1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 70 #ifdef CONFIG_PREEMPT_DYNAMIC 71 # ifdef CONFIG_GENERIC_ENTRY 72 # include <linux/entry-common.h> 73 # endif 74 #endif 75 76 #include <uapi/linux/sched/types.h> 77 78 #include <asm/irq_regs.h> 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <linux/sched/rseq_api.h> 84 #include <trace/events/sched.h> 85 #include <trace/events/ipi.h> 86 #undef CREATE_TRACE_POINTS 87 88 #include "sched.h" 89 #include "stats.h" 90 91 #include "autogroup.h" 92 #include "pelt.h" 93 #include "smp.h" 94 95 #include "../workqueue_internal.h" 96 #include "../../io_uring/io-wq.h" 97 #include "../smpboot.h" 98 99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 101 102 /* 103 * Export tracepoints that act as a bare tracehook (ie: have no trace event 104 * associated with them) to allow external modules to probe them. 105 */ 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 118 119 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 120 121 /* 122 * Debugging: various feature bits 123 * 124 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 125 * sysctl_sched_features, defined in sched.h, to allow constants propagation 126 * at compile time and compiler optimization based on features default. 127 */ 128 #define SCHED_FEAT(name, enabled) \ 129 (1UL << __SCHED_FEAT_##name) * enabled | 130 __read_mostly unsigned int sysctl_sched_features = 131 #include "features.h" 132 0; 133 #undef SCHED_FEAT 134 135 /* 136 * Print a warning if need_resched is set for the given duration (if 137 * LATENCY_WARN is enabled). 138 * 139 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 140 * per boot. 141 */ 142 __read_mostly int sysctl_resched_latency_warn_ms = 100; 143 __read_mostly int sysctl_resched_latency_warn_once = 1; 144 145 /* 146 * Number of tasks to iterate in a single balance run. 147 * Limited because this is done with IRQs disabled. 148 */ 149 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 150 151 __read_mostly int scheduler_running; 152 153 #ifdef CONFIG_SCHED_CORE 154 155 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 156 157 /* kernel prio, less is more */ 158 static inline int __task_prio(const struct task_struct *p) 159 { 160 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 161 return -2; 162 163 if (p->dl_server) 164 return -1; /* deadline */ 165 166 if (rt_or_dl_prio(p->prio)) 167 return p->prio; /* [-1, 99] */ 168 169 if (p->sched_class == &idle_sched_class) 170 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 171 172 if (task_on_scx(p)) 173 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 174 175 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 176 } 177 178 /* 179 * l(a,b) 180 * le(a,b) := !l(b,a) 181 * g(a,b) := l(b,a) 182 * ge(a,b) := !l(a,b) 183 */ 184 185 /* real prio, less is less */ 186 static inline bool prio_less(const struct task_struct *a, 187 const struct task_struct *b, bool in_fi) 188 { 189 190 int pa = __task_prio(a), pb = __task_prio(b); 191 192 if (-pa < -pb) 193 return true; 194 195 if (-pb < -pa) 196 return false; 197 198 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 199 const struct sched_dl_entity *a_dl, *b_dl; 200 201 a_dl = &a->dl; 202 /* 203 * Since,'a' and 'b' can be CFS tasks served by DL server, 204 * __task_prio() can return -1 (for DL) even for those. In that 205 * case, get to the dl_server's DL entity. 206 */ 207 if (a->dl_server) 208 a_dl = a->dl_server; 209 210 b_dl = &b->dl; 211 if (b->dl_server) 212 b_dl = b->dl_server; 213 214 return !dl_time_before(a_dl->deadline, b_dl->deadline); 215 } 216 217 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 218 return cfs_prio_less(a, b, in_fi); 219 220 #ifdef CONFIG_SCHED_CLASS_EXT 221 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 222 return scx_prio_less(a, b, in_fi); 223 #endif 224 225 return false; 226 } 227 228 static inline bool __sched_core_less(const struct task_struct *a, 229 const struct task_struct *b) 230 { 231 if (a->core_cookie < b->core_cookie) 232 return true; 233 234 if (a->core_cookie > b->core_cookie) 235 return false; 236 237 /* flip prio, so high prio is leftmost */ 238 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 239 return true; 240 241 return false; 242 } 243 244 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 245 246 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 247 { 248 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 249 } 250 251 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 252 { 253 const struct task_struct *p = __node_2_sc(node); 254 unsigned long cookie = (unsigned long)key; 255 256 if (cookie < p->core_cookie) 257 return -1; 258 259 if (cookie > p->core_cookie) 260 return 1; 261 262 return 0; 263 } 264 265 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 266 { 267 if (p->se.sched_delayed) 268 return; 269 270 rq->core->core_task_seq++; 271 272 if (!p->core_cookie) 273 return; 274 275 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 276 } 277 278 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 279 { 280 if (p->se.sched_delayed) 281 return; 282 283 rq->core->core_task_seq++; 284 285 if (sched_core_enqueued(p)) { 286 rb_erase(&p->core_node, &rq->core_tree); 287 RB_CLEAR_NODE(&p->core_node); 288 } 289 290 /* 291 * Migrating the last task off the cpu, with the cpu in forced idle 292 * state. Reschedule to create an accounting edge for forced idle, 293 * and re-examine whether the core is still in forced idle state. 294 */ 295 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 296 rq->core->core_forceidle_count && rq->curr == rq->idle) 297 resched_curr(rq); 298 } 299 300 static int sched_task_is_throttled(struct task_struct *p, int cpu) 301 { 302 if (p->sched_class->task_is_throttled) 303 return p->sched_class->task_is_throttled(p, cpu); 304 305 return 0; 306 } 307 308 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 309 { 310 struct rb_node *node = &p->core_node; 311 int cpu = task_cpu(p); 312 313 do { 314 node = rb_next(node); 315 if (!node) 316 return NULL; 317 318 p = __node_2_sc(node); 319 if (p->core_cookie != cookie) 320 return NULL; 321 322 } while (sched_task_is_throttled(p, cpu)); 323 324 return p; 325 } 326 327 /* 328 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 329 * If no suitable task is found, NULL will be returned. 330 */ 331 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 332 { 333 struct task_struct *p; 334 struct rb_node *node; 335 336 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 337 if (!node) 338 return NULL; 339 340 p = __node_2_sc(node); 341 if (!sched_task_is_throttled(p, rq->cpu)) 342 return p; 343 344 return sched_core_next(p, cookie); 345 } 346 347 /* 348 * Magic required such that: 349 * 350 * raw_spin_rq_lock(rq); 351 * ... 352 * raw_spin_rq_unlock(rq); 353 * 354 * ends up locking and unlocking the _same_ lock, and all CPUs 355 * always agree on what rq has what lock. 356 * 357 * XXX entirely possible to selectively enable cores, don't bother for now. 358 */ 359 360 static DEFINE_MUTEX(sched_core_mutex); 361 static atomic_t sched_core_count; 362 static struct cpumask sched_core_mask; 363 364 static void sched_core_lock(int cpu, unsigned long *flags) 365 { 366 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 367 int t, i = 0; 368 369 local_irq_save(*flags); 370 for_each_cpu(t, smt_mask) 371 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 372 } 373 374 static void sched_core_unlock(int cpu, unsigned long *flags) 375 { 376 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 377 int t; 378 379 for_each_cpu(t, smt_mask) 380 raw_spin_unlock(&cpu_rq(t)->__lock); 381 local_irq_restore(*flags); 382 } 383 384 static void __sched_core_flip(bool enabled) 385 { 386 unsigned long flags; 387 int cpu, t; 388 389 cpus_read_lock(); 390 391 /* 392 * Toggle the online cores, one by one. 393 */ 394 cpumask_copy(&sched_core_mask, cpu_online_mask); 395 for_each_cpu(cpu, &sched_core_mask) { 396 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 397 398 sched_core_lock(cpu, &flags); 399 400 for_each_cpu(t, smt_mask) 401 cpu_rq(t)->core_enabled = enabled; 402 403 cpu_rq(cpu)->core->core_forceidle_start = 0; 404 405 sched_core_unlock(cpu, &flags); 406 407 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 408 } 409 410 /* 411 * Toggle the offline CPUs. 412 */ 413 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 414 cpu_rq(cpu)->core_enabled = enabled; 415 416 cpus_read_unlock(); 417 } 418 419 static void sched_core_assert_empty(void) 420 { 421 int cpu; 422 423 for_each_possible_cpu(cpu) 424 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 425 } 426 427 static void __sched_core_enable(void) 428 { 429 static_branch_enable(&__sched_core_enabled); 430 /* 431 * Ensure all previous instances of raw_spin_rq_*lock() have finished 432 * and future ones will observe !sched_core_disabled(). 433 */ 434 synchronize_rcu(); 435 __sched_core_flip(true); 436 sched_core_assert_empty(); 437 } 438 439 static void __sched_core_disable(void) 440 { 441 sched_core_assert_empty(); 442 __sched_core_flip(false); 443 static_branch_disable(&__sched_core_enabled); 444 } 445 446 void sched_core_get(void) 447 { 448 if (atomic_inc_not_zero(&sched_core_count)) 449 return; 450 451 mutex_lock(&sched_core_mutex); 452 if (!atomic_read(&sched_core_count)) 453 __sched_core_enable(); 454 455 smp_mb__before_atomic(); 456 atomic_inc(&sched_core_count); 457 mutex_unlock(&sched_core_mutex); 458 } 459 460 static void __sched_core_put(struct work_struct *work) 461 { 462 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 463 __sched_core_disable(); 464 mutex_unlock(&sched_core_mutex); 465 } 466 } 467 468 void sched_core_put(void) 469 { 470 static DECLARE_WORK(_work, __sched_core_put); 471 472 /* 473 * "There can be only one" 474 * 475 * Either this is the last one, or we don't actually need to do any 476 * 'work'. If it is the last *again*, we rely on 477 * WORK_STRUCT_PENDING_BIT. 478 */ 479 if (!atomic_add_unless(&sched_core_count, -1, 1)) 480 schedule_work(&_work); 481 } 482 483 #else /* !CONFIG_SCHED_CORE */ 484 485 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 486 static inline void 487 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 488 489 #endif /* CONFIG_SCHED_CORE */ 490 491 /* need a wrapper since we may need to trace from modules */ 492 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp); 493 494 /* Call via the helper macro trace_set_current_state. */ 495 void __trace_set_current_state(int state_value) 496 { 497 trace_sched_set_state_tp(current, state_value); 498 } 499 EXPORT_SYMBOL(__trace_set_current_state); 500 501 /* 502 * Serialization rules: 503 * 504 * Lock order: 505 * 506 * p->pi_lock 507 * rq->lock 508 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 509 * 510 * rq1->lock 511 * rq2->lock where: rq1 < rq2 512 * 513 * Regular state: 514 * 515 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 516 * local CPU's rq->lock, it optionally removes the task from the runqueue and 517 * always looks at the local rq data structures to find the most eligible task 518 * to run next. 519 * 520 * Task enqueue is also under rq->lock, possibly taken from another CPU. 521 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 522 * the local CPU to avoid bouncing the runqueue state around [ see 523 * ttwu_queue_wakelist() ] 524 * 525 * Task wakeup, specifically wakeups that involve migration, are horribly 526 * complicated to avoid having to take two rq->locks. 527 * 528 * Special state: 529 * 530 * System-calls and anything external will use task_rq_lock() which acquires 531 * both p->pi_lock and rq->lock. As a consequence the state they change is 532 * stable while holding either lock: 533 * 534 * - sched_setaffinity()/ 535 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 536 * - set_user_nice(): p->se.load, p->*prio 537 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 538 * p->se.load, p->rt_priority, 539 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 540 * - sched_setnuma(): p->numa_preferred_nid 541 * - sched_move_task(): p->sched_task_group 542 * - uclamp_update_active() p->uclamp* 543 * 544 * p->state <- TASK_*: 545 * 546 * is changed locklessly using set_current_state(), __set_current_state() or 547 * set_special_state(), see their respective comments, or by 548 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 549 * concurrent self. 550 * 551 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 552 * 553 * is set by activate_task() and cleared by deactivate_task(), under 554 * rq->lock. Non-zero indicates the task is runnable, the special 555 * ON_RQ_MIGRATING state is used for migration without holding both 556 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 557 * 558 * Additionally it is possible to be ->on_rq but still be considered not 559 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 560 * but will be dequeued as soon as they get picked again. See the 561 * task_is_runnable() helper. 562 * 563 * p->on_cpu <- { 0, 1 }: 564 * 565 * is set by prepare_task() and cleared by finish_task() such that it will be 566 * set before p is scheduled-in and cleared after p is scheduled-out, both 567 * under rq->lock. Non-zero indicates the task is running on its CPU. 568 * 569 * [ The astute reader will observe that it is possible for two tasks on one 570 * CPU to have ->on_cpu = 1 at the same time. ] 571 * 572 * task_cpu(p): is changed by set_task_cpu(), the rules are: 573 * 574 * - Don't call set_task_cpu() on a blocked task: 575 * 576 * We don't care what CPU we're not running on, this simplifies hotplug, 577 * the CPU assignment of blocked tasks isn't required to be valid. 578 * 579 * - for try_to_wake_up(), called under p->pi_lock: 580 * 581 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 582 * 583 * - for migration called under rq->lock: 584 * [ see task_on_rq_migrating() in task_rq_lock() ] 585 * 586 * o move_queued_task() 587 * o detach_task() 588 * 589 * - for migration called under double_rq_lock(): 590 * 591 * o __migrate_swap_task() 592 * o push_rt_task() / pull_rt_task() 593 * o push_dl_task() / pull_dl_task() 594 * o dl_task_offline_migration() 595 * 596 */ 597 598 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 599 { 600 raw_spinlock_t *lock; 601 602 /* Matches synchronize_rcu() in __sched_core_enable() */ 603 preempt_disable(); 604 if (sched_core_disabled()) { 605 raw_spin_lock_nested(&rq->__lock, subclass); 606 /* preempt_count *MUST* be > 1 */ 607 preempt_enable_no_resched(); 608 return; 609 } 610 611 for (;;) { 612 lock = __rq_lockp(rq); 613 raw_spin_lock_nested(lock, subclass); 614 if (likely(lock == __rq_lockp(rq))) { 615 /* preempt_count *MUST* be > 1 */ 616 preempt_enable_no_resched(); 617 return; 618 } 619 raw_spin_unlock(lock); 620 } 621 } 622 623 bool raw_spin_rq_trylock(struct rq *rq) 624 { 625 raw_spinlock_t *lock; 626 bool ret; 627 628 /* Matches synchronize_rcu() in __sched_core_enable() */ 629 preempt_disable(); 630 if (sched_core_disabled()) { 631 ret = raw_spin_trylock(&rq->__lock); 632 preempt_enable(); 633 return ret; 634 } 635 636 for (;;) { 637 lock = __rq_lockp(rq); 638 ret = raw_spin_trylock(lock); 639 if (!ret || (likely(lock == __rq_lockp(rq)))) { 640 preempt_enable(); 641 return ret; 642 } 643 raw_spin_unlock(lock); 644 } 645 } 646 647 void raw_spin_rq_unlock(struct rq *rq) 648 { 649 raw_spin_unlock(rq_lockp(rq)); 650 } 651 652 #ifdef CONFIG_SMP 653 /* 654 * double_rq_lock - safely lock two runqueues 655 */ 656 void double_rq_lock(struct rq *rq1, struct rq *rq2) 657 { 658 lockdep_assert_irqs_disabled(); 659 660 if (rq_order_less(rq2, rq1)) 661 swap(rq1, rq2); 662 663 raw_spin_rq_lock(rq1); 664 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 665 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 666 667 double_rq_clock_clear_update(rq1, rq2); 668 } 669 #endif 670 671 /* 672 * __task_rq_lock - lock the rq @p resides on. 673 */ 674 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 675 __acquires(rq->lock) 676 { 677 struct rq *rq; 678 679 lockdep_assert_held(&p->pi_lock); 680 681 for (;;) { 682 rq = task_rq(p); 683 raw_spin_rq_lock(rq); 684 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 685 rq_pin_lock(rq, rf); 686 return rq; 687 } 688 raw_spin_rq_unlock(rq); 689 690 while (unlikely(task_on_rq_migrating(p))) 691 cpu_relax(); 692 } 693 } 694 695 /* 696 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 697 */ 698 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 699 __acquires(p->pi_lock) 700 __acquires(rq->lock) 701 { 702 struct rq *rq; 703 704 for (;;) { 705 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 706 rq = task_rq(p); 707 raw_spin_rq_lock(rq); 708 /* 709 * move_queued_task() task_rq_lock() 710 * 711 * ACQUIRE (rq->lock) 712 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 713 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 714 * [S] ->cpu = new_cpu [L] task_rq() 715 * [L] ->on_rq 716 * RELEASE (rq->lock) 717 * 718 * If we observe the old CPU in task_rq_lock(), the acquire of 719 * the old rq->lock will fully serialize against the stores. 720 * 721 * If we observe the new CPU in task_rq_lock(), the address 722 * dependency headed by '[L] rq = task_rq()' and the acquire 723 * will pair with the WMB to ensure we then also see migrating. 724 */ 725 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 726 rq_pin_lock(rq, rf); 727 return rq; 728 } 729 raw_spin_rq_unlock(rq); 730 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 731 732 while (unlikely(task_on_rq_migrating(p))) 733 cpu_relax(); 734 } 735 } 736 737 /* 738 * RQ-clock updating methods: 739 */ 740 741 static void update_rq_clock_task(struct rq *rq, s64 delta) 742 { 743 /* 744 * In theory, the compile should just see 0 here, and optimize out the call 745 * to sched_rt_avg_update. But I don't trust it... 746 */ 747 s64 __maybe_unused steal = 0, irq_delta = 0; 748 749 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 750 if (irqtime_enabled()) { 751 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 752 753 /* 754 * Since irq_time is only updated on {soft,}irq_exit, we might run into 755 * this case when a previous update_rq_clock() happened inside a 756 * {soft,}IRQ region. 757 * 758 * When this happens, we stop ->clock_task and only update the 759 * prev_irq_time stamp to account for the part that fit, so that a next 760 * update will consume the rest. This ensures ->clock_task is 761 * monotonic. 762 * 763 * It does however cause some slight miss-attribution of {soft,}IRQ 764 * time, a more accurate solution would be to update the irq_time using 765 * the current rq->clock timestamp, except that would require using 766 * atomic ops. 767 */ 768 if (irq_delta > delta) 769 irq_delta = delta; 770 771 rq->prev_irq_time += irq_delta; 772 delta -= irq_delta; 773 delayacct_irq(rq->curr, irq_delta); 774 } 775 #endif 776 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 777 if (static_key_false((¶virt_steal_rq_enabled))) { 778 u64 prev_steal; 779 780 steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); 781 steal -= rq->prev_steal_time_rq; 782 783 if (unlikely(steal > delta)) 784 steal = delta; 785 786 rq->prev_steal_time_rq = prev_steal; 787 delta -= steal; 788 } 789 #endif 790 791 rq->clock_task += delta; 792 793 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 794 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 795 update_irq_load_avg(rq, irq_delta + steal); 796 #endif 797 update_rq_clock_pelt(rq, delta); 798 } 799 800 void update_rq_clock(struct rq *rq) 801 { 802 s64 delta; 803 u64 clock; 804 805 lockdep_assert_rq_held(rq); 806 807 if (rq->clock_update_flags & RQCF_ACT_SKIP) 808 return; 809 810 if (sched_feat(WARN_DOUBLE_CLOCK)) 811 WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED); 812 rq->clock_update_flags |= RQCF_UPDATED; 813 814 clock = sched_clock_cpu(cpu_of(rq)); 815 scx_rq_clock_update(rq, clock); 816 817 delta = clock - rq->clock; 818 if (delta < 0) 819 return; 820 rq->clock += delta; 821 822 update_rq_clock_task(rq, delta); 823 } 824 825 #ifdef CONFIG_SCHED_HRTICK 826 /* 827 * Use HR-timers to deliver accurate preemption points. 828 */ 829 830 static void hrtick_clear(struct rq *rq) 831 { 832 if (hrtimer_active(&rq->hrtick_timer)) 833 hrtimer_cancel(&rq->hrtick_timer); 834 } 835 836 /* 837 * High-resolution timer tick. 838 * Runs from hardirq context with interrupts disabled. 839 */ 840 static enum hrtimer_restart hrtick(struct hrtimer *timer) 841 { 842 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 843 struct rq_flags rf; 844 845 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 846 847 rq_lock(rq, &rf); 848 update_rq_clock(rq); 849 rq->donor->sched_class->task_tick(rq, rq->curr, 1); 850 rq_unlock(rq, &rf); 851 852 return HRTIMER_NORESTART; 853 } 854 855 #ifdef CONFIG_SMP 856 857 static void __hrtick_restart(struct rq *rq) 858 { 859 struct hrtimer *timer = &rq->hrtick_timer; 860 ktime_t time = rq->hrtick_time; 861 862 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 863 } 864 865 /* 866 * called from hardirq (IPI) context 867 */ 868 static void __hrtick_start(void *arg) 869 { 870 struct rq *rq = arg; 871 struct rq_flags rf; 872 873 rq_lock(rq, &rf); 874 __hrtick_restart(rq); 875 rq_unlock(rq, &rf); 876 } 877 878 /* 879 * Called to set the hrtick timer state. 880 * 881 * called with rq->lock held and IRQs disabled 882 */ 883 void hrtick_start(struct rq *rq, u64 delay) 884 { 885 struct hrtimer *timer = &rq->hrtick_timer; 886 s64 delta; 887 888 /* 889 * Don't schedule slices shorter than 10000ns, that just 890 * doesn't make sense and can cause timer DoS. 891 */ 892 delta = max_t(s64, delay, 10000LL); 893 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 894 895 if (rq == this_rq()) 896 __hrtick_restart(rq); 897 else 898 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 899 } 900 901 #else 902 /* 903 * Called to set the hrtick timer state. 904 * 905 * called with rq->lock held and IRQs disabled 906 */ 907 void hrtick_start(struct rq *rq, u64 delay) 908 { 909 /* 910 * Don't schedule slices shorter than 10000ns, that just 911 * doesn't make sense. Rely on vruntime for fairness. 912 */ 913 delay = max_t(u64, delay, 10000LL); 914 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 915 HRTIMER_MODE_REL_PINNED_HARD); 916 } 917 918 #endif /* CONFIG_SMP */ 919 920 static void hrtick_rq_init(struct rq *rq) 921 { 922 #ifdef CONFIG_SMP 923 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 924 #endif 925 hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 926 } 927 #else /* CONFIG_SCHED_HRTICK */ 928 static inline void hrtick_clear(struct rq *rq) 929 { 930 } 931 932 static inline void hrtick_rq_init(struct rq *rq) 933 { 934 } 935 #endif /* CONFIG_SCHED_HRTICK */ 936 937 /* 938 * try_cmpxchg based fetch_or() macro so it works for different integer types: 939 */ 940 #define fetch_or(ptr, mask) \ 941 ({ \ 942 typeof(ptr) _ptr = (ptr); \ 943 typeof(mask) _mask = (mask); \ 944 typeof(*_ptr) _val = *_ptr; \ 945 \ 946 do { \ 947 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 948 _val; \ 949 }) 950 951 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 952 /* 953 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 954 * this avoids any races wrt polling state changes and thereby avoids 955 * spurious IPIs. 956 */ 957 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 958 { 959 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); 960 } 961 962 /* 963 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 964 * 965 * If this returns true, then the idle task promises to call 966 * sched_ttwu_pending() and reschedule soon. 967 */ 968 static bool set_nr_if_polling(struct task_struct *p) 969 { 970 struct thread_info *ti = task_thread_info(p); 971 typeof(ti->flags) val = READ_ONCE(ti->flags); 972 973 do { 974 if (!(val & _TIF_POLLING_NRFLAG)) 975 return false; 976 if (val & _TIF_NEED_RESCHED) 977 return true; 978 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 979 980 return true; 981 } 982 983 #else 984 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 985 { 986 set_ti_thread_flag(ti, tif); 987 return true; 988 } 989 990 #ifdef CONFIG_SMP 991 static inline bool set_nr_if_polling(struct task_struct *p) 992 { 993 return false; 994 } 995 #endif 996 #endif 997 998 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 999 { 1000 struct wake_q_node *node = &task->wake_q; 1001 1002 /* 1003 * Atomically grab the task, if ->wake_q is !nil already it means 1004 * it's already queued (either by us or someone else) and will get the 1005 * wakeup due to that. 1006 * 1007 * In order to ensure that a pending wakeup will observe our pending 1008 * state, even in the failed case, an explicit smp_mb() must be used. 1009 */ 1010 smp_mb__before_atomic(); 1011 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 1012 return false; 1013 1014 /* 1015 * The head is context local, there can be no concurrency. 1016 */ 1017 *head->lastp = node; 1018 head->lastp = &node->next; 1019 return true; 1020 } 1021 1022 /** 1023 * wake_q_add() - queue a wakeup for 'later' waking. 1024 * @head: the wake_q_head to add @task to 1025 * @task: the task to queue for 'later' wakeup 1026 * 1027 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1028 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1029 * instantly. 1030 * 1031 * This function must be used as-if it were wake_up_process(); IOW the task 1032 * must be ready to be woken at this location. 1033 */ 1034 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1035 { 1036 if (__wake_q_add(head, task)) 1037 get_task_struct(task); 1038 } 1039 1040 /** 1041 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1042 * @head: the wake_q_head to add @task to 1043 * @task: the task to queue for 'later' wakeup 1044 * 1045 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1046 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1047 * instantly. 1048 * 1049 * This function must be used as-if it were wake_up_process(); IOW the task 1050 * must be ready to be woken at this location. 1051 * 1052 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1053 * that already hold reference to @task can call the 'safe' version and trust 1054 * wake_q to do the right thing depending whether or not the @task is already 1055 * queued for wakeup. 1056 */ 1057 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1058 { 1059 if (!__wake_q_add(head, task)) 1060 put_task_struct(task); 1061 } 1062 1063 void wake_up_q(struct wake_q_head *head) 1064 { 1065 struct wake_q_node *node = head->first; 1066 1067 while (node != WAKE_Q_TAIL) { 1068 struct task_struct *task; 1069 1070 task = container_of(node, struct task_struct, wake_q); 1071 node = node->next; 1072 /* pairs with cmpxchg_relaxed() in __wake_q_add() */ 1073 WRITE_ONCE(task->wake_q.next, NULL); 1074 /* Task can safely be re-inserted now. */ 1075 1076 /* 1077 * wake_up_process() executes a full barrier, which pairs with 1078 * the queueing in wake_q_add() so as not to miss wakeups. 1079 */ 1080 wake_up_process(task); 1081 put_task_struct(task); 1082 } 1083 } 1084 1085 /* 1086 * resched_curr - mark rq's current task 'to be rescheduled now'. 1087 * 1088 * On UP this means the setting of the need_resched flag, on SMP it 1089 * might also involve a cross-CPU call to trigger the scheduler on 1090 * the target CPU. 1091 */ 1092 static void __resched_curr(struct rq *rq, int tif) 1093 { 1094 struct task_struct *curr = rq->curr; 1095 struct thread_info *cti = task_thread_info(curr); 1096 int cpu; 1097 1098 lockdep_assert_rq_held(rq); 1099 1100 /* 1101 * Always immediately preempt the idle task; no point in delaying doing 1102 * actual work. 1103 */ 1104 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) 1105 tif = TIF_NEED_RESCHED; 1106 1107 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) 1108 return; 1109 1110 cpu = cpu_of(rq); 1111 1112 if (cpu == smp_processor_id()) { 1113 set_ti_thread_flag(cti, tif); 1114 if (tif == TIF_NEED_RESCHED) 1115 set_preempt_need_resched(); 1116 return; 1117 } 1118 1119 if (set_nr_and_not_polling(cti, tif)) { 1120 if (tif == TIF_NEED_RESCHED) 1121 smp_send_reschedule(cpu); 1122 } else { 1123 trace_sched_wake_idle_without_ipi(cpu); 1124 } 1125 } 1126 1127 void resched_curr(struct rq *rq) 1128 { 1129 __resched_curr(rq, TIF_NEED_RESCHED); 1130 } 1131 1132 #ifdef CONFIG_PREEMPT_DYNAMIC 1133 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); 1134 static __always_inline bool dynamic_preempt_lazy(void) 1135 { 1136 return static_branch_unlikely(&sk_dynamic_preempt_lazy); 1137 } 1138 #else 1139 static __always_inline bool dynamic_preempt_lazy(void) 1140 { 1141 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 1142 } 1143 #endif 1144 1145 static __always_inline int get_lazy_tif_bit(void) 1146 { 1147 if (dynamic_preempt_lazy()) 1148 return TIF_NEED_RESCHED_LAZY; 1149 1150 return TIF_NEED_RESCHED; 1151 } 1152 1153 void resched_curr_lazy(struct rq *rq) 1154 { 1155 __resched_curr(rq, get_lazy_tif_bit()); 1156 } 1157 1158 void resched_cpu(int cpu) 1159 { 1160 struct rq *rq = cpu_rq(cpu); 1161 unsigned long flags; 1162 1163 raw_spin_rq_lock_irqsave(rq, flags); 1164 if (cpu_online(cpu) || cpu == smp_processor_id()) 1165 resched_curr(rq); 1166 raw_spin_rq_unlock_irqrestore(rq, flags); 1167 } 1168 1169 #ifdef CONFIG_SMP 1170 #ifdef CONFIG_NO_HZ_COMMON 1171 /* 1172 * In the semi idle case, use the nearest busy CPU for migrating timers 1173 * from an idle CPU. This is good for power-savings. 1174 * 1175 * We don't do similar optimization for completely idle system, as 1176 * selecting an idle CPU will add more delays to the timers than intended 1177 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1178 */ 1179 int get_nohz_timer_target(void) 1180 { 1181 int i, cpu = smp_processor_id(), default_cpu = -1; 1182 struct sched_domain *sd; 1183 const struct cpumask *hk_mask; 1184 1185 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) { 1186 if (!idle_cpu(cpu)) 1187 return cpu; 1188 default_cpu = cpu; 1189 } 1190 1191 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 1192 1193 guard(rcu)(); 1194 1195 for_each_domain(cpu, sd) { 1196 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1197 if (cpu == i) 1198 continue; 1199 1200 if (!idle_cpu(i)) 1201 return i; 1202 } 1203 } 1204 1205 if (default_cpu == -1) 1206 default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE); 1207 1208 return default_cpu; 1209 } 1210 1211 /* 1212 * When add_timer_on() enqueues a timer into the timer wheel of an 1213 * idle CPU then this timer might expire before the next timer event 1214 * which is scheduled to wake up that CPU. In case of a completely 1215 * idle system the next event might even be infinite time into the 1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1217 * leaves the inner idle loop so the newly added timer is taken into 1218 * account when the CPU goes back to idle and evaluates the timer 1219 * wheel for the next timer event. 1220 */ 1221 static void wake_up_idle_cpu(int cpu) 1222 { 1223 struct rq *rq = cpu_rq(cpu); 1224 1225 if (cpu == smp_processor_id()) 1226 return; 1227 1228 /* 1229 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1230 * part of the idle loop. This forces an exit from the idle loop 1231 * and a round trip to schedule(). Now this could be optimized 1232 * because a simple new idle loop iteration is enough to 1233 * re-evaluate the next tick. Provided some re-ordering of tick 1234 * nohz functions that would need to follow TIF_NR_POLLING 1235 * clearing: 1236 * 1237 * - On most architectures, a simple fetch_or on ti::flags with a 1238 * "0" value would be enough to know if an IPI needs to be sent. 1239 * 1240 * - x86 needs to perform a last need_resched() check between 1241 * monitor and mwait which doesn't take timers into account. 1242 * There a dedicated TIF_TIMER flag would be required to 1243 * fetch_or here and be checked along with TIF_NEED_RESCHED 1244 * before mwait(). 1245 * 1246 * However, remote timer enqueue is not such a frequent event 1247 * and testing of the above solutions didn't appear to report 1248 * much benefits. 1249 */ 1250 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) 1251 smp_send_reschedule(cpu); 1252 else 1253 trace_sched_wake_idle_without_ipi(cpu); 1254 } 1255 1256 static bool wake_up_full_nohz_cpu(int cpu) 1257 { 1258 /* 1259 * We just need the target to call irq_exit() and re-evaluate 1260 * the next tick. The nohz full kick at least implies that. 1261 * If needed we can still optimize that later with an 1262 * empty IRQ. 1263 */ 1264 if (cpu_is_offline(cpu)) 1265 return true; /* Don't try to wake offline CPUs. */ 1266 if (tick_nohz_full_cpu(cpu)) { 1267 if (cpu != smp_processor_id() || 1268 tick_nohz_tick_stopped()) 1269 tick_nohz_full_kick_cpu(cpu); 1270 return true; 1271 } 1272 1273 return false; 1274 } 1275 1276 /* 1277 * Wake up the specified CPU. If the CPU is going offline, it is the 1278 * caller's responsibility to deal with the lost wakeup, for example, 1279 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1280 */ 1281 void wake_up_nohz_cpu(int cpu) 1282 { 1283 if (!wake_up_full_nohz_cpu(cpu)) 1284 wake_up_idle_cpu(cpu); 1285 } 1286 1287 static void nohz_csd_func(void *info) 1288 { 1289 struct rq *rq = info; 1290 int cpu = cpu_of(rq); 1291 unsigned int flags; 1292 1293 /* 1294 * Release the rq::nohz_csd. 1295 */ 1296 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1297 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1298 1299 rq->idle_balance = idle_cpu(cpu); 1300 if (rq->idle_balance) { 1301 rq->nohz_idle_balance = flags; 1302 __raise_softirq_irqoff(SCHED_SOFTIRQ); 1303 } 1304 } 1305 1306 #endif /* CONFIG_NO_HZ_COMMON */ 1307 1308 #ifdef CONFIG_NO_HZ_FULL 1309 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1310 { 1311 if (rq->nr_running != 1) 1312 return false; 1313 1314 if (p->sched_class != &fair_sched_class) 1315 return false; 1316 1317 if (!task_on_rq_queued(p)) 1318 return false; 1319 1320 return true; 1321 } 1322 1323 bool sched_can_stop_tick(struct rq *rq) 1324 { 1325 int fifo_nr_running; 1326 1327 /* Deadline tasks, even if single, need the tick */ 1328 if (rq->dl.dl_nr_running) 1329 return false; 1330 1331 /* 1332 * If there are more than one RR tasks, we need the tick to affect the 1333 * actual RR behaviour. 1334 */ 1335 if (rq->rt.rr_nr_running) { 1336 if (rq->rt.rr_nr_running == 1) 1337 return true; 1338 else 1339 return false; 1340 } 1341 1342 /* 1343 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1344 * forced preemption between FIFO tasks. 1345 */ 1346 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1347 if (fifo_nr_running) 1348 return true; 1349 1350 /* 1351 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1352 * left. For CFS, if there's more than one we need the tick for 1353 * involuntary preemption. For SCX, ask. 1354 */ 1355 if (scx_enabled() && !scx_can_stop_tick(rq)) 1356 return false; 1357 1358 if (rq->cfs.h_nr_queued > 1) 1359 return false; 1360 1361 /* 1362 * If there is one task and it has CFS runtime bandwidth constraints 1363 * and it's on the cpu now we don't want to stop the tick. 1364 * This check prevents clearing the bit if a newly enqueued task here is 1365 * dequeued by migrating while the constrained task continues to run. 1366 * E.g. going from 2->1 without going through pick_next_task(). 1367 */ 1368 if (__need_bw_check(rq, rq->curr)) { 1369 if (cfs_task_bw_constrained(rq->curr)) 1370 return false; 1371 } 1372 1373 return true; 1374 } 1375 #endif /* CONFIG_NO_HZ_FULL */ 1376 #endif /* CONFIG_SMP */ 1377 1378 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1379 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1380 /* 1381 * Iterate task_group tree rooted at *from, calling @down when first entering a 1382 * node and @up when leaving it for the final time. 1383 * 1384 * Caller must hold rcu_lock or sufficient equivalent. 1385 */ 1386 int walk_tg_tree_from(struct task_group *from, 1387 tg_visitor down, tg_visitor up, void *data) 1388 { 1389 struct task_group *parent, *child; 1390 int ret; 1391 1392 parent = from; 1393 1394 down: 1395 ret = (*down)(parent, data); 1396 if (ret) 1397 goto out; 1398 list_for_each_entry_rcu(child, &parent->children, siblings) { 1399 parent = child; 1400 goto down; 1401 1402 up: 1403 continue; 1404 } 1405 ret = (*up)(parent, data); 1406 if (ret || parent == from) 1407 goto out; 1408 1409 child = parent; 1410 parent = parent->parent; 1411 if (parent) 1412 goto up; 1413 out: 1414 return ret; 1415 } 1416 1417 int tg_nop(struct task_group *tg, void *data) 1418 { 1419 return 0; 1420 } 1421 #endif 1422 1423 void set_load_weight(struct task_struct *p, bool update_load) 1424 { 1425 int prio = p->static_prio - MAX_RT_PRIO; 1426 struct load_weight lw; 1427 1428 if (task_has_idle_policy(p)) { 1429 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1430 lw.inv_weight = WMULT_IDLEPRIO; 1431 } else { 1432 lw.weight = scale_load(sched_prio_to_weight[prio]); 1433 lw.inv_weight = sched_prio_to_wmult[prio]; 1434 } 1435 1436 /* 1437 * SCHED_OTHER tasks have to update their load when changing their 1438 * weight 1439 */ 1440 if (update_load && p->sched_class->reweight_task) 1441 p->sched_class->reweight_task(task_rq(p), p, &lw); 1442 else 1443 p->se.load = lw; 1444 } 1445 1446 #ifdef CONFIG_UCLAMP_TASK 1447 /* 1448 * Serializes updates of utilization clamp values 1449 * 1450 * The (slow-path) user-space triggers utilization clamp value updates which 1451 * can require updates on (fast-path) scheduler's data structures used to 1452 * support enqueue/dequeue operations. 1453 * While the per-CPU rq lock protects fast-path update operations, user-space 1454 * requests are serialized using a mutex to reduce the risk of conflicting 1455 * updates or API abuses. 1456 */ 1457 static __maybe_unused DEFINE_MUTEX(uclamp_mutex); 1458 1459 /* Max allowed minimum utilization */ 1460 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1461 1462 /* Max allowed maximum utilization */ 1463 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1464 1465 /* 1466 * By default RT tasks run at the maximum performance point/capacity of the 1467 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1468 * SCHED_CAPACITY_SCALE. 1469 * 1470 * This knob allows admins to change the default behavior when uclamp is being 1471 * used. In battery powered devices, particularly, running at the maximum 1472 * capacity and frequency will increase energy consumption and shorten the 1473 * battery life. 1474 * 1475 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1476 * 1477 * This knob will not override the system default sched_util_clamp_min defined 1478 * above. 1479 */ 1480 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1481 1482 /* All clamps are required to be less or equal than these values */ 1483 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1484 1485 /* 1486 * This static key is used to reduce the uclamp overhead in the fast path. It 1487 * primarily disables the call to uclamp_rq_{inc, dec}() in 1488 * enqueue/dequeue_task(). 1489 * 1490 * This allows users to continue to enable uclamp in their kernel config with 1491 * minimum uclamp overhead in the fast path. 1492 * 1493 * As soon as userspace modifies any of the uclamp knobs, the static key is 1494 * enabled, since we have an actual users that make use of uclamp 1495 * functionality. 1496 * 1497 * The knobs that would enable this static key are: 1498 * 1499 * * A task modifying its uclamp value with sched_setattr(). 1500 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1501 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1502 */ 1503 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1504 1505 static inline unsigned int 1506 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1507 unsigned int clamp_value) 1508 { 1509 /* 1510 * Avoid blocked utilization pushing up the frequency when we go 1511 * idle (which drops the max-clamp) by retaining the last known 1512 * max-clamp. 1513 */ 1514 if (clamp_id == UCLAMP_MAX) { 1515 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1516 return clamp_value; 1517 } 1518 1519 return uclamp_none(UCLAMP_MIN); 1520 } 1521 1522 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1523 unsigned int clamp_value) 1524 { 1525 /* Reset max-clamp retention only on idle exit */ 1526 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1527 return; 1528 1529 uclamp_rq_set(rq, clamp_id, clamp_value); 1530 } 1531 1532 static inline 1533 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1534 unsigned int clamp_value) 1535 { 1536 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1537 int bucket_id = UCLAMP_BUCKETS - 1; 1538 1539 /* 1540 * Since both min and max clamps are max aggregated, find the 1541 * top most bucket with tasks in. 1542 */ 1543 for ( ; bucket_id >= 0; bucket_id--) { 1544 if (!bucket[bucket_id].tasks) 1545 continue; 1546 return bucket[bucket_id].value; 1547 } 1548 1549 /* No tasks -- default clamp values */ 1550 return uclamp_idle_value(rq, clamp_id, clamp_value); 1551 } 1552 1553 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1554 { 1555 unsigned int default_util_min; 1556 struct uclamp_se *uc_se; 1557 1558 lockdep_assert_held(&p->pi_lock); 1559 1560 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1561 1562 /* Only sync if user didn't override the default */ 1563 if (uc_se->user_defined) 1564 return; 1565 1566 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1567 uclamp_se_set(uc_se, default_util_min, false); 1568 } 1569 1570 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1571 { 1572 if (!rt_task(p)) 1573 return; 1574 1575 /* Protect updates to p->uclamp_* */ 1576 guard(task_rq_lock)(p); 1577 __uclamp_update_util_min_rt_default(p); 1578 } 1579 1580 static inline struct uclamp_se 1581 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1582 { 1583 /* Copy by value as we could modify it */ 1584 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1585 #ifdef CONFIG_UCLAMP_TASK_GROUP 1586 unsigned int tg_min, tg_max, value; 1587 1588 /* 1589 * Tasks in autogroups or root task group will be 1590 * restricted by system defaults. 1591 */ 1592 if (task_group_is_autogroup(task_group(p))) 1593 return uc_req; 1594 if (task_group(p) == &root_task_group) 1595 return uc_req; 1596 1597 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1598 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1599 value = uc_req.value; 1600 value = clamp(value, tg_min, tg_max); 1601 uclamp_se_set(&uc_req, value, false); 1602 #endif 1603 1604 return uc_req; 1605 } 1606 1607 /* 1608 * The effective clamp bucket index of a task depends on, by increasing 1609 * priority: 1610 * - the task specific clamp value, when explicitly requested from userspace 1611 * - the task group effective clamp value, for tasks not either in the root 1612 * group or in an autogroup 1613 * - the system default clamp value, defined by the sysadmin 1614 */ 1615 static inline struct uclamp_se 1616 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1617 { 1618 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1619 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1620 1621 /* System default restrictions always apply */ 1622 if (unlikely(uc_req.value > uc_max.value)) 1623 return uc_max; 1624 1625 return uc_req; 1626 } 1627 1628 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1629 { 1630 struct uclamp_se uc_eff; 1631 1632 /* Task currently refcounted: use back-annotated (effective) value */ 1633 if (p->uclamp[clamp_id].active) 1634 return (unsigned long)p->uclamp[clamp_id].value; 1635 1636 uc_eff = uclamp_eff_get(p, clamp_id); 1637 1638 return (unsigned long)uc_eff.value; 1639 } 1640 1641 /* 1642 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1643 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1644 * updates the rq's clamp value if required. 1645 * 1646 * Tasks can have a task-specific value requested from user-space, track 1647 * within each bucket the maximum value for tasks refcounted in it. 1648 * This "local max aggregation" allows to track the exact "requested" value 1649 * for each bucket when all its RUNNABLE tasks require the same clamp. 1650 */ 1651 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1652 enum uclamp_id clamp_id) 1653 { 1654 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1655 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1656 struct uclamp_bucket *bucket; 1657 1658 lockdep_assert_rq_held(rq); 1659 1660 /* Update task effective clamp */ 1661 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1662 1663 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1664 bucket->tasks++; 1665 uc_se->active = true; 1666 1667 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1668 1669 /* 1670 * Local max aggregation: rq buckets always track the max 1671 * "requested" clamp value of its RUNNABLE tasks. 1672 */ 1673 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1674 bucket->value = uc_se->value; 1675 1676 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1677 uclamp_rq_set(rq, clamp_id, uc_se->value); 1678 } 1679 1680 /* 1681 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1682 * is released. If this is the last task reference counting the rq's max 1683 * active clamp value, then the rq's clamp value is updated. 1684 * 1685 * Both refcounted tasks and rq's cached clamp values are expected to be 1686 * always valid. If it's detected they are not, as defensive programming, 1687 * enforce the expected state and warn. 1688 */ 1689 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1690 enum uclamp_id clamp_id) 1691 { 1692 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1693 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1694 struct uclamp_bucket *bucket; 1695 unsigned int bkt_clamp; 1696 unsigned int rq_clamp; 1697 1698 lockdep_assert_rq_held(rq); 1699 1700 /* 1701 * If sched_uclamp_used was enabled after task @p was enqueued, 1702 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1703 * 1704 * In this case the uc_se->active flag should be false since no uclamp 1705 * accounting was performed at enqueue time and we can just return 1706 * here. 1707 * 1708 * Need to be careful of the following enqueue/dequeue ordering 1709 * problem too 1710 * 1711 * enqueue(taskA) 1712 * // sched_uclamp_used gets enabled 1713 * enqueue(taskB) 1714 * dequeue(taskA) 1715 * // Must not decrement bucket->tasks here 1716 * dequeue(taskB) 1717 * 1718 * where we could end up with stale data in uc_se and 1719 * bucket[uc_se->bucket_id]. 1720 * 1721 * The following check here eliminates the possibility of such race. 1722 */ 1723 if (unlikely(!uc_se->active)) 1724 return; 1725 1726 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1727 1728 WARN_ON_ONCE(!bucket->tasks); 1729 if (likely(bucket->tasks)) 1730 bucket->tasks--; 1731 1732 uc_se->active = false; 1733 1734 /* 1735 * Keep "local max aggregation" simple and accept to (possibly) 1736 * overboost some RUNNABLE tasks in the same bucket. 1737 * The rq clamp bucket value is reset to its base value whenever 1738 * there are no more RUNNABLE tasks refcounting it. 1739 */ 1740 if (likely(bucket->tasks)) 1741 return; 1742 1743 rq_clamp = uclamp_rq_get(rq, clamp_id); 1744 /* 1745 * Defensive programming: this should never happen. If it happens, 1746 * e.g. due to future modification, warn and fix up the expected value. 1747 */ 1748 WARN_ON_ONCE(bucket->value > rq_clamp); 1749 if (bucket->value >= rq_clamp) { 1750 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1751 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1752 } 1753 } 1754 1755 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1756 { 1757 enum uclamp_id clamp_id; 1758 1759 /* 1760 * Avoid any overhead until uclamp is actually used by the userspace. 1761 * 1762 * The condition is constructed such that a NOP is generated when 1763 * sched_uclamp_used is disabled. 1764 */ 1765 if (!uclamp_is_used()) 1766 return; 1767 1768 if (unlikely(!p->sched_class->uclamp_enabled)) 1769 return; 1770 1771 if (p->se.sched_delayed) 1772 return; 1773 1774 for_each_clamp_id(clamp_id) 1775 uclamp_rq_inc_id(rq, p, clamp_id); 1776 1777 /* Reset clamp idle holding when there is one RUNNABLE task */ 1778 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1779 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1780 } 1781 1782 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1783 { 1784 enum uclamp_id clamp_id; 1785 1786 /* 1787 * Avoid any overhead until uclamp is actually used by the userspace. 1788 * 1789 * The condition is constructed such that a NOP is generated when 1790 * sched_uclamp_used is disabled. 1791 */ 1792 if (!uclamp_is_used()) 1793 return; 1794 1795 if (unlikely(!p->sched_class->uclamp_enabled)) 1796 return; 1797 1798 if (p->se.sched_delayed) 1799 return; 1800 1801 for_each_clamp_id(clamp_id) 1802 uclamp_rq_dec_id(rq, p, clamp_id); 1803 } 1804 1805 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1806 enum uclamp_id clamp_id) 1807 { 1808 if (!p->uclamp[clamp_id].active) 1809 return; 1810 1811 uclamp_rq_dec_id(rq, p, clamp_id); 1812 uclamp_rq_inc_id(rq, p, clamp_id); 1813 1814 /* 1815 * Make sure to clear the idle flag if we've transiently reached 0 1816 * active tasks on rq. 1817 */ 1818 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1819 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1820 } 1821 1822 static inline void 1823 uclamp_update_active(struct task_struct *p) 1824 { 1825 enum uclamp_id clamp_id; 1826 struct rq_flags rf; 1827 struct rq *rq; 1828 1829 /* 1830 * Lock the task and the rq where the task is (or was) queued. 1831 * 1832 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1833 * price to pay to safely serialize util_{min,max} updates with 1834 * enqueues, dequeues and migration operations. 1835 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1836 */ 1837 rq = task_rq_lock(p, &rf); 1838 1839 /* 1840 * Setting the clamp bucket is serialized by task_rq_lock(). 1841 * If the task is not yet RUNNABLE and its task_struct is not 1842 * affecting a valid clamp bucket, the next time it's enqueued, 1843 * it will already see the updated clamp bucket value. 1844 */ 1845 for_each_clamp_id(clamp_id) 1846 uclamp_rq_reinc_id(rq, p, clamp_id); 1847 1848 task_rq_unlock(rq, p, &rf); 1849 } 1850 1851 #ifdef CONFIG_UCLAMP_TASK_GROUP 1852 static inline void 1853 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1854 { 1855 struct css_task_iter it; 1856 struct task_struct *p; 1857 1858 css_task_iter_start(css, 0, &it); 1859 while ((p = css_task_iter_next(&it))) 1860 uclamp_update_active(p); 1861 css_task_iter_end(&it); 1862 } 1863 1864 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1865 #endif 1866 1867 #ifdef CONFIG_SYSCTL 1868 #ifdef CONFIG_UCLAMP_TASK_GROUP 1869 static void uclamp_update_root_tg(void) 1870 { 1871 struct task_group *tg = &root_task_group; 1872 1873 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1874 sysctl_sched_uclamp_util_min, false); 1875 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1876 sysctl_sched_uclamp_util_max, false); 1877 1878 guard(rcu)(); 1879 cpu_util_update_eff(&root_task_group.css); 1880 } 1881 #else 1882 static void uclamp_update_root_tg(void) { } 1883 #endif 1884 1885 static void uclamp_sync_util_min_rt_default(void) 1886 { 1887 struct task_struct *g, *p; 1888 1889 /* 1890 * copy_process() sysctl_uclamp 1891 * uclamp_min_rt = X; 1892 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1893 * // link thread smp_mb__after_spinlock() 1894 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1895 * sched_post_fork() for_each_process_thread() 1896 * __uclamp_sync_rt() __uclamp_sync_rt() 1897 * 1898 * Ensures that either sched_post_fork() will observe the new 1899 * uclamp_min_rt or for_each_process_thread() will observe the new 1900 * task. 1901 */ 1902 read_lock(&tasklist_lock); 1903 smp_mb__after_spinlock(); 1904 read_unlock(&tasklist_lock); 1905 1906 guard(rcu)(); 1907 for_each_process_thread(g, p) 1908 uclamp_update_util_min_rt_default(p); 1909 } 1910 1911 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1912 void *buffer, size_t *lenp, loff_t *ppos) 1913 { 1914 bool update_root_tg = false; 1915 int old_min, old_max, old_min_rt; 1916 int result; 1917 1918 guard(mutex)(&uclamp_mutex); 1919 1920 old_min = sysctl_sched_uclamp_util_min; 1921 old_max = sysctl_sched_uclamp_util_max; 1922 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1923 1924 result = proc_dointvec(table, write, buffer, lenp, ppos); 1925 if (result) 1926 goto undo; 1927 if (!write) 1928 return 0; 1929 1930 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1931 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1932 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1933 1934 result = -EINVAL; 1935 goto undo; 1936 } 1937 1938 if (old_min != sysctl_sched_uclamp_util_min) { 1939 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1940 sysctl_sched_uclamp_util_min, false); 1941 update_root_tg = true; 1942 } 1943 if (old_max != sysctl_sched_uclamp_util_max) { 1944 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1945 sysctl_sched_uclamp_util_max, false); 1946 update_root_tg = true; 1947 } 1948 1949 if (update_root_tg) { 1950 sched_uclamp_enable(); 1951 uclamp_update_root_tg(); 1952 } 1953 1954 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1955 sched_uclamp_enable(); 1956 uclamp_sync_util_min_rt_default(); 1957 } 1958 1959 /* 1960 * We update all RUNNABLE tasks only when task groups are in use. 1961 * Otherwise, keep it simple and do just a lazy update at each next 1962 * task enqueue time. 1963 */ 1964 return 0; 1965 1966 undo: 1967 sysctl_sched_uclamp_util_min = old_min; 1968 sysctl_sched_uclamp_util_max = old_max; 1969 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1970 return result; 1971 } 1972 #endif 1973 1974 static void uclamp_fork(struct task_struct *p) 1975 { 1976 enum uclamp_id clamp_id; 1977 1978 /* 1979 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1980 * as the task is still at its early fork stages. 1981 */ 1982 for_each_clamp_id(clamp_id) 1983 p->uclamp[clamp_id].active = false; 1984 1985 if (likely(!p->sched_reset_on_fork)) 1986 return; 1987 1988 for_each_clamp_id(clamp_id) { 1989 uclamp_se_set(&p->uclamp_req[clamp_id], 1990 uclamp_none(clamp_id), false); 1991 } 1992 } 1993 1994 static void uclamp_post_fork(struct task_struct *p) 1995 { 1996 uclamp_update_util_min_rt_default(p); 1997 } 1998 1999 static void __init init_uclamp_rq(struct rq *rq) 2000 { 2001 enum uclamp_id clamp_id; 2002 struct uclamp_rq *uc_rq = rq->uclamp; 2003 2004 for_each_clamp_id(clamp_id) { 2005 uc_rq[clamp_id] = (struct uclamp_rq) { 2006 .value = uclamp_none(clamp_id) 2007 }; 2008 } 2009 2010 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2011 } 2012 2013 static void __init init_uclamp(void) 2014 { 2015 struct uclamp_se uc_max = {}; 2016 enum uclamp_id clamp_id; 2017 int cpu; 2018 2019 for_each_possible_cpu(cpu) 2020 init_uclamp_rq(cpu_rq(cpu)); 2021 2022 for_each_clamp_id(clamp_id) { 2023 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2024 uclamp_none(clamp_id), false); 2025 } 2026 2027 /* System defaults allow max clamp values for both indexes */ 2028 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2029 for_each_clamp_id(clamp_id) { 2030 uclamp_default[clamp_id] = uc_max; 2031 #ifdef CONFIG_UCLAMP_TASK_GROUP 2032 root_task_group.uclamp_req[clamp_id] = uc_max; 2033 root_task_group.uclamp[clamp_id] = uc_max; 2034 #endif 2035 } 2036 } 2037 2038 #else /* !CONFIG_UCLAMP_TASK */ 2039 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2040 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2041 static inline void uclamp_fork(struct task_struct *p) { } 2042 static inline void uclamp_post_fork(struct task_struct *p) { } 2043 static inline void init_uclamp(void) { } 2044 #endif /* CONFIG_UCLAMP_TASK */ 2045 2046 bool sched_task_on_rq(struct task_struct *p) 2047 { 2048 return task_on_rq_queued(p); 2049 } 2050 2051 unsigned long get_wchan(struct task_struct *p) 2052 { 2053 unsigned long ip = 0; 2054 unsigned int state; 2055 2056 if (!p || p == current) 2057 return 0; 2058 2059 /* Only get wchan if task is blocked and we can keep it that way. */ 2060 raw_spin_lock_irq(&p->pi_lock); 2061 state = READ_ONCE(p->__state); 2062 smp_rmb(); /* see try_to_wake_up() */ 2063 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2064 ip = __get_wchan(p); 2065 raw_spin_unlock_irq(&p->pi_lock); 2066 2067 return ip; 2068 } 2069 2070 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2071 { 2072 if (!(flags & ENQUEUE_NOCLOCK)) 2073 update_rq_clock(rq); 2074 2075 p->sched_class->enqueue_task(rq, p, flags); 2076 /* 2077 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear 2078 * ->sched_delayed. 2079 */ 2080 uclamp_rq_inc(rq, p); 2081 2082 psi_enqueue(p, flags); 2083 2084 if (!(flags & ENQUEUE_RESTORE)) 2085 sched_info_enqueue(rq, p); 2086 2087 if (sched_core_enabled(rq)) 2088 sched_core_enqueue(rq, p); 2089 } 2090 2091 /* 2092 * Must only return false when DEQUEUE_SLEEP. 2093 */ 2094 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2095 { 2096 if (sched_core_enabled(rq)) 2097 sched_core_dequeue(rq, p, flags); 2098 2099 if (!(flags & DEQUEUE_NOCLOCK)) 2100 update_rq_clock(rq); 2101 2102 if (!(flags & DEQUEUE_SAVE)) 2103 sched_info_dequeue(rq, p); 2104 2105 psi_dequeue(p, flags); 2106 2107 /* 2108 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2109 * and mark the task ->sched_delayed. 2110 */ 2111 uclamp_rq_dec(rq, p); 2112 return p->sched_class->dequeue_task(rq, p, flags); 2113 } 2114 2115 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2116 { 2117 if (task_on_rq_migrating(p)) 2118 flags |= ENQUEUE_MIGRATED; 2119 if (flags & ENQUEUE_MIGRATED) 2120 sched_mm_cid_migrate_to(rq, p); 2121 2122 enqueue_task(rq, p, flags); 2123 2124 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2125 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2126 } 2127 2128 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2129 { 2130 WARN_ON_ONCE(flags & DEQUEUE_SLEEP); 2131 2132 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2133 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2134 2135 /* 2136 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2137 * dequeue_task() and cleared *after* enqueue_task(). 2138 */ 2139 2140 dequeue_task(rq, p, flags); 2141 } 2142 2143 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2144 { 2145 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2146 __block_task(rq, p); 2147 } 2148 2149 /** 2150 * task_curr - is this task currently executing on a CPU? 2151 * @p: the task in question. 2152 * 2153 * Return: 1 if the task is currently executing. 0 otherwise. 2154 */ 2155 inline int task_curr(const struct task_struct *p) 2156 { 2157 return cpu_curr(task_cpu(p)) == p; 2158 } 2159 2160 /* 2161 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2162 * mess with locking. 2163 */ 2164 void check_class_changing(struct rq *rq, struct task_struct *p, 2165 const struct sched_class *prev_class) 2166 { 2167 if (prev_class != p->sched_class && p->sched_class->switching_to) 2168 p->sched_class->switching_to(rq, p); 2169 } 2170 2171 /* 2172 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2173 * use the balance_callback list if you want balancing. 2174 * 2175 * this means any call to check_class_changed() must be followed by a call to 2176 * balance_callback(). 2177 */ 2178 void check_class_changed(struct rq *rq, struct task_struct *p, 2179 const struct sched_class *prev_class, 2180 int oldprio) 2181 { 2182 if (prev_class != p->sched_class) { 2183 if (prev_class->switched_from) 2184 prev_class->switched_from(rq, p); 2185 2186 p->sched_class->switched_to(rq, p); 2187 } else if (oldprio != p->prio || dl_task(p)) 2188 p->sched_class->prio_changed(rq, p, oldprio); 2189 } 2190 2191 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2192 { 2193 struct task_struct *donor = rq->donor; 2194 2195 if (p->sched_class == donor->sched_class) 2196 donor->sched_class->wakeup_preempt(rq, p, flags); 2197 else if (sched_class_above(p->sched_class, donor->sched_class)) 2198 resched_curr(rq); 2199 2200 /* 2201 * A queue event has occurred, and we're going to schedule. In 2202 * this case, we can save a useless back to back clock update. 2203 */ 2204 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) 2205 rq_clock_skip_update(rq); 2206 } 2207 2208 static __always_inline 2209 int __task_state_match(struct task_struct *p, unsigned int state) 2210 { 2211 if (READ_ONCE(p->__state) & state) 2212 return 1; 2213 2214 if (READ_ONCE(p->saved_state) & state) 2215 return -1; 2216 2217 return 0; 2218 } 2219 2220 static __always_inline 2221 int task_state_match(struct task_struct *p, unsigned int state) 2222 { 2223 /* 2224 * Serialize against current_save_and_set_rtlock_wait_state(), 2225 * current_restore_rtlock_saved_state(), and __refrigerator(). 2226 */ 2227 guard(raw_spinlock_irq)(&p->pi_lock); 2228 return __task_state_match(p, state); 2229 } 2230 2231 /* 2232 * wait_task_inactive - wait for a thread to unschedule. 2233 * 2234 * Wait for the thread to block in any of the states set in @match_state. 2235 * If it changes, i.e. @p might have woken up, then return zero. When we 2236 * succeed in waiting for @p to be off its CPU, we return a positive number 2237 * (its total switch count). If a second call a short while later returns the 2238 * same number, the caller can be sure that @p has remained unscheduled the 2239 * whole time. 2240 * 2241 * The caller must ensure that the task *will* unschedule sometime soon, 2242 * else this function might spin for a *long* time. This function can't 2243 * be called with interrupts off, or it may introduce deadlock with 2244 * smp_call_function() if an IPI is sent by the same process we are 2245 * waiting to become inactive. 2246 */ 2247 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2248 { 2249 int running, queued, match; 2250 struct rq_flags rf; 2251 unsigned long ncsw; 2252 struct rq *rq; 2253 2254 for (;;) { 2255 /* 2256 * We do the initial early heuristics without holding 2257 * any task-queue locks at all. We'll only try to get 2258 * the runqueue lock when things look like they will 2259 * work out! 2260 */ 2261 rq = task_rq(p); 2262 2263 /* 2264 * If the task is actively running on another CPU 2265 * still, just relax and busy-wait without holding 2266 * any locks. 2267 * 2268 * NOTE! Since we don't hold any locks, it's not 2269 * even sure that "rq" stays as the right runqueue! 2270 * But we don't care, since "task_on_cpu()" will 2271 * return false if the runqueue has changed and p 2272 * is actually now running somewhere else! 2273 */ 2274 while (task_on_cpu(rq, p)) { 2275 if (!task_state_match(p, match_state)) 2276 return 0; 2277 cpu_relax(); 2278 } 2279 2280 /* 2281 * Ok, time to look more closely! We need the rq 2282 * lock now, to be *sure*. If we're wrong, we'll 2283 * just go back and repeat. 2284 */ 2285 rq = task_rq_lock(p, &rf); 2286 trace_sched_wait_task(p); 2287 running = task_on_cpu(rq, p); 2288 queued = task_on_rq_queued(p); 2289 ncsw = 0; 2290 if ((match = __task_state_match(p, match_state))) { 2291 /* 2292 * When matching on p->saved_state, consider this task 2293 * still queued so it will wait. 2294 */ 2295 if (match < 0) 2296 queued = 1; 2297 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2298 } 2299 task_rq_unlock(rq, p, &rf); 2300 2301 /* 2302 * If it changed from the expected state, bail out now. 2303 */ 2304 if (unlikely(!ncsw)) 2305 break; 2306 2307 /* 2308 * Was it really running after all now that we 2309 * checked with the proper locks actually held? 2310 * 2311 * Oops. Go back and try again.. 2312 */ 2313 if (unlikely(running)) { 2314 cpu_relax(); 2315 continue; 2316 } 2317 2318 /* 2319 * It's not enough that it's not actively running, 2320 * it must be off the runqueue _entirely_, and not 2321 * preempted! 2322 * 2323 * So if it was still runnable (but just not actively 2324 * running right now), it's preempted, and we should 2325 * yield - it could be a while. 2326 */ 2327 if (unlikely(queued)) { 2328 ktime_t to = NSEC_PER_SEC / HZ; 2329 2330 set_current_state(TASK_UNINTERRUPTIBLE); 2331 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2332 continue; 2333 } 2334 2335 /* 2336 * Ahh, all good. It wasn't running, and it wasn't 2337 * runnable, which means that it will never become 2338 * running in the future either. We're all done! 2339 */ 2340 break; 2341 } 2342 2343 return ncsw; 2344 } 2345 2346 #ifdef CONFIG_SMP 2347 2348 static void 2349 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2350 2351 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2352 { 2353 struct affinity_context ac = { 2354 .new_mask = cpumask_of(rq->cpu), 2355 .flags = SCA_MIGRATE_DISABLE, 2356 }; 2357 2358 if (likely(!p->migration_disabled)) 2359 return; 2360 2361 if (p->cpus_ptr != &p->cpus_mask) 2362 return; 2363 2364 /* 2365 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2366 */ 2367 __do_set_cpus_allowed(p, &ac); 2368 } 2369 2370 void migrate_disable(void) 2371 { 2372 struct task_struct *p = current; 2373 2374 if (p->migration_disabled) { 2375 #ifdef CONFIG_DEBUG_PREEMPT 2376 /* 2377 *Warn about overflow half-way through the range. 2378 */ 2379 WARN_ON_ONCE((s16)p->migration_disabled < 0); 2380 #endif 2381 p->migration_disabled++; 2382 return; 2383 } 2384 2385 guard(preempt)(); 2386 this_rq()->nr_pinned++; 2387 p->migration_disabled = 1; 2388 } 2389 EXPORT_SYMBOL_GPL(migrate_disable); 2390 2391 void migrate_enable(void) 2392 { 2393 struct task_struct *p = current; 2394 struct affinity_context ac = { 2395 .new_mask = &p->cpus_mask, 2396 .flags = SCA_MIGRATE_ENABLE, 2397 }; 2398 2399 #ifdef CONFIG_DEBUG_PREEMPT 2400 /* 2401 * Check both overflow from migrate_disable() and superfluous 2402 * migrate_enable(). 2403 */ 2404 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) 2405 return; 2406 #endif 2407 2408 if (p->migration_disabled > 1) { 2409 p->migration_disabled--; 2410 return; 2411 } 2412 2413 /* 2414 * Ensure stop_task runs either before or after this, and that 2415 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2416 */ 2417 guard(preempt)(); 2418 if (p->cpus_ptr != &p->cpus_mask) 2419 __set_cpus_allowed_ptr(p, &ac); 2420 /* 2421 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2422 * regular cpus_mask, otherwise things that race (eg. 2423 * select_fallback_rq) get confused. 2424 */ 2425 barrier(); 2426 p->migration_disabled = 0; 2427 this_rq()->nr_pinned--; 2428 } 2429 EXPORT_SYMBOL_GPL(migrate_enable); 2430 2431 static inline bool rq_has_pinned_tasks(struct rq *rq) 2432 { 2433 return rq->nr_pinned; 2434 } 2435 2436 /* 2437 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2438 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2439 */ 2440 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2441 { 2442 /* When not in the task's cpumask, no point in looking further. */ 2443 if (!task_allowed_on_cpu(p, cpu)) 2444 return false; 2445 2446 /* migrate_disabled() must be allowed to finish. */ 2447 if (is_migration_disabled(p)) 2448 return cpu_online(cpu); 2449 2450 /* Non kernel threads are not allowed during either online or offline. */ 2451 if (!(p->flags & PF_KTHREAD)) 2452 return cpu_active(cpu); 2453 2454 /* KTHREAD_IS_PER_CPU is always allowed. */ 2455 if (kthread_is_per_cpu(p)) 2456 return cpu_online(cpu); 2457 2458 /* Regular kernel threads don't get to stay during offline. */ 2459 if (cpu_dying(cpu)) 2460 return false; 2461 2462 /* But are allowed during online. */ 2463 return cpu_online(cpu); 2464 } 2465 2466 /* 2467 * This is how migration works: 2468 * 2469 * 1) we invoke migration_cpu_stop() on the target CPU using 2470 * stop_one_cpu(). 2471 * 2) stopper starts to run (implicitly forcing the migrated thread 2472 * off the CPU) 2473 * 3) it checks whether the migrated task is still in the wrong runqueue. 2474 * 4) if it's in the wrong runqueue then the migration thread removes 2475 * it and puts it into the right queue. 2476 * 5) stopper completes and stop_one_cpu() returns and the migration 2477 * is done. 2478 */ 2479 2480 /* 2481 * move_queued_task - move a queued task to new rq. 2482 * 2483 * Returns (locked) new rq. Old rq's lock is released. 2484 */ 2485 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2486 struct task_struct *p, int new_cpu) 2487 { 2488 lockdep_assert_rq_held(rq); 2489 2490 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2491 set_task_cpu(p, new_cpu); 2492 rq_unlock(rq, rf); 2493 2494 rq = cpu_rq(new_cpu); 2495 2496 rq_lock(rq, rf); 2497 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2498 activate_task(rq, p, 0); 2499 wakeup_preempt(rq, p, 0); 2500 2501 return rq; 2502 } 2503 2504 struct migration_arg { 2505 struct task_struct *task; 2506 int dest_cpu; 2507 struct set_affinity_pending *pending; 2508 }; 2509 2510 /* 2511 * @refs: number of wait_for_completion() 2512 * @stop_pending: is @stop_work in use 2513 */ 2514 struct set_affinity_pending { 2515 refcount_t refs; 2516 unsigned int stop_pending; 2517 struct completion done; 2518 struct cpu_stop_work stop_work; 2519 struct migration_arg arg; 2520 }; 2521 2522 /* 2523 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2524 * this because either it can't run here any more (set_cpus_allowed() 2525 * away from this CPU, or CPU going down), or because we're 2526 * attempting to rebalance this task on exec (sched_exec). 2527 * 2528 * So we race with normal scheduler movements, but that's OK, as long 2529 * as the task is no longer on this CPU. 2530 */ 2531 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2532 struct task_struct *p, int dest_cpu) 2533 { 2534 /* Affinity changed (again). */ 2535 if (!is_cpu_allowed(p, dest_cpu)) 2536 return rq; 2537 2538 rq = move_queued_task(rq, rf, p, dest_cpu); 2539 2540 return rq; 2541 } 2542 2543 /* 2544 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2545 * and performs thread migration by bumping thread off CPU then 2546 * 'pushing' onto another runqueue. 2547 */ 2548 static int migration_cpu_stop(void *data) 2549 { 2550 struct migration_arg *arg = data; 2551 struct set_affinity_pending *pending = arg->pending; 2552 struct task_struct *p = arg->task; 2553 struct rq *rq = this_rq(); 2554 bool complete = false; 2555 struct rq_flags rf; 2556 2557 /* 2558 * The original target CPU might have gone down and we might 2559 * be on another CPU but it doesn't matter. 2560 */ 2561 local_irq_save(rf.flags); 2562 /* 2563 * We need to explicitly wake pending tasks before running 2564 * __migrate_task() such that we will not miss enforcing cpus_ptr 2565 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2566 */ 2567 flush_smp_call_function_queue(); 2568 2569 raw_spin_lock(&p->pi_lock); 2570 rq_lock(rq, &rf); 2571 2572 /* 2573 * If we were passed a pending, then ->stop_pending was set, thus 2574 * p->migration_pending must have remained stable. 2575 */ 2576 WARN_ON_ONCE(pending && pending != p->migration_pending); 2577 2578 /* 2579 * If task_rq(p) != rq, it cannot be migrated here, because we're 2580 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2581 * we're holding p->pi_lock. 2582 */ 2583 if (task_rq(p) == rq) { 2584 if (is_migration_disabled(p)) 2585 goto out; 2586 2587 if (pending) { 2588 p->migration_pending = NULL; 2589 complete = true; 2590 2591 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2592 goto out; 2593 } 2594 2595 if (task_on_rq_queued(p)) { 2596 update_rq_clock(rq); 2597 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2598 } else { 2599 p->wake_cpu = arg->dest_cpu; 2600 } 2601 2602 /* 2603 * XXX __migrate_task() can fail, at which point we might end 2604 * up running on a dodgy CPU, AFAICT this can only happen 2605 * during CPU hotplug, at which point we'll get pushed out 2606 * anyway, so it's probably not a big deal. 2607 */ 2608 2609 } else if (pending) { 2610 /* 2611 * This happens when we get migrated between migrate_enable()'s 2612 * preempt_enable() and scheduling the stopper task. At that 2613 * point we're a regular task again and not current anymore. 2614 * 2615 * A !PREEMPT kernel has a giant hole here, which makes it far 2616 * more likely. 2617 */ 2618 2619 /* 2620 * The task moved before the stopper got to run. We're holding 2621 * ->pi_lock, so the allowed mask is stable - if it got 2622 * somewhere allowed, we're done. 2623 */ 2624 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2625 p->migration_pending = NULL; 2626 complete = true; 2627 goto out; 2628 } 2629 2630 /* 2631 * When migrate_enable() hits a rq mis-match we can't reliably 2632 * determine is_migration_disabled() and so have to chase after 2633 * it. 2634 */ 2635 WARN_ON_ONCE(!pending->stop_pending); 2636 preempt_disable(); 2637 task_rq_unlock(rq, p, &rf); 2638 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2639 &pending->arg, &pending->stop_work); 2640 preempt_enable(); 2641 return 0; 2642 } 2643 out: 2644 if (pending) 2645 pending->stop_pending = false; 2646 task_rq_unlock(rq, p, &rf); 2647 2648 if (complete) 2649 complete_all(&pending->done); 2650 2651 return 0; 2652 } 2653 2654 int push_cpu_stop(void *arg) 2655 { 2656 struct rq *lowest_rq = NULL, *rq = this_rq(); 2657 struct task_struct *p = arg; 2658 2659 raw_spin_lock_irq(&p->pi_lock); 2660 raw_spin_rq_lock(rq); 2661 2662 if (task_rq(p) != rq) 2663 goto out_unlock; 2664 2665 if (is_migration_disabled(p)) { 2666 p->migration_flags |= MDF_PUSH; 2667 goto out_unlock; 2668 } 2669 2670 p->migration_flags &= ~MDF_PUSH; 2671 2672 if (p->sched_class->find_lock_rq) 2673 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2674 2675 if (!lowest_rq) 2676 goto out_unlock; 2677 2678 // XXX validate p is still the highest prio task 2679 if (task_rq(p) == rq) { 2680 move_queued_task_locked(rq, lowest_rq, p); 2681 resched_curr(lowest_rq); 2682 } 2683 2684 double_unlock_balance(rq, lowest_rq); 2685 2686 out_unlock: 2687 rq->push_busy = false; 2688 raw_spin_rq_unlock(rq); 2689 raw_spin_unlock_irq(&p->pi_lock); 2690 2691 put_task_struct(p); 2692 return 0; 2693 } 2694 2695 /* 2696 * sched_class::set_cpus_allowed must do the below, but is not required to 2697 * actually call this function. 2698 */ 2699 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2700 { 2701 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2702 p->cpus_ptr = ctx->new_mask; 2703 return; 2704 } 2705 2706 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2707 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2708 2709 /* 2710 * Swap in a new user_cpus_ptr if SCA_USER flag set 2711 */ 2712 if (ctx->flags & SCA_USER) 2713 swap(p->user_cpus_ptr, ctx->user_mask); 2714 } 2715 2716 static void 2717 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2718 { 2719 struct rq *rq = task_rq(p); 2720 bool queued, running; 2721 2722 /* 2723 * This here violates the locking rules for affinity, since we're only 2724 * supposed to change these variables while holding both rq->lock and 2725 * p->pi_lock. 2726 * 2727 * HOWEVER, it magically works, because ttwu() is the only code that 2728 * accesses these variables under p->pi_lock and only does so after 2729 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2730 * before finish_task(). 2731 * 2732 * XXX do further audits, this smells like something putrid. 2733 */ 2734 if (ctx->flags & SCA_MIGRATE_DISABLE) 2735 WARN_ON_ONCE(!p->on_cpu); 2736 else 2737 lockdep_assert_held(&p->pi_lock); 2738 2739 queued = task_on_rq_queued(p); 2740 running = task_current_donor(rq, p); 2741 2742 if (queued) { 2743 /* 2744 * Because __kthread_bind() calls this on blocked tasks without 2745 * holding rq->lock. 2746 */ 2747 lockdep_assert_rq_held(rq); 2748 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2749 } 2750 if (running) 2751 put_prev_task(rq, p); 2752 2753 p->sched_class->set_cpus_allowed(p, ctx); 2754 mm_set_cpus_allowed(p->mm, ctx->new_mask); 2755 2756 if (queued) 2757 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2758 if (running) 2759 set_next_task(rq, p); 2760 } 2761 2762 /* 2763 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2764 * affinity (if any) should be destroyed too. 2765 */ 2766 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2767 { 2768 struct affinity_context ac = { 2769 .new_mask = new_mask, 2770 .user_mask = NULL, 2771 .flags = SCA_USER, /* clear the user requested mask */ 2772 }; 2773 union cpumask_rcuhead { 2774 cpumask_t cpumask; 2775 struct rcu_head rcu; 2776 }; 2777 2778 __do_set_cpus_allowed(p, &ac); 2779 2780 /* 2781 * Because this is called with p->pi_lock held, it is not possible 2782 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2783 * kfree_rcu(). 2784 */ 2785 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2786 } 2787 2788 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2789 int node) 2790 { 2791 cpumask_t *user_mask; 2792 unsigned long flags; 2793 2794 /* 2795 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2796 * may differ by now due to racing. 2797 */ 2798 dst->user_cpus_ptr = NULL; 2799 2800 /* 2801 * This check is racy and losing the race is a valid situation. 2802 * It is not worth the extra overhead of taking the pi_lock on 2803 * every fork/clone. 2804 */ 2805 if (data_race(!src->user_cpus_ptr)) 2806 return 0; 2807 2808 user_mask = alloc_user_cpus_ptr(node); 2809 if (!user_mask) 2810 return -ENOMEM; 2811 2812 /* 2813 * Use pi_lock to protect content of user_cpus_ptr 2814 * 2815 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2816 * do_set_cpus_allowed(). 2817 */ 2818 raw_spin_lock_irqsave(&src->pi_lock, flags); 2819 if (src->user_cpus_ptr) { 2820 swap(dst->user_cpus_ptr, user_mask); 2821 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2822 } 2823 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2824 2825 if (unlikely(user_mask)) 2826 kfree(user_mask); 2827 2828 return 0; 2829 } 2830 2831 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2832 { 2833 struct cpumask *user_mask = NULL; 2834 2835 swap(p->user_cpus_ptr, user_mask); 2836 2837 return user_mask; 2838 } 2839 2840 void release_user_cpus_ptr(struct task_struct *p) 2841 { 2842 kfree(clear_user_cpus_ptr(p)); 2843 } 2844 2845 /* 2846 * This function is wildly self concurrent; here be dragons. 2847 * 2848 * 2849 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2850 * designated task is enqueued on an allowed CPU. If that task is currently 2851 * running, we have to kick it out using the CPU stopper. 2852 * 2853 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2854 * Consider: 2855 * 2856 * Initial conditions: P0->cpus_mask = [0, 1] 2857 * 2858 * P0@CPU0 P1 2859 * 2860 * migrate_disable(); 2861 * <preempted> 2862 * set_cpus_allowed_ptr(P0, [1]); 2863 * 2864 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2865 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2866 * This means we need the following scheme: 2867 * 2868 * P0@CPU0 P1 2869 * 2870 * migrate_disable(); 2871 * <preempted> 2872 * set_cpus_allowed_ptr(P0, [1]); 2873 * <blocks> 2874 * <resumes> 2875 * migrate_enable(); 2876 * __set_cpus_allowed_ptr(); 2877 * <wakes local stopper> 2878 * `--> <woken on migration completion> 2879 * 2880 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2881 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2882 * task p are serialized by p->pi_lock, which we can leverage: the one that 2883 * should come into effect at the end of the Migrate-Disable region is the last 2884 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2885 * but we still need to properly signal those waiting tasks at the appropriate 2886 * moment. 2887 * 2888 * This is implemented using struct set_affinity_pending. The first 2889 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2890 * setup an instance of that struct and install it on the targeted task_struct. 2891 * Any and all further callers will reuse that instance. Those then wait for 2892 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2893 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2894 * 2895 * 2896 * (1) In the cases covered above. There is one more where the completion is 2897 * signaled within affine_move_task() itself: when a subsequent affinity request 2898 * occurs after the stopper bailed out due to the targeted task still being 2899 * Migrate-Disable. Consider: 2900 * 2901 * Initial conditions: P0->cpus_mask = [0, 1] 2902 * 2903 * CPU0 P1 P2 2904 * <P0> 2905 * migrate_disable(); 2906 * <preempted> 2907 * set_cpus_allowed_ptr(P0, [1]); 2908 * <blocks> 2909 * <migration/0> 2910 * migration_cpu_stop() 2911 * is_migration_disabled() 2912 * <bails> 2913 * set_cpus_allowed_ptr(P0, [0, 1]); 2914 * <signal completion> 2915 * <awakes> 2916 * 2917 * Note that the above is safe vs a concurrent migrate_enable(), as any 2918 * pending affinity completion is preceded by an uninstallation of 2919 * p->migration_pending done with p->pi_lock held. 2920 */ 2921 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2922 int dest_cpu, unsigned int flags) 2923 __releases(rq->lock) 2924 __releases(p->pi_lock) 2925 { 2926 struct set_affinity_pending my_pending = { }, *pending = NULL; 2927 bool stop_pending, complete = false; 2928 2929 /* Can the task run on the task's current CPU? If so, we're done */ 2930 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2931 struct task_struct *push_task = NULL; 2932 2933 if ((flags & SCA_MIGRATE_ENABLE) && 2934 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2935 rq->push_busy = true; 2936 push_task = get_task_struct(p); 2937 } 2938 2939 /* 2940 * If there are pending waiters, but no pending stop_work, 2941 * then complete now. 2942 */ 2943 pending = p->migration_pending; 2944 if (pending && !pending->stop_pending) { 2945 p->migration_pending = NULL; 2946 complete = true; 2947 } 2948 2949 preempt_disable(); 2950 task_rq_unlock(rq, p, rf); 2951 if (push_task) { 2952 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2953 p, &rq->push_work); 2954 } 2955 preempt_enable(); 2956 2957 if (complete) 2958 complete_all(&pending->done); 2959 2960 return 0; 2961 } 2962 2963 if (!(flags & SCA_MIGRATE_ENABLE)) { 2964 /* serialized by p->pi_lock */ 2965 if (!p->migration_pending) { 2966 /* Install the request */ 2967 refcount_set(&my_pending.refs, 1); 2968 init_completion(&my_pending.done); 2969 my_pending.arg = (struct migration_arg) { 2970 .task = p, 2971 .dest_cpu = dest_cpu, 2972 .pending = &my_pending, 2973 }; 2974 2975 p->migration_pending = &my_pending; 2976 } else { 2977 pending = p->migration_pending; 2978 refcount_inc(&pending->refs); 2979 /* 2980 * Affinity has changed, but we've already installed a 2981 * pending. migration_cpu_stop() *must* see this, else 2982 * we risk a completion of the pending despite having a 2983 * task on a disallowed CPU. 2984 * 2985 * Serialized by p->pi_lock, so this is safe. 2986 */ 2987 pending->arg.dest_cpu = dest_cpu; 2988 } 2989 } 2990 pending = p->migration_pending; 2991 /* 2992 * - !MIGRATE_ENABLE: 2993 * we'll have installed a pending if there wasn't one already. 2994 * 2995 * - MIGRATE_ENABLE: 2996 * we're here because the current CPU isn't matching anymore, 2997 * the only way that can happen is because of a concurrent 2998 * set_cpus_allowed_ptr() call, which should then still be 2999 * pending completion. 3000 * 3001 * Either way, we really should have a @pending here. 3002 */ 3003 if (WARN_ON_ONCE(!pending)) { 3004 task_rq_unlock(rq, p, rf); 3005 return -EINVAL; 3006 } 3007 3008 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 3009 /* 3010 * MIGRATE_ENABLE gets here because 'p == current', but for 3011 * anything else we cannot do is_migration_disabled(), punt 3012 * and have the stopper function handle it all race-free. 3013 */ 3014 stop_pending = pending->stop_pending; 3015 if (!stop_pending) 3016 pending->stop_pending = true; 3017 3018 if (flags & SCA_MIGRATE_ENABLE) 3019 p->migration_flags &= ~MDF_PUSH; 3020 3021 preempt_disable(); 3022 task_rq_unlock(rq, p, rf); 3023 if (!stop_pending) { 3024 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 3025 &pending->arg, &pending->stop_work); 3026 } 3027 preempt_enable(); 3028 3029 if (flags & SCA_MIGRATE_ENABLE) 3030 return 0; 3031 } else { 3032 3033 if (!is_migration_disabled(p)) { 3034 if (task_on_rq_queued(p)) 3035 rq = move_queued_task(rq, rf, p, dest_cpu); 3036 3037 if (!pending->stop_pending) { 3038 p->migration_pending = NULL; 3039 complete = true; 3040 } 3041 } 3042 task_rq_unlock(rq, p, rf); 3043 3044 if (complete) 3045 complete_all(&pending->done); 3046 } 3047 3048 wait_for_completion(&pending->done); 3049 3050 if (refcount_dec_and_test(&pending->refs)) 3051 wake_up_var(&pending->refs); /* No UaF, just an address */ 3052 3053 /* 3054 * Block the original owner of &pending until all subsequent callers 3055 * have seen the completion and decremented the refcount 3056 */ 3057 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3058 3059 /* ARGH */ 3060 WARN_ON_ONCE(my_pending.stop_pending); 3061 3062 return 0; 3063 } 3064 3065 /* 3066 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3067 */ 3068 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3069 struct affinity_context *ctx, 3070 struct rq *rq, 3071 struct rq_flags *rf) 3072 __releases(rq->lock) 3073 __releases(p->pi_lock) 3074 { 3075 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3076 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3077 bool kthread = p->flags & PF_KTHREAD; 3078 unsigned int dest_cpu; 3079 int ret = 0; 3080 3081 update_rq_clock(rq); 3082 3083 if (kthread || is_migration_disabled(p)) { 3084 /* 3085 * Kernel threads are allowed on online && !active CPUs, 3086 * however, during cpu-hot-unplug, even these might get pushed 3087 * away if not KTHREAD_IS_PER_CPU. 3088 * 3089 * Specifically, migration_disabled() tasks must not fail the 3090 * cpumask_any_and_distribute() pick below, esp. so on 3091 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3092 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3093 */ 3094 cpu_valid_mask = cpu_online_mask; 3095 } 3096 3097 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3098 ret = -EINVAL; 3099 goto out; 3100 } 3101 3102 /* 3103 * Must re-check here, to close a race against __kthread_bind(), 3104 * sched_setaffinity() is not guaranteed to observe the flag. 3105 */ 3106 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3107 ret = -EINVAL; 3108 goto out; 3109 } 3110 3111 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3112 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3113 if (ctx->flags & SCA_USER) 3114 swap(p->user_cpus_ptr, ctx->user_mask); 3115 goto out; 3116 } 3117 3118 if (WARN_ON_ONCE(p == current && 3119 is_migration_disabled(p) && 3120 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3121 ret = -EBUSY; 3122 goto out; 3123 } 3124 } 3125 3126 /* 3127 * Picking a ~random cpu helps in cases where we are changing affinity 3128 * for groups of tasks (ie. cpuset), so that load balancing is not 3129 * immediately required to distribute the tasks within their new mask. 3130 */ 3131 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3132 if (dest_cpu >= nr_cpu_ids) { 3133 ret = -EINVAL; 3134 goto out; 3135 } 3136 3137 __do_set_cpus_allowed(p, ctx); 3138 3139 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3140 3141 out: 3142 task_rq_unlock(rq, p, rf); 3143 3144 return ret; 3145 } 3146 3147 /* 3148 * Change a given task's CPU affinity. Migrate the thread to a 3149 * proper CPU and schedule it away if the CPU it's executing on 3150 * is removed from the allowed bitmask. 3151 * 3152 * NOTE: the caller must have a valid reference to the task, the 3153 * task must not exit() & deallocate itself prematurely. The 3154 * call is not atomic; no spinlocks may be held. 3155 */ 3156 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3157 { 3158 struct rq_flags rf; 3159 struct rq *rq; 3160 3161 rq = task_rq_lock(p, &rf); 3162 /* 3163 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3164 * flags are set. 3165 */ 3166 if (p->user_cpus_ptr && 3167 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3168 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3169 ctx->new_mask = rq->scratch_mask; 3170 3171 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3172 } 3173 3174 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3175 { 3176 struct affinity_context ac = { 3177 .new_mask = new_mask, 3178 .flags = 0, 3179 }; 3180 3181 return __set_cpus_allowed_ptr(p, &ac); 3182 } 3183 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3184 3185 /* 3186 * Change a given task's CPU affinity to the intersection of its current 3187 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3188 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3189 * affinity or use cpu_online_mask instead. 3190 * 3191 * If the resulting mask is empty, leave the affinity unchanged and return 3192 * -EINVAL. 3193 */ 3194 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3195 struct cpumask *new_mask, 3196 const struct cpumask *subset_mask) 3197 { 3198 struct affinity_context ac = { 3199 .new_mask = new_mask, 3200 .flags = 0, 3201 }; 3202 struct rq_flags rf; 3203 struct rq *rq; 3204 int err; 3205 3206 rq = task_rq_lock(p, &rf); 3207 3208 /* 3209 * Forcefully restricting the affinity of a deadline task is 3210 * likely to cause problems, so fail and noisily override the 3211 * mask entirely. 3212 */ 3213 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3214 err = -EPERM; 3215 goto err_unlock; 3216 } 3217 3218 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3219 err = -EINVAL; 3220 goto err_unlock; 3221 } 3222 3223 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3224 3225 err_unlock: 3226 task_rq_unlock(rq, p, &rf); 3227 return err; 3228 } 3229 3230 /* 3231 * Restrict the CPU affinity of task @p so that it is a subset of 3232 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3233 * old affinity mask. If the resulting mask is empty, we warn and walk 3234 * up the cpuset hierarchy until we find a suitable mask. 3235 */ 3236 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3237 { 3238 cpumask_var_t new_mask; 3239 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3240 3241 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3242 3243 /* 3244 * __migrate_task() can fail silently in the face of concurrent 3245 * offlining of the chosen destination CPU, so take the hotplug 3246 * lock to ensure that the migration succeeds. 3247 */ 3248 cpus_read_lock(); 3249 if (!cpumask_available(new_mask)) 3250 goto out_set_mask; 3251 3252 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3253 goto out_free_mask; 3254 3255 /* 3256 * We failed to find a valid subset of the affinity mask for the 3257 * task, so override it based on its cpuset hierarchy. 3258 */ 3259 cpuset_cpus_allowed(p, new_mask); 3260 override_mask = new_mask; 3261 3262 out_set_mask: 3263 if (printk_ratelimit()) { 3264 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3265 task_pid_nr(p), p->comm, 3266 cpumask_pr_args(override_mask)); 3267 } 3268 3269 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3270 out_free_mask: 3271 cpus_read_unlock(); 3272 free_cpumask_var(new_mask); 3273 } 3274 3275 /* 3276 * Restore the affinity of a task @p which was previously restricted by a 3277 * call to force_compatible_cpus_allowed_ptr(). 3278 * 3279 * It is the caller's responsibility to serialise this with any calls to 3280 * force_compatible_cpus_allowed_ptr(@p). 3281 */ 3282 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3283 { 3284 struct affinity_context ac = { 3285 .new_mask = task_user_cpus(p), 3286 .flags = 0, 3287 }; 3288 int ret; 3289 3290 /* 3291 * Try to restore the old affinity mask with __sched_setaffinity(). 3292 * Cpuset masking will be done there too. 3293 */ 3294 ret = __sched_setaffinity(p, &ac); 3295 WARN_ON_ONCE(ret); 3296 } 3297 3298 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3299 { 3300 unsigned int state = READ_ONCE(p->__state); 3301 3302 /* 3303 * We should never call set_task_cpu() on a blocked task, 3304 * ttwu() will sort out the placement. 3305 */ 3306 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3307 3308 /* 3309 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3310 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3311 * time relying on p->on_rq. 3312 */ 3313 WARN_ON_ONCE(state == TASK_RUNNING && 3314 p->sched_class == &fair_sched_class && 3315 (p->on_rq && !task_on_rq_migrating(p))); 3316 3317 #ifdef CONFIG_LOCKDEP 3318 /* 3319 * The caller should hold either p->pi_lock or rq->lock, when changing 3320 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3321 * 3322 * sched_move_task() holds both and thus holding either pins the cgroup, 3323 * see task_group(). 3324 * 3325 * Furthermore, all task_rq users should acquire both locks, see 3326 * task_rq_lock(). 3327 */ 3328 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3329 lockdep_is_held(__rq_lockp(task_rq(p))))); 3330 #endif 3331 /* 3332 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3333 */ 3334 WARN_ON_ONCE(!cpu_online(new_cpu)); 3335 3336 WARN_ON_ONCE(is_migration_disabled(p)); 3337 3338 trace_sched_migrate_task(p, new_cpu); 3339 3340 if (task_cpu(p) != new_cpu) { 3341 if (p->sched_class->migrate_task_rq) 3342 p->sched_class->migrate_task_rq(p, new_cpu); 3343 p->se.nr_migrations++; 3344 rseq_migrate(p); 3345 sched_mm_cid_migrate_from(p); 3346 perf_event_task_migrate(p); 3347 } 3348 3349 __set_task_cpu(p, new_cpu); 3350 } 3351 3352 #ifdef CONFIG_NUMA_BALANCING 3353 static void __migrate_swap_task(struct task_struct *p, int cpu) 3354 { 3355 if (task_on_rq_queued(p)) { 3356 struct rq *src_rq, *dst_rq; 3357 struct rq_flags srf, drf; 3358 3359 src_rq = task_rq(p); 3360 dst_rq = cpu_rq(cpu); 3361 3362 rq_pin_lock(src_rq, &srf); 3363 rq_pin_lock(dst_rq, &drf); 3364 3365 move_queued_task_locked(src_rq, dst_rq, p); 3366 wakeup_preempt(dst_rq, p, 0); 3367 3368 rq_unpin_lock(dst_rq, &drf); 3369 rq_unpin_lock(src_rq, &srf); 3370 3371 } else { 3372 /* 3373 * Task isn't running anymore; make it appear like we migrated 3374 * it before it went to sleep. This means on wakeup we make the 3375 * previous CPU our target instead of where it really is. 3376 */ 3377 p->wake_cpu = cpu; 3378 } 3379 } 3380 3381 struct migration_swap_arg { 3382 struct task_struct *src_task, *dst_task; 3383 int src_cpu, dst_cpu; 3384 }; 3385 3386 static int migrate_swap_stop(void *data) 3387 { 3388 struct migration_swap_arg *arg = data; 3389 struct rq *src_rq, *dst_rq; 3390 3391 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3392 return -EAGAIN; 3393 3394 src_rq = cpu_rq(arg->src_cpu); 3395 dst_rq = cpu_rq(arg->dst_cpu); 3396 3397 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3398 guard(double_rq_lock)(src_rq, dst_rq); 3399 3400 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3401 return -EAGAIN; 3402 3403 if (task_cpu(arg->src_task) != arg->src_cpu) 3404 return -EAGAIN; 3405 3406 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3407 return -EAGAIN; 3408 3409 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3410 return -EAGAIN; 3411 3412 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3413 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3414 3415 return 0; 3416 } 3417 3418 /* 3419 * Cross migrate two tasks 3420 */ 3421 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3422 int target_cpu, int curr_cpu) 3423 { 3424 struct migration_swap_arg arg; 3425 int ret = -EINVAL; 3426 3427 arg = (struct migration_swap_arg){ 3428 .src_task = cur, 3429 .src_cpu = curr_cpu, 3430 .dst_task = p, 3431 .dst_cpu = target_cpu, 3432 }; 3433 3434 if (arg.src_cpu == arg.dst_cpu) 3435 goto out; 3436 3437 /* 3438 * These three tests are all lockless; this is OK since all of them 3439 * will be re-checked with proper locks held further down the line. 3440 */ 3441 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3442 goto out; 3443 3444 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3445 goto out; 3446 3447 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3448 goto out; 3449 3450 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3451 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3452 3453 out: 3454 return ret; 3455 } 3456 #endif /* CONFIG_NUMA_BALANCING */ 3457 3458 /*** 3459 * kick_process - kick a running thread to enter/exit the kernel 3460 * @p: the to-be-kicked thread 3461 * 3462 * Cause a process which is running on another CPU to enter 3463 * kernel-mode, without any delay. (to get signals handled.) 3464 * 3465 * NOTE: this function doesn't have to take the runqueue lock, 3466 * because all it wants to ensure is that the remote task enters 3467 * the kernel. If the IPI races and the task has been migrated 3468 * to another CPU then no harm is done and the purpose has been 3469 * achieved as well. 3470 */ 3471 void kick_process(struct task_struct *p) 3472 { 3473 guard(preempt)(); 3474 int cpu = task_cpu(p); 3475 3476 if ((cpu != smp_processor_id()) && task_curr(p)) 3477 smp_send_reschedule(cpu); 3478 } 3479 EXPORT_SYMBOL_GPL(kick_process); 3480 3481 /* 3482 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3483 * 3484 * A few notes on cpu_active vs cpu_online: 3485 * 3486 * - cpu_active must be a subset of cpu_online 3487 * 3488 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3489 * see __set_cpus_allowed_ptr(). At this point the newly online 3490 * CPU isn't yet part of the sched domains, and balancing will not 3491 * see it. 3492 * 3493 * - on CPU-down we clear cpu_active() to mask the sched domains and 3494 * avoid the load balancer to place new tasks on the to be removed 3495 * CPU. Existing tasks will remain running there and will be taken 3496 * off. 3497 * 3498 * This means that fallback selection must not select !active CPUs. 3499 * And can assume that any active CPU must be online. Conversely 3500 * select_task_rq() below may allow selection of !active CPUs in order 3501 * to satisfy the above rules. 3502 */ 3503 static int select_fallback_rq(int cpu, struct task_struct *p) 3504 { 3505 int nid = cpu_to_node(cpu); 3506 const struct cpumask *nodemask = NULL; 3507 enum { cpuset, possible, fail } state = cpuset; 3508 int dest_cpu; 3509 3510 /* 3511 * If the node that the CPU is on has been offlined, cpu_to_node() 3512 * will return -1. There is no CPU on the node, and we should 3513 * select the CPU on the other node. 3514 */ 3515 if (nid != -1) { 3516 nodemask = cpumask_of_node(nid); 3517 3518 /* Look for allowed, online CPU in same node. */ 3519 for_each_cpu(dest_cpu, nodemask) { 3520 if (is_cpu_allowed(p, dest_cpu)) 3521 return dest_cpu; 3522 } 3523 } 3524 3525 for (;;) { 3526 /* Any allowed, online CPU? */ 3527 for_each_cpu(dest_cpu, p->cpus_ptr) { 3528 if (!is_cpu_allowed(p, dest_cpu)) 3529 continue; 3530 3531 goto out; 3532 } 3533 3534 /* No more Mr. Nice Guy. */ 3535 switch (state) { 3536 case cpuset: 3537 if (cpuset_cpus_allowed_fallback(p)) { 3538 state = possible; 3539 break; 3540 } 3541 fallthrough; 3542 case possible: 3543 /* 3544 * XXX When called from select_task_rq() we only 3545 * hold p->pi_lock and again violate locking order. 3546 * 3547 * More yuck to audit. 3548 */ 3549 do_set_cpus_allowed(p, task_cpu_fallback_mask(p)); 3550 state = fail; 3551 break; 3552 case fail: 3553 BUG(); 3554 break; 3555 } 3556 } 3557 3558 out: 3559 if (state != cpuset) { 3560 /* 3561 * Don't tell them about moving exiting tasks or 3562 * kernel threads (both mm NULL), since they never 3563 * leave kernel. 3564 */ 3565 if (p->mm && printk_ratelimit()) { 3566 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3567 task_pid_nr(p), p->comm, cpu); 3568 } 3569 } 3570 3571 return dest_cpu; 3572 } 3573 3574 /* 3575 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3576 */ 3577 static inline 3578 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3579 { 3580 lockdep_assert_held(&p->pi_lock); 3581 3582 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3583 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3584 *wake_flags |= WF_RQ_SELECTED; 3585 } else { 3586 cpu = cpumask_any(p->cpus_ptr); 3587 } 3588 3589 /* 3590 * In order not to call set_task_cpu() on a blocking task we need 3591 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3592 * CPU. 3593 * 3594 * Since this is common to all placement strategies, this lives here. 3595 * 3596 * [ this allows ->select_task() to simply return task_cpu(p) and 3597 * not worry about this generic constraint ] 3598 */ 3599 if (unlikely(!is_cpu_allowed(p, cpu))) 3600 cpu = select_fallback_rq(task_cpu(p), p); 3601 3602 return cpu; 3603 } 3604 3605 void sched_set_stop_task(int cpu, struct task_struct *stop) 3606 { 3607 static struct lock_class_key stop_pi_lock; 3608 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3609 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3610 3611 if (stop) { 3612 /* 3613 * Make it appear like a SCHED_FIFO task, its something 3614 * userspace knows about and won't get confused about. 3615 * 3616 * Also, it will make PI more or less work without too 3617 * much confusion -- but then, stop work should not 3618 * rely on PI working anyway. 3619 */ 3620 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3621 3622 stop->sched_class = &stop_sched_class; 3623 3624 /* 3625 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3626 * adjust the effective priority of a task. As a result, 3627 * rt_mutex_setprio() can trigger (RT) balancing operations, 3628 * which can then trigger wakeups of the stop thread to push 3629 * around the current task. 3630 * 3631 * The stop task itself will never be part of the PI-chain, it 3632 * never blocks, therefore that ->pi_lock recursion is safe. 3633 * Tell lockdep about this by placing the stop->pi_lock in its 3634 * own class. 3635 */ 3636 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3637 } 3638 3639 cpu_rq(cpu)->stop = stop; 3640 3641 if (old_stop) { 3642 /* 3643 * Reset it back to a normal scheduling class so that 3644 * it can die in pieces. 3645 */ 3646 old_stop->sched_class = &rt_sched_class; 3647 } 3648 } 3649 3650 #else /* CONFIG_SMP */ 3651 3652 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3653 3654 static inline bool rq_has_pinned_tasks(struct rq *rq) 3655 { 3656 return false; 3657 } 3658 3659 #endif /* !CONFIG_SMP */ 3660 3661 static void 3662 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3663 { 3664 struct rq *rq; 3665 3666 if (!schedstat_enabled()) 3667 return; 3668 3669 rq = this_rq(); 3670 3671 #ifdef CONFIG_SMP 3672 if (cpu == rq->cpu) { 3673 __schedstat_inc(rq->ttwu_local); 3674 __schedstat_inc(p->stats.nr_wakeups_local); 3675 } else { 3676 struct sched_domain *sd; 3677 3678 __schedstat_inc(p->stats.nr_wakeups_remote); 3679 3680 guard(rcu)(); 3681 for_each_domain(rq->cpu, sd) { 3682 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3683 __schedstat_inc(sd->ttwu_wake_remote); 3684 break; 3685 } 3686 } 3687 } 3688 3689 if (wake_flags & WF_MIGRATED) 3690 __schedstat_inc(p->stats.nr_wakeups_migrate); 3691 #endif /* CONFIG_SMP */ 3692 3693 __schedstat_inc(rq->ttwu_count); 3694 __schedstat_inc(p->stats.nr_wakeups); 3695 3696 if (wake_flags & WF_SYNC) 3697 __schedstat_inc(p->stats.nr_wakeups_sync); 3698 } 3699 3700 /* 3701 * Mark the task runnable. 3702 */ 3703 static inline void ttwu_do_wakeup(struct task_struct *p) 3704 { 3705 WRITE_ONCE(p->__state, TASK_RUNNING); 3706 trace_sched_wakeup(p); 3707 } 3708 3709 static void 3710 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3711 struct rq_flags *rf) 3712 { 3713 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3714 3715 lockdep_assert_rq_held(rq); 3716 3717 if (p->sched_contributes_to_load) 3718 rq->nr_uninterruptible--; 3719 3720 #ifdef CONFIG_SMP 3721 if (wake_flags & WF_RQ_SELECTED) 3722 en_flags |= ENQUEUE_RQ_SELECTED; 3723 if (wake_flags & WF_MIGRATED) 3724 en_flags |= ENQUEUE_MIGRATED; 3725 else 3726 #endif 3727 if (p->in_iowait) { 3728 delayacct_blkio_end(p); 3729 atomic_dec(&task_rq(p)->nr_iowait); 3730 } 3731 3732 activate_task(rq, p, en_flags); 3733 wakeup_preempt(rq, p, wake_flags); 3734 3735 ttwu_do_wakeup(p); 3736 3737 #ifdef CONFIG_SMP 3738 if (p->sched_class->task_woken) { 3739 /* 3740 * Our task @p is fully woken up and running; so it's safe to 3741 * drop the rq->lock, hereafter rq is only used for statistics. 3742 */ 3743 rq_unpin_lock(rq, rf); 3744 p->sched_class->task_woken(rq, p); 3745 rq_repin_lock(rq, rf); 3746 } 3747 3748 if (rq->idle_stamp) { 3749 u64 delta = rq_clock(rq) - rq->idle_stamp; 3750 u64 max = 2*rq->max_idle_balance_cost; 3751 3752 update_avg(&rq->avg_idle, delta); 3753 3754 if (rq->avg_idle > max) 3755 rq->avg_idle = max; 3756 3757 rq->idle_stamp = 0; 3758 } 3759 #endif 3760 } 3761 3762 /* 3763 * Consider @p being inside a wait loop: 3764 * 3765 * for (;;) { 3766 * set_current_state(TASK_UNINTERRUPTIBLE); 3767 * 3768 * if (CONDITION) 3769 * break; 3770 * 3771 * schedule(); 3772 * } 3773 * __set_current_state(TASK_RUNNING); 3774 * 3775 * between set_current_state() and schedule(). In this case @p is still 3776 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3777 * an atomic manner. 3778 * 3779 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3780 * then schedule() must still happen and p->state can be changed to 3781 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3782 * need to do a full wakeup with enqueue. 3783 * 3784 * Returns: %true when the wakeup is done, 3785 * %false otherwise. 3786 */ 3787 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3788 { 3789 struct rq_flags rf; 3790 struct rq *rq; 3791 int ret = 0; 3792 3793 rq = __task_rq_lock(p, &rf); 3794 if (task_on_rq_queued(p)) { 3795 update_rq_clock(rq); 3796 if (p->se.sched_delayed) 3797 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3798 if (!task_on_cpu(rq, p)) { 3799 /* 3800 * When on_rq && !on_cpu the task is preempted, see if 3801 * it should preempt the task that is current now. 3802 */ 3803 wakeup_preempt(rq, p, wake_flags); 3804 } 3805 ttwu_do_wakeup(p); 3806 ret = 1; 3807 } 3808 __task_rq_unlock(rq, &rf); 3809 3810 return ret; 3811 } 3812 3813 #ifdef CONFIG_SMP 3814 void sched_ttwu_pending(void *arg) 3815 { 3816 struct llist_node *llist = arg; 3817 struct rq *rq = this_rq(); 3818 struct task_struct *p, *t; 3819 struct rq_flags rf; 3820 3821 if (!llist) 3822 return; 3823 3824 rq_lock_irqsave(rq, &rf); 3825 update_rq_clock(rq); 3826 3827 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3828 if (WARN_ON_ONCE(p->on_cpu)) 3829 smp_cond_load_acquire(&p->on_cpu, !VAL); 3830 3831 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3832 set_task_cpu(p, cpu_of(rq)); 3833 3834 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3835 } 3836 3837 /* 3838 * Must be after enqueueing at least once task such that 3839 * idle_cpu() does not observe a false-negative -- if it does, 3840 * it is possible for select_idle_siblings() to stack a number 3841 * of tasks on this CPU during that window. 3842 * 3843 * It is OK to clear ttwu_pending when another task pending. 3844 * We will receive IPI after local IRQ enabled and then enqueue it. 3845 * Since now nr_running > 0, idle_cpu() will always get correct result. 3846 */ 3847 WRITE_ONCE(rq->ttwu_pending, 0); 3848 rq_unlock_irqrestore(rq, &rf); 3849 } 3850 3851 /* 3852 * Prepare the scene for sending an IPI for a remote smp_call 3853 * 3854 * Returns true if the caller can proceed with sending the IPI. 3855 * Returns false otherwise. 3856 */ 3857 bool call_function_single_prep_ipi(int cpu) 3858 { 3859 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3860 trace_sched_wake_idle_without_ipi(cpu); 3861 return false; 3862 } 3863 3864 return true; 3865 } 3866 3867 /* 3868 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3869 * necessary. The wakee CPU on receipt of the IPI will queue the task 3870 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3871 * of the wakeup instead of the waker. 3872 */ 3873 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3874 { 3875 struct rq *rq = cpu_rq(cpu); 3876 3877 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3878 3879 WRITE_ONCE(rq->ttwu_pending, 1); 3880 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3881 } 3882 3883 void wake_up_if_idle(int cpu) 3884 { 3885 struct rq *rq = cpu_rq(cpu); 3886 3887 guard(rcu)(); 3888 if (is_idle_task(rcu_dereference(rq->curr))) { 3889 guard(rq_lock_irqsave)(rq); 3890 if (is_idle_task(rq->curr)) 3891 resched_curr(rq); 3892 } 3893 } 3894 3895 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3896 { 3897 if (!sched_asym_cpucap_active()) 3898 return true; 3899 3900 if (this_cpu == that_cpu) 3901 return true; 3902 3903 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3904 } 3905 3906 bool cpus_share_cache(int this_cpu, int that_cpu) 3907 { 3908 if (this_cpu == that_cpu) 3909 return true; 3910 3911 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3912 } 3913 3914 /* 3915 * Whether CPUs are share cache resources, which means LLC on non-cluster 3916 * machines and LLC tag or L2 on machines with clusters. 3917 */ 3918 bool cpus_share_resources(int this_cpu, int that_cpu) 3919 { 3920 if (this_cpu == that_cpu) 3921 return true; 3922 3923 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3924 } 3925 3926 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3927 { 3928 /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ 3929 if (!scx_allow_ttwu_queue(p)) 3930 return false; 3931 3932 /* 3933 * Do not complicate things with the async wake_list while the CPU is 3934 * in hotplug state. 3935 */ 3936 if (!cpu_active(cpu)) 3937 return false; 3938 3939 /* Ensure the task will still be allowed to run on the CPU. */ 3940 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3941 return false; 3942 3943 /* 3944 * If the CPU does not share cache, then queue the task on the 3945 * remote rqs wakelist to avoid accessing remote data. 3946 */ 3947 if (!cpus_share_cache(smp_processor_id(), cpu)) 3948 return true; 3949 3950 if (cpu == smp_processor_id()) 3951 return false; 3952 3953 /* 3954 * If the wakee cpu is idle, or the task is descheduling and the 3955 * only running task on the CPU, then use the wakelist to offload 3956 * the task activation to the idle (or soon-to-be-idle) CPU as 3957 * the current CPU is likely busy. nr_running is checked to 3958 * avoid unnecessary task stacking. 3959 * 3960 * Note that we can only get here with (wakee) p->on_rq=0, 3961 * p->on_cpu can be whatever, we've done the dequeue, so 3962 * the wakee has been accounted out of ->nr_running. 3963 */ 3964 if (!cpu_rq(cpu)->nr_running) 3965 return true; 3966 3967 return false; 3968 } 3969 3970 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3971 { 3972 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3973 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3974 __ttwu_queue_wakelist(p, cpu, wake_flags); 3975 return true; 3976 } 3977 3978 return false; 3979 } 3980 3981 #else /* !CONFIG_SMP */ 3982 3983 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3984 { 3985 return false; 3986 } 3987 3988 #endif /* CONFIG_SMP */ 3989 3990 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3991 { 3992 struct rq *rq = cpu_rq(cpu); 3993 struct rq_flags rf; 3994 3995 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3996 return; 3997 3998 rq_lock(rq, &rf); 3999 update_rq_clock(rq); 4000 ttwu_do_activate(rq, p, wake_flags, &rf); 4001 rq_unlock(rq, &rf); 4002 } 4003 4004 /* 4005 * Invoked from try_to_wake_up() to check whether the task can be woken up. 4006 * 4007 * The caller holds p::pi_lock if p != current or has preemption 4008 * disabled when p == current. 4009 * 4010 * The rules of saved_state: 4011 * 4012 * The related locking code always holds p::pi_lock when updating 4013 * p::saved_state, which means the code is fully serialized in both cases. 4014 * 4015 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 4016 * No other bits set. This allows to distinguish all wakeup scenarios. 4017 * 4018 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 4019 * allows us to prevent early wakeup of tasks before they can be run on 4020 * asymmetric ISA architectures (eg ARMv9). 4021 */ 4022 static __always_inline 4023 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 4024 { 4025 int match; 4026 4027 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 4028 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 4029 state != TASK_RTLOCK_WAIT); 4030 } 4031 4032 *success = !!(match = __task_state_match(p, state)); 4033 4034 /* 4035 * Saved state preserves the task state across blocking on 4036 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 4037 * set p::saved_state to TASK_RUNNING, but do not wake the task 4038 * because it waits for a lock wakeup or __thaw_task(). Also 4039 * indicate success because from the regular waker's point of 4040 * view this has succeeded. 4041 * 4042 * After acquiring the lock the task will restore p::__state 4043 * from p::saved_state which ensures that the regular 4044 * wakeup is not lost. The restore will also set 4045 * p::saved_state to TASK_RUNNING so any further tests will 4046 * not result in false positives vs. @success 4047 */ 4048 if (match < 0) 4049 p->saved_state = TASK_RUNNING; 4050 4051 return match > 0; 4052 } 4053 4054 /* 4055 * Notes on Program-Order guarantees on SMP systems. 4056 * 4057 * MIGRATION 4058 * 4059 * The basic program-order guarantee on SMP systems is that when a task [t] 4060 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4061 * execution on its new CPU [c1]. 4062 * 4063 * For migration (of runnable tasks) this is provided by the following means: 4064 * 4065 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4066 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4067 * rq(c1)->lock (if not at the same time, then in that order). 4068 * C) LOCK of the rq(c1)->lock scheduling in task 4069 * 4070 * Release/acquire chaining guarantees that B happens after A and C after B. 4071 * Note: the CPU doing B need not be c0 or c1 4072 * 4073 * Example: 4074 * 4075 * CPU0 CPU1 CPU2 4076 * 4077 * LOCK rq(0)->lock 4078 * sched-out X 4079 * sched-in Y 4080 * UNLOCK rq(0)->lock 4081 * 4082 * LOCK rq(0)->lock // orders against CPU0 4083 * dequeue X 4084 * UNLOCK rq(0)->lock 4085 * 4086 * LOCK rq(1)->lock 4087 * enqueue X 4088 * UNLOCK rq(1)->lock 4089 * 4090 * LOCK rq(1)->lock // orders against CPU2 4091 * sched-out Z 4092 * sched-in X 4093 * UNLOCK rq(1)->lock 4094 * 4095 * 4096 * BLOCKING -- aka. SLEEP + WAKEUP 4097 * 4098 * For blocking we (obviously) need to provide the same guarantee as for 4099 * migration. However the means are completely different as there is no lock 4100 * chain to provide order. Instead we do: 4101 * 4102 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4103 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4104 * 4105 * Example: 4106 * 4107 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4108 * 4109 * LOCK rq(0)->lock LOCK X->pi_lock 4110 * dequeue X 4111 * sched-out X 4112 * smp_store_release(X->on_cpu, 0); 4113 * 4114 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4115 * X->state = WAKING 4116 * set_task_cpu(X,2) 4117 * 4118 * LOCK rq(2)->lock 4119 * enqueue X 4120 * X->state = RUNNING 4121 * UNLOCK rq(2)->lock 4122 * 4123 * LOCK rq(2)->lock // orders against CPU1 4124 * sched-out Z 4125 * sched-in X 4126 * UNLOCK rq(2)->lock 4127 * 4128 * UNLOCK X->pi_lock 4129 * UNLOCK rq(0)->lock 4130 * 4131 * 4132 * However, for wakeups there is a second guarantee we must provide, namely we 4133 * must ensure that CONDITION=1 done by the caller can not be reordered with 4134 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4135 */ 4136 4137 /** 4138 * try_to_wake_up - wake up a thread 4139 * @p: the thread to be awakened 4140 * @state: the mask of task states that can be woken 4141 * @wake_flags: wake modifier flags (WF_*) 4142 * 4143 * Conceptually does: 4144 * 4145 * If (@state & @p->state) @p->state = TASK_RUNNING. 4146 * 4147 * If the task was not queued/runnable, also place it back on a runqueue. 4148 * 4149 * This function is atomic against schedule() which would dequeue the task. 4150 * 4151 * It issues a full memory barrier before accessing @p->state, see the comment 4152 * with set_current_state(). 4153 * 4154 * Uses p->pi_lock to serialize against concurrent wake-ups. 4155 * 4156 * Relies on p->pi_lock stabilizing: 4157 * - p->sched_class 4158 * - p->cpus_ptr 4159 * - p->sched_task_group 4160 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4161 * 4162 * Tries really hard to only take one task_rq(p)->lock for performance. 4163 * Takes rq->lock in: 4164 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4165 * - ttwu_queue() -- new rq, for enqueue of the task; 4166 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4167 * 4168 * As a consequence we race really badly with just about everything. See the 4169 * many memory barriers and their comments for details. 4170 * 4171 * Return: %true if @p->state changes (an actual wakeup was done), 4172 * %false otherwise. 4173 */ 4174 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4175 { 4176 guard(preempt)(); 4177 int cpu, success = 0; 4178 4179 wake_flags |= WF_TTWU; 4180 4181 if (p == current) { 4182 /* 4183 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4184 * == smp_processor_id()'. Together this means we can special 4185 * case the whole 'p->on_rq && ttwu_runnable()' case below 4186 * without taking any locks. 4187 * 4188 * Specifically, given current runs ttwu() we must be before 4189 * schedule()'s block_task(), as such this must not observe 4190 * sched_delayed. 4191 * 4192 * In particular: 4193 * - we rely on Program-Order guarantees for all the ordering, 4194 * - we're serialized against set_special_state() by virtue of 4195 * it disabling IRQs (this allows not taking ->pi_lock). 4196 */ 4197 WARN_ON_ONCE(p->se.sched_delayed); 4198 if (!ttwu_state_match(p, state, &success)) 4199 goto out; 4200 4201 trace_sched_waking(p); 4202 ttwu_do_wakeup(p); 4203 goto out; 4204 } 4205 4206 /* 4207 * If we are going to wake up a thread waiting for CONDITION we 4208 * need to ensure that CONDITION=1 done by the caller can not be 4209 * reordered with p->state check below. This pairs with smp_store_mb() 4210 * in set_current_state() that the waiting thread does. 4211 */ 4212 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4213 smp_mb__after_spinlock(); 4214 if (!ttwu_state_match(p, state, &success)) 4215 break; 4216 4217 trace_sched_waking(p); 4218 4219 /* 4220 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4221 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4222 * in smp_cond_load_acquire() below. 4223 * 4224 * sched_ttwu_pending() try_to_wake_up() 4225 * STORE p->on_rq = 1 LOAD p->state 4226 * UNLOCK rq->lock 4227 * 4228 * __schedule() (switch to task 'p') 4229 * LOCK rq->lock smp_rmb(); 4230 * smp_mb__after_spinlock(); 4231 * UNLOCK rq->lock 4232 * 4233 * [task p] 4234 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4235 * 4236 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4237 * __schedule(). See the comment for smp_mb__after_spinlock(). 4238 * 4239 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4240 */ 4241 smp_rmb(); 4242 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4243 break; 4244 4245 #ifdef CONFIG_SMP 4246 /* 4247 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4248 * possible to, falsely, observe p->on_cpu == 0. 4249 * 4250 * One must be running (->on_cpu == 1) in order to remove oneself 4251 * from the runqueue. 4252 * 4253 * __schedule() (switch to task 'p') try_to_wake_up() 4254 * STORE p->on_cpu = 1 LOAD p->on_rq 4255 * UNLOCK rq->lock 4256 * 4257 * __schedule() (put 'p' to sleep) 4258 * LOCK rq->lock smp_rmb(); 4259 * smp_mb__after_spinlock(); 4260 * STORE p->on_rq = 0 LOAD p->on_cpu 4261 * 4262 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4263 * __schedule(). See the comment for smp_mb__after_spinlock(). 4264 * 4265 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4266 * schedule()'s deactivate_task() has 'happened' and p will no longer 4267 * care about it's own p->state. See the comment in __schedule(). 4268 */ 4269 smp_acquire__after_ctrl_dep(); 4270 4271 /* 4272 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4273 * == 0), which means we need to do an enqueue, change p->state to 4274 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4275 * enqueue, such as ttwu_queue_wakelist(). 4276 */ 4277 WRITE_ONCE(p->__state, TASK_WAKING); 4278 4279 /* 4280 * If the owning (remote) CPU is still in the middle of schedule() with 4281 * this task as prev, considering queueing p on the remote CPUs wake_list 4282 * which potentially sends an IPI instead of spinning on p->on_cpu to 4283 * let the waker make forward progress. This is safe because IRQs are 4284 * disabled and the IPI will deliver after on_cpu is cleared. 4285 * 4286 * Ensure we load task_cpu(p) after p->on_cpu: 4287 * 4288 * set_task_cpu(p, cpu); 4289 * STORE p->cpu = @cpu 4290 * __schedule() (switch to task 'p') 4291 * LOCK rq->lock 4292 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4293 * STORE p->on_cpu = 1 LOAD p->cpu 4294 * 4295 * to ensure we observe the correct CPU on which the task is currently 4296 * scheduling. 4297 */ 4298 if (smp_load_acquire(&p->on_cpu) && 4299 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4300 break; 4301 4302 /* 4303 * If the owning (remote) CPU is still in the middle of schedule() with 4304 * this task as prev, wait until it's done referencing the task. 4305 * 4306 * Pairs with the smp_store_release() in finish_task(). 4307 * 4308 * This ensures that tasks getting woken will be fully ordered against 4309 * their previous state and preserve Program Order. 4310 */ 4311 smp_cond_load_acquire(&p->on_cpu, !VAL); 4312 4313 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4314 if (task_cpu(p) != cpu) { 4315 if (p->in_iowait) { 4316 delayacct_blkio_end(p); 4317 atomic_dec(&task_rq(p)->nr_iowait); 4318 } 4319 4320 wake_flags |= WF_MIGRATED; 4321 psi_ttwu_dequeue(p); 4322 set_task_cpu(p, cpu); 4323 } 4324 #else 4325 cpu = task_cpu(p); 4326 #endif /* CONFIG_SMP */ 4327 4328 ttwu_queue(p, cpu, wake_flags); 4329 } 4330 out: 4331 if (success) 4332 ttwu_stat(p, task_cpu(p), wake_flags); 4333 4334 return success; 4335 } 4336 4337 static bool __task_needs_rq_lock(struct task_struct *p) 4338 { 4339 unsigned int state = READ_ONCE(p->__state); 4340 4341 /* 4342 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4343 * the task is blocked. Make sure to check @state since ttwu() can drop 4344 * locks at the end, see ttwu_queue_wakelist(). 4345 */ 4346 if (state == TASK_RUNNING || state == TASK_WAKING) 4347 return true; 4348 4349 /* 4350 * Ensure we load p->on_rq after p->__state, otherwise it would be 4351 * possible to, falsely, observe p->on_rq == 0. 4352 * 4353 * See try_to_wake_up() for a longer comment. 4354 */ 4355 smp_rmb(); 4356 if (p->on_rq) 4357 return true; 4358 4359 #ifdef CONFIG_SMP 4360 /* 4361 * Ensure the task has finished __schedule() and will not be referenced 4362 * anymore. Again, see try_to_wake_up() for a longer comment. 4363 */ 4364 smp_rmb(); 4365 smp_cond_load_acquire(&p->on_cpu, !VAL); 4366 #endif 4367 4368 return false; 4369 } 4370 4371 /** 4372 * task_call_func - Invoke a function on task in fixed state 4373 * @p: Process for which the function is to be invoked, can be @current. 4374 * @func: Function to invoke. 4375 * @arg: Argument to function. 4376 * 4377 * Fix the task in it's current state by avoiding wakeups and or rq operations 4378 * and call @func(@arg) on it. This function can use task_is_runnable() and 4379 * task_curr() to work out what the state is, if required. Given that @func 4380 * can be invoked with a runqueue lock held, it had better be quite 4381 * lightweight. 4382 * 4383 * Returns: 4384 * Whatever @func returns 4385 */ 4386 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4387 { 4388 struct rq *rq = NULL; 4389 struct rq_flags rf; 4390 int ret; 4391 4392 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4393 4394 if (__task_needs_rq_lock(p)) 4395 rq = __task_rq_lock(p, &rf); 4396 4397 /* 4398 * At this point the task is pinned; either: 4399 * - blocked and we're holding off wakeups (pi->lock) 4400 * - woken, and we're holding off enqueue (rq->lock) 4401 * - queued, and we're holding off schedule (rq->lock) 4402 * - running, and we're holding off de-schedule (rq->lock) 4403 * 4404 * The called function (@func) can use: task_curr(), p->on_rq and 4405 * p->__state to differentiate between these states. 4406 */ 4407 ret = func(p, arg); 4408 4409 if (rq) 4410 rq_unlock(rq, &rf); 4411 4412 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4413 return ret; 4414 } 4415 4416 /** 4417 * cpu_curr_snapshot - Return a snapshot of the currently running task 4418 * @cpu: The CPU on which to snapshot the task. 4419 * 4420 * Returns the task_struct pointer of the task "currently" running on 4421 * the specified CPU. 4422 * 4423 * If the specified CPU was offline, the return value is whatever it 4424 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4425 * task, but there is no guarantee. Callers wishing a useful return 4426 * value must take some action to ensure that the specified CPU remains 4427 * online throughout. 4428 * 4429 * This function executes full memory barriers before and after fetching 4430 * the pointer, which permits the caller to confine this function's fetch 4431 * with respect to the caller's accesses to other shared variables. 4432 */ 4433 struct task_struct *cpu_curr_snapshot(int cpu) 4434 { 4435 struct rq *rq = cpu_rq(cpu); 4436 struct task_struct *t; 4437 struct rq_flags rf; 4438 4439 rq_lock_irqsave(rq, &rf); 4440 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4441 t = rcu_dereference(cpu_curr(cpu)); 4442 rq_unlock_irqrestore(rq, &rf); 4443 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4444 4445 return t; 4446 } 4447 4448 /** 4449 * wake_up_process - Wake up a specific process 4450 * @p: The process to be woken up. 4451 * 4452 * Attempt to wake up the nominated process and move it to the set of runnable 4453 * processes. 4454 * 4455 * Return: 1 if the process was woken up, 0 if it was already running. 4456 * 4457 * This function executes a full memory barrier before accessing the task state. 4458 */ 4459 int wake_up_process(struct task_struct *p) 4460 { 4461 return try_to_wake_up(p, TASK_NORMAL, 0); 4462 } 4463 EXPORT_SYMBOL(wake_up_process); 4464 4465 int wake_up_state(struct task_struct *p, unsigned int state) 4466 { 4467 return try_to_wake_up(p, state, 0); 4468 } 4469 4470 /* 4471 * Perform scheduler related setup for a newly forked process p. 4472 * p is forked by current. 4473 * 4474 * __sched_fork() is basic setup which is also used by sched_init() to 4475 * initialize the boot CPU's idle task. 4476 */ 4477 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4478 { 4479 p->on_rq = 0; 4480 4481 p->se.on_rq = 0; 4482 p->se.exec_start = 0; 4483 p->se.sum_exec_runtime = 0; 4484 p->se.prev_sum_exec_runtime = 0; 4485 p->se.nr_migrations = 0; 4486 p->se.vruntime = 0; 4487 p->se.vlag = 0; 4488 INIT_LIST_HEAD(&p->se.group_node); 4489 4490 /* A delayed task cannot be in clone(). */ 4491 WARN_ON_ONCE(p->se.sched_delayed); 4492 4493 #ifdef CONFIG_FAIR_GROUP_SCHED 4494 p->se.cfs_rq = NULL; 4495 #endif 4496 4497 #ifdef CONFIG_SCHEDSTATS 4498 /* Even if schedstat is disabled, there should not be garbage */ 4499 memset(&p->stats, 0, sizeof(p->stats)); 4500 #endif 4501 4502 init_dl_entity(&p->dl); 4503 4504 INIT_LIST_HEAD(&p->rt.run_list); 4505 p->rt.timeout = 0; 4506 p->rt.time_slice = sched_rr_timeslice; 4507 p->rt.on_rq = 0; 4508 p->rt.on_list = 0; 4509 4510 #ifdef CONFIG_SCHED_CLASS_EXT 4511 init_scx_entity(&p->scx); 4512 #endif 4513 4514 #ifdef CONFIG_PREEMPT_NOTIFIERS 4515 INIT_HLIST_HEAD(&p->preempt_notifiers); 4516 #endif 4517 4518 #ifdef CONFIG_COMPACTION 4519 p->capture_control = NULL; 4520 #endif 4521 init_numa_balancing(clone_flags, p); 4522 #ifdef CONFIG_SMP 4523 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4524 p->migration_pending = NULL; 4525 #endif 4526 init_sched_mm_cid(p); 4527 } 4528 4529 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4530 4531 #ifdef CONFIG_NUMA_BALANCING 4532 4533 int sysctl_numa_balancing_mode; 4534 4535 static void __set_numabalancing_state(bool enabled) 4536 { 4537 if (enabled) 4538 static_branch_enable(&sched_numa_balancing); 4539 else 4540 static_branch_disable(&sched_numa_balancing); 4541 } 4542 4543 void set_numabalancing_state(bool enabled) 4544 { 4545 if (enabled) 4546 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4547 else 4548 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4549 __set_numabalancing_state(enabled); 4550 } 4551 4552 #ifdef CONFIG_PROC_SYSCTL 4553 static void reset_memory_tiering(void) 4554 { 4555 struct pglist_data *pgdat; 4556 4557 for_each_online_pgdat(pgdat) { 4558 pgdat->nbp_threshold = 0; 4559 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4560 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4561 } 4562 } 4563 4564 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4565 void *buffer, size_t *lenp, loff_t *ppos) 4566 { 4567 struct ctl_table t; 4568 int err; 4569 int state = sysctl_numa_balancing_mode; 4570 4571 if (write && !capable(CAP_SYS_ADMIN)) 4572 return -EPERM; 4573 4574 t = *table; 4575 t.data = &state; 4576 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4577 if (err < 0) 4578 return err; 4579 if (write) { 4580 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4581 (state & NUMA_BALANCING_MEMORY_TIERING)) 4582 reset_memory_tiering(); 4583 sysctl_numa_balancing_mode = state; 4584 __set_numabalancing_state(state); 4585 } 4586 return err; 4587 } 4588 #endif 4589 #endif 4590 4591 #ifdef CONFIG_SCHEDSTATS 4592 4593 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4594 4595 static void set_schedstats(bool enabled) 4596 { 4597 if (enabled) 4598 static_branch_enable(&sched_schedstats); 4599 else 4600 static_branch_disable(&sched_schedstats); 4601 } 4602 4603 void force_schedstat_enabled(void) 4604 { 4605 if (!schedstat_enabled()) { 4606 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4607 static_branch_enable(&sched_schedstats); 4608 } 4609 } 4610 4611 static int __init setup_schedstats(char *str) 4612 { 4613 int ret = 0; 4614 if (!str) 4615 goto out; 4616 4617 if (!strcmp(str, "enable")) { 4618 set_schedstats(true); 4619 ret = 1; 4620 } else if (!strcmp(str, "disable")) { 4621 set_schedstats(false); 4622 ret = 1; 4623 } 4624 out: 4625 if (!ret) 4626 pr_warn("Unable to parse schedstats=\n"); 4627 4628 return ret; 4629 } 4630 __setup("schedstats=", setup_schedstats); 4631 4632 #ifdef CONFIG_PROC_SYSCTL 4633 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4634 size_t *lenp, loff_t *ppos) 4635 { 4636 struct ctl_table t; 4637 int err; 4638 int state = static_branch_likely(&sched_schedstats); 4639 4640 if (write && !capable(CAP_SYS_ADMIN)) 4641 return -EPERM; 4642 4643 t = *table; 4644 t.data = &state; 4645 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4646 if (err < 0) 4647 return err; 4648 if (write) 4649 set_schedstats(state); 4650 return err; 4651 } 4652 #endif /* CONFIG_PROC_SYSCTL */ 4653 #endif /* CONFIG_SCHEDSTATS */ 4654 4655 #ifdef CONFIG_SYSCTL 4656 static const struct ctl_table sched_core_sysctls[] = { 4657 #ifdef CONFIG_SCHEDSTATS 4658 { 4659 .procname = "sched_schedstats", 4660 .data = NULL, 4661 .maxlen = sizeof(unsigned int), 4662 .mode = 0644, 4663 .proc_handler = sysctl_schedstats, 4664 .extra1 = SYSCTL_ZERO, 4665 .extra2 = SYSCTL_ONE, 4666 }, 4667 #endif /* CONFIG_SCHEDSTATS */ 4668 #ifdef CONFIG_UCLAMP_TASK 4669 { 4670 .procname = "sched_util_clamp_min", 4671 .data = &sysctl_sched_uclamp_util_min, 4672 .maxlen = sizeof(unsigned int), 4673 .mode = 0644, 4674 .proc_handler = sysctl_sched_uclamp_handler, 4675 }, 4676 { 4677 .procname = "sched_util_clamp_max", 4678 .data = &sysctl_sched_uclamp_util_max, 4679 .maxlen = sizeof(unsigned int), 4680 .mode = 0644, 4681 .proc_handler = sysctl_sched_uclamp_handler, 4682 }, 4683 { 4684 .procname = "sched_util_clamp_min_rt_default", 4685 .data = &sysctl_sched_uclamp_util_min_rt_default, 4686 .maxlen = sizeof(unsigned int), 4687 .mode = 0644, 4688 .proc_handler = sysctl_sched_uclamp_handler, 4689 }, 4690 #endif /* CONFIG_UCLAMP_TASK */ 4691 #ifdef CONFIG_NUMA_BALANCING 4692 { 4693 .procname = "numa_balancing", 4694 .data = NULL, /* filled in by handler */ 4695 .maxlen = sizeof(unsigned int), 4696 .mode = 0644, 4697 .proc_handler = sysctl_numa_balancing, 4698 .extra1 = SYSCTL_ZERO, 4699 .extra2 = SYSCTL_FOUR, 4700 }, 4701 #endif /* CONFIG_NUMA_BALANCING */ 4702 }; 4703 static int __init sched_core_sysctl_init(void) 4704 { 4705 register_sysctl_init("kernel", sched_core_sysctls); 4706 return 0; 4707 } 4708 late_initcall(sched_core_sysctl_init); 4709 #endif /* CONFIG_SYSCTL */ 4710 4711 /* 4712 * fork()/clone()-time setup: 4713 */ 4714 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4715 { 4716 __sched_fork(clone_flags, p); 4717 /* 4718 * We mark the process as NEW here. This guarantees that 4719 * nobody will actually run it, and a signal or other external 4720 * event cannot wake it up and insert it on the runqueue either. 4721 */ 4722 p->__state = TASK_NEW; 4723 4724 /* 4725 * Make sure we do not leak PI boosting priority to the child. 4726 */ 4727 p->prio = current->normal_prio; 4728 4729 uclamp_fork(p); 4730 4731 /* 4732 * Revert to default priority/policy on fork if requested. 4733 */ 4734 if (unlikely(p->sched_reset_on_fork)) { 4735 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4736 p->policy = SCHED_NORMAL; 4737 p->static_prio = NICE_TO_PRIO(0); 4738 p->rt_priority = 0; 4739 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4740 p->static_prio = NICE_TO_PRIO(0); 4741 4742 p->prio = p->normal_prio = p->static_prio; 4743 set_load_weight(p, false); 4744 p->se.custom_slice = 0; 4745 p->se.slice = sysctl_sched_base_slice; 4746 4747 /* 4748 * We don't need the reset flag anymore after the fork. It has 4749 * fulfilled its duty: 4750 */ 4751 p->sched_reset_on_fork = 0; 4752 } 4753 4754 if (dl_prio(p->prio)) 4755 return -EAGAIN; 4756 4757 scx_pre_fork(p); 4758 4759 if (rt_prio(p->prio)) { 4760 p->sched_class = &rt_sched_class; 4761 #ifdef CONFIG_SCHED_CLASS_EXT 4762 } else if (task_should_scx(p->policy)) { 4763 p->sched_class = &ext_sched_class; 4764 #endif 4765 } else { 4766 p->sched_class = &fair_sched_class; 4767 } 4768 4769 init_entity_runnable_average(&p->se); 4770 4771 4772 #ifdef CONFIG_SCHED_INFO 4773 if (likely(sched_info_on())) 4774 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4775 #endif 4776 #if defined(CONFIG_SMP) 4777 p->on_cpu = 0; 4778 #endif 4779 init_task_preempt_count(p); 4780 #ifdef CONFIG_SMP 4781 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4782 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4783 #endif 4784 return 0; 4785 } 4786 4787 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4788 { 4789 unsigned long flags; 4790 4791 /* 4792 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4793 * required yet, but lockdep gets upset if rules are violated. 4794 */ 4795 raw_spin_lock_irqsave(&p->pi_lock, flags); 4796 #ifdef CONFIG_CGROUP_SCHED 4797 if (1) { 4798 struct task_group *tg; 4799 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4800 struct task_group, css); 4801 tg = autogroup_task_group(p, tg); 4802 p->sched_task_group = tg; 4803 } 4804 #endif 4805 rseq_migrate(p); 4806 /* 4807 * We're setting the CPU for the first time, we don't migrate, 4808 * so use __set_task_cpu(). 4809 */ 4810 __set_task_cpu(p, smp_processor_id()); 4811 if (p->sched_class->task_fork) 4812 p->sched_class->task_fork(p); 4813 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4814 4815 return scx_fork(p); 4816 } 4817 4818 void sched_cancel_fork(struct task_struct *p) 4819 { 4820 scx_cancel_fork(p); 4821 } 4822 4823 void sched_post_fork(struct task_struct *p) 4824 { 4825 uclamp_post_fork(p); 4826 scx_post_fork(p); 4827 } 4828 4829 unsigned long to_ratio(u64 period, u64 runtime) 4830 { 4831 if (runtime == RUNTIME_INF) 4832 return BW_UNIT; 4833 4834 /* 4835 * Doing this here saves a lot of checks in all 4836 * the calling paths, and returning zero seems 4837 * safe for them anyway. 4838 */ 4839 if (period == 0) 4840 return 0; 4841 4842 return div64_u64(runtime << BW_SHIFT, period); 4843 } 4844 4845 /* 4846 * wake_up_new_task - wake up a newly created task for the first time. 4847 * 4848 * This function will do some initial scheduler statistics housekeeping 4849 * that must be done for every newly created context, then puts the task 4850 * on the runqueue and wakes it. 4851 */ 4852 void wake_up_new_task(struct task_struct *p) 4853 { 4854 struct rq_flags rf; 4855 struct rq *rq; 4856 int wake_flags = WF_FORK; 4857 4858 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4859 WRITE_ONCE(p->__state, TASK_RUNNING); 4860 #ifdef CONFIG_SMP 4861 /* 4862 * Fork balancing, do it here and not earlier because: 4863 * - cpus_ptr can change in the fork path 4864 * - any previously selected CPU might disappear through hotplug 4865 * 4866 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4867 * as we're not fully set-up yet. 4868 */ 4869 p->recent_used_cpu = task_cpu(p); 4870 rseq_migrate(p); 4871 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4872 #endif 4873 rq = __task_rq_lock(p, &rf); 4874 update_rq_clock(rq); 4875 post_init_entity_util_avg(p); 4876 4877 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4878 trace_sched_wakeup_new(p); 4879 wakeup_preempt(rq, p, wake_flags); 4880 #ifdef CONFIG_SMP 4881 if (p->sched_class->task_woken) { 4882 /* 4883 * Nothing relies on rq->lock after this, so it's fine to 4884 * drop it. 4885 */ 4886 rq_unpin_lock(rq, &rf); 4887 p->sched_class->task_woken(rq, p); 4888 rq_repin_lock(rq, &rf); 4889 } 4890 #endif 4891 task_rq_unlock(rq, p, &rf); 4892 } 4893 4894 #ifdef CONFIG_PREEMPT_NOTIFIERS 4895 4896 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4897 4898 void preempt_notifier_inc(void) 4899 { 4900 static_branch_inc(&preempt_notifier_key); 4901 } 4902 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4903 4904 void preempt_notifier_dec(void) 4905 { 4906 static_branch_dec(&preempt_notifier_key); 4907 } 4908 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4909 4910 /** 4911 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4912 * @notifier: notifier struct to register 4913 */ 4914 void preempt_notifier_register(struct preempt_notifier *notifier) 4915 { 4916 if (!static_branch_unlikely(&preempt_notifier_key)) 4917 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4918 4919 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4920 } 4921 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4922 4923 /** 4924 * preempt_notifier_unregister - no longer interested in preemption notifications 4925 * @notifier: notifier struct to unregister 4926 * 4927 * This is *not* safe to call from within a preemption notifier. 4928 */ 4929 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4930 { 4931 hlist_del(¬ifier->link); 4932 } 4933 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4934 4935 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4936 { 4937 struct preempt_notifier *notifier; 4938 4939 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4940 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4941 } 4942 4943 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4944 { 4945 if (static_branch_unlikely(&preempt_notifier_key)) 4946 __fire_sched_in_preempt_notifiers(curr); 4947 } 4948 4949 static void 4950 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4951 struct task_struct *next) 4952 { 4953 struct preempt_notifier *notifier; 4954 4955 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4956 notifier->ops->sched_out(notifier, next); 4957 } 4958 4959 static __always_inline void 4960 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4961 struct task_struct *next) 4962 { 4963 if (static_branch_unlikely(&preempt_notifier_key)) 4964 __fire_sched_out_preempt_notifiers(curr, next); 4965 } 4966 4967 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4968 4969 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4970 { 4971 } 4972 4973 static inline void 4974 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4975 struct task_struct *next) 4976 { 4977 } 4978 4979 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4980 4981 static inline void prepare_task(struct task_struct *next) 4982 { 4983 #ifdef CONFIG_SMP 4984 /* 4985 * Claim the task as running, we do this before switching to it 4986 * such that any running task will have this set. 4987 * 4988 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4989 * its ordering comment. 4990 */ 4991 WRITE_ONCE(next->on_cpu, 1); 4992 #endif 4993 } 4994 4995 static inline void finish_task(struct task_struct *prev) 4996 { 4997 #ifdef CONFIG_SMP 4998 /* 4999 * This must be the very last reference to @prev from this CPU. After 5000 * p->on_cpu is cleared, the task can be moved to a different CPU. We 5001 * must ensure this doesn't happen until the switch is completely 5002 * finished. 5003 * 5004 * In particular, the load of prev->state in finish_task_switch() must 5005 * happen before this. 5006 * 5007 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 5008 */ 5009 smp_store_release(&prev->on_cpu, 0); 5010 #endif 5011 } 5012 5013 #ifdef CONFIG_SMP 5014 5015 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 5016 { 5017 void (*func)(struct rq *rq); 5018 struct balance_callback *next; 5019 5020 lockdep_assert_rq_held(rq); 5021 5022 while (head) { 5023 func = (void (*)(struct rq *))head->func; 5024 next = head->next; 5025 head->next = NULL; 5026 head = next; 5027 5028 func(rq); 5029 } 5030 } 5031 5032 static void balance_push(struct rq *rq); 5033 5034 /* 5035 * balance_push_callback is a right abuse of the callback interface and plays 5036 * by significantly different rules. 5037 * 5038 * Where the normal balance_callback's purpose is to be ran in the same context 5039 * that queued it (only later, when it's safe to drop rq->lock again), 5040 * balance_push_callback is specifically targeted at __schedule(). 5041 * 5042 * This abuse is tolerated because it places all the unlikely/odd cases behind 5043 * a single test, namely: rq->balance_callback == NULL. 5044 */ 5045 struct balance_callback balance_push_callback = { 5046 .next = NULL, 5047 .func = balance_push, 5048 }; 5049 5050 static inline struct balance_callback * 5051 __splice_balance_callbacks(struct rq *rq, bool split) 5052 { 5053 struct balance_callback *head = rq->balance_callback; 5054 5055 if (likely(!head)) 5056 return NULL; 5057 5058 lockdep_assert_rq_held(rq); 5059 /* 5060 * Must not take balance_push_callback off the list when 5061 * splice_balance_callbacks() and balance_callbacks() are not 5062 * in the same rq->lock section. 5063 * 5064 * In that case it would be possible for __schedule() to interleave 5065 * and observe the list empty. 5066 */ 5067 if (split && head == &balance_push_callback) 5068 head = NULL; 5069 else 5070 rq->balance_callback = NULL; 5071 5072 return head; 5073 } 5074 5075 struct balance_callback *splice_balance_callbacks(struct rq *rq) 5076 { 5077 return __splice_balance_callbacks(rq, true); 5078 } 5079 5080 static void __balance_callbacks(struct rq *rq) 5081 { 5082 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5083 } 5084 5085 void balance_callbacks(struct rq *rq, struct balance_callback *head) 5086 { 5087 unsigned long flags; 5088 5089 if (unlikely(head)) { 5090 raw_spin_rq_lock_irqsave(rq, flags); 5091 do_balance_callbacks(rq, head); 5092 raw_spin_rq_unlock_irqrestore(rq, flags); 5093 } 5094 } 5095 5096 #else 5097 5098 static inline void __balance_callbacks(struct rq *rq) 5099 { 5100 } 5101 5102 #endif 5103 5104 static inline void 5105 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5106 { 5107 /* 5108 * Since the runqueue lock will be released by the next 5109 * task (which is an invalid locking op but in the case 5110 * of the scheduler it's an obvious special-case), so we 5111 * do an early lockdep release here: 5112 */ 5113 rq_unpin_lock(rq, rf); 5114 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5115 #ifdef CONFIG_DEBUG_SPINLOCK 5116 /* this is a valid case when another task releases the spinlock */ 5117 rq_lockp(rq)->owner = next; 5118 #endif 5119 } 5120 5121 static inline void finish_lock_switch(struct rq *rq) 5122 { 5123 /* 5124 * If we are tracking spinlock dependencies then we have to 5125 * fix up the runqueue lock - which gets 'carried over' from 5126 * prev into current: 5127 */ 5128 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5129 __balance_callbacks(rq); 5130 raw_spin_rq_unlock_irq(rq); 5131 } 5132 5133 /* 5134 * NOP if the arch has not defined these: 5135 */ 5136 5137 #ifndef prepare_arch_switch 5138 # define prepare_arch_switch(next) do { } while (0) 5139 #endif 5140 5141 #ifndef finish_arch_post_lock_switch 5142 # define finish_arch_post_lock_switch() do { } while (0) 5143 #endif 5144 5145 static inline void kmap_local_sched_out(void) 5146 { 5147 #ifdef CONFIG_KMAP_LOCAL 5148 if (unlikely(current->kmap_ctrl.idx)) 5149 __kmap_local_sched_out(); 5150 #endif 5151 } 5152 5153 static inline void kmap_local_sched_in(void) 5154 { 5155 #ifdef CONFIG_KMAP_LOCAL 5156 if (unlikely(current->kmap_ctrl.idx)) 5157 __kmap_local_sched_in(); 5158 #endif 5159 } 5160 5161 /** 5162 * prepare_task_switch - prepare to switch tasks 5163 * @rq: the runqueue preparing to switch 5164 * @prev: the current task that is being switched out 5165 * @next: the task we are going to switch to. 5166 * 5167 * This is called with the rq lock held and interrupts off. It must 5168 * be paired with a subsequent finish_task_switch after the context 5169 * switch. 5170 * 5171 * prepare_task_switch sets up locking and calls architecture specific 5172 * hooks. 5173 */ 5174 static inline void 5175 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5176 struct task_struct *next) 5177 { 5178 kcov_prepare_switch(prev); 5179 sched_info_switch(rq, prev, next); 5180 perf_event_task_sched_out(prev, next); 5181 rseq_preempt(prev); 5182 fire_sched_out_preempt_notifiers(prev, next); 5183 kmap_local_sched_out(); 5184 prepare_task(next); 5185 prepare_arch_switch(next); 5186 } 5187 5188 /** 5189 * finish_task_switch - clean up after a task-switch 5190 * @prev: the thread we just switched away from. 5191 * 5192 * finish_task_switch must be called after the context switch, paired 5193 * with a prepare_task_switch call before the context switch. 5194 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5195 * and do any other architecture-specific cleanup actions. 5196 * 5197 * Note that we may have delayed dropping an mm in context_switch(). If 5198 * so, we finish that here outside of the runqueue lock. (Doing it 5199 * with the lock held can cause deadlocks; see schedule() for 5200 * details.) 5201 * 5202 * The context switch have flipped the stack from under us and restored the 5203 * local variables which were saved when this task called schedule() in the 5204 * past. 'prev == current' is still correct but we need to recalculate this_rq 5205 * because prev may have moved to another CPU. 5206 */ 5207 static struct rq *finish_task_switch(struct task_struct *prev) 5208 __releases(rq->lock) 5209 { 5210 struct rq *rq = this_rq(); 5211 struct mm_struct *mm = rq->prev_mm; 5212 unsigned int prev_state; 5213 5214 /* 5215 * The previous task will have left us with a preempt_count of 2 5216 * because it left us after: 5217 * 5218 * schedule() 5219 * preempt_disable(); // 1 5220 * __schedule() 5221 * raw_spin_lock_irq(&rq->lock) // 2 5222 * 5223 * Also, see FORK_PREEMPT_COUNT. 5224 */ 5225 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5226 "corrupted preempt_count: %s/%d/0x%x\n", 5227 current->comm, current->pid, preempt_count())) 5228 preempt_count_set(FORK_PREEMPT_COUNT); 5229 5230 rq->prev_mm = NULL; 5231 5232 /* 5233 * A task struct has one reference for the use as "current". 5234 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5235 * schedule one last time. The schedule call will never return, and 5236 * the scheduled task must drop that reference. 5237 * 5238 * We must observe prev->state before clearing prev->on_cpu (in 5239 * finish_task), otherwise a concurrent wakeup can get prev 5240 * running on another CPU and we could rave with its RUNNING -> DEAD 5241 * transition, resulting in a double drop. 5242 */ 5243 prev_state = READ_ONCE(prev->__state); 5244 vtime_task_switch(prev); 5245 perf_event_task_sched_in(prev, current); 5246 finish_task(prev); 5247 tick_nohz_task_switch(); 5248 finish_lock_switch(rq); 5249 finish_arch_post_lock_switch(); 5250 kcov_finish_switch(current); 5251 /* 5252 * kmap_local_sched_out() is invoked with rq::lock held and 5253 * interrupts disabled. There is no requirement for that, but the 5254 * sched out code does not have an interrupt enabled section. 5255 * Restoring the maps on sched in does not require interrupts being 5256 * disabled either. 5257 */ 5258 kmap_local_sched_in(); 5259 5260 fire_sched_in_preempt_notifiers(current); 5261 /* 5262 * When switching through a kernel thread, the loop in 5263 * membarrier_{private,global}_expedited() may have observed that 5264 * kernel thread and not issued an IPI. It is therefore possible to 5265 * schedule between user->kernel->user threads without passing though 5266 * switch_mm(). Membarrier requires a barrier after storing to 5267 * rq->curr, before returning to userspace, so provide them here: 5268 * 5269 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5270 * provided by mmdrop_lazy_tlb(), 5271 * - a sync_core for SYNC_CORE. 5272 */ 5273 if (mm) { 5274 membarrier_mm_sync_core_before_usermode(mm); 5275 mmdrop_lazy_tlb_sched(mm); 5276 } 5277 5278 if (unlikely(prev_state == TASK_DEAD)) { 5279 if (prev->sched_class->task_dead) 5280 prev->sched_class->task_dead(prev); 5281 5282 /* Task is done with its stack. */ 5283 put_task_stack(prev); 5284 5285 put_task_struct_rcu_user(prev); 5286 } 5287 5288 return rq; 5289 } 5290 5291 /** 5292 * schedule_tail - first thing a freshly forked thread must call. 5293 * @prev: the thread we just switched away from. 5294 */ 5295 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5296 __releases(rq->lock) 5297 { 5298 /* 5299 * New tasks start with FORK_PREEMPT_COUNT, see there and 5300 * finish_task_switch() for details. 5301 * 5302 * finish_task_switch() will drop rq->lock() and lower preempt_count 5303 * and the preempt_enable() will end up enabling preemption (on 5304 * PREEMPT_COUNT kernels). 5305 */ 5306 5307 finish_task_switch(prev); 5308 /* 5309 * This is a special case: the newly created task has just 5310 * switched the context for the first time. It is returning from 5311 * schedule for the first time in this path. 5312 */ 5313 trace_sched_exit_tp(true, CALLER_ADDR0); 5314 preempt_enable(); 5315 5316 if (current->set_child_tid) 5317 put_user(task_pid_vnr(current), current->set_child_tid); 5318 5319 calculate_sigpending(); 5320 } 5321 5322 /* 5323 * context_switch - switch to the new MM and the new thread's register state. 5324 */ 5325 static __always_inline struct rq * 5326 context_switch(struct rq *rq, struct task_struct *prev, 5327 struct task_struct *next, struct rq_flags *rf) 5328 { 5329 prepare_task_switch(rq, prev, next); 5330 5331 /* 5332 * For paravirt, this is coupled with an exit in switch_to to 5333 * combine the page table reload and the switch backend into 5334 * one hypercall. 5335 */ 5336 arch_start_context_switch(prev); 5337 5338 /* 5339 * kernel -> kernel lazy + transfer active 5340 * user -> kernel lazy + mmgrab_lazy_tlb() active 5341 * 5342 * kernel -> user switch + mmdrop_lazy_tlb() active 5343 * user -> user switch 5344 * 5345 * switch_mm_cid() needs to be updated if the barriers provided 5346 * by context_switch() are modified. 5347 */ 5348 if (!next->mm) { // to kernel 5349 enter_lazy_tlb(prev->active_mm, next); 5350 5351 next->active_mm = prev->active_mm; 5352 if (prev->mm) // from user 5353 mmgrab_lazy_tlb(prev->active_mm); 5354 else 5355 prev->active_mm = NULL; 5356 } else { // to user 5357 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5358 /* 5359 * sys_membarrier() requires an smp_mb() between setting 5360 * rq->curr / membarrier_switch_mm() and returning to userspace. 5361 * 5362 * The below provides this either through switch_mm(), or in 5363 * case 'prev->active_mm == next->mm' through 5364 * finish_task_switch()'s mmdrop(). 5365 */ 5366 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5367 lru_gen_use_mm(next->mm); 5368 5369 if (!prev->mm) { // from kernel 5370 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5371 rq->prev_mm = prev->active_mm; 5372 prev->active_mm = NULL; 5373 } 5374 } 5375 5376 /* switch_mm_cid() requires the memory barriers above. */ 5377 switch_mm_cid(rq, prev, next); 5378 5379 prepare_lock_switch(rq, next, rf); 5380 5381 /* Here we just switch the register state and the stack. */ 5382 switch_to(prev, next, prev); 5383 barrier(); 5384 5385 return finish_task_switch(prev); 5386 } 5387 5388 /* 5389 * nr_running and nr_context_switches: 5390 * 5391 * externally visible scheduler statistics: current number of runnable 5392 * threads, total number of context switches performed since bootup. 5393 */ 5394 unsigned int nr_running(void) 5395 { 5396 unsigned int i, sum = 0; 5397 5398 for_each_online_cpu(i) 5399 sum += cpu_rq(i)->nr_running; 5400 5401 return sum; 5402 } 5403 5404 /* 5405 * Check if only the current task is running on the CPU. 5406 * 5407 * Caution: this function does not check that the caller has disabled 5408 * preemption, thus the result might have a time-of-check-to-time-of-use 5409 * race. The caller is responsible to use it correctly, for example: 5410 * 5411 * - from a non-preemptible section (of course) 5412 * 5413 * - from a thread that is bound to a single CPU 5414 * 5415 * - in a loop with very short iterations (e.g. a polling loop) 5416 */ 5417 bool single_task_running(void) 5418 { 5419 return raw_rq()->nr_running == 1; 5420 } 5421 EXPORT_SYMBOL(single_task_running); 5422 5423 unsigned long long nr_context_switches_cpu(int cpu) 5424 { 5425 return cpu_rq(cpu)->nr_switches; 5426 } 5427 5428 unsigned long long nr_context_switches(void) 5429 { 5430 int i; 5431 unsigned long long sum = 0; 5432 5433 for_each_possible_cpu(i) 5434 sum += cpu_rq(i)->nr_switches; 5435 5436 return sum; 5437 } 5438 5439 /* 5440 * Consumers of these two interfaces, like for example the cpuidle menu 5441 * governor, are using nonsensical data. Preferring shallow idle state selection 5442 * for a CPU that has IO-wait which might not even end up running the task when 5443 * it does become runnable. 5444 */ 5445 5446 unsigned int nr_iowait_cpu(int cpu) 5447 { 5448 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5449 } 5450 5451 /* 5452 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5453 * 5454 * The idea behind IO-wait account is to account the idle time that we could 5455 * have spend running if it were not for IO. That is, if we were to improve the 5456 * storage performance, we'd have a proportional reduction in IO-wait time. 5457 * 5458 * This all works nicely on UP, where, when a task blocks on IO, we account 5459 * idle time as IO-wait, because if the storage were faster, it could've been 5460 * running and we'd not be idle. 5461 * 5462 * This has been extended to SMP, by doing the same for each CPU. This however 5463 * is broken. 5464 * 5465 * Imagine for instance the case where two tasks block on one CPU, only the one 5466 * CPU will have IO-wait accounted, while the other has regular idle. Even 5467 * though, if the storage were faster, both could've ran at the same time, 5468 * utilising both CPUs. 5469 * 5470 * This means, that when looking globally, the current IO-wait accounting on 5471 * SMP is a lower bound, by reason of under accounting. 5472 * 5473 * Worse, since the numbers are provided per CPU, they are sometimes 5474 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5475 * associated with any one particular CPU, it can wake to another CPU than it 5476 * blocked on. This means the per CPU IO-wait number is meaningless. 5477 * 5478 * Task CPU affinities can make all that even more 'interesting'. 5479 */ 5480 5481 unsigned int nr_iowait(void) 5482 { 5483 unsigned int i, sum = 0; 5484 5485 for_each_possible_cpu(i) 5486 sum += nr_iowait_cpu(i); 5487 5488 return sum; 5489 } 5490 5491 #ifdef CONFIG_SMP 5492 5493 /* 5494 * sched_exec - execve() is a valuable balancing opportunity, because at 5495 * this point the task has the smallest effective memory and cache footprint. 5496 */ 5497 void sched_exec(void) 5498 { 5499 struct task_struct *p = current; 5500 struct migration_arg arg; 5501 int dest_cpu; 5502 5503 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5504 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5505 if (dest_cpu == smp_processor_id()) 5506 return; 5507 5508 if (unlikely(!cpu_active(dest_cpu))) 5509 return; 5510 5511 arg = (struct migration_arg){ p, dest_cpu }; 5512 } 5513 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5514 } 5515 5516 #endif 5517 5518 DEFINE_PER_CPU(struct kernel_stat, kstat); 5519 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5520 5521 EXPORT_PER_CPU_SYMBOL(kstat); 5522 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5523 5524 /* 5525 * The function fair_sched_class.update_curr accesses the struct curr 5526 * and its field curr->exec_start; when called from task_sched_runtime(), 5527 * we observe a high rate of cache misses in practice. 5528 * Prefetching this data results in improved performance. 5529 */ 5530 static inline void prefetch_curr_exec_start(struct task_struct *p) 5531 { 5532 #ifdef CONFIG_FAIR_GROUP_SCHED 5533 struct sched_entity *curr = p->se.cfs_rq->curr; 5534 #else 5535 struct sched_entity *curr = task_rq(p)->cfs.curr; 5536 #endif 5537 prefetch(curr); 5538 prefetch(&curr->exec_start); 5539 } 5540 5541 /* 5542 * Return accounted runtime for the task. 5543 * In case the task is currently running, return the runtime plus current's 5544 * pending runtime that have not been accounted yet. 5545 */ 5546 unsigned long long task_sched_runtime(struct task_struct *p) 5547 { 5548 struct rq_flags rf; 5549 struct rq *rq; 5550 u64 ns; 5551 5552 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5553 /* 5554 * 64-bit doesn't need locks to atomically read a 64-bit value. 5555 * So we have a optimization chance when the task's delta_exec is 0. 5556 * Reading ->on_cpu is racy, but this is OK. 5557 * 5558 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5559 * If we race with it entering CPU, unaccounted time is 0. This is 5560 * indistinguishable from the read occurring a few cycles earlier. 5561 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5562 * been accounted, so we're correct here as well. 5563 */ 5564 if (!p->on_cpu || !task_on_rq_queued(p)) 5565 return p->se.sum_exec_runtime; 5566 #endif 5567 5568 rq = task_rq_lock(p, &rf); 5569 /* 5570 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5571 * project cycles that may never be accounted to this 5572 * thread, breaking clock_gettime(). 5573 */ 5574 if (task_current_donor(rq, p) && task_on_rq_queued(p)) { 5575 prefetch_curr_exec_start(p); 5576 update_rq_clock(rq); 5577 p->sched_class->update_curr(rq); 5578 } 5579 ns = p->se.sum_exec_runtime; 5580 task_rq_unlock(rq, p, &rf); 5581 5582 return ns; 5583 } 5584 5585 static u64 cpu_resched_latency(struct rq *rq) 5586 { 5587 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5588 u64 resched_latency, now = rq_clock(rq); 5589 static bool warned_once; 5590 5591 if (sysctl_resched_latency_warn_once && warned_once) 5592 return 0; 5593 5594 if (!need_resched() || !latency_warn_ms) 5595 return 0; 5596 5597 if (system_state == SYSTEM_BOOTING) 5598 return 0; 5599 5600 if (!rq->last_seen_need_resched_ns) { 5601 rq->last_seen_need_resched_ns = now; 5602 rq->ticks_without_resched = 0; 5603 return 0; 5604 } 5605 5606 rq->ticks_without_resched++; 5607 resched_latency = now - rq->last_seen_need_resched_ns; 5608 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5609 return 0; 5610 5611 warned_once = true; 5612 5613 return resched_latency; 5614 } 5615 5616 static int __init setup_resched_latency_warn_ms(char *str) 5617 { 5618 long val; 5619 5620 if ((kstrtol(str, 0, &val))) { 5621 pr_warn("Unable to set resched_latency_warn_ms\n"); 5622 return 1; 5623 } 5624 5625 sysctl_resched_latency_warn_ms = val; 5626 return 1; 5627 } 5628 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5629 5630 /* 5631 * This function gets called by the timer code, with HZ frequency. 5632 * We call it with interrupts disabled. 5633 */ 5634 void sched_tick(void) 5635 { 5636 int cpu = smp_processor_id(); 5637 struct rq *rq = cpu_rq(cpu); 5638 /* accounting goes to the donor task */ 5639 struct task_struct *donor; 5640 struct rq_flags rf; 5641 unsigned long hw_pressure; 5642 u64 resched_latency; 5643 5644 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5645 arch_scale_freq_tick(); 5646 5647 sched_clock_tick(); 5648 5649 rq_lock(rq, &rf); 5650 donor = rq->donor; 5651 5652 psi_account_irqtime(rq, donor, NULL); 5653 5654 update_rq_clock(rq); 5655 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5656 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5657 5658 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) 5659 resched_curr(rq); 5660 5661 donor->sched_class->task_tick(rq, donor, 0); 5662 if (sched_feat(LATENCY_WARN)) 5663 resched_latency = cpu_resched_latency(rq); 5664 calc_global_load_tick(rq); 5665 sched_core_tick(rq); 5666 task_tick_mm_cid(rq, donor); 5667 scx_tick(rq); 5668 5669 rq_unlock(rq, &rf); 5670 5671 if (sched_feat(LATENCY_WARN) && resched_latency) 5672 resched_latency_warn(cpu, resched_latency); 5673 5674 perf_event_task_tick(); 5675 5676 if (donor->flags & PF_WQ_WORKER) 5677 wq_worker_tick(donor); 5678 5679 #ifdef CONFIG_SMP 5680 if (!scx_switched_all()) { 5681 rq->idle_balance = idle_cpu(cpu); 5682 sched_balance_trigger(rq); 5683 } 5684 #endif 5685 } 5686 5687 #ifdef CONFIG_NO_HZ_FULL 5688 5689 struct tick_work { 5690 int cpu; 5691 atomic_t state; 5692 struct delayed_work work; 5693 }; 5694 /* Values for ->state, see diagram below. */ 5695 #define TICK_SCHED_REMOTE_OFFLINE 0 5696 #define TICK_SCHED_REMOTE_OFFLINING 1 5697 #define TICK_SCHED_REMOTE_RUNNING 2 5698 5699 /* 5700 * State diagram for ->state: 5701 * 5702 * 5703 * TICK_SCHED_REMOTE_OFFLINE 5704 * | ^ 5705 * | | 5706 * | | sched_tick_remote() 5707 * | | 5708 * | | 5709 * +--TICK_SCHED_REMOTE_OFFLINING 5710 * | ^ 5711 * | | 5712 * sched_tick_start() | | sched_tick_stop() 5713 * | | 5714 * V | 5715 * TICK_SCHED_REMOTE_RUNNING 5716 * 5717 * 5718 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5719 * and sched_tick_start() are happy to leave the state in RUNNING. 5720 */ 5721 5722 static struct tick_work __percpu *tick_work_cpu; 5723 5724 static void sched_tick_remote(struct work_struct *work) 5725 { 5726 struct delayed_work *dwork = to_delayed_work(work); 5727 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5728 int cpu = twork->cpu; 5729 struct rq *rq = cpu_rq(cpu); 5730 int os; 5731 5732 /* 5733 * Handle the tick only if it appears the remote CPU is running in full 5734 * dynticks mode. The check is racy by nature, but missing a tick or 5735 * having one too much is no big deal because the scheduler tick updates 5736 * statistics and checks timeslices in a time-independent way, regardless 5737 * of when exactly it is running. 5738 */ 5739 if (tick_nohz_tick_stopped_cpu(cpu)) { 5740 guard(rq_lock_irq)(rq); 5741 struct task_struct *curr = rq->curr; 5742 5743 if (cpu_online(cpu)) { 5744 /* 5745 * Since this is a remote tick for full dynticks mode, 5746 * we are always sure that there is no proxy (only a 5747 * single task is running). 5748 */ 5749 WARN_ON_ONCE(rq->curr != rq->donor); 5750 update_rq_clock(rq); 5751 5752 if (!is_idle_task(curr)) { 5753 /* 5754 * Make sure the next tick runs within a 5755 * reasonable amount of time. 5756 */ 5757 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5758 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5759 } 5760 curr->sched_class->task_tick(rq, curr, 0); 5761 5762 calc_load_nohz_remote(rq); 5763 } 5764 } 5765 5766 /* 5767 * Run the remote tick once per second (1Hz). This arbitrary 5768 * frequency is large enough to avoid overload but short enough 5769 * to keep scheduler internal stats reasonably up to date. But 5770 * first update state to reflect hotplug activity if required. 5771 */ 5772 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5773 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5774 if (os == TICK_SCHED_REMOTE_RUNNING) 5775 queue_delayed_work(system_unbound_wq, dwork, HZ); 5776 } 5777 5778 static void sched_tick_start(int cpu) 5779 { 5780 int os; 5781 struct tick_work *twork; 5782 5783 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5784 return; 5785 5786 WARN_ON_ONCE(!tick_work_cpu); 5787 5788 twork = per_cpu_ptr(tick_work_cpu, cpu); 5789 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5790 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5791 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5792 twork->cpu = cpu; 5793 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5794 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5795 } 5796 } 5797 5798 #ifdef CONFIG_HOTPLUG_CPU 5799 static void sched_tick_stop(int cpu) 5800 { 5801 struct tick_work *twork; 5802 int os; 5803 5804 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5805 return; 5806 5807 WARN_ON_ONCE(!tick_work_cpu); 5808 5809 twork = per_cpu_ptr(tick_work_cpu, cpu); 5810 /* There cannot be competing actions, but don't rely on stop-machine. */ 5811 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5812 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5813 /* Don't cancel, as this would mess up the state machine. */ 5814 } 5815 #endif /* CONFIG_HOTPLUG_CPU */ 5816 5817 int __init sched_tick_offload_init(void) 5818 { 5819 tick_work_cpu = alloc_percpu(struct tick_work); 5820 BUG_ON(!tick_work_cpu); 5821 return 0; 5822 } 5823 5824 #else /* !CONFIG_NO_HZ_FULL */ 5825 static inline void sched_tick_start(int cpu) { } 5826 static inline void sched_tick_stop(int cpu) { } 5827 #endif 5828 5829 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5830 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5831 /* 5832 * If the value passed in is equal to the current preempt count 5833 * then we just disabled preemption. Start timing the latency. 5834 */ 5835 static inline void preempt_latency_start(int val) 5836 { 5837 if (preempt_count() == val) { 5838 unsigned long ip = get_lock_parent_ip(); 5839 #ifdef CONFIG_DEBUG_PREEMPT 5840 current->preempt_disable_ip = ip; 5841 #endif 5842 trace_preempt_off(CALLER_ADDR0, ip); 5843 } 5844 } 5845 5846 void preempt_count_add(int val) 5847 { 5848 #ifdef CONFIG_DEBUG_PREEMPT 5849 /* 5850 * Underflow? 5851 */ 5852 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5853 return; 5854 #endif 5855 __preempt_count_add(val); 5856 #ifdef CONFIG_DEBUG_PREEMPT 5857 /* 5858 * Spinlock count overflowing soon? 5859 */ 5860 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5861 PREEMPT_MASK - 10); 5862 #endif 5863 preempt_latency_start(val); 5864 } 5865 EXPORT_SYMBOL(preempt_count_add); 5866 NOKPROBE_SYMBOL(preempt_count_add); 5867 5868 /* 5869 * If the value passed in equals to the current preempt count 5870 * then we just enabled preemption. Stop timing the latency. 5871 */ 5872 static inline void preempt_latency_stop(int val) 5873 { 5874 if (preempt_count() == val) 5875 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5876 } 5877 5878 void preempt_count_sub(int val) 5879 { 5880 #ifdef CONFIG_DEBUG_PREEMPT 5881 /* 5882 * Underflow? 5883 */ 5884 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5885 return; 5886 /* 5887 * Is the spinlock portion underflowing? 5888 */ 5889 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5890 !(preempt_count() & PREEMPT_MASK))) 5891 return; 5892 #endif 5893 5894 preempt_latency_stop(val); 5895 __preempt_count_sub(val); 5896 } 5897 EXPORT_SYMBOL(preempt_count_sub); 5898 NOKPROBE_SYMBOL(preempt_count_sub); 5899 5900 #else 5901 static inline void preempt_latency_start(int val) { } 5902 static inline void preempt_latency_stop(int val) { } 5903 #endif 5904 5905 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5906 { 5907 #ifdef CONFIG_DEBUG_PREEMPT 5908 return p->preempt_disable_ip; 5909 #else 5910 return 0; 5911 #endif 5912 } 5913 5914 /* 5915 * Print scheduling while atomic bug: 5916 */ 5917 static noinline void __schedule_bug(struct task_struct *prev) 5918 { 5919 /* Save this before calling printk(), since that will clobber it */ 5920 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5921 5922 if (oops_in_progress) 5923 return; 5924 5925 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5926 prev->comm, prev->pid, preempt_count()); 5927 5928 debug_show_held_locks(prev); 5929 print_modules(); 5930 if (irqs_disabled()) 5931 print_irqtrace_events(prev); 5932 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5933 pr_err("Preemption disabled at:"); 5934 print_ip_sym(KERN_ERR, preempt_disable_ip); 5935 } 5936 check_panic_on_warn("scheduling while atomic"); 5937 5938 dump_stack(); 5939 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5940 } 5941 5942 /* 5943 * Various schedule()-time debugging checks and statistics: 5944 */ 5945 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5946 { 5947 #ifdef CONFIG_SCHED_STACK_END_CHECK 5948 if (task_stack_end_corrupted(prev)) 5949 panic("corrupted stack end detected inside scheduler\n"); 5950 5951 if (task_scs_end_corrupted(prev)) 5952 panic("corrupted shadow stack detected inside scheduler\n"); 5953 #endif 5954 5955 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5956 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5957 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5958 prev->comm, prev->pid, prev->non_block_count); 5959 dump_stack(); 5960 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5961 } 5962 #endif 5963 5964 if (unlikely(in_atomic_preempt_off())) { 5965 __schedule_bug(prev); 5966 preempt_count_set(PREEMPT_DISABLED); 5967 } 5968 rcu_sleep_check(); 5969 WARN_ON_ONCE(ct_state() == CT_STATE_USER); 5970 5971 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5972 5973 schedstat_inc(this_rq()->sched_count); 5974 } 5975 5976 static void prev_balance(struct rq *rq, struct task_struct *prev, 5977 struct rq_flags *rf) 5978 { 5979 const struct sched_class *start_class = prev->sched_class; 5980 const struct sched_class *class; 5981 5982 #ifdef CONFIG_SCHED_CLASS_EXT 5983 /* 5984 * SCX requires a balance() call before every pick_task() including when 5985 * waking up from SCHED_IDLE. If @start_class is below SCX, start from 5986 * SCX instead. Also, set a flag to detect missing balance() call. 5987 */ 5988 if (scx_enabled()) { 5989 rq->scx.flags |= SCX_RQ_BAL_PENDING; 5990 if (sched_class_above(&ext_sched_class, start_class)) 5991 start_class = &ext_sched_class; 5992 } 5993 #endif 5994 5995 /* 5996 * We must do the balancing pass before put_prev_task(), such 5997 * that when we release the rq->lock the task is in the same 5998 * state as before we took rq->lock. 5999 * 6000 * We can terminate the balance pass as soon as we know there is 6001 * a runnable task of @class priority or higher. 6002 */ 6003 for_active_class_range(class, start_class, &idle_sched_class) { 6004 if (class->balance && class->balance(rq, prev, rf)) 6005 break; 6006 } 6007 } 6008 6009 /* 6010 * Pick up the highest-prio task: 6011 */ 6012 static inline struct task_struct * 6013 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6014 { 6015 const struct sched_class *class; 6016 struct task_struct *p; 6017 6018 rq->dl_server = NULL; 6019 6020 if (scx_enabled()) 6021 goto restart; 6022 6023 /* 6024 * Optimization: we know that if all tasks are in the fair class we can 6025 * call that function directly, but only if the @prev task wasn't of a 6026 * higher scheduling class, because otherwise those lose the 6027 * opportunity to pull in more work from other CPUs. 6028 */ 6029 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 6030 rq->nr_running == rq->cfs.h_nr_queued)) { 6031 6032 p = pick_next_task_fair(rq, prev, rf); 6033 if (unlikely(p == RETRY_TASK)) 6034 goto restart; 6035 6036 /* Assume the next prioritized class is idle_sched_class */ 6037 if (!p) { 6038 p = pick_task_idle(rq); 6039 put_prev_set_next_task(rq, prev, p); 6040 } 6041 6042 return p; 6043 } 6044 6045 restart: 6046 prev_balance(rq, prev, rf); 6047 6048 for_each_active_class(class) { 6049 if (class->pick_next_task) { 6050 p = class->pick_next_task(rq, prev); 6051 if (p) 6052 return p; 6053 } else { 6054 p = class->pick_task(rq); 6055 if (p) { 6056 put_prev_set_next_task(rq, prev, p); 6057 return p; 6058 } 6059 } 6060 } 6061 6062 BUG(); /* The idle class should always have a runnable task. */ 6063 } 6064 6065 #ifdef CONFIG_SCHED_CORE 6066 static inline bool is_task_rq_idle(struct task_struct *t) 6067 { 6068 return (task_rq(t)->idle == t); 6069 } 6070 6071 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 6072 { 6073 return is_task_rq_idle(a) || (a->core_cookie == cookie); 6074 } 6075 6076 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6077 { 6078 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6079 return true; 6080 6081 return a->core_cookie == b->core_cookie; 6082 } 6083 6084 static inline struct task_struct *pick_task(struct rq *rq) 6085 { 6086 const struct sched_class *class; 6087 struct task_struct *p; 6088 6089 rq->dl_server = NULL; 6090 6091 for_each_active_class(class) { 6092 p = class->pick_task(rq); 6093 if (p) 6094 return p; 6095 } 6096 6097 BUG(); /* The idle class should always have a runnable task. */ 6098 } 6099 6100 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6101 6102 static void queue_core_balance(struct rq *rq); 6103 6104 static struct task_struct * 6105 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6106 { 6107 struct task_struct *next, *p, *max = NULL; 6108 const struct cpumask *smt_mask; 6109 bool fi_before = false; 6110 bool core_clock_updated = (rq == rq->core); 6111 unsigned long cookie; 6112 int i, cpu, occ = 0; 6113 struct rq *rq_i; 6114 bool need_sync; 6115 6116 if (!sched_core_enabled(rq)) 6117 return __pick_next_task(rq, prev, rf); 6118 6119 cpu = cpu_of(rq); 6120 6121 /* Stopper task is switching into idle, no need core-wide selection. */ 6122 if (cpu_is_offline(cpu)) { 6123 /* 6124 * Reset core_pick so that we don't enter the fastpath when 6125 * coming online. core_pick would already be migrated to 6126 * another cpu during offline. 6127 */ 6128 rq->core_pick = NULL; 6129 rq->core_dl_server = NULL; 6130 return __pick_next_task(rq, prev, rf); 6131 } 6132 6133 /* 6134 * If there were no {en,de}queues since we picked (IOW, the task 6135 * pointers are all still valid), and we haven't scheduled the last 6136 * pick yet, do so now. 6137 * 6138 * rq->core_pick can be NULL if no selection was made for a CPU because 6139 * it was either offline or went offline during a sibling's core-wide 6140 * selection. In this case, do a core-wide selection. 6141 */ 6142 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6143 rq->core->core_pick_seq != rq->core_sched_seq && 6144 rq->core_pick) { 6145 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6146 6147 next = rq->core_pick; 6148 rq->dl_server = rq->core_dl_server; 6149 rq->core_pick = NULL; 6150 rq->core_dl_server = NULL; 6151 goto out_set_next; 6152 } 6153 6154 prev_balance(rq, prev, rf); 6155 6156 smt_mask = cpu_smt_mask(cpu); 6157 need_sync = !!rq->core->core_cookie; 6158 6159 /* reset state */ 6160 rq->core->core_cookie = 0UL; 6161 if (rq->core->core_forceidle_count) { 6162 if (!core_clock_updated) { 6163 update_rq_clock(rq->core); 6164 core_clock_updated = true; 6165 } 6166 sched_core_account_forceidle(rq); 6167 /* reset after accounting force idle */ 6168 rq->core->core_forceidle_start = 0; 6169 rq->core->core_forceidle_count = 0; 6170 rq->core->core_forceidle_occupation = 0; 6171 need_sync = true; 6172 fi_before = true; 6173 } 6174 6175 /* 6176 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6177 * 6178 * @task_seq guards the task state ({en,de}queues) 6179 * @pick_seq is the @task_seq we did a selection on 6180 * @sched_seq is the @pick_seq we scheduled 6181 * 6182 * However, preemptions can cause multiple picks on the same task set. 6183 * 'Fix' this by also increasing @task_seq for every pick. 6184 */ 6185 rq->core->core_task_seq++; 6186 6187 /* 6188 * Optimize for common case where this CPU has no cookies 6189 * and there are no cookied tasks running on siblings. 6190 */ 6191 if (!need_sync) { 6192 next = pick_task(rq); 6193 if (!next->core_cookie) { 6194 rq->core_pick = NULL; 6195 rq->core_dl_server = NULL; 6196 /* 6197 * For robustness, update the min_vruntime_fi for 6198 * unconstrained picks as well. 6199 */ 6200 WARN_ON_ONCE(fi_before); 6201 task_vruntime_update(rq, next, false); 6202 goto out_set_next; 6203 } 6204 } 6205 6206 /* 6207 * For each thread: do the regular task pick and find the max prio task 6208 * amongst them. 6209 * 6210 * Tie-break prio towards the current CPU 6211 */ 6212 for_each_cpu_wrap(i, smt_mask, cpu) { 6213 rq_i = cpu_rq(i); 6214 6215 /* 6216 * Current cpu always has its clock updated on entrance to 6217 * pick_next_task(). If the current cpu is not the core, 6218 * the core may also have been updated above. 6219 */ 6220 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6221 update_rq_clock(rq_i); 6222 6223 rq_i->core_pick = p = pick_task(rq_i); 6224 rq_i->core_dl_server = rq_i->dl_server; 6225 6226 if (!max || prio_less(max, p, fi_before)) 6227 max = p; 6228 } 6229 6230 cookie = rq->core->core_cookie = max->core_cookie; 6231 6232 /* 6233 * For each thread: try and find a runnable task that matches @max or 6234 * force idle. 6235 */ 6236 for_each_cpu(i, smt_mask) { 6237 rq_i = cpu_rq(i); 6238 p = rq_i->core_pick; 6239 6240 if (!cookie_equals(p, cookie)) { 6241 p = NULL; 6242 if (cookie) 6243 p = sched_core_find(rq_i, cookie); 6244 if (!p) 6245 p = idle_sched_class.pick_task(rq_i); 6246 } 6247 6248 rq_i->core_pick = p; 6249 rq_i->core_dl_server = NULL; 6250 6251 if (p == rq_i->idle) { 6252 if (rq_i->nr_running) { 6253 rq->core->core_forceidle_count++; 6254 if (!fi_before) 6255 rq->core->core_forceidle_seq++; 6256 } 6257 } else { 6258 occ++; 6259 } 6260 } 6261 6262 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6263 rq->core->core_forceidle_start = rq_clock(rq->core); 6264 rq->core->core_forceidle_occupation = occ; 6265 } 6266 6267 rq->core->core_pick_seq = rq->core->core_task_seq; 6268 next = rq->core_pick; 6269 rq->core_sched_seq = rq->core->core_pick_seq; 6270 6271 /* Something should have been selected for current CPU */ 6272 WARN_ON_ONCE(!next); 6273 6274 /* 6275 * Reschedule siblings 6276 * 6277 * NOTE: L1TF -- at this point we're no longer running the old task and 6278 * sending an IPI (below) ensures the sibling will no longer be running 6279 * their task. This ensures there is no inter-sibling overlap between 6280 * non-matching user state. 6281 */ 6282 for_each_cpu(i, smt_mask) { 6283 rq_i = cpu_rq(i); 6284 6285 /* 6286 * An online sibling might have gone offline before a task 6287 * could be picked for it, or it might be offline but later 6288 * happen to come online, but its too late and nothing was 6289 * picked for it. That's Ok - it will pick tasks for itself, 6290 * so ignore it. 6291 */ 6292 if (!rq_i->core_pick) 6293 continue; 6294 6295 /* 6296 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6297 * fi_before fi update? 6298 * 0 0 1 6299 * 0 1 1 6300 * 1 0 1 6301 * 1 1 0 6302 */ 6303 if (!(fi_before && rq->core->core_forceidle_count)) 6304 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6305 6306 rq_i->core_pick->core_occupation = occ; 6307 6308 if (i == cpu) { 6309 rq_i->core_pick = NULL; 6310 rq_i->core_dl_server = NULL; 6311 continue; 6312 } 6313 6314 /* Did we break L1TF mitigation requirements? */ 6315 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6316 6317 if (rq_i->curr == rq_i->core_pick) { 6318 rq_i->core_pick = NULL; 6319 rq_i->core_dl_server = NULL; 6320 continue; 6321 } 6322 6323 resched_curr(rq_i); 6324 } 6325 6326 out_set_next: 6327 put_prev_set_next_task(rq, prev, next); 6328 if (rq->core->core_forceidle_count && next == rq->idle) 6329 queue_core_balance(rq); 6330 6331 return next; 6332 } 6333 6334 static bool try_steal_cookie(int this, int that) 6335 { 6336 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6337 struct task_struct *p; 6338 unsigned long cookie; 6339 bool success = false; 6340 6341 guard(irq)(); 6342 guard(double_rq_lock)(dst, src); 6343 6344 cookie = dst->core->core_cookie; 6345 if (!cookie) 6346 return false; 6347 6348 if (dst->curr != dst->idle) 6349 return false; 6350 6351 p = sched_core_find(src, cookie); 6352 if (!p) 6353 return false; 6354 6355 do { 6356 if (p == src->core_pick || p == src->curr) 6357 goto next; 6358 6359 if (!is_cpu_allowed(p, this)) 6360 goto next; 6361 6362 if (p->core_occupation > dst->idle->core_occupation) 6363 goto next; 6364 /* 6365 * sched_core_find() and sched_core_next() will ensure 6366 * that task @p is not throttled now, we also need to 6367 * check whether the runqueue of the destination CPU is 6368 * being throttled. 6369 */ 6370 if (sched_task_is_throttled(p, this)) 6371 goto next; 6372 6373 move_queued_task_locked(src, dst, p); 6374 resched_curr(dst); 6375 6376 success = true; 6377 break; 6378 6379 next: 6380 p = sched_core_next(p, cookie); 6381 } while (p); 6382 6383 return success; 6384 } 6385 6386 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6387 { 6388 int i; 6389 6390 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6391 if (i == cpu) 6392 continue; 6393 6394 if (need_resched()) 6395 break; 6396 6397 if (try_steal_cookie(cpu, i)) 6398 return true; 6399 } 6400 6401 return false; 6402 } 6403 6404 static void sched_core_balance(struct rq *rq) 6405 { 6406 struct sched_domain *sd; 6407 int cpu = cpu_of(rq); 6408 6409 guard(preempt)(); 6410 guard(rcu)(); 6411 6412 raw_spin_rq_unlock_irq(rq); 6413 for_each_domain(cpu, sd) { 6414 if (need_resched()) 6415 break; 6416 6417 if (steal_cookie_task(cpu, sd)) 6418 break; 6419 } 6420 raw_spin_rq_lock_irq(rq); 6421 } 6422 6423 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6424 6425 static void queue_core_balance(struct rq *rq) 6426 { 6427 if (!sched_core_enabled(rq)) 6428 return; 6429 6430 if (!rq->core->core_cookie) 6431 return; 6432 6433 if (!rq->nr_running) /* not forced idle */ 6434 return; 6435 6436 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6437 } 6438 6439 DEFINE_LOCK_GUARD_1(core_lock, int, 6440 sched_core_lock(*_T->lock, &_T->flags), 6441 sched_core_unlock(*_T->lock, &_T->flags), 6442 unsigned long flags) 6443 6444 static void sched_core_cpu_starting(unsigned int cpu) 6445 { 6446 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6447 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6448 int t; 6449 6450 guard(core_lock)(&cpu); 6451 6452 WARN_ON_ONCE(rq->core != rq); 6453 6454 /* if we're the first, we'll be our own leader */ 6455 if (cpumask_weight(smt_mask) == 1) 6456 return; 6457 6458 /* find the leader */ 6459 for_each_cpu(t, smt_mask) { 6460 if (t == cpu) 6461 continue; 6462 rq = cpu_rq(t); 6463 if (rq->core == rq) { 6464 core_rq = rq; 6465 break; 6466 } 6467 } 6468 6469 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6470 return; 6471 6472 /* install and validate core_rq */ 6473 for_each_cpu(t, smt_mask) { 6474 rq = cpu_rq(t); 6475 6476 if (t == cpu) 6477 rq->core = core_rq; 6478 6479 WARN_ON_ONCE(rq->core != core_rq); 6480 } 6481 } 6482 6483 static void sched_core_cpu_deactivate(unsigned int cpu) 6484 { 6485 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6486 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6487 int t; 6488 6489 guard(core_lock)(&cpu); 6490 6491 /* if we're the last man standing, nothing to do */ 6492 if (cpumask_weight(smt_mask) == 1) { 6493 WARN_ON_ONCE(rq->core != rq); 6494 return; 6495 } 6496 6497 /* if we're not the leader, nothing to do */ 6498 if (rq->core != rq) 6499 return; 6500 6501 /* find a new leader */ 6502 for_each_cpu(t, smt_mask) { 6503 if (t == cpu) 6504 continue; 6505 core_rq = cpu_rq(t); 6506 break; 6507 } 6508 6509 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6510 return; 6511 6512 /* copy the shared state to the new leader */ 6513 core_rq->core_task_seq = rq->core_task_seq; 6514 core_rq->core_pick_seq = rq->core_pick_seq; 6515 core_rq->core_cookie = rq->core_cookie; 6516 core_rq->core_forceidle_count = rq->core_forceidle_count; 6517 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6518 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6519 6520 /* 6521 * Accounting edge for forced idle is handled in pick_next_task(). 6522 * Don't need another one here, since the hotplug thread shouldn't 6523 * have a cookie. 6524 */ 6525 core_rq->core_forceidle_start = 0; 6526 6527 /* install new leader */ 6528 for_each_cpu(t, smt_mask) { 6529 rq = cpu_rq(t); 6530 rq->core = core_rq; 6531 } 6532 } 6533 6534 static inline void sched_core_cpu_dying(unsigned int cpu) 6535 { 6536 struct rq *rq = cpu_rq(cpu); 6537 6538 if (rq->core != rq) 6539 rq->core = rq; 6540 } 6541 6542 #else /* !CONFIG_SCHED_CORE */ 6543 6544 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6545 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6546 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6547 6548 static struct task_struct * 6549 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6550 { 6551 return __pick_next_task(rq, prev, rf); 6552 } 6553 6554 #endif /* CONFIG_SCHED_CORE */ 6555 6556 /* 6557 * Constants for the sched_mode argument of __schedule(). 6558 * 6559 * The mode argument allows RT enabled kernels to differentiate a 6560 * preemption from blocking on an 'sleeping' spin/rwlock. 6561 */ 6562 #define SM_IDLE (-1) 6563 #define SM_NONE 0 6564 #define SM_PREEMPT 1 6565 #define SM_RTLOCK_WAIT 2 6566 6567 /* 6568 * Helper function for __schedule() 6569 * 6570 * If a task does not have signals pending, deactivate it 6571 * Otherwise marks the task's __state as RUNNING 6572 */ 6573 static bool try_to_block_task(struct rq *rq, struct task_struct *p, 6574 unsigned long task_state) 6575 { 6576 int flags = DEQUEUE_NOCLOCK; 6577 6578 if (signal_pending_state(task_state, p)) { 6579 WRITE_ONCE(p->__state, TASK_RUNNING); 6580 return false; 6581 } 6582 6583 p->sched_contributes_to_load = 6584 (task_state & TASK_UNINTERRUPTIBLE) && 6585 !(task_state & TASK_NOLOAD) && 6586 !(task_state & TASK_FROZEN); 6587 6588 if (unlikely(is_special_task_state(task_state))) 6589 flags |= DEQUEUE_SPECIAL; 6590 6591 /* 6592 * __schedule() ttwu() 6593 * prev_state = prev->state; if (p->on_rq && ...) 6594 * if (prev_state) goto out; 6595 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6596 * p->state = TASK_WAKING 6597 * 6598 * Where __schedule() and ttwu() have matching control dependencies. 6599 * 6600 * After this, schedule() must not care about p->state any more. 6601 */ 6602 block_task(rq, p, flags); 6603 return true; 6604 } 6605 6606 /* 6607 * __schedule() is the main scheduler function. 6608 * 6609 * The main means of driving the scheduler and thus entering this function are: 6610 * 6611 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6612 * 6613 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6614 * paths. For example, see arch/x86/entry_64.S. 6615 * 6616 * To drive preemption between tasks, the scheduler sets the flag in timer 6617 * interrupt handler sched_tick(). 6618 * 6619 * 3. Wakeups don't really cause entry into schedule(). They add a 6620 * task to the run-queue and that's it. 6621 * 6622 * Now, if the new task added to the run-queue preempts the current 6623 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6624 * called on the nearest possible occasion: 6625 * 6626 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6627 * 6628 * - in syscall or exception context, at the next outmost 6629 * preempt_enable(). (this might be as soon as the wake_up()'s 6630 * spin_unlock()!) 6631 * 6632 * - in IRQ context, return from interrupt-handler to 6633 * preemptible context 6634 * 6635 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6636 * then at the next: 6637 * 6638 * - cond_resched() call 6639 * - explicit schedule() call 6640 * - return from syscall or exception to user-space 6641 * - return from interrupt-handler to user-space 6642 * 6643 * WARNING: must be called with preemption disabled! 6644 */ 6645 static void __sched notrace __schedule(int sched_mode) 6646 { 6647 struct task_struct *prev, *next; 6648 /* 6649 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6650 * as a preemption by schedule_debug() and RCU. 6651 */ 6652 bool preempt = sched_mode > SM_NONE; 6653 bool is_switch = false; 6654 unsigned long *switch_count; 6655 unsigned long prev_state; 6656 struct rq_flags rf; 6657 struct rq *rq; 6658 int cpu; 6659 6660 trace_sched_entry_tp(preempt, CALLER_ADDR0); 6661 6662 cpu = smp_processor_id(); 6663 rq = cpu_rq(cpu); 6664 prev = rq->curr; 6665 6666 schedule_debug(prev, preempt); 6667 6668 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6669 hrtick_clear(rq); 6670 6671 local_irq_disable(); 6672 rcu_note_context_switch(preempt); 6673 6674 /* 6675 * Make sure that signal_pending_state()->signal_pending() below 6676 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6677 * done by the caller to avoid the race with signal_wake_up(): 6678 * 6679 * __set_current_state(@state) signal_wake_up() 6680 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6681 * wake_up_state(p, state) 6682 * LOCK rq->lock LOCK p->pi_state 6683 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6684 * if (signal_pending_state()) if (p->state & @state) 6685 * 6686 * Also, the membarrier system call requires a full memory barrier 6687 * after coming from user-space, before storing to rq->curr; this 6688 * barrier matches a full barrier in the proximity of the membarrier 6689 * system call exit. 6690 */ 6691 rq_lock(rq, &rf); 6692 smp_mb__after_spinlock(); 6693 6694 /* Promote REQ to ACT */ 6695 rq->clock_update_flags <<= 1; 6696 update_rq_clock(rq); 6697 rq->clock_update_flags = RQCF_UPDATED; 6698 6699 switch_count = &prev->nivcsw; 6700 6701 /* Task state changes only considers SM_PREEMPT as preemption */ 6702 preempt = sched_mode == SM_PREEMPT; 6703 6704 /* 6705 * We must load prev->state once (task_struct::state is volatile), such 6706 * that we form a control dependency vs deactivate_task() below. 6707 */ 6708 prev_state = READ_ONCE(prev->__state); 6709 if (sched_mode == SM_IDLE) { 6710 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6711 if (!rq->nr_running && !scx_enabled()) { 6712 next = prev; 6713 goto picked; 6714 } 6715 } else if (!preempt && prev_state) { 6716 try_to_block_task(rq, prev, prev_state); 6717 switch_count = &prev->nvcsw; 6718 } 6719 6720 next = pick_next_task(rq, prev, &rf); 6721 rq_set_donor(rq, next); 6722 picked: 6723 clear_tsk_need_resched(prev); 6724 clear_preempt_need_resched(); 6725 rq->last_seen_need_resched_ns = 0; 6726 6727 is_switch = prev != next; 6728 if (likely(is_switch)) { 6729 rq->nr_switches++; 6730 /* 6731 * RCU users of rcu_dereference(rq->curr) may not see 6732 * changes to task_struct made by pick_next_task(). 6733 */ 6734 RCU_INIT_POINTER(rq->curr, next); 6735 /* 6736 * The membarrier system call requires each architecture 6737 * to have a full memory barrier after updating 6738 * rq->curr, before returning to user-space. 6739 * 6740 * Here are the schemes providing that barrier on the 6741 * various architectures: 6742 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6743 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6744 * on PowerPC and on RISC-V. 6745 * - finish_lock_switch() for weakly-ordered 6746 * architectures where spin_unlock is a full barrier, 6747 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6748 * is a RELEASE barrier), 6749 * 6750 * The barrier matches a full barrier in the proximity of 6751 * the membarrier system call entry. 6752 * 6753 * On RISC-V, this barrier pairing is also needed for the 6754 * SYNC_CORE command when switching between processes, cf. 6755 * the inline comments in membarrier_arch_switch_mm(). 6756 */ 6757 ++*switch_count; 6758 6759 migrate_disable_switch(rq, prev); 6760 psi_account_irqtime(rq, prev, next); 6761 psi_sched_switch(prev, next, !task_on_rq_queued(prev) || 6762 prev->se.sched_delayed); 6763 6764 trace_sched_switch(preempt, prev, next, prev_state); 6765 6766 /* Also unlocks the rq: */ 6767 rq = context_switch(rq, prev, next, &rf); 6768 } else { 6769 rq_unpin_lock(rq, &rf); 6770 __balance_callbacks(rq); 6771 raw_spin_rq_unlock_irq(rq); 6772 } 6773 trace_sched_exit_tp(is_switch, CALLER_ADDR0); 6774 } 6775 6776 void __noreturn do_task_dead(void) 6777 { 6778 /* Causes final put_task_struct in finish_task_switch(): */ 6779 set_special_state(TASK_DEAD); 6780 6781 /* Tell freezer to ignore us: */ 6782 current->flags |= PF_NOFREEZE; 6783 6784 __schedule(SM_NONE); 6785 BUG(); 6786 6787 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6788 for (;;) 6789 cpu_relax(); 6790 } 6791 6792 static inline void sched_submit_work(struct task_struct *tsk) 6793 { 6794 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6795 unsigned int task_flags; 6796 6797 /* 6798 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6799 * will use a blocking primitive -- which would lead to recursion. 6800 */ 6801 lock_map_acquire_try(&sched_map); 6802 6803 task_flags = tsk->flags; 6804 /* 6805 * If a worker goes to sleep, notify and ask workqueue whether it 6806 * wants to wake up a task to maintain concurrency. 6807 */ 6808 if (task_flags & PF_WQ_WORKER) 6809 wq_worker_sleeping(tsk); 6810 else if (task_flags & PF_IO_WORKER) 6811 io_wq_worker_sleeping(tsk); 6812 6813 /* 6814 * spinlock and rwlock must not flush block requests. This will 6815 * deadlock if the callback attempts to acquire a lock which is 6816 * already acquired. 6817 */ 6818 WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT); 6819 6820 /* 6821 * If we are going to sleep and we have plugged IO queued, 6822 * make sure to submit it to avoid deadlocks. 6823 */ 6824 blk_flush_plug(tsk->plug, true); 6825 6826 lock_map_release(&sched_map); 6827 } 6828 6829 static void sched_update_worker(struct task_struct *tsk) 6830 { 6831 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6832 if (tsk->flags & PF_BLOCK_TS) 6833 blk_plug_invalidate_ts(tsk); 6834 if (tsk->flags & PF_WQ_WORKER) 6835 wq_worker_running(tsk); 6836 else if (tsk->flags & PF_IO_WORKER) 6837 io_wq_worker_running(tsk); 6838 } 6839 } 6840 6841 static __always_inline void __schedule_loop(int sched_mode) 6842 { 6843 do { 6844 preempt_disable(); 6845 __schedule(sched_mode); 6846 sched_preempt_enable_no_resched(); 6847 } while (need_resched()); 6848 } 6849 6850 asmlinkage __visible void __sched schedule(void) 6851 { 6852 struct task_struct *tsk = current; 6853 6854 #ifdef CONFIG_RT_MUTEXES 6855 lockdep_assert(!tsk->sched_rt_mutex); 6856 #endif 6857 6858 if (!task_is_running(tsk)) 6859 sched_submit_work(tsk); 6860 __schedule_loop(SM_NONE); 6861 sched_update_worker(tsk); 6862 } 6863 EXPORT_SYMBOL(schedule); 6864 6865 /* 6866 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6867 * state (have scheduled out non-voluntarily) by making sure that all 6868 * tasks have either left the run queue or have gone into user space. 6869 * As idle tasks do not do either, they must not ever be preempted 6870 * (schedule out non-voluntarily). 6871 * 6872 * schedule_idle() is similar to schedule_preempt_disable() except that it 6873 * never enables preemption because it does not call sched_submit_work(). 6874 */ 6875 void __sched schedule_idle(void) 6876 { 6877 /* 6878 * As this skips calling sched_submit_work(), which the idle task does 6879 * regardless because that function is a NOP when the task is in a 6880 * TASK_RUNNING state, make sure this isn't used someplace that the 6881 * current task can be in any other state. Note, idle is always in the 6882 * TASK_RUNNING state. 6883 */ 6884 WARN_ON_ONCE(current->__state); 6885 do { 6886 __schedule(SM_IDLE); 6887 } while (need_resched()); 6888 } 6889 6890 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6891 asmlinkage __visible void __sched schedule_user(void) 6892 { 6893 /* 6894 * If we come here after a random call to set_need_resched(), 6895 * or we have been woken up remotely but the IPI has not yet arrived, 6896 * we haven't yet exited the RCU idle mode. Do it here manually until 6897 * we find a better solution. 6898 * 6899 * NB: There are buggy callers of this function. Ideally we 6900 * should warn if prev_state != CT_STATE_USER, but that will trigger 6901 * too frequently to make sense yet. 6902 */ 6903 enum ctx_state prev_state = exception_enter(); 6904 schedule(); 6905 exception_exit(prev_state); 6906 } 6907 #endif 6908 6909 /** 6910 * schedule_preempt_disabled - called with preemption disabled 6911 * 6912 * Returns with preemption disabled. Note: preempt_count must be 1 6913 */ 6914 void __sched schedule_preempt_disabled(void) 6915 { 6916 sched_preempt_enable_no_resched(); 6917 schedule(); 6918 preempt_disable(); 6919 } 6920 6921 #ifdef CONFIG_PREEMPT_RT 6922 void __sched notrace schedule_rtlock(void) 6923 { 6924 __schedule_loop(SM_RTLOCK_WAIT); 6925 } 6926 NOKPROBE_SYMBOL(schedule_rtlock); 6927 #endif 6928 6929 static void __sched notrace preempt_schedule_common(void) 6930 { 6931 do { 6932 /* 6933 * Because the function tracer can trace preempt_count_sub() 6934 * and it also uses preempt_enable/disable_notrace(), if 6935 * NEED_RESCHED is set, the preempt_enable_notrace() called 6936 * by the function tracer will call this function again and 6937 * cause infinite recursion. 6938 * 6939 * Preemption must be disabled here before the function 6940 * tracer can trace. Break up preempt_disable() into two 6941 * calls. One to disable preemption without fear of being 6942 * traced. The other to still record the preemption latency, 6943 * which can also be traced by the function tracer. 6944 */ 6945 preempt_disable_notrace(); 6946 preempt_latency_start(1); 6947 __schedule(SM_PREEMPT); 6948 preempt_latency_stop(1); 6949 preempt_enable_no_resched_notrace(); 6950 6951 /* 6952 * Check again in case we missed a preemption opportunity 6953 * between schedule and now. 6954 */ 6955 } while (need_resched()); 6956 } 6957 6958 #ifdef CONFIG_PREEMPTION 6959 /* 6960 * This is the entry point to schedule() from in-kernel preemption 6961 * off of preempt_enable. 6962 */ 6963 asmlinkage __visible void __sched notrace preempt_schedule(void) 6964 { 6965 /* 6966 * If there is a non-zero preempt_count or interrupts are disabled, 6967 * we do not want to preempt the current task. Just return.. 6968 */ 6969 if (likely(!preemptible())) 6970 return; 6971 preempt_schedule_common(); 6972 } 6973 NOKPROBE_SYMBOL(preempt_schedule); 6974 EXPORT_SYMBOL(preempt_schedule); 6975 6976 #ifdef CONFIG_PREEMPT_DYNAMIC 6977 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6978 #ifndef preempt_schedule_dynamic_enabled 6979 #define preempt_schedule_dynamic_enabled preempt_schedule 6980 #define preempt_schedule_dynamic_disabled NULL 6981 #endif 6982 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6983 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6984 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6985 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6986 void __sched notrace dynamic_preempt_schedule(void) 6987 { 6988 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6989 return; 6990 preempt_schedule(); 6991 } 6992 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6993 EXPORT_SYMBOL(dynamic_preempt_schedule); 6994 #endif 6995 #endif 6996 6997 /** 6998 * preempt_schedule_notrace - preempt_schedule called by tracing 6999 * 7000 * The tracing infrastructure uses preempt_enable_notrace to prevent 7001 * recursion and tracing preempt enabling caused by the tracing 7002 * infrastructure itself. But as tracing can happen in areas coming 7003 * from userspace or just about to enter userspace, a preempt enable 7004 * can occur before user_exit() is called. This will cause the scheduler 7005 * to be called when the system is still in usermode. 7006 * 7007 * To prevent this, the preempt_enable_notrace will use this function 7008 * instead of preempt_schedule() to exit user context if needed before 7009 * calling the scheduler. 7010 */ 7011 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 7012 { 7013 enum ctx_state prev_ctx; 7014 7015 if (likely(!preemptible())) 7016 return; 7017 7018 do { 7019 /* 7020 * Because the function tracer can trace preempt_count_sub() 7021 * and it also uses preempt_enable/disable_notrace(), if 7022 * NEED_RESCHED is set, the preempt_enable_notrace() called 7023 * by the function tracer will call this function again and 7024 * cause infinite recursion. 7025 * 7026 * Preemption must be disabled here before the function 7027 * tracer can trace. Break up preempt_disable() into two 7028 * calls. One to disable preemption without fear of being 7029 * traced. The other to still record the preemption latency, 7030 * which can also be traced by the function tracer. 7031 */ 7032 preempt_disable_notrace(); 7033 preempt_latency_start(1); 7034 /* 7035 * Needs preempt disabled in case user_exit() is traced 7036 * and the tracer calls preempt_enable_notrace() causing 7037 * an infinite recursion. 7038 */ 7039 prev_ctx = exception_enter(); 7040 __schedule(SM_PREEMPT); 7041 exception_exit(prev_ctx); 7042 7043 preempt_latency_stop(1); 7044 preempt_enable_no_resched_notrace(); 7045 } while (need_resched()); 7046 } 7047 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 7048 7049 #ifdef CONFIG_PREEMPT_DYNAMIC 7050 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7051 #ifndef preempt_schedule_notrace_dynamic_enabled 7052 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 7053 #define preempt_schedule_notrace_dynamic_disabled NULL 7054 #endif 7055 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 7056 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 7057 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7058 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 7059 void __sched notrace dynamic_preempt_schedule_notrace(void) 7060 { 7061 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 7062 return; 7063 preempt_schedule_notrace(); 7064 } 7065 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 7066 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 7067 #endif 7068 #endif 7069 7070 #endif /* CONFIG_PREEMPTION */ 7071 7072 /* 7073 * This is the entry point to schedule() from kernel preemption 7074 * off of IRQ context. 7075 * Note, that this is called and return with IRQs disabled. This will 7076 * protect us against recursive calling from IRQ contexts. 7077 */ 7078 asmlinkage __visible void __sched preempt_schedule_irq(void) 7079 { 7080 enum ctx_state prev_state; 7081 7082 /* Catch callers which need to be fixed */ 7083 BUG_ON(preempt_count() || !irqs_disabled()); 7084 7085 prev_state = exception_enter(); 7086 7087 do { 7088 preempt_disable(); 7089 local_irq_enable(); 7090 __schedule(SM_PREEMPT); 7091 local_irq_disable(); 7092 sched_preempt_enable_no_resched(); 7093 } while (need_resched()); 7094 7095 exception_exit(prev_state); 7096 } 7097 7098 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7099 void *key) 7100 { 7101 WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7102 return try_to_wake_up(curr->private, mode, wake_flags); 7103 } 7104 EXPORT_SYMBOL(default_wake_function); 7105 7106 const struct sched_class *__setscheduler_class(int policy, int prio) 7107 { 7108 if (dl_prio(prio)) 7109 return &dl_sched_class; 7110 7111 if (rt_prio(prio)) 7112 return &rt_sched_class; 7113 7114 #ifdef CONFIG_SCHED_CLASS_EXT 7115 if (task_should_scx(policy)) 7116 return &ext_sched_class; 7117 #endif 7118 7119 return &fair_sched_class; 7120 } 7121 7122 #ifdef CONFIG_RT_MUTEXES 7123 7124 /* 7125 * Would be more useful with typeof()/auto_type but they don't mix with 7126 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7127 * name such that if someone were to implement this function we get to compare 7128 * notes. 7129 */ 7130 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7131 7132 void rt_mutex_pre_schedule(void) 7133 { 7134 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7135 sched_submit_work(current); 7136 } 7137 7138 void rt_mutex_schedule(void) 7139 { 7140 lockdep_assert(current->sched_rt_mutex); 7141 __schedule_loop(SM_NONE); 7142 } 7143 7144 void rt_mutex_post_schedule(void) 7145 { 7146 sched_update_worker(current); 7147 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7148 } 7149 7150 /* 7151 * rt_mutex_setprio - set the current priority of a task 7152 * @p: task to boost 7153 * @pi_task: donor task 7154 * 7155 * This function changes the 'effective' priority of a task. It does 7156 * not touch ->normal_prio like __setscheduler(). 7157 * 7158 * Used by the rt_mutex code to implement priority inheritance 7159 * logic. Call site only calls if the priority of the task changed. 7160 */ 7161 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7162 { 7163 int prio, oldprio, queued, running, queue_flag = 7164 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7165 const struct sched_class *prev_class, *next_class; 7166 struct rq_flags rf; 7167 struct rq *rq; 7168 7169 /* XXX used to be waiter->prio, not waiter->task->prio */ 7170 prio = __rt_effective_prio(pi_task, p->normal_prio); 7171 7172 /* 7173 * If nothing changed; bail early. 7174 */ 7175 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7176 return; 7177 7178 rq = __task_rq_lock(p, &rf); 7179 update_rq_clock(rq); 7180 /* 7181 * Set under pi_lock && rq->lock, such that the value can be used under 7182 * either lock. 7183 * 7184 * Note that there is loads of tricky to make this pointer cache work 7185 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7186 * ensure a task is de-boosted (pi_task is set to NULL) before the 7187 * task is allowed to run again (and can exit). This ensures the pointer 7188 * points to a blocked task -- which guarantees the task is present. 7189 */ 7190 p->pi_top_task = pi_task; 7191 7192 /* 7193 * For FIFO/RR we only need to set prio, if that matches we're done. 7194 */ 7195 if (prio == p->prio && !dl_prio(prio)) 7196 goto out_unlock; 7197 7198 /* 7199 * Idle task boosting is a no-no in general. There is one 7200 * exception, when PREEMPT_RT and NOHZ is active: 7201 * 7202 * The idle task calls get_next_timer_interrupt() and holds 7203 * the timer wheel base->lock on the CPU and another CPU wants 7204 * to access the timer (probably to cancel it). We can safely 7205 * ignore the boosting request, as the idle CPU runs this code 7206 * with interrupts disabled and will complete the lock 7207 * protected section without being interrupted. So there is no 7208 * real need to boost. 7209 */ 7210 if (unlikely(p == rq->idle)) { 7211 WARN_ON(p != rq->curr); 7212 WARN_ON(p->pi_blocked_on); 7213 goto out_unlock; 7214 } 7215 7216 trace_sched_pi_setprio(p, pi_task); 7217 oldprio = p->prio; 7218 7219 if (oldprio == prio) 7220 queue_flag &= ~DEQUEUE_MOVE; 7221 7222 prev_class = p->sched_class; 7223 next_class = __setscheduler_class(p->policy, prio); 7224 7225 if (prev_class != next_class && p->se.sched_delayed) 7226 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); 7227 7228 queued = task_on_rq_queued(p); 7229 running = task_current_donor(rq, p); 7230 if (queued) 7231 dequeue_task(rq, p, queue_flag); 7232 if (running) 7233 put_prev_task(rq, p); 7234 7235 /* 7236 * Boosting condition are: 7237 * 1. -rt task is running and holds mutex A 7238 * --> -dl task blocks on mutex A 7239 * 7240 * 2. -dl task is running and holds mutex A 7241 * --> -dl task blocks on mutex A and could preempt the 7242 * running task 7243 */ 7244 if (dl_prio(prio)) { 7245 if (!dl_prio(p->normal_prio) || 7246 (pi_task && dl_prio(pi_task->prio) && 7247 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7248 p->dl.pi_se = pi_task->dl.pi_se; 7249 queue_flag |= ENQUEUE_REPLENISH; 7250 } else { 7251 p->dl.pi_se = &p->dl; 7252 } 7253 } else if (rt_prio(prio)) { 7254 if (dl_prio(oldprio)) 7255 p->dl.pi_se = &p->dl; 7256 if (oldprio < prio) 7257 queue_flag |= ENQUEUE_HEAD; 7258 } else { 7259 if (dl_prio(oldprio)) 7260 p->dl.pi_se = &p->dl; 7261 if (rt_prio(oldprio)) 7262 p->rt.timeout = 0; 7263 } 7264 7265 p->sched_class = next_class; 7266 p->prio = prio; 7267 7268 check_class_changing(rq, p, prev_class); 7269 7270 if (queued) 7271 enqueue_task(rq, p, queue_flag); 7272 if (running) 7273 set_next_task(rq, p); 7274 7275 check_class_changed(rq, p, prev_class, oldprio); 7276 out_unlock: 7277 /* Avoid rq from going away on us: */ 7278 preempt_disable(); 7279 7280 rq_unpin_lock(rq, &rf); 7281 __balance_callbacks(rq); 7282 raw_spin_rq_unlock(rq); 7283 7284 preempt_enable(); 7285 } 7286 #endif 7287 7288 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7289 int __sched __cond_resched(void) 7290 { 7291 if (should_resched(0) && !irqs_disabled()) { 7292 preempt_schedule_common(); 7293 return 1; 7294 } 7295 /* 7296 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick 7297 * whether the current CPU is in an RCU read-side critical section, 7298 * so the tick can report quiescent states even for CPUs looping 7299 * in kernel context. In contrast, in non-preemptible kernels, 7300 * RCU readers leave no in-memory hints, which means that CPU-bound 7301 * processes executing in kernel context might never report an 7302 * RCU quiescent state. Therefore, the following code causes 7303 * cond_resched() to report a quiescent state, but only when RCU 7304 * is in urgent need of one. 7305 * A third case, preemptible, but non-PREEMPT_RCU provides for 7306 * urgently needed quiescent states via rcu_flavor_sched_clock_irq(). 7307 */ 7308 #ifndef CONFIG_PREEMPT_RCU 7309 rcu_all_qs(); 7310 #endif 7311 return 0; 7312 } 7313 EXPORT_SYMBOL(__cond_resched); 7314 #endif 7315 7316 #ifdef CONFIG_PREEMPT_DYNAMIC 7317 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7318 #define cond_resched_dynamic_enabled __cond_resched 7319 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7320 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7321 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7322 7323 #define might_resched_dynamic_enabled __cond_resched 7324 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7325 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7326 EXPORT_STATIC_CALL_TRAMP(might_resched); 7327 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7328 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7329 int __sched dynamic_cond_resched(void) 7330 { 7331 klp_sched_try_switch(); 7332 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7333 return 0; 7334 return __cond_resched(); 7335 } 7336 EXPORT_SYMBOL(dynamic_cond_resched); 7337 7338 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7339 int __sched dynamic_might_resched(void) 7340 { 7341 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7342 return 0; 7343 return __cond_resched(); 7344 } 7345 EXPORT_SYMBOL(dynamic_might_resched); 7346 #endif 7347 #endif 7348 7349 /* 7350 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7351 * call schedule, and on return reacquire the lock. 7352 * 7353 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7354 * operations here to prevent schedule() from being called twice (once via 7355 * spin_unlock(), once by hand). 7356 */ 7357 int __cond_resched_lock(spinlock_t *lock) 7358 { 7359 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7360 int ret = 0; 7361 7362 lockdep_assert_held(lock); 7363 7364 if (spin_needbreak(lock) || resched) { 7365 spin_unlock(lock); 7366 if (!_cond_resched()) 7367 cpu_relax(); 7368 ret = 1; 7369 spin_lock(lock); 7370 } 7371 return ret; 7372 } 7373 EXPORT_SYMBOL(__cond_resched_lock); 7374 7375 int __cond_resched_rwlock_read(rwlock_t *lock) 7376 { 7377 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7378 int ret = 0; 7379 7380 lockdep_assert_held_read(lock); 7381 7382 if (rwlock_needbreak(lock) || resched) { 7383 read_unlock(lock); 7384 if (!_cond_resched()) 7385 cpu_relax(); 7386 ret = 1; 7387 read_lock(lock); 7388 } 7389 return ret; 7390 } 7391 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7392 7393 int __cond_resched_rwlock_write(rwlock_t *lock) 7394 { 7395 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7396 int ret = 0; 7397 7398 lockdep_assert_held_write(lock); 7399 7400 if (rwlock_needbreak(lock) || resched) { 7401 write_unlock(lock); 7402 if (!_cond_resched()) 7403 cpu_relax(); 7404 ret = 1; 7405 write_lock(lock); 7406 } 7407 return ret; 7408 } 7409 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7410 7411 #ifdef CONFIG_PREEMPT_DYNAMIC 7412 7413 #ifdef CONFIG_GENERIC_ENTRY 7414 #include <linux/entry-common.h> 7415 #endif 7416 7417 /* 7418 * SC:cond_resched 7419 * SC:might_resched 7420 * SC:preempt_schedule 7421 * SC:preempt_schedule_notrace 7422 * SC:irqentry_exit_cond_resched 7423 * 7424 * 7425 * NONE: 7426 * cond_resched <- __cond_resched 7427 * might_resched <- RET0 7428 * preempt_schedule <- NOP 7429 * preempt_schedule_notrace <- NOP 7430 * irqentry_exit_cond_resched <- NOP 7431 * dynamic_preempt_lazy <- false 7432 * 7433 * VOLUNTARY: 7434 * cond_resched <- __cond_resched 7435 * might_resched <- __cond_resched 7436 * preempt_schedule <- NOP 7437 * preempt_schedule_notrace <- NOP 7438 * irqentry_exit_cond_resched <- NOP 7439 * dynamic_preempt_lazy <- false 7440 * 7441 * FULL: 7442 * cond_resched <- RET0 7443 * might_resched <- RET0 7444 * preempt_schedule <- preempt_schedule 7445 * preempt_schedule_notrace <- preempt_schedule_notrace 7446 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7447 * dynamic_preempt_lazy <- false 7448 * 7449 * LAZY: 7450 * cond_resched <- RET0 7451 * might_resched <- RET0 7452 * preempt_schedule <- preempt_schedule 7453 * preempt_schedule_notrace <- preempt_schedule_notrace 7454 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7455 * dynamic_preempt_lazy <- true 7456 */ 7457 7458 enum { 7459 preempt_dynamic_undefined = -1, 7460 preempt_dynamic_none, 7461 preempt_dynamic_voluntary, 7462 preempt_dynamic_full, 7463 preempt_dynamic_lazy, 7464 }; 7465 7466 int preempt_dynamic_mode = preempt_dynamic_undefined; 7467 7468 int sched_dynamic_mode(const char *str) 7469 { 7470 #ifndef CONFIG_PREEMPT_RT 7471 if (!strcmp(str, "none")) 7472 return preempt_dynamic_none; 7473 7474 if (!strcmp(str, "voluntary")) 7475 return preempt_dynamic_voluntary; 7476 #endif 7477 7478 if (!strcmp(str, "full")) 7479 return preempt_dynamic_full; 7480 7481 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY 7482 if (!strcmp(str, "lazy")) 7483 return preempt_dynamic_lazy; 7484 #endif 7485 7486 return -EINVAL; 7487 } 7488 7489 #define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) 7490 #define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) 7491 7492 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7493 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7494 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7495 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7496 #define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) 7497 #define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) 7498 #else 7499 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7500 #endif 7501 7502 static DEFINE_MUTEX(sched_dynamic_mutex); 7503 static bool klp_override; 7504 7505 static void __sched_dynamic_update(int mode) 7506 { 7507 /* 7508 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7509 * the ZERO state, which is invalid. 7510 */ 7511 if (!klp_override) 7512 preempt_dynamic_enable(cond_resched); 7513 preempt_dynamic_enable(might_resched); 7514 preempt_dynamic_enable(preempt_schedule); 7515 preempt_dynamic_enable(preempt_schedule_notrace); 7516 preempt_dynamic_enable(irqentry_exit_cond_resched); 7517 preempt_dynamic_key_disable(preempt_lazy); 7518 7519 switch (mode) { 7520 case preempt_dynamic_none: 7521 if (!klp_override) 7522 preempt_dynamic_enable(cond_resched); 7523 preempt_dynamic_disable(might_resched); 7524 preempt_dynamic_disable(preempt_schedule); 7525 preempt_dynamic_disable(preempt_schedule_notrace); 7526 preempt_dynamic_disable(irqentry_exit_cond_resched); 7527 preempt_dynamic_key_disable(preempt_lazy); 7528 if (mode != preempt_dynamic_mode) 7529 pr_info("Dynamic Preempt: none\n"); 7530 break; 7531 7532 case preempt_dynamic_voluntary: 7533 if (!klp_override) 7534 preempt_dynamic_enable(cond_resched); 7535 preempt_dynamic_enable(might_resched); 7536 preempt_dynamic_disable(preempt_schedule); 7537 preempt_dynamic_disable(preempt_schedule_notrace); 7538 preempt_dynamic_disable(irqentry_exit_cond_resched); 7539 preempt_dynamic_key_disable(preempt_lazy); 7540 if (mode != preempt_dynamic_mode) 7541 pr_info("Dynamic Preempt: voluntary\n"); 7542 break; 7543 7544 case preempt_dynamic_full: 7545 if (!klp_override) 7546 preempt_dynamic_disable(cond_resched); 7547 preempt_dynamic_disable(might_resched); 7548 preempt_dynamic_enable(preempt_schedule); 7549 preempt_dynamic_enable(preempt_schedule_notrace); 7550 preempt_dynamic_enable(irqentry_exit_cond_resched); 7551 preempt_dynamic_key_disable(preempt_lazy); 7552 if (mode != preempt_dynamic_mode) 7553 pr_info("Dynamic Preempt: full\n"); 7554 break; 7555 7556 case preempt_dynamic_lazy: 7557 if (!klp_override) 7558 preempt_dynamic_disable(cond_resched); 7559 preempt_dynamic_disable(might_resched); 7560 preempt_dynamic_enable(preempt_schedule); 7561 preempt_dynamic_enable(preempt_schedule_notrace); 7562 preempt_dynamic_enable(irqentry_exit_cond_resched); 7563 preempt_dynamic_key_enable(preempt_lazy); 7564 if (mode != preempt_dynamic_mode) 7565 pr_info("Dynamic Preempt: lazy\n"); 7566 break; 7567 } 7568 7569 preempt_dynamic_mode = mode; 7570 } 7571 7572 void sched_dynamic_update(int mode) 7573 { 7574 mutex_lock(&sched_dynamic_mutex); 7575 __sched_dynamic_update(mode); 7576 mutex_unlock(&sched_dynamic_mutex); 7577 } 7578 7579 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7580 7581 static int klp_cond_resched(void) 7582 { 7583 __klp_sched_try_switch(); 7584 return __cond_resched(); 7585 } 7586 7587 void sched_dynamic_klp_enable(void) 7588 { 7589 mutex_lock(&sched_dynamic_mutex); 7590 7591 klp_override = true; 7592 static_call_update(cond_resched, klp_cond_resched); 7593 7594 mutex_unlock(&sched_dynamic_mutex); 7595 } 7596 7597 void sched_dynamic_klp_disable(void) 7598 { 7599 mutex_lock(&sched_dynamic_mutex); 7600 7601 klp_override = false; 7602 __sched_dynamic_update(preempt_dynamic_mode); 7603 7604 mutex_unlock(&sched_dynamic_mutex); 7605 } 7606 7607 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 7608 7609 static int __init setup_preempt_mode(char *str) 7610 { 7611 int mode = sched_dynamic_mode(str); 7612 if (mode < 0) { 7613 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7614 return 0; 7615 } 7616 7617 sched_dynamic_update(mode); 7618 return 1; 7619 } 7620 __setup("preempt=", setup_preempt_mode); 7621 7622 static void __init preempt_dynamic_init(void) 7623 { 7624 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7625 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7626 sched_dynamic_update(preempt_dynamic_none); 7627 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7628 sched_dynamic_update(preempt_dynamic_voluntary); 7629 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7630 sched_dynamic_update(preempt_dynamic_lazy); 7631 } else { 7632 /* Default static call setting, nothing to do */ 7633 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7634 preempt_dynamic_mode = preempt_dynamic_full; 7635 pr_info("Dynamic Preempt: full\n"); 7636 } 7637 } 7638 } 7639 7640 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7641 bool preempt_model_##mode(void) \ 7642 { \ 7643 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7644 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7645 } \ 7646 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7647 7648 PREEMPT_MODEL_ACCESSOR(none); 7649 PREEMPT_MODEL_ACCESSOR(voluntary); 7650 PREEMPT_MODEL_ACCESSOR(full); 7651 PREEMPT_MODEL_ACCESSOR(lazy); 7652 7653 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7654 7655 #define preempt_dynamic_mode -1 7656 7657 static inline void preempt_dynamic_init(void) { } 7658 7659 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7660 7661 const char *preempt_modes[] = { 7662 "none", "voluntary", "full", "lazy", NULL, 7663 }; 7664 7665 const char *preempt_model_str(void) 7666 { 7667 bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) && 7668 (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) || 7669 IS_ENABLED(CONFIG_PREEMPT_LAZY)); 7670 static char buf[128]; 7671 7672 if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) { 7673 struct seq_buf s; 7674 7675 seq_buf_init(&s, buf, sizeof(buf)); 7676 seq_buf_puts(&s, "PREEMPT"); 7677 7678 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 7679 seq_buf_printf(&s, "%sRT%s", 7680 brace ? "_{" : "_", 7681 brace ? "," : ""); 7682 7683 if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) { 7684 seq_buf_printf(&s, "(%s)%s", 7685 preempt_dynamic_mode > 0 ? 7686 preempt_modes[preempt_dynamic_mode] : "undef", 7687 brace ? "}" : ""); 7688 return seq_buf_str(&s); 7689 } 7690 7691 if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7692 seq_buf_printf(&s, "LAZY%s", 7693 brace ? "}" : ""); 7694 return seq_buf_str(&s); 7695 } 7696 7697 return seq_buf_str(&s); 7698 } 7699 7700 if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD)) 7701 return "VOLUNTARY"; 7702 7703 return "NONE"; 7704 } 7705 7706 int io_schedule_prepare(void) 7707 { 7708 int old_iowait = current->in_iowait; 7709 7710 current->in_iowait = 1; 7711 blk_flush_plug(current->plug, true); 7712 return old_iowait; 7713 } 7714 7715 void io_schedule_finish(int token) 7716 { 7717 current->in_iowait = token; 7718 } 7719 7720 /* 7721 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7722 * that process accounting knows that this is a task in IO wait state. 7723 */ 7724 long __sched io_schedule_timeout(long timeout) 7725 { 7726 int token; 7727 long ret; 7728 7729 token = io_schedule_prepare(); 7730 ret = schedule_timeout(timeout); 7731 io_schedule_finish(token); 7732 7733 return ret; 7734 } 7735 EXPORT_SYMBOL(io_schedule_timeout); 7736 7737 void __sched io_schedule(void) 7738 { 7739 int token; 7740 7741 token = io_schedule_prepare(); 7742 schedule(); 7743 io_schedule_finish(token); 7744 } 7745 EXPORT_SYMBOL(io_schedule); 7746 7747 void sched_show_task(struct task_struct *p) 7748 { 7749 unsigned long free; 7750 int ppid; 7751 7752 if (!try_get_task_stack(p)) 7753 return; 7754 7755 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7756 7757 if (task_is_running(p)) 7758 pr_cont(" running task "); 7759 free = stack_not_used(p); 7760 ppid = 0; 7761 rcu_read_lock(); 7762 if (pid_alive(p)) 7763 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7764 rcu_read_unlock(); 7765 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n", 7766 free, task_pid_nr(p), task_tgid_nr(p), 7767 ppid, p->flags, read_task_thread_flags(p)); 7768 7769 print_worker_info(KERN_INFO, p); 7770 print_stop_info(KERN_INFO, p); 7771 print_scx_info(KERN_INFO, p); 7772 show_stack(p, NULL, KERN_INFO); 7773 put_task_stack(p); 7774 } 7775 EXPORT_SYMBOL_GPL(sched_show_task); 7776 7777 static inline bool 7778 state_filter_match(unsigned long state_filter, struct task_struct *p) 7779 { 7780 unsigned int state = READ_ONCE(p->__state); 7781 7782 /* no filter, everything matches */ 7783 if (!state_filter) 7784 return true; 7785 7786 /* filter, but doesn't match */ 7787 if (!(state & state_filter)) 7788 return false; 7789 7790 /* 7791 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7792 * TASK_KILLABLE). 7793 */ 7794 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7795 return false; 7796 7797 return true; 7798 } 7799 7800 7801 void show_state_filter(unsigned int state_filter) 7802 { 7803 struct task_struct *g, *p; 7804 7805 rcu_read_lock(); 7806 for_each_process_thread(g, p) { 7807 /* 7808 * reset the NMI-timeout, listing all files on a slow 7809 * console might take a lot of time: 7810 * Also, reset softlockup watchdogs on all CPUs, because 7811 * another CPU might be blocked waiting for us to process 7812 * an IPI. 7813 */ 7814 touch_nmi_watchdog(); 7815 touch_all_softlockup_watchdogs(); 7816 if (state_filter_match(state_filter, p)) 7817 sched_show_task(p); 7818 } 7819 7820 if (!state_filter) 7821 sysrq_sched_debug_show(); 7822 7823 rcu_read_unlock(); 7824 /* 7825 * Only show locks if all tasks are dumped: 7826 */ 7827 if (!state_filter) 7828 debug_show_all_locks(); 7829 } 7830 7831 /** 7832 * init_idle - set up an idle thread for a given CPU 7833 * @idle: task in question 7834 * @cpu: CPU the idle task belongs to 7835 * 7836 * NOTE: this function does not set the idle thread's NEED_RESCHED 7837 * flag, to make booting more robust. 7838 */ 7839 void __init init_idle(struct task_struct *idle, int cpu) 7840 { 7841 #ifdef CONFIG_SMP 7842 struct affinity_context ac = (struct affinity_context) { 7843 .new_mask = cpumask_of(cpu), 7844 .flags = 0, 7845 }; 7846 #endif 7847 struct rq *rq = cpu_rq(cpu); 7848 unsigned long flags; 7849 7850 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7851 raw_spin_rq_lock(rq); 7852 7853 idle->__state = TASK_RUNNING; 7854 idle->se.exec_start = sched_clock(); 7855 /* 7856 * PF_KTHREAD should already be set at this point; regardless, make it 7857 * look like a proper per-CPU kthread. 7858 */ 7859 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7860 kthread_set_per_cpu(idle, cpu); 7861 7862 #ifdef CONFIG_SMP 7863 /* 7864 * No validation and serialization required at boot time and for 7865 * setting up the idle tasks of not yet online CPUs. 7866 */ 7867 set_cpus_allowed_common(idle, &ac); 7868 #endif 7869 /* 7870 * We're having a chicken and egg problem, even though we are 7871 * holding rq->lock, the CPU isn't yet set to this CPU so the 7872 * lockdep check in task_group() will fail. 7873 * 7874 * Similar case to sched_fork(). / Alternatively we could 7875 * use task_rq_lock() here and obtain the other rq->lock. 7876 * 7877 * Silence PROVE_RCU 7878 */ 7879 rcu_read_lock(); 7880 __set_task_cpu(idle, cpu); 7881 rcu_read_unlock(); 7882 7883 rq->idle = idle; 7884 rq_set_donor(rq, idle); 7885 rcu_assign_pointer(rq->curr, idle); 7886 idle->on_rq = TASK_ON_RQ_QUEUED; 7887 #ifdef CONFIG_SMP 7888 idle->on_cpu = 1; 7889 #endif 7890 raw_spin_rq_unlock(rq); 7891 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7892 7893 /* Set the preempt count _outside_ the spinlocks! */ 7894 init_idle_preempt_count(idle, cpu); 7895 7896 /* 7897 * The idle tasks have their own, simple scheduling class: 7898 */ 7899 idle->sched_class = &idle_sched_class; 7900 ftrace_graph_init_idle_task(idle, cpu); 7901 vtime_init_idle(idle, cpu); 7902 #ifdef CONFIG_SMP 7903 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7904 #endif 7905 } 7906 7907 #ifdef CONFIG_SMP 7908 7909 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7910 const struct cpumask *trial) 7911 { 7912 int ret = 1; 7913 7914 if (cpumask_empty(cur)) 7915 return ret; 7916 7917 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7918 7919 return ret; 7920 } 7921 7922 int task_can_attach(struct task_struct *p) 7923 { 7924 int ret = 0; 7925 7926 /* 7927 * Kthreads which disallow setaffinity shouldn't be moved 7928 * to a new cpuset; we don't want to change their CPU 7929 * affinity and isolating such threads by their set of 7930 * allowed nodes is unnecessary. Thus, cpusets are not 7931 * applicable for such threads. This prevents checking for 7932 * success of set_cpus_allowed_ptr() on all attached tasks 7933 * before cpus_mask may be changed. 7934 */ 7935 if (p->flags & PF_NO_SETAFFINITY) 7936 ret = -EINVAL; 7937 7938 return ret; 7939 } 7940 7941 bool sched_smp_initialized __read_mostly; 7942 7943 #ifdef CONFIG_NUMA_BALANCING 7944 /* Migrate current task p to target_cpu */ 7945 int migrate_task_to(struct task_struct *p, int target_cpu) 7946 { 7947 struct migration_arg arg = { p, target_cpu }; 7948 int curr_cpu = task_cpu(p); 7949 7950 if (curr_cpu == target_cpu) 7951 return 0; 7952 7953 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7954 return -EINVAL; 7955 7956 /* TODO: This is not properly updating schedstats */ 7957 7958 trace_sched_move_numa(p, curr_cpu, target_cpu); 7959 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7960 } 7961 7962 /* 7963 * Requeue a task on a given node and accurately track the number of NUMA 7964 * tasks on the runqueues 7965 */ 7966 void sched_setnuma(struct task_struct *p, int nid) 7967 { 7968 bool queued, running; 7969 struct rq_flags rf; 7970 struct rq *rq; 7971 7972 rq = task_rq_lock(p, &rf); 7973 queued = task_on_rq_queued(p); 7974 running = task_current_donor(rq, p); 7975 7976 if (queued) 7977 dequeue_task(rq, p, DEQUEUE_SAVE); 7978 if (running) 7979 put_prev_task(rq, p); 7980 7981 p->numa_preferred_nid = nid; 7982 7983 if (queued) 7984 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7985 if (running) 7986 set_next_task(rq, p); 7987 task_rq_unlock(rq, p, &rf); 7988 } 7989 #endif /* CONFIG_NUMA_BALANCING */ 7990 7991 #ifdef CONFIG_HOTPLUG_CPU 7992 /* 7993 * Invoked on the outgoing CPU in context of the CPU hotplug thread 7994 * after ensuring that there are no user space tasks left on the CPU. 7995 * 7996 * If there is a lazy mm in use on the hotplug thread, drop it and 7997 * switch to init_mm. 7998 * 7999 * The reference count on init_mm is dropped in finish_cpu(). 8000 */ 8001 static void sched_force_init_mm(void) 8002 { 8003 struct mm_struct *mm = current->active_mm; 8004 8005 if (mm != &init_mm) { 8006 mmgrab_lazy_tlb(&init_mm); 8007 local_irq_disable(); 8008 current->active_mm = &init_mm; 8009 switch_mm_irqs_off(mm, &init_mm, current); 8010 local_irq_enable(); 8011 finish_arch_post_lock_switch(); 8012 mmdrop_lazy_tlb(mm); 8013 } 8014 8015 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 8016 } 8017 8018 static int __balance_push_cpu_stop(void *arg) 8019 { 8020 struct task_struct *p = arg; 8021 struct rq *rq = this_rq(); 8022 struct rq_flags rf; 8023 int cpu; 8024 8025 raw_spin_lock_irq(&p->pi_lock); 8026 rq_lock(rq, &rf); 8027 8028 update_rq_clock(rq); 8029 8030 if (task_rq(p) == rq && task_on_rq_queued(p)) { 8031 cpu = select_fallback_rq(rq->cpu, p); 8032 rq = __migrate_task(rq, &rf, p, cpu); 8033 } 8034 8035 rq_unlock(rq, &rf); 8036 raw_spin_unlock_irq(&p->pi_lock); 8037 8038 put_task_struct(p); 8039 8040 return 0; 8041 } 8042 8043 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8044 8045 /* 8046 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8047 * 8048 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8049 * effective when the hotplug motion is down. 8050 */ 8051 static void balance_push(struct rq *rq) 8052 { 8053 struct task_struct *push_task = rq->curr; 8054 8055 lockdep_assert_rq_held(rq); 8056 8057 /* 8058 * Ensure the thing is persistent until balance_push_set(.on = false); 8059 */ 8060 rq->balance_callback = &balance_push_callback; 8061 8062 /* 8063 * Only active while going offline and when invoked on the outgoing 8064 * CPU. 8065 */ 8066 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8067 return; 8068 8069 /* 8070 * Both the cpu-hotplug and stop task are in this case and are 8071 * required to complete the hotplug process. 8072 */ 8073 if (kthread_is_per_cpu(push_task) || 8074 is_migration_disabled(push_task)) { 8075 8076 /* 8077 * If this is the idle task on the outgoing CPU try to wake 8078 * up the hotplug control thread which might wait for the 8079 * last task to vanish. The rcuwait_active() check is 8080 * accurate here because the waiter is pinned on this CPU 8081 * and can't obviously be running in parallel. 8082 * 8083 * On RT kernels this also has to check whether there are 8084 * pinned and scheduled out tasks on the runqueue. They 8085 * need to leave the migrate disabled section first. 8086 */ 8087 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8088 rcuwait_active(&rq->hotplug_wait)) { 8089 raw_spin_rq_unlock(rq); 8090 rcuwait_wake_up(&rq->hotplug_wait); 8091 raw_spin_rq_lock(rq); 8092 } 8093 return; 8094 } 8095 8096 get_task_struct(push_task); 8097 /* 8098 * Temporarily drop rq->lock such that we can wake-up the stop task. 8099 * Both preemption and IRQs are still disabled. 8100 */ 8101 preempt_disable(); 8102 raw_spin_rq_unlock(rq); 8103 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8104 this_cpu_ptr(&push_work)); 8105 preempt_enable(); 8106 /* 8107 * At this point need_resched() is true and we'll take the loop in 8108 * schedule(). The next pick is obviously going to be the stop task 8109 * which kthread_is_per_cpu() and will push this task away. 8110 */ 8111 raw_spin_rq_lock(rq); 8112 } 8113 8114 static void balance_push_set(int cpu, bool on) 8115 { 8116 struct rq *rq = cpu_rq(cpu); 8117 struct rq_flags rf; 8118 8119 rq_lock_irqsave(rq, &rf); 8120 if (on) { 8121 WARN_ON_ONCE(rq->balance_callback); 8122 rq->balance_callback = &balance_push_callback; 8123 } else if (rq->balance_callback == &balance_push_callback) { 8124 rq->balance_callback = NULL; 8125 } 8126 rq_unlock_irqrestore(rq, &rf); 8127 } 8128 8129 /* 8130 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8131 * inactive. All tasks which are not per CPU kernel threads are either 8132 * pushed off this CPU now via balance_push() or placed on a different CPU 8133 * during wakeup. Wait until the CPU is quiescent. 8134 */ 8135 static void balance_hotplug_wait(void) 8136 { 8137 struct rq *rq = this_rq(); 8138 8139 rcuwait_wait_event(&rq->hotplug_wait, 8140 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8141 TASK_UNINTERRUPTIBLE); 8142 } 8143 8144 #else 8145 8146 static inline void balance_push(struct rq *rq) 8147 { 8148 } 8149 8150 static inline void balance_push_set(int cpu, bool on) 8151 { 8152 } 8153 8154 static inline void balance_hotplug_wait(void) 8155 { 8156 } 8157 8158 #endif /* CONFIG_HOTPLUG_CPU */ 8159 8160 void set_rq_online(struct rq *rq) 8161 { 8162 if (!rq->online) { 8163 const struct sched_class *class; 8164 8165 cpumask_set_cpu(rq->cpu, rq->rd->online); 8166 rq->online = 1; 8167 8168 for_each_class(class) { 8169 if (class->rq_online) 8170 class->rq_online(rq); 8171 } 8172 } 8173 } 8174 8175 void set_rq_offline(struct rq *rq) 8176 { 8177 if (rq->online) { 8178 const struct sched_class *class; 8179 8180 update_rq_clock(rq); 8181 for_each_class(class) { 8182 if (class->rq_offline) 8183 class->rq_offline(rq); 8184 } 8185 8186 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8187 rq->online = 0; 8188 } 8189 } 8190 8191 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8192 { 8193 struct rq_flags rf; 8194 8195 rq_lock_irqsave(rq, &rf); 8196 if (rq->rd) { 8197 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8198 set_rq_online(rq); 8199 } 8200 rq_unlock_irqrestore(rq, &rf); 8201 } 8202 8203 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8204 { 8205 struct rq_flags rf; 8206 8207 rq_lock_irqsave(rq, &rf); 8208 if (rq->rd) { 8209 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8210 set_rq_offline(rq); 8211 } 8212 rq_unlock_irqrestore(rq, &rf); 8213 } 8214 8215 /* 8216 * used to mark begin/end of suspend/resume: 8217 */ 8218 static int num_cpus_frozen; 8219 8220 /* 8221 * Update cpusets according to cpu_active mask. If cpusets are 8222 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8223 * around partition_sched_domains(). 8224 * 8225 * If we come here as part of a suspend/resume, don't touch cpusets because we 8226 * want to restore it back to its original state upon resume anyway. 8227 */ 8228 static void cpuset_cpu_active(void) 8229 { 8230 if (cpuhp_tasks_frozen) { 8231 /* 8232 * num_cpus_frozen tracks how many CPUs are involved in suspend 8233 * resume sequence. As long as this is not the last online 8234 * operation in the resume sequence, just build a single sched 8235 * domain, ignoring cpusets. 8236 */ 8237 cpuset_reset_sched_domains(); 8238 if (--num_cpus_frozen) 8239 return; 8240 /* 8241 * This is the last CPU online operation. So fall through and 8242 * restore the original sched domains by considering the 8243 * cpuset configurations. 8244 */ 8245 cpuset_force_rebuild(); 8246 } 8247 cpuset_update_active_cpus(); 8248 } 8249 8250 static void cpuset_cpu_inactive(unsigned int cpu) 8251 { 8252 if (!cpuhp_tasks_frozen) { 8253 cpuset_update_active_cpus(); 8254 } else { 8255 num_cpus_frozen++; 8256 cpuset_reset_sched_domains(); 8257 } 8258 } 8259 8260 static inline void sched_smt_present_inc(int cpu) 8261 { 8262 #ifdef CONFIG_SCHED_SMT 8263 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8264 static_branch_inc_cpuslocked(&sched_smt_present); 8265 #endif 8266 } 8267 8268 static inline void sched_smt_present_dec(int cpu) 8269 { 8270 #ifdef CONFIG_SCHED_SMT 8271 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8272 static_branch_dec_cpuslocked(&sched_smt_present); 8273 #endif 8274 } 8275 8276 int sched_cpu_activate(unsigned int cpu) 8277 { 8278 struct rq *rq = cpu_rq(cpu); 8279 8280 /* 8281 * Clear the balance_push callback and prepare to schedule 8282 * regular tasks. 8283 */ 8284 balance_push_set(cpu, false); 8285 8286 /* 8287 * When going up, increment the number of cores with SMT present. 8288 */ 8289 sched_smt_present_inc(cpu); 8290 set_cpu_active(cpu, true); 8291 8292 if (sched_smp_initialized) { 8293 sched_update_numa(cpu, true); 8294 sched_domains_numa_masks_set(cpu); 8295 cpuset_cpu_active(); 8296 } 8297 8298 scx_rq_activate(rq); 8299 8300 /* 8301 * Put the rq online, if not already. This happens: 8302 * 8303 * 1) In the early boot process, because we build the real domains 8304 * after all CPUs have been brought up. 8305 * 8306 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8307 * domains. 8308 */ 8309 sched_set_rq_online(rq, cpu); 8310 8311 return 0; 8312 } 8313 8314 int sched_cpu_deactivate(unsigned int cpu) 8315 { 8316 struct rq *rq = cpu_rq(cpu); 8317 int ret; 8318 8319 ret = dl_bw_deactivate(cpu); 8320 8321 if (ret) 8322 return ret; 8323 8324 /* 8325 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8326 * load balancing when not active 8327 */ 8328 nohz_balance_exit_idle(rq); 8329 8330 set_cpu_active(cpu, false); 8331 8332 /* 8333 * From this point forward, this CPU will refuse to run any task that 8334 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8335 * push those tasks away until this gets cleared, see 8336 * sched_cpu_dying(). 8337 */ 8338 balance_push_set(cpu, true); 8339 8340 /* 8341 * We've cleared cpu_active_mask / set balance_push, wait for all 8342 * preempt-disabled and RCU users of this state to go away such that 8343 * all new such users will observe it. 8344 * 8345 * Specifically, we rely on ttwu to no longer target this CPU, see 8346 * ttwu_queue_cond() and is_cpu_allowed(). 8347 * 8348 * Do sync before park smpboot threads to take care the RCU boost case. 8349 */ 8350 synchronize_rcu(); 8351 8352 sched_set_rq_offline(rq, cpu); 8353 8354 scx_rq_deactivate(rq); 8355 8356 /* 8357 * When going down, decrement the number of cores with SMT present. 8358 */ 8359 sched_smt_present_dec(cpu); 8360 8361 #ifdef CONFIG_SCHED_SMT 8362 sched_core_cpu_deactivate(cpu); 8363 #endif 8364 8365 if (!sched_smp_initialized) 8366 return 0; 8367 8368 sched_update_numa(cpu, false); 8369 cpuset_cpu_inactive(cpu); 8370 sched_domains_numa_masks_clear(cpu); 8371 return 0; 8372 } 8373 8374 static void sched_rq_cpu_starting(unsigned int cpu) 8375 { 8376 struct rq *rq = cpu_rq(cpu); 8377 8378 rq->calc_load_update = calc_load_update; 8379 update_max_interval(); 8380 } 8381 8382 int sched_cpu_starting(unsigned int cpu) 8383 { 8384 sched_core_cpu_starting(cpu); 8385 sched_rq_cpu_starting(cpu); 8386 sched_tick_start(cpu); 8387 return 0; 8388 } 8389 8390 #ifdef CONFIG_HOTPLUG_CPU 8391 8392 /* 8393 * Invoked immediately before the stopper thread is invoked to bring the 8394 * CPU down completely. At this point all per CPU kthreads except the 8395 * hotplug thread (current) and the stopper thread (inactive) have been 8396 * either parked or have been unbound from the outgoing CPU. Ensure that 8397 * any of those which might be on the way out are gone. 8398 * 8399 * If after this point a bound task is being woken on this CPU then the 8400 * responsible hotplug callback has failed to do it's job. 8401 * sched_cpu_dying() will catch it with the appropriate fireworks. 8402 */ 8403 int sched_cpu_wait_empty(unsigned int cpu) 8404 { 8405 balance_hotplug_wait(); 8406 sched_force_init_mm(); 8407 return 0; 8408 } 8409 8410 /* 8411 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8412 * might have. Called from the CPU stopper task after ensuring that the 8413 * stopper is the last running task on the CPU, so nr_active count is 8414 * stable. We need to take the tear-down thread which is calling this into 8415 * account, so we hand in adjust = 1 to the load calculation. 8416 * 8417 * Also see the comment "Global load-average calculations". 8418 */ 8419 static void calc_load_migrate(struct rq *rq) 8420 { 8421 long delta = calc_load_fold_active(rq, 1); 8422 8423 if (delta) 8424 atomic_long_add(delta, &calc_load_tasks); 8425 } 8426 8427 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8428 { 8429 struct task_struct *g, *p; 8430 int cpu = cpu_of(rq); 8431 8432 lockdep_assert_rq_held(rq); 8433 8434 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8435 for_each_process_thread(g, p) { 8436 if (task_cpu(p) != cpu) 8437 continue; 8438 8439 if (!task_on_rq_queued(p)) 8440 continue; 8441 8442 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8443 } 8444 } 8445 8446 int sched_cpu_dying(unsigned int cpu) 8447 { 8448 struct rq *rq = cpu_rq(cpu); 8449 struct rq_flags rf; 8450 8451 /* Handle pending wakeups and then migrate everything off */ 8452 sched_tick_stop(cpu); 8453 8454 rq_lock_irqsave(rq, &rf); 8455 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8456 WARN(true, "Dying CPU not properly vacated!"); 8457 dump_rq_tasks(rq, KERN_WARNING); 8458 } 8459 rq_unlock_irqrestore(rq, &rf); 8460 8461 calc_load_migrate(rq); 8462 update_max_interval(); 8463 hrtick_clear(rq); 8464 sched_core_cpu_dying(cpu); 8465 return 0; 8466 } 8467 #endif 8468 8469 void __init sched_init_smp(void) 8470 { 8471 sched_init_numa(NUMA_NO_NODE); 8472 8473 /* 8474 * There's no userspace yet to cause hotplug operations; hence all the 8475 * CPU masks are stable and all blatant races in the below code cannot 8476 * happen. 8477 */ 8478 sched_domains_mutex_lock(); 8479 sched_init_domains(cpu_active_mask); 8480 sched_domains_mutex_unlock(); 8481 8482 /* Move init over to a non-isolated CPU */ 8483 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8484 BUG(); 8485 current->flags &= ~PF_NO_SETAFFINITY; 8486 sched_init_granularity(); 8487 8488 init_sched_rt_class(); 8489 init_sched_dl_class(); 8490 8491 sched_smp_initialized = true; 8492 } 8493 8494 static int __init migration_init(void) 8495 { 8496 sched_cpu_starting(smp_processor_id()); 8497 return 0; 8498 } 8499 early_initcall(migration_init); 8500 8501 #else 8502 void __init sched_init_smp(void) 8503 { 8504 sched_init_granularity(); 8505 } 8506 #endif /* CONFIG_SMP */ 8507 8508 int in_sched_functions(unsigned long addr) 8509 { 8510 return in_lock_functions(addr) || 8511 (addr >= (unsigned long)__sched_text_start 8512 && addr < (unsigned long)__sched_text_end); 8513 } 8514 8515 #ifdef CONFIG_CGROUP_SCHED 8516 /* 8517 * Default task group. 8518 * Every task in system belongs to this group at bootup. 8519 */ 8520 struct task_group root_task_group; 8521 LIST_HEAD(task_groups); 8522 8523 /* Cacheline aligned slab cache for task_group */ 8524 static struct kmem_cache *task_group_cache __ro_after_init; 8525 #endif 8526 8527 void __init sched_init(void) 8528 { 8529 unsigned long ptr = 0; 8530 int i; 8531 8532 /* Make sure the linker didn't screw up */ 8533 #ifdef CONFIG_SMP 8534 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8535 #endif 8536 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8537 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8538 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8539 #ifdef CONFIG_SCHED_CLASS_EXT 8540 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8541 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8542 #endif 8543 8544 wait_bit_init(); 8545 8546 #ifdef CONFIG_FAIR_GROUP_SCHED 8547 ptr += 2 * nr_cpu_ids * sizeof(void **); 8548 #endif 8549 #ifdef CONFIG_RT_GROUP_SCHED 8550 ptr += 2 * nr_cpu_ids * sizeof(void **); 8551 #endif 8552 if (ptr) { 8553 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8554 8555 #ifdef CONFIG_FAIR_GROUP_SCHED 8556 root_task_group.se = (struct sched_entity **)ptr; 8557 ptr += nr_cpu_ids * sizeof(void **); 8558 8559 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8560 ptr += nr_cpu_ids * sizeof(void **); 8561 8562 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8563 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8564 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8565 #ifdef CONFIG_EXT_GROUP_SCHED 8566 root_task_group.scx_weight = CGROUP_WEIGHT_DFL; 8567 #endif /* CONFIG_EXT_GROUP_SCHED */ 8568 #ifdef CONFIG_RT_GROUP_SCHED 8569 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8570 ptr += nr_cpu_ids * sizeof(void **); 8571 8572 root_task_group.rt_rq = (struct rt_rq **)ptr; 8573 ptr += nr_cpu_ids * sizeof(void **); 8574 8575 #endif /* CONFIG_RT_GROUP_SCHED */ 8576 } 8577 8578 #ifdef CONFIG_SMP 8579 init_defrootdomain(); 8580 #endif 8581 8582 #ifdef CONFIG_RT_GROUP_SCHED 8583 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8584 global_rt_period(), global_rt_runtime()); 8585 #endif /* CONFIG_RT_GROUP_SCHED */ 8586 8587 #ifdef CONFIG_CGROUP_SCHED 8588 task_group_cache = KMEM_CACHE(task_group, 0); 8589 8590 list_add(&root_task_group.list, &task_groups); 8591 INIT_LIST_HEAD(&root_task_group.children); 8592 INIT_LIST_HEAD(&root_task_group.siblings); 8593 autogroup_init(&init_task); 8594 #endif /* CONFIG_CGROUP_SCHED */ 8595 8596 for_each_possible_cpu(i) { 8597 struct rq *rq; 8598 8599 rq = cpu_rq(i); 8600 raw_spin_lock_init(&rq->__lock); 8601 rq->nr_running = 0; 8602 rq->calc_load_active = 0; 8603 rq->calc_load_update = jiffies + LOAD_FREQ; 8604 init_cfs_rq(&rq->cfs); 8605 init_rt_rq(&rq->rt); 8606 init_dl_rq(&rq->dl); 8607 #ifdef CONFIG_FAIR_GROUP_SCHED 8608 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8609 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8610 /* 8611 * How much CPU bandwidth does root_task_group get? 8612 * 8613 * In case of task-groups formed through the cgroup filesystem, it 8614 * gets 100% of the CPU resources in the system. This overall 8615 * system CPU resource is divided among the tasks of 8616 * root_task_group and its child task-groups in a fair manner, 8617 * based on each entity's (task or task-group's) weight 8618 * (se->load.weight). 8619 * 8620 * In other words, if root_task_group has 10 tasks of weight 8621 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8622 * then A0's share of the CPU resource is: 8623 * 8624 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8625 * 8626 * We achieve this by letting root_task_group's tasks sit 8627 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8628 */ 8629 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8630 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8631 8632 #ifdef CONFIG_RT_GROUP_SCHED 8633 /* 8634 * This is required for init cpu because rt.c:__enable_runtime() 8635 * starts working after scheduler_running, which is not the case 8636 * yet. 8637 */ 8638 rq->rt.rt_runtime = global_rt_runtime(); 8639 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8640 #endif 8641 #ifdef CONFIG_SMP 8642 rq->sd = NULL; 8643 rq->rd = NULL; 8644 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8645 rq->balance_callback = &balance_push_callback; 8646 rq->active_balance = 0; 8647 rq->next_balance = jiffies; 8648 rq->push_cpu = 0; 8649 rq->cpu = i; 8650 rq->online = 0; 8651 rq->idle_stamp = 0; 8652 rq->avg_idle = 2*sysctl_sched_migration_cost; 8653 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8654 8655 INIT_LIST_HEAD(&rq->cfs_tasks); 8656 8657 rq_attach_root(rq, &def_root_domain); 8658 #ifdef CONFIG_NO_HZ_COMMON 8659 rq->last_blocked_load_update_tick = jiffies; 8660 atomic_set(&rq->nohz_flags, 0); 8661 8662 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8663 #endif 8664 #ifdef CONFIG_HOTPLUG_CPU 8665 rcuwait_init(&rq->hotplug_wait); 8666 #endif 8667 #endif /* CONFIG_SMP */ 8668 hrtick_rq_init(rq); 8669 atomic_set(&rq->nr_iowait, 0); 8670 fair_server_init(rq); 8671 8672 #ifdef CONFIG_SCHED_CORE 8673 rq->core = rq; 8674 rq->core_pick = NULL; 8675 rq->core_dl_server = NULL; 8676 rq->core_enabled = 0; 8677 rq->core_tree = RB_ROOT; 8678 rq->core_forceidle_count = 0; 8679 rq->core_forceidle_occupation = 0; 8680 rq->core_forceidle_start = 0; 8681 8682 rq->core_cookie = 0UL; 8683 #endif 8684 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8685 } 8686 8687 set_load_weight(&init_task, false); 8688 init_task.se.slice = sysctl_sched_base_slice, 8689 8690 /* 8691 * The boot idle thread does lazy MMU switching as well: 8692 */ 8693 mmgrab_lazy_tlb(&init_mm); 8694 enter_lazy_tlb(&init_mm, current); 8695 8696 /* 8697 * The idle task doesn't need the kthread struct to function, but it 8698 * is dressed up as a per-CPU kthread and thus needs to play the part 8699 * if we want to avoid special-casing it in code that deals with per-CPU 8700 * kthreads. 8701 */ 8702 WARN_ON(!set_kthread_struct(current)); 8703 8704 /* 8705 * Make us the idle thread. Technically, schedule() should not be 8706 * called from this thread, however somewhere below it might be, 8707 * but because we are the idle thread, we just pick up running again 8708 * when this runqueue becomes "idle". 8709 */ 8710 __sched_fork(0, current); 8711 init_idle(current, smp_processor_id()); 8712 8713 calc_load_update = jiffies + LOAD_FREQ; 8714 8715 #ifdef CONFIG_SMP 8716 idle_thread_set_boot_cpu(); 8717 balance_push_set(smp_processor_id(), false); 8718 #endif 8719 init_sched_fair_class(); 8720 init_sched_ext_class(); 8721 8722 psi_init(); 8723 8724 init_uclamp(); 8725 8726 preempt_dynamic_init(); 8727 8728 scheduler_running = 1; 8729 } 8730 8731 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8732 8733 void __might_sleep(const char *file, int line) 8734 { 8735 unsigned int state = get_current_state(); 8736 /* 8737 * Blocking primitives will set (and therefore destroy) current->state, 8738 * since we will exit with TASK_RUNNING make sure we enter with it, 8739 * otherwise we will destroy state. 8740 */ 8741 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8742 "do not call blocking ops when !TASK_RUNNING; " 8743 "state=%x set at [<%p>] %pS\n", state, 8744 (void *)current->task_state_change, 8745 (void *)current->task_state_change); 8746 8747 __might_resched(file, line, 0); 8748 } 8749 EXPORT_SYMBOL(__might_sleep); 8750 8751 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8752 { 8753 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8754 return; 8755 8756 if (preempt_count() == preempt_offset) 8757 return; 8758 8759 pr_err("Preemption disabled at:"); 8760 print_ip_sym(KERN_ERR, ip); 8761 } 8762 8763 static inline bool resched_offsets_ok(unsigned int offsets) 8764 { 8765 unsigned int nested = preempt_count(); 8766 8767 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8768 8769 return nested == offsets; 8770 } 8771 8772 void __might_resched(const char *file, int line, unsigned int offsets) 8773 { 8774 /* Ratelimiting timestamp: */ 8775 static unsigned long prev_jiffy; 8776 8777 unsigned long preempt_disable_ip; 8778 8779 /* WARN_ON_ONCE() by default, no rate limit required: */ 8780 rcu_sleep_check(); 8781 8782 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8783 !is_idle_task(current) && !current->non_block_count) || 8784 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8785 oops_in_progress) 8786 return; 8787 8788 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8789 return; 8790 prev_jiffy = jiffies; 8791 8792 /* Save this before calling printk(), since that will clobber it: */ 8793 preempt_disable_ip = get_preempt_disable_ip(current); 8794 8795 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8796 file, line); 8797 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8798 in_atomic(), irqs_disabled(), current->non_block_count, 8799 current->pid, current->comm); 8800 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8801 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8802 8803 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8804 pr_err("RCU nest depth: %d, expected: %u\n", 8805 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8806 } 8807 8808 if (task_stack_end_corrupted(current)) 8809 pr_emerg("Thread overran stack, or stack corrupted\n"); 8810 8811 debug_show_held_locks(current); 8812 if (irqs_disabled()) 8813 print_irqtrace_events(current); 8814 8815 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8816 preempt_disable_ip); 8817 8818 dump_stack(); 8819 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8820 } 8821 EXPORT_SYMBOL(__might_resched); 8822 8823 void __cant_sleep(const char *file, int line, int preempt_offset) 8824 { 8825 static unsigned long prev_jiffy; 8826 8827 if (irqs_disabled()) 8828 return; 8829 8830 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8831 return; 8832 8833 if (preempt_count() > preempt_offset) 8834 return; 8835 8836 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8837 return; 8838 prev_jiffy = jiffies; 8839 8840 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8841 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8842 in_atomic(), irqs_disabled(), 8843 current->pid, current->comm); 8844 8845 debug_show_held_locks(current); 8846 dump_stack(); 8847 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8848 } 8849 EXPORT_SYMBOL_GPL(__cant_sleep); 8850 8851 #ifdef CONFIG_SMP 8852 void __cant_migrate(const char *file, int line) 8853 { 8854 static unsigned long prev_jiffy; 8855 8856 if (irqs_disabled()) 8857 return; 8858 8859 if (is_migration_disabled(current)) 8860 return; 8861 8862 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8863 return; 8864 8865 if (preempt_count() > 0) 8866 return; 8867 8868 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8869 return; 8870 prev_jiffy = jiffies; 8871 8872 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8873 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8874 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8875 current->pid, current->comm); 8876 8877 debug_show_held_locks(current); 8878 dump_stack(); 8879 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8880 } 8881 EXPORT_SYMBOL_GPL(__cant_migrate); 8882 #endif 8883 #endif 8884 8885 #ifdef CONFIG_MAGIC_SYSRQ 8886 void normalize_rt_tasks(void) 8887 { 8888 struct task_struct *g, *p; 8889 struct sched_attr attr = { 8890 .sched_policy = SCHED_NORMAL, 8891 }; 8892 8893 read_lock(&tasklist_lock); 8894 for_each_process_thread(g, p) { 8895 /* 8896 * Only normalize user tasks: 8897 */ 8898 if (p->flags & PF_KTHREAD) 8899 continue; 8900 8901 p->se.exec_start = 0; 8902 schedstat_set(p->stats.wait_start, 0); 8903 schedstat_set(p->stats.sleep_start, 0); 8904 schedstat_set(p->stats.block_start, 0); 8905 8906 if (!rt_or_dl_task(p)) { 8907 /* 8908 * Renice negative nice level userspace 8909 * tasks back to 0: 8910 */ 8911 if (task_nice(p) < 0) 8912 set_user_nice(p, 0); 8913 continue; 8914 } 8915 8916 __sched_setscheduler(p, &attr, false, false); 8917 } 8918 read_unlock(&tasklist_lock); 8919 } 8920 8921 #endif /* CONFIG_MAGIC_SYSRQ */ 8922 8923 #if defined(CONFIG_KGDB_KDB) 8924 /* 8925 * These functions are only useful for KDB. 8926 * 8927 * They can only be called when the whole system has been 8928 * stopped - every CPU needs to be quiescent, and no scheduling 8929 * activity can take place. Using them for anything else would 8930 * be a serious bug, and as a result, they aren't even visible 8931 * under any other configuration. 8932 */ 8933 8934 /** 8935 * curr_task - return the current task for a given CPU. 8936 * @cpu: the processor in question. 8937 * 8938 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8939 * 8940 * Return: The current task for @cpu. 8941 */ 8942 struct task_struct *curr_task(int cpu) 8943 { 8944 return cpu_curr(cpu); 8945 } 8946 8947 #endif /* defined(CONFIG_KGDB_KDB) */ 8948 8949 #ifdef CONFIG_CGROUP_SCHED 8950 /* task_group_lock serializes the addition/removal of task groups */ 8951 static DEFINE_SPINLOCK(task_group_lock); 8952 8953 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8954 struct task_group *parent) 8955 { 8956 #ifdef CONFIG_UCLAMP_TASK_GROUP 8957 enum uclamp_id clamp_id; 8958 8959 for_each_clamp_id(clamp_id) { 8960 uclamp_se_set(&tg->uclamp_req[clamp_id], 8961 uclamp_none(clamp_id), false); 8962 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8963 } 8964 #endif 8965 } 8966 8967 static void sched_free_group(struct task_group *tg) 8968 { 8969 free_fair_sched_group(tg); 8970 free_rt_sched_group(tg); 8971 autogroup_free(tg); 8972 kmem_cache_free(task_group_cache, tg); 8973 } 8974 8975 static void sched_free_group_rcu(struct rcu_head *rcu) 8976 { 8977 sched_free_group(container_of(rcu, struct task_group, rcu)); 8978 } 8979 8980 static void sched_unregister_group(struct task_group *tg) 8981 { 8982 unregister_fair_sched_group(tg); 8983 unregister_rt_sched_group(tg); 8984 /* 8985 * We have to wait for yet another RCU grace period to expire, as 8986 * print_cfs_stats() might run concurrently. 8987 */ 8988 call_rcu(&tg->rcu, sched_free_group_rcu); 8989 } 8990 8991 /* allocate runqueue etc for a new task group */ 8992 struct task_group *sched_create_group(struct task_group *parent) 8993 { 8994 struct task_group *tg; 8995 8996 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8997 if (!tg) 8998 return ERR_PTR(-ENOMEM); 8999 9000 if (!alloc_fair_sched_group(tg, parent)) 9001 goto err; 9002 9003 if (!alloc_rt_sched_group(tg, parent)) 9004 goto err; 9005 9006 scx_group_set_weight(tg, CGROUP_WEIGHT_DFL); 9007 alloc_uclamp_sched_group(tg, parent); 9008 9009 return tg; 9010 9011 err: 9012 sched_free_group(tg); 9013 return ERR_PTR(-ENOMEM); 9014 } 9015 9016 void sched_online_group(struct task_group *tg, struct task_group *parent) 9017 { 9018 unsigned long flags; 9019 9020 spin_lock_irqsave(&task_group_lock, flags); 9021 list_add_rcu(&tg->list, &task_groups); 9022 9023 /* Root should already exist: */ 9024 WARN_ON(!parent); 9025 9026 tg->parent = parent; 9027 INIT_LIST_HEAD(&tg->children); 9028 list_add_rcu(&tg->siblings, &parent->children); 9029 spin_unlock_irqrestore(&task_group_lock, flags); 9030 9031 online_fair_sched_group(tg); 9032 } 9033 9034 /* RCU callback to free various structures associated with a task group */ 9035 static void sched_unregister_group_rcu(struct rcu_head *rhp) 9036 { 9037 /* Now it should be safe to free those cfs_rqs: */ 9038 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 9039 } 9040 9041 void sched_destroy_group(struct task_group *tg) 9042 { 9043 /* Wait for possible concurrent references to cfs_rqs complete: */ 9044 call_rcu(&tg->rcu, sched_unregister_group_rcu); 9045 } 9046 9047 void sched_release_group(struct task_group *tg) 9048 { 9049 unsigned long flags; 9050 9051 /* 9052 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 9053 * sched_cfs_period_timer()). 9054 * 9055 * For this to be effective, we have to wait for all pending users of 9056 * this task group to leave their RCU critical section to ensure no new 9057 * user will see our dying task group any more. Specifically ensure 9058 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 9059 * 9060 * We therefore defer calling unregister_fair_sched_group() to 9061 * sched_unregister_group() which is guarantied to get called only after the 9062 * current RCU grace period has expired. 9063 */ 9064 spin_lock_irqsave(&task_group_lock, flags); 9065 list_del_rcu(&tg->list); 9066 list_del_rcu(&tg->siblings); 9067 spin_unlock_irqrestore(&task_group_lock, flags); 9068 } 9069 9070 static void sched_change_group(struct task_struct *tsk) 9071 { 9072 struct task_group *tg; 9073 9074 /* 9075 * All callers are synchronized by task_rq_lock(); we do not use RCU 9076 * which is pointless here. Thus, we pass "true" to task_css_check() 9077 * to prevent lockdep warnings. 9078 */ 9079 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9080 struct task_group, css); 9081 tg = autogroup_task_group(tsk, tg); 9082 tsk->sched_task_group = tg; 9083 9084 #ifdef CONFIG_FAIR_GROUP_SCHED 9085 if (tsk->sched_class->task_change_group) 9086 tsk->sched_class->task_change_group(tsk); 9087 else 9088 #endif 9089 set_task_rq(tsk, task_cpu(tsk)); 9090 } 9091 9092 /* 9093 * Change task's runqueue when it moves between groups. 9094 * 9095 * The caller of this function should have put the task in its new group by 9096 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9097 * its new group. 9098 */ 9099 void sched_move_task(struct task_struct *tsk, bool for_autogroup) 9100 { 9101 int queued, running, queue_flags = 9102 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9103 struct rq *rq; 9104 9105 CLASS(task_rq_lock, rq_guard)(tsk); 9106 rq = rq_guard.rq; 9107 9108 update_rq_clock(rq); 9109 9110 running = task_current_donor(rq, tsk); 9111 queued = task_on_rq_queued(tsk); 9112 9113 if (queued) 9114 dequeue_task(rq, tsk, queue_flags); 9115 if (running) 9116 put_prev_task(rq, tsk); 9117 9118 sched_change_group(tsk); 9119 if (!for_autogroup) 9120 scx_cgroup_move_task(tsk); 9121 9122 if (queued) 9123 enqueue_task(rq, tsk, queue_flags); 9124 if (running) { 9125 set_next_task(rq, tsk); 9126 /* 9127 * After changing group, the running task may have joined a 9128 * throttled one but it's still the running task. Trigger a 9129 * resched to make sure that task can still run. 9130 */ 9131 resched_curr(rq); 9132 } 9133 } 9134 9135 static struct cgroup_subsys_state * 9136 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9137 { 9138 struct task_group *parent = css_tg(parent_css); 9139 struct task_group *tg; 9140 9141 if (!parent) { 9142 /* This is early initialization for the top cgroup */ 9143 return &root_task_group.css; 9144 } 9145 9146 tg = sched_create_group(parent); 9147 if (IS_ERR(tg)) 9148 return ERR_PTR(-ENOMEM); 9149 9150 return &tg->css; 9151 } 9152 9153 /* Expose task group only after completing cgroup initialization */ 9154 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9155 { 9156 struct task_group *tg = css_tg(css); 9157 struct task_group *parent = css_tg(css->parent); 9158 int ret; 9159 9160 ret = scx_tg_online(tg); 9161 if (ret) 9162 return ret; 9163 9164 if (parent) 9165 sched_online_group(tg, parent); 9166 9167 #ifdef CONFIG_UCLAMP_TASK_GROUP 9168 /* Propagate the effective uclamp value for the new group */ 9169 guard(mutex)(&uclamp_mutex); 9170 guard(rcu)(); 9171 cpu_util_update_eff(css); 9172 #endif 9173 9174 return 0; 9175 } 9176 9177 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9178 { 9179 struct task_group *tg = css_tg(css); 9180 9181 scx_tg_offline(tg); 9182 } 9183 9184 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9185 { 9186 struct task_group *tg = css_tg(css); 9187 9188 sched_release_group(tg); 9189 } 9190 9191 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9192 { 9193 struct task_group *tg = css_tg(css); 9194 9195 /* 9196 * Relies on the RCU grace period between css_released() and this. 9197 */ 9198 sched_unregister_group(tg); 9199 } 9200 9201 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9202 { 9203 #ifdef CONFIG_RT_GROUP_SCHED 9204 struct task_struct *task; 9205 struct cgroup_subsys_state *css; 9206 9207 cgroup_taskset_for_each(task, css, tset) { 9208 if (!sched_rt_can_attach(css_tg(css), task)) 9209 return -EINVAL; 9210 } 9211 #endif 9212 return scx_cgroup_can_attach(tset); 9213 } 9214 9215 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9216 { 9217 struct task_struct *task; 9218 struct cgroup_subsys_state *css; 9219 9220 cgroup_taskset_for_each(task, css, tset) 9221 sched_move_task(task, false); 9222 9223 scx_cgroup_finish_attach(); 9224 } 9225 9226 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9227 { 9228 scx_cgroup_cancel_attach(tset); 9229 } 9230 9231 #ifdef CONFIG_UCLAMP_TASK_GROUP 9232 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9233 { 9234 struct cgroup_subsys_state *top_css = css; 9235 struct uclamp_se *uc_parent = NULL; 9236 struct uclamp_se *uc_se = NULL; 9237 unsigned int eff[UCLAMP_CNT]; 9238 enum uclamp_id clamp_id; 9239 unsigned int clamps; 9240 9241 lockdep_assert_held(&uclamp_mutex); 9242 WARN_ON_ONCE(!rcu_read_lock_held()); 9243 9244 css_for_each_descendant_pre(css, top_css) { 9245 uc_parent = css_tg(css)->parent 9246 ? css_tg(css)->parent->uclamp : NULL; 9247 9248 for_each_clamp_id(clamp_id) { 9249 /* Assume effective clamps matches requested clamps */ 9250 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9251 /* Cap effective clamps with parent's effective clamps */ 9252 if (uc_parent && 9253 eff[clamp_id] > uc_parent[clamp_id].value) { 9254 eff[clamp_id] = uc_parent[clamp_id].value; 9255 } 9256 } 9257 /* Ensure protection is always capped by limit */ 9258 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9259 9260 /* Propagate most restrictive effective clamps */ 9261 clamps = 0x0; 9262 uc_se = css_tg(css)->uclamp; 9263 for_each_clamp_id(clamp_id) { 9264 if (eff[clamp_id] == uc_se[clamp_id].value) 9265 continue; 9266 uc_se[clamp_id].value = eff[clamp_id]; 9267 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9268 clamps |= (0x1 << clamp_id); 9269 } 9270 if (!clamps) { 9271 css = css_rightmost_descendant(css); 9272 continue; 9273 } 9274 9275 /* Immediately update descendants RUNNABLE tasks */ 9276 uclamp_update_active_tasks(css); 9277 } 9278 } 9279 9280 /* 9281 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9282 * C expression. Since there is no way to convert a macro argument (N) into a 9283 * character constant, use two levels of macros. 9284 */ 9285 #define _POW10(exp) ((unsigned int)1e##exp) 9286 #define POW10(exp) _POW10(exp) 9287 9288 struct uclamp_request { 9289 #define UCLAMP_PERCENT_SHIFT 2 9290 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9291 s64 percent; 9292 u64 util; 9293 int ret; 9294 }; 9295 9296 static inline struct uclamp_request 9297 capacity_from_percent(char *buf) 9298 { 9299 struct uclamp_request req = { 9300 .percent = UCLAMP_PERCENT_SCALE, 9301 .util = SCHED_CAPACITY_SCALE, 9302 .ret = 0, 9303 }; 9304 9305 buf = strim(buf); 9306 if (strcmp(buf, "max")) { 9307 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9308 &req.percent); 9309 if (req.ret) 9310 return req; 9311 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9312 req.ret = -ERANGE; 9313 return req; 9314 } 9315 9316 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9317 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9318 } 9319 9320 return req; 9321 } 9322 9323 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9324 size_t nbytes, loff_t off, 9325 enum uclamp_id clamp_id) 9326 { 9327 struct uclamp_request req; 9328 struct task_group *tg; 9329 9330 req = capacity_from_percent(buf); 9331 if (req.ret) 9332 return req.ret; 9333 9334 sched_uclamp_enable(); 9335 9336 guard(mutex)(&uclamp_mutex); 9337 guard(rcu)(); 9338 9339 tg = css_tg(of_css(of)); 9340 if (tg->uclamp_req[clamp_id].value != req.util) 9341 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9342 9343 /* 9344 * Because of not recoverable conversion rounding we keep track of the 9345 * exact requested value 9346 */ 9347 tg->uclamp_pct[clamp_id] = req.percent; 9348 9349 /* Update effective clamps to track the most restrictive value */ 9350 cpu_util_update_eff(of_css(of)); 9351 9352 return nbytes; 9353 } 9354 9355 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9356 char *buf, size_t nbytes, 9357 loff_t off) 9358 { 9359 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9360 } 9361 9362 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9363 char *buf, size_t nbytes, 9364 loff_t off) 9365 { 9366 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9367 } 9368 9369 static inline void cpu_uclamp_print(struct seq_file *sf, 9370 enum uclamp_id clamp_id) 9371 { 9372 struct task_group *tg; 9373 u64 util_clamp; 9374 u64 percent; 9375 u32 rem; 9376 9377 scoped_guard (rcu) { 9378 tg = css_tg(seq_css(sf)); 9379 util_clamp = tg->uclamp_req[clamp_id].value; 9380 } 9381 9382 if (util_clamp == SCHED_CAPACITY_SCALE) { 9383 seq_puts(sf, "max\n"); 9384 return; 9385 } 9386 9387 percent = tg->uclamp_pct[clamp_id]; 9388 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9389 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9390 } 9391 9392 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9393 { 9394 cpu_uclamp_print(sf, UCLAMP_MIN); 9395 return 0; 9396 } 9397 9398 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9399 { 9400 cpu_uclamp_print(sf, UCLAMP_MAX); 9401 return 0; 9402 } 9403 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9404 9405 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9406 static unsigned long tg_weight(struct task_group *tg) 9407 { 9408 #ifdef CONFIG_FAIR_GROUP_SCHED 9409 return scale_load_down(tg->shares); 9410 #else 9411 return sched_weight_from_cgroup(tg->scx_weight); 9412 #endif 9413 } 9414 9415 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9416 struct cftype *cftype, u64 shareval) 9417 { 9418 int ret; 9419 9420 if (shareval > scale_load_down(ULONG_MAX)) 9421 shareval = MAX_SHARES; 9422 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9423 if (!ret) 9424 scx_group_set_weight(css_tg(css), 9425 sched_weight_to_cgroup(shareval)); 9426 return ret; 9427 } 9428 9429 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9430 struct cftype *cft) 9431 { 9432 return tg_weight(css_tg(css)); 9433 } 9434 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9435 9436 #ifdef CONFIG_CFS_BANDWIDTH 9437 static DEFINE_MUTEX(cfs_constraints_mutex); 9438 9439 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9440 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9441 /* More than 203 days if BW_SHIFT equals 20. */ 9442 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9443 9444 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9445 9446 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9447 u64 burst) 9448 { 9449 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9450 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9451 9452 if (tg == &root_task_group) 9453 return -EINVAL; 9454 9455 /* 9456 * Ensure we have at some amount of bandwidth every period. This is 9457 * to prevent reaching a state of large arrears when throttled via 9458 * entity_tick() resulting in prolonged exit starvation. 9459 */ 9460 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9461 return -EINVAL; 9462 9463 /* 9464 * Likewise, bound things on the other side by preventing insane quota 9465 * periods. This also allows us to normalize in computing quota 9466 * feasibility. 9467 */ 9468 if (period > max_cfs_quota_period) 9469 return -EINVAL; 9470 9471 /* 9472 * Bound quota to defend quota against overflow during bandwidth shift. 9473 */ 9474 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9475 return -EINVAL; 9476 9477 if (quota != RUNTIME_INF && (burst > quota || 9478 burst + quota > max_cfs_runtime)) 9479 return -EINVAL; 9480 9481 /* 9482 * Prevent race between setting of cfs_rq->runtime_enabled and 9483 * unthrottle_offline_cfs_rqs(). 9484 */ 9485 guard(cpus_read_lock)(); 9486 guard(mutex)(&cfs_constraints_mutex); 9487 9488 ret = __cfs_schedulable(tg, period, quota); 9489 if (ret) 9490 return ret; 9491 9492 runtime_enabled = quota != RUNTIME_INF; 9493 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9494 /* 9495 * If we need to toggle cfs_bandwidth_used, off->on must occur 9496 * before making related changes, and on->off must occur afterwards 9497 */ 9498 if (runtime_enabled && !runtime_was_enabled) 9499 cfs_bandwidth_usage_inc(); 9500 9501 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9502 cfs_b->period = ns_to_ktime(period); 9503 cfs_b->quota = quota; 9504 cfs_b->burst = burst; 9505 9506 __refill_cfs_bandwidth_runtime(cfs_b); 9507 9508 /* 9509 * Restart the period timer (if active) to handle new 9510 * period expiry: 9511 */ 9512 if (runtime_enabled) 9513 start_cfs_bandwidth(cfs_b); 9514 } 9515 9516 for_each_online_cpu(i) { 9517 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9518 struct rq *rq = cfs_rq->rq; 9519 9520 guard(rq_lock_irq)(rq); 9521 cfs_rq->runtime_enabled = runtime_enabled; 9522 cfs_rq->runtime_remaining = 0; 9523 9524 if (cfs_rq->throttled) 9525 unthrottle_cfs_rq(cfs_rq); 9526 } 9527 9528 if (runtime_was_enabled && !runtime_enabled) 9529 cfs_bandwidth_usage_dec(); 9530 9531 return 0; 9532 } 9533 9534 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9535 { 9536 u64 quota, period, burst; 9537 9538 period = ktime_to_ns(tg->cfs_bandwidth.period); 9539 burst = tg->cfs_bandwidth.burst; 9540 if (cfs_quota_us < 0) 9541 quota = RUNTIME_INF; 9542 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9543 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9544 else 9545 return -EINVAL; 9546 9547 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9548 } 9549 9550 static long tg_get_cfs_quota(struct task_group *tg) 9551 { 9552 u64 quota_us; 9553 9554 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9555 return -1; 9556 9557 quota_us = tg->cfs_bandwidth.quota; 9558 do_div(quota_us, NSEC_PER_USEC); 9559 9560 return quota_us; 9561 } 9562 9563 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9564 { 9565 u64 quota, period, burst; 9566 9567 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9568 return -EINVAL; 9569 9570 period = (u64)cfs_period_us * NSEC_PER_USEC; 9571 quota = tg->cfs_bandwidth.quota; 9572 burst = tg->cfs_bandwidth.burst; 9573 9574 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9575 } 9576 9577 static long tg_get_cfs_period(struct task_group *tg) 9578 { 9579 u64 cfs_period_us; 9580 9581 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9582 do_div(cfs_period_us, NSEC_PER_USEC); 9583 9584 return cfs_period_us; 9585 } 9586 9587 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9588 { 9589 u64 quota, period, burst; 9590 9591 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9592 return -EINVAL; 9593 9594 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9595 period = ktime_to_ns(tg->cfs_bandwidth.period); 9596 quota = tg->cfs_bandwidth.quota; 9597 9598 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9599 } 9600 9601 static long tg_get_cfs_burst(struct task_group *tg) 9602 { 9603 u64 burst_us; 9604 9605 burst_us = tg->cfs_bandwidth.burst; 9606 do_div(burst_us, NSEC_PER_USEC); 9607 9608 return burst_us; 9609 } 9610 9611 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9612 struct cftype *cft) 9613 { 9614 return tg_get_cfs_quota(css_tg(css)); 9615 } 9616 9617 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9618 struct cftype *cftype, s64 cfs_quota_us) 9619 { 9620 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9621 } 9622 9623 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9624 struct cftype *cft) 9625 { 9626 return tg_get_cfs_period(css_tg(css)); 9627 } 9628 9629 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9630 struct cftype *cftype, u64 cfs_period_us) 9631 { 9632 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9633 } 9634 9635 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9636 struct cftype *cft) 9637 { 9638 return tg_get_cfs_burst(css_tg(css)); 9639 } 9640 9641 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9642 struct cftype *cftype, u64 cfs_burst_us) 9643 { 9644 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9645 } 9646 9647 struct cfs_schedulable_data { 9648 struct task_group *tg; 9649 u64 period, quota; 9650 }; 9651 9652 /* 9653 * normalize group quota/period to be quota/max_period 9654 * note: units are usecs 9655 */ 9656 static u64 normalize_cfs_quota(struct task_group *tg, 9657 struct cfs_schedulable_data *d) 9658 { 9659 u64 quota, period; 9660 9661 if (tg == d->tg) { 9662 period = d->period; 9663 quota = d->quota; 9664 } else { 9665 period = tg_get_cfs_period(tg); 9666 quota = tg_get_cfs_quota(tg); 9667 } 9668 9669 /* note: these should typically be equivalent */ 9670 if (quota == RUNTIME_INF || quota == -1) 9671 return RUNTIME_INF; 9672 9673 return to_ratio(period, quota); 9674 } 9675 9676 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9677 { 9678 struct cfs_schedulable_data *d = data; 9679 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9680 s64 quota = 0, parent_quota = -1; 9681 9682 if (!tg->parent) { 9683 quota = RUNTIME_INF; 9684 } else { 9685 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9686 9687 quota = normalize_cfs_quota(tg, d); 9688 parent_quota = parent_b->hierarchical_quota; 9689 9690 /* 9691 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9692 * always take the non-RUNTIME_INF min. On cgroup1, only 9693 * inherit when no limit is set. In both cases this is used 9694 * by the scheduler to determine if a given CFS task has a 9695 * bandwidth constraint at some higher level. 9696 */ 9697 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9698 if (quota == RUNTIME_INF) 9699 quota = parent_quota; 9700 else if (parent_quota != RUNTIME_INF) 9701 quota = min(quota, parent_quota); 9702 } else { 9703 if (quota == RUNTIME_INF) 9704 quota = parent_quota; 9705 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9706 return -EINVAL; 9707 } 9708 } 9709 cfs_b->hierarchical_quota = quota; 9710 9711 return 0; 9712 } 9713 9714 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9715 { 9716 struct cfs_schedulable_data data = { 9717 .tg = tg, 9718 .period = period, 9719 .quota = quota, 9720 }; 9721 9722 if (quota != RUNTIME_INF) { 9723 do_div(data.period, NSEC_PER_USEC); 9724 do_div(data.quota, NSEC_PER_USEC); 9725 } 9726 9727 guard(rcu)(); 9728 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9729 } 9730 9731 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9732 { 9733 struct task_group *tg = css_tg(seq_css(sf)); 9734 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9735 9736 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9737 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9738 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9739 9740 if (schedstat_enabled() && tg != &root_task_group) { 9741 struct sched_statistics *stats; 9742 u64 ws = 0; 9743 int i; 9744 9745 for_each_possible_cpu(i) { 9746 stats = __schedstats_from_se(tg->se[i]); 9747 ws += schedstat_val(stats->wait_sum); 9748 } 9749 9750 seq_printf(sf, "wait_sum %llu\n", ws); 9751 } 9752 9753 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9754 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9755 9756 return 0; 9757 } 9758 9759 static u64 throttled_time_self(struct task_group *tg) 9760 { 9761 int i; 9762 u64 total = 0; 9763 9764 for_each_possible_cpu(i) { 9765 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9766 } 9767 9768 return total; 9769 } 9770 9771 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9772 { 9773 struct task_group *tg = css_tg(seq_css(sf)); 9774 9775 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9776 9777 return 0; 9778 } 9779 #endif /* CONFIG_CFS_BANDWIDTH */ 9780 9781 #ifdef CONFIG_RT_GROUP_SCHED 9782 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9783 struct cftype *cft, s64 val) 9784 { 9785 return sched_group_set_rt_runtime(css_tg(css), val); 9786 } 9787 9788 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9789 struct cftype *cft) 9790 { 9791 return sched_group_rt_runtime(css_tg(css)); 9792 } 9793 9794 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9795 struct cftype *cftype, u64 rt_period_us) 9796 { 9797 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9798 } 9799 9800 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9801 struct cftype *cft) 9802 { 9803 return sched_group_rt_period(css_tg(css)); 9804 } 9805 #endif /* CONFIG_RT_GROUP_SCHED */ 9806 9807 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9808 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9809 struct cftype *cft) 9810 { 9811 return css_tg(css)->idle; 9812 } 9813 9814 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9815 struct cftype *cft, s64 idle) 9816 { 9817 int ret; 9818 9819 ret = sched_group_set_idle(css_tg(css), idle); 9820 if (!ret) 9821 scx_group_set_idle(css_tg(css), idle); 9822 return ret; 9823 } 9824 #endif 9825 9826 static struct cftype cpu_legacy_files[] = { 9827 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9828 { 9829 .name = "shares", 9830 .read_u64 = cpu_shares_read_u64, 9831 .write_u64 = cpu_shares_write_u64, 9832 }, 9833 { 9834 .name = "idle", 9835 .read_s64 = cpu_idle_read_s64, 9836 .write_s64 = cpu_idle_write_s64, 9837 }, 9838 #endif 9839 #ifdef CONFIG_CFS_BANDWIDTH 9840 { 9841 .name = "cfs_quota_us", 9842 .read_s64 = cpu_cfs_quota_read_s64, 9843 .write_s64 = cpu_cfs_quota_write_s64, 9844 }, 9845 { 9846 .name = "cfs_period_us", 9847 .read_u64 = cpu_cfs_period_read_u64, 9848 .write_u64 = cpu_cfs_period_write_u64, 9849 }, 9850 { 9851 .name = "cfs_burst_us", 9852 .read_u64 = cpu_cfs_burst_read_u64, 9853 .write_u64 = cpu_cfs_burst_write_u64, 9854 }, 9855 { 9856 .name = "stat", 9857 .seq_show = cpu_cfs_stat_show, 9858 }, 9859 { 9860 .name = "stat.local", 9861 .seq_show = cpu_cfs_local_stat_show, 9862 }, 9863 #endif 9864 #ifdef CONFIG_RT_GROUP_SCHED 9865 { 9866 .name = "rt_runtime_us", 9867 .read_s64 = cpu_rt_runtime_read, 9868 .write_s64 = cpu_rt_runtime_write, 9869 }, 9870 { 9871 .name = "rt_period_us", 9872 .read_u64 = cpu_rt_period_read_uint, 9873 .write_u64 = cpu_rt_period_write_uint, 9874 }, 9875 #endif 9876 #ifdef CONFIG_UCLAMP_TASK_GROUP 9877 { 9878 .name = "uclamp.min", 9879 .flags = CFTYPE_NOT_ON_ROOT, 9880 .seq_show = cpu_uclamp_min_show, 9881 .write = cpu_uclamp_min_write, 9882 }, 9883 { 9884 .name = "uclamp.max", 9885 .flags = CFTYPE_NOT_ON_ROOT, 9886 .seq_show = cpu_uclamp_max_show, 9887 .write = cpu_uclamp_max_write, 9888 }, 9889 #endif 9890 { } /* Terminate */ 9891 }; 9892 9893 static int cpu_extra_stat_show(struct seq_file *sf, 9894 struct cgroup_subsys_state *css) 9895 { 9896 #ifdef CONFIG_CFS_BANDWIDTH 9897 { 9898 struct task_group *tg = css_tg(css); 9899 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9900 u64 throttled_usec, burst_usec; 9901 9902 throttled_usec = cfs_b->throttled_time; 9903 do_div(throttled_usec, NSEC_PER_USEC); 9904 burst_usec = cfs_b->burst_time; 9905 do_div(burst_usec, NSEC_PER_USEC); 9906 9907 seq_printf(sf, "nr_periods %d\n" 9908 "nr_throttled %d\n" 9909 "throttled_usec %llu\n" 9910 "nr_bursts %d\n" 9911 "burst_usec %llu\n", 9912 cfs_b->nr_periods, cfs_b->nr_throttled, 9913 throttled_usec, cfs_b->nr_burst, burst_usec); 9914 } 9915 #endif 9916 return 0; 9917 } 9918 9919 static int cpu_local_stat_show(struct seq_file *sf, 9920 struct cgroup_subsys_state *css) 9921 { 9922 #ifdef CONFIG_CFS_BANDWIDTH 9923 { 9924 struct task_group *tg = css_tg(css); 9925 u64 throttled_self_usec; 9926 9927 throttled_self_usec = throttled_time_self(tg); 9928 do_div(throttled_self_usec, NSEC_PER_USEC); 9929 9930 seq_printf(sf, "throttled_usec %llu\n", 9931 throttled_self_usec); 9932 } 9933 #endif 9934 return 0; 9935 } 9936 9937 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9938 9939 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9940 struct cftype *cft) 9941 { 9942 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9943 } 9944 9945 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9946 struct cftype *cft, u64 cgrp_weight) 9947 { 9948 unsigned long weight; 9949 int ret; 9950 9951 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9952 return -ERANGE; 9953 9954 weight = sched_weight_from_cgroup(cgrp_weight); 9955 9956 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9957 if (!ret) 9958 scx_group_set_weight(css_tg(css), cgrp_weight); 9959 return ret; 9960 } 9961 9962 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9963 struct cftype *cft) 9964 { 9965 unsigned long weight = tg_weight(css_tg(css)); 9966 int last_delta = INT_MAX; 9967 int prio, delta; 9968 9969 /* find the closest nice value to the current weight */ 9970 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9971 delta = abs(sched_prio_to_weight[prio] - weight); 9972 if (delta >= last_delta) 9973 break; 9974 last_delta = delta; 9975 } 9976 9977 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9978 } 9979 9980 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9981 struct cftype *cft, s64 nice) 9982 { 9983 unsigned long weight; 9984 int idx, ret; 9985 9986 if (nice < MIN_NICE || nice > MAX_NICE) 9987 return -ERANGE; 9988 9989 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9990 idx = array_index_nospec(idx, 40); 9991 weight = sched_prio_to_weight[idx]; 9992 9993 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9994 if (!ret) 9995 scx_group_set_weight(css_tg(css), 9996 sched_weight_to_cgroup(weight)); 9997 return ret; 9998 } 9999 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 10000 10001 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10002 long period, long quota) 10003 { 10004 if (quota < 0) 10005 seq_puts(sf, "max"); 10006 else 10007 seq_printf(sf, "%ld", quota); 10008 10009 seq_printf(sf, " %ld\n", period); 10010 } 10011 10012 /* caller should put the current value in *@periodp before calling */ 10013 static int __maybe_unused cpu_period_quota_parse(char *buf, 10014 u64 *periodp, u64 *quotap) 10015 { 10016 char tok[21]; /* U64_MAX */ 10017 10018 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 10019 return -EINVAL; 10020 10021 *periodp *= NSEC_PER_USEC; 10022 10023 if (sscanf(tok, "%llu", quotap)) 10024 *quotap *= NSEC_PER_USEC; 10025 else if (!strcmp(tok, "max")) 10026 *quotap = RUNTIME_INF; 10027 else 10028 return -EINVAL; 10029 10030 return 0; 10031 } 10032 10033 #ifdef CONFIG_CFS_BANDWIDTH 10034 static int cpu_max_show(struct seq_file *sf, void *v) 10035 { 10036 struct task_group *tg = css_tg(seq_css(sf)); 10037 10038 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 10039 return 0; 10040 } 10041 10042 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10043 char *buf, size_t nbytes, loff_t off) 10044 { 10045 struct task_group *tg = css_tg(of_css(of)); 10046 u64 period = tg_get_cfs_period(tg); 10047 u64 burst = tg->cfs_bandwidth.burst; 10048 u64 quota; 10049 int ret; 10050 10051 ret = cpu_period_quota_parse(buf, &period, "a); 10052 if (!ret) 10053 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 10054 return ret ?: nbytes; 10055 } 10056 #endif 10057 10058 static struct cftype cpu_files[] = { 10059 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10060 { 10061 .name = "weight", 10062 .flags = CFTYPE_NOT_ON_ROOT, 10063 .read_u64 = cpu_weight_read_u64, 10064 .write_u64 = cpu_weight_write_u64, 10065 }, 10066 { 10067 .name = "weight.nice", 10068 .flags = CFTYPE_NOT_ON_ROOT, 10069 .read_s64 = cpu_weight_nice_read_s64, 10070 .write_s64 = cpu_weight_nice_write_s64, 10071 }, 10072 { 10073 .name = "idle", 10074 .flags = CFTYPE_NOT_ON_ROOT, 10075 .read_s64 = cpu_idle_read_s64, 10076 .write_s64 = cpu_idle_write_s64, 10077 }, 10078 #endif 10079 #ifdef CONFIG_CFS_BANDWIDTH 10080 { 10081 .name = "max", 10082 .flags = CFTYPE_NOT_ON_ROOT, 10083 .seq_show = cpu_max_show, 10084 .write = cpu_max_write, 10085 }, 10086 { 10087 .name = "max.burst", 10088 .flags = CFTYPE_NOT_ON_ROOT, 10089 .read_u64 = cpu_cfs_burst_read_u64, 10090 .write_u64 = cpu_cfs_burst_write_u64, 10091 }, 10092 #endif 10093 #ifdef CONFIG_UCLAMP_TASK_GROUP 10094 { 10095 .name = "uclamp.min", 10096 .flags = CFTYPE_NOT_ON_ROOT, 10097 .seq_show = cpu_uclamp_min_show, 10098 .write = cpu_uclamp_min_write, 10099 }, 10100 { 10101 .name = "uclamp.max", 10102 .flags = CFTYPE_NOT_ON_ROOT, 10103 .seq_show = cpu_uclamp_max_show, 10104 .write = cpu_uclamp_max_write, 10105 }, 10106 #endif 10107 { } /* terminate */ 10108 }; 10109 10110 struct cgroup_subsys cpu_cgrp_subsys = { 10111 .css_alloc = cpu_cgroup_css_alloc, 10112 .css_online = cpu_cgroup_css_online, 10113 .css_offline = cpu_cgroup_css_offline, 10114 .css_released = cpu_cgroup_css_released, 10115 .css_free = cpu_cgroup_css_free, 10116 .css_extra_stat_show = cpu_extra_stat_show, 10117 .css_local_stat_show = cpu_local_stat_show, 10118 .can_attach = cpu_cgroup_can_attach, 10119 .attach = cpu_cgroup_attach, 10120 .cancel_attach = cpu_cgroup_cancel_attach, 10121 .legacy_cftypes = cpu_legacy_files, 10122 .dfl_cftypes = cpu_files, 10123 .early_init = true, 10124 .threaded = true, 10125 }; 10126 10127 #endif /* CONFIG_CGROUP_SCHED */ 10128 10129 void dump_cpu_task(int cpu) 10130 { 10131 if (in_hardirq() && cpu == smp_processor_id()) { 10132 struct pt_regs *regs; 10133 10134 regs = get_irq_regs(); 10135 if (regs) { 10136 show_regs(regs); 10137 return; 10138 } 10139 } 10140 10141 if (trigger_single_cpu_backtrace(cpu)) 10142 return; 10143 10144 pr_info("Task dump for CPU %d:\n", cpu); 10145 sched_show_task(cpu_curr(cpu)); 10146 } 10147 10148 /* 10149 * Nice levels are multiplicative, with a gentle 10% change for every 10150 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10151 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10152 * that remained on nice 0. 10153 * 10154 * The "10% effect" is relative and cumulative: from _any_ nice level, 10155 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10156 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10157 * If a task goes up by ~10% and another task goes down by ~10% then 10158 * the relative distance between them is ~25%.) 10159 */ 10160 const int sched_prio_to_weight[40] = { 10161 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10162 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10163 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10164 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10165 /* 0 */ 1024, 820, 655, 526, 423, 10166 /* 5 */ 335, 272, 215, 172, 137, 10167 /* 10 */ 110, 87, 70, 56, 45, 10168 /* 15 */ 36, 29, 23, 18, 15, 10169 }; 10170 10171 /* 10172 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10173 * 10174 * In cases where the weight does not change often, we can use the 10175 * pre-calculated inverse to speed up arithmetics by turning divisions 10176 * into multiplications: 10177 */ 10178 const u32 sched_prio_to_wmult[40] = { 10179 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10180 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10181 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10182 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10183 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10184 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10185 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10186 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10187 }; 10188 10189 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10190 { 10191 trace_sched_update_nr_running_tp(rq, count); 10192 } 10193 10194 #ifdef CONFIG_SCHED_MM_CID 10195 10196 /* 10197 * @cid_lock: Guarantee forward-progress of cid allocation. 10198 * 10199 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 10200 * is only used when contention is detected by the lock-free allocation so 10201 * forward progress can be guaranteed. 10202 */ 10203 DEFINE_RAW_SPINLOCK(cid_lock); 10204 10205 /* 10206 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 10207 * 10208 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 10209 * detected, it is set to 1 to ensure that all newly coming allocations are 10210 * serialized by @cid_lock until the allocation which detected contention 10211 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 10212 * of a cid allocation. 10213 */ 10214 int use_cid_lock; 10215 10216 /* 10217 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 10218 * concurrently with respect to the execution of the source runqueue context 10219 * switch. 10220 * 10221 * There is one basic properties we want to guarantee here: 10222 * 10223 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 10224 * used by a task. That would lead to concurrent allocation of the cid and 10225 * userspace corruption. 10226 * 10227 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 10228 * that a pair of loads observe at least one of a pair of stores, which can be 10229 * shown as: 10230 * 10231 * X = Y = 0 10232 * 10233 * w[X]=1 w[Y]=1 10234 * MB MB 10235 * r[Y]=y r[X]=x 10236 * 10237 * Which guarantees that x==0 && y==0 is impossible. But rather than using 10238 * values 0 and 1, this algorithm cares about specific state transitions of the 10239 * runqueue current task (as updated by the scheduler context switch), and the 10240 * per-mm/cpu cid value. 10241 * 10242 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 10243 * task->mm != mm for the rest of the discussion. There are two scheduler state 10244 * transitions on context switch we care about: 10245 * 10246 * (TSA) Store to rq->curr with transition from (N) to (Y) 10247 * 10248 * (TSB) Store to rq->curr with transition from (Y) to (N) 10249 * 10250 * On the remote-clear side, there is one transition we care about: 10251 * 10252 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 10253 * 10254 * There is also a transition to UNSET state which can be performed from all 10255 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 10256 * guarantees that only a single thread will succeed: 10257 * 10258 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 10259 * 10260 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 10261 * when a thread is actively using the cid (property (1)). 10262 * 10263 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 10264 * 10265 * Scenario A) (TSA)+(TMA) (from next task perspective) 10266 * 10267 * CPU0 CPU1 10268 * 10269 * Context switch CS-1 Remote-clear 10270 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 10271 * (implied barrier after cmpxchg) 10272 * - switch_mm_cid() 10273 * - memory barrier (see switch_mm_cid() 10274 * comment explaining how this barrier 10275 * is combined with other scheduler 10276 * barriers) 10277 * - mm_cid_get (next) 10278 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 10279 * 10280 * This Dekker ensures that either task (Y) is observed by the 10281 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 10282 * observed. 10283 * 10284 * If task (Y) store is observed by rcu_dereference(), it means that there is 10285 * still an active task on the cpu. Remote-clear will therefore not transition 10286 * to UNSET, which fulfills property (1). 10287 * 10288 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 10289 * it will move its state to UNSET, which clears the percpu cid perhaps 10290 * uselessly (which is not an issue for correctness). Because task (Y) is not 10291 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 10292 * state to UNSET is done with a cmpxchg expecting that the old state has the 10293 * LAZY flag set, only one thread will successfully UNSET. 10294 * 10295 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 10296 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 10297 * CPU1 will observe task (Y) and do nothing more, which is fine. 10298 * 10299 * What we are effectively preventing with this Dekker is a scenario where 10300 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 10301 * because this would UNSET a cid which is actively used. 10302 */ 10303 10304 void sched_mm_cid_migrate_from(struct task_struct *t) 10305 { 10306 t->migrate_from_cpu = task_cpu(t); 10307 } 10308 10309 static 10310 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 10311 struct task_struct *t, 10312 struct mm_cid *src_pcpu_cid) 10313 { 10314 struct mm_struct *mm = t->mm; 10315 struct task_struct *src_task; 10316 int src_cid, last_mm_cid; 10317 10318 if (!mm) 10319 return -1; 10320 10321 last_mm_cid = t->last_mm_cid; 10322 /* 10323 * If the migrated task has no last cid, or if the current 10324 * task on src rq uses the cid, it means the source cid does not need 10325 * to be moved to the destination cpu. 10326 */ 10327 if (last_mm_cid == -1) 10328 return -1; 10329 src_cid = READ_ONCE(src_pcpu_cid->cid); 10330 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10331 return -1; 10332 10333 /* 10334 * If we observe an active task using the mm on this rq, it means we 10335 * are not the last task to be migrated from this cpu for this mm, so 10336 * there is no need to move src_cid to the destination cpu. 10337 */ 10338 guard(rcu)(); 10339 src_task = rcu_dereference(src_rq->curr); 10340 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10341 t->last_mm_cid = -1; 10342 return -1; 10343 } 10344 10345 return src_cid; 10346 } 10347 10348 static 10349 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10350 struct task_struct *t, 10351 struct mm_cid *src_pcpu_cid, 10352 int src_cid) 10353 { 10354 struct task_struct *src_task; 10355 struct mm_struct *mm = t->mm; 10356 int lazy_cid; 10357 10358 if (src_cid == -1) 10359 return -1; 10360 10361 /* 10362 * Attempt to clear the source cpu cid to move it to the destination 10363 * cpu. 10364 */ 10365 lazy_cid = mm_cid_set_lazy_put(src_cid); 10366 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10367 return -1; 10368 10369 /* 10370 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10371 * rq->curr->mm matches the scheduler barrier in context_switch() 10372 * between store to rq->curr and load of prev and next task's 10373 * per-mm/cpu cid. 10374 * 10375 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10376 * rq->curr->mm_cid_active matches the barrier in 10377 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10378 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10379 * load of per-mm/cpu cid. 10380 */ 10381 10382 /* 10383 * If we observe an active task using the mm on this rq after setting 10384 * the lazy-put flag, this task will be responsible for transitioning 10385 * from lazy-put flag set to MM_CID_UNSET. 10386 */ 10387 scoped_guard (rcu) { 10388 src_task = rcu_dereference(src_rq->curr); 10389 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10390 /* 10391 * We observed an active task for this mm, there is therefore 10392 * no point in moving this cid to the destination cpu. 10393 */ 10394 t->last_mm_cid = -1; 10395 return -1; 10396 } 10397 } 10398 10399 /* 10400 * The src_cid is unused, so it can be unset. 10401 */ 10402 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10403 return -1; 10404 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); 10405 return src_cid; 10406 } 10407 10408 /* 10409 * Migration to dst cpu. Called with dst_rq lock held. 10410 * Interrupts are disabled, which keeps the window of cid ownership without the 10411 * source rq lock held small. 10412 */ 10413 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10414 { 10415 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10416 struct mm_struct *mm = t->mm; 10417 int src_cid, src_cpu; 10418 bool dst_cid_is_set; 10419 struct rq *src_rq; 10420 10421 lockdep_assert_rq_held(dst_rq); 10422 10423 if (!mm) 10424 return; 10425 src_cpu = t->migrate_from_cpu; 10426 if (src_cpu == -1) { 10427 t->last_mm_cid = -1; 10428 return; 10429 } 10430 /* 10431 * Move the src cid if the dst cid is unset. This keeps id 10432 * allocation closest to 0 in cases where few threads migrate around 10433 * many CPUs. 10434 * 10435 * If destination cid or recent cid is already set, we may have 10436 * to just clear the src cid to ensure compactness in frequent 10437 * migrations scenarios. 10438 * 10439 * It is not useful to clear the src cid when the number of threads is 10440 * greater or equal to the number of allowed CPUs, because user-space 10441 * can expect that the number of allowed cids can reach the number of 10442 * allowed CPUs. 10443 */ 10444 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10445 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || 10446 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); 10447 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) 10448 return; 10449 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10450 src_rq = cpu_rq(src_cpu); 10451 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10452 if (src_cid == -1) 10453 return; 10454 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10455 src_cid); 10456 if (src_cid == -1) 10457 return; 10458 if (dst_cid_is_set) { 10459 __mm_cid_put(mm, src_cid); 10460 return; 10461 } 10462 /* Move src_cid to dst cpu. */ 10463 mm_cid_snapshot_time(dst_rq, mm); 10464 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10465 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); 10466 } 10467 10468 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10469 int cpu) 10470 { 10471 struct rq *rq = cpu_rq(cpu); 10472 struct task_struct *t; 10473 int cid, lazy_cid; 10474 10475 cid = READ_ONCE(pcpu_cid->cid); 10476 if (!mm_cid_is_valid(cid)) 10477 return; 10478 10479 /* 10480 * Clear the cpu cid if it is set to keep cid allocation compact. If 10481 * there happens to be other tasks left on the source cpu using this 10482 * mm, the next task using this mm will reallocate its cid on context 10483 * switch. 10484 */ 10485 lazy_cid = mm_cid_set_lazy_put(cid); 10486 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10487 return; 10488 10489 /* 10490 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10491 * rq->curr->mm matches the scheduler barrier in context_switch() 10492 * between store to rq->curr and load of prev and next task's 10493 * per-mm/cpu cid. 10494 * 10495 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10496 * rq->curr->mm_cid_active matches the barrier in 10497 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10498 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10499 * load of per-mm/cpu cid. 10500 */ 10501 10502 /* 10503 * If we observe an active task using the mm on this rq after setting 10504 * the lazy-put flag, that task will be responsible for transitioning 10505 * from lazy-put flag set to MM_CID_UNSET. 10506 */ 10507 scoped_guard (rcu) { 10508 t = rcu_dereference(rq->curr); 10509 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10510 return; 10511 } 10512 10513 /* 10514 * The cid is unused, so it can be unset. 10515 * Disable interrupts to keep the window of cid ownership without rq 10516 * lock small. 10517 */ 10518 scoped_guard (irqsave) { 10519 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10520 __mm_cid_put(mm, cid); 10521 } 10522 } 10523 10524 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10525 { 10526 struct rq *rq = cpu_rq(cpu); 10527 struct mm_cid *pcpu_cid; 10528 struct task_struct *curr; 10529 u64 rq_clock; 10530 10531 /* 10532 * rq->clock load is racy on 32-bit but one spurious clear once in a 10533 * while is irrelevant. 10534 */ 10535 rq_clock = READ_ONCE(rq->clock); 10536 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10537 10538 /* 10539 * In order to take care of infrequently scheduled tasks, bump the time 10540 * snapshot associated with this cid if an active task using the mm is 10541 * observed on this rq. 10542 */ 10543 scoped_guard (rcu) { 10544 curr = rcu_dereference(rq->curr); 10545 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10546 WRITE_ONCE(pcpu_cid->time, rq_clock); 10547 return; 10548 } 10549 } 10550 10551 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10552 return; 10553 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10554 } 10555 10556 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10557 int weight) 10558 { 10559 struct mm_cid *pcpu_cid; 10560 int cid; 10561 10562 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10563 cid = READ_ONCE(pcpu_cid->cid); 10564 if (!mm_cid_is_valid(cid) || cid < weight) 10565 return; 10566 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10567 } 10568 10569 static void task_mm_cid_work(struct callback_head *work) 10570 { 10571 unsigned long now = jiffies, old_scan, next_scan; 10572 struct task_struct *t = current; 10573 struct cpumask *cidmask; 10574 struct mm_struct *mm; 10575 int weight, cpu; 10576 10577 WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work)); 10578 10579 work->next = work; /* Prevent double-add */ 10580 if (t->flags & PF_EXITING) 10581 return; 10582 mm = t->mm; 10583 if (!mm) 10584 return; 10585 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10586 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10587 if (!old_scan) { 10588 unsigned long res; 10589 10590 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10591 if (res != old_scan) 10592 old_scan = res; 10593 else 10594 old_scan = next_scan; 10595 } 10596 if (time_before(now, old_scan)) 10597 return; 10598 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10599 return; 10600 cidmask = mm_cidmask(mm); 10601 /* Clear cids that were not recently used. */ 10602 for_each_possible_cpu(cpu) 10603 sched_mm_cid_remote_clear_old(mm, cpu); 10604 weight = cpumask_weight(cidmask); 10605 /* 10606 * Clear cids that are greater or equal to the cidmask weight to 10607 * recompact it. 10608 */ 10609 for_each_possible_cpu(cpu) 10610 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10611 } 10612 10613 void init_sched_mm_cid(struct task_struct *t) 10614 { 10615 struct mm_struct *mm = t->mm; 10616 int mm_users = 0; 10617 10618 if (mm) { 10619 mm_users = atomic_read(&mm->mm_users); 10620 if (mm_users == 1) 10621 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10622 } 10623 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10624 init_task_work(&t->cid_work, task_mm_cid_work); 10625 } 10626 10627 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10628 { 10629 struct callback_head *work = &curr->cid_work; 10630 unsigned long now = jiffies; 10631 10632 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10633 work->next != work) 10634 return; 10635 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10636 return; 10637 10638 /* No page allocation under rq lock */ 10639 task_work_add(curr, work, TWA_RESUME); 10640 } 10641 10642 void sched_mm_cid_exit_signals(struct task_struct *t) 10643 { 10644 struct mm_struct *mm = t->mm; 10645 struct rq *rq; 10646 10647 if (!mm) 10648 return; 10649 10650 preempt_disable(); 10651 rq = this_rq(); 10652 guard(rq_lock_irqsave)(rq); 10653 preempt_enable_no_resched(); /* holding spinlock */ 10654 WRITE_ONCE(t->mm_cid_active, 0); 10655 /* 10656 * Store t->mm_cid_active before loading per-mm/cpu cid. 10657 * Matches barrier in sched_mm_cid_remote_clear_old(). 10658 */ 10659 smp_mb(); 10660 mm_cid_put(mm); 10661 t->last_mm_cid = t->mm_cid = -1; 10662 } 10663 10664 void sched_mm_cid_before_execve(struct task_struct *t) 10665 { 10666 struct mm_struct *mm = t->mm; 10667 struct rq *rq; 10668 10669 if (!mm) 10670 return; 10671 10672 preempt_disable(); 10673 rq = this_rq(); 10674 guard(rq_lock_irqsave)(rq); 10675 preempt_enable_no_resched(); /* holding spinlock */ 10676 WRITE_ONCE(t->mm_cid_active, 0); 10677 /* 10678 * Store t->mm_cid_active before loading per-mm/cpu cid. 10679 * Matches barrier in sched_mm_cid_remote_clear_old(). 10680 */ 10681 smp_mb(); 10682 mm_cid_put(mm); 10683 t->last_mm_cid = t->mm_cid = -1; 10684 } 10685 10686 void sched_mm_cid_after_execve(struct task_struct *t) 10687 { 10688 struct mm_struct *mm = t->mm; 10689 struct rq *rq; 10690 10691 if (!mm) 10692 return; 10693 10694 preempt_disable(); 10695 rq = this_rq(); 10696 scoped_guard (rq_lock_irqsave, rq) { 10697 preempt_enable_no_resched(); /* holding spinlock */ 10698 WRITE_ONCE(t->mm_cid_active, 1); 10699 /* 10700 * Store t->mm_cid_active before loading per-mm/cpu cid. 10701 * Matches barrier in sched_mm_cid_remote_clear_old(). 10702 */ 10703 smp_mb(); 10704 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); 10705 } 10706 } 10707 10708 void sched_mm_cid_fork(struct task_struct *t) 10709 { 10710 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10711 t->mm_cid_active = 1; 10712 } 10713 #endif 10714 10715 #ifdef CONFIG_SCHED_CLASS_EXT 10716 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10717 struct sched_enq_and_set_ctx *ctx) 10718 { 10719 struct rq *rq = task_rq(p); 10720 10721 lockdep_assert_rq_held(rq); 10722 10723 *ctx = (struct sched_enq_and_set_ctx){ 10724 .p = p, 10725 .queue_flags = queue_flags, 10726 .queued = task_on_rq_queued(p), 10727 .running = task_current(rq, p), 10728 }; 10729 10730 update_rq_clock(rq); 10731 if (ctx->queued) 10732 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10733 if (ctx->running) 10734 put_prev_task(rq, p); 10735 } 10736 10737 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10738 { 10739 struct rq *rq = task_rq(ctx->p); 10740 10741 lockdep_assert_rq_held(rq); 10742 10743 if (ctx->queued) 10744 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10745 if (ctx->running) 10746 set_next_task(rq, ctx->p); 10747 } 10748 #endif /* CONFIG_SCHED_CLASS_EXT */ 10749