1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/delayacct.h> 72 73 #include <trace/events/power.h> 74 #include <trace/events/sched.h> 75 76 #include "../workqueue_internal.h" 77 78 struct rq; 79 struct cfs_rq; 80 struct rt_rq; 81 struct sched_group; 82 struct cpuidle_state; 83 84 #ifdef CONFIG_PARAVIRT 85 # include <asm/paravirt.h> 86 # include <asm/paravirt_api_clock.h> 87 #endif 88 89 #include <asm/barrier.h> 90 91 #include "cpupri.h" 92 #include "cpudeadline.h" 93 94 /* task_struct::on_rq states: */ 95 #define TASK_ON_RQ_QUEUED 1 96 #define TASK_ON_RQ_MIGRATING 2 97 98 extern __read_mostly int scheduler_running; 99 100 extern unsigned long calc_load_update; 101 extern atomic_long_t calc_load_tasks; 102 103 extern void calc_global_load_tick(struct rq *this_rq); 104 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 105 106 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 107 108 extern int sysctl_sched_rt_period; 109 extern int sysctl_sched_rt_runtime; 110 extern int sched_rr_timeslice; 111 112 /* 113 * Asymmetric CPU capacity bits 114 */ 115 struct asym_cap_data { 116 struct list_head link; 117 struct rcu_head rcu; 118 unsigned long capacity; 119 unsigned long cpus[]; 120 }; 121 122 extern struct list_head asym_cap_list; 123 124 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 125 126 /* 127 * Helpers for converting nanosecond timing to jiffy resolution 128 */ 129 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) 130 131 /* 132 * Increase resolution of nice-level calculations for 64-bit architectures. 133 * The extra resolution improves shares distribution and load balancing of 134 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group 135 * hierarchies, especially on larger systems. This is not a user-visible change 136 * and does not change the user-interface for setting shares/weights. 137 * 138 * We increase resolution only if we have enough bits to allow this increased 139 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 140 * are pretty high and the returns do not justify the increased costs. 141 * 142 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 143 * increase coverage and consistency always enable it on 64-bit platforms. 144 */ 145 #ifdef CONFIG_64BIT 146 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 147 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 148 # define scale_load_down(w) \ 149 ({ \ 150 unsigned long __w = (w); \ 151 \ 152 if (__w) \ 153 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 154 __w; \ 155 }) 156 #else 157 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 158 # define scale_load(w) (w) 159 # define scale_load_down(w) (w) 160 #endif 161 162 /* 163 * Task weight (visible to users) and its load (invisible to users) have 164 * independent resolution, but they should be well calibrated. We use 165 * scale_load() and scale_load_down(w) to convert between them. The 166 * following must be true: 167 * 168 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 169 * 170 */ 171 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 172 173 /* 174 * Single value that decides SCHED_DEADLINE internal math precision. 175 * 10 -> just above 1us 176 * 9 -> just above 0.5us 177 */ 178 #define DL_SCALE 10 179 180 /* 181 * Single value that denotes runtime == period, ie unlimited time. 182 */ 183 #define RUNTIME_INF ((u64)~0ULL) 184 185 static inline int idle_policy(int policy) 186 { 187 return policy == SCHED_IDLE; 188 } 189 190 static inline int normal_policy(int policy) 191 { 192 #ifdef CONFIG_SCHED_CLASS_EXT 193 if (policy == SCHED_EXT) 194 return true; 195 #endif 196 return policy == SCHED_NORMAL; 197 } 198 199 static inline int fair_policy(int policy) 200 { 201 return normal_policy(policy) || policy == SCHED_BATCH; 202 } 203 204 static inline int rt_policy(int policy) 205 { 206 return policy == SCHED_FIFO || policy == SCHED_RR; 207 } 208 209 static inline int dl_policy(int policy) 210 { 211 return policy == SCHED_DEADLINE; 212 } 213 214 static inline bool valid_policy(int policy) 215 { 216 return idle_policy(policy) || fair_policy(policy) || 217 rt_policy(policy) || dl_policy(policy); 218 } 219 220 static inline int task_has_idle_policy(struct task_struct *p) 221 { 222 return idle_policy(p->policy); 223 } 224 225 static inline int task_has_rt_policy(struct task_struct *p) 226 { 227 return rt_policy(p->policy); 228 } 229 230 static inline int task_has_dl_policy(struct task_struct *p) 231 { 232 return dl_policy(p->policy); 233 } 234 235 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 236 237 static inline void update_avg(u64 *avg, u64 sample) 238 { 239 s64 diff = sample - *avg; 240 241 *avg += diff / 8; 242 } 243 244 /* 245 * Shifting a value by an exponent greater *or equal* to the size of said value 246 * is UB; cap at size-1. 247 */ 248 #define shr_bound(val, shift) \ 249 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 250 251 /* 252 * cgroup weight knobs should use the common MIN, DFL and MAX values which are 253 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it 254 * maps pretty well onto the shares value used by scheduler and the round-trip 255 * conversions preserve the original value over the entire range. 256 */ 257 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) 258 { 259 return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); 260 } 261 262 static inline unsigned long sched_weight_to_cgroup(unsigned long weight) 263 { 264 return clamp_t(unsigned long, 265 DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), 266 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); 267 } 268 269 /* 270 * !! For sched_setattr_nocheck() (kernel) only !! 271 * 272 * This is actually gross. :( 273 * 274 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 275 * tasks, but still be able to sleep. We need this on platforms that cannot 276 * atomically change clock frequency. Remove once fast switching will be 277 * available on such platforms. 278 * 279 * SUGOV stands for SchedUtil GOVernor. 280 */ 281 #define SCHED_FLAG_SUGOV 0x10000000 282 283 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 284 285 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 286 { 287 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 288 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 289 #else 290 return false; 291 #endif 292 } 293 294 /* 295 * Tells if entity @a should preempt entity @b. 296 */ 297 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 298 const struct sched_dl_entity *b) 299 { 300 return dl_entity_is_special(a) || 301 dl_time_before(a->deadline, b->deadline); 302 } 303 304 /* 305 * This is the priority-queue data structure of the RT scheduling class: 306 */ 307 struct rt_prio_array { 308 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 309 struct list_head queue[MAX_RT_PRIO]; 310 }; 311 312 struct rt_bandwidth { 313 /* nests inside the rq lock: */ 314 raw_spinlock_t rt_runtime_lock; 315 ktime_t rt_period; 316 u64 rt_runtime; 317 struct hrtimer rt_period_timer; 318 unsigned int rt_period_active; 319 }; 320 321 static inline int dl_bandwidth_enabled(void) 322 { 323 return sysctl_sched_rt_runtime >= 0; 324 } 325 326 /* 327 * To keep the bandwidth of -deadline tasks under control 328 * we need some place where: 329 * - store the maximum -deadline bandwidth of each cpu; 330 * - cache the fraction of bandwidth that is currently allocated in 331 * each root domain; 332 * 333 * This is all done in the data structure below. It is similar to the 334 * one used for RT-throttling (rt_bandwidth), with the main difference 335 * that, since here we are only interested in admission control, we 336 * do not decrease any runtime while the group "executes", neither we 337 * need a timer to replenish it. 338 * 339 * With respect to SMP, bandwidth is given on a per root domain basis, 340 * meaning that: 341 * - bw (< 100%) is the deadline bandwidth of each CPU; 342 * - total_bw is the currently allocated bandwidth in each root domain; 343 */ 344 struct dl_bw { 345 raw_spinlock_t lock; 346 u64 bw; 347 u64 total_bw; 348 }; 349 350 extern void init_dl_bw(struct dl_bw *dl_b); 351 extern int sched_dl_global_validate(void); 352 extern void sched_dl_do_global(void); 353 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 354 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 355 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 356 extern bool __checkparam_dl(const struct sched_attr *attr); 357 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 358 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 359 extern int dl_bw_deactivate(int cpu); 360 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); 361 /* 362 * SCHED_DEADLINE supports servers (nested scheduling) with the following 363 * interface: 364 * 365 * dl_se::rq -- runqueue we belong to. 366 * 367 * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the 368 * server when it runs out of tasks to run. 369 * 370 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 371 * returns NULL. 372 * 373 * dl_server_update() -- called from update_curr_common(), propagates runtime 374 * to the server. 375 * 376 * dl_server_start() 377 * dl_server_stop() -- start/stop the server when it has (no) tasks. 378 * 379 * dl_server_init() -- initializes the server. 380 */ 381 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 382 extern void dl_server_start(struct sched_dl_entity *dl_se); 383 extern void dl_server_stop(struct sched_dl_entity *dl_se); 384 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 385 dl_server_has_tasks_f has_tasks, 386 dl_server_pick_f pick_task); 387 388 extern void dl_server_update_idle_time(struct rq *rq, 389 struct task_struct *p); 390 extern void fair_server_init(struct rq *rq); 391 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); 392 extern int dl_server_apply_params(struct sched_dl_entity *dl_se, 393 u64 runtime, u64 period, bool init); 394 395 static inline bool dl_server_active(struct sched_dl_entity *dl_se) 396 { 397 return dl_se->dl_server_active; 398 } 399 400 #ifdef CONFIG_CGROUP_SCHED 401 402 extern struct list_head task_groups; 403 404 struct cfs_bandwidth { 405 #ifdef CONFIG_CFS_BANDWIDTH 406 raw_spinlock_t lock; 407 ktime_t period; 408 u64 quota; 409 u64 runtime; 410 u64 burst; 411 u64 runtime_snap; 412 s64 hierarchical_quota; 413 414 u8 idle; 415 u8 period_active; 416 u8 slack_started; 417 struct hrtimer period_timer; 418 struct hrtimer slack_timer; 419 struct list_head throttled_cfs_rq; 420 421 /* Statistics: */ 422 int nr_periods; 423 int nr_throttled; 424 int nr_burst; 425 u64 throttled_time; 426 u64 burst_time; 427 #endif 428 }; 429 430 /* Task group related information */ 431 struct task_group { 432 struct cgroup_subsys_state css; 433 434 #ifdef CONFIG_GROUP_SCHED_WEIGHT 435 /* A positive value indicates that this is a SCHED_IDLE group. */ 436 int idle; 437 #endif 438 439 #ifdef CONFIG_FAIR_GROUP_SCHED 440 /* schedulable entities of this group on each CPU */ 441 struct sched_entity **se; 442 /* runqueue "owned" by this group on each CPU */ 443 struct cfs_rq **cfs_rq; 444 unsigned long shares; 445 #ifdef CONFIG_SMP 446 /* 447 * load_avg can be heavily contended at clock tick time, so put 448 * it in its own cache-line separated from the fields above which 449 * will also be accessed at each tick. 450 */ 451 atomic_long_t load_avg ____cacheline_aligned; 452 #endif 453 #endif 454 455 #ifdef CONFIG_RT_GROUP_SCHED 456 struct sched_rt_entity **rt_se; 457 struct rt_rq **rt_rq; 458 459 struct rt_bandwidth rt_bandwidth; 460 #endif 461 462 #ifdef CONFIG_EXT_GROUP_SCHED 463 u32 scx_flags; /* SCX_TG_* */ 464 u32 scx_weight; 465 #endif 466 467 struct rcu_head rcu; 468 struct list_head list; 469 470 struct task_group *parent; 471 struct list_head siblings; 472 struct list_head children; 473 474 #ifdef CONFIG_SCHED_AUTOGROUP 475 struct autogroup *autogroup; 476 #endif 477 478 struct cfs_bandwidth cfs_bandwidth; 479 480 #ifdef CONFIG_UCLAMP_TASK_GROUP 481 /* The two decimal precision [%] value requested from user-space */ 482 unsigned int uclamp_pct[UCLAMP_CNT]; 483 /* Clamp values requested for a task group */ 484 struct uclamp_se uclamp_req[UCLAMP_CNT]; 485 /* Effective clamp values used for a task group */ 486 struct uclamp_se uclamp[UCLAMP_CNT]; 487 #endif 488 489 }; 490 491 #ifdef CONFIG_GROUP_SCHED_WEIGHT 492 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 493 494 /* 495 * A weight of 0 or 1 can cause arithmetics problems. 496 * A weight of a cfs_rq is the sum of weights of which entities 497 * are queued on this cfs_rq, so a weight of a entity should not be 498 * too large, so as the shares value of a task group. 499 * (The default weight is 1024 - so there's no practical 500 * limitation from this.) 501 */ 502 #define MIN_SHARES (1UL << 1) 503 #define MAX_SHARES (1UL << 18) 504 #endif 505 506 typedef int (*tg_visitor)(struct task_group *, void *); 507 508 extern int walk_tg_tree_from(struct task_group *from, 509 tg_visitor down, tg_visitor up, void *data); 510 511 /* 512 * Iterate the full tree, calling @down when first entering a node and @up when 513 * leaving it for the final time. 514 * 515 * Caller must hold rcu_lock or sufficient equivalent. 516 */ 517 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 518 { 519 return walk_tg_tree_from(&root_task_group, down, up, data); 520 } 521 522 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 523 { 524 return css ? container_of(css, struct task_group, css) : NULL; 525 } 526 527 extern int tg_nop(struct task_group *tg, void *data); 528 529 #ifdef CONFIG_FAIR_GROUP_SCHED 530 extern void free_fair_sched_group(struct task_group *tg); 531 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 532 extern void online_fair_sched_group(struct task_group *tg); 533 extern void unregister_fair_sched_group(struct task_group *tg); 534 #else 535 static inline void free_fair_sched_group(struct task_group *tg) { } 536 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 537 { 538 return 1; 539 } 540 static inline void online_fair_sched_group(struct task_group *tg) { } 541 static inline void unregister_fair_sched_group(struct task_group *tg) { } 542 #endif 543 544 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 545 struct sched_entity *se, int cpu, 546 struct sched_entity *parent); 547 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 548 549 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 550 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 551 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 552 extern bool cfs_task_bw_constrained(struct task_struct *p); 553 554 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 555 struct sched_rt_entity *rt_se, int cpu, 556 struct sched_rt_entity *parent); 557 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 558 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 559 extern long sched_group_rt_runtime(struct task_group *tg); 560 extern long sched_group_rt_period(struct task_group *tg); 561 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 562 563 extern struct task_group *sched_create_group(struct task_group *parent); 564 extern void sched_online_group(struct task_group *tg, 565 struct task_group *parent); 566 extern void sched_destroy_group(struct task_group *tg); 567 extern void sched_release_group(struct task_group *tg); 568 569 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup); 570 571 #ifdef CONFIG_FAIR_GROUP_SCHED 572 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 573 574 extern int sched_group_set_idle(struct task_group *tg, long idle); 575 576 #ifdef CONFIG_SMP 577 extern void set_task_rq_fair(struct sched_entity *se, 578 struct cfs_rq *prev, struct cfs_rq *next); 579 #else /* !CONFIG_SMP */ 580 static inline void set_task_rq_fair(struct sched_entity *se, 581 struct cfs_rq *prev, struct cfs_rq *next) { } 582 #endif /* CONFIG_SMP */ 583 #else /* !CONFIG_FAIR_GROUP_SCHED */ 584 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } 585 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } 586 #endif /* CONFIG_FAIR_GROUP_SCHED */ 587 588 #else /* CONFIG_CGROUP_SCHED */ 589 590 struct cfs_bandwidth { }; 591 592 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 593 594 #endif /* CONFIG_CGROUP_SCHED */ 595 596 extern void unregister_rt_sched_group(struct task_group *tg); 597 extern void free_rt_sched_group(struct task_group *tg); 598 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 599 600 /* 601 * u64_u32_load/u64_u32_store 602 * 603 * Use a copy of a u64 value to protect against data race. This is only 604 * applicable for 32-bits architectures. 605 */ 606 #ifdef CONFIG_64BIT 607 # define u64_u32_load_copy(var, copy) var 608 # define u64_u32_store_copy(var, copy, val) (var = val) 609 #else 610 # define u64_u32_load_copy(var, copy) \ 611 ({ \ 612 u64 __val, __val_copy; \ 613 do { \ 614 __val_copy = copy; \ 615 /* \ 616 * paired with u64_u32_store_copy(), ordering access \ 617 * to var and copy. \ 618 */ \ 619 smp_rmb(); \ 620 __val = var; \ 621 } while (__val != __val_copy); \ 622 __val; \ 623 }) 624 # define u64_u32_store_copy(var, copy, val) \ 625 do { \ 626 typeof(val) __val = (val); \ 627 var = __val; \ 628 /* \ 629 * paired with u64_u32_load_copy(), ordering access to var and \ 630 * copy. \ 631 */ \ 632 smp_wmb(); \ 633 copy = __val; \ 634 } while (0) 635 #endif 636 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 637 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 638 639 struct balance_callback { 640 struct balance_callback *next; 641 void (*func)(struct rq *rq); 642 }; 643 644 /* CFS-related fields in a runqueue */ 645 struct cfs_rq { 646 struct load_weight load; 647 unsigned int nr_queued; 648 unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */ 649 unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */ 650 unsigned int h_nr_idle; /* SCHED_IDLE */ 651 652 s64 avg_vruntime; 653 u64 avg_load; 654 655 u64 min_vruntime; 656 #ifdef CONFIG_SCHED_CORE 657 unsigned int forceidle_seq; 658 u64 min_vruntime_fi; 659 #endif 660 661 struct rb_root_cached tasks_timeline; 662 663 /* 664 * 'curr' points to currently running entity on this cfs_rq. 665 * It is set to NULL otherwise (i.e when none are currently running). 666 */ 667 struct sched_entity *curr; 668 struct sched_entity *next; 669 670 #ifdef CONFIG_SMP 671 /* 672 * CFS load tracking 673 */ 674 struct sched_avg avg; 675 #ifndef CONFIG_64BIT 676 u64 last_update_time_copy; 677 #endif 678 struct { 679 raw_spinlock_t lock ____cacheline_aligned; 680 int nr; 681 unsigned long load_avg; 682 unsigned long util_avg; 683 unsigned long runnable_avg; 684 } removed; 685 686 #ifdef CONFIG_FAIR_GROUP_SCHED 687 u64 last_update_tg_load_avg; 688 unsigned long tg_load_avg_contrib; 689 long propagate; 690 long prop_runnable_sum; 691 692 /* 693 * h_load = weight * f(tg) 694 * 695 * Where f(tg) is the recursive weight fraction assigned to 696 * this group. 697 */ 698 unsigned long h_load; 699 u64 last_h_load_update; 700 struct sched_entity *h_load_next; 701 #endif /* CONFIG_FAIR_GROUP_SCHED */ 702 #endif /* CONFIG_SMP */ 703 704 #ifdef CONFIG_FAIR_GROUP_SCHED 705 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 706 707 /* 708 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 709 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 710 * (like users, containers etc.) 711 * 712 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 713 * This list is used during load balance. 714 */ 715 int on_list; 716 struct list_head leaf_cfs_rq_list; 717 struct task_group *tg; /* group that "owns" this runqueue */ 718 719 /* Locally cached copy of our task_group's idle value */ 720 int idle; 721 722 #ifdef CONFIG_CFS_BANDWIDTH 723 int runtime_enabled; 724 s64 runtime_remaining; 725 726 u64 throttled_pelt_idle; 727 #ifndef CONFIG_64BIT 728 u64 throttled_pelt_idle_copy; 729 #endif 730 u64 throttled_clock; 731 u64 throttled_clock_pelt; 732 u64 throttled_clock_pelt_time; 733 u64 throttled_clock_self; 734 u64 throttled_clock_self_time; 735 int throttled; 736 int throttle_count; 737 struct list_head throttled_list; 738 struct list_head throttled_csd_list; 739 #endif /* CONFIG_CFS_BANDWIDTH */ 740 #endif /* CONFIG_FAIR_GROUP_SCHED */ 741 }; 742 743 #ifdef CONFIG_SCHED_CLASS_EXT 744 /* scx_rq->flags, protected by the rq lock */ 745 enum scx_rq_flags { 746 /* 747 * A hotplugged CPU starts scheduling before rq_online_scx(). Track 748 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called 749 * only while the BPF scheduler considers the CPU to be online. 750 */ 751 SCX_RQ_ONLINE = 1 << 0, 752 SCX_RQ_CAN_STOP_TICK = 1 << 1, 753 SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */ 754 SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ 755 SCX_RQ_BYPASSING = 1 << 4, 756 SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */ 757 758 SCX_RQ_IN_WAKEUP = 1 << 16, 759 SCX_RQ_IN_BALANCE = 1 << 17, 760 }; 761 762 struct scx_rq { 763 struct scx_dispatch_q local_dsq; 764 struct list_head runnable_list; /* runnable tasks on this rq */ 765 struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ 766 unsigned long ops_qseq; 767 u64 extra_enq_flags; /* see move_task_to_local_dsq() */ 768 u32 nr_running; 769 u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ 770 bool cpu_released; 771 u32 flags; 772 u64 clock; /* current per-rq clock -- see scx_bpf_now() */ 773 cpumask_var_t cpus_to_kick; 774 cpumask_var_t cpus_to_kick_if_idle; 775 cpumask_var_t cpus_to_preempt; 776 cpumask_var_t cpus_to_wait; 777 unsigned long pnt_seq; 778 struct balance_callback deferred_bal_cb; 779 struct irq_work deferred_irq_work; 780 struct irq_work kick_cpus_irq_work; 781 }; 782 #endif /* CONFIG_SCHED_CLASS_EXT */ 783 784 static inline int rt_bandwidth_enabled(void) 785 { 786 return sysctl_sched_rt_runtime >= 0; 787 } 788 789 /* RT IPI pull logic requires IRQ_WORK */ 790 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 791 # define HAVE_RT_PUSH_IPI 792 #endif 793 794 /* Real-Time classes' related field in a runqueue: */ 795 struct rt_rq { 796 struct rt_prio_array active; 797 unsigned int rt_nr_running; 798 unsigned int rr_nr_running; 799 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 800 struct { 801 int curr; /* highest queued rt task prio */ 802 #ifdef CONFIG_SMP 803 int next; /* next highest */ 804 #endif 805 } highest_prio; 806 #endif 807 #ifdef CONFIG_SMP 808 bool overloaded; 809 struct plist_head pushable_tasks; 810 811 #endif /* CONFIG_SMP */ 812 int rt_queued; 813 814 #ifdef CONFIG_RT_GROUP_SCHED 815 int rt_throttled; 816 u64 rt_time; /* consumed RT time, goes up in update_curr_rt */ 817 u64 rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */ 818 /* Nests inside the rq lock: */ 819 raw_spinlock_t rt_runtime_lock; 820 821 unsigned int rt_nr_boosted; 822 823 struct rq *rq; /* this is always top-level rq, cache? */ 824 #endif 825 #ifdef CONFIG_CGROUP_SCHED 826 struct task_group *tg; /* this tg has "this" rt_rq on given CPU for runnable entities */ 827 #endif 828 }; 829 830 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 831 { 832 return rt_rq->rt_queued && rt_rq->rt_nr_running; 833 } 834 835 /* Deadline class' related fields in a runqueue */ 836 struct dl_rq { 837 /* runqueue is an rbtree, ordered by deadline */ 838 struct rb_root_cached root; 839 840 unsigned int dl_nr_running; 841 842 #ifdef CONFIG_SMP 843 /* 844 * Deadline values of the currently executing and the 845 * earliest ready task on this rq. Caching these facilitates 846 * the decision whether or not a ready but not running task 847 * should migrate somewhere else. 848 */ 849 struct { 850 u64 curr; 851 u64 next; 852 } earliest_dl; 853 854 bool overloaded; 855 856 /* 857 * Tasks on this rq that can be pushed away. They are kept in 858 * an rb-tree, ordered by tasks' deadlines, with caching 859 * of the leftmost (earliest deadline) element. 860 */ 861 struct rb_root_cached pushable_dl_tasks_root; 862 #else 863 struct dl_bw dl_bw; 864 #endif 865 /* 866 * "Active utilization" for this runqueue: increased when a 867 * task wakes up (becomes TASK_RUNNING) and decreased when a 868 * task blocks 869 */ 870 u64 running_bw; 871 872 /* 873 * Utilization of the tasks "assigned" to this runqueue (including 874 * the tasks that are in runqueue and the tasks that executed on this 875 * CPU and blocked). Increased when a task moves to this runqueue, and 876 * decreased when the task moves away (migrates, changes scheduling 877 * policy, or terminates). 878 * This is needed to compute the "inactive utilization" for the 879 * runqueue (inactive utilization = this_bw - running_bw). 880 */ 881 u64 this_bw; 882 u64 extra_bw; 883 884 /* 885 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 886 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 887 */ 888 u64 max_bw; 889 890 /* 891 * Inverse of the fraction of CPU utilization that can be reclaimed 892 * by the GRUB algorithm. 893 */ 894 u64 bw_ratio; 895 }; 896 897 #ifdef CONFIG_FAIR_GROUP_SCHED 898 899 /* An entity is a task if it doesn't "own" a runqueue */ 900 #define entity_is_task(se) (!se->my_q) 901 902 static inline void se_update_runnable(struct sched_entity *se) 903 { 904 if (!entity_is_task(se)) 905 se->runnable_weight = se->my_q->h_nr_runnable; 906 } 907 908 static inline long se_runnable(struct sched_entity *se) 909 { 910 if (se->sched_delayed) 911 return false; 912 913 if (entity_is_task(se)) 914 return !!se->on_rq; 915 else 916 return se->runnable_weight; 917 } 918 919 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 920 921 #define entity_is_task(se) 1 922 923 static inline void se_update_runnable(struct sched_entity *se) { } 924 925 static inline long se_runnable(struct sched_entity *se) 926 { 927 if (se->sched_delayed) 928 return false; 929 930 return !!se->on_rq; 931 } 932 933 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 934 935 #ifdef CONFIG_SMP 936 /* 937 * XXX we want to get rid of these helpers and use the full load resolution. 938 */ 939 static inline long se_weight(struct sched_entity *se) 940 { 941 return scale_load_down(se->load.weight); 942 } 943 944 945 static inline bool sched_asym_prefer(int a, int b) 946 { 947 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 948 } 949 950 struct perf_domain { 951 struct em_perf_domain *em_pd; 952 struct perf_domain *next; 953 struct rcu_head rcu; 954 }; 955 956 /* 957 * We add the notion of a root-domain which will be used to define per-domain 958 * variables. Each exclusive cpuset essentially defines an island domain by 959 * fully partitioning the member CPUs from any other cpuset. Whenever a new 960 * exclusive cpuset is created, we also create and attach a new root-domain 961 * object. 962 * 963 */ 964 struct root_domain { 965 atomic_t refcount; 966 atomic_t rto_count; 967 struct rcu_head rcu; 968 cpumask_var_t span; 969 cpumask_var_t online; 970 971 /* 972 * Indicate pullable load on at least one CPU, e.g: 973 * - More than one runnable task 974 * - Running task is misfit 975 */ 976 bool overloaded; 977 978 /* Indicate one or more CPUs over-utilized (tipping point) */ 979 bool overutilized; 980 981 /* 982 * The bit corresponding to a CPU gets set here if such CPU has more 983 * than one runnable -deadline task (as it is below for RT tasks). 984 */ 985 cpumask_var_t dlo_mask; 986 atomic_t dlo_count; 987 struct dl_bw dl_bw; 988 struct cpudl cpudl; 989 990 /* 991 * Indicate whether a root_domain's dl_bw has been checked or 992 * updated. It's monotonously increasing value. 993 * 994 * Also, some corner cases, like 'wrap around' is dangerous, but given 995 * that u64 is 'big enough'. So that shouldn't be a concern. 996 */ 997 u64 visit_cookie; 998 999 #ifdef HAVE_RT_PUSH_IPI 1000 /* 1001 * For IPI pull requests, loop across the rto_mask. 1002 */ 1003 struct irq_work rto_push_work; 1004 raw_spinlock_t rto_lock; 1005 /* These are only updated and read within rto_lock */ 1006 int rto_loop; 1007 int rto_cpu; 1008 /* These atomics are updated outside of a lock */ 1009 atomic_t rto_loop_next; 1010 atomic_t rto_loop_start; 1011 #endif 1012 /* 1013 * The "RT overload" flag: it gets set if a CPU has more than 1014 * one runnable RT task. 1015 */ 1016 cpumask_var_t rto_mask; 1017 struct cpupri cpupri; 1018 1019 /* 1020 * NULL-terminated list of performance domains intersecting with the 1021 * CPUs of the rd. Protected by RCU. 1022 */ 1023 struct perf_domain __rcu *pd; 1024 }; 1025 1026 extern void init_defrootdomain(void); 1027 extern int sched_init_domains(const struct cpumask *cpu_map); 1028 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 1029 extern void sched_get_rd(struct root_domain *rd); 1030 extern void sched_put_rd(struct root_domain *rd); 1031 1032 static inline int get_rd_overloaded(struct root_domain *rd) 1033 { 1034 return READ_ONCE(rd->overloaded); 1035 } 1036 1037 static inline void set_rd_overloaded(struct root_domain *rd, int status) 1038 { 1039 if (get_rd_overloaded(rd) != status) 1040 WRITE_ONCE(rd->overloaded, status); 1041 } 1042 1043 #ifdef HAVE_RT_PUSH_IPI 1044 extern void rto_push_irq_work_func(struct irq_work *work); 1045 #endif 1046 #endif /* CONFIG_SMP */ 1047 1048 #ifdef CONFIG_UCLAMP_TASK 1049 /* 1050 * struct uclamp_bucket - Utilization clamp bucket 1051 * @value: utilization clamp value for tasks on this clamp bucket 1052 * @tasks: number of RUNNABLE tasks on this clamp bucket 1053 * 1054 * Keep track of how many tasks are RUNNABLE for a given utilization 1055 * clamp value. 1056 */ 1057 struct uclamp_bucket { 1058 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 1059 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 1060 }; 1061 1062 /* 1063 * struct uclamp_rq - rq's utilization clamp 1064 * @value: currently active clamp values for a rq 1065 * @bucket: utilization clamp buckets affecting a rq 1066 * 1067 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 1068 * A clamp value is affecting a rq when there is at least one task RUNNABLE 1069 * (or actually running) with that value. 1070 * 1071 * There are up to UCLAMP_CNT possible different clamp values, currently there 1072 * are only two: minimum utilization and maximum utilization. 1073 * 1074 * All utilization clamping values are MAX aggregated, since: 1075 * - for util_min: we want to run the CPU at least at the max of the minimum 1076 * utilization required by its currently RUNNABLE tasks. 1077 * - for util_max: we want to allow the CPU to run up to the max of the 1078 * maximum utilization allowed by its currently RUNNABLE tasks. 1079 * 1080 * Since on each system we expect only a limited number of different 1081 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 1082 * the metrics required to compute all the per-rq utilization clamp values. 1083 */ 1084 struct uclamp_rq { 1085 unsigned int value; 1086 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 1087 }; 1088 1089 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 1090 #endif /* CONFIG_UCLAMP_TASK */ 1091 1092 /* 1093 * This is the main, per-CPU runqueue data structure. 1094 * 1095 * Locking rule: those places that want to lock multiple runqueues 1096 * (such as the load balancing or the thread migration code), lock 1097 * acquire operations must be ordered by ascending &runqueue. 1098 */ 1099 struct rq { 1100 /* runqueue lock: */ 1101 raw_spinlock_t __lock; 1102 1103 unsigned int nr_running; 1104 #ifdef CONFIG_NUMA_BALANCING 1105 unsigned int nr_numa_running; 1106 unsigned int nr_preferred_running; 1107 unsigned int numa_migrate_on; 1108 #endif 1109 #ifdef CONFIG_NO_HZ_COMMON 1110 #ifdef CONFIG_SMP 1111 unsigned long last_blocked_load_update_tick; 1112 unsigned int has_blocked_load; 1113 call_single_data_t nohz_csd; 1114 #endif /* CONFIG_SMP */ 1115 unsigned int nohz_tick_stopped; 1116 atomic_t nohz_flags; 1117 #endif /* CONFIG_NO_HZ_COMMON */ 1118 1119 #ifdef CONFIG_SMP 1120 unsigned int ttwu_pending; 1121 #endif 1122 u64 nr_switches; 1123 1124 #ifdef CONFIG_UCLAMP_TASK 1125 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1126 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1127 unsigned int uclamp_flags; 1128 #define UCLAMP_FLAG_IDLE 0x01 1129 #endif 1130 1131 struct cfs_rq cfs; 1132 struct rt_rq rt; 1133 struct dl_rq dl; 1134 #ifdef CONFIG_SCHED_CLASS_EXT 1135 struct scx_rq scx; 1136 #endif 1137 1138 struct sched_dl_entity fair_server; 1139 1140 #ifdef CONFIG_FAIR_GROUP_SCHED 1141 /* list of leaf cfs_rq on this CPU: */ 1142 struct list_head leaf_cfs_rq_list; 1143 struct list_head *tmp_alone_branch; 1144 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1145 1146 /* 1147 * This is part of a global counter where only the total sum 1148 * over all CPUs matters. A task can increase this counter on 1149 * one CPU and if it got migrated afterwards it may decrease 1150 * it on another CPU. Always updated under the runqueue lock: 1151 */ 1152 unsigned int nr_uninterruptible; 1153 1154 union { 1155 struct task_struct __rcu *donor; /* Scheduler context */ 1156 struct task_struct __rcu *curr; /* Execution context */ 1157 }; 1158 struct sched_dl_entity *dl_server; 1159 struct task_struct *idle; 1160 struct task_struct *stop; 1161 unsigned long next_balance; 1162 struct mm_struct *prev_mm; 1163 1164 unsigned int clock_update_flags; 1165 u64 clock; 1166 /* Ensure that all clocks are in the same cache line */ 1167 u64 clock_task ____cacheline_aligned; 1168 u64 clock_pelt; 1169 unsigned long lost_idle_time; 1170 u64 clock_pelt_idle; 1171 u64 clock_idle; 1172 #ifndef CONFIG_64BIT 1173 u64 clock_pelt_idle_copy; 1174 u64 clock_idle_copy; 1175 #endif 1176 1177 atomic_t nr_iowait; 1178 1179 u64 last_seen_need_resched_ns; 1180 int ticks_without_resched; 1181 1182 #ifdef CONFIG_MEMBARRIER 1183 int membarrier_state; 1184 #endif 1185 1186 #ifdef CONFIG_SMP 1187 struct root_domain *rd; 1188 struct sched_domain __rcu *sd; 1189 1190 unsigned long cpu_capacity; 1191 1192 struct balance_callback *balance_callback; 1193 1194 unsigned char nohz_idle_balance; 1195 unsigned char idle_balance; 1196 1197 unsigned long misfit_task_load; 1198 1199 /* For active balancing */ 1200 int active_balance; 1201 int push_cpu; 1202 struct cpu_stop_work active_balance_work; 1203 1204 /* CPU of this runqueue: */ 1205 int cpu; 1206 int online; 1207 1208 struct list_head cfs_tasks; 1209 1210 struct sched_avg avg_rt; 1211 struct sched_avg avg_dl; 1212 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1213 struct sched_avg avg_irq; 1214 #endif 1215 #ifdef CONFIG_SCHED_HW_PRESSURE 1216 struct sched_avg avg_hw; 1217 #endif 1218 u64 idle_stamp; 1219 u64 avg_idle; 1220 1221 /* This is used to determine avg_idle's max value */ 1222 u64 max_idle_balance_cost; 1223 1224 #ifdef CONFIG_HOTPLUG_CPU 1225 struct rcuwait hotplug_wait; 1226 #endif 1227 #endif /* CONFIG_SMP */ 1228 1229 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1230 u64 prev_irq_time; 1231 u64 psi_irq_time; 1232 #endif 1233 #ifdef CONFIG_PARAVIRT 1234 u64 prev_steal_time; 1235 #endif 1236 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1237 u64 prev_steal_time_rq; 1238 #endif 1239 1240 /* calc_load related fields */ 1241 unsigned long calc_load_update; 1242 long calc_load_active; 1243 1244 #ifdef CONFIG_SCHED_HRTICK 1245 #ifdef CONFIG_SMP 1246 call_single_data_t hrtick_csd; 1247 #endif 1248 struct hrtimer hrtick_timer; 1249 ktime_t hrtick_time; 1250 #endif 1251 1252 #ifdef CONFIG_SCHEDSTATS 1253 /* latency stats */ 1254 struct sched_info rq_sched_info; 1255 unsigned long long rq_cpu_time; 1256 1257 /* sys_sched_yield() stats */ 1258 unsigned int yld_count; 1259 1260 /* schedule() stats */ 1261 unsigned int sched_count; 1262 unsigned int sched_goidle; 1263 1264 /* try_to_wake_up() stats */ 1265 unsigned int ttwu_count; 1266 unsigned int ttwu_local; 1267 #endif 1268 1269 #ifdef CONFIG_CPU_IDLE 1270 /* Must be inspected within a RCU lock section */ 1271 struct cpuidle_state *idle_state; 1272 #endif 1273 1274 #ifdef CONFIG_SMP 1275 unsigned int nr_pinned; 1276 #endif 1277 unsigned int push_busy; 1278 struct cpu_stop_work push_work; 1279 1280 #ifdef CONFIG_SCHED_CORE 1281 /* per rq */ 1282 struct rq *core; 1283 struct task_struct *core_pick; 1284 struct sched_dl_entity *core_dl_server; 1285 unsigned int core_enabled; 1286 unsigned int core_sched_seq; 1287 struct rb_root core_tree; 1288 1289 /* shared state -- careful with sched_core_cpu_deactivate() */ 1290 unsigned int core_task_seq; 1291 unsigned int core_pick_seq; 1292 unsigned long core_cookie; 1293 unsigned int core_forceidle_count; 1294 unsigned int core_forceidle_seq; 1295 unsigned int core_forceidle_occupation; 1296 u64 core_forceidle_start; 1297 #endif 1298 1299 /* Scratch cpumask to be temporarily used under rq_lock */ 1300 cpumask_var_t scratch_mask; 1301 1302 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP) 1303 call_single_data_t cfsb_csd; 1304 struct list_head cfsb_csd_list; 1305 #endif 1306 }; 1307 1308 #ifdef CONFIG_FAIR_GROUP_SCHED 1309 1310 /* CPU runqueue to which this cfs_rq is attached */ 1311 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1312 { 1313 return cfs_rq->rq; 1314 } 1315 1316 #else 1317 1318 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1319 { 1320 return container_of(cfs_rq, struct rq, cfs); 1321 } 1322 #endif 1323 1324 static inline int cpu_of(struct rq *rq) 1325 { 1326 #ifdef CONFIG_SMP 1327 return rq->cpu; 1328 #else 1329 return 0; 1330 #endif 1331 } 1332 1333 #define MDF_PUSH 0x01 1334 1335 static inline bool is_migration_disabled(struct task_struct *p) 1336 { 1337 #ifdef CONFIG_SMP 1338 return p->migration_disabled; 1339 #else 1340 return false; 1341 #endif 1342 } 1343 1344 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1345 1346 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1347 #define this_rq() this_cpu_ptr(&runqueues) 1348 #define task_rq(p) cpu_rq(task_cpu(p)) 1349 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1350 #define raw_rq() raw_cpu_ptr(&runqueues) 1351 1352 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1353 { 1354 /* Do nothing */ 1355 } 1356 1357 #ifdef CONFIG_SCHED_CORE 1358 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1359 1360 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1361 1362 static inline bool sched_core_enabled(struct rq *rq) 1363 { 1364 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1365 } 1366 1367 static inline bool sched_core_disabled(void) 1368 { 1369 return !static_branch_unlikely(&__sched_core_enabled); 1370 } 1371 1372 /* 1373 * Be careful with this function; not for general use. The return value isn't 1374 * stable unless you actually hold a relevant rq->__lock. 1375 */ 1376 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1377 { 1378 if (sched_core_enabled(rq)) 1379 return &rq->core->__lock; 1380 1381 return &rq->__lock; 1382 } 1383 1384 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1385 { 1386 if (rq->core_enabled) 1387 return &rq->core->__lock; 1388 1389 return &rq->__lock; 1390 } 1391 1392 extern bool 1393 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); 1394 1395 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1396 1397 /* 1398 * Helpers to check if the CPU's core cookie matches with the task's cookie 1399 * when core scheduling is enabled. 1400 * A special case is that the task's cookie always matches with CPU's core 1401 * cookie if the CPU is in an idle core. 1402 */ 1403 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1404 { 1405 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1406 if (!sched_core_enabled(rq)) 1407 return true; 1408 1409 return rq->core->core_cookie == p->core_cookie; 1410 } 1411 1412 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1413 { 1414 bool idle_core = true; 1415 int cpu; 1416 1417 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1418 if (!sched_core_enabled(rq)) 1419 return true; 1420 1421 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1422 if (!available_idle_cpu(cpu)) { 1423 idle_core = false; 1424 break; 1425 } 1426 } 1427 1428 /* 1429 * A CPU in an idle core is always the best choice for tasks with 1430 * cookies. 1431 */ 1432 return idle_core || rq->core->core_cookie == p->core_cookie; 1433 } 1434 1435 static inline bool sched_group_cookie_match(struct rq *rq, 1436 struct task_struct *p, 1437 struct sched_group *group) 1438 { 1439 int cpu; 1440 1441 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1442 if (!sched_core_enabled(rq)) 1443 return true; 1444 1445 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1446 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1447 return true; 1448 } 1449 return false; 1450 } 1451 1452 static inline bool sched_core_enqueued(struct task_struct *p) 1453 { 1454 return !RB_EMPTY_NODE(&p->core_node); 1455 } 1456 1457 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1458 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1459 1460 extern void sched_core_get(void); 1461 extern void sched_core_put(void); 1462 1463 #else /* !CONFIG_SCHED_CORE: */ 1464 1465 static inline bool sched_core_enabled(struct rq *rq) 1466 { 1467 return false; 1468 } 1469 1470 static inline bool sched_core_disabled(void) 1471 { 1472 return true; 1473 } 1474 1475 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1476 { 1477 return &rq->__lock; 1478 } 1479 1480 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1481 { 1482 return &rq->__lock; 1483 } 1484 1485 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1486 { 1487 return true; 1488 } 1489 1490 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1491 { 1492 return true; 1493 } 1494 1495 static inline bool sched_group_cookie_match(struct rq *rq, 1496 struct task_struct *p, 1497 struct sched_group *group) 1498 { 1499 return true; 1500 } 1501 1502 #endif /* !CONFIG_SCHED_CORE */ 1503 #ifdef CONFIG_RT_GROUP_SCHED 1504 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 1505 DECLARE_STATIC_KEY_FALSE(rt_group_sched); 1506 static inline bool rt_group_sched_enabled(void) 1507 { 1508 return static_branch_unlikely(&rt_group_sched); 1509 } 1510 # else 1511 DECLARE_STATIC_KEY_TRUE(rt_group_sched); 1512 static inline bool rt_group_sched_enabled(void) 1513 { 1514 return static_branch_likely(&rt_group_sched); 1515 } 1516 # endif /* CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */ 1517 #else 1518 # define rt_group_sched_enabled() false 1519 #endif /* CONFIG_RT_GROUP_SCHED */ 1520 1521 static inline void lockdep_assert_rq_held(struct rq *rq) 1522 { 1523 lockdep_assert_held(__rq_lockp(rq)); 1524 } 1525 1526 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1527 extern bool raw_spin_rq_trylock(struct rq *rq); 1528 extern void raw_spin_rq_unlock(struct rq *rq); 1529 1530 static inline void raw_spin_rq_lock(struct rq *rq) 1531 { 1532 raw_spin_rq_lock_nested(rq, 0); 1533 } 1534 1535 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1536 { 1537 local_irq_disable(); 1538 raw_spin_rq_lock(rq); 1539 } 1540 1541 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1542 { 1543 raw_spin_rq_unlock(rq); 1544 local_irq_enable(); 1545 } 1546 1547 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1548 { 1549 unsigned long flags; 1550 1551 local_irq_save(flags); 1552 raw_spin_rq_lock(rq); 1553 1554 return flags; 1555 } 1556 1557 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1558 { 1559 raw_spin_rq_unlock(rq); 1560 local_irq_restore(flags); 1561 } 1562 1563 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1564 do { \ 1565 flags = _raw_spin_rq_lock_irqsave(rq); \ 1566 } while (0) 1567 1568 #ifdef CONFIG_SCHED_SMT 1569 extern void __update_idle_core(struct rq *rq); 1570 1571 static inline void update_idle_core(struct rq *rq) 1572 { 1573 if (static_branch_unlikely(&sched_smt_present)) 1574 __update_idle_core(rq); 1575 } 1576 1577 #else 1578 static inline void update_idle_core(struct rq *rq) { } 1579 #endif 1580 1581 #ifdef CONFIG_FAIR_GROUP_SCHED 1582 1583 static inline struct task_struct *task_of(struct sched_entity *se) 1584 { 1585 WARN_ON_ONCE(!entity_is_task(se)); 1586 return container_of(se, struct task_struct, se); 1587 } 1588 1589 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1590 { 1591 return p->se.cfs_rq; 1592 } 1593 1594 /* runqueue on which this entity is (to be) queued */ 1595 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1596 { 1597 return se->cfs_rq; 1598 } 1599 1600 /* runqueue "owned" by this group */ 1601 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1602 { 1603 return grp->my_q; 1604 } 1605 1606 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1607 1608 #define task_of(_se) container_of(_se, struct task_struct, se) 1609 1610 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1611 { 1612 return &task_rq(p)->cfs; 1613 } 1614 1615 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1616 { 1617 const struct task_struct *p = task_of(se); 1618 struct rq *rq = task_rq(p); 1619 1620 return &rq->cfs; 1621 } 1622 1623 /* runqueue "owned" by this group */ 1624 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1625 { 1626 return NULL; 1627 } 1628 1629 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1630 1631 extern void update_rq_clock(struct rq *rq); 1632 1633 /* 1634 * rq::clock_update_flags bits 1635 * 1636 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1637 * call to __schedule(). This is an optimisation to avoid 1638 * neighbouring rq clock updates. 1639 * 1640 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1641 * in effect and calls to update_rq_clock() are being ignored. 1642 * 1643 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1644 * made to update_rq_clock() since the last time rq::lock was pinned. 1645 * 1646 * If inside of __schedule(), clock_update_flags will have been 1647 * shifted left (a left shift is a cheap operation for the fast path 1648 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1649 * 1650 * if (rq-clock_update_flags >= RQCF_UPDATED) 1651 * 1652 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1653 * one position though, because the next rq_unpin_lock() will shift it 1654 * back. 1655 */ 1656 #define RQCF_REQ_SKIP 0x01 1657 #define RQCF_ACT_SKIP 0x02 1658 #define RQCF_UPDATED 0x04 1659 1660 static inline void assert_clock_updated(struct rq *rq) 1661 { 1662 /* 1663 * The only reason for not seeing a clock update since the 1664 * last rq_pin_lock() is if we're currently skipping updates. 1665 */ 1666 WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP); 1667 } 1668 1669 static inline u64 rq_clock(struct rq *rq) 1670 { 1671 lockdep_assert_rq_held(rq); 1672 assert_clock_updated(rq); 1673 1674 return rq->clock; 1675 } 1676 1677 static inline u64 rq_clock_task(struct rq *rq) 1678 { 1679 lockdep_assert_rq_held(rq); 1680 assert_clock_updated(rq); 1681 1682 return rq->clock_task; 1683 } 1684 1685 static inline void rq_clock_skip_update(struct rq *rq) 1686 { 1687 lockdep_assert_rq_held(rq); 1688 rq->clock_update_flags |= RQCF_REQ_SKIP; 1689 } 1690 1691 /* 1692 * See rt task throttling, which is the only time a skip 1693 * request is canceled. 1694 */ 1695 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1696 { 1697 lockdep_assert_rq_held(rq); 1698 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1699 } 1700 1701 /* 1702 * During cpu offlining and rq wide unthrottling, we can trigger 1703 * an update_rq_clock() for several cfs and rt runqueues (Typically 1704 * when using list_for_each_entry_*) 1705 * rq_clock_start_loop_update() can be called after updating the clock 1706 * once and before iterating over the list to prevent multiple update. 1707 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1708 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1709 */ 1710 static inline void rq_clock_start_loop_update(struct rq *rq) 1711 { 1712 lockdep_assert_rq_held(rq); 1713 WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP); 1714 rq->clock_update_flags |= RQCF_ACT_SKIP; 1715 } 1716 1717 static inline void rq_clock_stop_loop_update(struct rq *rq) 1718 { 1719 lockdep_assert_rq_held(rq); 1720 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1721 } 1722 1723 struct rq_flags { 1724 unsigned long flags; 1725 struct pin_cookie cookie; 1726 /* 1727 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1728 * current pin context is stashed here in case it needs to be 1729 * restored in rq_repin_lock(). 1730 */ 1731 unsigned int clock_update_flags; 1732 }; 1733 1734 extern struct balance_callback balance_push_callback; 1735 1736 #ifdef CONFIG_SCHED_CLASS_EXT 1737 extern const struct sched_class ext_sched_class; 1738 1739 DECLARE_STATIC_KEY_FALSE(__scx_enabled); /* SCX BPF scheduler loaded */ 1740 DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ 1741 1742 #define scx_enabled() static_branch_unlikely(&__scx_enabled) 1743 #define scx_switched_all() static_branch_unlikely(&__scx_switched_all) 1744 1745 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) 1746 { 1747 if (!scx_enabled()) 1748 return; 1749 WRITE_ONCE(rq->scx.clock, clock); 1750 smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID); 1751 } 1752 1753 static inline void scx_rq_clock_invalidate(struct rq *rq) 1754 { 1755 if (!scx_enabled()) 1756 return; 1757 WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID); 1758 } 1759 1760 #else /* !CONFIG_SCHED_CLASS_EXT */ 1761 #define scx_enabled() false 1762 #define scx_switched_all() false 1763 1764 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {} 1765 static inline void scx_rq_clock_invalidate(struct rq *rq) {} 1766 #endif /* !CONFIG_SCHED_CLASS_EXT */ 1767 1768 /* 1769 * Lockdep annotation that avoids accidental unlocks; it's like a 1770 * sticky/continuous lockdep_assert_held(). 1771 * 1772 * This avoids code that has access to 'struct rq *rq' (basically everything in 1773 * the scheduler) from accidentally unlocking the rq if they do not also have a 1774 * copy of the (on-stack) 'struct rq_flags rf'. 1775 * 1776 * Also see Documentation/locking/lockdep-design.rst. 1777 */ 1778 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1779 { 1780 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1781 1782 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1783 rf->clock_update_flags = 0; 1784 #ifdef CONFIG_SMP 1785 WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1786 #endif 1787 } 1788 1789 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1790 { 1791 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1792 rf->clock_update_flags = RQCF_UPDATED; 1793 1794 scx_rq_clock_invalidate(rq); 1795 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1796 } 1797 1798 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1799 { 1800 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1801 1802 /* 1803 * Restore the value we stashed in @rf for this pin context. 1804 */ 1805 rq->clock_update_flags |= rf->clock_update_flags; 1806 } 1807 1808 extern 1809 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1810 __acquires(rq->lock); 1811 1812 extern 1813 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1814 __acquires(p->pi_lock) 1815 __acquires(rq->lock); 1816 1817 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1818 __releases(rq->lock) 1819 { 1820 rq_unpin_lock(rq, rf); 1821 raw_spin_rq_unlock(rq); 1822 } 1823 1824 static inline void 1825 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1826 __releases(rq->lock) 1827 __releases(p->pi_lock) 1828 { 1829 rq_unpin_lock(rq, rf); 1830 raw_spin_rq_unlock(rq); 1831 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1832 } 1833 1834 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1835 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1836 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1837 struct rq *rq; struct rq_flags rf) 1838 1839 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1840 __acquires(rq->lock) 1841 { 1842 raw_spin_rq_lock_irqsave(rq, rf->flags); 1843 rq_pin_lock(rq, rf); 1844 } 1845 1846 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1847 __acquires(rq->lock) 1848 { 1849 raw_spin_rq_lock_irq(rq); 1850 rq_pin_lock(rq, rf); 1851 } 1852 1853 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) 1854 __acquires(rq->lock) 1855 { 1856 raw_spin_rq_lock(rq); 1857 rq_pin_lock(rq, rf); 1858 } 1859 1860 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1861 __releases(rq->lock) 1862 { 1863 rq_unpin_lock(rq, rf); 1864 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1865 } 1866 1867 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1868 __releases(rq->lock) 1869 { 1870 rq_unpin_lock(rq, rf); 1871 raw_spin_rq_unlock_irq(rq); 1872 } 1873 1874 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) 1875 __releases(rq->lock) 1876 { 1877 rq_unpin_lock(rq, rf); 1878 raw_spin_rq_unlock(rq); 1879 } 1880 1881 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1882 rq_lock(_T->lock, &_T->rf), 1883 rq_unlock(_T->lock, &_T->rf), 1884 struct rq_flags rf) 1885 1886 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1887 rq_lock_irq(_T->lock, &_T->rf), 1888 rq_unlock_irq(_T->lock, &_T->rf), 1889 struct rq_flags rf) 1890 1891 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1892 rq_lock_irqsave(_T->lock, &_T->rf), 1893 rq_unlock_irqrestore(_T->lock, &_T->rf), 1894 struct rq_flags rf) 1895 1896 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) 1897 __acquires(rq->lock) 1898 { 1899 struct rq *rq; 1900 1901 local_irq_disable(); 1902 rq = this_rq(); 1903 rq_lock(rq, rf); 1904 1905 return rq; 1906 } 1907 1908 #ifdef CONFIG_NUMA 1909 1910 enum numa_topology_type { 1911 NUMA_DIRECT, 1912 NUMA_GLUELESS_MESH, 1913 NUMA_BACKPLANE, 1914 }; 1915 1916 extern enum numa_topology_type sched_numa_topology_type; 1917 extern int sched_max_numa_distance; 1918 extern bool find_numa_distance(int distance); 1919 extern void sched_init_numa(int offline_node); 1920 extern void sched_update_numa(int cpu, bool online); 1921 extern void sched_domains_numa_masks_set(unsigned int cpu); 1922 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1923 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1924 1925 #else /* !CONFIG_NUMA: */ 1926 1927 static inline void sched_init_numa(int offline_node) { } 1928 static inline void sched_update_numa(int cpu, bool online) { } 1929 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1930 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1931 1932 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1933 { 1934 return nr_cpu_ids; 1935 } 1936 1937 #endif /* !CONFIG_NUMA */ 1938 1939 #ifdef CONFIG_NUMA_BALANCING 1940 1941 /* The regions in numa_faults array from task_struct */ 1942 enum numa_faults_stats { 1943 NUMA_MEM = 0, 1944 NUMA_CPU, 1945 NUMA_MEMBUF, 1946 NUMA_CPUBUF 1947 }; 1948 1949 extern void sched_setnuma(struct task_struct *p, int node); 1950 extern int migrate_task_to(struct task_struct *p, int cpu); 1951 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1952 int cpu, int scpu); 1953 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1954 1955 #else /* !CONFIG_NUMA_BALANCING: */ 1956 1957 static inline void 1958 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1959 { 1960 } 1961 1962 #endif /* !CONFIG_NUMA_BALANCING */ 1963 1964 #ifdef CONFIG_SMP 1965 1966 static inline void 1967 queue_balance_callback(struct rq *rq, 1968 struct balance_callback *head, 1969 void (*func)(struct rq *rq)) 1970 { 1971 lockdep_assert_rq_held(rq); 1972 1973 /* 1974 * Don't (re)queue an already queued item; nor queue anything when 1975 * balance_push() is active, see the comment with 1976 * balance_push_callback. 1977 */ 1978 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1979 return; 1980 1981 head->func = func; 1982 head->next = rq->balance_callback; 1983 rq->balance_callback = head; 1984 } 1985 1986 #define rcu_dereference_check_sched_domain(p) \ 1987 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) 1988 1989 /* 1990 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1991 * See destroy_sched_domains: call_rcu for details. 1992 * 1993 * The domain tree of any CPU may only be accessed from within 1994 * preempt-disabled sections. 1995 */ 1996 #define for_each_domain(cpu, __sd) \ 1997 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1998 __sd; __sd = __sd->parent) 1999 2000 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 2001 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 2002 static const unsigned int SD_SHARED_CHILD_MASK = 2003 #include <linux/sched/sd_flags.h> 2004 0; 2005 #undef SD_FLAG 2006 2007 /** 2008 * highest_flag_domain - Return highest sched_domain containing flag. 2009 * @cpu: The CPU whose highest level of sched domain is to 2010 * be returned. 2011 * @flag: The flag to check for the highest sched_domain 2012 * for the given CPU. 2013 * 2014 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 2015 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 2016 */ 2017 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 2018 { 2019 struct sched_domain *sd, *hsd = NULL; 2020 2021 for_each_domain(cpu, sd) { 2022 if (sd->flags & flag) { 2023 hsd = sd; 2024 continue; 2025 } 2026 2027 /* 2028 * Stop the search if @flag is known to be shared at lower 2029 * levels. It will not be found further up. 2030 */ 2031 if (flag & SD_SHARED_CHILD_MASK) 2032 break; 2033 } 2034 2035 return hsd; 2036 } 2037 2038 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 2039 { 2040 struct sched_domain *sd; 2041 2042 for_each_domain(cpu, sd) { 2043 if (sd->flags & flag) 2044 break; 2045 } 2046 2047 return sd; 2048 } 2049 2050 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 2051 DECLARE_PER_CPU(int, sd_llc_size); 2052 DECLARE_PER_CPU(int, sd_llc_id); 2053 DECLARE_PER_CPU(int, sd_share_id); 2054 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 2055 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 2056 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 2057 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 2058 2059 extern struct static_key_false sched_asym_cpucapacity; 2060 extern struct static_key_false sched_cluster_active; 2061 2062 static __always_inline bool sched_asym_cpucap_active(void) 2063 { 2064 return static_branch_unlikely(&sched_asym_cpucapacity); 2065 } 2066 2067 struct sched_group_capacity { 2068 atomic_t ref; 2069 /* 2070 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 2071 * for a single CPU. 2072 */ 2073 unsigned long capacity; 2074 unsigned long min_capacity; /* Min per-CPU capacity in group */ 2075 unsigned long max_capacity; /* Max per-CPU capacity in group */ 2076 unsigned long next_update; 2077 int imbalance; /* XXX unrelated to capacity but shared group state */ 2078 2079 int id; 2080 2081 unsigned long cpumask[]; /* Balance mask */ 2082 }; 2083 2084 struct sched_group { 2085 struct sched_group *next; /* Must be a circular list */ 2086 atomic_t ref; 2087 2088 unsigned int group_weight; 2089 unsigned int cores; 2090 struct sched_group_capacity *sgc; 2091 int asym_prefer_cpu; /* CPU of highest priority in group */ 2092 int flags; 2093 2094 /* 2095 * The CPUs this group covers. 2096 * 2097 * NOTE: this field is variable length. (Allocated dynamically 2098 * by attaching extra space to the end of the structure, 2099 * depending on how many CPUs the kernel has booted up with) 2100 */ 2101 unsigned long cpumask[]; 2102 }; 2103 2104 static inline struct cpumask *sched_group_span(struct sched_group *sg) 2105 { 2106 return to_cpumask(sg->cpumask); 2107 } 2108 2109 /* 2110 * See build_balance_mask(). 2111 */ 2112 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 2113 { 2114 return to_cpumask(sg->sgc->cpumask); 2115 } 2116 2117 extern int group_balance_cpu(struct sched_group *sg); 2118 2119 extern void update_sched_domain_debugfs(void); 2120 extern void dirty_sched_domain_sysctl(int cpu); 2121 2122 extern int sched_update_scaling(void); 2123 2124 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 2125 { 2126 if (!p->user_cpus_ptr) 2127 return cpu_possible_mask; /* &init_task.cpus_mask */ 2128 return p->user_cpus_ptr; 2129 } 2130 2131 #endif /* CONFIG_SMP */ 2132 2133 #ifdef CONFIG_CGROUP_SCHED 2134 2135 /* 2136 * Return the group to which this tasks belongs. 2137 * 2138 * We cannot use task_css() and friends because the cgroup subsystem 2139 * changes that value before the cgroup_subsys::attach() method is called, 2140 * therefore we cannot pin it and might observe the wrong value. 2141 * 2142 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2143 * core changes this before calling sched_move_task(). 2144 * 2145 * Instead we use a 'copy' which is updated from sched_move_task() while 2146 * holding both task_struct::pi_lock and rq::lock. 2147 */ 2148 static inline struct task_group *task_group(struct task_struct *p) 2149 { 2150 return p->sched_task_group; 2151 } 2152 2153 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2154 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2155 { 2156 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2157 struct task_group *tg = task_group(p); 2158 #endif 2159 2160 #ifdef CONFIG_FAIR_GROUP_SCHED 2161 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2162 p->se.cfs_rq = tg->cfs_rq[cpu]; 2163 p->se.parent = tg->se[cpu]; 2164 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2165 #endif 2166 2167 #ifdef CONFIG_RT_GROUP_SCHED 2168 /* 2169 * p->rt.rt_rq is NULL initially and it is easier to assign 2170 * root_task_group's rt_rq than switching in rt_rq_of_se() 2171 * Clobbers tg(!) 2172 */ 2173 if (!rt_group_sched_enabled()) 2174 tg = &root_task_group; 2175 p->rt.rt_rq = tg->rt_rq[cpu]; 2176 p->rt.parent = tg->rt_se[cpu]; 2177 #endif 2178 } 2179 2180 #else /* !CONFIG_CGROUP_SCHED: */ 2181 2182 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2183 2184 static inline struct task_group *task_group(struct task_struct *p) 2185 { 2186 return NULL; 2187 } 2188 2189 #endif /* !CONFIG_CGROUP_SCHED */ 2190 2191 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2192 { 2193 set_task_rq(p, cpu); 2194 #ifdef CONFIG_SMP 2195 /* 2196 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2197 * successfully executed on another CPU. We must ensure that updates of 2198 * per-task data have been completed by this moment. 2199 */ 2200 smp_wmb(); 2201 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2202 p->wake_cpu = cpu; 2203 #endif 2204 } 2205 2206 /* 2207 * Tunables: 2208 */ 2209 2210 #define SCHED_FEAT(name, enabled) \ 2211 __SCHED_FEAT_##name , 2212 2213 enum { 2214 #include "features.h" 2215 __SCHED_FEAT_NR, 2216 }; 2217 2218 #undef SCHED_FEAT 2219 2220 /* 2221 * To support run-time toggling of sched features, all the translation units 2222 * (but core.c) reference the sysctl_sched_features defined in core.c. 2223 */ 2224 extern __read_mostly unsigned int sysctl_sched_features; 2225 2226 #ifdef CONFIG_JUMP_LABEL 2227 2228 #define SCHED_FEAT(name, enabled) \ 2229 static __always_inline bool static_branch_##name(struct static_key *key) \ 2230 { \ 2231 return static_key_##enabled(key); \ 2232 } 2233 2234 #include "features.h" 2235 #undef SCHED_FEAT 2236 2237 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2238 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2239 2240 #else /* !CONFIG_JUMP_LABEL: */ 2241 2242 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2243 2244 #endif /* !CONFIG_JUMP_LABEL */ 2245 2246 extern struct static_key_false sched_numa_balancing; 2247 extern struct static_key_false sched_schedstats; 2248 2249 static inline u64 global_rt_period(void) 2250 { 2251 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2252 } 2253 2254 static inline u64 global_rt_runtime(void) 2255 { 2256 if (sysctl_sched_rt_runtime < 0) 2257 return RUNTIME_INF; 2258 2259 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2260 } 2261 2262 /* 2263 * Is p the current execution context? 2264 */ 2265 static inline int task_current(struct rq *rq, struct task_struct *p) 2266 { 2267 return rq->curr == p; 2268 } 2269 2270 /* 2271 * Is p the current scheduling context? 2272 * 2273 * Note that it might be the current execution context at the same time if 2274 * rq->curr == rq->donor == p. 2275 */ 2276 static inline int task_current_donor(struct rq *rq, struct task_struct *p) 2277 { 2278 return rq->donor == p; 2279 } 2280 2281 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2282 { 2283 #ifdef CONFIG_SMP 2284 return p->on_cpu; 2285 #else 2286 return task_current(rq, p); 2287 #endif 2288 } 2289 2290 static inline int task_on_rq_queued(struct task_struct *p) 2291 { 2292 return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED; 2293 } 2294 2295 static inline int task_on_rq_migrating(struct task_struct *p) 2296 { 2297 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2298 } 2299 2300 /* Wake flags. The first three directly map to some SD flag value */ 2301 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2302 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2303 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2304 2305 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2306 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2307 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2308 #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ 2309 2310 #ifdef CONFIG_SMP 2311 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2312 static_assert(WF_FORK == SD_BALANCE_FORK); 2313 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2314 #endif 2315 2316 /* 2317 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2318 * of tasks with abnormal "nice" values across CPUs the contribution that 2319 * each task makes to its run queue's load is weighted according to its 2320 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2321 * scaled version of the new time slice allocation that they receive on time 2322 * slice expiry etc. 2323 */ 2324 2325 #define WEIGHT_IDLEPRIO 3 2326 #define WMULT_IDLEPRIO 1431655765 2327 2328 extern const int sched_prio_to_weight[40]; 2329 extern const u32 sched_prio_to_wmult[40]; 2330 2331 /* 2332 * {de,en}queue flags: 2333 * 2334 * DEQUEUE_SLEEP - task is no longer runnable 2335 * ENQUEUE_WAKEUP - task just became runnable 2336 * 2337 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2338 * are in a known state which allows modification. Such pairs 2339 * should preserve as much state as possible. 2340 * 2341 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2342 * in the runqueue. 2343 * 2344 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2345 * 2346 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2347 * 2348 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2349 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2350 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2351 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called 2352 * 2353 */ 2354 2355 #define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */ 2356 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2357 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2358 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2359 #define DEQUEUE_SPECIAL 0x10 2360 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */ 2361 #define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */ 2362 2363 #define ENQUEUE_WAKEUP 0x01 2364 #define ENQUEUE_RESTORE 0x02 2365 #define ENQUEUE_MOVE 0x04 2366 #define ENQUEUE_NOCLOCK 0x08 2367 2368 #define ENQUEUE_HEAD 0x10 2369 #define ENQUEUE_REPLENISH 0x20 2370 #ifdef CONFIG_SMP 2371 #define ENQUEUE_MIGRATED 0x40 2372 #else 2373 #define ENQUEUE_MIGRATED 0x00 2374 #endif 2375 #define ENQUEUE_INITIAL 0x80 2376 #define ENQUEUE_MIGRATING 0x100 2377 #define ENQUEUE_DELAYED 0x200 2378 #define ENQUEUE_RQ_SELECTED 0x400 2379 2380 #define RETRY_TASK ((void *)-1UL) 2381 2382 struct affinity_context { 2383 const struct cpumask *new_mask; 2384 struct cpumask *user_mask; 2385 unsigned int flags; 2386 }; 2387 2388 extern s64 update_curr_common(struct rq *rq); 2389 2390 struct sched_class { 2391 2392 #ifdef CONFIG_UCLAMP_TASK 2393 int uclamp_enabled; 2394 #endif 2395 2396 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2397 bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2398 void (*yield_task) (struct rq *rq); 2399 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2400 2401 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2402 2403 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2404 struct task_struct *(*pick_task)(struct rq *rq); 2405 /* 2406 * Optional! When implemented pick_next_task() should be equivalent to: 2407 * 2408 * next = pick_task(); 2409 * if (next) { 2410 * put_prev_task(prev); 2411 * set_next_task_first(next); 2412 * } 2413 */ 2414 struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev); 2415 2416 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); 2417 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2418 2419 #ifdef CONFIG_SMP 2420 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2421 2422 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2423 2424 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2425 2426 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2427 2428 void (*rq_online)(struct rq *rq); 2429 void (*rq_offline)(struct rq *rq); 2430 2431 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2432 #endif 2433 2434 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2435 void (*task_fork)(struct task_struct *p); 2436 void (*task_dead)(struct task_struct *p); 2437 2438 /* 2439 * The switched_from() call is allowed to drop rq->lock, therefore we 2440 * cannot assume the switched_from/switched_to pair is serialized by 2441 * rq->lock. They are however serialized by p->pi_lock. 2442 */ 2443 void (*switching_to) (struct rq *this_rq, struct task_struct *task); 2444 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2445 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2446 void (*reweight_task)(struct rq *this_rq, struct task_struct *task, 2447 const struct load_weight *lw); 2448 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2449 int oldprio); 2450 2451 unsigned int (*get_rr_interval)(struct rq *rq, 2452 struct task_struct *task); 2453 2454 void (*update_curr)(struct rq *rq); 2455 2456 #ifdef CONFIG_FAIR_GROUP_SCHED 2457 void (*task_change_group)(struct task_struct *p); 2458 #endif 2459 2460 #ifdef CONFIG_SCHED_CORE 2461 int (*task_is_throttled)(struct task_struct *p, int cpu); 2462 #endif 2463 }; 2464 2465 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2466 { 2467 WARN_ON_ONCE(rq->donor != prev); 2468 prev->sched_class->put_prev_task(rq, prev, NULL); 2469 } 2470 2471 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2472 { 2473 next->sched_class->set_next_task(rq, next, false); 2474 } 2475 2476 static inline void 2477 __put_prev_set_next_dl_server(struct rq *rq, 2478 struct task_struct *prev, 2479 struct task_struct *next) 2480 { 2481 prev->dl_server = NULL; 2482 next->dl_server = rq->dl_server; 2483 rq->dl_server = NULL; 2484 } 2485 2486 static inline void put_prev_set_next_task(struct rq *rq, 2487 struct task_struct *prev, 2488 struct task_struct *next) 2489 { 2490 WARN_ON_ONCE(rq->curr != prev); 2491 2492 __put_prev_set_next_dl_server(rq, prev, next); 2493 2494 if (next == prev) 2495 return; 2496 2497 prev->sched_class->put_prev_task(rq, prev, next); 2498 next->sched_class->set_next_task(rq, next, true); 2499 } 2500 2501 /* 2502 * Helper to define a sched_class instance; each one is placed in a separate 2503 * section which is ordered by the linker script: 2504 * 2505 * include/asm-generic/vmlinux.lds.h 2506 * 2507 * *CAREFUL* they are laid out in *REVERSE* order!!! 2508 * 2509 * Also enforce alignment on the instance, not the type, to guarantee layout. 2510 */ 2511 #define DEFINE_SCHED_CLASS(name) \ 2512 const struct sched_class name##_sched_class \ 2513 __aligned(__alignof__(struct sched_class)) \ 2514 __section("__" #name "_sched_class") 2515 2516 /* Defined in include/asm-generic/vmlinux.lds.h */ 2517 extern struct sched_class __sched_class_highest[]; 2518 extern struct sched_class __sched_class_lowest[]; 2519 2520 extern const struct sched_class stop_sched_class; 2521 extern const struct sched_class dl_sched_class; 2522 extern const struct sched_class rt_sched_class; 2523 extern const struct sched_class fair_sched_class; 2524 extern const struct sched_class idle_sched_class; 2525 2526 /* 2527 * Iterate only active classes. SCX can take over all fair tasks or be 2528 * completely disabled. If the former, skip fair. If the latter, skip SCX. 2529 */ 2530 static inline const struct sched_class *next_active_class(const struct sched_class *class) 2531 { 2532 class++; 2533 #ifdef CONFIG_SCHED_CLASS_EXT 2534 if (scx_switched_all() && class == &fair_sched_class) 2535 class++; 2536 if (!scx_enabled() && class == &ext_sched_class) 2537 class++; 2538 #endif 2539 return class; 2540 } 2541 2542 #define for_class_range(class, _from, _to) \ 2543 for (class = (_from); class < (_to); class++) 2544 2545 #define for_each_class(class) \ 2546 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2547 2548 #define for_active_class_range(class, _from, _to) \ 2549 for (class = (_from); class != (_to); class = next_active_class(class)) 2550 2551 #define for_each_active_class(class) \ 2552 for_active_class_range(class, __sched_class_highest, __sched_class_lowest) 2553 2554 #define sched_class_above(_a, _b) ((_a) < (_b)) 2555 2556 static inline bool sched_stop_runnable(struct rq *rq) 2557 { 2558 return rq->stop && task_on_rq_queued(rq->stop); 2559 } 2560 2561 static inline bool sched_dl_runnable(struct rq *rq) 2562 { 2563 return rq->dl.dl_nr_running > 0; 2564 } 2565 2566 static inline bool sched_rt_runnable(struct rq *rq) 2567 { 2568 return rq->rt.rt_queued > 0; 2569 } 2570 2571 static inline bool sched_fair_runnable(struct rq *rq) 2572 { 2573 return rq->cfs.nr_queued > 0; 2574 } 2575 2576 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2577 extern struct task_struct *pick_task_idle(struct rq *rq); 2578 2579 #define SCA_CHECK 0x01 2580 #define SCA_MIGRATE_DISABLE 0x02 2581 #define SCA_MIGRATE_ENABLE 0x04 2582 #define SCA_USER 0x08 2583 2584 #ifdef CONFIG_SMP 2585 2586 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2587 2588 extern void sched_balance_trigger(struct rq *rq); 2589 2590 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); 2591 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2592 2593 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2594 { 2595 /* When not in the task's cpumask, no point in looking further. */ 2596 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2597 return false; 2598 2599 /* Can @cpu run a user thread? */ 2600 if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) 2601 return false; 2602 2603 return true; 2604 } 2605 2606 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2607 { 2608 /* 2609 * See do_set_cpus_allowed() above for the rcu_head usage. 2610 */ 2611 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2612 2613 return kmalloc_node(size, GFP_KERNEL, node); 2614 } 2615 2616 static inline struct task_struct *get_push_task(struct rq *rq) 2617 { 2618 struct task_struct *p = rq->donor; 2619 2620 lockdep_assert_rq_held(rq); 2621 2622 if (rq->push_busy) 2623 return NULL; 2624 2625 if (p->nr_cpus_allowed == 1) 2626 return NULL; 2627 2628 if (p->migration_disabled) 2629 return NULL; 2630 2631 rq->push_busy = true; 2632 return get_task_struct(p); 2633 } 2634 2635 extern int push_cpu_stop(void *arg); 2636 2637 #else /* !CONFIG_SMP: */ 2638 2639 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2640 { 2641 return true; 2642 } 2643 2644 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2645 struct affinity_context *ctx) 2646 { 2647 return set_cpus_allowed_ptr(p, ctx->new_mask); 2648 } 2649 2650 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2651 { 2652 return NULL; 2653 } 2654 2655 #endif /* !CONFIG_SMP */ 2656 2657 #ifdef CONFIG_CPU_IDLE 2658 2659 static inline void idle_set_state(struct rq *rq, 2660 struct cpuidle_state *idle_state) 2661 { 2662 rq->idle_state = idle_state; 2663 } 2664 2665 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2666 { 2667 WARN_ON_ONCE(!rcu_read_lock_held()); 2668 2669 return rq->idle_state; 2670 } 2671 2672 #else /* !CONFIG_CPU_IDLE: */ 2673 2674 static inline void idle_set_state(struct rq *rq, 2675 struct cpuidle_state *idle_state) 2676 { 2677 } 2678 2679 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2680 { 2681 return NULL; 2682 } 2683 2684 #endif /* !CONFIG_CPU_IDLE */ 2685 2686 extern void schedule_idle(void); 2687 asmlinkage void schedule_user(void); 2688 2689 extern void sysrq_sched_debug_show(void); 2690 extern void sched_init_granularity(void); 2691 extern void update_max_interval(void); 2692 2693 extern void init_sched_dl_class(void); 2694 extern void init_sched_rt_class(void); 2695 extern void init_sched_fair_class(void); 2696 2697 extern void resched_curr(struct rq *rq); 2698 extern void resched_curr_lazy(struct rq *rq); 2699 extern void resched_cpu(int cpu); 2700 2701 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2702 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2703 2704 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2705 2706 #define BW_SHIFT 20 2707 #define BW_UNIT (1 << BW_SHIFT) 2708 #define RATIO_SHIFT 8 2709 #define MAX_BW_BITS (64 - BW_SHIFT) 2710 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2711 2712 extern unsigned long to_ratio(u64 period, u64 runtime); 2713 2714 extern void init_entity_runnable_average(struct sched_entity *se); 2715 extern void post_init_entity_util_avg(struct task_struct *p); 2716 2717 #ifdef CONFIG_NO_HZ_FULL 2718 extern bool sched_can_stop_tick(struct rq *rq); 2719 extern int __init sched_tick_offload_init(void); 2720 2721 /* 2722 * Tick may be needed by tasks in the runqueue depending on their policy and 2723 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2724 * nohz mode if necessary. 2725 */ 2726 static inline void sched_update_tick_dependency(struct rq *rq) 2727 { 2728 int cpu = cpu_of(rq); 2729 2730 if (!tick_nohz_full_cpu(cpu)) 2731 return; 2732 2733 if (sched_can_stop_tick(rq)) 2734 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2735 else 2736 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2737 } 2738 #else /* !CONFIG_NO_HZ_FULL: */ 2739 static inline int sched_tick_offload_init(void) { return 0; } 2740 static inline void sched_update_tick_dependency(struct rq *rq) { } 2741 #endif /* !CONFIG_NO_HZ_FULL */ 2742 2743 static inline void add_nr_running(struct rq *rq, unsigned count) 2744 { 2745 unsigned prev_nr = rq->nr_running; 2746 2747 rq->nr_running = prev_nr + count; 2748 if (trace_sched_update_nr_running_tp_enabled()) { 2749 call_trace_sched_update_nr_running(rq, count); 2750 } 2751 2752 #ifdef CONFIG_SMP 2753 if (prev_nr < 2 && rq->nr_running >= 2) 2754 set_rd_overloaded(rq->rd, 1); 2755 #endif 2756 2757 sched_update_tick_dependency(rq); 2758 } 2759 2760 static inline void sub_nr_running(struct rq *rq, unsigned count) 2761 { 2762 rq->nr_running -= count; 2763 if (trace_sched_update_nr_running_tp_enabled()) { 2764 call_trace_sched_update_nr_running(rq, -count); 2765 } 2766 2767 /* Check if we still need preemption */ 2768 sched_update_tick_dependency(rq); 2769 } 2770 2771 static inline void __block_task(struct rq *rq, struct task_struct *p) 2772 { 2773 if (p->sched_contributes_to_load) 2774 rq->nr_uninterruptible++; 2775 2776 if (p->in_iowait) { 2777 atomic_inc(&rq->nr_iowait); 2778 delayacct_blkio_start(); 2779 } 2780 2781 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2782 2783 /* 2784 * The moment this write goes through, ttwu() can swoop in and migrate 2785 * this task, rendering our rq->__lock ineffective. 2786 * 2787 * __schedule() try_to_wake_up() 2788 * LOCK rq->__lock LOCK p->pi_lock 2789 * pick_next_task() 2790 * pick_next_task_fair() 2791 * pick_next_entity() 2792 * dequeue_entities() 2793 * __block_task() 2794 * RELEASE p->on_rq = 0 if (p->on_rq && ...) 2795 * break; 2796 * 2797 * ACQUIRE (after ctrl-dep) 2798 * 2799 * cpu = select_task_rq(); 2800 * set_task_cpu(p, cpu); 2801 * ttwu_queue() 2802 * ttwu_do_activate() 2803 * LOCK rq->__lock 2804 * activate_task() 2805 * STORE p->on_rq = 1 2806 * UNLOCK rq->__lock 2807 * 2808 * Callers must ensure to not reference @p after this -- we no longer 2809 * own it. 2810 */ 2811 smp_store_release(&p->on_rq, 0); 2812 } 2813 2814 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2815 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2816 2817 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2818 2819 #ifdef CONFIG_PREEMPT_RT 2820 # define SCHED_NR_MIGRATE_BREAK 8 2821 #else 2822 # define SCHED_NR_MIGRATE_BREAK 32 2823 #endif 2824 2825 extern __read_mostly unsigned int sysctl_sched_nr_migrate; 2826 extern __read_mostly unsigned int sysctl_sched_migration_cost; 2827 2828 extern unsigned int sysctl_sched_base_slice; 2829 2830 extern int sysctl_resched_latency_warn_ms; 2831 extern int sysctl_resched_latency_warn_once; 2832 2833 extern unsigned int sysctl_sched_tunable_scaling; 2834 2835 extern unsigned int sysctl_numa_balancing_scan_delay; 2836 extern unsigned int sysctl_numa_balancing_scan_period_min; 2837 extern unsigned int sysctl_numa_balancing_scan_period_max; 2838 extern unsigned int sysctl_numa_balancing_scan_size; 2839 extern unsigned int sysctl_numa_balancing_hot_threshold; 2840 2841 #ifdef CONFIG_SCHED_HRTICK 2842 2843 /* 2844 * Use hrtick when: 2845 * - enabled by features 2846 * - hrtimer is actually high res 2847 */ 2848 static inline int hrtick_enabled(struct rq *rq) 2849 { 2850 if (!cpu_active(cpu_of(rq))) 2851 return 0; 2852 return hrtimer_is_hres_active(&rq->hrtick_timer); 2853 } 2854 2855 static inline int hrtick_enabled_fair(struct rq *rq) 2856 { 2857 if (!sched_feat(HRTICK)) 2858 return 0; 2859 return hrtick_enabled(rq); 2860 } 2861 2862 static inline int hrtick_enabled_dl(struct rq *rq) 2863 { 2864 if (!sched_feat(HRTICK_DL)) 2865 return 0; 2866 return hrtick_enabled(rq); 2867 } 2868 2869 extern void hrtick_start(struct rq *rq, u64 delay); 2870 2871 #else /* !CONFIG_SCHED_HRTICK: */ 2872 2873 static inline int hrtick_enabled_fair(struct rq *rq) 2874 { 2875 return 0; 2876 } 2877 2878 static inline int hrtick_enabled_dl(struct rq *rq) 2879 { 2880 return 0; 2881 } 2882 2883 static inline int hrtick_enabled(struct rq *rq) 2884 { 2885 return 0; 2886 } 2887 2888 #endif /* !CONFIG_SCHED_HRTICK */ 2889 2890 #ifndef arch_scale_freq_tick 2891 static __always_inline void arch_scale_freq_tick(void) { } 2892 #endif 2893 2894 #ifndef arch_scale_freq_capacity 2895 /** 2896 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2897 * @cpu: the CPU in question. 2898 * 2899 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2900 * 2901 * f_curr 2902 * ------ * SCHED_CAPACITY_SCALE 2903 * f_max 2904 */ 2905 static __always_inline 2906 unsigned long arch_scale_freq_capacity(int cpu) 2907 { 2908 return SCHED_CAPACITY_SCALE; 2909 } 2910 #endif 2911 2912 /* 2913 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2914 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2915 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2916 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2917 */ 2918 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2919 { 2920 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2921 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ 2922 #ifdef CONFIG_SMP 2923 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2924 #endif 2925 } 2926 2927 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 2928 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 2929 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 2930 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 2931 _lock; return _t; } 2932 2933 #ifdef CONFIG_SMP 2934 2935 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2936 { 2937 #ifdef CONFIG_SCHED_CORE 2938 /* 2939 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2940 * order by core-id first and cpu-id second. 2941 * 2942 * Notably: 2943 * 2944 * double_rq_lock(0,3); will take core-0, core-1 lock 2945 * double_rq_lock(1,2); will take core-1, core-0 lock 2946 * 2947 * when only cpu-id is considered. 2948 */ 2949 if (rq1->core->cpu < rq2->core->cpu) 2950 return true; 2951 if (rq1->core->cpu > rq2->core->cpu) 2952 return false; 2953 2954 /* 2955 * __sched_core_flip() relies on SMT having cpu-id lock order. 2956 */ 2957 #endif 2958 return rq1->cpu < rq2->cpu; 2959 } 2960 2961 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2962 2963 #ifdef CONFIG_PREEMPTION 2964 2965 /* 2966 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2967 * way at the expense of forcing extra atomic operations in all 2968 * invocations. This assures that the double_lock is acquired using the 2969 * same underlying policy as the spinlock_t on this architecture, which 2970 * reduces latency compared to the unfair variant below. However, it 2971 * also adds more overhead and therefore may reduce throughput. 2972 */ 2973 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2974 __releases(this_rq->lock) 2975 __acquires(busiest->lock) 2976 __acquires(this_rq->lock) 2977 { 2978 raw_spin_rq_unlock(this_rq); 2979 double_rq_lock(this_rq, busiest); 2980 2981 return 1; 2982 } 2983 2984 #else /* !CONFIG_PREEMPTION: */ 2985 /* 2986 * Unfair double_lock_balance: Optimizes throughput at the expense of 2987 * latency by eliminating extra atomic operations when the locks are 2988 * already in proper order on entry. This favors lower CPU-ids and will 2989 * grant the double lock to lower CPUs over higher ids under contention, 2990 * regardless of entry order into the function. 2991 */ 2992 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2993 __releases(this_rq->lock) 2994 __acquires(busiest->lock) 2995 __acquires(this_rq->lock) 2996 { 2997 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2998 likely(raw_spin_rq_trylock(busiest))) { 2999 double_rq_clock_clear_update(this_rq, busiest); 3000 return 0; 3001 } 3002 3003 if (rq_order_less(this_rq, busiest)) { 3004 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 3005 double_rq_clock_clear_update(this_rq, busiest); 3006 return 0; 3007 } 3008 3009 raw_spin_rq_unlock(this_rq); 3010 double_rq_lock(this_rq, busiest); 3011 3012 return 1; 3013 } 3014 3015 #endif /* !CONFIG_PREEMPTION */ 3016 3017 /* 3018 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 3019 */ 3020 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 3021 { 3022 lockdep_assert_irqs_disabled(); 3023 3024 return _double_lock_balance(this_rq, busiest); 3025 } 3026 3027 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 3028 __releases(busiest->lock) 3029 { 3030 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 3031 raw_spin_rq_unlock(busiest); 3032 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 3033 } 3034 3035 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 3036 { 3037 if (l1 > l2) 3038 swap(l1, l2); 3039 3040 spin_lock(l1); 3041 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3042 } 3043 3044 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 3045 { 3046 if (l1 > l2) 3047 swap(l1, l2); 3048 3049 spin_lock_irq(l1); 3050 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3051 } 3052 3053 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3054 { 3055 if (l1 > l2) 3056 swap(l1, l2); 3057 3058 raw_spin_lock(l1); 3059 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3060 } 3061 3062 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3063 { 3064 raw_spin_unlock(l1); 3065 raw_spin_unlock(l2); 3066 } 3067 3068 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 3069 double_raw_lock(_T->lock, _T->lock2), 3070 double_raw_unlock(_T->lock, _T->lock2)) 3071 3072 /* 3073 * double_rq_unlock - safely unlock two runqueues 3074 * 3075 * Note this does not restore interrupts like task_rq_unlock, 3076 * you need to do so manually after calling. 3077 */ 3078 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3079 __releases(rq1->lock) 3080 __releases(rq2->lock) 3081 { 3082 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 3083 raw_spin_rq_unlock(rq2); 3084 else 3085 __release(rq2->lock); 3086 raw_spin_rq_unlock(rq1); 3087 } 3088 3089 extern void set_rq_online (struct rq *rq); 3090 extern void set_rq_offline(struct rq *rq); 3091 3092 extern bool sched_smp_initialized; 3093 3094 #else /* !CONFIG_SMP: */ 3095 3096 /* 3097 * double_rq_lock - safely lock two runqueues 3098 * 3099 * Note this does not disable interrupts like task_rq_lock, 3100 * you need to do so manually before calling. 3101 */ 3102 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 3103 __acquires(rq1->lock) 3104 __acquires(rq2->lock) 3105 { 3106 WARN_ON_ONCE(!irqs_disabled()); 3107 WARN_ON_ONCE(rq1 != rq2); 3108 raw_spin_rq_lock(rq1); 3109 __acquire(rq2->lock); /* Fake it out ;) */ 3110 double_rq_clock_clear_update(rq1, rq2); 3111 } 3112 3113 /* 3114 * double_rq_unlock - safely unlock two runqueues 3115 * 3116 * Note this does not restore interrupts like task_rq_unlock, 3117 * you need to do so manually after calling. 3118 */ 3119 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3120 __releases(rq1->lock) 3121 __releases(rq2->lock) 3122 { 3123 WARN_ON_ONCE(rq1 != rq2); 3124 raw_spin_rq_unlock(rq1); 3125 __release(rq2->lock); 3126 } 3127 3128 #endif /* !CONFIG_SMP */ 3129 3130 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 3131 double_rq_lock(_T->lock, _T->lock2), 3132 double_rq_unlock(_T->lock, _T->lock2)) 3133 3134 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 3135 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 3136 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 3137 3138 extern bool sched_debug_verbose; 3139 3140 extern void print_cfs_stats(struct seq_file *m, int cpu); 3141 extern void print_rt_stats(struct seq_file *m, int cpu); 3142 extern void print_dl_stats(struct seq_file *m, int cpu); 3143 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 3144 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 3145 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 3146 3147 extern void resched_latency_warn(int cpu, u64 latency); 3148 #ifdef CONFIG_NUMA_BALANCING 3149 extern void show_numa_stats(struct task_struct *p, struct seq_file *m); 3150 extern void 3151 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 3152 unsigned long tpf, unsigned long gsf, unsigned long gpf); 3153 #endif /* CONFIG_NUMA_BALANCING */ 3154 3155 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 3156 extern void init_rt_rq(struct rt_rq *rt_rq); 3157 extern void init_dl_rq(struct dl_rq *dl_rq); 3158 3159 extern void cfs_bandwidth_usage_inc(void); 3160 extern void cfs_bandwidth_usage_dec(void); 3161 3162 #ifdef CONFIG_NO_HZ_COMMON 3163 3164 #define NOHZ_BALANCE_KICK_BIT 0 3165 #define NOHZ_STATS_KICK_BIT 1 3166 #define NOHZ_NEWILB_KICK_BIT 2 3167 #define NOHZ_NEXT_KICK_BIT 3 3168 3169 /* Run sched_balance_domains() */ 3170 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 3171 /* Update blocked load */ 3172 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 3173 /* Update blocked load when entering idle */ 3174 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 3175 /* Update nohz.next_balance */ 3176 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 3177 3178 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 3179 3180 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 3181 3182 extern void nohz_balance_exit_idle(struct rq *rq); 3183 #else /* !CONFIG_NO_HZ_COMMON: */ 3184 static inline void nohz_balance_exit_idle(struct rq *rq) { } 3185 #endif /* !CONFIG_NO_HZ_COMMON */ 3186 3187 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 3188 extern void nohz_run_idle_balance(int cpu); 3189 #else 3190 static inline void nohz_run_idle_balance(int cpu) { } 3191 #endif 3192 3193 #include "stats.h" 3194 3195 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 3196 3197 extern void __sched_core_account_forceidle(struct rq *rq); 3198 3199 static inline void sched_core_account_forceidle(struct rq *rq) 3200 { 3201 if (schedstat_enabled()) 3202 __sched_core_account_forceidle(rq); 3203 } 3204 3205 extern void __sched_core_tick(struct rq *rq); 3206 3207 static inline void sched_core_tick(struct rq *rq) 3208 { 3209 if (sched_core_enabled(rq) && schedstat_enabled()) 3210 __sched_core_tick(rq); 3211 } 3212 3213 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ 3214 3215 static inline void sched_core_account_forceidle(struct rq *rq) { } 3216 3217 static inline void sched_core_tick(struct rq *rq) { } 3218 3219 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ 3220 3221 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3222 3223 struct irqtime { 3224 u64 total; 3225 u64 tick_delta; 3226 u64 irq_start_time; 3227 struct u64_stats_sync sync; 3228 }; 3229 3230 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 3231 extern int sched_clock_irqtime; 3232 3233 static inline int irqtime_enabled(void) 3234 { 3235 return sched_clock_irqtime; 3236 } 3237 3238 /* 3239 * Returns the irqtime minus the softirq time computed by ksoftirqd. 3240 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 3241 * and never move forward. 3242 */ 3243 static inline u64 irq_time_read(int cpu) 3244 { 3245 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 3246 unsigned int seq; 3247 u64 total; 3248 3249 do { 3250 seq = __u64_stats_fetch_begin(&irqtime->sync); 3251 total = irqtime->total; 3252 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 3253 3254 return total; 3255 } 3256 3257 #else 3258 3259 static inline int irqtime_enabled(void) 3260 { 3261 return 0; 3262 } 3263 3264 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 3265 3266 #ifdef CONFIG_CPU_FREQ 3267 3268 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 3269 3270 /** 3271 * cpufreq_update_util - Take a note about CPU utilization changes. 3272 * @rq: Runqueue to carry out the update for. 3273 * @flags: Update reason flags. 3274 * 3275 * This function is called by the scheduler on the CPU whose utilization is 3276 * being updated. 3277 * 3278 * It can only be called from RCU-sched read-side critical sections. 3279 * 3280 * The way cpufreq is currently arranged requires it to evaluate the CPU 3281 * performance state (frequency/voltage) on a regular basis to prevent it from 3282 * being stuck in a completely inadequate performance level for too long. 3283 * That is not guaranteed to happen if the updates are only triggered from CFS 3284 * and DL, though, because they may not be coming in if only RT tasks are 3285 * active all the time (or there are RT tasks only). 3286 * 3287 * As a workaround for that issue, this function is called periodically by the 3288 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 3289 * but that really is a band-aid. Going forward it should be replaced with 3290 * solutions targeted more specifically at RT tasks. 3291 */ 3292 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 3293 { 3294 struct update_util_data *data; 3295 3296 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 3297 cpu_of(rq))); 3298 if (data) 3299 data->func(data, rq_clock(rq), flags); 3300 } 3301 #else /* !CONFIG_CPU_FREQ: */ 3302 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } 3303 #endif /* !CONFIG_CPU_FREQ */ 3304 3305 #ifdef arch_scale_freq_capacity 3306 # ifndef arch_scale_freq_invariant 3307 # define arch_scale_freq_invariant() true 3308 # endif 3309 #else 3310 # define arch_scale_freq_invariant() false 3311 #endif 3312 3313 #ifdef CONFIG_SMP 3314 3315 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3316 unsigned long *min, 3317 unsigned long *max); 3318 3319 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3320 unsigned long min, 3321 unsigned long max); 3322 3323 3324 /* 3325 * Verify the fitness of task @p to run on @cpu taking into account the 3326 * CPU original capacity and the runtime/deadline ratio of the task. 3327 * 3328 * The function will return true if the original capacity of @cpu is 3329 * greater than or equal to task's deadline density right shifted by 3330 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3331 */ 3332 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3333 { 3334 unsigned long cap = arch_scale_cpu_capacity(cpu); 3335 3336 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3337 } 3338 3339 static inline unsigned long cpu_bw_dl(struct rq *rq) 3340 { 3341 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3342 } 3343 3344 static inline unsigned long cpu_util_dl(struct rq *rq) 3345 { 3346 return READ_ONCE(rq->avg_dl.util_avg); 3347 } 3348 3349 3350 extern unsigned long cpu_util_cfs(int cpu); 3351 extern unsigned long cpu_util_cfs_boost(int cpu); 3352 3353 static inline unsigned long cpu_util_rt(struct rq *rq) 3354 { 3355 return READ_ONCE(rq->avg_rt.util_avg); 3356 } 3357 3358 #else /* !CONFIG_SMP */ 3359 static inline bool update_other_load_avgs(struct rq *rq) { return false; } 3360 #endif /* CONFIG_SMP */ 3361 3362 #ifdef CONFIG_UCLAMP_TASK 3363 3364 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3365 3366 /* 3367 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3368 * by default in the fast path and only gets turned on once userspace performs 3369 * an operation that requires it. 3370 * 3371 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3372 * hence is active. 3373 */ 3374 static inline bool uclamp_is_used(void) 3375 { 3376 return static_branch_likely(&sched_uclamp_used); 3377 } 3378 3379 /* 3380 * Enabling static branches would get the cpus_read_lock(), 3381 * check whether uclamp_is_used before enable it to avoid always 3382 * calling cpus_read_lock(). Because we never disable this 3383 * static key once enable it. 3384 */ 3385 static inline void sched_uclamp_enable(void) 3386 { 3387 if (!uclamp_is_used()) 3388 static_branch_enable(&sched_uclamp_used); 3389 } 3390 3391 static inline unsigned long uclamp_rq_get(struct rq *rq, 3392 enum uclamp_id clamp_id) 3393 { 3394 return READ_ONCE(rq->uclamp[clamp_id].value); 3395 } 3396 3397 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3398 unsigned int value) 3399 { 3400 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3401 } 3402 3403 static inline bool uclamp_rq_is_idle(struct rq *rq) 3404 { 3405 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3406 } 3407 3408 /* Is the rq being capped/throttled by uclamp_max? */ 3409 static inline bool uclamp_rq_is_capped(struct rq *rq) 3410 { 3411 unsigned long rq_util; 3412 unsigned long max_util; 3413 3414 if (!uclamp_is_used()) 3415 return false; 3416 3417 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3418 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3419 3420 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3421 } 3422 3423 #define for_each_clamp_id(clamp_id) \ 3424 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 3425 3426 extern unsigned int sysctl_sched_uclamp_util_min_rt_default; 3427 3428 3429 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 3430 { 3431 if (clamp_id == UCLAMP_MIN) 3432 return 0; 3433 return SCHED_CAPACITY_SCALE; 3434 } 3435 3436 /* Integer rounded range for each bucket */ 3437 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 3438 3439 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 3440 { 3441 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 3442 } 3443 3444 static inline void 3445 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) 3446 { 3447 uc_se->value = value; 3448 uc_se->bucket_id = uclamp_bucket_id(value); 3449 uc_se->user_defined = user_defined; 3450 } 3451 3452 #else /* !CONFIG_UCLAMP_TASK: */ 3453 3454 static inline unsigned long 3455 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 3456 { 3457 if (clamp_id == UCLAMP_MIN) 3458 return 0; 3459 3460 return SCHED_CAPACITY_SCALE; 3461 } 3462 3463 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3464 3465 static inline bool uclamp_is_used(void) 3466 { 3467 return false; 3468 } 3469 3470 static inline void sched_uclamp_enable(void) {} 3471 3472 static inline unsigned long 3473 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) 3474 { 3475 if (clamp_id == UCLAMP_MIN) 3476 return 0; 3477 3478 return SCHED_CAPACITY_SCALE; 3479 } 3480 3481 static inline void 3482 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) 3483 { 3484 } 3485 3486 static inline bool uclamp_rq_is_idle(struct rq *rq) 3487 { 3488 return false; 3489 } 3490 3491 #endif /* !CONFIG_UCLAMP_TASK */ 3492 3493 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3494 3495 static inline unsigned long cpu_util_irq(struct rq *rq) 3496 { 3497 return READ_ONCE(rq->avg_irq.util_avg); 3498 } 3499 3500 static inline 3501 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3502 { 3503 util *= (max - irq); 3504 util /= max; 3505 3506 return util; 3507 3508 } 3509 3510 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ 3511 3512 static inline unsigned long cpu_util_irq(struct rq *rq) 3513 { 3514 return 0; 3515 } 3516 3517 static inline 3518 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3519 { 3520 return util; 3521 } 3522 3523 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ 3524 3525 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr); 3526 3527 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3528 3529 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3530 3531 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3532 3533 static inline bool sched_energy_enabled(void) 3534 { 3535 return static_branch_unlikely(&sched_energy_present); 3536 } 3537 3538 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3539 3540 #define perf_domain_span(pd) NULL 3541 3542 static inline bool sched_energy_enabled(void) { return false; } 3543 3544 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3545 3546 #ifdef CONFIG_MEMBARRIER 3547 3548 /* 3549 * The scheduler provides memory barriers required by membarrier between: 3550 * - prior user-space memory accesses and store to rq->membarrier_state, 3551 * - store to rq->membarrier_state and following user-space memory accesses. 3552 * In the same way it provides those guarantees around store to rq->curr. 3553 */ 3554 static inline void membarrier_switch_mm(struct rq *rq, 3555 struct mm_struct *prev_mm, 3556 struct mm_struct *next_mm) 3557 { 3558 int membarrier_state; 3559 3560 if (prev_mm == next_mm) 3561 return; 3562 3563 membarrier_state = atomic_read(&next_mm->membarrier_state); 3564 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3565 return; 3566 3567 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3568 } 3569 3570 #else /* !CONFIG_MEMBARRIER :*/ 3571 3572 static inline void membarrier_switch_mm(struct rq *rq, 3573 struct mm_struct *prev_mm, 3574 struct mm_struct *next_mm) 3575 { 3576 } 3577 3578 #endif /* !CONFIG_MEMBARRIER */ 3579 3580 #ifdef CONFIG_SMP 3581 static inline bool is_per_cpu_kthread(struct task_struct *p) 3582 { 3583 if (!(p->flags & PF_KTHREAD)) 3584 return false; 3585 3586 if (p->nr_cpus_allowed != 1) 3587 return false; 3588 3589 return true; 3590 } 3591 #endif 3592 3593 extern void swake_up_all_locked(struct swait_queue_head *q); 3594 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3595 3596 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3597 3598 #ifdef CONFIG_PREEMPT_DYNAMIC 3599 extern int preempt_dynamic_mode; 3600 extern int sched_dynamic_mode(const char *str); 3601 extern void sched_dynamic_update(int mode); 3602 #endif 3603 extern const char *preempt_modes[]; 3604 3605 #ifdef CONFIG_SCHED_MM_CID 3606 3607 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ 3608 #define MM_CID_SCAN_DELAY 100 /* 100ms */ 3609 3610 extern raw_spinlock_t cid_lock; 3611 extern int use_cid_lock; 3612 3613 extern void sched_mm_cid_migrate_from(struct task_struct *t); 3614 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); 3615 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); 3616 extern void init_sched_mm_cid(struct task_struct *t); 3617 3618 static inline void __mm_cid_put(struct mm_struct *mm, int cid) 3619 { 3620 if (cid < 0) 3621 return; 3622 cpumask_clear_cpu(cid, mm_cidmask(mm)); 3623 } 3624 3625 /* 3626 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to 3627 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to 3628 * be held to transition to other states. 3629 * 3630 * State transitions synchronized with cmpxchg or try_cmpxchg need to be 3631 * consistent across CPUs, which prevents use of this_cpu_cmpxchg. 3632 */ 3633 static inline void mm_cid_put_lazy(struct task_struct *t) 3634 { 3635 struct mm_struct *mm = t->mm; 3636 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3637 int cid; 3638 3639 lockdep_assert_irqs_disabled(); 3640 cid = __this_cpu_read(pcpu_cid->cid); 3641 if (!mm_cid_is_lazy_put(cid) || 3642 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3643 return; 3644 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3645 } 3646 3647 static inline int mm_cid_pcpu_unset(struct mm_struct *mm) 3648 { 3649 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3650 int cid, res; 3651 3652 lockdep_assert_irqs_disabled(); 3653 cid = __this_cpu_read(pcpu_cid->cid); 3654 for (;;) { 3655 if (mm_cid_is_unset(cid)) 3656 return MM_CID_UNSET; 3657 /* 3658 * Attempt transition from valid or lazy-put to unset. 3659 */ 3660 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); 3661 if (res == cid) 3662 break; 3663 cid = res; 3664 } 3665 return cid; 3666 } 3667 3668 static inline void mm_cid_put(struct mm_struct *mm) 3669 { 3670 int cid; 3671 3672 lockdep_assert_irqs_disabled(); 3673 cid = mm_cid_pcpu_unset(mm); 3674 if (cid == MM_CID_UNSET) 3675 return; 3676 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3677 } 3678 3679 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm) 3680 { 3681 struct cpumask *cidmask = mm_cidmask(mm); 3682 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3683 int cid, max_nr_cid, allowed_max_nr_cid; 3684 3685 /* 3686 * After shrinking the number of threads or reducing the number 3687 * of allowed cpus, reduce the value of max_nr_cid so expansion 3688 * of cid allocation will preserve cache locality if the number 3689 * of threads or allowed cpus increase again. 3690 */ 3691 max_nr_cid = atomic_read(&mm->max_nr_cid); 3692 while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed), 3693 atomic_read(&mm->mm_users))), 3694 max_nr_cid > allowed_max_nr_cid) { 3695 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */ 3696 if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) { 3697 max_nr_cid = allowed_max_nr_cid; 3698 break; 3699 } 3700 } 3701 /* Try to re-use recent cid. This improves cache locality. */ 3702 cid = __this_cpu_read(pcpu_cid->recent_cid); 3703 if (!mm_cid_is_unset(cid) && cid < max_nr_cid && 3704 !cpumask_test_and_set_cpu(cid, cidmask)) 3705 return cid; 3706 /* 3707 * Expand cid allocation if the maximum number of concurrency 3708 * IDs allocated (max_nr_cid) is below the number cpus allowed 3709 * and number of threads. Expanding cid allocation as much as 3710 * possible improves cache locality. 3711 */ 3712 cid = max_nr_cid; 3713 while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) { 3714 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */ 3715 if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1)) 3716 continue; 3717 if (!cpumask_test_and_set_cpu(cid, cidmask)) 3718 return cid; 3719 } 3720 /* 3721 * Find the first available concurrency id. 3722 * Retry finding first zero bit if the mask is temporarily 3723 * filled. This only happens during concurrent remote-clear 3724 * which owns a cid without holding a rq lock. 3725 */ 3726 for (;;) { 3727 cid = cpumask_first_zero(cidmask); 3728 if (cid < READ_ONCE(mm->nr_cpus_allowed)) 3729 break; 3730 cpu_relax(); 3731 } 3732 if (cpumask_test_and_set_cpu(cid, cidmask)) 3733 return -1; 3734 3735 return cid; 3736 } 3737 3738 /* 3739 * Save a snapshot of the current runqueue time of this cpu 3740 * with the per-cpu cid value, allowing to estimate how recently it was used. 3741 */ 3742 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) 3743 { 3744 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); 3745 3746 lockdep_assert_rq_held(rq); 3747 WRITE_ONCE(pcpu_cid->time, rq->clock); 3748 } 3749 3750 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t, 3751 struct mm_struct *mm) 3752 { 3753 int cid; 3754 3755 /* 3756 * All allocations (even those using the cid_lock) are lock-free. If 3757 * use_cid_lock is set, hold the cid_lock to perform cid allocation to 3758 * guarantee forward progress. 3759 */ 3760 if (!READ_ONCE(use_cid_lock)) { 3761 cid = __mm_cid_try_get(t, mm); 3762 if (cid >= 0) 3763 goto end; 3764 raw_spin_lock(&cid_lock); 3765 } else { 3766 raw_spin_lock(&cid_lock); 3767 cid = __mm_cid_try_get(t, mm); 3768 if (cid >= 0) 3769 goto unlock; 3770 } 3771 3772 /* 3773 * cid concurrently allocated. Retry while forcing following 3774 * allocations to use the cid_lock to ensure forward progress. 3775 */ 3776 WRITE_ONCE(use_cid_lock, 1); 3777 /* 3778 * Set use_cid_lock before allocation. Only care about program order 3779 * because this is only required for forward progress. 3780 */ 3781 barrier(); 3782 /* 3783 * Retry until it succeeds. It is guaranteed to eventually succeed once 3784 * all newcoming allocations observe the use_cid_lock flag set. 3785 */ 3786 do { 3787 cid = __mm_cid_try_get(t, mm); 3788 cpu_relax(); 3789 } while (cid < 0); 3790 /* 3791 * Allocate before clearing use_cid_lock. Only care about 3792 * program order because this is for forward progress. 3793 */ 3794 barrier(); 3795 WRITE_ONCE(use_cid_lock, 0); 3796 unlock: 3797 raw_spin_unlock(&cid_lock); 3798 end: 3799 mm_cid_snapshot_time(rq, mm); 3800 3801 return cid; 3802 } 3803 3804 static inline int mm_cid_get(struct rq *rq, struct task_struct *t, 3805 struct mm_struct *mm) 3806 { 3807 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3808 struct cpumask *cpumask; 3809 int cid; 3810 3811 lockdep_assert_rq_held(rq); 3812 cpumask = mm_cidmask(mm); 3813 cid = __this_cpu_read(pcpu_cid->cid); 3814 if (mm_cid_is_valid(cid)) { 3815 mm_cid_snapshot_time(rq, mm); 3816 return cid; 3817 } 3818 if (mm_cid_is_lazy_put(cid)) { 3819 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3820 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3821 } 3822 cid = __mm_cid_get(rq, t, mm); 3823 __this_cpu_write(pcpu_cid->cid, cid); 3824 __this_cpu_write(pcpu_cid->recent_cid, cid); 3825 3826 return cid; 3827 } 3828 3829 static inline void switch_mm_cid(struct rq *rq, 3830 struct task_struct *prev, 3831 struct task_struct *next) 3832 { 3833 /* 3834 * Provide a memory barrier between rq->curr store and load of 3835 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. 3836 * 3837 * Should be adapted if context_switch() is modified. 3838 */ 3839 if (!next->mm) { // to kernel 3840 /* 3841 * user -> kernel transition does not guarantee a barrier, but 3842 * we can use the fact that it performs an atomic operation in 3843 * mmgrab(). 3844 */ 3845 if (prev->mm) // from user 3846 smp_mb__after_mmgrab(); 3847 /* 3848 * kernel -> kernel transition does not change rq->curr->mm 3849 * state. It stays NULL. 3850 */ 3851 } else { // to user 3852 /* 3853 * kernel -> user transition does not provide a barrier 3854 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. 3855 * Provide it here. 3856 */ 3857 if (!prev->mm) { // from kernel 3858 smp_mb(); 3859 } else { // from user 3860 /* 3861 * user->user transition relies on an implicit 3862 * memory barrier in switch_mm() when 3863 * current->mm changes. If the architecture 3864 * switch_mm() does not have an implicit memory 3865 * barrier, it is emitted here. If current->mm 3866 * is unchanged, no barrier is needed. 3867 */ 3868 smp_mb__after_switch_mm(); 3869 } 3870 } 3871 if (prev->mm_cid_active) { 3872 mm_cid_snapshot_time(rq, prev->mm); 3873 mm_cid_put_lazy(prev); 3874 prev->mm_cid = -1; 3875 } 3876 if (next->mm_cid_active) 3877 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm); 3878 } 3879 3880 #else /* !CONFIG_SCHED_MM_CID: */ 3881 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } 3882 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } 3883 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } 3884 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } 3885 static inline void init_sched_mm_cid(struct task_struct *t) { } 3886 #endif /* !CONFIG_SCHED_MM_CID */ 3887 3888 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3889 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3890 #ifdef CONFIG_SMP 3891 static inline 3892 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) 3893 { 3894 lockdep_assert_rq_held(src_rq); 3895 lockdep_assert_rq_held(dst_rq); 3896 3897 deactivate_task(src_rq, task, 0); 3898 set_task_cpu(task, dst_rq->cpu); 3899 activate_task(dst_rq, task, 0); 3900 } 3901 3902 static inline 3903 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) 3904 { 3905 if (!task_on_cpu(rq, p) && 3906 cpumask_test_cpu(cpu, &p->cpus_mask)) 3907 return true; 3908 3909 return false; 3910 } 3911 #endif 3912 3913 #ifdef CONFIG_RT_MUTEXES 3914 3915 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3916 { 3917 if (pi_task) 3918 prio = min(prio, pi_task->prio); 3919 3920 return prio; 3921 } 3922 3923 static inline int rt_effective_prio(struct task_struct *p, int prio) 3924 { 3925 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3926 3927 return __rt_effective_prio(pi_task, prio); 3928 } 3929 3930 #else /* !CONFIG_RT_MUTEXES: */ 3931 3932 static inline int rt_effective_prio(struct task_struct *p, int prio) 3933 { 3934 return prio; 3935 } 3936 3937 #endif /* !CONFIG_RT_MUTEXES */ 3938 3939 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); 3940 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3941 extern const struct sched_class *__setscheduler_class(int policy, int prio); 3942 extern void set_load_weight(struct task_struct *p, bool update_load); 3943 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); 3944 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); 3945 3946 extern void check_class_changing(struct rq *rq, struct task_struct *p, 3947 const struct sched_class *prev_class); 3948 extern void check_class_changed(struct rq *rq, struct task_struct *p, 3949 const struct sched_class *prev_class, 3950 int oldprio); 3951 3952 #ifdef CONFIG_SMP 3953 extern struct balance_callback *splice_balance_callbacks(struct rq *rq); 3954 extern void balance_callbacks(struct rq *rq, struct balance_callback *head); 3955 #else 3956 3957 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 3958 { 3959 return NULL; 3960 } 3961 3962 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 3963 { 3964 } 3965 3966 #endif 3967 3968 #ifdef CONFIG_SCHED_CLASS_EXT 3969 /* 3970 * Used by SCX in the enable/disable paths to move tasks between sched_classes 3971 * and establish invariants. 3972 */ 3973 struct sched_enq_and_set_ctx { 3974 struct task_struct *p; 3975 int queue_flags; 3976 bool queued; 3977 bool running; 3978 }; 3979 3980 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 3981 struct sched_enq_and_set_ctx *ctx); 3982 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx); 3983 3984 #endif /* CONFIG_SCHED_CLASS_EXT */ 3985 3986 #include "ext.h" 3987 3988 #endif /* _KERNEL_SCHED_SCHED_H */ 3989