xref: /linux/kernel/sched/sched.h (revision 6e6558a6bc418f1478c5dc8609d03805364e0cb9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 #include <linux/delayacct.h>
72 #include <linux/mmu_context.h>
73 
74 #include <trace/events/power.h>
75 #include <trace/events/sched.h>
76 
77 #include "../workqueue_internal.h"
78 
79 struct rq;
80 struct cfs_rq;
81 struct rt_rq;
82 struct sched_group;
83 struct cpuidle_state;
84 
85 #ifdef CONFIG_PARAVIRT
86 # include <asm/paravirt.h>
87 # include <asm/paravirt_api_clock.h>
88 #endif
89 
90 #include <asm/barrier.h>
91 
92 #include "cpupri.h"
93 #include "cpudeadline.h"
94 
95 /* task_struct::on_rq states: */
96 #define TASK_ON_RQ_QUEUED	1
97 #define TASK_ON_RQ_MIGRATING	2
98 
99 extern __read_mostly int scheduler_running;
100 
101 extern unsigned long calc_load_update;
102 extern atomic_long_t calc_load_tasks;
103 
104 extern void calc_global_load_tick(struct rq *this_rq);
105 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
106 
107 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
108 
109 extern int sysctl_sched_rt_period;
110 extern int sysctl_sched_rt_runtime;
111 extern int sched_rr_timeslice;
112 
113 /*
114  * Asymmetric CPU capacity bits
115  */
116 struct asym_cap_data {
117 	struct list_head link;
118 	struct rcu_head rcu;
119 	unsigned long capacity;
120 	unsigned long cpus[];
121 };
122 
123 extern struct list_head asym_cap_list;
124 
125 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
126 
127 /*
128  * Helpers for converting nanosecond timing to jiffy resolution
129  */
130 #define NS_TO_JIFFIES(time)	((unsigned long)(time) / (NSEC_PER_SEC/HZ))
131 
132 /*
133  * Increase resolution of nice-level calculations for 64-bit architectures.
134  * The extra resolution improves shares distribution and load balancing of
135  * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
136  * hierarchies, especially on larger systems. This is not a user-visible change
137  * and does not change the user-interface for setting shares/weights.
138  *
139  * We increase resolution only if we have enough bits to allow this increased
140  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
141  * are pretty high and the returns do not justify the increased costs.
142  *
143  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
144  * increase coverage and consistency always enable it on 64-bit platforms.
145  */
146 #ifdef CONFIG_64BIT
147 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
148 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
149 # define scale_load_down(w)					\
150 ({								\
151 	unsigned long __w = (w);				\
152 								\
153 	if (__w)						\
154 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT);	\
155 	__w;							\
156 })
157 #else
158 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
159 # define scale_load(w)		(w)
160 # define scale_load_down(w)	(w)
161 #endif
162 
163 /*
164  * Task weight (visible to users) and its load (invisible to users) have
165  * independent resolution, but they should be well calibrated. We use
166  * scale_load() and scale_load_down(w) to convert between them. The
167  * following must be true:
168  *
169  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
170  *
171  */
172 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
173 
174 /*
175  * Single value that decides SCHED_DEADLINE internal math precision.
176  * 10 -> just above 1us
177  * 9  -> just above 0.5us
178  */
179 #define DL_SCALE		10
180 
181 /*
182  * Single value that denotes runtime == period, ie unlimited time.
183  */
184 #define RUNTIME_INF		((u64)~0ULL)
185 
186 static inline int idle_policy(int policy)
187 {
188 	return policy == SCHED_IDLE;
189 }
190 
191 static inline int normal_policy(int policy)
192 {
193 #ifdef CONFIG_SCHED_CLASS_EXT
194 	if (policy == SCHED_EXT)
195 		return true;
196 #endif
197 	return policy == SCHED_NORMAL;
198 }
199 
200 static inline int fair_policy(int policy)
201 {
202 	return normal_policy(policy) || policy == SCHED_BATCH;
203 }
204 
205 static inline int rt_policy(int policy)
206 {
207 	return policy == SCHED_FIFO || policy == SCHED_RR;
208 }
209 
210 static inline int dl_policy(int policy)
211 {
212 	return policy == SCHED_DEADLINE;
213 }
214 
215 static inline bool valid_policy(int policy)
216 {
217 	return idle_policy(policy) || fair_policy(policy) ||
218 		rt_policy(policy) || dl_policy(policy);
219 }
220 
221 static inline int task_has_idle_policy(struct task_struct *p)
222 {
223 	return idle_policy(p->policy);
224 }
225 
226 static inline int task_has_rt_policy(struct task_struct *p)
227 {
228 	return rt_policy(p->policy);
229 }
230 
231 static inline int task_has_dl_policy(struct task_struct *p)
232 {
233 	return dl_policy(p->policy);
234 }
235 
236 #define cap_scale(v, s)		((v)*(s) >> SCHED_CAPACITY_SHIFT)
237 
238 static inline void update_avg(u64 *avg, u64 sample)
239 {
240 	s64 diff = sample - *avg;
241 
242 	*avg += diff / 8;
243 }
244 
245 /*
246  * Shifting a value by an exponent greater *or equal* to the size of said value
247  * is UB; cap at size-1.
248  */
249 #define shr_bound(val, shift)							\
250 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
251 
252 /*
253  * cgroup weight knobs should use the common MIN, DFL and MAX values which are
254  * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it
255  * maps pretty well onto the shares value used by scheduler and the round-trip
256  * conversions preserve the original value over the entire range.
257  */
258 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight)
259 {
260 	return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL);
261 }
262 
263 static inline unsigned long sched_weight_to_cgroup(unsigned long weight)
264 {
265 	return clamp_t(unsigned long,
266 		       DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024),
267 		       CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
268 }
269 
270 /*
271  * !! For sched_setattr_nocheck() (kernel) only !!
272  *
273  * This is actually gross. :(
274  *
275  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
276  * tasks, but still be able to sleep. We need this on platforms that cannot
277  * atomically change clock frequency. Remove once fast switching will be
278  * available on such platforms.
279  *
280  * SUGOV stands for SchedUtil GOVernor.
281  */
282 #define SCHED_FLAG_SUGOV	0x10000000
283 
284 #define SCHED_DL_FLAGS		(SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
285 
286 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
287 {
288 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
289 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
290 #else
291 	return false;
292 #endif
293 }
294 
295 /*
296  * Tells if entity @a should preempt entity @b.
297  */
298 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
299 				     const struct sched_dl_entity *b)
300 {
301 	return dl_entity_is_special(a) ||
302 	       dl_time_before(a->deadline, b->deadline);
303 }
304 
305 /*
306  * This is the priority-queue data structure of the RT scheduling class:
307  */
308 struct rt_prio_array {
309 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
310 	struct list_head queue[MAX_RT_PRIO];
311 };
312 
313 struct rt_bandwidth {
314 	/* nests inside the rq lock: */
315 	raw_spinlock_t		rt_runtime_lock;
316 	ktime_t			rt_period;
317 	u64			rt_runtime;
318 	struct hrtimer		rt_period_timer;
319 	unsigned int		rt_period_active;
320 };
321 
322 static inline int dl_bandwidth_enabled(void)
323 {
324 	return sysctl_sched_rt_runtime >= 0;
325 }
326 
327 /*
328  * To keep the bandwidth of -deadline tasks under control
329  * we need some place where:
330  *  - store the maximum -deadline bandwidth of each cpu;
331  *  - cache the fraction of bandwidth that is currently allocated in
332  *    each root domain;
333  *
334  * This is all done in the data structure below. It is similar to the
335  * one used for RT-throttling (rt_bandwidth), with the main difference
336  * that, since here we are only interested in admission control, we
337  * do not decrease any runtime while the group "executes", neither we
338  * need a timer to replenish it.
339  *
340  * With respect to SMP, bandwidth is given on a per root domain basis,
341  * meaning that:
342  *  - bw (< 100%) is the deadline bandwidth of each CPU;
343  *  - total_bw is the currently allocated bandwidth in each root domain;
344  */
345 struct dl_bw {
346 	raw_spinlock_t		lock;
347 	u64			bw;
348 	u64			total_bw;
349 };
350 
351 extern void init_dl_bw(struct dl_bw *dl_b);
352 extern int  sched_dl_global_validate(void);
353 extern void sched_dl_do_global(void);
354 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
355 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
356 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
357 extern bool __checkparam_dl(const struct sched_attr *attr);
358 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
359 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
360 extern int  dl_bw_deactivate(int cpu);
361 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
362 /*
363  * SCHED_DEADLINE supports servers (nested scheduling) with the following
364  * interface:
365  *
366  *   dl_se::rq -- runqueue we belong to.
367  *
368  *   dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
369  *                                server when it runs out of tasks to run.
370  *
371  *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
372  *                           returns NULL.
373  *
374  *   dl_server_update() -- called from update_curr_common(), propagates runtime
375  *                         to the server.
376  *
377  *   dl_server_start()
378  *   dl_server_stop()  -- start/stop the server when it has (no) tasks.
379  *
380  *   dl_server_init() -- initializes the server.
381  */
382 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
383 extern void dl_server_start(struct sched_dl_entity *dl_se);
384 extern void dl_server_stop(struct sched_dl_entity *dl_se);
385 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
386 		    dl_server_has_tasks_f has_tasks,
387 		    dl_server_pick_f pick_task);
388 
389 extern void dl_server_update_idle_time(struct rq *rq,
390 		    struct task_struct *p);
391 extern void fair_server_init(struct rq *rq);
392 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
393 extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
394 		    u64 runtime, u64 period, bool init);
395 
396 static inline bool dl_server_active(struct sched_dl_entity *dl_se)
397 {
398 	return dl_se->dl_server_active;
399 }
400 
401 #ifdef CONFIG_CGROUP_SCHED
402 
403 extern struct list_head task_groups;
404 
405 #ifdef CONFIG_CFS_BANDWIDTH
406 extern const u64 max_bw_quota_period_us;
407 
408 /*
409  * default period for group bandwidth.
410  * default: 0.1s, units: microseconds
411  */
412 static inline u64 default_bw_period_us(void)
413 {
414 	return 100000ULL;
415 }
416 #endif /* CONFIG_CFS_BANDWIDTH */
417 
418 struct cfs_bandwidth {
419 #ifdef CONFIG_CFS_BANDWIDTH
420 	raw_spinlock_t		lock;
421 	ktime_t			period;
422 	u64			quota;
423 	u64			runtime;
424 	u64			burst;
425 	u64			runtime_snap;
426 	s64			hierarchical_quota;
427 
428 	u8			idle;
429 	u8			period_active;
430 	u8			slack_started;
431 	struct hrtimer		period_timer;
432 	struct hrtimer		slack_timer;
433 	struct list_head	throttled_cfs_rq;
434 
435 	/* Statistics: */
436 	int			nr_periods;
437 	int			nr_throttled;
438 	int			nr_burst;
439 	u64			throttled_time;
440 	u64			burst_time;
441 #endif /* CONFIG_CFS_BANDWIDTH */
442 };
443 
444 /* Task group related information */
445 struct task_group {
446 	struct cgroup_subsys_state css;
447 
448 #ifdef CONFIG_GROUP_SCHED_WEIGHT
449 	/* A positive value indicates that this is a SCHED_IDLE group. */
450 	int			idle;
451 #endif
452 
453 #ifdef CONFIG_FAIR_GROUP_SCHED
454 	/* schedulable entities of this group on each CPU */
455 	struct sched_entity	**se;
456 	/* runqueue "owned" by this group on each CPU */
457 	struct cfs_rq		**cfs_rq;
458 	unsigned long		shares;
459 	/*
460 	 * load_avg can be heavily contended at clock tick time, so put
461 	 * it in its own cache-line separated from the fields above which
462 	 * will also be accessed at each tick.
463 	 */
464 	atomic_long_t		load_avg ____cacheline_aligned;
465 #endif /* CONFIG_FAIR_GROUP_SCHED */
466 
467 #ifdef CONFIG_RT_GROUP_SCHED
468 	struct sched_rt_entity	**rt_se;
469 	struct rt_rq		**rt_rq;
470 
471 	struct rt_bandwidth	rt_bandwidth;
472 #endif
473 
474 	struct scx_task_group	scx;
475 
476 	struct rcu_head		rcu;
477 	struct list_head	list;
478 
479 	struct task_group	*parent;
480 	struct list_head	siblings;
481 	struct list_head	children;
482 
483 #ifdef CONFIG_SCHED_AUTOGROUP
484 	struct autogroup	*autogroup;
485 #endif
486 
487 	struct cfs_bandwidth	cfs_bandwidth;
488 
489 #ifdef CONFIG_UCLAMP_TASK_GROUP
490 	/* The two decimal precision [%] value requested from user-space */
491 	unsigned int		uclamp_pct[UCLAMP_CNT];
492 	/* Clamp values requested for a task group */
493 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
494 	/* Effective clamp values used for a task group */
495 	struct uclamp_se	uclamp[UCLAMP_CNT];
496 #endif
497 
498 };
499 
500 #ifdef CONFIG_GROUP_SCHED_WEIGHT
501 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
502 
503 /*
504  * A weight of 0 or 1 can cause arithmetics problems.
505  * A weight of a cfs_rq is the sum of weights of which entities
506  * are queued on this cfs_rq, so a weight of a entity should not be
507  * too large, so as the shares value of a task group.
508  * (The default weight is 1024 - so there's no practical
509  *  limitation from this.)
510  */
511 #define MIN_SHARES		(1UL <<  1)
512 #define MAX_SHARES		(1UL << 18)
513 #endif
514 
515 typedef int (*tg_visitor)(struct task_group *, void *);
516 
517 extern int walk_tg_tree_from(struct task_group *from,
518 			     tg_visitor down, tg_visitor up, void *data);
519 
520 /*
521  * Iterate the full tree, calling @down when first entering a node and @up when
522  * leaving it for the final time.
523  *
524  * Caller must hold rcu_lock or sufficient equivalent.
525  */
526 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
527 {
528 	return walk_tg_tree_from(&root_task_group, down, up, data);
529 }
530 
531 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
532 {
533 	return css ? container_of(css, struct task_group, css) : NULL;
534 }
535 
536 extern int tg_nop(struct task_group *tg, void *data);
537 
538 #ifdef CONFIG_FAIR_GROUP_SCHED
539 extern void free_fair_sched_group(struct task_group *tg);
540 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
541 extern void online_fair_sched_group(struct task_group *tg);
542 extern void unregister_fair_sched_group(struct task_group *tg);
543 #else /* !CONFIG_FAIR_GROUP_SCHED: */
544 static inline void free_fair_sched_group(struct task_group *tg) { }
545 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
546 {
547        return 1;
548 }
549 static inline void online_fair_sched_group(struct task_group *tg) { }
550 static inline void unregister_fair_sched_group(struct task_group *tg) { }
551 #endif /* !CONFIG_FAIR_GROUP_SCHED */
552 
553 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
554 			struct sched_entity *se, int cpu,
555 			struct sched_entity *parent);
556 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
557 
558 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
559 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
560 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
561 extern bool cfs_task_bw_constrained(struct task_struct *p);
562 
563 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
564 		struct sched_rt_entity *rt_se, int cpu,
565 		struct sched_rt_entity *parent);
566 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
567 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
568 extern long sched_group_rt_runtime(struct task_group *tg);
569 extern long sched_group_rt_period(struct task_group *tg);
570 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
571 
572 extern struct task_group *sched_create_group(struct task_group *parent);
573 extern void sched_online_group(struct task_group *tg,
574 			       struct task_group *parent);
575 extern void sched_destroy_group(struct task_group *tg);
576 extern void sched_release_group(struct task_group *tg);
577 
578 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup);
579 
580 #ifdef CONFIG_FAIR_GROUP_SCHED
581 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
582 
583 extern int sched_group_set_idle(struct task_group *tg, long idle);
584 
585 extern void set_task_rq_fair(struct sched_entity *se,
586 			     struct cfs_rq *prev, struct cfs_rq *next);
587 #else /* !CONFIG_FAIR_GROUP_SCHED: */
588 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; }
589 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; }
590 #endif /* !CONFIG_FAIR_GROUP_SCHED */
591 
592 #else /* !CONFIG_CGROUP_SCHED: */
593 
594 struct cfs_bandwidth { };
595 
596 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
597 
598 #endif /* !CONFIG_CGROUP_SCHED */
599 
600 extern void unregister_rt_sched_group(struct task_group *tg);
601 extern void free_rt_sched_group(struct task_group *tg);
602 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
603 
604 /*
605  * u64_u32_load/u64_u32_store
606  *
607  * Use a copy of a u64 value to protect against data race. This is only
608  * applicable for 32-bits architectures.
609  */
610 #ifdef CONFIG_64BIT
611 # define u64_u32_load_copy(var, copy)		var
612 # define u64_u32_store_copy(var, copy, val)	(var = val)
613 #else
614 # define u64_u32_load_copy(var, copy)					\
615 ({									\
616 	u64 __val, __val_copy;						\
617 	do {								\
618 		__val_copy = copy;					\
619 		/*							\
620 		 * paired with u64_u32_store_copy(), ordering access	\
621 		 * to var and copy.					\
622 		 */							\
623 		smp_rmb();						\
624 		__val = var;						\
625 	} while (__val != __val_copy);					\
626 	__val;								\
627 })
628 # define u64_u32_store_copy(var, copy, val)				\
629 do {									\
630 	typeof(val) __val = (val);					\
631 	var = __val;							\
632 	/*								\
633 	 * paired with u64_u32_load_copy(), ordering access to var and	\
634 	 * copy.							\
635 	 */								\
636 	smp_wmb();							\
637 	copy = __val;							\
638 } while (0)
639 #endif
640 # define u64_u32_load(var)		u64_u32_load_copy(var, var##_copy)
641 # define u64_u32_store(var, val)	u64_u32_store_copy(var, var##_copy, val)
642 
643 struct balance_callback {
644 	struct balance_callback *next;
645 	void (*func)(struct rq *rq);
646 };
647 
648 /* CFS-related fields in a runqueue */
649 struct cfs_rq {
650 	struct load_weight	load;
651 	unsigned int		nr_queued;
652 	unsigned int		h_nr_queued;       /* SCHED_{NORMAL,BATCH,IDLE} */
653 	unsigned int		h_nr_runnable;     /* SCHED_{NORMAL,BATCH,IDLE} */
654 	unsigned int		h_nr_idle; /* SCHED_IDLE */
655 
656 	s64			avg_vruntime;
657 	u64			avg_load;
658 
659 	u64			min_vruntime;
660 #ifdef CONFIG_SCHED_CORE
661 	unsigned int		forceidle_seq;
662 	u64			min_vruntime_fi;
663 #endif
664 
665 	struct rb_root_cached	tasks_timeline;
666 
667 	/*
668 	 * 'curr' points to currently running entity on this cfs_rq.
669 	 * It is set to NULL otherwise (i.e when none are currently running).
670 	 */
671 	struct sched_entity	*curr;
672 	struct sched_entity	*next;
673 
674 	/*
675 	 * CFS load tracking
676 	 */
677 	struct sched_avg	avg;
678 #ifndef CONFIG_64BIT
679 	u64			last_update_time_copy;
680 #endif
681 	struct {
682 		raw_spinlock_t	lock ____cacheline_aligned;
683 		int		nr;
684 		unsigned long	load_avg;
685 		unsigned long	util_avg;
686 		unsigned long	runnable_avg;
687 	} removed;
688 
689 #ifdef CONFIG_FAIR_GROUP_SCHED
690 	u64			last_update_tg_load_avg;
691 	unsigned long		tg_load_avg_contrib;
692 	long			propagate;
693 	long			prop_runnable_sum;
694 
695 	/*
696 	 *   h_load = weight * f(tg)
697 	 *
698 	 * Where f(tg) is the recursive weight fraction assigned to
699 	 * this group.
700 	 */
701 	unsigned long		h_load;
702 	u64			last_h_load_update;
703 	struct sched_entity	*h_load_next;
704 #endif /* CONFIG_FAIR_GROUP_SCHED */
705 
706 #ifdef CONFIG_FAIR_GROUP_SCHED
707 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
708 
709 	/*
710 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
711 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
712 	 * (like users, containers etc.)
713 	 *
714 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
715 	 * This list is used during load balance.
716 	 */
717 	int			on_list;
718 	struct list_head	leaf_cfs_rq_list;
719 	struct task_group	*tg;	/* group that "owns" this runqueue */
720 
721 	/* Locally cached copy of our task_group's idle value */
722 	int			idle;
723 
724 #ifdef CONFIG_CFS_BANDWIDTH
725 	int			runtime_enabled;
726 	s64			runtime_remaining;
727 
728 	u64			throttled_pelt_idle;
729 #ifndef CONFIG_64BIT
730 	u64                     throttled_pelt_idle_copy;
731 #endif
732 	u64			throttled_clock;
733 	u64			throttled_clock_pelt;
734 	u64			throttled_clock_pelt_time;
735 	u64			throttled_clock_self;
736 	u64			throttled_clock_self_time;
737 	int			throttled;
738 	int			throttle_count;
739 	struct list_head	throttled_list;
740 	struct list_head	throttled_csd_list;
741 #endif /* CONFIG_CFS_BANDWIDTH */
742 #endif /* CONFIG_FAIR_GROUP_SCHED */
743 };
744 
745 #ifdef CONFIG_SCHED_CLASS_EXT
746 /* scx_rq->flags, protected by the rq lock */
747 enum scx_rq_flags {
748 	/*
749 	 * A hotplugged CPU starts scheduling before rq_online_scx(). Track
750 	 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called
751 	 * only while the BPF scheduler considers the CPU to be online.
752 	 */
753 	SCX_RQ_ONLINE		= 1 << 0,
754 	SCX_RQ_CAN_STOP_TICK	= 1 << 1,
755 	SCX_RQ_BAL_PENDING	= 1 << 2, /* balance hasn't run yet */
756 	SCX_RQ_BAL_KEEP		= 1 << 3, /* balance decided to keep current */
757 	SCX_RQ_BYPASSING	= 1 << 4,
758 	SCX_RQ_CLK_VALID	= 1 << 5, /* RQ clock is fresh and valid */
759 
760 	SCX_RQ_IN_WAKEUP	= 1 << 16,
761 	SCX_RQ_IN_BALANCE	= 1 << 17,
762 };
763 
764 struct scx_rq {
765 	struct scx_dispatch_q	local_dsq;
766 	struct list_head	runnable_list;		/* runnable tasks on this rq */
767 	struct list_head	ddsp_deferred_locals;	/* deferred ddsps from enq */
768 	unsigned long		ops_qseq;
769 	u64			extra_enq_flags;	/* see move_task_to_local_dsq() */
770 	u32			nr_running;
771 	u32			cpuperf_target;		/* [0, SCHED_CAPACITY_SCALE] */
772 	bool			cpu_released;
773 	u32			flags;
774 	u64			clock;			/* current per-rq clock -- see scx_bpf_now() */
775 	cpumask_var_t		cpus_to_kick;
776 	cpumask_var_t		cpus_to_kick_if_idle;
777 	cpumask_var_t		cpus_to_preempt;
778 	cpumask_var_t		cpus_to_wait;
779 	unsigned long		pnt_seq;
780 	struct balance_callback	deferred_bal_cb;
781 	struct irq_work		deferred_irq_work;
782 	struct irq_work		kick_cpus_irq_work;
783 };
784 #endif /* CONFIG_SCHED_CLASS_EXT */
785 
786 static inline int rt_bandwidth_enabled(void)
787 {
788 	return sysctl_sched_rt_runtime >= 0;
789 }
790 
791 /* RT IPI pull logic requires IRQ_WORK */
792 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
793 # define HAVE_RT_PUSH_IPI
794 #endif
795 
796 /* Real-Time classes' related field in a runqueue: */
797 struct rt_rq {
798 	struct rt_prio_array	active;
799 	unsigned int		rt_nr_running;
800 	unsigned int		rr_nr_running;
801 	struct {
802 		int		curr; /* highest queued rt task prio */
803 		int		next; /* next highest */
804 	} highest_prio;
805 	bool			overloaded;
806 	struct plist_head	pushable_tasks;
807 
808 	int			rt_queued;
809 
810 #ifdef CONFIG_RT_GROUP_SCHED
811 	int			rt_throttled;
812 	u64			rt_time; /* consumed RT time, goes up in update_curr_rt */
813 	u64			rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */
814 	/* Nests inside the rq lock: */
815 	raw_spinlock_t		rt_runtime_lock;
816 
817 	unsigned int		rt_nr_boosted;
818 
819 	struct rq		*rq; /* this is always top-level rq, cache? */
820 #endif
821 #ifdef CONFIG_CGROUP_SCHED
822 	struct task_group	*tg; /* this tg has "this" rt_rq on given CPU for runnable entities */
823 #endif
824 };
825 
826 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
827 {
828 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
829 }
830 
831 /* Deadline class' related fields in a runqueue */
832 struct dl_rq {
833 	/* runqueue is an rbtree, ordered by deadline */
834 	struct rb_root_cached	root;
835 
836 	unsigned int		dl_nr_running;
837 
838 	/*
839 	 * Deadline values of the currently executing and the
840 	 * earliest ready task on this rq. Caching these facilitates
841 	 * the decision whether or not a ready but not running task
842 	 * should migrate somewhere else.
843 	 */
844 	struct {
845 		u64		curr;
846 		u64		next;
847 	} earliest_dl;
848 
849 	bool			overloaded;
850 
851 	/*
852 	 * Tasks on this rq that can be pushed away. They are kept in
853 	 * an rb-tree, ordered by tasks' deadlines, with caching
854 	 * of the leftmost (earliest deadline) element.
855 	 */
856 	struct rb_root_cached	pushable_dl_tasks_root;
857 
858 	/*
859 	 * "Active utilization" for this runqueue: increased when a
860 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
861 	 * task blocks
862 	 */
863 	u64			running_bw;
864 
865 	/*
866 	 * Utilization of the tasks "assigned" to this runqueue (including
867 	 * the tasks that are in runqueue and the tasks that executed on this
868 	 * CPU and blocked). Increased when a task moves to this runqueue, and
869 	 * decreased when the task moves away (migrates, changes scheduling
870 	 * policy, or terminates).
871 	 * This is needed to compute the "inactive utilization" for the
872 	 * runqueue (inactive utilization = this_bw - running_bw).
873 	 */
874 	u64			this_bw;
875 	u64			extra_bw;
876 
877 	/*
878 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
879 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
880 	 */
881 	u64			max_bw;
882 
883 	/*
884 	 * Inverse of the fraction of CPU utilization that can be reclaimed
885 	 * by the GRUB algorithm.
886 	 */
887 	u64			bw_ratio;
888 };
889 
890 #ifdef CONFIG_FAIR_GROUP_SCHED
891 
892 /* An entity is a task if it doesn't "own" a runqueue */
893 #define entity_is_task(se)	(!se->my_q)
894 
895 static inline void se_update_runnable(struct sched_entity *se)
896 {
897 	if (!entity_is_task(se))
898 		se->runnable_weight = se->my_q->h_nr_runnable;
899 }
900 
901 static inline long se_runnable(struct sched_entity *se)
902 {
903 	if (se->sched_delayed)
904 		return false;
905 
906 	if (entity_is_task(se))
907 		return !!se->on_rq;
908 	else
909 		return se->runnable_weight;
910 }
911 
912 #else /* !CONFIG_FAIR_GROUP_SCHED: */
913 
914 #define entity_is_task(se)	1
915 
916 static inline void se_update_runnable(struct sched_entity *se) { }
917 
918 static inline long se_runnable(struct sched_entity *se)
919 {
920 	if (se->sched_delayed)
921 		return false;
922 
923 	return !!se->on_rq;
924 }
925 
926 #endif /* !CONFIG_FAIR_GROUP_SCHED */
927 
928 /*
929  * XXX we want to get rid of these helpers and use the full load resolution.
930  */
931 static inline long se_weight(struct sched_entity *se)
932 {
933 	return scale_load_down(se->load.weight);
934 }
935 
936 
937 static inline bool sched_asym_prefer(int a, int b)
938 {
939 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
940 }
941 
942 struct perf_domain {
943 	struct em_perf_domain *em_pd;
944 	struct perf_domain *next;
945 	struct rcu_head rcu;
946 };
947 
948 /*
949  * We add the notion of a root-domain which will be used to define per-domain
950  * variables. Each exclusive cpuset essentially defines an island domain by
951  * fully partitioning the member CPUs from any other cpuset. Whenever a new
952  * exclusive cpuset is created, we also create and attach a new root-domain
953  * object.
954  *
955  */
956 struct root_domain {
957 	atomic_t		refcount;
958 	atomic_t		rto_count;
959 	struct rcu_head		rcu;
960 	cpumask_var_t		span;
961 	cpumask_var_t		online;
962 
963 	/*
964 	 * Indicate pullable load on at least one CPU, e.g:
965 	 * - More than one runnable task
966 	 * - Running task is misfit
967 	 */
968 	bool			overloaded;
969 
970 	/* Indicate one or more CPUs over-utilized (tipping point) */
971 	bool			overutilized;
972 
973 	/*
974 	 * The bit corresponding to a CPU gets set here if such CPU has more
975 	 * than one runnable -deadline task (as it is below for RT tasks).
976 	 */
977 	cpumask_var_t		dlo_mask;
978 	atomic_t		dlo_count;
979 	struct dl_bw		dl_bw;
980 	struct cpudl		cpudl;
981 
982 	/*
983 	 * Indicate whether a root_domain's dl_bw has been checked or
984 	 * updated. It's monotonously increasing value.
985 	 *
986 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
987 	 * that u64 is 'big enough'. So that shouldn't be a concern.
988 	 */
989 	u64 visit_cookie;
990 
991 #ifdef HAVE_RT_PUSH_IPI
992 	/*
993 	 * For IPI pull requests, loop across the rto_mask.
994 	 */
995 	struct irq_work		rto_push_work;
996 	raw_spinlock_t		rto_lock;
997 	/* These are only updated and read within rto_lock */
998 	int			rto_loop;
999 	int			rto_cpu;
1000 	/* These atomics are updated outside of a lock */
1001 	atomic_t		rto_loop_next;
1002 	atomic_t		rto_loop_start;
1003 #endif /* HAVE_RT_PUSH_IPI */
1004 	/*
1005 	 * The "RT overload" flag: it gets set if a CPU has more than
1006 	 * one runnable RT task.
1007 	 */
1008 	cpumask_var_t		rto_mask;
1009 	struct cpupri		cpupri;
1010 
1011 	/*
1012 	 * NULL-terminated list of performance domains intersecting with the
1013 	 * CPUs of the rd. Protected by RCU.
1014 	 */
1015 	struct perf_domain __rcu *pd;
1016 };
1017 
1018 extern void init_defrootdomain(void);
1019 extern int sched_init_domains(const struct cpumask *cpu_map);
1020 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
1021 extern void sched_get_rd(struct root_domain *rd);
1022 extern void sched_put_rd(struct root_domain *rd);
1023 
1024 static inline int get_rd_overloaded(struct root_domain *rd)
1025 {
1026 	return READ_ONCE(rd->overloaded);
1027 }
1028 
1029 static inline void set_rd_overloaded(struct root_domain *rd, int status)
1030 {
1031 	if (get_rd_overloaded(rd) != status)
1032 		WRITE_ONCE(rd->overloaded, status);
1033 }
1034 
1035 #ifdef HAVE_RT_PUSH_IPI
1036 extern void rto_push_irq_work_func(struct irq_work *work);
1037 #endif
1038 
1039 #ifdef CONFIG_UCLAMP_TASK
1040 /*
1041  * struct uclamp_bucket - Utilization clamp bucket
1042  * @value: utilization clamp value for tasks on this clamp bucket
1043  * @tasks: number of RUNNABLE tasks on this clamp bucket
1044  *
1045  * Keep track of how many tasks are RUNNABLE for a given utilization
1046  * clamp value.
1047  */
1048 struct uclamp_bucket {
1049 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
1050 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
1051 };
1052 
1053 /*
1054  * struct uclamp_rq - rq's utilization clamp
1055  * @value: currently active clamp values for a rq
1056  * @bucket: utilization clamp buckets affecting a rq
1057  *
1058  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
1059  * A clamp value is affecting a rq when there is at least one task RUNNABLE
1060  * (or actually running) with that value.
1061  *
1062  * There are up to UCLAMP_CNT possible different clamp values, currently there
1063  * are only two: minimum utilization and maximum utilization.
1064  *
1065  * All utilization clamping values are MAX aggregated, since:
1066  * - for util_min: we want to run the CPU at least at the max of the minimum
1067  *   utilization required by its currently RUNNABLE tasks.
1068  * - for util_max: we want to allow the CPU to run up to the max of the
1069  *   maximum utilization allowed by its currently RUNNABLE tasks.
1070  *
1071  * Since on each system we expect only a limited number of different
1072  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
1073  * the metrics required to compute all the per-rq utilization clamp values.
1074  */
1075 struct uclamp_rq {
1076 	unsigned int value;
1077 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
1078 };
1079 
1080 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
1081 #endif /* CONFIG_UCLAMP_TASK */
1082 
1083 /*
1084  * This is the main, per-CPU runqueue data structure.
1085  *
1086  * Locking rule: those places that want to lock multiple runqueues
1087  * (such as the load balancing or the thread migration code), lock
1088  * acquire operations must be ordered by ascending &runqueue.
1089  */
1090 struct rq {
1091 	/* runqueue lock: */
1092 	raw_spinlock_t		__lock;
1093 
1094 	unsigned int		nr_running;
1095 #ifdef CONFIG_NUMA_BALANCING
1096 	unsigned int		nr_numa_running;
1097 	unsigned int		nr_preferred_running;
1098 	unsigned int		numa_migrate_on;
1099 #endif
1100 #ifdef CONFIG_NO_HZ_COMMON
1101 	unsigned long		last_blocked_load_update_tick;
1102 	unsigned int		has_blocked_load;
1103 	call_single_data_t	nohz_csd;
1104 	unsigned int		nohz_tick_stopped;
1105 	atomic_t		nohz_flags;
1106 #endif /* CONFIG_NO_HZ_COMMON */
1107 
1108 	unsigned int		ttwu_pending;
1109 	u64			nr_switches;
1110 
1111 #ifdef CONFIG_UCLAMP_TASK
1112 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1113 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1114 	unsigned int		uclamp_flags;
1115 #define UCLAMP_FLAG_IDLE 0x01
1116 #endif
1117 
1118 	struct cfs_rq		cfs;
1119 	struct rt_rq		rt;
1120 	struct dl_rq		dl;
1121 #ifdef CONFIG_SCHED_CLASS_EXT
1122 	struct scx_rq		scx;
1123 #endif
1124 
1125 	struct sched_dl_entity	fair_server;
1126 
1127 #ifdef CONFIG_FAIR_GROUP_SCHED
1128 	/* list of leaf cfs_rq on this CPU: */
1129 	struct list_head	leaf_cfs_rq_list;
1130 	struct list_head	*tmp_alone_branch;
1131 #endif /* CONFIG_FAIR_GROUP_SCHED */
1132 
1133 	/*
1134 	 * This is part of a global counter where only the total sum
1135 	 * over all CPUs matters. A task can increase this counter on
1136 	 * one CPU and if it got migrated afterwards it may decrease
1137 	 * it on another CPU. Always updated under the runqueue lock:
1138 	 */
1139 	unsigned int		nr_uninterruptible;
1140 
1141 	union {
1142 		struct task_struct __rcu *donor; /* Scheduler context */
1143 		struct task_struct __rcu *curr;  /* Execution context */
1144 	};
1145 	struct sched_dl_entity	*dl_server;
1146 	struct task_struct	*idle;
1147 	struct task_struct	*stop;
1148 	unsigned long		next_balance;
1149 	struct mm_struct	*prev_mm;
1150 
1151 	unsigned int		clock_update_flags;
1152 	u64			clock;
1153 	/* Ensure that all clocks are in the same cache line */
1154 	u64			clock_task ____cacheline_aligned;
1155 	u64			clock_pelt;
1156 	unsigned long		lost_idle_time;
1157 	u64			clock_pelt_idle;
1158 	u64			clock_idle;
1159 #ifndef CONFIG_64BIT
1160 	u64			clock_pelt_idle_copy;
1161 	u64			clock_idle_copy;
1162 #endif
1163 
1164 	atomic_t		nr_iowait;
1165 
1166 	u64 last_seen_need_resched_ns;
1167 	int ticks_without_resched;
1168 
1169 #ifdef CONFIG_MEMBARRIER
1170 	int membarrier_state;
1171 #endif
1172 
1173 	struct root_domain		*rd;
1174 	struct sched_domain __rcu	*sd;
1175 
1176 	unsigned long		cpu_capacity;
1177 
1178 	struct balance_callback *balance_callback;
1179 
1180 	unsigned char		nohz_idle_balance;
1181 	unsigned char		idle_balance;
1182 
1183 	unsigned long		misfit_task_load;
1184 
1185 	/* For active balancing */
1186 	int			active_balance;
1187 	int			push_cpu;
1188 	struct cpu_stop_work	active_balance_work;
1189 
1190 	/* CPU of this runqueue: */
1191 	int			cpu;
1192 	int			online;
1193 
1194 	struct list_head cfs_tasks;
1195 
1196 	struct sched_avg	avg_rt;
1197 	struct sched_avg	avg_dl;
1198 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1199 	struct sched_avg	avg_irq;
1200 #endif
1201 #ifdef CONFIG_SCHED_HW_PRESSURE
1202 	struct sched_avg	avg_hw;
1203 #endif
1204 	u64			idle_stamp;
1205 	u64			avg_idle;
1206 
1207 	/* This is used to determine avg_idle's max value */
1208 	u64			max_idle_balance_cost;
1209 
1210 #ifdef CONFIG_HOTPLUG_CPU
1211 	struct rcuwait		hotplug_wait;
1212 #endif
1213 
1214 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1215 	u64			prev_irq_time;
1216 	u64			psi_irq_time;
1217 #endif
1218 #ifdef CONFIG_PARAVIRT
1219 	u64			prev_steal_time;
1220 #endif
1221 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1222 	u64			prev_steal_time_rq;
1223 #endif
1224 
1225 	/* calc_load related fields */
1226 	unsigned long		calc_load_update;
1227 	long			calc_load_active;
1228 
1229 #ifdef CONFIG_SCHED_HRTICK
1230 	call_single_data_t	hrtick_csd;
1231 	struct hrtimer		hrtick_timer;
1232 	ktime_t			hrtick_time;
1233 #endif
1234 
1235 #ifdef CONFIG_SCHEDSTATS
1236 	/* latency stats */
1237 	struct sched_info	rq_sched_info;
1238 	unsigned long long	rq_cpu_time;
1239 
1240 	/* sys_sched_yield() stats */
1241 	unsigned int		yld_count;
1242 
1243 	/* schedule() stats */
1244 	unsigned int		sched_count;
1245 	unsigned int		sched_goidle;
1246 
1247 	/* try_to_wake_up() stats */
1248 	unsigned int		ttwu_count;
1249 	unsigned int		ttwu_local;
1250 #endif
1251 
1252 #ifdef CONFIG_CPU_IDLE
1253 	/* Must be inspected within a RCU lock section */
1254 	struct cpuidle_state	*idle_state;
1255 #endif
1256 
1257 	unsigned int		nr_pinned;
1258 	unsigned int		push_busy;
1259 	struct cpu_stop_work	push_work;
1260 
1261 #ifdef CONFIG_SCHED_CORE
1262 	/* per rq */
1263 	struct rq		*core;
1264 	struct task_struct	*core_pick;
1265 	struct sched_dl_entity	*core_dl_server;
1266 	unsigned int		core_enabled;
1267 	unsigned int		core_sched_seq;
1268 	struct rb_root		core_tree;
1269 
1270 	/* shared state -- careful with sched_core_cpu_deactivate() */
1271 	unsigned int		core_task_seq;
1272 	unsigned int		core_pick_seq;
1273 	unsigned long		core_cookie;
1274 	unsigned int		core_forceidle_count;
1275 	unsigned int		core_forceidle_seq;
1276 	unsigned int		core_forceidle_occupation;
1277 	u64			core_forceidle_start;
1278 #endif /* CONFIG_SCHED_CORE */
1279 
1280 	/* Scratch cpumask to be temporarily used under rq_lock */
1281 	cpumask_var_t		scratch_mask;
1282 
1283 #ifdef CONFIG_CFS_BANDWIDTH
1284 	call_single_data_t	cfsb_csd;
1285 	struct list_head	cfsb_csd_list;
1286 #endif
1287 };
1288 
1289 #ifdef CONFIG_FAIR_GROUP_SCHED
1290 
1291 /* CPU runqueue to which this cfs_rq is attached */
1292 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1293 {
1294 	return cfs_rq->rq;
1295 }
1296 
1297 #else /* !CONFIG_FAIR_GROUP_SCHED: */
1298 
1299 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1300 {
1301 	return container_of(cfs_rq, struct rq, cfs);
1302 }
1303 #endif /* !CONFIG_FAIR_GROUP_SCHED */
1304 
1305 static inline int cpu_of(struct rq *rq)
1306 {
1307 	return rq->cpu;
1308 }
1309 
1310 #define MDF_PUSH		0x01
1311 
1312 static inline bool is_migration_disabled(struct task_struct *p)
1313 {
1314 	return p->migration_disabled;
1315 }
1316 
1317 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1318 
1319 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1320 #define this_rq()		this_cpu_ptr(&runqueues)
1321 #define task_rq(p)		cpu_rq(task_cpu(p))
1322 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1323 #define raw_rq()		raw_cpu_ptr(&runqueues)
1324 
1325 static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1326 {
1327 	/* Do nothing */
1328 }
1329 
1330 #ifdef CONFIG_SCHED_CORE
1331 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1332 
1333 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1334 
1335 static inline bool sched_core_enabled(struct rq *rq)
1336 {
1337 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1338 }
1339 
1340 static inline bool sched_core_disabled(void)
1341 {
1342 	return !static_branch_unlikely(&__sched_core_enabled);
1343 }
1344 
1345 /*
1346  * Be careful with this function; not for general use. The return value isn't
1347  * stable unless you actually hold a relevant rq->__lock.
1348  */
1349 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1350 {
1351 	if (sched_core_enabled(rq))
1352 		return &rq->core->__lock;
1353 
1354 	return &rq->__lock;
1355 }
1356 
1357 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1358 {
1359 	if (rq->core_enabled)
1360 		return &rq->core->__lock;
1361 
1362 	return &rq->__lock;
1363 }
1364 
1365 extern bool
1366 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);
1367 
1368 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1369 
1370 /*
1371  * Helpers to check if the CPU's core cookie matches with the task's cookie
1372  * when core scheduling is enabled.
1373  * A special case is that the task's cookie always matches with CPU's core
1374  * cookie if the CPU is in an idle core.
1375  */
1376 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1377 {
1378 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1379 	if (!sched_core_enabled(rq))
1380 		return true;
1381 
1382 	return rq->core->core_cookie == p->core_cookie;
1383 }
1384 
1385 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1386 {
1387 	bool idle_core = true;
1388 	int cpu;
1389 
1390 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1391 	if (!sched_core_enabled(rq))
1392 		return true;
1393 
1394 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1395 		if (!available_idle_cpu(cpu)) {
1396 			idle_core = false;
1397 			break;
1398 		}
1399 	}
1400 
1401 	/*
1402 	 * A CPU in an idle core is always the best choice for tasks with
1403 	 * cookies.
1404 	 */
1405 	return idle_core || rq->core->core_cookie == p->core_cookie;
1406 }
1407 
1408 static inline bool sched_group_cookie_match(struct rq *rq,
1409 					    struct task_struct *p,
1410 					    struct sched_group *group)
1411 {
1412 	int cpu;
1413 
1414 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1415 	if (!sched_core_enabled(rq))
1416 		return true;
1417 
1418 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1419 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1420 			return true;
1421 	}
1422 	return false;
1423 }
1424 
1425 static inline bool sched_core_enqueued(struct task_struct *p)
1426 {
1427 	return !RB_EMPTY_NODE(&p->core_node);
1428 }
1429 
1430 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1431 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1432 
1433 extern void sched_core_get(void);
1434 extern void sched_core_put(void);
1435 
1436 #else /* !CONFIG_SCHED_CORE: */
1437 
1438 static inline bool sched_core_enabled(struct rq *rq)
1439 {
1440 	return false;
1441 }
1442 
1443 static inline bool sched_core_disabled(void)
1444 {
1445 	return true;
1446 }
1447 
1448 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1449 {
1450 	return &rq->__lock;
1451 }
1452 
1453 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1454 {
1455 	return &rq->__lock;
1456 }
1457 
1458 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1459 {
1460 	return true;
1461 }
1462 
1463 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1464 {
1465 	return true;
1466 }
1467 
1468 static inline bool sched_group_cookie_match(struct rq *rq,
1469 					    struct task_struct *p,
1470 					    struct sched_group *group)
1471 {
1472 	return true;
1473 }
1474 
1475 #endif /* !CONFIG_SCHED_CORE */
1476 
1477 #ifdef CONFIG_RT_GROUP_SCHED
1478 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
1479 DECLARE_STATIC_KEY_FALSE(rt_group_sched);
1480 static inline bool rt_group_sched_enabled(void)
1481 {
1482 	return static_branch_unlikely(&rt_group_sched);
1483 }
1484 # else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */
1485 DECLARE_STATIC_KEY_TRUE(rt_group_sched);
1486 static inline bool rt_group_sched_enabled(void)
1487 {
1488 	return static_branch_likely(&rt_group_sched);
1489 }
1490 # endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */
1491 #else /* !CONFIG_RT_GROUP_SCHED: */
1492 # define rt_group_sched_enabled()	false
1493 #endif /* !CONFIG_RT_GROUP_SCHED */
1494 
1495 static inline void lockdep_assert_rq_held(struct rq *rq)
1496 {
1497 	lockdep_assert_held(__rq_lockp(rq));
1498 }
1499 
1500 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1501 extern bool raw_spin_rq_trylock(struct rq *rq);
1502 extern void raw_spin_rq_unlock(struct rq *rq);
1503 
1504 static inline void raw_spin_rq_lock(struct rq *rq)
1505 {
1506 	raw_spin_rq_lock_nested(rq, 0);
1507 }
1508 
1509 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1510 {
1511 	local_irq_disable();
1512 	raw_spin_rq_lock(rq);
1513 }
1514 
1515 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1516 {
1517 	raw_spin_rq_unlock(rq);
1518 	local_irq_enable();
1519 }
1520 
1521 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1522 {
1523 	unsigned long flags;
1524 
1525 	local_irq_save(flags);
1526 	raw_spin_rq_lock(rq);
1527 
1528 	return flags;
1529 }
1530 
1531 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1532 {
1533 	raw_spin_rq_unlock(rq);
1534 	local_irq_restore(flags);
1535 }
1536 
1537 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1538 do {						\
1539 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1540 } while (0)
1541 
1542 #ifdef CONFIG_SCHED_SMT
1543 extern void __update_idle_core(struct rq *rq);
1544 
1545 static inline void update_idle_core(struct rq *rq)
1546 {
1547 	if (static_branch_unlikely(&sched_smt_present))
1548 		__update_idle_core(rq);
1549 }
1550 
1551 #else /* !CONFIG_SCHED_SMT: */
1552 static inline void update_idle_core(struct rq *rq) { }
1553 #endif /* !CONFIG_SCHED_SMT */
1554 
1555 #ifdef CONFIG_FAIR_GROUP_SCHED
1556 
1557 static inline struct task_struct *task_of(struct sched_entity *se)
1558 {
1559 	WARN_ON_ONCE(!entity_is_task(se));
1560 	return container_of(se, struct task_struct, se);
1561 }
1562 
1563 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1564 {
1565 	return p->se.cfs_rq;
1566 }
1567 
1568 /* runqueue on which this entity is (to be) queued */
1569 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1570 {
1571 	return se->cfs_rq;
1572 }
1573 
1574 /* runqueue "owned" by this group */
1575 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1576 {
1577 	return grp->my_q;
1578 }
1579 
1580 #else /* !CONFIG_FAIR_GROUP_SCHED: */
1581 
1582 #define task_of(_se)		container_of(_se, struct task_struct, se)
1583 
1584 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1585 {
1586 	return &task_rq(p)->cfs;
1587 }
1588 
1589 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1590 {
1591 	const struct task_struct *p = task_of(se);
1592 	struct rq *rq = task_rq(p);
1593 
1594 	return &rq->cfs;
1595 }
1596 
1597 /* runqueue "owned" by this group */
1598 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1599 {
1600 	return NULL;
1601 }
1602 
1603 #endif /* !CONFIG_FAIR_GROUP_SCHED */
1604 
1605 extern void update_rq_clock(struct rq *rq);
1606 
1607 /*
1608  * rq::clock_update_flags bits
1609  *
1610  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1611  *  call to __schedule(). This is an optimisation to avoid
1612  *  neighbouring rq clock updates.
1613  *
1614  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1615  *  in effect and calls to update_rq_clock() are being ignored.
1616  *
1617  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1618  *  made to update_rq_clock() since the last time rq::lock was pinned.
1619  *
1620  * If inside of __schedule(), clock_update_flags will have been
1621  * shifted left (a left shift is a cheap operation for the fast path
1622  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1623  *
1624  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1625  *
1626  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1627  * one position though, because the next rq_unpin_lock() will shift it
1628  * back.
1629  */
1630 #define RQCF_REQ_SKIP		0x01
1631 #define RQCF_ACT_SKIP		0x02
1632 #define RQCF_UPDATED		0x04
1633 
1634 static inline void assert_clock_updated(struct rq *rq)
1635 {
1636 	/*
1637 	 * The only reason for not seeing a clock update since the
1638 	 * last rq_pin_lock() is if we're currently skipping updates.
1639 	 */
1640 	WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP);
1641 }
1642 
1643 static inline u64 rq_clock(struct rq *rq)
1644 {
1645 	lockdep_assert_rq_held(rq);
1646 	assert_clock_updated(rq);
1647 
1648 	return rq->clock;
1649 }
1650 
1651 static inline u64 rq_clock_task(struct rq *rq)
1652 {
1653 	lockdep_assert_rq_held(rq);
1654 	assert_clock_updated(rq);
1655 
1656 	return rq->clock_task;
1657 }
1658 
1659 static inline void rq_clock_skip_update(struct rq *rq)
1660 {
1661 	lockdep_assert_rq_held(rq);
1662 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1663 }
1664 
1665 /*
1666  * See rt task throttling, which is the only time a skip
1667  * request is canceled.
1668  */
1669 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1670 {
1671 	lockdep_assert_rq_held(rq);
1672 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1673 }
1674 
1675 /*
1676  * During cpu offlining and rq wide unthrottling, we can trigger
1677  * an update_rq_clock() for several cfs and rt runqueues (Typically
1678  * when using list_for_each_entry_*)
1679  * rq_clock_start_loop_update() can be called after updating the clock
1680  * once and before iterating over the list to prevent multiple update.
1681  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1682  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1683  */
1684 static inline void rq_clock_start_loop_update(struct rq *rq)
1685 {
1686 	lockdep_assert_rq_held(rq);
1687 	WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP);
1688 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1689 }
1690 
1691 static inline void rq_clock_stop_loop_update(struct rq *rq)
1692 {
1693 	lockdep_assert_rq_held(rq);
1694 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1695 }
1696 
1697 struct rq_flags {
1698 	unsigned long flags;
1699 	struct pin_cookie cookie;
1700 	/*
1701 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1702 	 * current pin context is stashed here in case it needs to be
1703 	 * restored in rq_repin_lock().
1704 	 */
1705 	unsigned int clock_update_flags;
1706 };
1707 
1708 extern struct balance_callback balance_push_callback;
1709 
1710 #ifdef CONFIG_SCHED_CLASS_EXT
1711 extern const struct sched_class ext_sched_class;
1712 
1713 DECLARE_STATIC_KEY_FALSE(__scx_enabled);	/* SCX BPF scheduler loaded */
1714 DECLARE_STATIC_KEY_FALSE(__scx_switched_all);	/* all fair class tasks on SCX */
1715 
1716 #define scx_enabled()		static_branch_unlikely(&__scx_enabled)
1717 #define scx_switched_all()	static_branch_unlikely(&__scx_switched_all)
1718 
1719 static inline void scx_rq_clock_update(struct rq *rq, u64 clock)
1720 {
1721 	if (!scx_enabled())
1722 		return;
1723 	WRITE_ONCE(rq->scx.clock, clock);
1724 	smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID);
1725 }
1726 
1727 static inline void scx_rq_clock_invalidate(struct rq *rq)
1728 {
1729 	if (!scx_enabled())
1730 		return;
1731 	WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID);
1732 }
1733 
1734 #else /* !CONFIG_SCHED_CLASS_EXT: */
1735 #define scx_enabled()		false
1736 #define scx_switched_all()	false
1737 
1738 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {}
1739 static inline void scx_rq_clock_invalidate(struct rq *rq) {}
1740 #endif /* !CONFIG_SCHED_CLASS_EXT */
1741 
1742 /*
1743  * Lockdep annotation that avoids accidental unlocks; it's like a
1744  * sticky/continuous lockdep_assert_held().
1745  *
1746  * This avoids code that has access to 'struct rq *rq' (basically everything in
1747  * the scheduler) from accidentally unlocking the rq if they do not also have a
1748  * copy of the (on-stack) 'struct rq_flags rf'.
1749  *
1750  * Also see Documentation/locking/lockdep-design.rst.
1751  */
1752 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1753 {
1754 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1755 
1756 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1757 	rf->clock_update_flags = 0;
1758 	WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1759 }
1760 
1761 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1762 {
1763 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1764 		rf->clock_update_flags = RQCF_UPDATED;
1765 
1766 	scx_rq_clock_invalidate(rq);
1767 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1768 }
1769 
1770 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1771 {
1772 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1773 
1774 	/*
1775 	 * Restore the value we stashed in @rf for this pin context.
1776 	 */
1777 	rq->clock_update_flags |= rf->clock_update_flags;
1778 }
1779 
1780 extern
1781 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1782 	__acquires(rq->lock);
1783 
1784 extern
1785 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1786 	__acquires(p->pi_lock)
1787 	__acquires(rq->lock);
1788 
1789 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1790 	__releases(rq->lock)
1791 {
1792 	rq_unpin_lock(rq, rf);
1793 	raw_spin_rq_unlock(rq);
1794 }
1795 
1796 static inline void
1797 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1798 	__releases(rq->lock)
1799 	__releases(p->pi_lock)
1800 {
1801 	rq_unpin_lock(rq, rf);
1802 	raw_spin_rq_unlock(rq);
1803 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1804 }
1805 
1806 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1807 		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1808 		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1809 		    struct rq *rq; struct rq_flags rf)
1810 
1811 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1812 	__acquires(rq->lock)
1813 {
1814 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1815 	rq_pin_lock(rq, rf);
1816 }
1817 
1818 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1819 	__acquires(rq->lock)
1820 {
1821 	raw_spin_rq_lock_irq(rq);
1822 	rq_pin_lock(rq, rf);
1823 }
1824 
1825 static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
1826 	__acquires(rq->lock)
1827 {
1828 	raw_spin_rq_lock(rq);
1829 	rq_pin_lock(rq, rf);
1830 }
1831 
1832 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1833 	__releases(rq->lock)
1834 {
1835 	rq_unpin_lock(rq, rf);
1836 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1837 }
1838 
1839 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1840 	__releases(rq->lock)
1841 {
1842 	rq_unpin_lock(rq, rf);
1843 	raw_spin_rq_unlock_irq(rq);
1844 }
1845 
1846 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
1847 	__releases(rq->lock)
1848 {
1849 	rq_unpin_lock(rq, rf);
1850 	raw_spin_rq_unlock(rq);
1851 }
1852 
1853 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1854 		    rq_lock(_T->lock, &_T->rf),
1855 		    rq_unlock(_T->lock, &_T->rf),
1856 		    struct rq_flags rf)
1857 
1858 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1859 		    rq_lock_irq(_T->lock, &_T->rf),
1860 		    rq_unlock_irq(_T->lock, &_T->rf),
1861 		    struct rq_flags rf)
1862 
1863 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1864 		    rq_lock_irqsave(_T->lock, &_T->rf),
1865 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1866 		    struct rq_flags rf)
1867 
1868 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf)
1869 	__acquires(rq->lock)
1870 {
1871 	struct rq *rq;
1872 
1873 	local_irq_disable();
1874 	rq = this_rq();
1875 	rq_lock(rq, rf);
1876 
1877 	return rq;
1878 }
1879 
1880 #ifdef CONFIG_NUMA
1881 
1882 enum numa_topology_type {
1883 	NUMA_DIRECT,
1884 	NUMA_GLUELESS_MESH,
1885 	NUMA_BACKPLANE,
1886 };
1887 
1888 extern enum numa_topology_type sched_numa_topology_type;
1889 extern int sched_max_numa_distance;
1890 extern bool find_numa_distance(int distance);
1891 extern void sched_init_numa(int offline_node);
1892 extern void sched_update_numa(int cpu, bool online);
1893 extern void sched_domains_numa_masks_set(unsigned int cpu);
1894 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1895 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1896 
1897 #else /* !CONFIG_NUMA: */
1898 
1899 static inline void sched_init_numa(int offline_node) { }
1900 static inline void sched_update_numa(int cpu, bool online) { }
1901 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1902 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1903 
1904 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1905 {
1906 	return nr_cpu_ids;
1907 }
1908 
1909 #endif /* !CONFIG_NUMA */
1910 
1911 #ifdef CONFIG_NUMA_BALANCING
1912 
1913 /* The regions in numa_faults array from task_struct */
1914 enum numa_faults_stats {
1915 	NUMA_MEM = 0,
1916 	NUMA_CPU,
1917 	NUMA_MEMBUF,
1918 	NUMA_CPUBUF
1919 };
1920 
1921 extern void sched_setnuma(struct task_struct *p, int node);
1922 extern int migrate_task_to(struct task_struct *p, int cpu);
1923 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1924 			int cpu, int scpu);
1925 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1926 
1927 #else /* !CONFIG_NUMA_BALANCING: */
1928 
1929 static inline void
1930 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1931 {
1932 }
1933 
1934 #endif /* !CONFIG_NUMA_BALANCING */
1935 
1936 static inline void
1937 queue_balance_callback(struct rq *rq,
1938 		       struct balance_callback *head,
1939 		       void (*func)(struct rq *rq))
1940 {
1941 	lockdep_assert_rq_held(rq);
1942 
1943 	/*
1944 	 * Don't (re)queue an already queued item; nor queue anything when
1945 	 * balance_push() is active, see the comment with
1946 	 * balance_push_callback.
1947 	 */
1948 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1949 		return;
1950 
1951 	head->func = func;
1952 	head->next = rq->balance_callback;
1953 	rq->balance_callback = head;
1954 }
1955 
1956 #define rcu_dereference_check_sched_domain(p) \
1957 	rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))
1958 
1959 /*
1960  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1961  * See destroy_sched_domains: call_rcu for details.
1962  *
1963  * The domain tree of any CPU may only be accessed from within
1964  * preempt-disabled sections.
1965  */
1966 #define for_each_domain(cpu, __sd) \
1967 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1968 			__sd; __sd = __sd->parent)
1969 
1970 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1971 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1972 static const unsigned int SD_SHARED_CHILD_MASK =
1973 #include <linux/sched/sd_flags.h>
1974 0;
1975 #undef SD_FLAG
1976 
1977 /**
1978  * highest_flag_domain - Return highest sched_domain containing flag.
1979  * @cpu:	The CPU whose highest level of sched domain is to
1980  *		be returned.
1981  * @flag:	The flag to check for the highest sched_domain
1982  *		for the given CPU.
1983  *
1984  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1985  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1986  */
1987 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1988 {
1989 	struct sched_domain *sd, *hsd = NULL;
1990 
1991 	for_each_domain(cpu, sd) {
1992 		if (sd->flags & flag) {
1993 			hsd = sd;
1994 			continue;
1995 		}
1996 
1997 		/*
1998 		 * Stop the search if @flag is known to be shared at lower
1999 		 * levels. It will not be found further up.
2000 		 */
2001 		if (flag & SD_SHARED_CHILD_MASK)
2002 			break;
2003 	}
2004 
2005 	return hsd;
2006 }
2007 
2008 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
2009 {
2010 	struct sched_domain *sd;
2011 
2012 	for_each_domain(cpu, sd) {
2013 		if (sd->flags & flag)
2014 			break;
2015 	}
2016 
2017 	return sd;
2018 }
2019 
2020 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
2021 DECLARE_PER_CPU(int, sd_llc_size);
2022 DECLARE_PER_CPU(int, sd_llc_id);
2023 DECLARE_PER_CPU(int, sd_share_id);
2024 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
2025 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
2026 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
2027 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
2028 
2029 extern struct static_key_false sched_asym_cpucapacity;
2030 extern struct static_key_false sched_cluster_active;
2031 
2032 static __always_inline bool sched_asym_cpucap_active(void)
2033 {
2034 	return static_branch_unlikely(&sched_asym_cpucapacity);
2035 }
2036 
2037 struct sched_group_capacity {
2038 	atomic_t		ref;
2039 	/*
2040 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
2041 	 * for a single CPU.
2042 	 */
2043 	unsigned long		capacity;
2044 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
2045 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
2046 	unsigned long		next_update;
2047 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
2048 
2049 	int			id;
2050 
2051 	unsigned long		cpumask[];		/* Balance mask */
2052 };
2053 
2054 struct sched_group {
2055 	struct sched_group	*next;			/* Must be a circular list */
2056 	atomic_t		ref;
2057 
2058 	unsigned int		group_weight;
2059 	unsigned int		cores;
2060 	struct sched_group_capacity *sgc;
2061 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
2062 	int			flags;
2063 
2064 	/*
2065 	 * The CPUs this group covers.
2066 	 *
2067 	 * NOTE: this field is variable length. (Allocated dynamically
2068 	 * by attaching extra space to the end of the structure,
2069 	 * depending on how many CPUs the kernel has booted up with)
2070 	 */
2071 	unsigned long		cpumask[];
2072 };
2073 
2074 static inline struct cpumask *sched_group_span(struct sched_group *sg)
2075 {
2076 	return to_cpumask(sg->cpumask);
2077 }
2078 
2079 /*
2080  * See build_balance_mask().
2081  */
2082 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
2083 {
2084 	return to_cpumask(sg->sgc->cpumask);
2085 }
2086 
2087 extern int group_balance_cpu(struct sched_group *sg);
2088 
2089 extern void update_sched_domain_debugfs(void);
2090 extern void dirty_sched_domain_sysctl(int cpu);
2091 
2092 extern int sched_update_scaling(void);
2093 
2094 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
2095 {
2096 	if (!p->user_cpus_ptr)
2097 		return cpu_possible_mask; /* &init_task.cpus_mask */
2098 	return p->user_cpus_ptr;
2099 }
2100 
2101 #ifdef CONFIG_CGROUP_SCHED
2102 
2103 /*
2104  * Return the group to which this tasks belongs.
2105  *
2106  * We cannot use task_css() and friends because the cgroup subsystem
2107  * changes that value before the cgroup_subsys::attach() method is called,
2108  * therefore we cannot pin it and might observe the wrong value.
2109  *
2110  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2111  * core changes this before calling sched_move_task().
2112  *
2113  * Instead we use a 'copy' which is updated from sched_move_task() while
2114  * holding both task_struct::pi_lock and rq::lock.
2115  */
2116 static inline struct task_group *task_group(struct task_struct *p)
2117 {
2118 	return p->sched_task_group;
2119 }
2120 
2121 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2122 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2123 {
2124 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2125 	struct task_group *tg = task_group(p);
2126 #endif
2127 
2128 #ifdef CONFIG_FAIR_GROUP_SCHED
2129 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2130 	p->se.cfs_rq = tg->cfs_rq[cpu];
2131 	p->se.parent = tg->se[cpu];
2132 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2133 #endif
2134 
2135 #ifdef CONFIG_RT_GROUP_SCHED
2136 	/*
2137 	 * p->rt.rt_rq is NULL initially and it is easier to assign
2138 	 * root_task_group's rt_rq than switching in rt_rq_of_se()
2139 	 * Clobbers tg(!)
2140 	 */
2141 	if (!rt_group_sched_enabled())
2142 		tg = &root_task_group;
2143 	p->rt.rt_rq  = tg->rt_rq[cpu];
2144 	p->rt.parent = tg->rt_se[cpu];
2145 #endif /* CONFIG_RT_GROUP_SCHED */
2146 }
2147 
2148 #else /* !CONFIG_CGROUP_SCHED: */
2149 
2150 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2151 
2152 static inline struct task_group *task_group(struct task_struct *p)
2153 {
2154 	return NULL;
2155 }
2156 
2157 #endif /* !CONFIG_CGROUP_SCHED */
2158 
2159 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2160 {
2161 	set_task_rq(p, cpu);
2162 #ifdef CONFIG_SMP
2163 	/*
2164 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2165 	 * successfully executed on another CPU. We must ensure that updates of
2166 	 * per-task data have been completed by this moment.
2167 	 */
2168 	smp_wmb();
2169 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2170 	p->wake_cpu = cpu;
2171 #endif /* CONFIG_SMP */
2172 }
2173 
2174 /*
2175  * Tunables:
2176  */
2177 
2178 #define SCHED_FEAT(name, enabled)	\
2179 	__SCHED_FEAT_##name ,
2180 
2181 enum {
2182 #include "features.h"
2183 	__SCHED_FEAT_NR,
2184 };
2185 
2186 #undef SCHED_FEAT
2187 
2188 /*
2189  * To support run-time toggling of sched features, all the translation units
2190  * (but core.c) reference the sysctl_sched_features defined in core.c.
2191  */
2192 extern __read_mostly unsigned int sysctl_sched_features;
2193 
2194 #ifdef CONFIG_JUMP_LABEL
2195 
2196 #define SCHED_FEAT(name, enabled)					\
2197 static __always_inline bool static_branch_##name(struct static_key *key) \
2198 {									\
2199 	return static_key_##enabled(key);				\
2200 }
2201 
2202 #include "features.h"
2203 #undef SCHED_FEAT
2204 
2205 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2206 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2207 
2208 #else /* !CONFIG_JUMP_LABEL: */
2209 
2210 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2211 
2212 #endif /* !CONFIG_JUMP_LABEL */
2213 
2214 extern struct static_key_false sched_numa_balancing;
2215 extern struct static_key_false sched_schedstats;
2216 
2217 static inline u64 global_rt_period(void)
2218 {
2219 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2220 }
2221 
2222 static inline u64 global_rt_runtime(void)
2223 {
2224 	if (sysctl_sched_rt_runtime < 0)
2225 		return RUNTIME_INF;
2226 
2227 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2228 }
2229 
2230 /*
2231  * Is p the current execution context?
2232  */
2233 static inline int task_current(struct rq *rq, struct task_struct *p)
2234 {
2235 	return rq->curr == p;
2236 }
2237 
2238 /*
2239  * Is p the current scheduling context?
2240  *
2241  * Note that it might be the current execution context at the same time if
2242  * rq->curr == rq->donor == p.
2243  */
2244 static inline int task_current_donor(struct rq *rq, struct task_struct *p)
2245 {
2246 	return rq->donor == p;
2247 }
2248 
2249 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2250 {
2251 	return p->on_cpu;
2252 }
2253 
2254 static inline int task_on_rq_queued(struct task_struct *p)
2255 {
2256 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED;
2257 }
2258 
2259 static inline int task_on_rq_migrating(struct task_struct *p)
2260 {
2261 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2262 }
2263 
2264 /* Wake flags. The first three directly map to some SD flag value */
2265 #define WF_EXEC			0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2266 #define WF_FORK			0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2267 #define WF_TTWU			0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2268 
2269 #define WF_SYNC			0x10 /* Waker goes to sleep after wakeup */
2270 #define WF_MIGRATED		0x20 /* Internal use, task got migrated */
2271 #define WF_CURRENT_CPU		0x40 /* Prefer to move the wakee to the current CPU. */
2272 #define WF_RQ_SELECTED		0x80 /* ->select_task_rq() was called */
2273 
2274 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2275 static_assert(WF_FORK == SD_BALANCE_FORK);
2276 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2277 
2278 /*
2279  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2280  * of tasks with abnormal "nice" values across CPUs the contribution that
2281  * each task makes to its run queue's load is weighted according to its
2282  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2283  * scaled version of the new time slice allocation that they receive on time
2284  * slice expiry etc.
2285  */
2286 
2287 #define WEIGHT_IDLEPRIO		3
2288 #define WMULT_IDLEPRIO		1431655765
2289 
2290 extern const int		sched_prio_to_weight[40];
2291 extern const u32		sched_prio_to_wmult[40];
2292 
2293 /*
2294  * {de,en}queue flags:
2295  *
2296  * DEQUEUE_SLEEP  - task is no longer runnable
2297  * ENQUEUE_WAKEUP - task just became runnable
2298  *
2299  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2300  *                are in a known state which allows modification. Such pairs
2301  *                should preserve as much state as possible.
2302  *
2303  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2304  *        in the runqueue.
2305  *
2306  * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2307  *
2308  * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2309  *
2310  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2311  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2312  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2313  * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called
2314  *
2315  */
2316 
2317 #define DEQUEUE_SLEEP		0x01 /* Matches ENQUEUE_WAKEUP */
2318 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2319 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2320 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2321 #define DEQUEUE_SPECIAL		0x10
2322 #define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
2323 #define DEQUEUE_DELAYED		0x200 /* Matches ENQUEUE_DELAYED */
2324 
2325 #define ENQUEUE_WAKEUP		0x01
2326 #define ENQUEUE_RESTORE		0x02
2327 #define ENQUEUE_MOVE		0x04
2328 #define ENQUEUE_NOCLOCK		0x08
2329 
2330 #define ENQUEUE_HEAD		0x10
2331 #define ENQUEUE_REPLENISH	0x20
2332 #define ENQUEUE_MIGRATED	0x40
2333 #define ENQUEUE_INITIAL		0x80
2334 #define ENQUEUE_MIGRATING	0x100
2335 #define ENQUEUE_DELAYED		0x200
2336 #define ENQUEUE_RQ_SELECTED	0x400
2337 
2338 #define RETRY_TASK		((void *)-1UL)
2339 
2340 struct affinity_context {
2341 	const struct cpumask	*new_mask;
2342 	struct cpumask		*user_mask;
2343 	unsigned int		flags;
2344 };
2345 
2346 extern s64 update_curr_common(struct rq *rq);
2347 
2348 struct sched_class {
2349 
2350 #ifdef CONFIG_UCLAMP_TASK
2351 	int uclamp_enabled;
2352 #endif
2353 
2354 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2355 	bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2356 	void (*yield_task)   (struct rq *rq);
2357 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2358 
2359 	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2360 
2361 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2362 	struct task_struct *(*pick_task)(struct rq *rq);
2363 	/*
2364 	 * Optional! When implemented pick_next_task() should be equivalent to:
2365 	 *
2366 	 *   next = pick_task();
2367 	 *   if (next) {
2368 	 *       put_prev_task(prev);
2369 	 *       set_next_task_first(next);
2370 	 *   }
2371 	 */
2372 	struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev);
2373 
2374 	void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
2375 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2376 
2377 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2378 
2379 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2380 
2381 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2382 
2383 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2384 
2385 	void (*rq_online)(struct rq *rq);
2386 	void (*rq_offline)(struct rq *rq);
2387 
2388 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2389 
2390 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2391 	void (*task_fork)(struct task_struct *p);
2392 	void (*task_dead)(struct task_struct *p);
2393 
2394 	/*
2395 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2396 	 * cannot assume the switched_from/switched_to pair is serialized by
2397 	 * rq->lock. They are however serialized by p->pi_lock.
2398 	 */
2399 	void (*switching_to) (struct rq *this_rq, struct task_struct *task);
2400 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2401 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2402 	void (*reweight_task)(struct rq *this_rq, struct task_struct *task,
2403 			      const struct load_weight *lw);
2404 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2405 			      int oldprio);
2406 
2407 	unsigned int (*get_rr_interval)(struct rq *rq,
2408 					struct task_struct *task);
2409 
2410 	void (*update_curr)(struct rq *rq);
2411 
2412 #ifdef CONFIG_FAIR_GROUP_SCHED
2413 	void (*task_change_group)(struct task_struct *p);
2414 #endif
2415 
2416 #ifdef CONFIG_SCHED_CORE
2417 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2418 #endif
2419 };
2420 
2421 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2422 {
2423 	WARN_ON_ONCE(rq->donor != prev);
2424 	prev->sched_class->put_prev_task(rq, prev, NULL);
2425 }
2426 
2427 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2428 {
2429 	next->sched_class->set_next_task(rq, next, false);
2430 }
2431 
2432 static inline void
2433 __put_prev_set_next_dl_server(struct rq *rq,
2434 			      struct task_struct *prev,
2435 			      struct task_struct *next)
2436 {
2437 	prev->dl_server = NULL;
2438 	next->dl_server = rq->dl_server;
2439 	rq->dl_server = NULL;
2440 }
2441 
2442 static inline void put_prev_set_next_task(struct rq *rq,
2443 					  struct task_struct *prev,
2444 					  struct task_struct *next)
2445 {
2446 	WARN_ON_ONCE(rq->curr != prev);
2447 
2448 	__put_prev_set_next_dl_server(rq, prev, next);
2449 
2450 	if (next == prev)
2451 		return;
2452 
2453 	prev->sched_class->put_prev_task(rq, prev, next);
2454 	next->sched_class->set_next_task(rq, next, true);
2455 }
2456 
2457 /*
2458  * Helper to define a sched_class instance; each one is placed in a separate
2459  * section which is ordered by the linker script:
2460  *
2461  *   include/asm-generic/vmlinux.lds.h
2462  *
2463  * *CAREFUL* they are laid out in *REVERSE* order!!!
2464  *
2465  * Also enforce alignment on the instance, not the type, to guarantee layout.
2466  */
2467 #define DEFINE_SCHED_CLASS(name) \
2468 const struct sched_class name##_sched_class \
2469 	__aligned(__alignof__(struct sched_class)) \
2470 	__section("__" #name "_sched_class")
2471 
2472 /* Defined in include/asm-generic/vmlinux.lds.h */
2473 extern struct sched_class __sched_class_highest[];
2474 extern struct sched_class __sched_class_lowest[];
2475 
2476 extern const struct sched_class stop_sched_class;
2477 extern const struct sched_class dl_sched_class;
2478 extern const struct sched_class rt_sched_class;
2479 extern const struct sched_class fair_sched_class;
2480 extern const struct sched_class idle_sched_class;
2481 
2482 /*
2483  * Iterate only active classes. SCX can take over all fair tasks or be
2484  * completely disabled. If the former, skip fair. If the latter, skip SCX.
2485  */
2486 static inline const struct sched_class *next_active_class(const struct sched_class *class)
2487 {
2488 	class++;
2489 #ifdef CONFIG_SCHED_CLASS_EXT
2490 	if (scx_switched_all() && class == &fair_sched_class)
2491 		class++;
2492 	if (!scx_enabled() && class == &ext_sched_class)
2493 		class++;
2494 #endif
2495 	return class;
2496 }
2497 
2498 #define for_class_range(class, _from, _to) \
2499 	for (class = (_from); class < (_to); class++)
2500 
2501 #define for_each_class(class) \
2502 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2503 
2504 #define for_active_class_range(class, _from, _to)				\
2505 	for (class = (_from); class != (_to); class = next_active_class(class))
2506 
2507 #define for_each_active_class(class)						\
2508 	for_active_class_range(class, __sched_class_highest, __sched_class_lowest)
2509 
2510 #define sched_class_above(_a, _b)	((_a) < (_b))
2511 
2512 static inline bool sched_stop_runnable(struct rq *rq)
2513 {
2514 	return rq->stop && task_on_rq_queued(rq->stop);
2515 }
2516 
2517 static inline bool sched_dl_runnable(struct rq *rq)
2518 {
2519 	return rq->dl.dl_nr_running > 0;
2520 }
2521 
2522 static inline bool sched_rt_runnable(struct rq *rq)
2523 {
2524 	return rq->rt.rt_queued > 0;
2525 }
2526 
2527 static inline bool sched_fair_runnable(struct rq *rq)
2528 {
2529 	return rq->cfs.nr_queued > 0;
2530 }
2531 
2532 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2533 extern struct task_struct *pick_task_idle(struct rq *rq);
2534 
2535 #define SCA_CHECK		0x01
2536 #define SCA_MIGRATE_DISABLE	0x02
2537 #define SCA_MIGRATE_ENABLE	0x04
2538 #define SCA_USER		0x08
2539 
2540 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2541 
2542 extern void sched_balance_trigger(struct rq *rq);
2543 
2544 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
2545 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2546 
2547 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2548 {
2549 	/* When not in the task's cpumask, no point in looking further. */
2550 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2551 		return false;
2552 
2553 	/* Can @cpu run a user thread? */
2554 	if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p))
2555 		return false;
2556 
2557 	return true;
2558 }
2559 
2560 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2561 {
2562 	/*
2563 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2564 	 */
2565 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2566 
2567 	return kmalloc_node(size, GFP_KERNEL, node);
2568 }
2569 
2570 static inline struct task_struct *get_push_task(struct rq *rq)
2571 {
2572 	struct task_struct *p = rq->donor;
2573 
2574 	lockdep_assert_rq_held(rq);
2575 
2576 	if (rq->push_busy)
2577 		return NULL;
2578 
2579 	if (p->nr_cpus_allowed == 1)
2580 		return NULL;
2581 
2582 	if (p->migration_disabled)
2583 		return NULL;
2584 
2585 	rq->push_busy = true;
2586 	return get_task_struct(p);
2587 }
2588 
2589 extern int push_cpu_stop(void *arg);
2590 
2591 #ifdef CONFIG_CPU_IDLE
2592 
2593 static inline void idle_set_state(struct rq *rq,
2594 				  struct cpuidle_state *idle_state)
2595 {
2596 	rq->idle_state = idle_state;
2597 }
2598 
2599 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2600 {
2601 	WARN_ON_ONCE(!rcu_read_lock_held());
2602 
2603 	return rq->idle_state;
2604 }
2605 
2606 #else /* !CONFIG_CPU_IDLE: */
2607 
2608 static inline void idle_set_state(struct rq *rq,
2609 				  struct cpuidle_state *idle_state)
2610 {
2611 }
2612 
2613 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2614 {
2615 	return NULL;
2616 }
2617 
2618 #endif /* !CONFIG_CPU_IDLE */
2619 
2620 extern void schedule_idle(void);
2621 asmlinkage void schedule_user(void);
2622 
2623 extern void sysrq_sched_debug_show(void);
2624 extern void sched_init_granularity(void);
2625 extern void update_max_interval(void);
2626 
2627 extern void init_sched_dl_class(void);
2628 extern void init_sched_rt_class(void);
2629 extern void init_sched_fair_class(void);
2630 
2631 extern void resched_curr(struct rq *rq);
2632 extern void resched_curr_lazy(struct rq *rq);
2633 extern void resched_cpu(int cpu);
2634 
2635 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2636 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2637 
2638 extern void init_dl_entity(struct sched_dl_entity *dl_se);
2639 
2640 #define BW_SHIFT		20
2641 #define BW_UNIT			(1 << BW_SHIFT)
2642 #define RATIO_SHIFT		8
2643 #define MAX_BW_BITS		(64 - BW_SHIFT)
2644 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2645 
2646 extern unsigned long to_ratio(u64 period, u64 runtime);
2647 
2648 extern void init_entity_runnable_average(struct sched_entity *se);
2649 extern void post_init_entity_util_avg(struct task_struct *p);
2650 
2651 #ifdef CONFIG_NO_HZ_FULL
2652 extern bool sched_can_stop_tick(struct rq *rq);
2653 extern int __init sched_tick_offload_init(void);
2654 
2655 /*
2656  * Tick may be needed by tasks in the runqueue depending on their policy and
2657  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2658  * nohz mode if necessary.
2659  */
2660 static inline void sched_update_tick_dependency(struct rq *rq)
2661 {
2662 	int cpu = cpu_of(rq);
2663 
2664 	if (!tick_nohz_full_cpu(cpu))
2665 		return;
2666 
2667 	if (sched_can_stop_tick(rq))
2668 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2669 	else
2670 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2671 }
2672 #else /* !CONFIG_NO_HZ_FULL: */
2673 static inline int sched_tick_offload_init(void) { return 0; }
2674 static inline void sched_update_tick_dependency(struct rq *rq) { }
2675 #endif /* !CONFIG_NO_HZ_FULL */
2676 
2677 static inline void add_nr_running(struct rq *rq, unsigned count)
2678 {
2679 	unsigned prev_nr = rq->nr_running;
2680 
2681 	rq->nr_running = prev_nr + count;
2682 	if (trace_sched_update_nr_running_tp_enabled()) {
2683 		call_trace_sched_update_nr_running(rq, count);
2684 	}
2685 
2686 	if (prev_nr < 2 && rq->nr_running >= 2)
2687 		set_rd_overloaded(rq->rd, 1);
2688 
2689 	sched_update_tick_dependency(rq);
2690 }
2691 
2692 static inline void sub_nr_running(struct rq *rq, unsigned count)
2693 {
2694 	rq->nr_running -= count;
2695 	if (trace_sched_update_nr_running_tp_enabled()) {
2696 		call_trace_sched_update_nr_running(rq, -count);
2697 	}
2698 
2699 	/* Check if we still need preemption */
2700 	sched_update_tick_dependency(rq);
2701 }
2702 
2703 static inline void __block_task(struct rq *rq, struct task_struct *p)
2704 {
2705 	if (p->sched_contributes_to_load)
2706 		rq->nr_uninterruptible++;
2707 
2708 	if (p->in_iowait) {
2709 		atomic_inc(&rq->nr_iowait);
2710 		delayacct_blkio_start();
2711 	}
2712 
2713 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2714 
2715 	/*
2716 	 * The moment this write goes through, ttwu() can swoop in and migrate
2717 	 * this task, rendering our rq->__lock ineffective.
2718 	 *
2719 	 * __schedule()				try_to_wake_up()
2720 	 *   LOCK rq->__lock			  LOCK p->pi_lock
2721 	 *   pick_next_task()
2722 	 *     pick_next_task_fair()
2723 	 *       pick_next_entity()
2724 	 *         dequeue_entities()
2725 	 *           __block_task()
2726 	 *             RELEASE p->on_rq = 0	  if (p->on_rq && ...)
2727 	 *					    break;
2728 	 *
2729 	 *					  ACQUIRE (after ctrl-dep)
2730 	 *
2731 	 *					  cpu = select_task_rq();
2732 	 *					  set_task_cpu(p, cpu);
2733 	 *					  ttwu_queue()
2734 	 *					    ttwu_do_activate()
2735 	 *					      LOCK rq->__lock
2736 	 *					      activate_task()
2737 	 *					        STORE p->on_rq = 1
2738 	 *   UNLOCK rq->__lock
2739 	 *
2740 	 * Callers must ensure to not reference @p after this -- we no longer
2741 	 * own it.
2742 	 */
2743 	smp_store_release(&p->on_rq, 0);
2744 }
2745 
2746 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2747 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2748 
2749 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2750 
2751 #ifdef CONFIG_PREEMPT_RT
2752 # define SCHED_NR_MIGRATE_BREAK 8
2753 #else
2754 # define SCHED_NR_MIGRATE_BREAK 32
2755 #endif
2756 
2757 extern __read_mostly unsigned int sysctl_sched_nr_migrate;
2758 extern __read_mostly unsigned int sysctl_sched_migration_cost;
2759 
2760 extern unsigned int sysctl_sched_base_slice;
2761 
2762 extern int sysctl_resched_latency_warn_ms;
2763 extern int sysctl_resched_latency_warn_once;
2764 
2765 extern unsigned int sysctl_sched_tunable_scaling;
2766 
2767 extern unsigned int sysctl_numa_balancing_scan_delay;
2768 extern unsigned int sysctl_numa_balancing_scan_period_min;
2769 extern unsigned int sysctl_numa_balancing_scan_period_max;
2770 extern unsigned int sysctl_numa_balancing_scan_size;
2771 extern unsigned int sysctl_numa_balancing_hot_threshold;
2772 
2773 #ifdef CONFIG_SCHED_HRTICK
2774 
2775 /*
2776  * Use hrtick when:
2777  *  - enabled by features
2778  *  - hrtimer is actually high res
2779  */
2780 static inline int hrtick_enabled(struct rq *rq)
2781 {
2782 	if (!cpu_active(cpu_of(rq)))
2783 		return 0;
2784 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2785 }
2786 
2787 static inline int hrtick_enabled_fair(struct rq *rq)
2788 {
2789 	if (!sched_feat(HRTICK))
2790 		return 0;
2791 	return hrtick_enabled(rq);
2792 }
2793 
2794 static inline int hrtick_enabled_dl(struct rq *rq)
2795 {
2796 	if (!sched_feat(HRTICK_DL))
2797 		return 0;
2798 	return hrtick_enabled(rq);
2799 }
2800 
2801 extern void hrtick_start(struct rq *rq, u64 delay);
2802 
2803 #else /* !CONFIG_SCHED_HRTICK: */
2804 
2805 static inline int hrtick_enabled_fair(struct rq *rq)
2806 {
2807 	return 0;
2808 }
2809 
2810 static inline int hrtick_enabled_dl(struct rq *rq)
2811 {
2812 	return 0;
2813 }
2814 
2815 static inline int hrtick_enabled(struct rq *rq)
2816 {
2817 	return 0;
2818 }
2819 
2820 #endif /* !CONFIG_SCHED_HRTICK */
2821 
2822 #ifndef arch_scale_freq_tick
2823 static __always_inline void arch_scale_freq_tick(void) { }
2824 #endif
2825 
2826 #ifndef arch_scale_freq_capacity
2827 /**
2828  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2829  * @cpu: the CPU in question.
2830  *
2831  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2832  *
2833  *     f_curr
2834  *     ------ * SCHED_CAPACITY_SCALE
2835  *     f_max
2836  */
2837 static __always_inline
2838 unsigned long arch_scale_freq_capacity(int cpu)
2839 {
2840 	return SCHED_CAPACITY_SCALE;
2841 }
2842 #endif
2843 
2844 /*
2845  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2846  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2847  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2848  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2849  */
2850 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2851 {
2852 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2853 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2854 }
2855 
2856 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)				\
2857 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__)			\
2858 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2)	\
2859 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;			\
2860   _lock; return _t; }
2861 
2862 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2863 {
2864 #ifdef CONFIG_SCHED_CORE
2865 	/*
2866 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2867 	 * order by core-id first and cpu-id second.
2868 	 *
2869 	 * Notably:
2870 	 *
2871 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2872 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2873 	 *
2874 	 * when only cpu-id is considered.
2875 	 */
2876 	if (rq1->core->cpu < rq2->core->cpu)
2877 		return true;
2878 	if (rq1->core->cpu > rq2->core->cpu)
2879 		return false;
2880 
2881 	/*
2882 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2883 	 */
2884 #endif /* CONFIG_SCHED_CORE */
2885 	return rq1->cpu < rq2->cpu;
2886 }
2887 
2888 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2889 
2890 #ifdef CONFIG_PREEMPTION
2891 
2892 /*
2893  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2894  * way at the expense of forcing extra atomic operations in all
2895  * invocations.  This assures that the double_lock is acquired using the
2896  * same underlying policy as the spinlock_t on this architecture, which
2897  * reduces latency compared to the unfair variant below.  However, it
2898  * also adds more overhead and therefore may reduce throughput.
2899  */
2900 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2901 	__releases(this_rq->lock)
2902 	__acquires(busiest->lock)
2903 	__acquires(this_rq->lock)
2904 {
2905 	raw_spin_rq_unlock(this_rq);
2906 	double_rq_lock(this_rq, busiest);
2907 
2908 	return 1;
2909 }
2910 
2911 #else /* !CONFIG_PREEMPTION: */
2912 /*
2913  * Unfair double_lock_balance: Optimizes throughput at the expense of
2914  * latency by eliminating extra atomic operations when the locks are
2915  * already in proper order on entry.  This favors lower CPU-ids and will
2916  * grant the double lock to lower CPUs over higher ids under contention,
2917  * regardless of entry order into the function.
2918  */
2919 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2920 	__releases(this_rq->lock)
2921 	__acquires(busiest->lock)
2922 	__acquires(this_rq->lock)
2923 {
2924 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2925 	    likely(raw_spin_rq_trylock(busiest))) {
2926 		double_rq_clock_clear_update(this_rq, busiest);
2927 		return 0;
2928 	}
2929 
2930 	if (rq_order_less(this_rq, busiest)) {
2931 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2932 		double_rq_clock_clear_update(this_rq, busiest);
2933 		return 0;
2934 	}
2935 
2936 	raw_spin_rq_unlock(this_rq);
2937 	double_rq_lock(this_rq, busiest);
2938 
2939 	return 1;
2940 }
2941 
2942 #endif /* !CONFIG_PREEMPTION */
2943 
2944 /*
2945  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2946  */
2947 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2948 {
2949 	lockdep_assert_irqs_disabled();
2950 
2951 	return _double_lock_balance(this_rq, busiest);
2952 }
2953 
2954 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2955 	__releases(busiest->lock)
2956 {
2957 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2958 		raw_spin_rq_unlock(busiest);
2959 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2960 }
2961 
2962 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2963 {
2964 	if (l1 > l2)
2965 		swap(l1, l2);
2966 
2967 	spin_lock(l1);
2968 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2969 }
2970 
2971 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2972 {
2973 	if (l1 > l2)
2974 		swap(l1, l2);
2975 
2976 	spin_lock_irq(l1);
2977 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2978 }
2979 
2980 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2981 {
2982 	if (l1 > l2)
2983 		swap(l1, l2);
2984 
2985 	raw_spin_lock(l1);
2986 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2987 }
2988 
2989 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2990 {
2991 	raw_spin_unlock(l1);
2992 	raw_spin_unlock(l2);
2993 }
2994 
2995 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2996 		    double_raw_lock(_T->lock, _T->lock2),
2997 		    double_raw_unlock(_T->lock, _T->lock2))
2998 
2999 /*
3000  * double_rq_unlock - safely unlock two runqueues
3001  *
3002  * Note this does not restore interrupts like task_rq_unlock,
3003  * you need to do so manually after calling.
3004  */
3005 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3006 	__releases(rq1->lock)
3007 	__releases(rq2->lock)
3008 {
3009 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
3010 		raw_spin_rq_unlock(rq2);
3011 	else
3012 		__release(rq2->lock);
3013 	raw_spin_rq_unlock(rq1);
3014 }
3015 
3016 extern void set_rq_online (struct rq *rq);
3017 extern void set_rq_offline(struct rq *rq);
3018 
3019 extern bool sched_smp_initialized;
3020 
3021 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
3022 		    double_rq_lock(_T->lock, _T->lock2),
3023 		    double_rq_unlock(_T->lock, _T->lock2))
3024 
3025 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
3026 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
3027 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
3028 
3029 extern bool sched_debug_verbose;
3030 
3031 extern void print_cfs_stats(struct seq_file *m, int cpu);
3032 extern void print_rt_stats(struct seq_file *m, int cpu);
3033 extern void print_dl_stats(struct seq_file *m, int cpu);
3034 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
3035 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
3036 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
3037 
3038 extern void resched_latency_warn(int cpu, u64 latency);
3039 
3040 #ifdef CONFIG_NUMA_BALANCING
3041 extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
3042 extern void
3043 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
3044 		 unsigned long tpf, unsigned long gsf, unsigned long gpf);
3045 #endif /* CONFIG_NUMA_BALANCING */
3046 
3047 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
3048 extern void init_rt_rq(struct rt_rq *rt_rq);
3049 extern void init_dl_rq(struct dl_rq *dl_rq);
3050 
3051 extern void cfs_bandwidth_usage_inc(void);
3052 extern void cfs_bandwidth_usage_dec(void);
3053 
3054 #ifdef CONFIG_NO_HZ_COMMON
3055 
3056 #define NOHZ_BALANCE_KICK_BIT	0
3057 #define NOHZ_STATS_KICK_BIT	1
3058 #define NOHZ_NEWILB_KICK_BIT	2
3059 #define NOHZ_NEXT_KICK_BIT	3
3060 
3061 /* Run sched_balance_domains() */
3062 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
3063 /* Update blocked load */
3064 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
3065 /* Update blocked load when entering idle */
3066 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
3067 /* Update nohz.next_balance */
3068 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
3069 
3070 #define NOHZ_KICK_MASK		(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
3071 
3072 #define nohz_flags(cpu)		(&cpu_rq(cpu)->nohz_flags)
3073 
3074 extern void nohz_balance_exit_idle(struct rq *rq);
3075 #else /* !CONFIG_NO_HZ_COMMON: */
3076 static inline void nohz_balance_exit_idle(struct rq *rq) { }
3077 #endif /* !CONFIG_NO_HZ_COMMON */
3078 
3079 #ifdef CONFIG_NO_HZ_COMMON
3080 extern void nohz_run_idle_balance(int cpu);
3081 #else
3082 static inline void nohz_run_idle_balance(int cpu) { }
3083 #endif
3084 
3085 #include "stats.h"
3086 
3087 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
3088 
3089 extern void __sched_core_account_forceidle(struct rq *rq);
3090 
3091 static inline void sched_core_account_forceidle(struct rq *rq)
3092 {
3093 	if (schedstat_enabled())
3094 		__sched_core_account_forceidle(rq);
3095 }
3096 
3097 extern void __sched_core_tick(struct rq *rq);
3098 
3099 static inline void sched_core_tick(struct rq *rq)
3100 {
3101 	if (sched_core_enabled(rq) && schedstat_enabled())
3102 		__sched_core_tick(rq);
3103 }
3104 
3105 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
3106 
3107 static inline void sched_core_account_forceidle(struct rq *rq) { }
3108 
3109 static inline void sched_core_tick(struct rq *rq) { }
3110 
3111 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
3112 
3113 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3114 
3115 struct irqtime {
3116 	u64			total;
3117 	u64			tick_delta;
3118 	u64			irq_start_time;
3119 	struct u64_stats_sync	sync;
3120 };
3121 
3122 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
3123 extern int sched_clock_irqtime;
3124 
3125 static inline int irqtime_enabled(void)
3126 {
3127 	return sched_clock_irqtime;
3128 }
3129 
3130 /*
3131  * Returns the irqtime minus the softirq time computed by ksoftirqd.
3132  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
3133  * and never move forward.
3134  */
3135 static inline u64 irq_time_read(int cpu)
3136 {
3137 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
3138 	unsigned int seq;
3139 	u64 total;
3140 
3141 	do {
3142 		seq = __u64_stats_fetch_begin(&irqtime->sync);
3143 		total = irqtime->total;
3144 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
3145 
3146 	return total;
3147 }
3148 
3149 #else /* !CONFIG_IRQ_TIME_ACCOUNTING: */
3150 
3151 static inline int irqtime_enabled(void)
3152 {
3153 	return 0;
3154 }
3155 
3156 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
3157 
3158 #ifdef CONFIG_CPU_FREQ
3159 
3160 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
3161 
3162 /**
3163  * cpufreq_update_util - Take a note about CPU utilization changes.
3164  * @rq: Runqueue to carry out the update for.
3165  * @flags: Update reason flags.
3166  *
3167  * This function is called by the scheduler on the CPU whose utilization is
3168  * being updated.
3169  *
3170  * It can only be called from RCU-sched read-side critical sections.
3171  *
3172  * The way cpufreq is currently arranged requires it to evaluate the CPU
3173  * performance state (frequency/voltage) on a regular basis to prevent it from
3174  * being stuck in a completely inadequate performance level for too long.
3175  * That is not guaranteed to happen if the updates are only triggered from CFS
3176  * and DL, though, because they may not be coming in if only RT tasks are
3177  * active all the time (or there are RT tasks only).
3178  *
3179  * As a workaround for that issue, this function is called periodically by the
3180  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
3181  * but that really is a band-aid.  Going forward it should be replaced with
3182  * solutions targeted more specifically at RT tasks.
3183  */
3184 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
3185 {
3186 	struct update_util_data *data;
3187 
3188 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
3189 						  cpu_of(rq)));
3190 	if (data)
3191 		data->func(data, rq_clock(rq), flags);
3192 }
3193 #else /* !CONFIG_CPU_FREQ: */
3194 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
3195 #endif /* !CONFIG_CPU_FREQ */
3196 
3197 #ifdef arch_scale_freq_capacity
3198 # ifndef arch_scale_freq_invariant
3199 #  define arch_scale_freq_invariant()	true
3200 # endif
3201 #else
3202 # define arch_scale_freq_invariant()	false
3203 #endif
3204 
3205 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3206 				 unsigned long *min,
3207 				 unsigned long *max);
3208 
3209 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3210 				 unsigned long min,
3211 				 unsigned long max);
3212 
3213 
3214 /*
3215  * Verify the fitness of task @p to run on @cpu taking into account the
3216  * CPU original capacity and the runtime/deadline ratio of the task.
3217  *
3218  * The function will return true if the original capacity of @cpu is
3219  * greater than or equal to task's deadline density right shifted by
3220  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3221  */
3222 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3223 {
3224 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3225 
3226 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3227 }
3228 
3229 static inline unsigned long cpu_bw_dl(struct rq *rq)
3230 {
3231 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3232 }
3233 
3234 static inline unsigned long cpu_util_dl(struct rq *rq)
3235 {
3236 	return READ_ONCE(rq->avg_dl.util_avg);
3237 }
3238 
3239 
3240 extern unsigned long cpu_util_cfs(int cpu);
3241 extern unsigned long cpu_util_cfs_boost(int cpu);
3242 
3243 static inline unsigned long cpu_util_rt(struct rq *rq)
3244 {
3245 	return READ_ONCE(rq->avg_rt.util_avg);
3246 }
3247 
3248 #ifdef CONFIG_UCLAMP_TASK
3249 
3250 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3251 
3252 /*
3253  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3254  * by default in the fast path and only gets turned on once userspace performs
3255  * an operation that requires it.
3256  *
3257  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3258  * hence is active.
3259  */
3260 static inline bool uclamp_is_used(void)
3261 {
3262 	return static_branch_likely(&sched_uclamp_used);
3263 }
3264 
3265 /*
3266  * Enabling static branches would get the cpus_read_lock(),
3267  * check whether uclamp_is_used before enable it to avoid always
3268  * calling cpus_read_lock(). Because we never disable this
3269  * static key once enable it.
3270  */
3271 static inline void sched_uclamp_enable(void)
3272 {
3273 	if (!uclamp_is_used())
3274 		static_branch_enable(&sched_uclamp_used);
3275 }
3276 
3277 static inline unsigned long uclamp_rq_get(struct rq *rq,
3278 					  enum uclamp_id clamp_id)
3279 {
3280 	return READ_ONCE(rq->uclamp[clamp_id].value);
3281 }
3282 
3283 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3284 				 unsigned int value)
3285 {
3286 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3287 }
3288 
3289 static inline bool uclamp_rq_is_idle(struct rq *rq)
3290 {
3291 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3292 }
3293 
3294 /* Is the rq being capped/throttled by uclamp_max? */
3295 static inline bool uclamp_rq_is_capped(struct rq *rq)
3296 {
3297 	unsigned long rq_util;
3298 	unsigned long max_util;
3299 
3300 	if (!uclamp_is_used())
3301 		return false;
3302 
3303 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3304 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3305 
3306 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3307 }
3308 
3309 #define for_each_clamp_id(clamp_id) \
3310 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
3311 
3312 extern unsigned int sysctl_sched_uclamp_util_min_rt_default;
3313 
3314 
3315 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
3316 {
3317 	if (clamp_id == UCLAMP_MIN)
3318 		return 0;
3319 	return SCHED_CAPACITY_SCALE;
3320 }
3321 
3322 /* Integer rounded range for each bucket */
3323 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
3324 
3325 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
3326 {
3327 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
3328 }
3329 
3330 static inline void
3331 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
3332 {
3333 	uc_se->value = value;
3334 	uc_se->bucket_id = uclamp_bucket_id(value);
3335 	uc_se->user_defined = user_defined;
3336 }
3337 
3338 #else /* !CONFIG_UCLAMP_TASK: */
3339 
3340 static inline unsigned long
3341 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
3342 {
3343 	if (clamp_id == UCLAMP_MIN)
3344 		return 0;
3345 
3346 	return SCHED_CAPACITY_SCALE;
3347 }
3348 
3349 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3350 
3351 static inline bool uclamp_is_used(void)
3352 {
3353 	return false;
3354 }
3355 
3356 static inline void sched_uclamp_enable(void) {}
3357 
3358 static inline unsigned long
3359 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
3360 {
3361 	if (clamp_id == UCLAMP_MIN)
3362 		return 0;
3363 
3364 	return SCHED_CAPACITY_SCALE;
3365 }
3366 
3367 static inline void
3368 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
3369 {
3370 }
3371 
3372 static inline bool uclamp_rq_is_idle(struct rq *rq)
3373 {
3374 	return false;
3375 }
3376 
3377 #endif /* !CONFIG_UCLAMP_TASK */
3378 
3379 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3380 
3381 static inline unsigned long cpu_util_irq(struct rq *rq)
3382 {
3383 	return READ_ONCE(rq->avg_irq.util_avg);
3384 }
3385 
3386 static inline
3387 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3388 {
3389 	util *= (max - irq);
3390 	util /= max;
3391 
3392 	return util;
3393 
3394 }
3395 
3396 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */
3397 
3398 static inline unsigned long cpu_util_irq(struct rq *rq)
3399 {
3400 	return 0;
3401 }
3402 
3403 static inline
3404 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3405 {
3406 	return util;
3407 }
3408 
3409 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */
3410 
3411 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr);
3412 
3413 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3414 
3415 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3416 
3417 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3418 
3419 static inline bool sched_energy_enabled(void)
3420 {
3421 	return static_branch_unlikely(&sched_energy_present);
3422 }
3423 
3424 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */
3425 
3426 #define perf_domain_span(pd) NULL
3427 
3428 static inline bool sched_energy_enabled(void) { return false; }
3429 
3430 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3431 
3432 #ifdef CONFIG_MEMBARRIER
3433 
3434 /*
3435  * The scheduler provides memory barriers required by membarrier between:
3436  * - prior user-space memory accesses and store to rq->membarrier_state,
3437  * - store to rq->membarrier_state and following user-space memory accesses.
3438  * In the same way it provides those guarantees around store to rq->curr.
3439  */
3440 static inline void membarrier_switch_mm(struct rq *rq,
3441 					struct mm_struct *prev_mm,
3442 					struct mm_struct *next_mm)
3443 {
3444 	int membarrier_state;
3445 
3446 	if (prev_mm == next_mm)
3447 		return;
3448 
3449 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3450 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3451 		return;
3452 
3453 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3454 }
3455 
3456 #else /* !CONFIG_MEMBARRIER: */
3457 
3458 static inline void membarrier_switch_mm(struct rq *rq,
3459 					struct mm_struct *prev_mm,
3460 					struct mm_struct *next_mm)
3461 {
3462 }
3463 
3464 #endif /* !CONFIG_MEMBARRIER */
3465 
3466 static inline bool is_per_cpu_kthread(struct task_struct *p)
3467 {
3468 	if (!(p->flags & PF_KTHREAD))
3469 		return false;
3470 
3471 	if (p->nr_cpus_allowed != 1)
3472 		return false;
3473 
3474 	return true;
3475 }
3476 
3477 extern void swake_up_all_locked(struct swait_queue_head *q);
3478 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3479 
3480 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3481 
3482 #ifdef CONFIG_PREEMPT_DYNAMIC
3483 extern int preempt_dynamic_mode;
3484 extern int sched_dynamic_mode(const char *str);
3485 extern void sched_dynamic_update(int mode);
3486 #endif
3487 extern const char *preempt_modes[];
3488 
3489 #ifdef CONFIG_SCHED_MM_CID
3490 
3491 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3492 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3493 
3494 extern raw_spinlock_t cid_lock;
3495 extern int use_cid_lock;
3496 
3497 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3498 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3499 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3500 extern void init_sched_mm_cid(struct task_struct *t);
3501 
3502 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3503 {
3504 	if (cid < 0)
3505 		return;
3506 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3507 }
3508 
3509 /*
3510  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3511  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3512  * be held to transition to other states.
3513  *
3514  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3515  * consistent across CPUs, which prevents use of this_cpu_cmpxchg.
3516  */
3517 static inline void mm_cid_put_lazy(struct task_struct *t)
3518 {
3519 	struct mm_struct *mm = t->mm;
3520 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3521 	int cid;
3522 
3523 	lockdep_assert_irqs_disabled();
3524 	cid = __this_cpu_read(pcpu_cid->cid);
3525 	if (!mm_cid_is_lazy_put(cid) ||
3526 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3527 		return;
3528 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3529 }
3530 
3531 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3532 {
3533 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3534 	int cid, res;
3535 
3536 	lockdep_assert_irqs_disabled();
3537 	cid = __this_cpu_read(pcpu_cid->cid);
3538 	for (;;) {
3539 		if (mm_cid_is_unset(cid))
3540 			return MM_CID_UNSET;
3541 		/*
3542 		 * Attempt transition from valid or lazy-put to unset.
3543 		 */
3544 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3545 		if (res == cid)
3546 			break;
3547 		cid = res;
3548 	}
3549 	return cid;
3550 }
3551 
3552 static inline void mm_cid_put(struct mm_struct *mm)
3553 {
3554 	int cid;
3555 
3556 	lockdep_assert_irqs_disabled();
3557 	cid = mm_cid_pcpu_unset(mm);
3558 	if (cid == MM_CID_UNSET)
3559 		return;
3560 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3561 }
3562 
3563 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm)
3564 {
3565 	struct cpumask *cidmask = mm_cidmask(mm);
3566 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3567 	int cid, max_nr_cid, allowed_max_nr_cid;
3568 
3569 	/*
3570 	 * After shrinking the number of threads or reducing the number
3571 	 * of allowed cpus, reduce the value of max_nr_cid so expansion
3572 	 * of cid allocation will preserve cache locality if the number
3573 	 * of threads or allowed cpus increase again.
3574 	 */
3575 	max_nr_cid = atomic_read(&mm->max_nr_cid);
3576 	while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed),
3577 					   atomic_read(&mm->mm_users))),
3578 	       max_nr_cid > allowed_max_nr_cid) {
3579 		/* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */
3580 		if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) {
3581 			max_nr_cid = allowed_max_nr_cid;
3582 			break;
3583 		}
3584 	}
3585 	/* Try to re-use recent cid. This improves cache locality. */
3586 	cid = __this_cpu_read(pcpu_cid->recent_cid);
3587 	if (!mm_cid_is_unset(cid) && cid < max_nr_cid &&
3588 	    !cpumask_test_and_set_cpu(cid, cidmask))
3589 		return cid;
3590 	/*
3591 	 * Expand cid allocation if the maximum number of concurrency
3592 	 * IDs allocated (max_nr_cid) is below the number cpus allowed
3593 	 * and number of threads. Expanding cid allocation as much as
3594 	 * possible improves cache locality.
3595 	 */
3596 	cid = max_nr_cid;
3597 	while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) {
3598 		/* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */
3599 		if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1))
3600 			continue;
3601 		if (!cpumask_test_and_set_cpu(cid, cidmask))
3602 			return cid;
3603 	}
3604 	/*
3605 	 * Find the first available concurrency id.
3606 	 * Retry finding first zero bit if the mask is temporarily
3607 	 * filled. This only happens during concurrent remote-clear
3608 	 * which owns a cid without holding a rq lock.
3609 	 */
3610 	for (;;) {
3611 		cid = cpumask_first_zero(cidmask);
3612 		if (cid < READ_ONCE(mm->nr_cpus_allowed))
3613 			break;
3614 		cpu_relax();
3615 	}
3616 	if (cpumask_test_and_set_cpu(cid, cidmask))
3617 		return -1;
3618 
3619 	return cid;
3620 }
3621 
3622 /*
3623  * Save a snapshot of the current runqueue time of this cpu
3624  * with the per-cpu cid value, allowing to estimate how recently it was used.
3625  */
3626 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3627 {
3628 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3629 
3630 	lockdep_assert_rq_held(rq);
3631 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3632 }
3633 
3634 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t,
3635 			       struct mm_struct *mm)
3636 {
3637 	int cid;
3638 
3639 	/*
3640 	 * All allocations (even those using the cid_lock) are lock-free. If
3641 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3642 	 * guarantee forward progress.
3643 	 */
3644 	if (!READ_ONCE(use_cid_lock)) {
3645 		cid = __mm_cid_try_get(t, mm);
3646 		if (cid >= 0)
3647 			goto end;
3648 		raw_spin_lock(&cid_lock);
3649 	} else {
3650 		raw_spin_lock(&cid_lock);
3651 		cid = __mm_cid_try_get(t, mm);
3652 		if (cid >= 0)
3653 			goto unlock;
3654 	}
3655 
3656 	/*
3657 	 * cid concurrently allocated. Retry while forcing following
3658 	 * allocations to use the cid_lock to ensure forward progress.
3659 	 */
3660 	WRITE_ONCE(use_cid_lock, 1);
3661 	/*
3662 	 * Set use_cid_lock before allocation. Only care about program order
3663 	 * because this is only required for forward progress.
3664 	 */
3665 	barrier();
3666 	/*
3667 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3668 	 * all newcoming allocations observe the use_cid_lock flag set.
3669 	 */
3670 	do {
3671 		cid = __mm_cid_try_get(t, mm);
3672 		cpu_relax();
3673 	} while (cid < 0);
3674 	/*
3675 	 * Allocate before clearing use_cid_lock. Only care about
3676 	 * program order because this is for forward progress.
3677 	 */
3678 	barrier();
3679 	WRITE_ONCE(use_cid_lock, 0);
3680 unlock:
3681 	raw_spin_unlock(&cid_lock);
3682 end:
3683 	mm_cid_snapshot_time(rq, mm);
3684 
3685 	return cid;
3686 }
3687 
3688 static inline int mm_cid_get(struct rq *rq, struct task_struct *t,
3689 			     struct mm_struct *mm)
3690 {
3691 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3692 	struct cpumask *cpumask;
3693 	int cid;
3694 
3695 	lockdep_assert_rq_held(rq);
3696 	cpumask = mm_cidmask(mm);
3697 	cid = __this_cpu_read(pcpu_cid->cid);
3698 	if (mm_cid_is_valid(cid)) {
3699 		mm_cid_snapshot_time(rq, mm);
3700 		return cid;
3701 	}
3702 	if (mm_cid_is_lazy_put(cid)) {
3703 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3704 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3705 	}
3706 	cid = __mm_cid_get(rq, t, mm);
3707 	__this_cpu_write(pcpu_cid->cid, cid);
3708 	__this_cpu_write(pcpu_cid->recent_cid, cid);
3709 
3710 	return cid;
3711 }
3712 
3713 static inline void switch_mm_cid(struct rq *rq,
3714 				 struct task_struct *prev,
3715 				 struct task_struct *next)
3716 {
3717 	/*
3718 	 * Provide a memory barrier between rq->curr store and load of
3719 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3720 	 *
3721 	 * Should be adapted if context_switch() is modified.
3722 	 */
3723 	if (!next->mm) {                                // to kernel
3724 		/*
3725 		 * user -> kernel transition does not guarantee a barrier, but
3726 		 * we can use the fact that it performs an atomic operation in
3727 		 * mmgrab().
3728 		 */
3729 		if (prev->mm)                           // from user
3730 			smp_mb__after_mmgrab();
3731 		/*
3732 		 * kernel -> kernel transition does not change rq->curr->mm
3733 		 * state. It stays NULL.
3734 		 */
3735 	} else {                                        // to user
3736 		/*
3737 		 * kernel -> user transition does not provide a barrier
3738 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3739 		 * Provide it here.
3740 		 */
3741 		if (!prev->mm) {                        // from kernel
3742 			smp_mb();
3743 		} else {				// from user
3744 			/*
3745 			 * user->user transition relies on an implicit
3746 			 * memory barrier in switch_mm() when
3747 			 * current->mm changes. If the architecture
3748 			 * switch_mm() does not have an implicit memory
3749 			 * barrier, it is emitted here.  If current->mm
3750 			 * is unchanged, no barrier is needed.
3751 			 */
3752 			smp_mb__after_switch_mm();
3753 		}
3754 	}
3755 	if (prev->mm_cid_active) {
3756 		mm_cid_snapshot_time(rq, prev->mm);
3757 		mm_cid_put_lazy(prev);
3758 		prev->mm_cid = -1;
3759 	}
3760 	if (next->mm_cid_active)
3761 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm);
3762 }
3763 
3764 #else /* !CONFIG_SCHED_MM_CID: */
3765 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3766 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3767 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3768 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3769 static inline void init_sched_mm_cid(struct task_struct *t) { }
3770 #endif /* !CONFIG_SCHED_MM_CID */
3771 
3772 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3773 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3774 static inline
3775 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
3776 {
3777 	lockdep_assert_rq_held(src_rq);
3778 	lockdep_assert_rq_held(dst_rq);
3779 
3780 	deactivate_task(src_rq, task, 0);
3781 	set_task_cpu(task, dst_rq->cpu);
3782 	activate_task(dst_rq, task, 0);
3783 }
3784 
3785 static inline
3786 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
3787 {
3788 	if (!task_on_cpu(rq, p) &&
3789 	    cpumask_test_cpu(cpu, &p->cpus_mask))
3790 		return true;
3791 
3792 	return false;
3793 }
3794 
3795 #ifdef CONFIG_RT_MUTEXES
3796 
3797 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3798 {
3799 	if (pi_task)
3800 		prio = min(prio, pi_task->prio);
3801 
3802 	return prio;
3803 }
3804 
3805 static inline int rt_effective_prio(struct task_struct *p, int prio)
3806 {
3807 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3808 
3809 	return __rt_effective_prio(pi_task, prio);
3810 }
3811 
3812 #else /* !CONFIG_RT_MUTEXES: */
3813 
3814 static inline int rt_effective_prio(struct task_struct *p, int prio)
3815 {
3816 	return prio;
3817 }
3818 
3819 #endif /* !CONFIG_RT_MUTEXES */
3820 
3821 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
3822 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3823 extern const struct sched_class *__setscheduler_class(int policy, int prio);
3824 extern void set_load_weight(struct task_struct *p, bool update_load);
3825 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
3826 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
3827 
3828 extern void check_class_changing(struct rq *rq, struct task_struct *p,
3829 				 const struct sched_class *prev_class);
3830 extern void check_class_changed(struct rq *rq, struct task_struct *p,
3831 				const struct sched_class *prev_class,
3832 				int oldprio);
3833 
3834 extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
3835 extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
3836 
3837 #ifdef CONFIG_SCHED_CLASS_EXT
3838 /*
3839  * Used by SCX in the enable/disable paths to move tasks between sched_classes
3840  * and establish invariants.
3841  */
3842 struct sched_enq_and_set_ctx {
3843 	struct task_struct	*p;
3844 	int			queue_flags;
3845 	bool			queued;
3846 	bool			running;
3847 };
3848 
3849 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
3850 			    struct sched_enq_and_set_ctx *ctx);
3851 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx);
3852 
3853 #endif /* CONFIG_SCHED_CLASS_EXT */
3854 
3855 #include "ext.h"
3856 
3857 #endif /* _KERNEL_SCHED_SCHED_H */
3858