1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/delayacct.h> 72 #include <linux/mmu_context.h> 73 74 #include <trace/events/power.h> 75 #include <trace/events/sched.h> 76 77 #include "../workqueue_internal.h" 78 79 struct rq; 80 struct cfs_rq; 81 struct rt_rq; 82 struct sched_group; 83 struct cpuidle_state; 84 85 #ifdef CONFIG_PARAVIRT 86 # include <asm/paravirt.h> 87 # include <asm/paravirt_api_clock.h> 88 #endif 89 90 #include <asm/barrier.h> 91 92 #include "cpupri.h" 93 #include "cpudeadline.h" 94 95 /* task_struct::on_rq states: */ 96 #define TASK_ON_RQ_QUEUED 1 97 #define TASK_ON_RQ_MIGRATING 2 98 99 extern __read_mostly int scheduler_running; 100 101 extern unsigned long calc_load_update; 102 extern atomic_long_t calc_load_tasks; 103 104 extern void calc_global_load_tick(struct rq *this_rq); 105 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 106 107 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 108 109 extern int sysctl_sched_rt_period; 110 extern int sysctl_sched_rt_runtime; 111 extern int sched_rr_timeslice; 112 113 /* 114 * Asymmetric CPU capacity bits 115 */ 116 struct asym_cap_data { 117 struct list_head link; 118 struct rcu_head rcu; 119 unsigned long capacity; 120 unsigned long cpus[]; 121 }; 122 123 extern struct list_head asym_cap_list; 124 125 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 126 127 /* 128 * Helpers for converting nanosecond timing to jiffy resolution 129 */ 130 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) 131 132 /* 133 * Increase resolution of nice-level calculations for 64-bit architectures. 134 * The extra resolution improves shares distribution and load balancing of 135 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group 136 * hierarchies, especially on larger systems. This is not a user-visible change 137 * and does not change the user-interface for setting shares/weights. 138 * 139 * We increase resolution only if we have enough bits to allow this increased 140 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 141 * are pretty high and the returns do not justify the increased costs. 142 * 143 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 144 * increase coverage and consistency always enable it on 64-bit platforms. 145 */ 146 #ifdef CONFIG_64BIT 147 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 148 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 149 # define scale_load_down(w) \ 150 ({ \ 151 unsigned long __w = (w); \ 152 \ 153 if (__w) \ 154 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 155 __w; \ 156 }) 157 #else 158 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 159 # define scale_load(w) (w) 160 # define scale_load_down(w) (w) 161 #endif 162 163 /* 164 * Task weight (visible to users) and its load (invisible to users) have 165 * independent resolution, but they should be well calibrated. We use 166 * scale_load() and scale_load_down(w) to convert between them. The 167 * following must be true: 168 * 169 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 170 * 171 */ 172 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 173 174 /* 175 * Single value that decides SCHED_DEADLINE internal math precision. 176 * 10 -> just above 1us 177 * 9 -> just above 0.5us 178 */ 179 #define DL_SCALE 10 180 181 /* 182 * Single value that denotes runtime == period, ie unlimited time. 183 */ 184 #define RUNTIME_INF ((u64)~0ULL) 185 186 static inline int idle_policy(int policy) 187 { 188 return policy == SCHED_IDLE; 189 } 190 191 static inline int normal_policy(int policy) 192 { 193 #ifdef CONFIG_SCHED_CLASS_EXT 194 if (policy == SCHED_EXT) 195 return true; 196 #endif 197 return policy == SCHED_NORMAL; 198 } 199 200 static inline int fair_policy(int policy) 201 { 202 return normal_policy(policy) || policy == SCHED_BATCH; 203 } 204 205 static inline int rt_policy(int policy) 206 { 207 return policy == SCHED_FIFO || policy == SCHED_RR; 208 } 209 210 static inline int dl_policy(int policy) 211 { 212 return policy == SCHED_DEADLINE; 213 } 214 215 static inline bool valid_policy(int policy) 216 { 217 return idle_policy(policy) || fair_policy(policy) || 218 rt_policy(policy) || dl_policy(policy); 219 } 220 221 static inline int task_has_idle_policy(struct task_struct *p) 222 { 223 return idle_policy(p->policy); 224 } 225 226 static inline int task_has_rt_policy(struct task_struct *p) 227 { 228 return rt_policy(p->policy); 229 } 230 231 static inline int task_has_dl_policy(struct task_struct *p) 232 { 233 return dl_policy(p->policy); 234 } 235 236 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 237 238 static inline void update_avg(u64 *avg, u64 sample) 239 { 240 s64 diff = sample - *avg; 241 242 *avg += diff / 8; 243 } 244 245 /* 246 * Shifting a value by an exponent greater *or equal* to the size of said value 247 * is UB; cap at size-1. 248 */ 249 #define shr_bound(val, shift) \ 250 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 251 252 /* 253 * cgroup weight knobs should use the common MIN, DFL and MAX values which are 254 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it 255 * maps pretty well onto the shares value used by scheduler and the round-trip 256 * conversions preserve the original value over the entire range. 257 */ 258 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) 259 { 260 return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); 261 } 262 263 static inline unsigned long sched_weight_to_cgroup(unsigned long weight) 264 { 265 return clamp_t(unsigned long, 266 DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), 267 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); 268 } 269 270 /* 271 * !! For sched_setattr_nocheck() (kernel) only !! 272 * 273 * This is actually gross. :( 274 * 275 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 276 * tasks, but still be able to sleep. We need this on platforms that cannot 277 * atomically change clock frequency. Remove once fast switching will be 278 * available on such platforms. 279 * 280 * SUGOV stands for SchedUtil GOVernor. 281 */ 282 #define SCHED_FLAG_SUGOV 0x10000000 283 284 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 285 286 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 287 { 288 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 289 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 290 #else 291 return false; 292 #endif 293 } 294 295 /* 296 * Tells if entity @a should preempt entity @b. 297 */ 298 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 299 const struct sched_dl_entity *b) 300 { 301 return dl_entity_is_special(a) || 302 dl_time_before(a->deadline, b->deadline); 303 } 304 305 /* 306 * This is the priority-queue data structure of the RT scheduling class: 307 */ 308 struct rt_prio_array { 309 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 310 struct list_head queue[MAX_RT_PRIO]; 311 }; 312 313 struct rt_bandwidth { 314 /* nests inside the rq lock: */ 315 raw_spinlock_t rt_runtime_lock; 316 ktime_t rt_period; 317 u64 rt_runtime; 318 struct hrtimer rt_period_timer; 319 unsigned int rt_period_active; 320 }; 321 322 static inline int dl_bandwidth_enabled(void) 323 { 324 return sysctl_sched_rt_runtime >= 0; 325 } 326 327 /* 328 * To keep the bandwidth of -deadline tasks under control 329 * we need some place where: 330 * - store the maximum -deadline bandwidth of each cpu; 331 * - cache the fraction of bandwidth that is currently allocated in 332 * each root domain; 333 * 334 * This is all done in the data structure below. It is similar to the 335 * one used for RT-throttling (rt_bandwidth), with the main difference 336 * that, since here we are only interested in admission control, we 337 * do not decrease any runtime while the group "executes", neither we 338 * need a timer to replenish it. 339 * 340 * With respect to SMP, bandwidth is given on a per root domain basis, 341 * meaning that: 342 * - bw (< 100%) is the deadline bandwidth of each CPU; 343 * - total_bw is the currently allocated bandwidth in each root domain; 344 */ 345 struct dl_bw { 346 raw_spinlock_t lock; 347 u64 bw; 348 u64 total_bw; 349 }; 350 351 extern void init_dl_bw(struct dl_bw *dl_b); 352 extern int sched_dl_global_validate(void); 353 extern void sched_dl_do_global(void); 354 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 355 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 356 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 357 extern bool __checkparam_dl(const struct sched_attr *attr); 358 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 359 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 360 extern int dl_bw_deactivate(int cpu); 361 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); 362 /* 363 * SCHED_DEADLINE supports servers (nested scheduling) with the following 364 * interface: 365 * 366 * dl_se::rq -- runqueue we belong to. 367 * 368 * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the 369 * server when it runs out of tasks to run. 370 * 371 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 372 * returns NULL. 373 * 374 * dl_server_update() -- called from update_curr_common(), propagates runtime 375 * to the server. 376 * 377 * dl_server_start() 378 * dl_server_stop() -- start/stop the server when it has (no) tasks. 379 * 380 * dl_server_init() -- initializes the server. 381 */ 382 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 383 extern void dl_server_start(struct sched_dl_entity *dl_se); 384 extern void dl_server_stop(struct sched_dl_entity *dl_se); 385 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 386 dl_server_has_tasks_f has_tasks, 387 dl_server_pick_f pick_task); 388 389 extern void dl_server_update_idle_time(struct rq *rq, 390 struct task_struct *p); 391 extern void fair_server_init(struct rq *rq); 392 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); 393 extern int dl_server_apply_params(struct sched_dl_entity *dl_se, 394 u64 runtime, u64 period, bool init); 395 396 static inline bool dl_server_active(struct sched_dl_entity *dl_se) 397 { 398 return dl_se->dl_server_active; 399 } 400 401 #ifdef CONFIG_CGROUP_SCHED 402 403 extern struct list_head task_groups; 404 405 #ifdef CONFIG_CFS_BANDWIDTH 406 extern const u64 max_bw_quota_period_us; 407 408 /* 409 * default period for group bandwidth. 410 * default: 0.1s, units: microseconds 411 */ 412 static inline u64 default_bw_period_us(void) 413 { 414 return 100000ULL; 415 } 416 #endif /* CONFIG_CFS_BANDWIDTH */ 417 418 struct cfs_bandwidth { 419 #ifdef CONFIG_CFS_BANDWIDTH 420 raw_spinlock_t lock; 421 ktime_t period; 422 u64 quota; 423 u64 runtime; 424 u64 burst; 425 u64 runtime_snap; 426 s64 hierarchical_quota; 427 428 u8 idle; 429 u8 period_active; 430 u8 slack_started; 431 struct hrtimer period_timer; 432 struct hrtimer slack_timer; 433 struct list_head throttled_cfs_rq; 434 435 /* Statistics: */ 436 int nr_periods; 437 int nr_throttled; 438 int nr_burst; 439 u64 throttled_time; 440 u64 burst_time; 441 #endif /* CONFIG_CFS_BANDWIDTH */ 442 }; 443 444 /* Task group related information */ 445 struct task_group { 446 struct cgroup_subsys_state css; 447 448 #ifdef CONFIG_GROUP_SCHED_WEIGHT 449 /* A positive value indicates that this is a SCHED_IDLE group. */ 450 int idle; 451 #endif 452 453 #ifdef CONFIG_FAIR_GROUP_SCHED 454 /* schedulable entities of this group on each CPU */ 455 struct sched_entity **se; 456 /* runqueue "owned" by this group on each CPU */ 457 struct cfs_rq **cfs_rq; 458 unsigned long shares; 459 /* 460 * load_avg can be heavily contended at clock tick time, so put 461 * it in its own cache-line separated from the fields above which 462 * will also be accessed at each tick. 463 */ 464 atomic_long_t load_avg ____cacheline_aligned; 465 #endif /* CONFIG_FAIR_GROUP_SCHED */ 466 467 #ifdef CONFIG_RT_GROUP_SCHED 468 struct sched_rt_entity **rt_se; 469 struct rt_rq **rt_rq; 470 471 struct rt_bandwidth rt_bandwidth; 472 #endif 473 474 struct scx_task_group scx; 475 476 struct rcu_head rcu; 477 struct list_head list; 478 479 struct task_group *parent; 480 struct list_head siblings; 481 struct list_head children; 482 483 #ifdef CONFIG_SCHED_AUTOGROUP 484 struct autogroup *autogroup; 485 #endif 486 487 struct cfs_bandwidth cfs_bandwidth; 488 489 #ifdef CONFIG_UCLAMP_TASK_GROUP 490 /* The two decimal precision [%] value requested from user-space */ 491 unsigned int uclamp_pct[UCLAMP_CNT]; 492 /* Clamp values requested for a task group */ 493 struct uclamp_se uclamp_req[UCLAMP_CNT]; 494 /* Effective clamp values used for a task group */ 495 struct uclamp_se uclamp[UCLAMP_CNT]; 496 #endif 497 498 }; 499 500 #ifdef CONFIG_GROUP_SCHED_WEIGHT 501 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 502 503 /* 504 * A weight of 0 or 1 can cause arithmetics problems. 505 * A weight of a cfs_rq is the sum of weights of which entities 506 * are queued on this cfs_rq, so a weight of a entity should not be 507 * too large, so as the shares value of a task group. 508 * (The default weight is 1024 - so there's no practical 509 * limitation from this.) 510 */ 511 #define MIN_SHARES (1UL << 1) 512 #define MAX_SHARES (1UL << 18) 513 #endif 514 515 typedef int (*tg_visitor)(struct task_group *, void *); 516 517 extern int walk_tg_tree_from(struct task_group *from, 518 tg_visitor down, tg_visitor up, void *data); 519 520 /* 521 * Iterate the full tree, calling @down when first entering a node and @up when 522 * leaving it for the final time. 523 * 524 * Caller must hold rcu_lock or sufficient equivalent. 525 */ 526 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 527 { 528 return walk_tg_tree_from(&root_task_group, down, up, data); 529 } 530 531 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 532 { 533 return css ? container_of(css, struct task_group, css) : NULL; 534 } 535 536 extern int tg_nop(struct task_group *tg, void *data); 537 538 #ifdef CONFIG_FAIR_GROUP_SCHED 539 extern void free_fair_sched_group(struct task_group *tg); 540 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 541 extern void online_fair_sched_group(struct task_group *tg); 542 extern void unregister_fair_sched_group(struct task_group *tg); 543 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 544 static inline void free_fair_sched_group(struct task_group *tg) { } 545 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 546 { 547 return 1; 548 } 549 static inline void online_fair_sched_group(struct task_group *tg) { } 550 static inline void unregister_fair_sched_group(struct task_group *tg) { } 551 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 552 553 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 554 struct sched_entity *se, int cpu, 555 struct sched_entity *parent); 556 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 557 558 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 559 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 560 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 561 extern bool cfs_task_bw_constrained(struct task_struct *p); 562 563 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 564 struct sched_rt_entity *rt_se, int cpu, 565 struct sched_rt_entity *parent); 566 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 567 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 568 extern long sched_group_rt_runtime(struct task_group *tg); 569 extern long sched_group_rt_period(struct task_group *tg); 570 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 571 572 extern struct task_group *sched_create_group(struct task_group *parent); 573 extern void sched_online_group(struct task_group *tg, 574 struct task_group *parent); 575 extern void sched_destroy_group(struct task_group *tg); 576 extern void sched_release_group(struct task_group *tg); 577 578 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup); 579 580 #ifdef CONFIG_FAIR_GROUP_SCHED 581 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 582 583 extern int sched_group_set_idle(struct task_group *tg, long idle); 584 585 extern void set_task_rq_fair(struct sched_entity *se, 586 struct cfs_rq *prev, struct cfs_rq *next); 587 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 588 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } 589 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } 590 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 591 592 #else /* !CONFIG_CGROUP_SCHED: */ 593 594 struct cfs_bandwidth { }; 595 596 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 597 598 #endif /* !CONFIG_CGROUP_SCHED */ 599 600 extern void unregister_rt_sched_group(struct task_group *tg); 601 extern void free_rt_sched_group(struct task_group *tg); 602 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 603 604 /* 605 * u64_u32_load/u64_u32_store 606 * 607 * Use a copy of a u64 value to protect against data race. This is only 608 * applicable for 32-bits architectures. 609 */ 610 #ifdef CONFIG_64BIT 611 # define u64_u32_load_copy(var, copy) var 612 # define u64_u32_store_copy(var, copy, val) (var = val) 613 #else 614 # define u64_u32_load_copy(var, copy) \ 615 ({ \ 616 u64 __val, __val_copy; \ 617 do { \ 618 __val_copy = copy; \ 619 /* \ 620 * paired with u64_u32_store_copy(), ordering access \ 621 * to var and copy. \ 622 */ \ 623 smp_rmb(); \ 624 __val = var; \ 625 } while (__val != __val_copy); \ 626 __val; \ 627 }) 628 # define u64_u32_store_copy(var, copy, val) \ 629 do { \ 630 typeof(val) __val = (val); \ 631 var = __val; \ 632 /* \ 633 * paired with u64_u32_load_copy(), ordering access to var and \ 634 * copy. \ 635 */ \ 636 smp_wmb(); \ 637 copy = __val; \ 638 } while (0) 639 #endif 640 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 641 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 642 643 struct balance_callback { 644 struct balance_callback *next; 645 void (*func)(struct rq *rq); 646 }; 647 648 /* CFS-related fields in a runqueue */ 649 struct cfs_rq { 650 struct load_weight load; 651 unsigned int nr_queued; 652 unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */ 653 unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */ 654 unsigned int h_nr_idle; /* SCHED_IDLE */ 655 656 s64 avg_vruntime; 657 u64 avg_load; 658 659 u64 min_vruntime; 660 #ifdef CONFIG_SCHED_CORE 661 unsigned int forceidle_seq; 662 u64 min_vruntime_fi; 663 #endif 664 665 struct rb_root_cached tasks_timeline; 666 667 /* 668 * 'curr' points to currently running entity on this cfs_rq. 669 * It is set to NULL otherwise (i.e when none are currently running). 670 */ 671 struct sched_entity *curr; 672 struct sched_entity *next; 673 674 /* 675 * CFS load tracking 676 */ 677 struct sched_avg avg; 678 #ifndef CONFIG_64BIT 679 u64 last_update_time_copy; 680 #endif 681 struct { 682 raw_spinlock_t lock ____cacheline_aligned; 683 int nr; 684 unsigned long load_avg; 685 unsigned long util_avg; 686 unsigned long runnable_avg; 687 } removed; 688 689 #ifdef CONFIG_FAIR_GROUP_SCHED 690 u64 last_update_tg_load_avg; 691 unsigned long tg_load_avg_contrib; 692 long propagate; 693 long prop_runnable_sum; 694 695 /* 696 * h_load = weight * f(tg) 697 * 698 * Where f(tg) is the recursive weight fraction assigned to 699 * this group. 700 */ 701 unsigned long h_load; 702 u64 last_h_load_update; 703 struct sched_entity *h_load_next; 704 #endif /* CONFIG_FAIR_GROUP_SCHED */ 705 706 #ifdef CONFIG_FAIR_GROUP_SCHED 707 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 708 709 /* 710 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 711 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 712 * (like users, containers etc.) 713 * 714 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 715 * This list is used during load balance. 716 */ 717 int on_list; 718 struct list_head leaf_cfs_rq_list; 719 struct task_group *tg; /* group that "owns" this runqueue */ 720 721 /* Locally cached copy of our task_group's idle value */ 722 int idle; 723 724 #ifdef CONFIG_CFS_BANDWIDTH 725 int runtime_enabled; 726 s64 runtime_remaining; 727 728 u64 throttled_pelt_idle; 729 #ifndef CONFIG_64BIT 730 u64 throttled_pelt_idle_copy; 731 #endif 732 u64 throttled_clock; 733 u64 throttled_clock_pelt; 734 u64 throttled_clock_pelt_time; 735 u64 throttled_clock_self; 736 u64 throttled_clock_self_time; 737 int throttled; 738 int throttle_count; 739 struct list_head throttled_list; 740 struct list_head throttled_csd_list; 741 #endif /* CONFIG_CFS_BANDWIDTH */ 742 #endif /* CONFIG_FAIR_GROUP_SCHED */ 743 }; 744 745 #ifdef CONFIG_SCHED_CLASS_EXT 746 /* scx_rq->flags, protected by the rq lock */ 747 enum scx_rq_flags { 748 /* 749 * A hotplugged CPU starts scheduling before rq_online_scx(). Track 750 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called 751 * only while the BPF scheduler considers the CPU to be online. 752 */ 753 SCX_RQ_ONLINE = 1 << 0, 754 SCX_RQ_CAN_STOP_TICK = 1 << 1, 755 SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */ 756 SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ 757 SCX_RQ_BYPASSING = 1 << 4, 758 SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */ 759 760 SCX_RQ_IN_WAKEUP = 1 << 16, 761 SCX_RQ_IN_BALANCE = 1 << 17, 762 }; 763 764 struct scx_rq { 765 struct scx_dispatch_q local_dsq; 766 struct list_head runnable_list; /* runnable tasks on this rq */ 767 struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ 768 unsigned long ops_qseq; 769 u64 extra_enq_flags; /* see move_task_to_local_dsq() */ 770 u32 nr_running; 771 u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ 772 bool cpu_released; 773 u32 flags; 774 u64 clock; /* current per-rq clock -- see scx_bpf_now() */ 775 cpumask_var_t cpus_to_kick; 776 cpumask_var_t cpus_to_kick_if_idle; 777 cpumask_var_t cpus_to_preempt; 778 cpumask_var_t cpus_to_wait; 779 unsigned long pnt_seq; 780 struct balance_callback deferred_bal_cb; 781 struct irq_work deferred_irq_work; 782 struct irq_work kick_cpus_irq_work; 783 }; 784 #endif /* CONFIG_SCHED_CLASS_EXT */ 785 786 static inline int rt_bandwidth_enabled(void) 787 { 788 return sysctl_sched_rt_runtime >= 0; 789 } 790 791 /* RT IPI pull logic requires IRQ_WORK */ 792 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 793 # define HAVE_RT_PUSH_IPI 794 #endif 795 796 /* Real-Time classes' related field in a runqueue: */ 797 struct rt_rq { 798 struct rt_prio_array active; 799 unsigned int rt_nr_running; 800 unsigned int rr_nr_running; 801 struct { 802 int curr; /* highest queued rt task prio */ 803 int next; /* next highest */ 804 } highest_prio; 805 bool overloaded; 806 struct plist_head pushable_tasks; 807 808 int rt_queued; 809 810 #ifdef CONFIG_RT_GROUP_SCHED 811 int rt_throttled; 812 u64 rt_time; /* consumed RT time, goes up in update_curr_rt */ 813 u64 rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */ 814 /* Nests inside the rq lock: */ 815 raw_spinlock_t rt_runtime_lock; 816 817 unsigned int rt_nr_boosted; 818 819 struct rq *rq; /* this is always top-level rq, cache? */ 820 #endif 821 #ifdef CONFIG_CGROUP_SCHED 822 struct task_group *tg; /* this tg has "this" rt_rq on given CPU for runnable entities */ 823 #endif 824 }; 825 826 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 827 { 828 return rt_rq->rt_queued && rt_rq->rt_nr_running; 829 } 830 831 /* Deadline class' related fields in a runqueue */ 832 struct dl_rq { 833 /* runqueue is an rbtree, ordered by deadline */ 834 struct rb_root_cached root; 835 836 unsigned int dl_nr_running; 837 838 /* 839 * Deadline values of the currently executing and the 840 * earliest ready task on this rq. Caching these facilitates 841 * the decision whether or not a ready but not running task 842 * should migrate somewhere else. 843 */ 844 struct { 845 u64 curr; 846 u64 next; 847 } earliest_dl; 848 849 bool overloaded; 850 851 /* 852 * Tasks on this rq that can be pushed away. They are kept in 853 * an rb-tree, ordered by tasks' deadlines, with caching 854 * of the leftmost (earliest deadline) element. 855 */ 856 struct rb_root_cached pushable_dl_tasks_root; 857 858 /* 859 * "Active utilization" for this runqueue: increased when a 860 * task wakes up (becomes TASK_RUNNING) and decreased when a 861 * task blocks 862 */ 863 u64 running_bw; 864 865 /* 866 * Utilization of the tasks "assigned" to this runqueue (including 867 * the tasks that are in runqueue and the tasks that executed on this 868 * CPU and blocked). Increased when a task moves to this runqueue, and 869 * decreased when the task moves away (migrates, changes scheduling 870 * policy, or terminates). 871 * This is needed to compute the "inactive utilization" for the 872 * runqueue (inactive utilization = this_bw - running_bw). 873 */ 874 u64 this_bw; 875 u64 extra_bw; 876 877 /* 878 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 879 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 880 */ 881 u64 max_bw; 882 883 /* 884 * Inverse of the fraction of CPU utilization that can be reclaimed 885 * by the GRUB algorithm. 886 */ 887 u64 bw_ratio; 888 }; 889 890 #ifdef CONFIG_FAIR_GROUP_SCHED 891 892 /* An entity is a task if it doesn't "own" a runqueue */ 893 #define entity_is_task(se) (!se->my_q) 894 895 static inline void se_update_runnable(struct sched_entity *se) 896 { 897 if (!entity_is_task(se)) 898 se->runnable_weight = se->my_q->h_nr_runnable; 899 } 900 901 static inline long se_runnable(struct sched_entity *se) 902 { 903 if (se->sched_delayed) 904 return false; 905 906 if (entity_is_task(se)) 907 return !!se->on_rq; 908 else 909 return se->runnable_weight; 910 } 911 912 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 913 914 #define entity_is_task(se) 1 915 916 static inline void se_update_runnable(struct sched_entity *se) { } 917 918 static inline long se_runnable(struct sched_entity *se) 919 { 920 if (se->sched_delayed) 921 return false; 922 923 return !!se->on_rq; 924 } 925 926 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 927 928 /* 929 * XXX we want to get rid of these helpers and use the full load resolution. 930 */ 931 static inline long se_weight(struct sched_entity *se) 932 { 933 return scale_load_down(se->load.weight); 934 } 935 936 937 static inline bool sched_asym_prefer(int a, int b) 938 { 939 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 940 } 941 942 struct perf_domain { 943 struct em_perf_domain *em_pd; 944 struct perf_domain *next; 945 struct rcu_head rcu; 946 }; 947 948 /* 949 * We add the notion of a root-domain which will be used to define per-domain 950 * variables. Each exclusive cpuset essentially defines an island domain by 951 * fully partitioning the member CPUs from any other cpuset. Whenever a new 952 * exclusive cpuset is created, we also create and attach a new root-domain 953 * object. 954 * 955 */ 956 struct root_domain { 957 atomic_t refcount; 958 atomic_t rto_count; 959 struct rcu_head rcu; 960 cpumask_var_t span; 961 cpumask_var_t online; 962 963 /* 964 * Indicate pullable load on at least one CPU, e.g: 965 * - More than one runnable task 966 * - Running task is misfit 967 */ 968 bool overloaded; 969 970 /* Indicate one or more CPUs over-utilized (tipping point) */ 971 bool overutilized; 972 973 /* 974 * The bit corresponding to a CPU gets set here if such CPU has more 975 * than one runnable -deadline task (as it is below for RT tasks). 976 */ 977 cpumask_var_t dlo_mask; 978 atomic_t dlo_count; 979 struct dl_bw dl_bw; 980 struct cpudl cpudl; 981 982 /* 983 * Indicate whether a root_domain's dl_bw has been checked or 984 * updated. It's monotonously increasing value. 985 * 986 * Also, some corner cases, like 'wrap around' is dangerous, but given 987 * that u64 is 'big enough'. So that shouldn't be a concern. 988 */ 989 u64 visit_cookie; 990 991 #ifdef HAVE_RT_PUSH_IPI 992 /* 993 * For IPI pull requests, loop across the rto_mask. 994 */ 995 struct irq_work rto_push_work; 996 raw_spinlock_t rto_lock; 997 /* These are only updated and read within rto_lock */ 998 int rto_loop; 999 int rto_cpu; 1000 /* These atomics are updated outside of a lock */ 1001 atomic_t rto_loop_next; 1002 atomic_t rto_loop_start; 1003 #endif /* HAVE_RT_PUSH_IPI */ 1004 /* 1005 * The "RT overload" flag: it gets set if a CPU has more than 1006 * one runnable RT task. 1007 */ 1008 cpumask_var_t rto_mask; 1009 struct cpupri cpupri; 1010 1011 /* 1012 * NULL-terminated list of performance domains intersecting with the 1013 * CPUs of the rd. Protected by RCU. 1014 */ 1015 struct perf_domain __rcu *pd; 1016 }; 1017 1018 extern void init_defrootdomain(void); 1019 extern int sched_init_domains(const struct cpumask *cpu_map); 1020 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 1021 extern void sched_get_rd(struct root_domain *rd); 1022 extern void sched_put_rd(struct root_domain *rd); 1023 1024 static inline int get_rd_overloaded(struct root_domain *rd) 1025 { 1026 return READ_ONCE(rd->overloaded); 1027 } 1028 1029 static inline void set_rd_overloaded(struct root_domain *rd, int status) 1030 { 1031 if (get_rd_overloaded(rd) != status) 1032 WRITE_ONCE(rd->overloaded, status); 1033 } 1034 1035 #ifdef HAVE_RT_PUSH_IPI 1036 extern void rto_push_irq_work_func(struct irq_work *work); 1037 #endif 1038 1039 #ifdef CONFIG_UCLAMP_TASK 1040 /* 1041 * struct uclamp_bucket - Utilization clamp bucket 1042 * @value: utilization clamp value for tasks on this clamp bucket 1043 * @tasks: number of RUNNABLE tasks on this clamp bucket 1044 * 1045 * Keep track of how many tasks are RUNNABLE for a given utilization 1046 * clamp value. 1047 */ 1048 struct uclamp_bucket { 1049 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 1050 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 1051 }; 1052 1053 /* 1054 * struct uclamp_rq - rq's utilization clamp 1055 * @value: currently active clamp values for a rq 1056 * @bucket: utilization clamp buckets affecting a rq 1057 * 1058 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 1059 * A clamp value is affecting a rq when there is at least one task RUNNABLE 1060 * (or actually running) with that value. 1061 * 1062 * There are up to UCLAMP_CNT possible different clamp values, currently there 1063 * are only two: minimum utilization and maximum utilization. 1064 * 1065 * All utilization clamping values are MAX aggregated, since: 1066 * - for util_min: we want to run the CPU at least at the max of the minimum 1067 * utilization required by its currently RUNNABLE tasks. 1068 * - for util_max: we want to allow the CPU to run up to the max of the 1069 * maximum utilization allowed by its currently RUNNABLE tasks. 1070 * 1071 * Since on each system we expect only a limited number of different 1072 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 1073 * the metrics required to compute all the per-rq utilization clamp values. 1074 */ 1075 struct uclamp_rq { 1076 unsigned int value; 1077 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 1078 }; 1079 1080 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 1081 #endif /* CONFIG_UCLAMP_TASK */ 1082 1083 /* 1084 * This is the main, per-CPU runqueue data structure. 1085 * 1086 * Locking rule: those places that want to lock multiple runqueues 1087 * (such as the load balancing or the thread migration code), lock 1088 * acquire operations must be ordered by ascending &runqueue. 1089 */ 1090 struct rq { 1091 /* runqueue lock: */ 1092 raw_spinlock_t __lock; 1093 1094 unsigned int nr_running; 1095 #ifdef CONFIG_NUMA_BALANCING 1096 unsigned int nr_numa_running; 1097 unsigned int nr_preferred_running; 1098 unsigned int numa_migrate_on; 1099 #endif 1100 #ifdef CONFIG_NO_HZ_COMMON 1101 unsigned long last_blocked_load_update_tick; 1102 unsigned int has_blocked_load; 1103 call_single_data_t nohz_csd; 1104 unsigned int nohz_tick_stopped; 1105 atomic_t nohz_flags; 1106 #endif /* CONFIG_NO_HZ_COMMON */ 1107 1108 unsigned int ttwu_pending; 1109 u64 nr_switches; 1110 1111 #ifdef CONFIG_UCLAMP_TASK 1112 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1113 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1114 unsigned int uclamp_flags; 1115 #define UCLAMP_FLAG_IDLE 0x01 1116 #endif 1117 1118 struct cfs_rq cfs; 1119 struct rt_rq rt; 1120 struct dl_rq dl; 1121 #ifdef CONFIG_SCHED_CLASS_EXT 1122 struct scx_rq scx; 1123 #endif 1124 1125 struct sched_dl_entity fair_server; 1126 1127 #ifdef CONFIG_FAIR_GROUP_SCHED 1128 /* list of leaf cfs_rq on this CPU: */ 1129 struct list_head leaf_cfs_rq_list; 1130 struct list_head *tmp_alone_branch; 1131 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1132 1133 /* 1134 * This is part of a global counter where only the total sum 1135 * over all CPUs matters. A task can increase this counter on 1136 * one CPU and if it got migrated afterwards it may decrease 1137 * it on another CPU. Always updated under the runqueue lock: 1138 */ 1139 unsigned int nr_uninterruptible; 1140 1141 union { 1142 struct task_struct __rcu *donor; /* Scheduler context */ 1143 struct task_struct __rcu *curr; /* Execution context */ 1144 }; 1145 struct sched_dl_entity *dl_server; 1146 struct task_struct *idle; 1147 struct task_struct *stop; 1148 unsigned long next_balance; 1149 struct mm_struct *prev_mm; 1150 1151 unsigned int clock_update_flags; 1152 u64 clock; 1153 /* Ensure that all clocks are in the same cache line */ 1154 u64 clock_task ____cacheline_aligned; 1155 u64 clock_pelt; 1156 unsigned long lost_idle_time; 1157 u64 clock_pelt_idle; 1158 u64 clock_idle; 1159 #ifndef CONFIG_64BIT 1160 u64 clock_pelt_idle_copy; 1161 u64 clock_idle_copy; 1162 #endif 1163 1164 atomic_t nr_iowait; 1165 1166 u64 last_seen_need_resched_ns; 1167 int ticks_without_resched; 1168 1169 #ifdef CONFIG_MEMBARRIER 1170 int membarrier_state; 1171 #endif 1172 1173 struct root_domain *rd; 1174 struct sched_domain __rcu *sd; 1175 1176 unsigned long cpu_capacity; 1177 1178 struct balance_callback *balance_callback; 1179 1180 unsigned char nohz_idle_balance; 1181 unsigned char idle_balance; 1182 1183 unsigned long misfit_task_load; 1184 1185 /* For active balancing */ 1186 int active_balance; 1187 int push_cpu; 1188 struct cpu_stop_work active_balance_work; 1189 1190 /* CPU of this runqueue: */ 1191 int cpu; 1192 int online; 1193 1194 struct list_head cfs_tasks; 1195 1196 struct sched_avg avg_rt; 1197 struct sched_avg avg_dl; 1198 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1199 struct sched_avg avg_irq; 1200 #endif 1201 #ifdef CONFIG_SCHED_HW_PRESSURE 1202 struct sched_avg avg_hw; 1203 #endif 1204 u64 idle_stamp; 1205 u64 avg_idle; 1206 1207 /* This is used to determine avg_idle's max value */ 1208 u64 max_idle_balance_cost; 1209 1210 #ifdef CONFIG_HOTPLUG_CPU 1211 struct rcuwait hotplug_wait; 1212 #endif 1213 1214 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1215 u64 prev_irq_time; 1216 u64 psi_irq_time; 1217 #endif 1218 #ifdef CONFIG_PARAVIRT 1219 u64 prev_steal_time; 1220 #endif 1221 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1222 u64 prev_steal_time_rq; 1223 #endif 1224 1225 /* calc_load related fields */ 1226 unsigned long calc_load_update; 1227 long calc_load_active; 1228 1229 #ifdef CONFIG_SCHED_HRTICK 1230 call_single_data_t hrtick_csd; 1231 struct hrtimer hrtick_timer; 1232 ktime_t hrtick_time; 1233 #endif 1234 1235 #ifdef CONFIG_SCHEDSTATS 1236 /* latency stats */ 1237 struct sched_info rq_sched_info; 1238 unsigned long long rq_cpu_time; 1239 1240 /* sys_sched_yield() stats */ 1241 unsigned int yld_count; 1242 1243 /* schedule() stats */ 1244 unsigned int sched_count; 1245 unsigned int sched_goidle; 1246 1247 /* try_to_wake_up() stats */ 1248 unsigned int ttwu_count; 1249 unsigned int ttwu_local; 1250 #endif 1251 1252 #ifdef CONFIG_CPU_IDLE 1253 /* Must be inspected within a RCU lock section */ 1254 struct cpuidle_state *idle_state; 1255 #endif 1256 1257 unsigned int nr_pinned; 1258 unsigned int push_busy; 1259 struct cpu_stop_work push_work; 1260 1261 #ifdef CONFIG_SCHED_CORE 1262 /* per rq */ 1263 struct rq *core; 1264 struct task_struct *core_pick; 1265 struct sched_dl_entity *core_dl_server; 1266 unsigned int core_enabled; 1267 unsigned int core_sched_seq; 1268 struct rb_root core_tree; 1269 1270 /* shared state -- careful with sched_core_cpu_deactivate() */ 1271 unsigned int core_task_seq; 1272 unsigned int core_pick_seq; 1273 unsigned long core_cookie; 1274 unsigned int core_forceidle_count; 1275 unsigned int core_forceidle_seq; 1276 unsigned int core_forceidle_occupation; 1277 u64 core_forceidle_start; 1278 #endif /* CONFIG_SCHED_CORE */ 1279 1280 /* Scratch cpumask to be temporarily used under rq_lock */ 1281 cpumask_var_t scratch_mask; 1282 1283 #ifdef CONFIG_CFS_BANDWIDTH 1284 call_single_data_t cfsb_csd; 1285 struct list_head cfsb_csd_list; 1286 #endif 1287 }; 1288 1289 #ifdef CONFIG_FAIR_GROUP_SCHED 1290 1291 /* CPU runqueue to which this cfs_rq is attached */ 1292 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1293 { 1294 return cfs_rq->rq; 1295 } 1296 1297 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1298 1299 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1300 { 1301 return container_of(cfs_rq, struct rq, cfs); 1302 } 1303 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1304 1305 static inline int cpu_of(struct rq *rq) 1306 { 1307 return rq->cpu; 1308 } 1309 1310 #define MDF_PUSH 0x01 1311 1312 static inline bool is_migration_disabled(struct task_struct *p) 1313 { 1314 return p->migration_disabled; 1315 } 1316 1317 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1318 1319 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1320 #define this_rq() this_cpu_ptr(&runqueues) 1321 #define task_rq(p) cpu_rq(task_cpu(p)) 1322 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1323 #define raw_rq() raw_cpu_ptr(&runqueues) 1324 1325 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1326 { 1327 /* Do nothing */ 1328 } 1329 1330 #ifdef CONFIG_SCHED_CORE 1331 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1332 1333 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1334 1335 static inline bool sched_core_enabled(struct rq *rq) 1336 { 1337 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1338 } 1339 1340 static inline bool sched_core_disabled(void) 1341 { 1342 return !static_branch_unlikely(&__sched_core_enabled); 1343 } 1344 1345 /* 1346 * Be careful with this function; not for general use. The return value isn't 1347 * stable unless you actually hold a relevant rq->__lock. 1348 */ 1349 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1350 { 1351 if (sched_core_enabled(rq)) 1352 return &rq->core->__lock; 1353 1354 return &rq->__lock; 1355 } 1356 1357 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1358 { 1359 if (rq->core_enabled) 1360 return &rq->core->__lock; 1361 1362 return &rq->__lock; 1363 } 1364 1365 extern bool 1366 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); 1367 1368 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1369 1370 /* 1371 * Helpers to check if the CPU's core cookie matches with the task's cookie 1372 * when core scheduling is enabled. 1373 * A special case is that the task's cookie always matches with CPU's core 1374 * cookie if the CPU is in an idle core. 1375 */ 1376 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1377 { 1378 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1379 if (!sched_core_enabled(rq)) 1380 return true; 1381 1382 return rq->core->core_cookie == p->core_cookie; 1383 } 1384 1385 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1386 { 1387 bool idle_core = true; 1388 int cpu; 1389 1390 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1391 if (!sched_core_enabled(rq)) 1392 return true; 1393 1394 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1395 if (!available_idle_cpu(cpu)) { 1396 idle_core = false; 1397 break; 1398 } 1399 } 1400 1401 /* 1402 * A CPU in an idle core is always the best choice for tasks with 1403 * cookies. 1404 */ 1405 return idle_core || rq->core->core_cookie == p->core_cookie; 1406 } 1407 1408 static inline bool sched_group_cookie_match(struct rq *rq, 1409 struct task_struct *p, 1410 struct sched_group *group) 1411 { 1412 int cpu; 1413 1414 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1415 if (!sched_core_enabled(rq)) 1416 return true; 1417 1418 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1419 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1420 return true; 1421 } 1422 return false; 1423 } 1424 1425 static inline bool sched_core_enqueued(struct task_struct *p) 1426 { 1427 return !RB_EMPTY_NODE(&p->core_node); 1428 } 1429 1430 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1431 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1432 1433 extern void sched_core_get(void); 1434 extern void sched_core_put(void); 1435 1436 #else /* !CONFIG_SCHED_CORE: */ 1437 1438 static inline bool sched_core_enabled(struct rq *rq) 1439 { 1440 return false; 1441 } 1442 1443 static inline bool sched_core_disabled(void) 1444 { 1445 return true; 1446 } 1447 1448 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1449 { 1450 return &rq->__lock; 1451 } 1452 1453 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1454 { 1455 return &rq->__lock; 1456 } 1457 1458 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1459 { 1460 return true; 1461 } 1462 1463 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1464 { 1465 return true; 1466 } 1467 1468 static inline bool sched_group_cookie_match(struct rq *rq, 1469 struct task_struct *p, 1470 struct sched_group *group) 1471 { 1472 return true; 1473 } 1474 1475 #endif /* !CONFIG_SCHED_CORE */ 1476 1477 #ifdef CONFIG_RT_GROUP_SCHED 1478 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 1479 DECLARE_STATIC_KEY_FALSE(rt_group_sched); 1480 static inline bool rt_group_sched_enabled(void) 1481 { 1482 return static_branch_unlikely(&rt_group_sched); 1483 } 1484 # else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */ 1485 DECLARE_STATIC_KEY_TRUE(rt_group_sched); 1486 static inline bool rt_group_sched_enabled(void) 1487 { 1488 return static_branch_likely(&rt_group_sched); 1489 } 1490 # endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */ 1491 #else /* !CONFIG_RT_GROUP_SCHED: */ 1492 # define rt_group_sched_enabled() false 1493 #endif /* !CONFIG_RT_GROUP_SCHED */ 1494 1495 static inline void lockdep_assert_rq_held(struct rq *rq) 1496 { 1497 lockdep_assert_held(__rq_lockp(rq)); 1498 } 1499 1500 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1501 extern bool raw_spin_rq_trylock(struct rq *rq); 1502 extern void raw_spin_rq_unlock(struct rq *rq); 1503 1504 static inline void raw_spin_rq_lock(struct rq *rq) 1505 { 1506 raw_spin_rq_lock_nested(rq, 0); 1507 } 1508 1509 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1510 { 1511 local_irq_disable(); 1512 raw_spin_rq_lock(rq); 1513 } 1514 1515 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1516 { 1517 raw_spin_rq_unlock(rq); 1518 local_irq_enable(); 1519 } 1520 1521 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1522 { 1523 unsigned long flags; 1524 1525 local_irq_save(flags); 1526 raw_spin_rq_lock(rq); 1527 1528 return flags; 1529 } 1530 1531 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1532 { 1533 raw_spin_rq_unlock(rq); 1534 local_irq_restore(flags); 1535 } 1536 1537 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1538 do { \ 1539 flags = _raw_spin_rq_lock_irqsave(rq); \ 1540 } while (0) 1541 1542 #ifdef CONFIG_SCHED_SMT 1543 extern void __update_idle_core(struct rq *rq); 1544 1545 static inline void update_idle_core(struct rq *rq) 1546 { 1547 if (static_branch_unlikely(&sched_smt_present)) 1548 __update_idle_core(rq); 1549 } 1550 1551 #else /* !CONFIG_SCHED_SMT: */ 1552 static inline void update_idle_core(struct rq *rq) { } 1553 #endif /* !CONFIG_SCHED_SMT */ 1554 1555 #ifdef CONFIG_FAIR_GROUP_SCHED 1556 1557 static inline struct task_struct *task_of(struct sched_entity *se) 1558 { 1559 WARN_ON_ONCE(!entity_is_task(se)); 1560 return container_of(se, struct task_struct, se); 1561 } 1562 1563 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1564 { 1565 return p->se.cfs_rq; 1566 } 1567 1568 /* runqueue on which this entity is (to be) queued */ 1569 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1570 { 1571 return se->cfs_rq; 1572 } 1573 1574 /* runqueue "owned" by this group */ 1575 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1576 { 1577 return grp->my_q; 1578 } 1579 1580 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1581 1582 #define task_of(_se) container_of(_se, struct task_struct, se) 1583 1584 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1585 { 1586 return &task_rq(p)->cfs; 1587 } 1588 1589 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1590 { 1591 const struct task_struct *p = task_of(se); 1592 struct rq *rq = task_rq(p); 1593 1594 return &rq->cfs; 1595 } 1596 1597 /* runqueue "owned" by this group */ 1598 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1599 { 1600 return NULL; 1601 } 1602 1603 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1604 1605 extern void update_rq_clock(struct rq *rq); 1606 1607 /* 1608 * rq::clock_update_flags bits 1609 * 1610 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1611 * call to __schedule(). This is an optimisation to avoid 1612 * neighbouring rq clock updates. 1613 * 1614 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1615 * in effect and calls to update_rq_clock() are being ignored. 1616 * 1617 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1618 * made to update_rq_clock() since the last time rq::lock was pinned. 1619 * 1620 * If inside of __schedule(), clock_update_flags will have been 1621 * shifted left (a left shift is a cheap operation for the fast path 1622 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1623 * 1624 * if (rq-clock_update_flags >= RQCF_UPDATED) 1625 * 1626 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1627 * one position though, because the next rq_unpin_lock() will shift it 1628 * back. 1629 */ 1630 #define RQCF_REQ_SKIP 0x01 1631 #define RQCF_ACT_SKIP 0x02 1632 #define RQCF_UPDATED 0x04 1633 1634 static inline void assert_clock_updated(struct rq *rq) 1635 { 1636 /* 1637 * The only reason for not seeing a clock update since the 1638 * last rq_pin_lock() is if we're currently skipping updates. 1639 */ 1640 WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP); 1641 } 1642 1643 static inline u64 rq_clock(struct rq *rq) 1644 { 1645 lockdep_assert_rq_held(rq); 1646 assert_clock_updated(rq); 1647 1648 return rq->clock; 1649 } 1650 1651 static inline u64 rq_clock_task(struct rq *rq) 1652 { 1653 lockdep_assert_rq_held(rq); 1654 assert_clock_updated(rq); 1655 1656 return rq->clock_task; 1657 } 1658 1659 static inline void rq_clock_skip_update(struct rq *rq) 1660 { 1661 lockdep_assert_rq_held(rq); 1662 rq->clock_update_flags |= RQCF_REQ_SKIP; 1663 } 1664 1665 /* 1666 * See rt task throttling, which is the only time a skip 1667 * request is canceled. 1668 */ 1669 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1670 { 1671 lockdep_assert_rq_held(rq); 1672 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1673 } 1674 1675 /* 1676 * During cpu offlining and rq wide unthrottling, we can trigger 1677 * an update_rq_clock() for several cfs and rt runqueues (Typically 1678 * when using list_for_each_entry_*) 1679 * rq_clock_start_loop_update() can be called after updating the clock 1680 * once and before iterating over the list to prevent multiple update. 1681 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1682 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1683 */ 1684 static inline void rq_clock_start_loop_update(struct rq *rq) 1685 { 1686 lockdep_assert_rq_held(rq); 1687 WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP); 1688 rq->clock_update_flags |= RQCF_ACT_SKIP; 1689 } 1690 1691 static inline void rq_clock_stop_loop_update(struct rq *rq) 1692 { 1693 lockdep_assert_rq_held(rq); 1694 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1695 } 1696 1697 struct rq_flags { 1698 unsigned long flags; 1699 struct pin_cookie cookie; 1700 /* 1701 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1702 * current pin context is stashed here in case it needs to be 1703 * restored in rq_repin_lock(). 1704 */ 1705 unsigned int clock_update_flags; 1706 }; 1707 1708 extern struct balance_callback balance_push_callback; 1709 1710 #ifdef CONFIG_SCHED_CLASS_EXT 1711 extern const struct sched_class ext_sched_class; 1712 1713 DECLARE_STATIC_KEY_FALSE(__scx_enabled); /* SCX BPF scheduler loaded */ 1714 DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ 1715 1716 #define scx_enabled() static_branch_unlikely(&__scx_enabled) 1717 #define scx_switched_all() static_branch_unlikely(&__scx_switched_all) 1718 1719 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) 1720 { 1721 if (!scx_enabled()) 1722 return; 1723 WRITE_ONCE(rq->scx.clock, clock); 1724 smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID); 1725 } 1726 1727 static inline void scx_rq_clock_invalidate(struct rq *rq) 1728 { 1729 if (!scx_enabled()) 1730 return; 1731 WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID); 1732 } 1733 1734 #else /* !CONFIG_SCHED_CLASS_EXT: */ 1735 #define scx_enabled() false 1736 #define scx_switched_all() false 1737 1738 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {} 1739 static inline void scx_rq_clock_invalidate(struct rq *rq) {} 1740 #endif /* !CONFIG_SCHED_CLASS_EXT */ 1741 1742 /* 1743 * Lockdep annotation that avoids accidental unlocks; it's like a 1744 * sticky/continuous lockdep_assert_held(). 1745 * 1746 * This avoids code that has access to 'struct rq *rq' (basically everything in 1747 * the scheduler) from accidentally unlocking the rq if they do not also have a 1748 * copy of the (on-stack) 'struct rq_flags rf'. 1749 * 1750 * Also see Documentation/locking/lockdep-design.rst. 1751 */ 1752 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1753 { 1754 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1755 1756 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1757 rf->clock_update_flags = 0; 1758 WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1759 } 1760 1761 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1762 { 1763 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1764 rf->clock_update_flags = RQCF_UPDATED; 1765 1766 scx_rq_clock_invalidate(rq); 1767 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1768 } 1769 1770 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1771 { 1772 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1773 1774 /* 1775 * Restore the value we stashed in @rf for this pin context. 1776 */ 1777 rq->clock_update_flags |= rf->clock_update_flags; 1778 } 1779 1780 extern 1781 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1782 __acquires(rq->lock); 1783 1784 extern 1785 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1786 __acquires(p->pi_lock) 1787 __acquires(rq->lock); 1788 1789 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1790 __releases(rq->lock) 1791 { 1792 rq_unpin_lock(rq, rf); 1793 raw_spin_rq_unlock(rq); 1794 } 1795 1796 static inline void 1797 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1798 __releases(rq->lock) 1799 __releases(p->pi_lock) 1800 { 1801 rq_unpin_lock(rq, rf); 1802 raw_spin_rq_unlock(rq); 1803 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1804 } 1805 1806 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1807 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1808 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1809 struct rq *rq; struct rq_flags rf) 1810 1811 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1812 __acquires(rq->lock) 1813 { 1814 raw_spin_rq_lock_irqsave(rq, rf->flags); 1815 rq_pin_lock(rq, rf); 1816 } 1817 1818 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1819 __acquires(rq->lock) 1820 { 1821 raw_spin_rq_lock_irq(rq); 1822 rq_pin_lock(rq, rf); 1823 } 1824 1825 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) 1826 __acquires(rq->lock) 1827 { 1828 raw_spin_rq_lock(rq); 1829 rq_pin_lock(rq, rf); 1830 } 1831 1832 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1833 __releases(rq->lock) 1834 { 1835 rq_unpin_lock(rq, rf); 1836 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1837 } 1838 1839 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1840 __releases(rq->lock) 1841 { 1842 rq_unpin_lock(rq, rf); 1843 raw_spin_rq_unlock_irq(rq); 1844 } 1845 1846 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) 1847 __releases(rq->lock) 1848 { 1849 rq_unpin_lock(rq, rf); 1850 raw_spin_rq_unlock(rq); 1851 } 1852 1853 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1854 rq_lock(_T->lock, &_T->rf), 1855 rq_unlock(_T->lock, &_T->rf), 1856 struct rq_flags rf) 1857 1858 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1859 rq_lock_irq(_T->lock, &_T->rf), 1860 rq_unlock_irq(_T->lock, &_T->rf), 1861 struct rq_flags rf) 1862 1863 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1864 rq_lock_irqsave(_T->lock, &_T->rf), 1865 rq_unlock_irqrestore(_T->lock, &_T->rf), 1866 struct rq_flags rf) 1867 1868 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) 1869 __acquires(rq->lock) 1870 { 1871 struct rq *rq; 1872 1873 local_irq_disable(); 1874 rq = this_rq(); 1875 rq_lock(rq, rf); 1876 1877 return rq; 1878 } 1879 1880 #ifdef CONFIG_NUMA 1881 1882 enum numa_topology_type { 1883 NUMA_DIRECT, 1884 NUMA_GLUELESS_MESH, 1885 NUMA_BACKPLANE, 1886 }; 1887 1888 extern enum numa_topology_type sched_numa_topology_type; 1889 extern int sched_max_numa_distance; 1890 extern bool find_numa_distance(int distance); 1891 extern void sched_init_numa(int offline_node); 1892 extern void sched_update_numa(int cpu, bool online); 1893 extern void sched_domains_numa_masks_set(unsigned int cpu); 1894 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1895 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1896 1897 #else /* !CONFIG_NUMA: */ 1898 1899 static inline void sched_init_numa(int offline_node) { } 1900 static inline void sched_update_numa(int cpu, bool online) { } 1901 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1902 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1903 1904 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1905 { 1906 return nr_cpu_ids; 1907 } 1908 1909 #endif /* !CONFIG_NUMA */ 1910 1911 #ifdef CONFIG_NUMA_BALANCING 1912 1913 /* The regions in numa_faults array from task_struct */ 1914 enum numa_faults_stats { 1915 NUMA_MEM = 0, 1916 NUMA_CPU, 1917 NUMA_MEMBUF, 1918 NUMA_CPUBUF 1919 }; 1920 1921 extern void sched_setnuma(struct task_struct *p, int node); 1922 extern int migrate_task_to(struct task_struct *p, int cpu); 1923 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1924 int cpu, int scpu); 1925 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1926 1927 #else /* !CONFIG_NUMA_BALANCING: */ 1928 1929 static inline void 1930 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1931 { 1932 } 1933 1934 #endif /* !CONFIG_NUMA_BALANCING */ 1935 1936 static inline void 1937 queue_balance_callback(struct rq *rq, 1938 struct balance_callback *head, 1939 void (*func)(struct rq *rq)) 1940 { 1941 lockdep_assert_rq_held(rq); 1942 1943 /* 1944 * Don't (re)queue an already queued item; nor queue anything when 1945 * balance_push() is active, see the comment with 1946 * balance_push_callback. 1947 */ 1948 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1949 return; 1950 1951 head->func = func; 1952 head->next = rq->balance_callback; 1953 rq->balance_callback = head; 1954 } 1955 1956 #define rcu_dereference_check_sched_domain(p) \ 1957 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) 1958 1959 /* 1960 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1961 * See destroy_sched_domains: call_rcu for details. 1962 * 1963 * The domain tree of any CPU may only be accessed from within 1964 * preempt-disabled sections. 1965 */ 1966 #define for_each_domain(cpu, __sd) \ 1967 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1968 __sd; __sd = __sd->parent) 1969 1970 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 1971 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 1972 static const unsigned int SD_SHARED_CHILD_MASK = 1973 #include <linux/sched/sd_flags.h> 1974 0; 1975 #undef SD_FLAG 1976 1977 /** 1978 * highest_flag_domain - Return highest sched_domain containing flag. 1979 * @cpu: The CPU whose highest level of sched domain is to 1980 * be returned. 1981 * @flag: The flag to check for the highest sched_domain 1982 * for the given CPU. 1983 * 1984 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 1985 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 1986 */ 1987 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1988 { 1989 struct sched_domain *sd, *hsd = NULL; 1990 1991 for_each_domain(cpu, sd) { 1992 if (sd->flags & flag) { 1993 hsd = sd; 1994 continue; 1995 } 1996 1997 /* 1998 * Stop the search if @flag is known to be shared at lower 1999 * levels. It will not be found further up. 2000 */ 2001 if (flag & SD_SHARED_CHILD_MASK) 2002 break; 2003 } 2004 2005 return hsd; 2006 } 2007 2008 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 2009 { 2010 struct sched_domain *sd; 2011 2012 for_each_domain(cpu, sd) { 2013 if (sd->flags & flag) 2014 break; 2015 } 2016 2017 return sd; 2018 } 2019 2020 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 2021 DECLARE_PER_CPU(int, sd_llc_size); 2022 DECLARE_PER_CPU(int, sd_llc_id); 2023 DECLARE_PER_CPU(int, sd_share_id); 2024 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 2025 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 2026 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 2027 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 2028 2029 extern struct static_key_false sched_asym_cpucapacity; 2030 extern struct static_key_false sched_cluster_active; 2031 2032 static __always_inline bool sched_asym_cpucap_active(void) 2033 { 2034 return static_branch_unlikely(&sched_asym_cpucapacity); 2035 } 2036 2037 struct sched_group_capacity { 2038 atomic_t ref; 2039 /* 2040 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 2041 * for a single CPU. 2042 */ 2043 unsigned long capacity; 2044 unsigned long min_capacity; /* Min per-CPU capacity in group */ 2045 unsigned long max_capacity; /* Max per-CPU capacity in group */ 2046 unsigned long next_update; 2047 int imbalance; /* XXX unrelated to capacity but shared group state */ 2048 2049 int id; 2050 2051 unsigned long cpumask[]; /* Balance mask */ 2052 }; 2053 2054 struct sched_group { 2055 struct sched_group *next; /* Must be a circular list */ 2056 atomic_t ref; 2057 2058 unsigned int group_weight; 2059 unsigned int cores; 2060 struct sched_group_capacity *sgc; 2061 int asym_prefer_cpu; /* CPU of highest priority in group */ 2062 int flags; 2063 2064 /* 2065 * The CPUs this group covers. 2066 * 2067 * NOTE: this field is variable length. (Allocated dynamically 2068 * by attaching extra space to the end of the structure, 2069 * depending on how many CPUs the kernel has booted up with) 2070 */ 2071 unsigned long cpumask[]; 2072 }; 2073 2074 static inline struct cpumask *sched_group_span(struct sched_group *sg) 2075 { 2076 return to_cpumask(sg->cpumask); 2077 } 2078 2079 /* 2080 * See build_balance_mask(). 2081 */ 2082 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 2083 { 2084 return to_cpumask(sg->sgc->cpumask); 2085 } 2086 2087 extern int group_balance_cpu(struct sched_group *sg); 2088 2089 extern void update_sched_domain_debugfs(void); 2090 extern void dirty_sched_domain_sysctl(int cpu); 2091 2092 extern int sched_update_scaling(void); 2093 2094 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 2095 { 2096 if (!p->user_cpus_ptr) 2097 return cpu_possible_mask; /* &init_task.cpus_mask */ 2098 return p->user_cpus_ptr; 2099 } 2100 2101 #ifdef CONFIG_CGROUP_SCHED 2102 2103 /* 2104 * Return the group to which this tasks belongs. 2105 * 2106 * We cannot use task_css() and friends because the cgroup subsystem 2107 * changes that value before the cgroup_subsys::attach() method is called, 2108 * therefore we cannot pin it and might observe the wrong value. 2109 * 2110 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2111 * core changes this before calling sched_move_task(). 2112 * 2113 * Instead we use a 'copy' which is updated from sched_move_task() while 2114 * holding both task_struct::pi_lock and rq::lock. 2115 */ 2116 static inline struct task_group *task_group(struct task_struct *p) 2117 { 2118 return p->sched_task_group; 2119 } 2120 2121 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2122 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2123 { 2124 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2125 struct task_group *tg = task_group(p); 2126 #endif 2127 2128 #ifdef CONFIG_FAIR_GROUP_SCHED 2129 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2130 p->se.cfs_rq = tg->cfs_rq[cpu]; 2131 p->se.parent = tg->se[cpu]; 2132 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2133 #endif 2134 2135 #ifdef CONFIG_RT_GROUP_SCHED 2136 /* 2137 * p->rt.rt_rq is NULL initially and it is easier to assign 2138 * root_task_group's rt_rq than switching in rt_rq_of_se() 2139 * Clobbers tg(!) 2140 */ 2141 if (!rt_group_sched_enabled()) 2142 tg = &root_task_group; 2143 p->rt.rt_rq = tg->rt_rq[cpu]; 2144 p->rt.parent = tg->rt_se[cpu]; 2145 #endif /* CONFIG_RT_GROUP_SCHED */ 2146 } 2147 2148 #else /* !CONFIG_CGROUP_SCHED: */ 2149 2150 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2151 2152 static inline struct task_group *task_group(struct task_struct *p) 2153 { 2154 return NULL; 2155 } 2156 2157 #endif /* !CONFIG_CGROUP_SCHED */ 2158 2159 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2160 { 2161 set_task_rq(p, cpu); 2162 #ifdef CONFIG_SMP 2163 /* 2164 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2165 * successfully executed on another CPU. We must ensure that updates of 2166 * per-task data have been completed by this moment. 2167 */ 2168 smp_wmb(); 2169 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2170 p->wake_cpu = cpu; 2171 #endif /* CONFIG_SMP */ 2172 } 2173 2174 /* 2175 * Tunables: 2176 */ 2177 2178 #define SCHED_FEAT(name, enabled) \ 2179 __SCHED_FEAT_##name , 2180 2181 enum { 2182 #include "features.h" 2183 __SCHED_FEAT_NR, 2184 }; 2185 2186 #undef SCHED_FEAT 2187 2188 /* 2189 * To support run-time toggling of sched features, all the translation units 2190 * (but core.c) reference the sysctl_sched_features defined in core.c. 2191 */ 2192 extern __read_mostly unsigned int sysctl_sched_features; 2193 2194 #ifdef CONFIG_JUMP_LABEL 2195 2196 #define SCHED_FEAT(name, enabled) \ 2197 static __always_inline bool static_branch_##name(struct static_key *key) \ 2198 { \ 2199 return static_key_##enabled(key); \ 2200 } 2201 2202 #include "features.h" 2203 #undef SCHED_FEAT 2204 2205 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2206 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2207 2208 #else /* !CONFIG_JUMP_LABEL: */ 2209 2210 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2211 2212 #endif /* !CONFIG_JUMP_LABEL */ 2213 2214 extern struct static_key_false sched_numa_balancing; 2215 extern struct static_key_false sched_schedstats; 2216 2217 static inline u64 global_rt_period(void) 2218 { 2219 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2220 } 2221 2222 static inline u64 global_rt_runtime(void) 2223 { 2224 if (sysctl_sched_rt_runtime < 0) 2225 return RUNTIME_INF; 2226 2227 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2228 } 2229 2230 /* 2231 * Is p the current execution context? 2232 */ 2233 static inline int task_current(struct rq *rq, struct task_struct *p) 2234 { 2235 return rq->curr == p; 2236 } 2237 2238 /* 2239 * Is p the current scheduling context? 2240 * 2241 * Note that it might be the current execution context at the same time if 2242 * rq->curr == rq->donor == p. 2243 */ 2244 static inline int task_current_donor(struct rq *rq, struct task_struct *p) 2245 { 2246 return rq->donor == p; 2247 } 2248 2249 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2250 { 2251 return p->on_cpu; 2252 } 2253 2254 static inline int task_on_rq_queued(struct task_struct *p) 2255 { 2256 return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED; 2257 } 2258 2259 static inline int task_on_rq_migrating(struct task_struct *p) 2260 { 2261 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2262 } 2263 2264 /* Wake flags. The first three directly map to some SD flag value */ 2265 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2266 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2267 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2268 2269 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2270 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2271 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2272 #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ 2273 2274 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2275 static_assert(WF_FORK == SD_BALANCE_FORK); 2276 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2277 2278 /* 2279 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2280 * of tasks with abnormal "nice" values across CPUs the contribution that 2281 * each task makes to its run queue's load is weighted according to its 2282 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2283 * scaled version of the new time slice allocation that they receive on time 2284 * slice expiry etc. 2285 */ 2286 2287 #define WEIGHT_IDLEPRIO 3 2288 #define WMULT_IDLEPRIO 1431655765 2289 2290 extern const int sched_prio_to_weight[40]; 2291 extern const u32 sched_prio_to_wmult[40]; 2292 2293 /* 2294 * {de,en}queue flags: 2295 * 2296 * DEQUEUE_SLEEP - task is no longer runnable 2297 * ENQUEUE_WAKEUP - task just became runnable 2298 * 2299 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2300 * are in a known state which allows modification. Such pairs 2301 * should preserve as much state as possible. 2302 * 2303 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2304 * in the runqueue. 2305 * 2306 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2307 * 2308 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2309 * 2310 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2311 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2312 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2313 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called 2314 * 2315 */ 2316 2317 #define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */ 2318 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2319 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2320 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2321 #define DEQUEUE_SPECIAL 0x10 2322 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */ 2323 #define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */ 2324 2325 #define ENQUEUE_WAKEUP 0x01 2326 #define ENQUEUE_RESTORE 0x02 2327 #define ENQUEUE_MOVE 0x04 2328 #define ENQUEUE_NOCLOCK 0x08 2329 2330 #define ENQUEUE_HEAD 0x10 2331 #define ENQUEUE_REPLENISH 0x20 2332 #define ENQUEUE_MIGRATED 0x40 2333 #define ENQUEUE_INITIAL 0x80 2334 #define ENQUEUE_MIGRATING 0x100 2335 #define ENQUEUE_DELAYED 0x200 2336 #define ENQUEUE_RQ_SELECTED 0x400 2337 2338 #define RETRY_TASK ((void *)-1UL) 2339 2340 struct affinity_context { 2341 const struct cpumask *new_mask; 2342 struct cpumask *user_mask; 2343 unsigned int flags; 2344 }; 2345 2346 extern s64 update_curr_common(struct rq *rq); 2347 2348 struct sched_class { 2349 2350 #ifdef CONFIG_UCLAMP_TASK 2351 int uclamp_enabled; 2352 #endif 2353 2354 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2355 bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2356 void (*yield_task) (struct rq *rq); 2357 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2358 2359 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2360 2361 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2362 struct task_struct *(*pick_task)(struct rq *rq); 2363 /* 2364 * Optional! When implemented pick_next_task() should be equivalent to: 2365 * 2366 * next = pick_task(); 2367 * if (next) { 2368 * put_prev_task(prev); 2369 * set_next_task_first(next); 2370 * } 2371 */ 2372 struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev); 2373 2374 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); 2375 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2376 2377 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2378 2379 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2380 2381 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2382 2383 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2384 2385 void (*rq_online)(struct rq *rq); 2386 void (*rq_offline)(struct rq *rq); 2387 2388 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2389 2390 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2391 void (*task_fork)(struct task_struct *p); 2392 void (*task_dead)(struct task_struct *p); 2393 2394 /* 2395 * The switched_from() call is allowed to drop rq->lock, therefore we 2396 * cannot assume the switched_from/switched_to pair is serialized by 2397 * rq->lock. They are however serialized by p->pi_lock. 2398 */ 2399 void (*switching_to) (struct rq *this_rq, struct task_struct *task); 2400 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2401 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2402 void (*reweight_task)(struct rq *this_rq, struct task_struct *task, 2403 const struct load_weight *lw); 2404 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2405 int oldprio); 2406 2407 unsigned int (*get_rr_interval)(struct rq *rq, 2408 struct task_struct *task); 2409 2410 void (*update_curr)(struct rq *rq); 2411 2412 #ifdef CONFIG_FAIR_GROUP_SCHED 2413 void (*task_change_group)(struct task_struct *p); 2414 #endif 2415 2416 #ifdef CONFIG_SCHED_CORE 2417 int (*task_is_throttled)(struct task_struct *p, int cpu); 2418 #endif 2419 }; 2420 2421 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2422 { 2423 WARN_ON_ONCE(rq->donor != prev); 2424 prev->sched_class->put_prev_task(rq, prev, NULL); 2425 } 2426 2427 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2428 { 2429 next->sched_class->set_next_task(rq, next, false); 2430 } 2431 2432 static inline void 2433 __put_prev_set_next_dl_server(struct rq *rq, 2434 struct task_struct *prev, 2435 struct task_struct *next) 2436 { 2437 prev->dl_server = NULL; 2438 next->dl_server = rq->dl_server; 2439 rq->dl_server = NULL; 2440 } 2441 2442 static inline void put_prev_set_next_task(struct rq *rq, 2443 struct task_struct *prev, 2444 struct task_struct *next) 2445 { 2446 WARN_ON_ONCE(rq->curr != prev); 2447 2448 __put_prev_set_next_dl_server(rq, prev, next); 2449 2450 if (next == prev) 2451 return; 2452 2453 prev->sched_class->put_prev_task(rq, prev, next); 2454 next->sched_class->set_next_task(rq, next, true); 2455 } 2456 2457 /* 2458 * Helper to define a sched_class instance; each one is placed in a separate 2459 * section which is ordered by the linker script: 2460 * 2461 * include/asm-generic/vmlinux.lds.h 2462 * 2463 * *CAREFUL* they are laid out in *REVERSE* order!!! 2464 * 2465 * Also enforce alignment on the instance, not the type, to guarantee layout. 2466 */ 2467 #define DEFINE_SCHED_CLASS(name) \ 2468 const struct sched_class name##_sched_class \ 2469 __aligned(__alignof__(struct sched_class)) \ 2470 __section("__" #name "_sched_class") 2471 2472 /* Defined in include/asm-generic/vmlinux.lds.h */ 2473 extern struct sched_class __sched_class_highest[]; 2474 extern struct sched_class __sched_class_lowest[]; 2475 2476 extern const struct sched_class stop_sched_class; 2477 extern const struct sched_class dl_sched_class; 2478 extern const struct sched_class rt_sched_class; 2479 extern const struct sched_class fair_sched_class; 2480 extern const struct sched_class idle_sched_class; 2481 2482 /* 2483 * Iterate only active classes. SCX can take over all fair tasks or be 2484 * completely disabled. If the former, skip fair. If the latter, skip SCX. 2485 */ 2486 static inline const struct sched_class *next_active_class(const struct sched_class *class) 2487 { 2488 class++; 2489 #ifdef CONFIG_SCHED_CLASS_EXT 2490 if (scx_switched_all() && class == &fair_sched_class) 2491 class++; 2492 if (!scx_enabled() && class == &ext_sched_class) 2493 class++; 2494 #endif 2495 return class; 2496 } 2497 2498 #define for_class_range(class, _from, _to) \ 2499 for (class = (_from); class < (_to); class++) 2500 2501 #define for_each_class(class) \ 2502 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2503 2504 #define for_active_class_range(class, _from, _to) \ 2505 for (class = (_from); class != (_to); class = next_active_class(class)) 2506 2507 #define for_each_active_class(class) \ 2508 for_active_class_range(class, __sched_class_highest, __sched_class_lowest) 2509 2510 #define sched_class_above(_a, _b) ((_a) < (_b)) 2511 2512 static inline bool sched_stop_runnable(struct rq *rq) 2513 { 2514 return rq->stop && task_on_rq_queued(rq->stop); 2515 } 2516 2517 static inline bool sched_dl_runnable(struct rq *rq) 2518 { 2519 return rq->dl.dl_nr_running > 0; 2520 } 2521 2522 static inline bool sched_rt_runnable(struct rq *rq) 2523 { 2524 return rq->rt.rt_queued > 0; 2525 } 2526 2527 static inline bool sched_fair_runnable(struct rq *rq) 2528 { 2529 return rq->cfs.nr_queued > 0; 2530 } 2531 2532 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2533 extern struct task_struct *pick_task_idle(struct rq *rq); 2534 2535 #define SCA_CHECK 0x01 2536 #define SCA_MIGRATE_DISABLE 0x02 2537 #define SCA_MIGRATE_ENABLE 0x04 2538 #define SCA_USER 0x08 2539 2540 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2541 2542 extern void sched_balance_trigger(struct rq *rq); 2543 2544 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); 2545 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2546 2547 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2548 { 2549 /* When not in the task's cpumask, no point in looking further. */ 2550 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2551 return false; 2552 2553 /* Can @cpu run a user thread? */ 2554 if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) 2555 return false; 2556 2557 return true; 2558 } 2559 2560 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2561 { 2562 /* 2563 * See do_set_cpus_allowed() above for the rcu_head usage. 2564 */ 2565 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2566 2567 return kmalloc_node(size, GFP_KERNEL, node); 2568 } 2569 2570 static inline struct task_struct *get_push_task(struct rq *rq) 2571 { 2572 struct task_struct *p = rq->donor; 2573 2574 lockdep_assert_rq_held(rq); 2575 2576 if (rq->push_busy) 2577 return NULL; 2578 2579 if (p->nr_cpus_allowed == 1) 2580 return NULL; 2581 2582 if (p->migration_disabled) 2583 return NULL; 2584 2585 rq->push_busy = true; 2586 return get_task_struct(p); 2587 } 2588 2589 extern int push_cpu_stop(void *arg); 2590 2591 #ifdef CONFIG_CPU_IDLE 2592 2593 static inline void idle_set_state(struct rq *rq, 2594 struct cpuidle_state *idle_state) 2595 { 2596 rq->idle_state = idle_state; 2597 } 2598 2599 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2600 { 2601 WARN_ON_ONCE(!rcu_read_lock_held()); 2602 2603 return rq->idle_state; 2604 } 2605 2606 #else /* !CONFIG_CPU_IDLE: */ 2607 2608 static inline void idle_set_state(struct rq *rq, 2609 struct cpuidle_state *idle_state) 2610 { 2611 } 2612 2613 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2614 { 2615 return NULL; 2616 } 2617 2618 #endif /* !CONFIG_CPU_IDLE */ 2619 2620 extern void schedule_idle(void); 2621 asmlinkage void schedule_user(void); 2622 2623 extern void sysrq_sched_debug_show(void); 2624 extern void sched_init_granularity(void); 2625 extern void update_max_interval(void); 2626 2627 extern void init_sched_dl_class(void); 2628 extern void init_sched_rt_class(void); 2629 extern void init_sched_fair_class(void); 2630 2631 extern void resched_curr(struct rq *rq); 2632 extern void resched_curr_lazy(struct rq *rq); 2633 extern void resched_cpu(int cpu); 2634 2635 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2636 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2637 2638 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2639 2640 #define BW_SHIFT 20 2641 #define BW_UNIT (1 << BW_SHIFT) 2642 #define RATIO_SHIFT 8 2643 #define MAX_BW_BITS (64 - BW_SHIFT) 2644 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2645 2646 extern unsigned long to_ratio(u64 period, u64 runtime); 2647 2648 extern void init_entity_runnable_average(struct sched_entity *se); 2649 extern void post_init_entity_util_avg(struct task_struct *p); 2650 2651 #ifdef CONFIG_NO_HZ_FULL 2652 extern bool sched_can_stop_tick(struct rq *rq); 2653 extern int __init sched_tick_offload_init(void); 2654 2655 /* 2656 * Tick may be needed by tasks in the runqueue depending on their policy and 2657 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2658 * nohz mode if necessary. 2659 */ 2660 static inline void sched_update_tick_dependency(struct rq *rq) 2661 { 2662 int cpu = cpu_of(rq); 2663 2664 if (!tick_nohz_full_cpu(cpu)) 2665 return; 2666 2667 if (sched_can_stop_tick(rq)) 2668 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2669 else 2670 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2671 } 2672 #else /* !CONFIG_NO_HZ_FULL: */ 2673 static inline int sched_tick_offload_init(void) { return 0; } 2674 static inline void sched_update_tick_dependency(struct rq *rq) { } 2675 #endif /* !CONFIG_NO_HZ_FULL */ 2676 2677 static inline void add_nr_running(struct rq *rq, unsigned count) 2678 { 2679 unsigned prev_nr = rq->nr_running; 2680 2681 rq->nr_running = prev_nr + count; 2682 if (trace_sched_update_nr_running_tp_enabled()) { 2683 call_trace_sched_update_nr_running(rq, count); 2684 } 2685 2686 if (prev_nr < 2 && rq->nr_running >= 2) 2687 set_rd_overloaded(rq->rd, 1); 2688 2689 sched_update_tick_dependency(rq); 2690 } 2691 2692 static inline void sub_nr_running(struct rq *rq, unsigned count) 2693 { 2694 rq->nr_running -= count; 2695 if (trace_sched_update_nr_running_tp_enabled()) { 2696 call_trace_sched_update_nr_running(rq, -count); 2697 } 2698 2699 /* Check if we still need preemption */ 2700 sched_update_tick_dependency(rq); 2701 } 2702 2703 static inline void __block_task(struct rq *rq, struct task_struct *p) 2704 { 2705 if (p->sched_contributes_to_load) 2706 rq->nr_uninterruptible++; 2707 2708 if (p->in_iowait) { 2709 atomic_inc(&rq->nr_iowait); 2710 delayacct_blkio_start(); 2711 } 2712 2713 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2714 2715 /* 2716 * The moment this write goes through, ttwu() can swoop in and migrate 2717 * this task, rendering our rq->__lock ineffective. 2718 * 2719 * __schedule() try_to_wake_up() 2720 * LOCK rq->__lock LOCK p->pi_lock 2721 * pick_next_task() 2722 * pick_next_task_fair() 2723 * pick_next_entity() 2724 * dequeue_entities() 2725 * __block_task() 2726 * RELEASE p->on_rq = 0 if (p->on_rq && ...) 2727 * break; 2728 * 2729 * ACQUIRE (after ctrl-dep) 2730 * 2731 * cpu = select_task_rq(); 2732 * set_task_cpu(p, cpu); 2733 * ttwu_queue() 2734 * ttwu_do_activate() 2735 * LOCK rq->__lock 2736 * activate_task() 2737 * STORE p->on_rq = 1 2738 * UNLOCK rq->__lock 2739 * 2740 * Callers must ensure to not reference @p after this -- we no longer 2741 * own it. 2742 */ 2743 smp_store_release(&p->on_rq, 0); 2744 } 2745 2746 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2747 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2748 2749 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2750 2751 #ifdef CONFIG_PREEMPT_RT 2752 # define SCHED_NR_MIGRATE_BREAK 8 2753 #else 2754 # define SCHED_NR_MIGRATE_BREAK 32 2755 #endif 2756 2757 extern __read_mostly unsigned int sysctl_sched_nr_migrate; 2758 extern __read_mostly unsigned int sysctl_sched_migration_cost; 2759 2760 extern unsigned int sysctl_sched_base_slice; 2761 2762 extern int sysctl_resched_latency_warn_ms; 2763 extern int sysctl_resched_latency_warn_once; 2764 2765 extern unsigned int sysctl_sched_tunable_scaling; 2766 2767 extern unsigned int sysctl_numa_balancing_scan_delay; 2768 extern unsigned int sysctl_numa_balancing_scan_period_min; 2769 extern unsigned int sysctl_numa_balancing_scan_period_max; 2770 extern unsigned int sysctl_numa_balancing_scan_size; 2771 extern unsigned int sysctl_numa_balancing_hot_threshold; 2772 2773 #ifdef CONFIG_SCHED_HRTICK 2774 2775 /* 2776 * Use hrtick when: 2777 * - enabled by features 2778 * - hrtimer is actually high res 2779 */ 2780 static inline int hrtick_enabled(struct rq *rq) 2781 { 2782 if (!cpu_active(cpu_of(rq))) 2783 return 0; 2784 return hrtimer_is_hres_active(&rq->hrtick_timer); 2785 } 2786 2787 static inline int hrtick_enabled_fair(struct rq *rq) 2788 { 2789 if (!sched_feat(HRTICK)) 2790 return 0; 2791 return hrtick_enabled(rq); 2792 } 2793 2794 static inline int hrtick_enabled_dl(struct rq *rq) 2795 { 2796 if (!sched_feat(HRTICK_DL)) 2797 return 0; 2798 return hrtick_enabled(rq); 2799 } 2800 2801 extern void hrtick_start(struct rq *rq, u64 delay); 2802 2803 #else /* !CONFIG_SCHED_HRTICK: */ 2804 2805 static inline int hrtick_enabled_fair(struct rq *rq) 2806 { 2807 return 0; 2808 } 2809 2810 static inline int hrtick_enabled_dl(struct rq *rq) 2811 { 2812 return 0; 2813 } 2814 2815 static inline int hrtick_enabled(struct rq *rq) 2816 { 2817 return 0; 2818 } 2819 2820 #endif /* !CONFIG_SCHED_HRTICK */ 2821 2822 #ifndef arch_scale_freq_tick 2823 static __always_inline void arch_scale_freq_tick(void) { } 2824 #endif 2825 2826 #ifndef arch_scale_freq_capacity 2827 /** 2828 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2829 * @cpu: the CPU in question. 2830 * 2831 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2832 * 2833 * f_curr 2834 * ------ * SCHED_CAPACITY_SCALE 2835 * f_max 2836 */ 2837 static __always_inline 2838 unsigned long arch_scale_freq_capacity(int cpu) 2839 { 2840 return SCHED_CAPACITY_SCALE; 2841 } 2842 #endif 2843 2844 /* 2845 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2846 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2847 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2848 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2849 */ 2850 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2851 { 2852 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2853 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2854 } 2855 2856 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 2857 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 2858 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 2859 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 2860 _lock; return _t; } 2861 2862 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2863 { 2864 #ifdef CONFIG_SCHED_CORE 2865 /* 2866 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2867 * order by core-id first and cpu-id second. 2868 * 2869 * Notably: 2870 * 2871 * double_rq_lock(0,3); will take core-0, core-1 lock 2872 * double_rq_lock(1,2); will take core-1, core-0 lock 2873 * 2874 * when only cpu-id is considered. 2875 */ 2876 if (rq1->core->cpu < rq2->core->cpu) 2877 return true; 2878 if (rq1->core->cpu > rq2->core->cpu) 2879 return false; 2880 2881 /* 2882 * __sched_core_flip() relies on SMT having cpu-id lock order. 2883 */ 2884 #endif /* CONFIG_SCHED_CORE */ 2885 return rq1->cpu < rq2->cpu; 2886 } 2887 2888 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2889 2890 #ifdef CONFIG_PREEMPTION 2891 2892 /* 2893 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2894 * way at the expense of forcing extra atomic operations in all 2895 * invocations. This assures that the double_lock is acquired using the 2896 * same underlying policy as the spinlock_t on this architecture, which 2897 * reduces latency compared to the unfair variant below. However, it 2898 * also adds more overhead and therefore may reduce throughput. 2899 */ 2900 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2901 __releases(this_rq->lock) 2902 __acquires(busiest->lock) 2903 __acquires(this_rq->lock) 2904 { 2905 raw_spin_rq_unlock(this_rq); 2906 double_rq_lock(this_rq, busiest); 2907 2908 return 1; 2909 } 2910 2911 #else /* !CONFIG_PREEMPTION: */ 2912 /* 2913 * Unfair double_lock_balance: Optimizes throughput at the expense of 2914 * latency by eliminating extra atomic operations when the locks are 2915 * already in proper order on entry. This favors lower CPU-ids and will 2916 * grant the double lock to lower CPUs over higher ids under contention, 2917 * regardless of entry order into the function. 2918 */ 2919 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2920 __releases(this_rq->lock) 2921 __acquires(busiest->lock) 2922 __acquires(this_rq->lock) 2923 { 2924 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2925 likely(raw_spin_rq_trylock(busiest))) { 2926 double_rq_clock_clear_update(this_rq, busiest); 2927 return 0; 2928 } 2929 2930 if (rq_order_less(this_rq, busiest)) { 2931 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2932 double_rq_clock_clear_update(this_rq, busiest); 2933 return 0; 2934 } 2935 2936 raw_spin_rq_unlock(this_rq); 2937 double_rq_lock(this_rq, busiest); 2938 2939 return 1; 2940 } 2941 2942 #endif /* !CONFIG_PREEMPTION */ 2943 2944 /* 2945 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2946 */ 2947 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2948 { 2949 lockdep_assert_irqs_disabled(); 2950 2951 return _double_lock_balance(this_rq, busiest); 2952 } 2953 2954 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2955 __releases(busiest->lock) 2956 { 2957 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2958 raw_spin_rq_unlock(busiest); 2959 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2960 } 2961 2962 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2963 { 2964 if (l1 > l2) 2965 swap(l1, l2); 2966 2967 spin_lock(l1); 2968 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2969 } 2970 2971 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2972 { 2973 if (l1 > l2) 2974 swap(l1, l2); 2975 2976 spin_lock_irq(l1); 2977 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2978 } 2979 2980 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2981 { 2982 if (l1 > l2) 2983 swap(l1, l2); 2984 2985 raw_spin_lock(l1); 2986 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2987 } 2988 2989 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2990 { 2991 raw_spin_unlock(l1); 2992 raw_spin_unlock(l2); 2993 } 2994 2995 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 2996 double_raw_lock(_T->lock, _T->lock2), 2997 double_raw_unlock(_T->lock, _T->lock2)) 2998 2999 /* 3000 * double_rq_unlock - safely unlock two runqueues 3001 * 3002 * Note this does not restore interrupts like task_rq_unlock, 3003 * you need to do so manually after calling. 3004 */ 3005 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3006 __releases(rq1->lock) 3007 __releases(rq2->lock) 3008 { 3009 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 3010 raw_spin_rq_unlock(rq2); 3011 else 3012 __release(rq2->lock); 3013 raw_spin_rq_unlock(rq1); 3014 } 3015 3016 extern void set_rq_online (struct rq *rq); 3017 extern void set_rq_offline(struct rq *rq); 3018 3019 extern bool sched_smp_initialized; 3020 3021 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 3022 double_rq_lock(_T->lock, _T->lock2), 3023 double_rq_unlock(_T->lock, _T->lock2)) 3024 3025 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 3026 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 3027 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 3028 3029 extern bool sched_debug_verbose; 3030 3031 extern void print_cfs_stats(struct seq_file *m, int cpu); 3032 extern void print_rt_stats(struct seq_file *m, int cpu); 3033 extern void print_dl_stats(struct seq_file *m, int cpu); 3034 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 3035 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 3036 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 3037 3038 extern void resched_latency_warn(int cpu, u64 latency); 3039 3040 #ifdef CONFIG_NUMA_BALANCING 3041 extern void show_numa_stats(struct task_struct *p, struct seq_file *m); 3042 extern void 3043 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 3044 unsigned long tpf, unsigned long gsf, unsigned long gpf); 3045 #endif /* CONFIG_NUMA_BALANCING */ 3046 3047 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 3048 extern void init_rt_rq(struct rt_rq *rt_rq); 3049 extern void init_dl_rq(struct dl_rq *dl_rq); 3050 3051 extern void cfs_bandwidth_usage_inc(void); 3052 extern void cfs_bandwidth_usage_dec(void); 3053 3054 #ifdef CONFIG_NO_HZ_COMMON 3055 3056 #define NOHZ_BALANCE_KICK_BIT 0 3057 #define NOHZ_STATS_KICK_BIT 1 3058 #define NOHZ_NEWILB_KICK_BIT 2 3059 #define NOHZ_NEXT_KICK_BIT 3 3060 3061 /* Run sched_balance_domains() */ 3062 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 3063 /* Update blocked load */ 3064 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 3065 /* Update blocked load when entering idle */ 3066 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 3067 /* Update nohz.next_balance */ 3068 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 3069 3070 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 3071 3072 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 3073 3074 extern void nohz_balance_exit_idle(struct rq *rq); 3075 #else /* !CONFIG_NO_HZ_COMMON: */ 3076 static inline void nohz_balance_exit_idle(struct rq *rq) { } 3077 #endif /* !CONFIG_NO_HZ_COMMON */ 3078 3079 #ifdef CONFIG_NO_HZ_COMMON 3080 extern void nohz_run_idle_balance(int cpu); 3081 #else 3082 static inline void nohz_run_idle_balance(int cpu) { } 3083 #endif 3084 3085 #include "stats.h" 3086 3087 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 3088 3089 extern void __sched_core_account_forceidle(struct rq *rq); 3090 3091 static inline void sched_core_account_forceidle(struct rq *rq) 3092 { 3093 if (schedstat_enabled()) 3094 __sched_core_account_forceidle(rq); 3095 } 3096 3097 extern void __sched_core_tick(struct rq *rq); 3098 3099 static inline void sched_core_tick(struct rq *rq) 3100 { 3101 if (sched_core_enabled(rq) && schedstat_enabled()) 3102 __sched_core_tick(rq); 3103 } 3104 3105 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ 3106 3107 static inline void sched_core_account_forceidle(struct rq *rq) { } 3108 3109 static inline void sched_core_tick(struct rq *rq) { } 3110 3111 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ 3112 3113 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3114 3115 struct irqtime { 3116 u64 total; 3117 u64 tick_delta; 3118 u64 irq_start_time; 3119 struct u64_stats_sync sync; 3120 }; 3121 3122 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 3123 extern int sched_clock_irqtime; 3124 3125 static inline int irqtime_enabled(void) 3126 { 3127 return sched_clock_irqtime; 3128 } 3129 3130 /* 3131 * Returns the irqtime minus the softirq time computed by ksoftirqd. 3132 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 3133 * and never move forward. 3134 */ 3135 static inline u64 irq_time_read(int cpu) 3136 { 3137 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 3138 unsigned int seq; 3139 u64 total; 3140 3141 do { 3142 seq = __u64_stats_fetch_begin(&irqtime->sync); 3143 total = irqtime->total; 3144 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 3145 3146 return total; 3147 } 3148 3149 #else /* !CONFIG_IRQ_TIME_ACCOUNTING: */ 3150 3151 static inline int irqtime_enabled(void) 3152 { 3153 return 0; 3154 } 3155 3156 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 3157 3158 #ifdef CONFIG_CPU_FREQ 3159 3160 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 3161 3162 /** 3163 * cpufreq_update_util - Take a note about CPU utilization changes. 3164 * @rq: Runqueue to carry out the update for. 3165 * @flags: Update reason flags. 3166 * 3167 * This function is called by the scheduler on the CPU whose utilization is 3168 * being updated. 3169 * 3170 * It can only be called from RCU-sched read-side critical sections. 3171 * 3172 * The way cpufreq is currently arranged requires it to evaluate the CPU 3173 * performance state (frequency/voltage) on a regular basis to prevent it from 3174 * being stuck in a completely inadequate performance level for too long. 3175 * That is not guaranteed to happen if the updates are only triggered from CFS 3176 * and DL, though, because they may not be coming in if only RT tasks are 3177 * active all the time (or there are RT tasks only). 3178 * 3179 * As a workaround for that issue, this function is called periodically by the 3180 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 3181 * but that really is a band-aid. Going forward it should be replaced with 3182 * solutions targeted more specifically at RT tasks. 3183 */ 3184 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 3185 { 3186 struct update_util_data *data; 3187 3188 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 3189 cpu_of(rq))); 3190 if (data) 3191 data->func(data, rq_clock(rq), flags); 3192 } 3193 #else /* !CONFIG_CPU_FREQ: */ 3194 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } 3195 #endif /* !CONFIG_CPU_FREQ */ 3196 3197 #ifdef arch_scale_freq_capacity 3198 # ifndef arch_scale_freq_invariant 3199 # define arch_scale_freq_invariant() true 3200 # endif 3201 #else 3202 # define arch_scale_freq_invariant() false 3203 #endif 3204 3205 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3206 unsigned long *min, 3207 unsigned long *max); 3208 3209 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3210 unsigned long min, 3211 unsigned long max); 3212 3213 3214 /* 3215 * Verify the fitness of task @p to run on @cpu taking into account the 3216 * CPU original capacity and the runtime/deadline ratio of the task. 3217 * 3218 * The function will return true if the original capacity of @cpu is 3219 * greater than or equal to task's deadline density right shifted by 3220 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3221 */ 3222 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3223 { 3224 unsigned long cap = arch_scale_cpu_capacity(cpu); 3225 3226 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3227 } 3228 3229 static inline unsigned long cpu_bw_dl(struct rq *rq) 3230 { 3231 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3232 } 3233 3234 static inline unsigned long cpu_util_dl(struct rq *rq) 3235 { 3236 return READ_ONCE(rq->avg_dl.util_avg); 3237 } 3238 3239 3240 extern unsigned long cpu_util_cfs(int cpu); 3241 extern unsigned long cpu_util_cfs_boost(int cpu); 3242 3243 static inline unsigned long cpu_util_rt(struct rq *rq) 3244 { 3245 return READ_ONCE(rq->avg_rt.util_avg); 3246 } 3247 3248 #ifdef CONFIG_UCLAMP_TASK 3249 3250 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3251 3252 /* 3253 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3254 * by default in the fast path and only gets turned on once userspace performs 3255 * an operation that requires it. 3256 * 3257 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3258 * hence is active. 3259 */ 3260 static inline bool uclamp_is_used(void) 3261 { 3262 return static_branch_likely(&sched_uclamp_used); 3263 } 3264 3265 /* 3266 * Enabling static branches would get the cpus_read_lock(), 3267 * check whether uclamp_is_used before enable it to avoid always 3268 * calling cpus_read_lock(). Because we never disable this 3269 * static key once enable it. 3270 */ 3271 static inline void sched_uclamp_enable(void) 3272 { 3273 if (!uclamp_is_used()) 3274 static_branch_enable(&sched_uclamp_used); 3275 } 3276 3277 static inline unsigned long uclamp_rq_get(struct rq *rq, 3278 enum uclamp_id clamp_id) 3279 { 3280 return READ_ONCE(rq->uclamp[clamp_id].value); 3281 } 3282 3283 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3284 unsigned int value) 3285 { 3286 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3287 } 3288 3289 static inline bool uclamp_rq_is_idle(struct rq *rq) 3290 { 3291 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3292 } 3293 3294 /* Is the rq being capped/throttled by uclamp_max? */ 3295 static inline bool uclamp_rq_is_capped(struct rq *rq) 3296 { 3297 unsigned long rq_util; 3298 unsigned long max_util; 3299 3300 if (!uclamp_is_used()) 3301 return false; 3302 3303 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3304 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3305 3306 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3307 } 3308 3309 #define for_each_clamp_id(clamp_id) \ 3310 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 3311 3312 extern unsigned int sysctl_sched_uclamp_util_min_rt_default; 3313 3314 3315 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 3316 { 3317 if (clamp_id == UCLAMP_MIN) 3318 return 0; 3319 return SCHED_CAPACITY_SCALE; 3320 } 3321 3322 /* Integer rounded range for each bucket */ 3323 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 3324 3325 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 3326 { 3327 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 3328 } 3329 3330 static inline void 3331 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) 3332 { 3333 uc_se->value = value; 3334 uc_se->bucket_id = uclamp_bucket_id(value); 3335 uc_se->user_defined = user_defined; 3336 } 3337 3338 #else /* !CONFIG_UCLAMP_TASK: */ 3339 3340 static inline unsigned long 3341 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 3342 { 3343 if (clamp_id == UCLAMP_MIN) 3344 return 0; 3345 3346 return SCHED_CAPACITY_SCALE; 3347 } 3348 3349 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3350 3351 static inline bool uclamp_is_used(void) 3352 { 3353 return false; 3354 } 3355 3356 static inline void sched_uclamp_enable(void) {} 3357 3358 static inline unsigned long 3359 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) 3360 { 3361 if (clamp_id == UCLAMP_MIN) 3362 return 0; 3363 3364 return SCHED_CAPACITY_SCALE; 3365 } 3366 3367 static inline void 3368 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) 3369 { 3370 } 3371 3372 static inline bool uclamp_rq_is_idle(struct rq *rq) 3373 { 3374 return false; 3375 } 3376 3377 #endif /* !CONFIG_UCLAMP_TASK */ 3378 3379 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3380 3381 static inline unsigned long cpu_util_irq(struct rq *rq) 3382 { 3383 return READ_ONCE(rq->avg_irq.util_avg); 3384 } 3385 3386 static inline 3387 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3388 { 3389 util *= (max - irq); 3390 util /= max; 3391 3392 return util; 3393 3394 } 3395 3396 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ 3397 3398 static inline unsigned long cpu_util_irq(struct rq *rq) 3399 { 3400 return 0; 3401 } 3402 3403 static inline 3404 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3405 { 3406 return util; 3407 } 3408 3409 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ 3410 3411 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr); 3412 3413 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3414 3415 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3416 3417 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3418 3419 static inline bool sched_energy_enabled(void) 3420 { 3421 return static_branch_unlikely(&sched_energy_present); 3422 } 3423 3424 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */ 3425 3426 #define perf_domain_span(pd) NULL 3427 3428 static inline bool sched_energy_enabled(void) { return false; } 3429 3430 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3431 3432 #ifdef CONFIG_MEMBARRIER 3433 3434 /* 3435 * The scheduler provides memory barriers required by membarrier between: 3436 * - prior user-space memory accesses and store to rq->membarrier_state, 3437 * - store to rq->membarrier_state and following user-space memory accesses. 3438 * In the same way it provides those guarantees around store to rq->curr. 3439 */ 3440 static inline void membarrier_switch_mm(struct rq *rq, 3441 struct mm_struct *prev_mm, 3442 struct mm_struct *next_mm) 3443 { 3444 int membarrier_state; 3445 3446 if (prev_mm == next_mm) 3447 return; 3448 3449 membarrier_state = atomic_read(&next_mm->membarrier_state); 3450 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3451 return; 3452 3453 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3454 } 3455 3456 #else /* !CONFIG_MEMBARRIER: */ 3457 3458 static inline void membarrier_switch_mm(struct rq *rq, 3459 struct mm_struct *prev_mm, 3460 struct mm_struct *next_mm) 3461 { 3462 } 3463 3464 #endif /* !CONFIG_MEMBARRIER */ 3465 3466 static inline bool is_per_cpu_kthread(struct task_struct *p) 3467 { 3468 if (!(p->flags & PF_KTHREAD)) 3469 return false; 3470 3471 if (p->nr_cpus_allowed != 1) 3472 return false; 3473 3474 return true; 3475 } 3476 3477 extern void swake_up_all_locked(struct swait_queue_head *q); 3478 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3479 3480 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3481 3482 #ifdef CONFIG_PREEMPT_DYNAMIC 3483 extern int preempt_dynamic_mode; 3484 extern int sched_dynamic_mode(const char *str); 3485 extern void sched_dynamic_update(int mode); 3486 #endif 3487 extern const char *preempt_modes[]; 3488 3489 #ifdef CONFIG_SCHED_MM_CID 3490 3491 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ 3492 #define MM_CID_SCAN_DELAY 100 /* 100ms */ 3493 3494 extern raw_spinlock_t cid_lock; 3495 extern int use_cid_lock; 3496 3497 extern void sched_mm_cid_migrate_from(struct task_struct *t); 3498 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); 3499 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); 3500 extern void init_sched_mm_cid(struct task_struct *t); 3501 3502 static inline void __mm_cid_put(struct mm_struct *mm, int cid) 3503 { 3504 if (cid < 0) 3505 return; 3506 cpumask_clear_cpu(cid, mm_cidmask(mm)); 3507 } 3508 3509 /* 3510 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to 3511 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to 3512 * be held to transition to other states. 3513 * 3514 * State transitions synchronized with cmpxchg or try_cmpxchg need to be 3515 * consistent across CPUs, which prevents use of this_cpu_cmpxchg. 3516 */ 3517 static inline void mm_cid_put_lazy(struct task_struct *t) 3518 { 3519 struct mm_struct *mm = t->mm; 3520 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3521 int cid; 3522 3523 lockdep_assert_irqs_disabled(); 3524 cid = __this_cpu_read(pcpu_cid->cid); 3525 if (!mm_cid_is_lazy_put(cid) || 3526 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3527 return; 3528 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3529 } 3530 3531 static inline int mm_cid_pcpu_unset(struct mm_struct *mm) 3532 { 3533 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3534 int cid, res; 3535 3536 lockdep_assert_irqs_disabled(); 3537 cid = __this_cpu_read(pcpu_cid->cid); 3538 for (;;) { 3539 if (mm_cid_is_unset(cid)) 3540 return MM_CID_UNSET; 3541 /* 3542 * Attempt transition from valid or lazy-put to unset. 3543 */ 3544 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); 3545 if (res == cid) 3546 break; 3547 cid = res; 3548 } 3549 return cid; 3550 } 3551 3552 static inline void mm_cid_put(struct mm_struct *mm) 3553 { 3554 int cid; 3555 3556 lockdep_assert_irqs_disabled(); 3557 cid = mm_cid_pcpu_unset(mm); 3558 if (cid == MM_CID_UNSET) 3559 return; 3560 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3561 } 3562 3563 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm) 3564 { 3565 struct cpumask *cidmask = mm_cidmask(mm); 3566 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3567 int cid, max_nr_cid, allowed_max_nr_cid; 3568 3569 /* 3570 * After shrinking the number of threads or reducing the number 3571 * of allowed cpus, reduce the value of max_nr_cid so expansion 3572 * of cid allocation will preserve cache locality if the number 3573 * of threads or allowed cpus increase again. 3574 */ 3575 max_nr_cid = atomic_read(&mm->max_nr_cid); 3576 while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed), 3577 atomic_read(&mm->mm_users))), 3578 max_nr_cid > allowed_max_nr_cid) { 3579 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */ 3580 if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) { 3581 max_nr_cid = allowed_max_nr_cid; 3582 break; 3583 } 3584 } 3585 /* Try to re-use recent cid. This improves cache locality. */ 3586 cid = __this_cpu_read(pcpu_cid->recent_cid); 3587 if (!mm_cid_is_unset(cid) && cid < max_nr_cid && 3588 !cpumask_test_and_set_cpu(cid, cidmask)) 3589 return cid; 3590 /* 3591 * Expand cid allocation if the maximum number of concurrency 3592 * IDs allocated (max_nr_cid) is below the number cpus allowed 3593 * and number of threads. Expanding cid allocation as much as 3594 * possible improves cache locality. 3595 */ 3596 cid = max_nr_cid; 3597 while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) { 3598 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */ 3599 if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1)) 3600 continue; 3601 if (!cpumask_test_and_set_cpu(cid, cidmask)) 3602 return cid; 3603 } 3604 /* 3605 * Find the first available concurrency id. 3606 * Retry finding first zero bit if the mask is temporarily 3607 * filled. This only happens during concurrent remote-clear 3608 * which owns a cid without holding a rq lock. 3609 */ 3610 for (;;) { 3611 cid = cpumask_first_zero(cidmask); 3612 if (cid < READ_ONCE(mm->nr_cpus_allowed)) 3613 break; 3614 cpu_relax(); 3615 } 3616 if (cpumask_test_and_set_cpu(cid, cidmask)) 3617 return -1; 3618 3619 return cid; 3620 } 3621 3622 /* 3623 * Save a snapshot of the current runqueue time of this cpu 3624 * with the per-cpu cid value, allowing to estimate how recently it was used. 3625 */ 3626 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) 3627 { 3628 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); 3629 3630 lockdep_assert_rq_held(rq); 3631 WRITE_ONCE(pcpu_cid->time, rq->clock); 3632 } 3633 3634 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t, 3635 struct mm_struct *mm) 3636 { 3637 int cid; 3638 3639 /* 3640 * All allocations (even those using the cid_lock) are lock-free. If 3641 * use_cid_lock is set, hold the cid_lock to perform cid allocation to 3642 * guarantee forward progress. 3643 */ 3644 if (!READ_ONCE(use_cid_lock)) { 3645 cid = __mm_cid_try_get(t, mm); 3646 if (cid >= 0) 3647 goto end; 3648 raw_spin_lock(&cid_lock); 3649 } else { 3650 raw_spin_lock(&cid_lock); 3651 cid = __mm_cid_try_get(t, mm); 3652 if (cid >= 0) 3653 goto unlock; 3654 } 3655 3656 /* 3657 * cid concurrently allocated. Retry while forcing following 3658 * allocations to use the cid_lock to ensure forward progress. 3659 */ 3660 WRITE_ONCE(use_cid_lock, 1); 3661 /* 3662 * Set use_cid_lock before allocation. Only care about program order 3663 * because this is only required for forward progress. 3664 */ 3665 barrier(); 3666 /* 3667 * Retry until it succeeds. It is guaranteed to eventually succeed once 3668 * all newcoming allocations observe the use_cid_lock flag set. 3669 */ 3670 do { 3671 cid = __mm_cid_try_get(t, mm); 3672 cpu_relax(); 3673 } while (cid < 0); 3674 /* 3675 * Allocate before clearing use_cid_lock. Only care about 3676 * program order because this is for forward progress. 3677 */ 3678 barrier(); 3679 WRITE_ONCE(use_cid_lock, 0); 3680 unlock: 3681 raw_spin_unlock(&cid_lock); 3682 end: 3683 mm_cid_snapshot_time(rq, mm); 3684 3685 return cid; 3686 } 3687 3688 static inline int mm_cid_get(struct rq *rq, struct task_struct *t, 3689 struct mm_struct *mm) 3690 { 3691 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3692 struct cpumask *cpumask; 3693 int cid; 3694 3695 lockdep_assert_rq_held(rq); 3696 cpumask = mm_cidmask(mm); 3697 cid = __this_cpu_read(pcpu_cid->cid); 3698 if (mm_cid_is_valid(cid)) { 3699 mm_cid_snapshot_time(rq, mm); 3700 return cid; 3701 } 3702 if (mm_cid_is_lazy_put(cid)) { 3703 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3704 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3705 } 3706 cid = __mm_cid_get(rq, t, mm); 3707 __this_cpu_write(pcpu_cid->cid, cid); 3708 __this_cpu_write(pcpu_cid->recent_cid, cid); 3709 3710 return cid; 3711 } 3712 3713 static inline void switch_mm_cid(struct rq *rq, 3714 struct task_struct *prev, 3715 struct task_struct *next) 3716 { 3717 /* 3718 * Provide a memory barrier between rq->curr store and load of 3719 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. 3720 * 3721 * Should be adapted if context_switch() is modified. 3722 */ 3723 if (!next->mm) { // to kernel 3724 /* 3725 * user -> kernel transition does not guarantee a barrier, but 3726 * we can use the fact that it performs an atomic operation in 3727 * mmgrab(). 3728 */ 3729 if (prev->mm) // from user 3730 smp_mb__after_mmgrab(); 3731 /* 3732 * kernel -> kernel transition does not change rq->curr->mm 3733 * state. It stays NULL. 3734 */ 3735 } else { // to user 3736 /* 3737 * kernel -> user transition does not provide a barrier 3738 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. 3739 * Provide it here. 3740 */ 3741 if (!prev->mm) { // from kernel 3742 smp_mb(); 3743 } else { // from user 3744 /* 3745 * user->user transition relies on an implicit 3746 * memory barrier in switch_mm() when 3747 * current->mm changes. If the architecture 3748 * switch_mm() does not have an implicit memory 3749 * barrier, it is emitted here. If current->mm 3750 * is unchanged, no barrier is needed. 3751 */ 3752 smp_mb__after_switch_mm(); 3753 } 3754 } 3755 if (prev->mm_cid_active) { 3756 mm_cid_snapshot_time(rq, prev->mm); 3757 mm_cid_put_lazy(prev); 3758 prev->mm_cid = -1; 3759 } 3760 if (next->mm_cid_active) 3761 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm); 3762 } 3763 3764 #else /* !CONFIG_SCHED_MM_CID: */ 3765 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } 3766 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } 3767 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } 3768 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } 3769 static inline void init_sched_mm_cid(struct task_struct *t) { } 3770 #endif /* !CONFIG_SCHED_MM_CID */ 3771 3772 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3773 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3774 static inline 3775 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) 3776 { 3777 lockdep_assert_rq_held(src_rq); 3778 lockdep_assert_rq_held(dst_rq); 3779 3780 deactivate_task(src_rq, task, 0); 3781 set_task_cpu(task, dst_rq->cpu); 3782 activate_task(dst_rq, task, 0); 3783 } 3784 3785 static inline 3786 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) 3787 { 3788 if (!task_on_cpu(rq, p) && 3789 cpumask_test_cpu(cpu, &p->cpus_mask)) 3790 return true; 3791 3792 return false; 3793 } 3794 3795 #ifdef CONFIG_RT_MUTEXES 3796 3797 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3798 { 3799 if (pi_task) 3800 prio = min(prio, pi_task->prio); 3801 3802 return prio; 3803 } 3804 3805 static inline int rt_effective_prio(struct task_struct *p, int prio) 3806 { 3807 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3808 3809 return __rt_effective_prio(pi_task, prio); 3810 } 3811 3812 #else /* !CONFIG_RT_MUTEXES: */ 3813 3814 static inline int rt_effective_prio(struct task_struct *p, int prio) 3815 { 3816 return prio; 3817 } 3818 3819 #endif /* !CONFIG_RT_MUTEXES */ 3820 3821 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); 3822 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3823 extern const struct sched_class *__setscheduler_class(int policy, int prio); 3824 extern void set_load_weight(struct task_struct *p, bool update_load); 3825 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); 3826 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); 3827 3828 extern void check_class_changing(struct rq *rq, struct task_struct *p, 3829 const struct sched_class *prev_class); 3830 extern void check_class_changed(struct rq *rq, struct task_struct *p, 3831 const struct sched_class *prev_class, 3832 int oldprio); 3833 3834 extern struct balance_callback *splice_balance_callbacks(struct rq *rq); 3835 extern void balance_callbacks(struct rq *rq, struct balance_callback *head); 3836 3837 #ifdef CONFIG_SCHED_CLASS_EXT 3838 /* 3839 * Used by SCX in the enable/disable paths to move tasks between sched_classes 3840 * and establish invariants. 3841 */ 3842 struct sched_enq_and_set_ctx { 3843 struct task_struct *p; 3844 int queue_flags; 3845 bool queued; 3846 bool running; 3847 }; 3848 3849 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 3850 struct sched_enq_and_set_ctx *ctx); 3851 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx); 3852 3853 #endif /* CONFIG_SCHED_CLASS_EXT */ 3854 3855 #include "ext.h" 3856 3857 #endif /* _KERNEL_SCHED_SCHED_H */ 3858