrong value. 2125 * 2126 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2127 * core changes this before calling sched_move_task(). 2128 * 2129 * Instead we use a 'copy' which is updated from sched_move_task() while 2130 * holding both task_struct::pi_lock and rq::lock. 2131 */ 2132 static inline struct task_group *task_group(struct task_struct *p) 2133 { 2134 return p->sched_task_group; 2135 } 2136 2137 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2138 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2139 { 2140 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2141 struct task_group *tg = task_group(p); 2142 #endif 2143 2144 #ifdef CONFIG_FAIR_GROUP_SCHED 2145 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2146 p->se.cfs_rq = tg->cfs_rq[cpu]; 2147 p->se.parent = tg->se[cpu]; 2148 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2149 #endif 2150 2151 #ifdef CONFIG_RT_GROUP_SCHED 2152 /* 2153 * p->rt.rt_rq is NULL initially and it is easier to assign 2154 * root_task_group's rt_rq than switching in rt_rq_of_se() 2155 * Clobbers tg(!) 2156 */ 2157 if (!rt_group_sched_enabled()) 2158 tg = &root_task_group; 2159 p->rt.rt_rq = tg->rt_rq[cpu]; 2160 p->rt.parent = tg->rt_se[cpu]; 2161 #endif /* CONFIG_RT_GROUP_SCHED */ 2162 } 2163 2164 #else /* !CONFIG_CGROUP_SCHED: */ 2165 2166 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2167 2168 static inline struct task_group *task_group(struct task_struct *p) 2169 { 2170 return NULL; 2171 } 2172 2173 #endif /* !CONFIG_CGROUP_SCHED */ 2174 2175 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2176 { 2177 set_task_rq(p, cpu); 2178 #ifdef CONFIG_SMP 2179 /* 2180 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2181 * successfully executed on another CPU. We must ensure that updates of 2182 * per-task data have been completed by this moment. 2183 */ 2184 smp_wmb(); 2185 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2186 p->wake_cpu = cpu; 2187 #endif /* CONFIG_SMP */ 2188 } 2189 2190 /* 2191 * Tunables: 2192 */ 2193 2194 #define SCHED_FEAT(name, enabled) \ 2195 __SCHED_FEAT_##name , 2196 2197 enum { 2198 #include "features.h" 2199 __SCHED_FEAT_NR, 2200 }; 2201 2202 #undef SCHED_FEAT 2203 2204 /* 2205 * To support run-time toggling of sched features, all the translation units 2206 * (but core.c) reference the sysctl_sched_features defined in core.c. 2207 */ 2208 extern __read_mostly unsigned int sysctl_sched_features; 2209 2210 #ifdef CONFIG_JUMP_LABEL 2211 2212 #define SCHED_FEAT(name, enabled) \ 2213 static __always_inline bool static_branch_##name(struct static_key *key) \ 2214 { \ 2215 return static_key_##enabled(key); \ 2216 } 2217 2218 #include "features.h" 2219 #undef SCHED_FEAT 2220 2221 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2222 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2223 2224 #else /* !CONFIG_JUMP_LABEL: */ 2225 2226 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2227 2228 #endif /* !CONFIG_JUMP_LABEL */ 2229 2230 extern struct static_key_false sched_numa_balancing; 2231 extern struct static_key_false sched_schedstats; 2232 2233 static inline u64 global_rt_period(void) 2234 { 2235 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2236 } 2237 2238 static inline u64 global_rt_runtime(void) 2239 { 2240 if (sysctl_sched_rt_runtime < 0) 2241 return RUNTIME_INF; 2242 2243 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2244 } 2245 2246 /* 2247 * Is p the current execution context? 2248 */ 2249 static inline int task_current(struct rq *rq, struct task_struct *p) 2250 { 2251 return rq->curr == p; 2252 } 2253 2254 /* 2255 * Is p the current scheduling context? 2256 * 2257 * Note that it might be the current execution context at the same time if 2258 * rq->curr == rq->donor == p. 2259 */ 2260 static inline int task_current_donor(struct rq *rq, struct task_struct *p) 2261 { 2262 return rq->donor == p; 2263 } 2264 2265 static inline bool task_is_blocked(struct task_struct *p) 2266 { 2267 if (!sched_proxy_exec()) 2268 return false; 2269 2270 return !!p->blocked_on; 2271 } 2272 2273 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2274 { 2275 return p->on_cpu; 2276 } 2277 2278 static inline int task_on_rq_queued(struct task_struct *p) 2279 { 2280 return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED; 2281 } 2282 2283 static inline int task_on_rq_migrating(struct task_struct *p) 2284 { 2285 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2286 } 2287 2288 /* Wake flags. The first three directly map to some SD flag value */ 2289 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2290 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2291 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2292 2293 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2294 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2295 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2296 #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ 2297 2298 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2299 static_assert(WF_FORK == SD_BALANCE_FORK); 2300 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2301 2302 /* 2303 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2304 * of tasks with abnormal "nice" values across CPUs the contribution that 2305 * each task makes to its run queue's load is weighted according to its 2306 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2307 * scaled version of the new time slice allocation that they receive on time 2308 * slice expiry etc. 2309 */ 2310 2311 #define WEIGHT_IDLEPRIO 3 2312 #define WMULT_IDLEPRIO 1431655765 2313 2314 extern const int sched_prio_to_weight[40]; 2315 extern const u32 sched_prio_to_wmult[40]; 2316 2317 /* 2318 * {de,en}queue flags: 2319 * 2320 * DEQUEUE_SLEEP - task is no longer runnable 2321 * ENQUEUE_WAKEUP - task just became runnable 2322 * 2323 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2324 * are in a known state which allows modification. Such pairs 2325 * should preserve as much state as possible. 2326 * 2327 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2328 * in the runqueue. 2329 * 2330 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2331 * 2332 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2333 * 2334 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2335 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2336 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2337 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called 2338 * 2339 */ 2340 2341 #define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */ 2342 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2343 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2344 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2345 #define DEQUEUE_SPECIAL 0x10 2346 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */ 2347 #define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */ 2348 2349 #define ENQUEUE_WAKEUP 0x01 2350 #define ENQUEUE_RESTORE 0x02 2351 #define ENQUEUE_MOVE 0x04 2352 #define ENQUEUE_NOCLOCK 0x08 2353 2354 #define ENQUEUE_HEAD 0x10 2355 #define ENQUEUE_REPLENISH 0x20 2356 #define ENQUEUE_MIGRATED 0x40 2357 #define ENQUEUE_INITIAL 0x80 2358 #define ENQUEUE_MIGRATING 0x100 2359 #define ENQUEUE_DELAYED 0x200 2360 #define ENQUEUE_RQ_SELECTED 0x400 2361 2362 #define RETRY_TASK ((void *)-1UL) 2363 2364 struct affinity_context { 2365 const struct cpumask *new_mask; 2366 struct cpumask *user_mask; 2367 unsigned int flags; 2368 }; 2369 2370 extern s64 update_curr_common(struct rq *rq); 2371 2372 struct sched_class { 2373 2374 #ifdef CONFIG_UCLAMP_TASK 2375 int uclamp_enabled; 2376 #endif 2377 2378 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2379 bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2380 void (*yield_task) (struct rq *rq); 2381 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2382 2383 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2384 2385 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2386 struct task_struct *(*pick_task)(struct rq *rq); 2387 /* 2388 * Optional! When implemented pick_next_task() should be equivalent to: 2389 * 2390 * next = pick_task(); 2391 * if (next) { 2392 * put_prev_task(prev); 2393 * set_next_task_first(next); 2394 * } 2395 */ 2396 struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev); 2397 2398 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); 2399 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2400 2401 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2402 2403 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2404 2405 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2406 2407 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2408 2409 void (*rq_online)(struct rq *rq); 2410 void (*rq_offline)(struct rq *rq); 2411 2412 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2413 2414 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2415 void (*task_fork)(struct task_struct *p); 2416 void (*task_dead)(struct task_struct *p); 2417 2418 /* 2419 * The switched_from() call is allowed to drop rq->lock, therefore we 2420 * cannot assume the switched_from/switched_to pair is serialized by 2421 * rq->lock. They are however serialized by p->pi_lock. 2422 */ 2423 void (*switching_to) (struct rq *this_rq, struct task_struct *task); 2424 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2425 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2426 void (*reweight_task)(struct rq *this_rq, struct task_struct *task, 2427 const struct load_weight *lw); 2428 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2429 int oldprio); 2430 2431 unsigned int (*get_rr_interval)(struct rq *rq, 2432 struct task_struct *task); 2433 2434 void (*update_curr)(struct rq *rq); 2435 2436 #ifdef CONFIG_FAIR_GROUP_SCHED 2437 void (*task_change_group)(struct task_struct *p); 2438 #endif 2439 2440 #ifdef CONFIG_SCHED_CORE 2441 int (*task_is_throttled)(struct task_struct *p, int cpu); 2442 #endif 2443 }; 2444 2445 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2446 { 2447 WARN_ON_ONCE(rq->donor != prev); 2448 prev->sched_class->put_prev_task(rq, prev, NULL); 2449 } 2450 2451 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2452 { 2453 next->sched_class->set_next_task(rq, next, false); 2454 } 2455 2456 static inline void 2457 __put_prev_set_next_dl_server(struct rq *rq, 2458 struct task_struct *prev, 2459 struct task_struct *next) 2460 { 2461 prev->dl_server = NULL; 2462 next->dl_server = rq->dl_server; 2463 rq->dl_server = NULL; 2464 } 2465 2466 static inline void put_prev_set_next_task(struct rq *rq, 2467 struct task_struct *prev, 2468 struct task_struct *next) 2469 { 2470 WARN_ON_ONCE(rq->donor != prev); 2471 2472 __put_prev_set_next_dl_server(rq, prev, next); 2473 2474 if (next == prev) 2475 return; 2476 2477 prev->sched_class->put_prev_task(rq, prev, next); 2478 next->sched_class->set_next_task(rq, next, true); 2479 } 2480 2481 /* 2482 * Helper to define a sched_class instance; each one is placed in a separate 2483 * section which is ordered by the linker script: 2484 * 2485 * include/asm-generic/vmlinux.lds.h 2486 * 2487 * *CAREFUL* they are laid out in *REVERSE* order!!! 2488 * 2489 * Also enforce alignment on the instance, not the type, to guarantee layout. 2490 */ 2491 #define DEFINE_SCHED_CLASS(name) \ 2492 const struct sched_class name##_sched_class \ 2493 __aligned(__alignof__(struct sched_class)) \ 2494 __section("__" #name "_sched_class") 2495 2496 /* Defined in include/asm-generic/vmlinux.lds.h */ 2497 extern struct sched_class __sched_class_highest[]; 2498 extern struct sched_class __sched_class_lowest[]; 2499 2500 extern const struct sched_class stop_sched_class; 2501 extern const struct sched_class dl_sched_class; 2502 extern const struct sched_class rt_sched_class; 2503 extern const struct sched_class fair_sched_class; 2504 extern const struct sched_class idle_sched_class; 2505 2506 /* 2507 * Iterate only active classes. SCX can take over all fair tasks or be 2508 * completely disabled. If the former, skip fair. If the latter, skip SCX. 2509 */ 2510 static inline const struct sched_class *next_active_class(const struct sched_class *class) 2511 { 2512 class++; 2513 #ifdef CONFIG_SCHED_CLASS_EXT 2514 if (scx_switched_all() && class == &fair_sched_class) 2515 class++; 2516 if (!scx_enabled() && class == &ext_sched_class) 2517 class++; 2518 #endif 2519 return class; 2520 } 2521 2522 #define for_class_range(class, _from, _to) \ 2523 for (class = (_from); class < (_to); class++) 2524 2525 #define for_each_class(class) \ 2526 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2527 2528 #define for_active_class_range(class, _from, _to) \ 2529 for (class = (_from); class != (_to); class = next_active_class(class)) 2530 2531 #define for_each_active_class(class) \ 2532 for_active_class_range(class, __sched_class_highest, __sched_class_lowest) 2533 2534 #define sched_class_above(_a, _b) ((_a) < (_b)) 2535 2536 static inline bool sched_stop_runnable(struct rq *rq) 2537 { 2538 return rq->stop && task_on_rq_queued(rq->stop); 2539 } 2540 2541 static inline bool sched_dl_runnable(struct rq *rq) 2542 { 2543 return rq->dl.dl_nr_running > 0; 2544 } 2545 2546 static inline bool sched_rt_runnable(struct rq *rq) 2547 { 2548 return rq->rt.rt_queued > 0; 2549 } 2550 2551 static inline bool sched_fair_runnable(struct rq *rq) 2552 { 2553 return rq->cfs.nr_queued > 0; 2554 } 2555 2556 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2557 extern struct task_struct *pick_task_idle(struct rq *rq); 2558 2559 #define SCA_CHECK 0x01 2560 #define SCA_MIGRATE_DISABLE 0x02 2561 #define SCA_MIGRATE_ENABLE 0x04 2562 #define SCA_USER 0x08 2563 2564 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2565 2566 extern void sched_balance_trigger(struct rq *rq); 2567 2568 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); 2569 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2570 2571 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2572 { 2573 /* When not in the task's cpumask, no point in looking further. */ 2574 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2575 return false; 2576 2577 /* Can @cpu run a user thread? */ 2578 if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) 2579 return false; 2580 2581 return true; 2582 } 2583 2584 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2585 { 2586 /* 2587 * See do_set_cpus_allowed() above for the rcu_head usage. 2588 */ 2589 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2590 2591 return kmalloc_node(size, GFP_KERNEL, node); 2592 } 2593 2594 static inline struct task_struct *get_push_task(struct rq *rq) 2595 { 2596 struct task_struct *p = rq->donor; 2597 2598 lockdep_assert_rq_held(rq); 2599 2600 if (rq->push_busy) 2601 return NULL; 2602 2603 if (p->nr_cpus_allowed == 1) 2604 return NULL; 2605 2606 if (p->migration_disabled) 2607 return NULL; 2608 2609 rq->push_busy = true; 2610 return get_task_struct(p); 2611 } 2612 2613 extern int push_cpu_stop(void *arg); 2614 2615 #ifdef CONFIG_CPU_IDLE 2616 2617 static inline void idle_set_state(struct rq *rq, 2618 struct cpuidle_state *idle_state) 2619 { 2620 rq->idle_state = idle_state; 2621 } 2622 2623 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2624 { 2625 WARN_ON_ONCE(!rcu_read_lock_held()); 2626 2627 return rq->idle_state; 2628 } 2629 2630 #else /* !CONFIG_CPU_IDLE: */ 2631 2632 static inline void idle_set_state(struct rq *rq, 2633 struct cpuidle_state *idle_state) 2634 { 2635 } 2636 2637 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2638 { 2639 return NULL; 2640 } 2641 2642 #endif /* !CONFIG_CPU_IDLE */ 2643 2644 extern void schedule_idle(void); 2645 asmlinkage void schedule_user(void); 2646 2647 extern void sysrq_sched_debug_show(void); 2648 extern void sched_init_granularity(void); 2649 extern void update_max_interval(void); 2650 2651 extern void init_sched_dl_class(void); 2652 extern void init_sched_rt_class(void); 2653 extern void init_sched_fair_class(void); 2654 2655 extern void resched_curr(struct rq *rq); 2656 extern void resched_curr_lazy(struct rq *rq); 2657 extern void resched_cpu(int cpu); 2658 2659 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2660 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2661 2662 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2663 2664 #define BW_SHIFT 20 2665 #define BW_UNIT (1 << BW_SHIFT) 2666 #define RATIO_SHIFT 8 2667 #define MAX_BW_BITS (64 - BW_SHIFT) 2668 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2669 2670 extern unsigned long to_ratio(u64 period, u64 runtime); 2671 2672 extern void init_entity_runnable_average(struct sched_entity *se); 2673 extern void post_init_entity_util_avg(struct task_struct *p); 2674 2675 #ifdef CONFIG_NO_HZ_FULL 2676 extern bool sched_can_stop_tick(struct rq *rq); 2677 extern int __init sched_tick_offload_init(void); 2678 2679 /* 2680 * Tick may be needed by tasks in the runqueue depending on their policy and 2681 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2682 * nohz mode if necessary. 2683 */ 2684 static inline void sched_update_tick_dependency(struct rq *rq) 2685 { 2686 int cpu = cpu_of(rq); 2687 2688 if (!tick_nohz_full_cpu(cpu)) 2689 return; 2690 2691 if (sched_can_stop_tick(rq)) 2692 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2693 else 2694 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2695 } 2696 #else /* !CONFIG_NO_HZ_FULL: */ 2697 static inline int sched_tick_offload_init(void) { return 0; } 2698 static inline void sched_update_tick_dependency(struct rq *rq) { } 2699 #endif /* !CONFIG_NO_HZ_FULL */ 2700 2701 static inline void add_nr_running(struct rq *rq, unsigned count) 2702 { 2703 unsigned prev_nr = rq->nr_running; 2704 2705 rq->nr_running = prev_nr + count; 2706 if (trace_sched_update_nr_running_tp_enabled()) { 2707 call_trace_sched_update_nr_running(rq, count); 2708 } 2709 2710 if (prev_nr < 2 && rq->nr_running >= 2) 2711 set_rd_overloaded(rq->rd, 1); 2712 2713 sched_update_tick_dependency(rq); 2714 } 2715 2716 static inline void sub_nr_running(struct rq *rq, unsigned count) 2717 { 2718 rq->nr_running -= count; 2719 if (trace_sched_update_nr_running_tp_enabled()) { 2720 call_trace_sched_update_nr_running(rq, -count); 2721 } 2722 2723 /* Check if we still need preemption */ 2724 sched_update_tick_dependency(rq); 2725 } 2726 2727 static inline void __block_task(struct rq *rq, struct task_struct *p) 2728 { 2729 if (p->sched_contributes_to_load) 2730 rq->nr_uninterruptible++; 2731 2732 if (p->in_iowait) { 2733 atomic_inc(&rq->nr_iowait); 2734 delayacct_blkio_start(); 2735 } 2736 2737 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2738 2739 /* 2740 * The moment this write goes through, ttwu() can swoop in and migrate 2741 * this task, rendering our rq->__lock ineffective. 2742 * 2743 * __schedule() try_to_wake_up() 2744 * LOCK rq->__lock LOCK p->pi_lock 2745 * pick_next_task() 2746 * pick_next_task_fair() 2747 * pick_next_entity() 2748 * dequeue_entities() 2749 * __block_task() 2750 * RELEASE p->on_rq = 0 if (p->on_rq && ...) 2751 * break; 2752 * 2753 * ACQUIRE (after ctrl-dep) 2754 * 2755 * cpu = select_task_rq(); 2756 * set_task_cpu(p, cpu); 2757 * ttwu_queue() 2758 * ttwu_do_activate() 2759 * LOCK rq->__lock 2760 * activate_task() 2761 * STORE p->on_rq = 1 2762 * UNLOCK rq->__lock 2763 * 2764 * Callers must ensure to not reference @p after this -- we no longer 2765 * own it. 2766 */ 2767 smp_store_release(&p->on_rq, 0); 2768 } 2769 2770 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2771 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2772 2773 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2774 2775 #ifdef CONFIG_PREEMPT_RT 2776 # define SCHED_NR_MIGRATE_BREAK 8 2777 #else 2778 # define SCHED_NR_MIGRATE_BREAK 32 2779 #endif 2780 2781 extern __read_mostly unsigned int sysctl_sched_nr_migrate; 2782 extern __read_mostly unsigned int sysctl_sched_migration_cost; 2783 2784 extern unsigned int sysctl_sched_base_slice; 2785 2786 extern int sysctl_resched_latency_warn_ms; 2787 extern int sysctl_resched_latency_warn_once; 2788 2789 extern unsigned int sysctl_sched_tunable_scaling; 2790 2791 extern unsigned int sysctl_numa_balancing_scan_delay; 2792 extern unsigned int sysctl_numa_balancing_scan_period_min; 2793 extern unsigned int sysctl_numa_balancing_scan_period_max; 2794 extern unsigned int sysctl_numa_balancing_scan_size; 2795 extern unsigned int sysctl_numa_balancing_hot_threshold; 2796 2797 #ifdef CONFIG_SCHED_HRTICK 2798 2799 /* 2800 * Use hrtick when: 2801 * - enabled by features 2802 * - hrtimer is actually high res 2803 */ 2804 static inline int hrtick_enabled(struct rq *rq) 2805 { 2806 if (!cpu_active(cpu_of(rq))) 2807 return 0; 2808 return hrtimer_is_hres_active(&rq->hrtick_timer); 2809 } 2810 2811 static inline int hrtick_enabled_fair(struct rq *rq) 2812 { 2813 if (!sched_feat(HRTICK)) 2814 return 0; 2815 return hrtick_enabled(rq); 2816 } 2817 2818 static inline int hrtick_enabled_dl(struct rq *rq) 2819 { 2820 if (!sched_feat(HRTICK_DL)) 2821 return 0; 2822 return hrtick_enabled(rq); 2823 } 2824 2825 extern void hrtick_start(struct rq *rq, u64 delay); 2826 2827 #else /* !CONFIG_SCHED_HRTICK: */ 2828 2829 static inline int hrtick_enabled_fair(struct rq *rq) 2830 { 2831 return 0; 2832 } 2833 2834 static inline int hrtick_enabled_dl(struct rq *rq) 2835 { 2836 return 0; 2837 } 2838 2839 static inline int hrtick_enabled(struct rq *rq) 2840 { 2841 return 0; 2842 } 2843 2844 #endif /* !CONFIG_SCHED_HRTICK */ 2845 2846 #ifndef arch_scale_freq_tick 2847 static __always_inline void arch_scale_freq_tick(void) { } 2848 #endif 2849 2850 #ifndef arch_scale_freq_capacity 2851 /** 2852 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2853 * @cpu: the CPU in question. 2854 * 2855 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2856 * 2857 * f_curr 2858 * ------ * SCHED_CAPACITY_SCALE 2859 * f_max 2860 */ 2861 static __always_inline 2862 unsigned long arch_scale_freq_capacity(int cpu) 2863 { 2864 return SCHED_CAPACITY_SCALE; 2865 } 2866 #endif 2867 2868 /* 2869 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2870 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2871 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2872 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2873 */ 2874 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2875 { 2876 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2877 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2878 } 2879 2880 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 2881 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 2882 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 2883 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 2884 _lock; return _t; } 2885 2886 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2887 { 2888 #ifdef CONFIG_SCHED_CORE 2889 /* 2890 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2891 * order by core-id first and cpu-id second. 2892 * 2893 * Notably: 2894 * 2895 * double_rq_lock(0,3); will take core-0, core-1 lock 2896 * double_rq_lock(1,2); will take core-1, core-0 lock 2897 * 2898 * when only cpu-id is considered. 2899 */ 2900 if (rq1->core->cpu < rq2->core->cpu) 2901 return true; 2902 if (rq1->core->cpu > rq2->core->cpu) 2903 return false; 2904 2905 /* 2906 * __sched_core_flip() relies on SMT having cpu-id lock order. 2907 */ 2908 #endif /* CONFIG_SCHED_CORE */ 2909 return rq1->cpu < rq2->cpu; 2910 } 2911 2912 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2913 2914 #ifdef CONFIG_PREEMPTION 2915 2916 /* 2917 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2918 * way at the expense of forcing extra atomic operations in all 2919 * invocations. This assures that the double_lock is acquired using the 2920 * same underlying policy as the spinlock_t on this architecture, which 2921 * reduces latency compared to the unfair variant below. However, it 2922 * also adds more overhead and therefore may reduce throughput. 2923 */ 2924 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2925 __releases(this_rq->lock) 2926 __acquires(busiest->lock) 2927 __acquires(this_rq->lock) 2928 { 2929 raw_spin_rq_unlock(this_rq); 2930 double_rq_lock(this_rq, busiest); 2931 2932 return 1; 2933 } 2934 2935 #else /* !CONFIG_PREEMPTION: */ 2936 /* 2937 * Unfair double_lock_balance: Optimizes throughput at the expense of 2938 * latency by eliminating extra atomic operations when the locks are 2939 * already in proper order on entry. This favors lower CPU-ids and will 2940 * grant the double lock to lower CPUs over higher ids under contention, 2941 * regardless of entry order into the function. 2942 */ 2943 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2944 __releases(this_rq->lock) 2945 __acquires(busiest->lock) 2946 __acquires(this_rq->lock) 2947 { 2948 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2949 likely(raw_spin_rq_trylock(busiest))) { 2950 double_rq_clock_clear_update(this_rq, busiest); 2951 return 0; 2952 } 2953 2954 if (rq_order_less(this_rq, busiest)) { 2955 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2956 double_rq_clock_clear_update(this_rq, busiest); 2957 return 0; 2958 } 2959 2960 raw_spin_rq_unlock(this_rq); 2961 double_rq_lock(this_rq, busiest); 2962 2963 return 1; 2964 } 2965 2966 #endif /* !CONFIG_PREEMPTION */ 2967 2968 /* 2969 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2970 */ 2971 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2972 { 2973 lockdep_assert_irqs_disabled(); 2974 2975 return _double_lock_balance(this_rq, busiest); 2976 } 2977 2978 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2979 __releases(busiest->lock) 2980 { 2981 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2982 raw_spin_rq_unlock(busiest); 2983 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2984 } 2985 2986 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2987 { 2988 if (l1 > l2) 2989 swap(l1, l2); 2990 2991 spin_lock(l1); 2992 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2993 } 2994 2995 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2996 { 2997 if (l1 > l2) 2998 swap(l1, l2); 2999 3000 spin_lock_irq(l1); 3001 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3002 } 3003 3004 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3005 { 3006 if (l1 > l2) 3007 swap(l1, l2); 3008 3009 raw_spin_lock(l1); 3010 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3011 } 3012 3013 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3014 { 3015 raw_spin_unlock(l1); 3016 raw_spin_unlock(l2); 3017 } 3018 3019 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 3020 double_raw_lock(_T->lock, _T->lock2), 3021 double_raw_unlock(_T->lock, _T->lock2)) 3022 3023 /* 3024 * double_rq_unlock - safely unlock two runqueues 3025 * 3026 * Note this does not restore interrupts like task_rq_unlock, 3027 * you need to do so manually after calling. 3028 */ 3029 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3030 __releases(rq1->lock) 3031 __releases(rq2->lock) 3032 { 3033 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 3034 raw_spin_rq_unlock(rq2); 3035 else 3036 __release(rq2->lock); 3037 raw_spin_rq_unlock(rq1); 3038 } 3039 3040 extern void set_rq_online (struct rq *rq); 3041 extern void set_rq_offline(struct rq *rq); 3042 3043 extern bool sched_smp_initialized; 3044 3045 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 3046 double_rq_lock(_T->lock, _T->lock2), 3047 double_rq_unlock(_T->lock, _T->lock2)) 3048 3049 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 3050 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 3051 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 3052 3053 extern bool sched_debug_verbose; 3054 3055 extern void print_cfs_stats(struct seq_file *m, int cpu); 3056 extern void print_rt_stats(struct seq_file *m, int cpu); 3057 extern void print_dl_stats(struct seq_file *m, int cpu); 3058 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 3059 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 3060 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 3061 3062 extern void resched_latency_warn(int cpu, u64 latency); 3063 3064 #ifdef CONFIG_NUMA_BALANCING 3065 extern void show_numa_stats(struct task_struct *p, struct seq_file *m); 3066 extern void 3067 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 3068 unsigned long tpf, unsigned long gsf, unsigned long gpf); 3069 #endif /* CONFIG_NUMA_BALANCING */ 3070 3071 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 3072 extern void init_rt_rq(struct rt_rq *rt_rq); 3073 extern void init_dl_rq(struct dl_rq *dl_rq); 3074 3075 extern void cfs_bandwidth_usage_inc(void); 3076 extern void cfs_bandwidth_usage_dec(void); 3077 3078 #ifdef CONFIG_NO_HZ_COMMON 3079 3080 #define NOHZ_BALANCE_KICK_BIT 0 3081 #define NOHZ_STATS_KICK_BIT 1 3082 #define NOHZ_NEWILB_KICK_BIT 2 3083 #define NOHZ_NEXT_KICK_BIT 3 3084 3085 /* Run sched_balance_domains() */ 3086 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 3087 /* Update blocked load */ 3088 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 3089 /* Update blocked load when entering idle */ 3090 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 3091 /* Update nohz.next_balance */ 3092 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 3093 3094 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 3095 3096 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 3097 3098 extern void nohz_balance_exit_idle(struct rq *rq); 3099 #else /* !CONFIG_NO_HZ_COMMON: */ 3100 static inline void nohz_balance_exit_idle(struct rq *rq) { } 3101 #endif /* !CONFIG_NO_HZ_COMMON */ 3102 3103 #ifdef CONFIG_NO_HZ_COMMON 3104 extern void nohz_run_idle_balance(int cpu); 3105 #else 3106 static inline void nohz_run_idle_balance(int cpu) { } 3107 #endif 3108 3109 #include "stats.h" 3110 3111 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 3112 3113 extern void __sched_core_account_forceidle(struct rq *rq); 3114 3115 static inline void sched_core_account_forceidle(struct rq *rq) 3116 { 3117 if (schedstat_enabled()) 3118 __sched_core_account_forceidle(rq); 3119 } 3120 3121 extern void __sched_core_tick(struct rq *rq); 3122 3123 static inline void sched_core_tick(struct rq *rq) 3124 { 3125 if (sched_core_enabled(rq) && schedstat_enabled()) 3126 __sched_core_tick(rq); 3127 } 3128 3129 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ 3130 3131 static inline void sched_core_account_forceidle(struct rq *rq) { } 3132 3133 static inline void sched_core_tick(struct rq *rq) { } 3134 3135 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ 3136 3137 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3138 3139 struct irqtime { 3140 u64 total; 3141 u64 tick_delta; 3142 u64 irq_start_time; 3143 struct u64_stats_sync sync; 3144 }; 3145 3146 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 3147 extern int sched_clock_irqtime; 3148 3149 static inline int irqtime_enabled(void) 3150 { 3151 return sched_clock_irqtime; 3152 } 3153 3154 /* 3155 * Returns the irqtime minus the softirq time computed by ksoftirqd. 3156 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 3157 * and never move forward. 3158 */ 3159 static inline u64 irq_time_read(int cpu) 3160 { 3161 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 3162 unsigned int seq; 3163 u64 total; 3164 3165 do { 3166 seq = __u64_stats_fetch_begin(&irqtime->sync); 3167 total = irqtime->total; 3168 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 3169 3170 return total; 3171 } 3172 3173 #else /* !CONFIG_IRQ_TIME_ACCOUNTING: */ 3174 3175 static inline int irqtime_enabled(void) 3176 { 3177 return 0; 3178 } 3179 3180 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 3181 3182 #ifdef CONFIG_CPU_FREQ 3183 3184 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 3185 3186 /** 3187 * cpufreq_update_util - Take a note about CPU utilization changes. 3188 * @rq: Runqueue to carry out the update for. 3189 * @flags: Update reason flags. 3190 * 3191 * This function is called by the scheduler on the CPU whose utilization is 3192 * being updated. 3193 * 3194 * It can only be called from RCU-sched read-side critical sections. 3195 * 3196 * The way cpufreq is currently arranged requires it to evaluate the CPU 3197 * performance state (frequency/voltage) on a regular basis to prevent it from 3198 * being stuck in a completely inadequate performance level for too long. 3199 * That is not guaranteed to happen if the updates are only triggered from CFS 3200 * and DL, though, because they may not be coming in if only RT tasks are 3201 * active all the time (or there are RT tasks only). 3202 * 3203 * As a workaround for that issue, this function is called periodically by the 3204 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 3205 * but that really is a band-aid. Going forward it should be replaced with 3206 * solutions targeted more specifically at RT tasks. 3207 */ 3208 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 3209 { 3210 struct update_util_data *data; 3211 3212 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 3213 cpu_of(rq))); 3214 if (data) 3215 data->func(data, rq_clock(rq), flags); 3216 } 3217 #else /* !CONFIG_CPU_FREQ: */ 3218 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } 3219 #endif /* !CONFIG_CPU_FREQ */ 3220 3221 #ifdef arch_scale_freq_capacity 3222 # ifndef arch_scale_freq_invariant 3223 # define arch_scale_freq_invariant() true 3224 # endif 3225 #else 3226 # define arch_scale_freq_invariant() false 3227 #endif 3228 3229 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3230 unsigned long *min, 3231 unsigned long *max); 3232 3233 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3234 unsigned long min, 3235 unsigned long max); 3236 3237 3238 /* 3239 * Verify the fitness of task @p to run on @cpu taking into account the 3240 * CPU original capacity and the runtime/deadline ratio of the task. 3241 * 3242 * The function will return true if the original capacity of @cpu is 3243 * greater than or equal to task's deadline density right shifted by 3244 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3245 */ 3246 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3247 { 3248 unsigned long cap = arch_scale_cpu_capacity(cpu); 3249 3250 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3251 } 3252 3253 static inline unsigned long cpu_bw_dl(struct rq *rq) 3254 { 3255 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3256 } 3257 3258 static inline unsigned long cpu_util_dl(struct rq *rq) 3259 { 3260 return READ_ONCE(rq->avg_dl.util_avg); 3261 } 3262 3263 3264 extern unsigned long cpu_util_cfs(int cpu); 3265 extern unsigned long cpu_util_cfs_boost(int cpu); 3266 3267 static inline unsigned long cpu_util_rt(struct rq *rq) 3268 { 3269 return READ_ONCE(rq->avg_rt.util_avg); 3270 } 3271 3272 #ifdef CONFIG_UCLAMP_TASK 3273 3274 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3275 3276 /* 3277 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3278 * by default in the fast path and only gets turned on once userspace performs 3279 * an operation that requires it. 3280 * 3281 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3282 * hence is active. 3283 */ 3284 static inline bool uclamp_is_used(void) 3285 { 3286 return static_branch_likely(&sched_uclamp_used); 3287 } 3288 3289 /* 3290 * Enabling static branches would get the cpus_read_lock(), 3291 * check whether uclamp_is_used before enable it to avoid always 3292 * calling cpus_read_lock(). Because we never disable this 3293 * static key once enable it. 3294 */ 3295 static inline void sched_uclamp_enable(void) 3296 { 3297 if (!uclamp_is_used()) 3298 static_branch_enable(&sched_uclamp_used); 3299 } 3300 3301 static inline unsigned long uclamp_rq_get(struct rq *rq, 3302 enum uclamp_id clamp_id) 3303 { 3304 return READ_ONCE(rq->uclamp[clamp_id].value); 3305 } 3306 3307 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3308 unsigned int value) 3309 { 3310 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3311 } 3312 3313 static inline bool uclamp_rq_is_idle(struct rq *rq) 3314 { 3315 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3316 } 3317 3318 /* Is the rq being capped/throttled by uclamp_max? */ 3319 static inline bool uclamp_rq_is_capped(struct rq *rq) 3320 { 3321 unsigned long rq_util; 3322 unsigned long max_util; 3323 3324 if (!uclamp_is_used()) 3325 return false; 3326 3327 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3328 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3329 3330 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3331 } 3332 3333 #define for_each_clamp_id(clamp_id) \ 3334 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 3335 3336 extern unsigned int sysctl_sched_uclamp_util_min_rt_default; 3337 3338 3339 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 3340 { 3341 if (clamp_id == UCLAMP_MIN) 3342 return 0; 3343 return SCHED_CAPACITY_SCALE; 3344 } 3345 3346 /* Integer rounded range for each bucket */ 3347 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 3348 3349 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 3350 { 3351 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 3352 } 3353 3354 static inline void 3355 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) 3356 { 3357 uc_se->value = value; 3358 uc_se->bucket_id = uclamp_bucket_id(value); 3359 uc_se->user_defined = user_defined; 3360 } 3361 3362 #else /* !CONFIG_UCLAMP_TASK: */ 3363 3364 static inline unsigned long 3365 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 3366 { 3367 if (clamp_id == UCLAMP_MIN) 3368 return 0; 3369 3370 return SCHED_CAPACITY_SCALE; 3371 } 3372 3373 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3374 3375 static inline bool uclamp_is_used(void) 3376 { 3377 return false; 3378 } 3379 3380 static inline void sched_uclamp_enable(void) {} 3381 3382 static inline unsigned long 3383 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) 3384 { 3385 if (clamp_id == UCLAMP_MIN) 3386 return 0; 3387 3388 return SCHED_CAPACITY_SCALE; 3389 } 3390 3391 static inline void 3392 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) 3393 { 3394 } 3395 3396 static inline bool uclamp_rq_is_idle(struct rq *rq) 3397 { 3398 return false; 3399 } 3400 3401 #endif /* !CONFIG_UCLAMP_TASK */ 3402 3403 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3404 3405 static inline unsigned long cpu_util_irq(struct rq *rq) 3406 { 3407 return READ_ONCE(rq->avg_irq.util_avg); 3408 } 3409 3410 static inline 3411 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3412 { 3413 util *= (max - irq); 3414 util /= max; 3415 3416 return util; 3417 3418 } 3419 3420 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ 3421 3422 static inline unsigned long cpu_util_irq(struct rq *rq) 3423 { 3424 return 0; 3425 } 3426 3427 static inline 3428 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3429 { 3430 return util; 3431 } 3432 3433 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ 3434 3435 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr); 3436 3437 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3438 3439 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3440 3441 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3442 3443 static inline bool sched_energy_enabled(void) 3444 { 3445 return static_branch_unlikely(&sched_energy_present); 3446 } 3447 3448 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */ 3449 3450 #define perf_domain_span(pd) NULL 3451 3452 static inline bool sched_energy_enabled(void) { return false; } 3453 3454 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3455 3456 #ifdef CONFIG_MEMBARRIER 3457 3458 /* 3459 * The scheduler provides memory barriers required by membarrier between: 3460 * - prior user-space memory accesses and store to rq->membarrier_state, 3461 * - store to rq->membarrier_state and following user-space memory accesses. 3462 * In the same way it provides those guarantees around store to rq->curr. 3463 */ 3464 static inline void membarrier_switch_mm(struct rq *rq, 3465 struct mm_struct *prev_mm, 3466 struct mm_struct *next_mm) 3467 { 3468 int membarrier_state; 3469 3470 if (prev_mm == next_mm) 3471 return; 3472 3473 membarrier_state = atomic_read(&next_mm->membarrier_state); 3474 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3475 return; 3476 3477 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3478 } 3479 3480 #else /* !CONFIG_MEMBARRIER: */ 3481 3482 static inline void membarrier_switch_mm(struct rq *rq, 3483 struct mm_struct *prev_mm, 3484 struct mm_struct *next_mm) 3485 { 3486 } 3487 3488 #endif /* !CONFIG_MEMBARRIER */ 3489 3490 static inline bool is_per_cpu_kthread(struct task_struct *p) 3491 { 3492 if (!(p->flags & PF_KTHREAD)) 3493 return false; 3494 3495 if (p->nr_cpus_allowed != 1) 3496 return false; 3497 3498 return true; 3499 } 3500 3501 extern void swake_up_all_locked(struct swait_queue_head *q); 3502 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3503 3504 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3505 3506 #ifdef CONFIG_PREEMPT_DYNAMIC 3507 extern int preempt_dynamic_mode; 3508 extern int sched_dynamic_mode(const char *str); 3509 extern void sched_dynamic_update(int mode); 3510 #endif 3511 extern const char *preempt_modes[]; 3512 3513 #ifdef CONFIG_SCHED_MM_CID 3514 3515 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ 3516 #define MM_CID_SCAN_DELAY 100 /* 100ms */ 3517 3518 extern raw_spinlock_t cid_lock; 3519 extern int use_cid_lock; 3520 3521 extern void sched_mm_cid_migrate_from(struct task_struct *t); 3522 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); 3523 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); 3524 extern void init_sched_mm_cid(struct task_struct *t); 3525 3526 static inline void __mm_cid_put(struct mm_struct *mm, int cid) 3527 { 3528 if (cid < 0) 3529 return; 3530 cpumask_clear_cpu(cid, mm_cidmask(mm)); 3531 } 3532 3533 /* 3534 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to 3535 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to 3536 * be held to transition to other states. 3537 * 3538 * State transitions synchronized with cmpxchg or try_cmpxchg need to be 3539 * consistent across CPUs, which prevents use of this_cpu_cmpxchg. 3540 */ 3541 static inline void mm_cid_put_lazy(struct task_struct *t) 3542 { 3543 struct mm_struct *mm = t->mm; 3544 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3545 int cid; 3546 3547 lockdep_assert_irqs_disabled(); 3548 cid = __this_cpu_read(pcpu_cid->cid); 3549 if (!mm_cid_is_lazy_put(cid) || 3550 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3551 return; 3552 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3553 } 3554 3555 static inline int mm_cid_pcpu_unset(struct mm_struct *mm) 3556 { 3557 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3558 int cid, res; 3559 3560 lockdep_assert_irqs_disabled(); 3561 cid = __this_cpu_read(pcpu_cid->cid); 3562 for (;;) { 3563 if (mm_cid_is_unset(cid)) 3564 return MM_CID_UNSET; 3565 /* 3566 * Attempt transition from valid or lazy-put to unset. 3567 */ 3568 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); 3569 if (res == cid) 3570 break; 3571 cid = res; 3572 } 3573 return cid; 3574 } 3575 3576 static inline void mm_cid_put(struct mm_struct *mm) 3577 { 3578 int cid; 3579 3580 lockdep_assert_irqs_disabled(); 3581 cid = mm_cid_pcpu_unset(mm); 3582 if (cid == MM_CID_UNSET) 3583 return; 3584 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3585 } 3586 3587 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm) 3588 { 3589 struct cpumask *cidmask = mm_cidmask(mm); 3590 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3591 int cid, max_nr_cid, allowed_max_nr_cid; 3592 3593 /* 3594 * After shrinking the number of threads or reducing the number 3595 * of allowed cpus, reduce the value of max_nr_cid so expansion 3596 * of cid allocation will preserve cache locality if the number 3597 * of threads or allowed cpus increase again. 3598 */ 3599 max_nr_cid = atomic_read(&mm->max_nr_cid); 3600 while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed), 3601 atomic_read(&mm->mm_users))), 3602 max_nr_cid > allowed_max_nr_cid) { 3603 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */ 3604 if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) { 3605 max_nr_cid = allowed_max_nr_cid; 3606 break; 3607 } 3608 } 3609 /* Try to re-use recent cid. This improves cache locality. */ 3610 cid = __this_cpu_read(pcpu_cid->recent_cid); 3611 if (!mm_cid_is_unset(cid) && cid < max_nr_cid && 3612 !cpumask_test_and_set_cpu(cid, cidmask)) 3613 return cid; 3614 /* 3615 * Expand cid allocation if the maximum number of concurrency 3616 * IDs allocated (max_nr_cid) is below the number cpus allowed 3617 * and number of threads. Expanding cid allocation as much as 3618 * possible improves cache locality. 3619 */ 3620 cid = max_nr_cid; 3621 while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) { 3622 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */ 3623 if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1)) 3624 continue; 3625 if (!cpumask_test_and_set_cpu(cid, cidmask)) 3626 return cid; 3627 } 3628 /* 3629 * Find the first available concurrency id. 3630 * Retry finding first zero bit if the mask is temporarily 3631 * filled. This only happens during concurrent remote-clear 3632 * which owns a cid without holding a rq lock. 3633 */ 3634 for (;;) { 3635 cid = cpumask_first_zero(cidmask); 3636 if (cid < READ_ONCE(mm->nr_cpus_allowed)) 3637 break; 3638 cpu_relax(); 3639 } 3640 if (cpumask_test_and_set_cpu(cid, cidmask)) 3641 return -1; 3642 3643 return cid; 3644 } 3645 3646 /* 3647 * Save a snapshot of the current runqueue time of this cpu 3648 * with the per-cpu cid value, allowing to estimate how recently it was used. 3649 */ 3650 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) 3651 { 3652 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); 3653 3654 lockdep_assert_rq_held(rq); 3655 WRITE_ONCE(pcpu_cid->time, rq->clock); 3656 } 3657 3658 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t, 3659 struct mm_struct *mm) 3660 { 3661 int cid; 3662 3663 /* 3664 * All allocations (even those using the cid_lock) are lock-free. If 3665 * use_cid_lock is set, hold the cid_lock to perform cid allocation to 3666 * guarantee forward progress. 3667 */ 3668 if (!READ_ONCE(use_cid_lock)) { 3669 cid = __mm_cid_try_get(t, mm); 3670 if (cid >= 0) 3671 goto end; 3672 raw_spin_lock(&cid_lock); 3673 } else { 3674 raw_spin_lock(&cid_lock); 3675 cid = __mm_cid_try_get(t, mm); 3676 if (cid >= 0) 3677 goto unlock; 3678 } 3679 3680 /* 3681 * cid concurrently allocated. Retry while forcing following 3682 * allocations to use the cid_lock to ensure forward progress. 3683 */ 3684 WRITE_ONCE(use_cid_lock, 1); 3685 /* 3686 * Set use_cid_lock before allocation. Only care about program order 3687 * because this is only required for forward progress. 3688 */ 3689 barrier(); 3690 /* 3691 * Retry until it succeeds. It is guaranteed to eventually succeed once 3692 * all newcoming allocations observe the use_cid_lock flag set. 3693 */ 3694 do { 3695 cid = __mm_cid_try_get(t, mm); 3696 cpu_relax(); 3697 } while (cid < 0); 3698 /* 3699 * Allocate before clearing use_cid_lock. Only care about 3700 * program order because this is for forward progress. 3701 */ 3702 barrier(); 3703 WRITE_ONCE(use_cid_lock, 0); 3704 unlock: 3705 raw_spin_unlock(&cid_lock); 3706 end: 3707 mm_cid_snapshot_time(rq, mm); 3708 3709 return cid; 3710 } 3711 3712 static inline int mm_cid_get(struct rq *rq, struct task_struct *t, 3713 struct mm_struct *mm) 3714 { 3715 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3716 struct cpumask *cpumask; 3717 int cid; 3718 3719 lockdep_assert_rq_held(rq); 3720 cpumask = mm_cidmask(mm); 3721 cid = __this_cpu_read(pcpu_cid->cid); 3722 if (mm_cid_is_valid(cid)) { 3723 mm_cid_snapshot_time(rq, mm); 3724 return cid; 3725 } 3726 if (mm_cid_is_lazy_put(cid)) { 3727 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3728 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3729 } 3730 cid = __mm_cid_get(rq, t, mm); 3731 __this_cpu_write(pcpu_cid->cid, cid); 3732 __this_cpu_write(pcpu_cid->recent_cid, cid); 3733 3734 return cid; 3735 } 3736 3737 static inline void switch_mm_cid(struct rq *rq, 3738 struct task_struct *prev, 3739 struct task_struct *next) 3740 { 3741 /* 3742 * Provide a memory barrier between rq->curr store and load of 3743 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. 3744 * 3745 * Should be adapted if context_switch() is modified. 3746 */ 3747 if (!next->mm) { // to kernel 3748 /* 3749 * user -> kernel transition does not guarantee a barrier, but 3750 * we can use the fact that it performs an atomic operation in 3751 * mmgrab(). 3752 */ 3753 if (prev->mm) // from user 3754 smp_mb__after_mmgrab(); 3755 /* 3756 * kernel -> kernel transition does not change rq->curr->mm 3757 * state. It stays NULL. 3758 */ 3759 } else { // to user 3760 /* 3761 * kernel -> user transition does not provide a barrier 3762 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. 3763 * Provide it here. 3764 */ 3765 if (!prev->mm) { // from kernel 3766 smp_mb(); 3767 } else { // from user 3768 /* 3769 * user->user transition relies on an implicit 3770 * memory barrier in switch_mm() when 3771 * current->mm changes. If the architecture 3772 * switch_mm() does not have an implicit memory 3773 * barrier, it is emitted here. If current->mm 3774 * is unchanged, no barrier is needed. 3775 */ 3776 smp_mb__after_switch_mm(); 3777 } 3778 } 3779 if (prev->mm_cid_active) { 3780 mm_cid_snapshot_time(rq, prev->mm); 3781 mm_cid_put_lazy(prev); 3782 prev->mm_cid = -1; 3783 } 3784 if (next->mm_cid_active) 3785 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm); 3786 } 3787 3788 #else /* !CONFIG_SCHED_MM_CID: */ 3789 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } 3790 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } 3791 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } 3792 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } 3793 static inline void init_sched_mm_cid(struct task_struct *t) { } 3794 #endif /* !CONFIG_SCHED_MM_CID */ 3795 3796 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3797 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3798 static inline 3799 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) 3800 { 3801 lockdep_assert_rq_held(src_rq); 3802 lockdep_assert_rq_held(dst_rq); 3803 3804 deactivate_task(src_rq, task, 0); 3805 set_task_cpu(task, dst_rq->cpu); 3806 activate_task(dst_rq, task, 0); 3807 } 3808 3809 static inline 3810 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) 3811 { 3812 if (!task_on_cpu(rq, p) && 3813 cpumask_test_cpu(cpu, &p->cpus_mask)) 3814 return true; 3815 3816 return false; 3817 } 3818 3819 #ifdef CONFIG_RT_MUTEXES 3820 3821 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3822 { 3823 if (pi_task) 3824 prio = min(prio, pi_task->prio); 3825 3826 return prio; 3827 } 3828 3829 static inline int rt_effective_prio(struct task_struct *p, int prio) 3830 { 3831 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3832 3833 return __rt_effective_prio(pi_task, prio); 3834 } 3835 3836 #else /* !CONFIG_RT_MUTEXES: */ 3837 3838 static inline int rt_effective_prio(struct task_struct *p, int prio) 3839 { 3840 return prio; 3841 } 3842 3843 #endif /* !CONFIG_RT_MUTEXES */ 3844 3845 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); 3846 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3847 extern const struct sched_class *__setscheduler_class(int policy, int prio); 3848 extern void set_load_weight(struct task_struct *p, bool update_load); 3849 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); 3850 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); 3851 3852 extern void check_class_changing(struct rq *rq, struct task_struct *p, 3853 const struct sched_class *prev_class); 3854 extern void check_class_changed(struct rq *rq, struct task_struct *p, 3855 const struct sched_class *prev_class, 3856 int oldprio); 3857 3858 extern struct balance_callback *splice_balance_callbacks(struct rq *rq); 3859 extern void balance_callbacks(struct rq *rq, struct balance_callback *head); 3860 3861 #ifdef CONFIG_SCHED_CLASS_EXT 3862 /* 3863 * Used by SCX in the enable/disable paths to move tasks between sched_classes 3864 * and establish invariants. 3865 */ 3866 struct sched_enq_and_set_ctx { 3867 struct task_struct *p; 3868 int queue_flags; 3869 bool queued; 3870 bool running; 3871 }; 3872 3873 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 3874 struct sched_enq_and_set_ctx *ctx); 3875 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx); 3876 3877 #endif /* CONFIG_SCHED_CLASS_EXT */ 3878 3879 #include "ext.h" 3880 3881 #endif /* _KERNEL_SCHED_SCHED_H */ 3882