1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 #include <linux/livepatch_sched.h>
70 
71 #ifdef CONFIG_PREEMPT_DYNAMIC
72 # ifdef CONFIG_GENERIC_ENTRY
73 #  include <linux/entry-common.h>
74 # endif
75 #endif
76 
77 #include <uapi/linux/sched/types.h>
78 
79 #include <asm/irq_regs.h>
80 #include <asm/switch_to.h>
81 #include <asm/tlb.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <linux/sched/rseq_api.h>
85 #include <trace/events/sched.h>
86 #include <trace/events/ipi.h>
87 #undef CREATE_TRACE_POINTS
88 
89 #include "sched.h"
90 #include "stats.h"
91 
92 #include "autogroup.h"
93 #include "pelt.h"
94 #include "smp.h"
95 
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102 
103 /*
104  * Export tracepoints that act as a bare tracehook (ie: have no trace event
105  * associated with them) to allow external modules to probe them.
106  */
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119 
120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121 
122 /*
123  * Debugging: various feature bits
124  *
125  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
126  * sysctl_sched_features, defined in sched.h, to allow constants propagation
127  * at compile time and compiler optimization based on features default.
128  */
129 #define SCHED_FEAT(name, enabled)	\
130 	(1UL << __SCHED_FEAT_##name) * enabled |
131 __read_mostly unsigned int sysctl_sched_features =
132 #include "features.h"
133 	0;
134 #undef SCHED_FEAT
135 
136 /*
137  * Print a warning if need_resched is set for the given duration (if
138  * LATENCY_WARN is enabled).
139  *
140  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
141  * per boot.
142  */
143 __read_mostly int sysctl_resched_latency_warn_ms = 100;
144 __read_mostly int sysctl_resched_latency_warn_once = 1;
145 
146 /*
147  * Number of tasks to iterate in a single balance run.
148  * Limited because this is done with IRQs disabled.
149  */
150 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151 
152 __read_mostly int scheduler_running;
153 
154 #ifdef CONFIG_SCHED_CORE
155 
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157 
158 /* kernel prio, less is more */
159 static inline int __task_prio(const struct task_struct *p)
160 {
161 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 		return -2;
163 
164 	if (p->dl_server)
165 		return -1; /* deadline */
166 
167 	if (rt_or_dl_prio(p->prio))
168 		return p->prio; /* [-1, 99] */
169 
170 	if (p->sched_class == &idle_sched_class)
171 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
172 
173 	if (task_on_scx(p))
174 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
175 
176 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
177 }
178 
179 /*
180  * l(a,b)
181  * le(a,b) := !l(b,a)
182  * g(a,b)  := l(b,a)
183  * ge(a,b) := !l(a,b)
184  */
185 
186 /* real prio, less is less */
187 static inline bool prio_less(const struct task_struct *a,
188 			     const struct task_struct *b, bool in_fi)
189 {
190 
191 	int pa = __task_prio(a), pb = __task_prio(b);
192 
193 	if (-pa < -pb)
194 		return true;
195 
196 	if (-pb < -pa)
197 		return false;
198 
199 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
200 		const struct sched_dl_entity *a_dl, *b_dl;
201 
202 		a_dl = &a->dl;
203 		/*
204 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
205 		 * __task_prio() can return -1 (for DL) even for those. In that
206 		 * case, get to the dl_server's DL entity.
207 		 */
208 		if (a->dl_server)
209 			a_dl = a->dl_server;
210 
211 		b_dl = &b->dl;
212 		if (b->dl_server)
213 			b_dl = b->dl_server;
214 
215 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
216 	}
217 
218 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
219 		return cfs_prio_less(a, b, in_fi);
220 
221 #ifdef CONFIG_SCHED_CLASS_EXT
222 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
223 		return scx_prio_less(a, b, in_fi);
224 #endif
225 
226 	return false;
227 }
228 
229 static inline bool __sched_core_less(const struct task_struct *a,
230 				     const struct task_struct *b)
231 {
232 	if (a->core_cookie < b->core_cookie)
233 		return true;
234 
235 	if (a->core_cookie > b->core_cookie)
236 		return false;
237 
238 	/* flip prio, so high prio is leftmost */
239 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
240 		return true;
241 
242 	return false;
243 }
244 
245 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
246 
247 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
248 {
249 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
250 }
251 
252 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
253 {
254 	const struct task_struct *p = __node_2_sc(node);
255 	unsigned long cookie = (unsigned long)key;
256 
257 	if (cookie < p->core_cookie)
258 		return -1;
259 
260 	if (cookie > p->core_cookie)
261 		return 1;
262 
263 	return 0;
264 }
265 
266 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
267 {
268 	if (p->se.sched_delayed)
269 		return;
270 
271 	rq->core->core_task_seq++;
272 
273 	if (!p->core_cookie)
274 		return;
275 
276 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
277 }
278 
279 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
280 {
281 	if (p->se.sched_delayed)
282 		return;
283 
284 	rq->core->core_task_seq++;
285 
286 	if (sched_core_enqueued(p)) {
287 		rb_erase(&p->core_node, &rq->core_tree);
288 		RB_CLEAR_NODE(&p->core_node);
289 	}
290 
291 	/*
292 	 * Migrating the last task off the cpu, with the cpu in forced idle
293 	 * state. Reschedule to create an accounting edge for forced idle,
294 	 * and re-examine whether the core is still in forced idle state.
295 	 */
296 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
297 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
298 		resched_curr(rq);
299 }
300 
301 static int sched_task_is_throttled(struct task_struct *p, int cpu)
302 {
303 	if (p->sched_class->task_is_throttled)
304 		return p->sched_class->task_is_throttled(p, cpu);
305 
306 	return 0;
307 }
308 
309 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
310 {
311 	struct rb_node *node = &p->core_node;
312 	int cpu = task_cpu(p);
313 
314 	do {
315 		node = rb_next(node);
316 		if (!node)
317 			return NULL;
318 
319 		p = __node_2_sc(node);
320 		if (p->core_cookie != cookie)
321 			return NULL;
322 
323 	} while (sched_task_is_throttled(p, cpu));
324 
325 	return p;
326 }
327 
328 /*
329  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
330  * If no suitable task is found, NULL will be returned.
331  */
332 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
333 {
334 	struct task_struct *p;
335 	struct rb_node *node;
336 
337 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
338 	if (!node)
339 		return NULL;
340 
341 	p = __node_2_sc(node);
342 	if (!sched_task_is_throttled(p, rq->cpu))
343 		return p;
344 
345 	return sched_core_next(p, cookie);
346 }
347 
348 /*
349  * Magic required such that:
350  *
351  *	raw_spin_rq_lock(rq);
352  *	...
353  *	raw_spin_rq_unlock(rq);
354  *
355  * ends up locking and unlocking the _same_ lock, and all CPUs
356  * always agree on what rq has what lock.
357  *
358  * XXX entirely possible to selectively enable cores, don't bother for now.
359  */
360 
361 static DEFINE_MUTEX(sched_core_mutex);
362 static atomic_t sched_core_count;
363 static struct cpumask sched_core_mask;
364 
365 static void sched_core_lock(int cpu, unsigned long *flags)
366 {
367 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
368 	int t, i = 0;
369 
370 	local_irq_save(*flags);
371 	for_each_cpu(t, smt_mask)
372 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
373 }
374 
375 static void sched_core_unlock(int cpu, unsigned long *flags)
376 {
377 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
378 	int t;
379 
380 	for_each_cpu(t, smt_mask)
381 		raw_spin_unlock(&cpu_rq(t)->__lock);
382 	local_irq_restore(*flags);
383 }
384 
385 static void __sched_core_flip(bool enabled)
386 {
387 	unsigned long flags;
388 	int cpu, t;
389 
390 	cpus_read_lock();
391 
392 	/*
393 	 * Toggle the online cores, one by one.
394 	 */
395 	cpumask_copy(&sched_core_mask, cpu_online_mask);
396 	for_each_cpu(cpu, &sched_core_mask) {
397 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
398 
399 		sched_core_lock(cpu, &flags);
400 
401 		for_each_cpu(t, smt_mask)
402 			cpu_rq(t)->core_enabled = enabled;
403 
404 		cpu_rq(cpu)->core->core_forceidle_start = 0;
405 
406 		sched_core_unlock(cpu, &flags);
407 
408 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
409 	}
410 
411 	/*
412 	 * Toggle the offline CPUs.
413 	 */
414 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
415 		cpu_rq(cpu)->core_enabled = enabled;
416 
417 	cpus_read_unlock();
418 }
419 
420 static void sched_core_assert_empty(void)
421 {
422 	int cpu;
423 
424 	for_each_possible_cpu(cpu)
425 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
426 }
427 
428 static void __sched_core_enable(void)
429 {
430 	static_branch_enable(&__sched_core_enabled);
431 	/*
432 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
433 	 * and future ones will observe !sched_core_disabled().
434 	 */
435 	synchronize_rcu();
436 	__sched_core_flip(true);
437 	sched_core_assert_empty();
438 }
439 
440 static void __sched_core_disable(void)
441 {
442 	sched_core_assert_empty();
443 	__sched_core_flip(false);
444 	static_branch_disable(&__sched_core_enabled);
445 }
446 
447 void sched_core_get(void)
448 {
449 	if (atomic_inc_not_zero(&sched_core_count))
450 		return;
451 
452 	mutex_lock(&sched_core_mutex);
453 	if (!atomic_read(&sched_core_count))
454 		__sched_core_enable();
455 
456 	smp_mb__before_atomic();
457 	atomic_inc(&sched_core_count);
458 	mutex_unlock(&sched_core_mutex);
459 }
460 
461 static void __sched_core_put(struct work_struct *work)
462 {
463 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
464 		__sched_core_disable();
465 		mutex_unlock(&sched_core_mutex);
466 	}
467 }
468 
469 void sched_core_put(void)
470 {
471 	static DECLARE_WORK(_work, __sched_core_put);
472 
473 	/*
474 	 * "There can be only one"
475 	 *
476 	 * Either this is the last one, or we don't actually need to do any
477 	 * 'work'. If it is the last *again*, we rely on
478 	 * WORK_STRUCT_PENDING_BIT.
479 	 */
480 	if (!atomic_add_unless(&sched_core_count, -1, 1))
481 		schedule_work(&_work);
482 }
483 
484 #else /* !CONFIG_SCHED_CORE */
485 
486 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
487 static inline void
488 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
489 
490 #endif /* CONFIG_SCHED_CORE */
491 
492 /* need a wrapper since we may need to trace from modules */
493 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp);
494 
495 /* Call via the helper macro trace_set_current_state. */
496 void __trace_set_current_state(int state_value)
497 {
498 	trace_sched_set_state_tp(current, state_value);
499 }
500 EXPORT_SYMBOL(__trace_set_current_state);
501 
502 /*
503  * Serialization rules:
504  *
505  * Lock order:
506  *
507  *   p->pi_lock
508  *     rq->lock
509  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
510  *
511  *  rq1->lock
512  *    rq2->lock  where: rq1 < rq2
513  *
514  * Regular state:
515  *
516  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
517  * local CPU's rq->lock, it optionally removes the task from the runqueue and
518  * always looks at the local rq data structures to find the most eligible task
519  * to run next.
520  *
521  * Task enqueue is also under rq->lock, possibly taken from another CPU.
522  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
523  * the local CPU to avoid bouncing the runqueue state around [ see
524  * ttwu_queue_wakelist() ]
525  *
526  * Task wakeup, specifically wakeups that involve migration, are horribly
527  * complicated to avoid having to take two rq->locks.
528  *
529  * Special state:
530  *
531  * System-calls and anything external will use task_rq_lock() which acquires
532  * both p->pi_lock and rq->lock. As a consequence the state they change is
533  * stable while holding either lock:
534  *
535  *  - sched_setaffinity()/
536  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
537  *  - set_user_nice():		p->se.load, p->*prio
538  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
539  *				p->se.load, p->rt_priority,
540  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
541  *  - sched_setnuma():		p->numa_preferred_nid
542  *  - sched_move_task():	p->sched_task_group
543  *  - uclamp_update_active()	p->uclamp*
544  *
545  * p->state <- TASK_*:
546  *
547  *   is changed locklessly using set_current_state(), __set_current_state() or
548  *   set_special_state(), see their respective comments, or by
549  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
550  *   concurrent self.
551  *
552  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
553  *
554  *   is set by activate_task() and cleared by deactivate_task(), under
555  *   rq->lock. Non-zero indicates the task is runnable, the special
556  *   ON_RQ_MIGRATING state is used for migration without holding both
557  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
558  *
559  *   Additionally it is possible to be ->on_rq but still be considered not
560  *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
561  *   but will be dequeued as soon as they get picked again. See the
562  *   task_is_runnable() helper.
563  *
564  * p->on_cpu <- { 0, 1 }:
565  *
566  *   is set by prepare_task() and cleared by finish_task() such that it will be
567  *   set before p is scheduled-in and cleared after p is scheduled-out, both
568  *   under rq->lock. Non-zero indicates the task is running on its CPU.
569  *
570  *   [ The astute reader will observe that it is possible for two tasks on one
571  *     CPU to have ->on_cpu = 1 at the same time. ]
572  *
573  * task_cpu(p): is changed by set_task_cpu(), the rules are:
574  *
575  *  - Don't call set_task_cpu() on a blocked task:
576  *
577  *    We don't care what CPU we're not running on, this simplifies hotplug,
578  *    the CPU assignment of blocked tasks isn't required to be valid.
579  *
580  *  - for try_to_wake_up(), called under p->pi_lock:
581  *
582  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
583  *
584  *  - for migration called under rq->lock:
585  *    [ see task_on_rq_migrating() in task_rq_lock() ]
586  *
587  *    o move_queued_task()
588  *    o detach_task()
589  *
590  *  - for migration called under double_rq_lock():
591  *
592  *    o __migrate_swap_task()
593  *    o push_rt_task() / pull_rt_task()
594  *    o push_dl_task() / pull_dl_task()
595  *    o dl_task_offline_migration()
596  *
597  */
598 
599 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
600 {
601 	raw_spinlock_t *lock;
602 
603 	/* Matches synchronize_rcu() in __sched_core_enable() */
604 	preempt_disable();
605 	if (sched_core_disabled()) {
606 		raw_spin_lock_nested(&rq->__lock, subclass);
607 		/* preempt_count *MUST* be > 1 */
608 		preempt_enable_no_resched();
609 		return;
610 	}
611 
612 	for (;;) {
613 		lock = __rq_lockp(rq);
614 		raw_spin_lock_nested(lock, subclass);
615 		if (likely(lock == __rq_lockp(rq))) {
616 			/* preempt_count *MUST* be > 1 */
617 			preempt_enable_no_resched();
618 			return;
619 		}
620 		raw_spin_unlock(lock);
621 	}
622 }
623 
624 bool raw_spin_rq_trylock(struct rq *rq)
625 {
626 	raw_spinlock_t *lock;
627 	bool ret;
628 
629 	/* Matches synchronize_rcu() in __sched_core_enable() */
630 	preempt_disable();
631 	if (sched_core_disabled()) {
632 		ret = raw_spin_trylock(&rq->__lock);
633 		preempt_enable();
634 		return ret;
635 	}
636 
637 	for (;;) {
638 		lock = __rq_lockp(rq);
639 		ret = raw_spin_trylock(lock);
640 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
641 			preempt_enable();
642 			return ret;
643 		}
644 		raw_spin_unlock(lock);
645 	}
646 }
647 
648 void raw_spin_rq_unlock(struct rq *rq)
649 {
650 	raw_spin_unlock(rq_lockp(rq));
651 }
652 
653 #ifdef CONFIG_SMP
654 /*
655  * double_rq_lock - safely lock two runqueues
656  */
657 void double_rq_lock(struct rq *rq1, struct rq *rq2)
658 {
659 	lockdep_assert_irqs_disabled();
660 
661 	if (rq_order_less(rq2, rq1))
662 		swap(rq1, rq2);
663 
664 	raw_spin_rq_lock(rq1);
665 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
666 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
667 
668 	double_rq_clock_clear_update(rq1, rq2);
669 }
670 #endif
671 
672 /*
673  * __task_rq_lock - lock the rq @p resides on.
674  */
675 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
676 	__acquires(rq->lock)
677 {
678 	struct rq *rq;
679 
680 	lockdep_assert_held(&p->pi_lock);
681 
682 	for (;;) {
683 		rq = task_rq(p);
684 		raw_spin_rq_lock(rq);
685 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
686 			rq_pin_lock(rq, rf);
687 			return rq;
688 		}
689 		raw_spin_rq_unlock(rq);
690 
691 		while (unlikely(task_on_rq_migrating(p)))
692 			cpu_relax();
693 	}
694 }
695 
696 /*
697  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
698  */
699 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
700 	__acquires(p->pi_lock)
701 	__acquires(rq->lock)
702 {
703 	struct rq *rq;
704 
705 	for (;;) {
706 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
707 		rq = task_rq(p);
708 		raw_spin_rq_lock(rq);
709 		/*
710 		 *	move_queued_task()		task_rq_lock()
711 		 *
712 		 *	ACQUIRE (rq->lock)
713 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
714 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
715 		 *	[S] ->cpu = new_cpu		[L] task_rq()
716 		 *					[L] ->on_rq
717 		 *	RELEASE (rq->lock)
718 		 *
719 		 * If we observe the old CPU in task_rq_lock(), the acquire of
720 		 * the old rq->lock will fully serialize against the stores.
721 		 *
722 		 * If we observe the new CPU in task_rq_lock(), the address
723 		 * dependency headed by '[L] rq = task_rq()' and the acquire
724 		 * will pair with the WMB to ensure we then also see migrating.
725 		 */
726 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
727 			rq_pin_lock(rq, rf);
728 			return rq;
729 		}
730 		raw_spin_rq_unlock(rq);
731 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
732 
733 		while (unlikely(task_on_rq_migrating(p)))
734 			cpu_relax();
735 	}
736 }
737 
738 /*
739  * RQ-clock updating methods:
740  */
741 
742 static void update_rq_clock_task(struct rq *rq, s64 delta)
743 {
744 /*
745  * In theory, the compile should just see 0 here, and optimize out the call
746  * to sched_rt_avg_update. But I don't trust it...
747  */
748 	s64 __maybe_unused steal = 0, irq_delta = 0;
749 
750 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
751 	if (irqtime_enabled()) {
752 		irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
753 
754 		/*
755 		 * Since irq_time is only updated on {soft,}irq_exit, we might run into
756 		 * this case when a previous update_rq_clock() happened inside a
757 		 * {soft,}IRQ region.
758 		 *
759 		 * When this happens, we stop ->clock_task and only update the
760 		 * prev_irq_time stamp to account for the part that fit, so that a next
761 		 * update will consume the rest. This ensures ->clock_task is
762 		 * monotonic.
763 		 *
764 		 * It does however cause some slight miss-attribution of {soft,}IRQ
765 		 * time, a more accurate solution would be to update the irq_time using
766 		 * the current rq->clock timestamp, except that would require using
767 		 * atomic ops.
768 		 */
769 		if (irq_delta > delta)
770 			irq_delta = delta;
771 
772 		rq->prev_irq_time += irq_delta;
773 		delta -= irq_delta;
774 		delayacct_irq(rq->curr, irq_delta);
775 	}
776 #endif
777 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
778 	if (static_key_false((&paravirt_steal_rq_enabled))) {
779 		u64 prev_steal;
780 
781 		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
782 		steal -= rq->prev_steal_time_rq;
783 
784 		if (unlikely(steal > delta))
785 			steal = delta;
786 
787 		rq->prev_steal_time_rq = prev_steal;
788 		delta -= steal;
789 	}
790 #endif
791 
792 	rq->clock_task += delta;
793 
794 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
795 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
796 		update_irq_load_avg(rq, irq_delta + steal);
797 #endif
798 	update_rq_clock_pelt(rq, delta);
799 }
800 
801 void update_rq_clock(struct rq *rq)
802 {
803 	s64 delta;
804 	u64 clock;
805 
806 	lockdep_assert_rq_held(rq);
807 
808 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
809 		return;
810 
811 	if (sched_feat(WARN_DOUBLE_CLOCK))
812 		WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED);
813 	rq->clock_update_flags |= RQCF_UPDATED;
814 
815 	clock = sched_clock_cpu(cpu_of(rq));
816 	scx_rq_clock_update(rq, clock);
817 
818 	delta = clock - rq->clock;
819 	if (delta < 0)
820 		return;
821 	rq->clock += delta;
822 
823 	update_rq_clock_task(rq, delta);
824 }
825 
826 #ifdef CONFIG_SCHED_HRTICK
827 /*
828  * Use HR-timers to deliver accurate preemption points.
829  */
830 
831 static void hrtick_clear(struct rq *rq)
832 {
833 	if (hrtimer_active(&rq->hrtick_timer))
834 		hrtimer_cancel(&rq->hrtick_timer);
835 }
836 
837 /*
838  * High-resolution timer tick.
839  * Runs from hardirq context with interrupts disabled.
840  */
841 static enum hrtimer_restart hrtick(struct hrtimer *timer)
842 {
843 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
844 	struct rq_flags rf;
845 
846 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
847 
848 	rq_lock(rq, &rf);
849 	update_rq_clock(rq);
850 	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
851 	rq_unlock(rq, &rf);
852 
853 	return HRTIMER_NORESTART;
854 }
855 
856 #ifdef CONFIG_SMP
857 
858 static void __hrtick_restart(struct rq *rq)
859 {
860 	struct hrtimer *timer = &rq->hrtick_timer;
861 	ktime_t time = rq->hrtick_time;
862 
863 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
864 }
865 
866 /*
867  * called from hardirq (IPI) context
868  */
869 static void __hrtick_start(void *arg)
870 {
871 	struct rq *rq = arg;
872 	struct rq_flags rf;
873 
874 	rq_lock(rq, &rf);
875 	__hrtick_restart(rq);
876 	rq_unlock(rq, &rf);
877 }
878 
879 /*
880  * Called to set the hrtick timer state.
881  *
882  * called with rq->lock held and IRQs disabled
883  */
884 void hrtick_start(struct rq *rq, u64 delay)
885 {
886 	struct hrtimer *timer = &rq->hrtick_timer;
887 	s64 delta;
888 
889 	/*
890 	 * Don't schedule slices shorter than 10000ns, that just
891 	 * doesn't make sense and can cause timer DoS.
892 	 */
893 	delta = max_t(s64, delay, 10000LL);
894 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
895 
896 	if (rq == this_rq())
897 		__hrtick_restart(rq);
898 	else
899 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
900 }
901 
902 #else
903 /*
904  * Called to set the hrtick timer state.
905  *
906  * called with rq->lock held and IRQs disabled
907  */
908 void hrtick_start(struct rq *rq, u64 delay)
909 {
910 	/*
911 	 * Don't schedule slices shorter than 10000ns, that just
912 	 * doesn't make sense. Rely on vruntime for fairness.
913 	 */
914 	delay = max_t(u64, delay, 10000LL);
915 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
916 		      HRTIMER_MODE_REL_PINNED_HARD);
917 }
918 
919 #endif /* CONFIG_SMP */
920 
921 static void hrtick_rq_init(struct rq *rq)
922 {
923 #ifdef CONFIG_SMP
924 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
925 #endif
926 	hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
927 }
928 #else	/* CONFIG_SCHED_HRTICK */
929 static inline void hrtick_clear(struct rq *rq)
930 {
931 }
932 
933 static inline void hrtick_rq_init(struct rq *rq)
934 {
935 }
936 #endif	/* CONFIG_SCHED_HRTICK */
937 
938 /*
939  * try_cmpxchg based fetch_or() macro so it works for different integer types:
940  */
941 #define fetch_or(ptr, mask)						\
942 	({								\
943 		typeof(ptr) _ptr = (ptr);				\
944 		typeof(mask) _mask = (mask);				\
945 		typeof(*_ptr) _val = *_ptr;				\
946 									\
947 		do {							\
948 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
949 	_val;								\
950 })
951 
952 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
953 /*
954  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
955  * this avoids any races wrt polling state changes and thereby avoids
956  * spurious IPIs.
957  */
958 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
959 {
960 	return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
961 }
962 
963 /*
964  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
965  *
966  * If this returns true, then the idle task promises to call
967  * sched_ttwu_pending() and reschedule soon.
968  */
969 static bool set_nr_if_polling(struct task_struct *p)
970 {
971 	struct thread_info *ti = task_thread_info(p);
972 	typeof(ti->flags) val = READ_ONCE(ti->flags);
973 
974 	do {
975 		if (!(val & _TIF_POLLING_NRFLAG))
976 			return false;
977 		if (val & _TIF_NEED_RESCHED)
978 			return true;
979 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
980 
981 	return true;
982 }
983 
984 #else
985 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
986 {
987 	set_ti_thread_flag(ti, tif);
988 	return true;
989 }
990 
991 #ifdef CONFIG_SMP
992 static inline bool set_nr_if_polling(struct task_struct *p)
993 {
994 	return false;
995 }
996 #endif
997 #endif
998 
999 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
1000 {
1001 	struct wake_q_node *node = &task->wake_q;
1002 
1003 	/*
1004 	 * Atomically grab the task, if ->wake_q is !nil already it means
1005 	 * it's already queued (either by us or someone else) and will get the
1006 	 * wakeup due to that.
1007 	 *
1008 	 * In order to ensure that a pending wakeup will observe our pending
1009 	 * state, even in the failed case, an explicit smp_mb() must be used.
1010 	 */
1011 	smp_mb__before_atomic();
1012 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1013 		return false;
1014 
1015 	/*
1016 	 * The head is context local, there can be no concurrency.
1017 	 */
1018 	*head->lastp = node;
1019 	head->lastp = &node->next;
1020 	return true;
1021 }
1022 
1023 /**
1024  * wake_q_add() - queue a wakeup for 'later' waking.
1025  * @head: the wake_q_head to add @task to
1026  * @task: the task to queue for 'later' wakeup
1027  *
1028  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1029  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1030  * instantly.
1031  *
1032  * This function must be used as-if it were wake_up_process(); IOW the task
1033  * must be ready to be woken at this location.
1034  */
1035 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1036 {
1037 	if (__wake_q_add(head, task))
1038 		get_task_struct(task);
1039 }
1040 
1041 /**
1042  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1043  * @head: the wake_q_head to add @task to
1044  * @task: the task to queue for 'later' wakeup
1045  *
1046  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1047  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1048  * instantly.
1049  *
1050  * This function must be used as-if it were wake_up_process(); IOW the task
1051  * must be ready to be woken at this location.
1052  *
1053  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1054  * that already hold reference to @task can call the 'safe' version and trust
1055  * wake_q to do the right thing depending whether or not the @task is already
1056  * queued for wakeup.
1057  */
1058 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1059 {
1060 	if (!__wake_q_add(head, task))
1061 		put_task_struct(task);
1062 }
1063 
1064 void wake_up_q(struct wake_q_head *head)
1065 {
1066 	struct wake_q_node *node = head->first;
1067 
1068 	while (node != WAKE_Q_TAIL) {
1069 		struct task_struct *task;
1070 
1071 		task = container_of(node, struct task_struct, wake_q);
1072 		node = node->next;
1073 		/* pairs with cmpxchg_relaxed() in __wake_q_add() */
1074 		WRITE_ONCE(task->wake_q.next, NULL);
1075 		/* Task can safely be re-inserted now. */
1076 
1077 		/*
1078 		 * wake_up_process() executes a full barrier, which pairs with
1079 		 * the queueing in wake_q_add() so as not to miss wakeups.
1080 		 */
1081 		wake_up_process(task);
1082 		put_task_struct(task);
1083 	}
1084 }
1085 
1086 /*
1087  * resched_curr - mark rq's current task 'to be rescheduled now'.
1088  *
1089  * On UP this means the setting of the need_resched flag, on SMP it
1090  * might also involve a cross-CPU call to trigger the scheduler on
1091  * the target CPU.
1092  */
1093 static void __resched_curr(struct rq *rq, int tif)
1094 {
1095 	struct task_struct *curr = rq->curr;
1096 	struct thread_info *cti = task_thread_info(curr);
1097 	int cpu;
1098 
1099 	lockdep_assert_rq_held(rq);
1100 
1101 	/*
1102 	 * Always immediately preempt the idle task; no point in delaying doing
1103 	 * actual work.
1104 	 */
1105 	if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1106 		tif = TIF_NEED_RESCHED;
1107 
1108 	if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1109 		return;
1110 
1111 	cpu = cpu_of(rq);
1112 
1113 	if (cpu == smp_processor_id()) {
1114 		set_ti_thread_flag(cti, tif);
1115 		if (tif == TIF_NEED_RESCHED)
1116 			set_preempt_need_resched();
1117 		return;
1118 	}
1119 
1120 	if (set_nr_and_not_polling(cti, tif)) {
1121 		if (tif == TIF_NEED_RESCHED)
1122 			smp_send_reschedule(cpu);
1123 	} else {
1124 		trace_sched_wake_idle_without_ipi(cpu);
1125 	}
1126 }
1127 
1128 void resched_curr(struct rq *rq)
1129 {
1130 	__resched_curr(rq, TIF_NEED_RESCHED);
1131 }
1132 
1133 #ifdef CONFIG_PREEMPT_DYNAMIC
1134 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
1135 static __always_inline bool dynamic_preempt_lazy(void)
1136 {
1137 	return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1138 }
1139 #else
1140 static __always_inline bool dynamic_preempt_lazy(void)
1141 {
1142 	return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1143 }
1144 #endif
1145 
1146 static __always_inline int get_lazy_tif_bit(void)
1147 {
1148 	if (dynamic_preempt_lazy())
1149 		return TIF_NEED_RESCHED_LAZY;
1150 
1151 	return TIF_NEED_RESCHED;
1152 }
1153 
1154 void resched_curr_lazy(struct rq *rq)
1155 {
1156 	__resched_curr(rq, get_lazy_tif_bit());
1157 }
1158 
1159 void resched_cpu(int cpu)
1160 {
1161 	struct rq *rq = cpu_rq(cpu);
1162 	unsigned long flags;
1163 
1164 	raw_spin_rq_lock_irqsave(rq, flags);
1165 	if (cpu_online(cpu) || cpu == smp_processor_id())
1166 		resched_curr(rq);
1167 	raw_spin_rq_unlock_irqrestore(rq, flags);
1168 }
1169 
1170 #ifdef CONFIG_SMP
1171 #ifdef CONFIG_NO_HZ_COMMON
1172 /*
1173  * In the semi idle case, use the nearest busy CPU for migrating timers
1174  * from an idle CPU.  This is good for power-savings.
1175  *
1176  * We don't do similar optimization for completely idle system, as
1177  * selecting an idle CPU will add more delays to the timers than intended
1178  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1179  */
1180 int get_nohz_timer_target(void)
1181 {
1182 	int i, cpu = smp_processor_id(), default_cpu = -1;
1183 	struct sched_domain *sd;
1184 	const struct cpumask *hk_mask;
1185 
1186 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
1187 		if (!idle_cpu(cpu))
1188 			return cpu;
1189 		default_cpu = cpu;
1190 	}
1191 
1192 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
1193 
1194 	guard(rcu)();
1195 
1196 	for_each_domain(cpu, sd) {
1197 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1198 			if (cpu == i)
1199 				continue;
1200 
1201 			if (!idle_cpu(i))
1202 				return i;
1203 		}
1204 	}
1205 
1206 	if (default_cpu == -1)
1207 		default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
1208 
1209 	return default_cpu;
1210 }
1211 
1212 /*
1213  * When add_timer_on() enqueues a timer into the timer wheel of an
1214  * idle CPU then this timer might expire before the next timer event
1215  * which is scheduled to wake up that CPU. In case of a completely
1216  * idle system the next event might even be infinite time into the
1217  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1218  * leaves the inner idle loop so the newly added timer is taken into
1219  * account when the CPU goes back to idle and evaluates the timer
1220  * wheel for the next timer event.
1221  */
1222 static void wake_up_idle_cpu(int cpu)
1223 {
1224 	struct rq *rq = cpu_rq(cpu);
1225 
1226 	if (cpu == smp_processor_id())
1227 		return;
1228 
1229 	/*
1230 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1231 	 * part of the idle loop. This forces an exit from the idle loop
1232 	 * and a round trip to schedule(). Now this could be optimized
1233 	 * because a simple new idle loop iteration is enough to
1234 	 * re-evaluate the next tick. Provided some re-ordering of tick
1235 	 * nohz functions that would need to follow TIF_NR_POLLING
1236 	 * clearing:
1237 	 *
1238 	 * - On most architectures, a simple fetch_or on ti::flags with a
1239 	 *   "0" value would be enough to know if an IPI needs to be sent.
1240 	 *
1241 	 * - x86 needs to perform a last need_resched() check between
1242 	 *   monitor and mwait which doesn't take timers into account.
1243 	 *   There a dedicated TIF_TIMER flag would be required to
1244 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1245 	 *   before mwait().
1246 	 *
1247 	 * However, remote timer enqueue is not such a frequent event
1248 	 * and testing of the above solutions didn't appear to report
1249 	 * much benefits.
1250 	 */
1251 	if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1252 		smp_send_reschedule(cpu);
1253 	else
1254 		trace_sched_wake_idle_without_ipi(cpu);
1255 }
1256 
1257 static bool wake_up_full_nohz_cpu(int cpu)
1258 {
1259 	/*
1260 	 * We just need the target to call irq_exit() and re-evaluate
1261 	 * the next tick. The nohz full kick at least implies that.
1262 	 * If needed we can still optimize that later with an
1263 	 * empty IRQ.
1264 	 */
1265 	if (cpu_is_offline(cpu))
1266 		return true;  /* Don't try to wake offline CPUs. */
1267 	if (tick_nohz_full_cpu(cpu)) {
1268 		if (cpu != smp_processor_id() ||
1269 		    tick_nohz_tick_stopped())
1270 			tick_nohz_full_kick_cpu(cpu);
1271 		return true;
1272 	}
1273 
1274 	return false;
1275 }
1276 
1277 /*
1278  * Wake up the specified CPU.  If the CPU is going offline, it is the
1279  * caller's responsibility to deal with the lost wakeup, for example,
1280  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1281  */
1282 void wake_up_nohz_cpu(int cpu)
1283 {
1284 	if (!wake_up_full_nohz_cpu(cpu))
1285 		wake_up_idle_cpu(cpu);
1286 }
1287 
1288 static void nohz_csd_func(void *info)
1289 {
1290 	struct rq *rq = info;
1291 	int cpu = cpu_of(rq);
1292 	unsigned int flags;
1293 
1294 	/*
1295 	 * Release the rq::nohz_csd.
1296 	 */
1297 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1298 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1299 
1300 	rq->idle_balance = idle_cpu(cpu);
1301 	if (rq->idle_balance) {
1302 		rq->nohz_idle_balance = flags;
1303 		__raise_softirq_irqoff(SCHED_SOFTIRQ);
1304 	}
1305 }
1306 
1307 #endif /* CONFIG_NO_HZ_COMMON */
1308 
1309 #ifdef CONFIG_NO_HZ_FULL
1310 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1311 {
1312 	if (rq->nr_running != 1)
1313 		return false;
1314 
1315 	if (p->sched_class != &fair_sched_class)
1316 		return false;
1317 
1318 	if (!task_on_rq_queued(p))
1319 		return false;
1320 
1321 	return true;
1322 }
1323 
1324 bool sched_can_stop_tick(struct rq *rq)
1325 {
1326 	int fifo_nr_running;
1327 
1328 	/* Deadline tasks, even if single, need the tick */
1329 	if (rq->dl.dl_nr_running)
1330 		return false;
1331 
1332 	/*
1333 	 * If there are more than one RR tasks, we need the tick to affect the
1334 	 * actual RR behaviour.
1335 	 */
1336 	if (rq->rt.rr_nr_running) {
1337 		if (rq->rt.rr_nr_running == 1)
1338 			return true;
1339 		else
1340 			return false;
1341 	}
1342 
1343 	/*
1344 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1345 	 * forced preemption between FIFO tasks.
1346 	 */
1347 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1348 	if (fifo_nr_running)
1349 		return true;
1350 
1351 	/*
1352 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1353 	 * left. For CFS, if there's more than one we need the tick for
1354 	 * involuntary preemption. For SCX, ask.
1355 	 */
1356 	if (scx_enabled() && !scx_can_stop_tick(rq))
1357 		return false;
1358 
1359 	if (rq->cfs.h_nr_queued > 1)
1360 		return false;
1361 
1362 	/*
1363 	 * If there is one task and it has CFS runtime bandwidth constraints
1364 	 * and it's on the cpu now we don't want to stop the tick.
1365 	 * This check prevents clearing the bit if a newly enqueued task here is
1366 	 * dequeued by migrating while the constrained task continues to run.
1367 	 * E.g. going from 2->1 without going through pick_next_task().
1368 	 */
1369 	if (__need_bw_check(rq, rq->curr)) {
1370 		if (cfs_task_bw_constrained(rq->curr))
1371 			return false;
1372 	}
1373 
1374 	return true;
1375 }
1376 #endif /* CONFIG_NO_HZ_FULL */
1377 #endif /* CONFIG_SMP */
1378 
1379 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1380 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1381 /*
1382  * Iterate task_group tree rooted at *from, calling @down when first entering a
1383  * node and @up when leaving it for the final time.
1384  *
1385  * Caller must hold rcu_lock or sufficient equivalent.
1386  */
1387 int walk_tg_tree_from(struct task_group *from,
1388 			     tg_visitor down, tg_visitor up, void *data)
1389 {
1390 	struct task_group *parent, *child;
1391 	int ret;
1392 
1393 	parent = from;
1394 
1395 down:
1396 	ret = (*down)(parent, data);
1397 	if (ret)
1398 		goto out;
1399 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1400 		parent = child;
1401 		goto down;
1402 
1403 up:
1404 		continue;
1405 	}
1406 	ret = (*up)(parent, data);
1407 	if (ret || parent == from)
1408 		goto out;
1409 
1410 	child = parent;
1411 	parent = parent->parent;
1412 	if (parent)
1413 		goto up;
1414 out:
1415 	return ret;
1416 }
1417 
1418 int tg_nop(struct task_group *tg, void *data)
1419 {
1420 	return 0;
1421 }
1422 #endif
1423 
1424 void set_load_weight(struct task_struct *p, bool update_load)
1425 {
1426 	int prio = p->static_prio - MAX_RT_PRIO;
1427 	struct load_weight lw;
1428 
1429 	if (task_has_idle_policy(p)) {
1430 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1431 		lw.inv_weight = WMULT_IDLEPRIO;
1432 	} else {
1433 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1434 		lw.inv_weight = sched_prio_to_wmult[prio];
1435 	}
1436 
1437 	/*
1438 	 * SCHED_OTHER tasks have to update their load when changing their
1439 	 * weight
1440 	 */
1441 	if (update_load && p->sched_class->reweight_task)
1442 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1443 	else
1444 		p->se.load = lw;
1445 }
1446 
1447 #ifdef CONFIG_UCLAMP_TASK
1448 /*
1449  * Serializes updates of utilization clamp values
1450  *
1451  * The (slow-path) user-space triggers utilization clamp value updates which
1452  * can require updates on (fast-path) scheduler's data structures used to
1453  * support enqueue/dequeue operations.
1454  * While the per-CPU rq lock protects fast-path update operations, user-space
1455  * requests are serialized using a mutex to reduce the risk of conflicting
1456  * updates or API abuses.
1457  */
1458 static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1459 
1460 /* Max allowed minimum utilization */
1461 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1462 
1463 /* Max allowed maximum utilization */
1464 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1465 
1466 /*
1467  * By default RT tasks run at the maximum performance point/capacity of the
1468  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1469  * SCHED_CAPACITY_SCALE.
1470  *
1471  * This knob allows admins to change the default behavior when uclamp is being
1472  * used. In battery powered devices, particularly, running at the maximum
1473  * capacity and frequency will increase energy consumption and shorten the
1474  * battery life.
1475  *
1476  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1477  *
1478  * This knob will not override the system default sched_util_clamp_min defined
1479  * above.
1480  */
1481 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1482 
1483 /* All clamps are required to be less or equal than these values */
1484 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1485 
1486 /*
1487  * This static key is used to reduce the uclamp overhead in the fast path. It
1488  * primarily disables the call to uclamp_rq_{inc, dec}() in
1489  * enqueue/dequeue_task().
1490  *
1491  * This allows users to continue to enable uclamp in their kernel config with
1492  * minimum uclamp overhead in the fast path.
1493  *
1494  * As soon as userspace modifies any of the uclamp knobs, the static key is
1495  * enabled, since we have an actual users that make use of uclamp
1496  * functionality.
1497  *
1498  * The knobs that would enable this static key are:
1499  *
1500  *   * A task modifying its uclamp value with sched_setattr().
1501  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1502  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1503  */
1504 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1505 
1506 static inline unsigned int
1507 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1508 		  unsigned int clamp_value)
1509 {
1510 	/*
1511 	 * Avoid blocked utilization pushing up the frequency when we go
1512 	 * idle (which drops the max-clamp) by retaining the last known
1513 	 * max-clamp.
1514 	 */
1515 	if (clamp_id == UCLAMP_MAX) {
1516 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1517 		return clamp_value;
1518 	}
1519 
1520 	return uclamp_none(UCLAMP_MIN);
1521 }
1522 
1523 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1524 				     unsigned int clamp_value)
1525 {
1526 	/* Reset max-clamp retention only on idle exit */
1527 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1528 		return;
1529 
1530 	uclamp_rq_set(rq, clamp_id, clamp_value);
1531 }
1532 
1533 static inline
1534 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1535 				   unsigned int clamp_value)
1536 {
1537 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1538 	int bucket_id = UCLAMP_BUCKETS - 1;
1539 
1540 	/*
1541 	 * Since both min and max clamps are max aggregated, find the
1542 	 * top most bucket with tasks in.
1543 	 */
1544 	for ( ; bucket_id >= 0; bucket_id--) {
1545 		if (!bucket[bucket_id].tasks)
1546 			continue;
1547 		return bucket[bucket_id].value;
1548 	}
1549 
1550 	/* No tasks -- default clamp values */
1551 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1552 }
1553 
1554 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1555 {
1556 	unsigned int default_util_min;
1557 	struct uclamp_se *uc_se;
1558 
1559 	lockdep_assert_held(&p->pi_lock);
1560 
1561 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1562 
1563 	/* Only sync if user didn't override the default */
1564 	if (uc_se->user_defined)
1565 		return;
1566 
1567 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1568 	uclamp_se_set(uc_se, default_util_min, false);
1569 }
1570 
1571 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1572 {
1573 	if (!rt_task(p))
1574 		return;
1575 
1576 	/* Protect updates to p->uclamp_* */
1577 	guard(task_rq_lock)(p);
1578 	__uclamp_update_util_min_rt_default(p);
1579 }
1580 
1581 static inline struct uclamp_se
1582 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1583 {
1584 	/* Copy by value as we could modify it */
1585 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1586 #ifdef CONFIG_UCLAMP_TASK_GROUP
1587 	unsigned int tg_min, tg_max, value;
1588 
1589 	/*
1590 	 * Tasks in autogroups or root task group will be
1591 	 * restricted by system defaults.
1592 	 */
1593 	if (task_group_is_autogroup(task_group(p)))
1594 		return uc_req;
1595 	if (task_group(p) == &root_task_group)
1596 		return uc_req;
1597 
1598 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1599 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1600 	value = uc_req.value;
1601 	value = clamp(value, tg_min, tg_max);
1602 	uclamp_se_set(&uc_req, value, false);
1603 #endif
1604 
1605 	return uc_req;
1606 }
1607 
1608 /*
1609  * The effective clamp bucket index of a task depends on, by increasing
1610  * priority:
1611  * - the task specific clamp value, when explicitly requested from userspace
1612  * - the task group effective clamp value, for tasks not either in the root
1613  *   group or in an autogroup
1614  * - the system default clamp value, defined by the sysadmin
1615  */
1616 static inline struct uclamp_se
1617 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1618 {
1619 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1620 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1621 
1622 	/* System default restrictions always apply */
1623 	if (unlikely(uc_req.value > uc_max.value))
1624 		return uc_max;
1625 
1626 	return uc_req;
1627 }
1628 
1629 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1630 {
1631 	struct uclamp_se uc_eff;
1632 
1633 	/* Task currently refcounted: use back-annotated (effective) value */
1634 	if (p->uclamp[clamp_id].active)
1635 		return (unsigned long)p->uclamp[clamp_id].value;
1636 
1637 	uc_eff = uclamp_eff_get(p, clamp_id);
1638 
1639 	return (unsigned long)uc_eff.value;
1640 }
1641 
1642 /*
1643  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1644  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1645  * updates the rq's clamp value if required.
1646  *
1647  * Tasks can have a task-specific value requested from user-space, track
1648  * within each bucket the maximum value for tasks refcounted in it.
1649  * This "local max aggregation" allows to track the exact "requested" value
1650  * for each bucket when all its RUNNABLE tasks require the same clamp.
1651  */
1652 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1653 				    enum uclamp_id clamp_id)
1654 {
1655 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1656 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1657 	struct uclamp_bucket *bucket;
1658 
1659 	lockdep_assert_rq_held(rq);
1660 
1661 	/* Update task effective clamp */
1662 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1663 
1664 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1665 	bucket->tasks++;
1666 	uc_se->active = true;
1667 
1668 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1669 
1670 	/*
1671 	 * Local max aggregation: rq buckets always track the max
1672 	 * "requested" clamp value of its RUNNABLE tasks.
1673 	 */
1674 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1675 		bucket->value = uc_se->value;
1676 
1677 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1678 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1679 }
1680 
1681 /*
1682  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1683  * is released. If this is the last task reference counting the rq's max
1684  * active clamp value, then the rq's clamp value is updated.
1685  *
1686  * Both refcounted tasks and rq's cached clamp values are expected to be
1687  * always valid. If it's detected they are not, as defensive programming,
1688  * enforce the expected state and warn.
1689  */
1690 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1691 				    enum uclamp_id clamp_id)
1692 {
1693 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1694 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1695 	struct uclamp_bucket *bucket;
1696 	unsigned int bkt_clamp;
1697 	unsigned int rq_clamp;
1698 
1699 	lockdep_assert_rq_held(rq);
1700 
1701 	/*
1702 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1703 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1704 	 *
1705 	 * In this case the uc_se->active flag should be false since no uclamp
1706 	 * accounting was performed at enqueue time and we can just return
1707 	 * here.
1708 	 *
1709 	 * Need to be careful of the following enqueue/dequeue ordering
1710 	 * problem too
1711 	 *
1712 	 *	enqueue(taskA)
1713 	 *	// sched_uclamp_used gets enabled
1714 	 *	enqueue(taskB)
1715 	 *	dequeue(taskA)
1716 	 *	// Must not decrement bucket->tasks here
1717 	 *	dequeue(taskB)
1718 	 *
1719 	 * where we could end up with stale data in uc_se and
1720 	 * bucket[uc_se->bucket_id].
1721 	 *
1722 	 * The following check here eliminates the possibility of such race.
1723 	 */
1724 	if (unlikely(!uc_se->active))
1725 		return;
1726 
1727 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1728 
1729 	WARN_ON_ONCE(!bucket->tasks);
1730 	if (likely(bucket->tasks))
1731 		bucket->tasks--;
1732 
1733 	uc_se->active = false;
1734 
1735 	/*
1736 	 * Keep "local max aggregation" simple and accept to (possibly)
1737 	 * overboost some RUNNABLE tasks in the same bucket.
1738 	 * The rq clamp bucket value is reset to its base value whenever
1739 	 * there are no more RUNNABLE tasks refcounting it.
1740 	 */
1741 	if (likely(bucket->tasks))
1742 		return;
1743 
1744 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1745 	/*
1746 	 * Defensive programming: this should never happen. If it happens,
1747 	 * e.g. due to future modification, warn and fix up the expected value.
1748 	 */
1749 	WARN_ON_ONCE(bucket->value > rq_clamp);
1750 	if (bucket->value >= rq_clamp) {
1751 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1752 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1753 	}
1754 }
1755 
1756 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags)
1757 {
1758 	enum uclamp_id clamp_id;
1759 
1760 	/*
1761 	 * Avoid any overhead until uclamp is actually used by the userspace.
1762 	 *
1763 	 * The condition is constructed such that a NOP is generated when
1764 	 * sched_uclamp_used is disabled.
1765 	 */
1766 	if (!uclamp_is_used())
1767 		return;
1768 
1769 	if (unlikely(!p->sched_class->uclamp_enabled))
1770 		return;
1771 
1772 	/* Only inc the delayed task which being woken up. */
1773 	if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED))
1774 		return;
1775 
1776 	for_each_clamp_id(clamp_id)
1777 		uclamp_rq_inc_id(rq, p, clamp_id);
1778 
1779 	/* Reset clamp idle holding when there is one RUNNABLE task */
1780 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1781 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1782 }
1783 
1784 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1785 {
1786 	enum uclamp_id clamp_id;
1787 
1788 	/*
1789 	 * Avoid any overhead until uclamp is actually used by the userspace.
1790 	 *
1791 	 * The condition is constructed such that a NOP is generated when
1792 	 * sched_uclamp_used is disabled.
1793 	 */
1794 	if (!uclamp_is_used())
1795 		return;
1796 
1797 	if (unlikely(!p->sched_class->uclamp_enabled))
1798 		return;
1799 
1800 	if (p->se.sched_delayed)
1801 		return;
1802 
1803 	for_each_clamp_id(clamp_id)
1804 		uclamp_rq_dec_id(rq, p, clamp_id);
1805 }
1806 
1807 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1808 				      enum uclamp_id clamp_id)
1809 {
1810 	if (!p->uclamp[clamp_id].active)
1811 		return;
1812 
1813 	uclamp_rq_dec_id(rq, p, clamp_id);
1814 	uclamp_rq_inc_id(rq, p, clamp_id);
1815 
1816 	/*
1817 	 * Make sure to clear the idle flag if we've transiently reached 0
1818 	 * active tasks on rq.
1819 	 */
1820 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1821 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1822 }
1823 
1824 static inline void
1825 uclamp_update_active(struct task_struct *p)
1826 {
1827 	enum uclamp_id clamp_id;
1828 	struct rq_flags rf;
1829 	struct rq *rq;
1830 
1831 	/*
1832 	 * Lock the task and the rq where the task is (or was) queued.
1833 	 *
1834 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1835 	 * price to pay to safely serialize util_{min,max} updates with
1836 	 * enqueues, dequeues and migration operations.
1837 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1838 	 */
1839 	rq = task_rq_lock(p, &rf);
1840 
1841 	/*
1842 	 * Setting the clamp bucket is serialized by task_rq_lock().
1843 	 * If the task is not yet RUNNABLE and its task_struct is not
1844 	 * affecting a valid clamp bucket, the next time it's enqueued,
1845 	 * it will already see the updated clamp bucket value.
1846 	 */
1847 	for_each_clamp_id(clamp_id)
1848 		uclamp_rq_reinc_id(rq, p, clamp_id);
1849 
1850 	task_rq_unlock(rq, p, &rf);
1851 }
1852 
1853 #ifdef CONFIG_UCLAMP_TASK_GROUP
1854 static inline void
1855 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1856 {
1857 	struct css_task_iter it;
1858 	struct task_struct *p;
1859 
1860 	css_task_iter_start(css, 0, &it);
1861 	while ((p = css_task_iter_next(&it)))
1862 		uclamp_update_active(p);
1863 	css_task_iter_end(&it);
1864 }
1865 
1866 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1867 #endif
1868 
1869 #ifdef CONFIG_SYSCTL
1870 #ifdef CONFIG_UCLAMP_TASK_GROUP
1871 static void uclamp_update_root_tg(void)
1872 {
1873 	struct task_group *tg = &root_task_group;
1874 
1875 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1876 		      sysctl_sched_uclamp_util_min, false);
1877 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1878 		      sysctl_sched_uclamp_util_max, false);
1879 
1880 	guard(rcu)();
1881 	cpu_util_update_eff(&root_task_group.css);
1882 }
1883 #else
1884 static void uclamp_update_root_tg(void) { }
1885 #endif
1886 
1887 static void uclamp_sync_util_min_rt_default(void)
1888 {
1889 	struct task_struct *g, *p;
1890 
1891 	/*
1892 	 * copy_process()			sysctl_uclamp
1893 	 *					  uclamp_min_rt = X;
1894 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1895 	 *   // link thread			  smp_mb__after_spinlock()
1896 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1897 	 *   sched_post_fork()			  for_each_process_thread()
1898 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1899 	 *
1900 	 * Ensures that either sched_post_fork() will observe the new
1901 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1902 	 * task.
1903 	 */
1904 	read_lock(&tasklist_lock);
1905 	smp_mb__after_spinlock();
1906 	read_unlock(&tasklist_lock);
1907 
1908 	guard(rcu)();
1909 	for_each_process_thread(g, p)
1910 		uclamp_update_util_min_rt_default(p);
1911 }
1912 
1913 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1914 				void *buffer, size_t *lenp, loff_t *ppos)
1915 {
1916 	bool update_root_tg = false;
1917 	int old_min, old_max, old_min_rt;
1918 	int result;
1919 
1920 	guard(mutex)(&uclamp_mutex);
1921 
1922 	old_min = sysctl_sched_uclamp_util_min;
1923 	old_max = sysctl_sched_uclamp_util_max;
1924 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1925 
1926 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1927 	if (result)
1928 		goto undo;
1929 	if (!write)
1930 		return 0;
1931 
1932 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1933 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1934 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1935 
1936 		result = -EINVAL;
1937 		goto undo;
1938 	}
1939 
1940 	if (old_min != sysctl_sched_uclamp_util_min) {
1941 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1942 			      sysctl_sched_uclamp_util_min, false);
1943 		update_root_tg = true;
1944 	}
1945 	if (old_max != sysctl_sched_uclamp_util_max) {
1946 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1947 			      sysctl_sched_uclamp_util_max, false);
1948 		update_root_tg = true;
1949 	}
1950 
1951 	if (update_root_tg) {
1952 		sched_uclamp_enable();
1953 		uclamp_update_root_tg();
1954 	}
1955 
1956 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1957 		sched_uclamp_enable();
1958 		uclamp_sync_util_min_rt_default();
1959 	}
1960 
1961 	/*
1962 	 * We update all RUNNABLE tasks only when task groups are in use.
1963 	 * Otherwise, keep it simple and do just a lazy update at each next
1964 	 * task enqueue time.
1965 	 */
1966 	return 0;
1967 
1968 undo:
1969 	sysctl_sched_uclamp_util_min = old_min;
1970 	sysctl_sched_uclamp_util_max = old_max;
1971 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1972 	return result;
1973 }
1974 #endif
1975 
1976 static void uclamp_fork(struct task_struct *p)
1977 {
1978 	enum uclamp_id clamp_id;
1979 
1980 	/*
1981 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1982 	 * as the task is still at its early fork stages.
1983 	 */
1984 	for_each_clamp_id(clamp_id)
1985 		p->uclamp[clamp_id].active = false;
1986 
1987 	if (likely(!p->sched_reset_on_fork))
1988 		return;
1989 
1990 	for_each_clamp_id(clamp_id) {
1991 		uclamp_se_set(&p->uclamp_req[clamp_id],
1992 			      uclamp_none(clamp_id), false);
1993 	}
1994 }
1995 
1996 static void uclamp_post_fork(struct task_struct *p)
1997 {
1998 	uclamp_update_util_min_rt_default(p);
1999 }
2000 
2001 static void __init init_uclamp_rq(struct rq *rq)
2002 {
2003 	enum uclamp_id clamp_id;
2004 	struct uclamp_rq *uc_rq = rq->uclamp;
2005 
2006 	for_each_clamp_id(clamp_id) {
2007 		uc_rq[clamp_id] = (struct uclamp_rq) {
2008 			.value = uclamp_none(clamp_id)
2009 		};
2010 	}
2011 
2012 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2013 }
2014 
2015 static void __init init_uclamp(void)
2016 {
2017 	struct uclamp_se uc_max = {};
2018 	enum uclamp_id clamp_id;
2019 	int cpu;
2020 
2021 	for_each_possible_cpu(cpu)
2022 		init_uclamp_rq(cpu_rq(cpu));
2023 
2024 	for_each_clamp_id(clamp_id) {
2025 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2026 			      uclamp_none(clamp_id), false);
2027 	}
2028 
2029 	/* System defaults allow max clamp values for both indexes */
2030 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2031 	for_each_clamp_id(clamp_id) {
2032 		uclamp_default[clamp_id] = uc_max;
2033 #ifdef CONFIG_UCLAMP_TASK_GROUP
2034 		root_task_group.uclamp_req[clamp_id] = uc_max;
2035 		root_task_group.uclamp[clamp_id] = uc_max;
2036 #endif
2037 	}
2038 }
2039 
2040 #else /* !CONFIG_UCLAMP_TASK */
2041 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { }
2042 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2043 static inline void uclamp_fork(struct task_struct *p) { }
2044 static inline void uclamp_post_fork(struct task_struct *p) { }
2045 static inline void init_uclamp(void) { }
2046 #endif /* CONFIG_UCLAMP_TASK */
2047 
2048 bool sched_task_on_rq(struct task_struct *p)
2049 {
2050 	return task_on_rq_queued(p);
2051 }
2052 
2053 unsigned long get_wchan(struct task_struct *p)
2054 {
2055 	unsigned long ip = 0;
2056 	unsigned int state;
2057 
2058 	if (!p || p == current)
2059 		return 0;
2060 
2061 	/* Only get wchan if task is blocked and we can keep it that way. */
2062 	raw_spin_lock_irq(&p->pi_lock);
2063 	state = READ_ONCE(p->__state);
2064 	smp_rmb(); /* see try_to_wake_up() */
2065 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2066 		ip = __get_wchan(p);
2067 	raw_spin_unlock_irq(&p->pi_lock);
2068 
2069 	return ip;
2070 }
2071 
2072 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2073 {
2074 	if (!(flags & ENQUEUE_NOCLOCK))
2075 		update_rq_clock(rq);
2076 
2077 	/*
2078 	 * Can be before ->enqueue_task() because uclamp considers the
2079 	 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared
2080 	 * in ->enqueue_task().
2081 	 */
2082 	uclamp_rq_inc(rq, p, flags);
2083 
2084 	p->sched_class->enqueue_task(rq, p, flags);
2085 
2086 	psi_enqueue(p, flags);
2087 
2088 	if (!(flags & ENQUEUE_RESTORE))
2089 		sched_info_enqueue(rq, p);
2090 
2091 	if (sched_core_enabled(rq))
2092 		sched_core_enqueue(rq, p);
2093 }
2094 
2095 /*
2096  * Must only return false when DEQUEUE_SLEEP.
2097  */
2098 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2099 {
2100 	if (sched_core_enabled(rq))
2101 		sched_core_dequeue(rq, p, flags);
2102 
2103 	if (!(flags & DEQUEUE_NOCLOCK))
2104 		update_rq_clock(rq);
2105 
2106 	if (!(flags & DEQUEUE_SAVE))
2107 		sched_info_dequeue(rq, p);
2108 
2109 	psi_dequeue(p, flags);
2110 
2111 	/*
2112 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2113 	 * and mark the task ->sched_delayed.
2114 	 */
2115 	uclamp_rq_dec(rq, p);
2116 	return p->sched_class->dequeue_task(rq, p, flags);
2117 }
2118 
2119 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2120 {
2121 	if (task_on_rq_migrating(p))
2122 		flags |= ENQUEUE_MIGRATED;
2123 	if (flags & ENQUEUE_MIGRATED)
2124 		sched_mm_cid_migrate_to(rq, p);
2125 
2126 	enqueue_task(rq, p, flags);
2127 
2128 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2129 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2130 }
2131 
2132 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2133 {
2134 	WARN_ON_ONCE(flags & DEQUEUE_SLEEP);
2135 
2136 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2137 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2138 
2139 	/*
2140 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2141 	 * dequeue_task() and cleared *after* enqueue_task().
2142 	 */
2143 
2144 	dequeue_task(rq, p, flags);
2145 }
2146 
2147 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2148 {
2149 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2150 		__block_task(rq, p);
2151 }
2152 
2153 /**
2154  * task_curr - is this task currently executing on a CPU?
2155  * @p: the task in question.
2156  *
2157  * Return: 1 if the task is currently executing. 0 otherwise.
2158  */
2159 inline int task_curr(const struct task_struct *p)
2160 {
2161 	return cpu_curr(task_cpu(p)) == p;
2162 }
2163 
2164 /*
2165  * ->switching_to() is called with the pi_lock and rq_lock held and must not
2166  * mess with locking.
2167  */
2168 void check_class_changing(struct rq *rq, struct task_struct *p,
2169 			  const struct sched_class *prev_class)
2170 {
2171 	if (prev_class != p->sched_class && p->sched_class->switching_to)
2172 		p->sched_class->switching_to(rq, p);
2173 }
2174 
2175 /*
2176  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2177  * use the balance_callback list if you want balancing.
2178  *
2179  * this means any call to check_class_changed() must be followed by a call to
2180  * balance_callback().
2181  */
2182 void check_class_changed(struct rq *rq, struct task_struct *p,
2183 			 const struct sched_class *prev_class,
2184 			 int oldprio)
2185 {
2186 	if (prev_class != p->sched_class) {
2187 		if (prev_class->switched_from)
2188 			prev_class->switched_from(rq, p);
2189 
2190 		p->sched_class->switched_to(rq, p);
2191 	} else if (oldprio != p->prio || dl_task(p))
2192 		p->sched_class->prio_changed(rq, p, oldprio);
2193 }
2194 
2195 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2196 {
2197 	struct task_struct *donor = rq->donor;
2198 
2199 	if (p->sched_class == donor->sched_class)
2200 		donor->sched_class->wakeup_preempt(rq, p, flags);
2201 	else if (sched_class_above(p->sched_class, donor->sched_class))
2202 		resched_curr(rq);
2203 
2204 	/*
2205 	 * A queue event has occurred, and we're going to schedule.  In
2206 	 * this case, we can save a useless back to back clock update.
2207 	 */
2208 	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2209 		rq_clock_skip_update(rq);
2210 }
2211 
2212 static __always_inline
2213 int __task_state_match(struct task_struct *p, unsigned int state)
2214 {
2215 	if (READ_ONCE(p->__state) & state)
2216 		return 1;
2217 
2218 	if (READ_ONCE(p->saved_state) & state)
2219 		return -1;
2220 
2221 	return 0;
2222 }
2223 
2224 static __always_inline
2225 int task_state_match(struct task_struct *p, unsigned int state)
2226 {
2227 	/*
2228 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2229 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2230 	 */
2231 	guard(raw_spinlock_irq)(&p->pi_lock);
2232 	return __task_state_match(p, state);
2233 }
2234 
2235 /*
2236  * wait_task_inactive - wait for a thread to unschedule.
2237  *
2238  * Wait for the thread to block in any of the states set in @match_state.
2239  * If it changes, i.e. @p might have woken up, then return zero.  When we
2240  * succeed in waiting for @p to be off its CPU, we return a positive number
2241  * (its total switch count).  If a second call a short while later returns the
2242  * same number, the caller can be sure that @p has remained unscheduled the
2243  * whole time.
2244  *
2245  * The caller must ensure that the task *will* unschedule sometime soon,
2246  * else this function might spin for a *long* time. This function can't
2247  * be called with interrupts off, or it may introduce deadlock with
2248  * smp_call_function() if an IPI is sent by the same process we are
2249  * waiting to become inactive.
2250  */
2251 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2252 {
2253 	int running, queued, match;
2254 	struct rq_flags rf;
2255 	unsigned long ncsw;
2256 	struct rq *rq;
2257 
2258 	for (;;) {
2259 		/*
2260 		 * We do the initial early heuristics without holding
2261 		 * any task-queue locks at all. We'll only try to get
2262 		 * the runqueue lock when things look like they will
2263 		 * work out!
2264 		 */
2265 		rq = task_rq(p);
2266 
2267 		/*
2268 		 * If the task is actively running on another CPU
2269 		 * still, just relax and busy-wait without holding
2270 		 * any locks.
2271 		 *
2272 		 * NOTE! Since we don't hold any locks, it's not
2273 		 * even sure that "rq" stays as the right runqueue!
2274 		 * But we don't care, since "task_on_cpu()" will
2275 		 * return false if the runqueue has changed and p
2276 		 * is actually now running somewhere else!
2277 		 */
2278 		while (task_on_cpu(rq, p)) {
2279 			if (!task_state_match(p, match_state))
2280 				return 0;
2281 			cpu_relax();
2282 		}
2283 
2284 		/*
2285 		 * Ok, time to look more closely! We need the rq
2286 		 * lock now, to be *sure*. If we're wrong, we'll
2287 		 * just go back and repeat.
2288 		 */
2289 		rq = task_rq_lock(p, &rf);
2290 		/*
2291 		 * If task is sched_delayed, force dequeue it, to avoid always
2292 		 * hitting the tick timeout in the queued case
2293 		 */
2294 		if (p->se.sched_delayed)
2295 			dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
2296 		trace_sched_wait_task(p);
2297 		running = task_on_cpu(rq, p);
2298 		queued = task_on_rq_queued(p);
2299 		ncsw = 0;
2300 		if ((match = __task_state_match(p, match_state))) {
2301 			/*
2302 			 * When matching on p->saved_state, consider this task
2303 			 * still queued so it will wait.
2304 			 */
2305 			if (match < 0)
2306 				queued = 1;
2307 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2308 		}
2309 		task_rq_unlock(rq, p, &rf);
2310 
2311 		/*
2312 		 * If it changed from the expected state, bail out now.
2313 		 */
2314 		if (unlikely(!ncsw))
2315 			break;
2316 
2317 		/*
2318 		 * Was it really running after all now that we
2319 		 * checked with the proper locks actually held?
2320 		 *
2321 		 * Oops. Go back and try again..
2322 		 */
2323 		if (unlikely(running)) {
2324 			cpu_relax();
2325 			continue;
2326 		}
2327 
2328 		/*
2329 		 * It's not enough that it's not actively running,
2330 		 * it must be off the runqueue _entirely_, and not
2331 		 * preempted!
2332 		 *
2333 		 * So if it was still runnable (but just not actively
2334 		 * running right now), it's preempted, and we should
2335 		 * yield - it could be a while.
2336 		 */
2337 		if (unlikely(queued)) {
2338 			ktime_t to = NSEC_PER_SEC / HZ;
2339 
2340 			set_current_state(TASK_UNINTERRUPTIBLE);
2341 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2342 			continue;
2343 		}
2344 
2345 		/*
2346 		 * Ahh, all good. It wasn't running, and it wasn't
2347 		 * runnable, which means that it will never become
2348 		 * running in the future either. We're all done!
2349 		 */
2350 		break;
2351 	}
2352 
2353 	return ncsw;
2354 }
2355 
2356 #ifdef CONFIG_SMP
2357 
2358 static void
2359 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2360 
2361 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2362 {
2363 	struct affinity_context ac = {
2364 		.new_mask  = cpumask_of(rq->cpu),
2365 		.flags     = SCA_MIGRATE_DISABLE,
2366 	};
2367 
2368 	if (likely(!p->migration_disabled))
2369 		return;
2370 
2371 	if (p->cpus_ptr != &p->cpus_mask)
2372 		return;
2373 
2374 	/*
2375 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2376 	 */
2377 	__do_set_cpus_allowed(p, &ac);
2378 }
2379 
2380 void migrate_disable(void)
2381 {
2382 	struct task_struct *p = current;
2383 
2384 	if (p->migration_disabled) {
2385 #ifdef CONFIG_DEBUG_PREEMPT
2386 		/*
2387 		 *Warn about overflow half-way through the range.
2388 		 */
2389 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2390 #endif
2391 		p->migration_disabled++;
2392 		return;
2393 	}
2394 
2395 	guard(preempt)();
2396 	this_rq()->nr_pinned++;
2397 	p->migration_disabled = 1;
2398 }
2399 EXPORT_SYMBOL_GPL(migrate_disable);
2400 
2401 void migrate_enable(void)
2402 {
2403 	struct task_struct *p = current;
2404 	struct affinity_context ac = {
2405 		.new_mask  = &p->cpus_mask,
2406 		.flags     = SCA_MIGRATE_ENABLE,
2407 	};
2408 
2409 #ifdef CONFIG_DEBUG_PREEMPT
2410 	/*
2411 	 * Check both overflow from migrate_disable() and superfluous
2412 	 * migrate_enable().
2413 	 */
2414 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2415 		return;
2416 #endif
2417 
2418 	if (p->migration_disabled > 1) {
2419 		p->migration_disabled--;
2420 		return;
2421 	}
2422 
2423 	/*
2424 	 * Ensure stop_task runs either before or after this, and that
2425 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2426 	 */
2427 	guard(preempt)();
2428 	if (p->cpus_ptr != &p->cpus_mask)
2429 		__set_cpus_allowed_ptr(p, &ac);
2430 	/*
2431 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2432 	 * regular cpus_mask, otherwise things that race (eg.
2433 	 * select_fallback_rq) get confused.
2434 	 */
2435 	barrier();
2436 	p->migration_disabled = 0;
2437 	this_rq()->nr_pinned--;
2438 }
2439 EXPORT_SYMBOL_GPL(migrate_enable);
2440 
2441 static inline bool rq_has_pinned_tasks(struct rq *rq)
2442 {
2443 	return rq->nr_pinned;
2444 }
2445 
2446 /*
2447  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2448  * __set_cpus_allowed_ptr() and select_fallback_rq().
2449  */
2450 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2451 {
2452 	/* When not in the task's cpumask, no point in looking further. */
2453 	if (!task_allowed_on_cpu(p, cpu))
2454 		return false;
2455 
2456 	/* migrate_disabled() must be allowed to finish. */
2457 	if (is_migration_disabled(p))
2458 		return cpu_online(cpu);
2459 
2460 	/* Non kernel threads are not allowed during either online or offline. */
2461 	if (!(p->flags & PF_KTHREAD))
2462 		return cpu_active(cpu);
2463 
2464 	/* KTHREAD_IS_PER_CPU is always allowed. */
2465 	if (kthread_is_per_cpu(p))
2466 		return cpu_online(cpu);
2467 
2468 	/* Regular kernel threads don't get to stay during offline. */
2469 	if (cpu_dying(cpu))
2470 		return false;
2471 
2472 	/* But are allowed during online. */
2473 	return cpu_online(cpu);
2474 }
2475 
2476 /*
2477  * This is how migration works:
2478  *
2479  * 1) we invoke migration_cpu_stop() on the target CPU using
2480  *    stop_one_cpu().
2481  * 2) stopper starts to run (implicitly forcing the migrated thread
2482  *    off the CPU)
2483  * 3) it checks whether the migrated task is still in the wrong runqueue.
2484  * 4) if it's in the wrong runqueue then the migration thread removes
2485  *    it and puts it into the right queue.
2486  * 5) stopper completes and stop_one_cpu() returns and the migration
2487  *    is done.
2488  */
2489 
2490 /*
2491  * move_queued_task - move a queued task to new rq.
2492  *
2493  * Returns (locked) new rq. Old rq's lock is released.
2494  */
2495 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2496 				   struct task_struct *p, int new_cpu)
2497 {
2498 	lockdep_assert_rq_held(rq);
2499 
2500 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2501 	set_task_cpu(p, new_cpu);
2502 	rq_unlock(rq, rf);
2503 
2504 	rq = cpu_rq(new_cpu);
2505 
2506 	rq_lock(rq, rf);
2507 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2508 	activate_task(rq, p, 0);
2509 	wakeup_preempt(rq, p, 0);
2510 
2511 	return rq;
2512 }
2513 
2514 struct migration_arg {
2515 	struct task_struct		*task;
2516 	int				dest_cpu;
2517 	struct set_affinity_pending	*pending;
2518 };
2519 
2520 /*
2521  * @refs: number of wait_for_completion()
2522  * @stop_pending: is @stop_work in use
2523  */
2524 struct set_affinity_pending {
2525 	refcount_t		refs;
2526 	unsigned int		stop_pending;
2527 	struct completion	done;
2528 	struct cpu_stop_work	stop_work;
2529 	struct migration_arg	arg;
2530 };
2531 
2532 /*
2533  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2534  * this because either it can't run here any more (set_cpus_allowed()
2535  * away from this CPU, or CPU going down), or because we're
2536  * attempting to rebalance this task on exec (sched_exec).
2537  *
2538  * So we race with normal scheduler movements, but that's OK, as long
2539  * as the task is no longer on this CPU.
2540  */
2541 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2542 				 struct task_struct *p, int dest_cpu)
2543 {
2544 	/* Affinity changed (again). */
2545 	if (!is_cpu_allowed(p, dest_cpu))
2546 		return rq;
2547 
2548 	rq = move_queued_task(rq, rf, p, dest_cpu);
2549 
2550 	return rq;
2551 }
2552 
2553 /*
2554  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2555  * and performs thread migration by bumping thread off CPU then
2556  * 'pushing' onto another runqueue.
2557  */
2558 static int migration_cpu_stop(void *data)
2559 {
2560 	struct migration_arg *arg = data;
2561 	struct set_affinity_pending *pending = arg->pending;
2562 	struct task_struct *p = arg->task;
2563 	struct rq *rq = this_rq();
2564 	bool complete = false;
2565 	struct rq_flags rf;
2566 
2567 	/*
2568 	 * The original target CPU might have gone down and we might
2569 	 * be on another CPU but it doesn't matter.
2570 	 */
2571 	local_irq_save(rf.flags);
2572 	/*
2573 	 * We need to explicitly wake pending tasks before running
2574 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2575 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2576 	 */
2577 	flush_smp_call_function_queue();
2578 
2579 	raw_spin_lock(&p->pi_lock);
2580 	rq_lock(rq, &rf);
2581 
2582 	/*
2583 	 * If we were passed a pending, then ->stop_pending was set, thus
2584 	 * p->migration_pending must have remained stable.
2585 	 */
2586 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2587 
2588 	/*
2589 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2590 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2591 	 * we're holding p->pi_lock.
2592 	 */
2593 	if (task_rq(p) == rq) {
2594 		if (is_migration_disabled(p))
2595 			goto out;
2596 
2597 		if (pending) {
2598 			p->migration_pending = NULL;
2599 			complete = true;
2600 
2601 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2602 				goto out;
2603 		}
2604 
2605 		if (task_on_rq_queued(p)) {
2606 			update_rq_clock(rq);
2607 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2608 		} else {
2609 			p->wake_cpu = arg->dest_cpu;
2610 		}
2611 
2612 		/*
2613 		 * XXX __migrate_task() can fail, at which point we might end
2614 		 * up running on a dodgy CPU, AFAICT this can only happen
2615 		 * during CPU hotplug, at which point we'll get pushed out
2616 		 * anyway, so it's probably not a big deal.
2617 		 */
2618 
2619 	} else if (pending) {
2620 		/*
2621 		 * This happens when we get migrated between migrate_enable()'s
2622 		 * preempt_enable() and scheduling the stopper task. At that
2623 		 * point we're a regular task again and not current anymore.
2624 		 *
2625 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2626 		 * more likely.
2627 		 */
2628 
2629 		/*
2630 		 * The task moved before the stopper got to run. We're holding
2631 		 * ->pi_lock, so the allowed mask is stable - if it got
2632 		 * somewhere allowed, we're done.
2633 		 */
2634 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2635 			p->migration_pending = NULL;
2636 			complete = true;
2637 			goto out;
2638 		}
2639 
2640 		/*
2641 		 * When migrate_enable() hits a rq mis-match we can't reliably
2642 		 * determine is_migration_disabled() and so have to chase after
2643 		 * it.
2644 		 */
2645 		WARN_ON_ONCE(!pending->stop_pending);
2646 		preempt_disable();
2647 		task_rq_unlock(rq, p, &rf);
2648 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2649 				    &pending->arg, &pending->stop_work);
2650 		preempt_enable();
2651 		return 0;
2652 	}
2653 out:
2654 	if (pending)
2655 		pending->stop_pending = false;
2656 	task_rq_unlock(rq, p, &rf);
2657 
2658 	if (complete)
2659 		complete_all(&pending->done);
2660 
2661 	return 0;
2662 }
2663 
2664 int push_cpu_stop(void *arg)
2665 {
2666 	struct rq *lowest_rq = NULL, *rq = this_rq();
2667 	struct task_struct *p = arg;
2668 
2669 	raw_spin_lock_irq(&p->pi_lock);
2670 	raw_spin_rq_lock(rq);
2671 
2672 	if (task_rq(p) != rq)
2673 		goto out_unlock;
2674 
2675 	if (is_migration_disabled(p)) {
2676 		p->migration_flags |= MDF_PUSH;
2677 		goto out_unlock;
2678 	}
2679 
2680 	p->migration_flags &= ~MDF_PUSH;
2681 
2682 	if (p->sched_class->find_lock_rq)
2683 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2684 
2685 	if (!lowest_rq)
2686 		goto out_unlock;
2687 
2688 	// XXX validate p is still the highest prio task
2689 	if (task_rq(p) == rq) {
2690 		move_queued_task_locked(rq, lowest_rq, p);
2691 		resched_curr(lowest_rq);
2692 	}
2693 
2694 	double_unlock_balance(rq, lowest_rq);
2695 
2696 out_unlock:
2697 	rq->push_busy = false;
2698 	raw_spin_rq_unlock(rq);
2699 	raw_spin_unlock_irq(&p->pi_lock);
2700 
2701 	put_task_struct(p);
2702 	return 0;
2703 }
2704 
2705 /*
2706  * sched_class::set_cpus_allowed must do the below, but is not required to
2707  * actually call this function.
2708  */
2709 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2710 {
2711 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2712 		p->cpus_ptr = ctx->new_mask;
2713 		return;
2714 	}
2715 
2716 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2717 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2718 
2719 	/*
2720 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2721 	 */
2722 	if (ctx->flags & SCA_USER)
2723 		swap(p->user_cpus_ptr, ctx->user_mask);
2724 }
2725 
2726 static void
2727 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2728 {
2729 	struct rq *rq = task_rq(p);
2730 	bool queued, running;
2731 
2732 	/*
2733 	 * This here violates the locking rules for affinity, since we're only
2734 	 * supposed to change these variables while holding both rq->lock and
2735 	 * p->pi_lock.
2736 	 *
2737 	 * HOWEVER, it magically works, because ttwu() is the only code that
2738 	 * accesses these variables under p->pi_lock and only does so after
2739 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2740 	 * before finish_task().
2741 	 *
2742 	 * XXX do further audits, this smells like something putrid.
2743 	 */
2744 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2745 		WARN_ON_ONCE(!p->on_cpu);
2746 	else
2747 		lockdep_assert_held(&p->pi_lock);
2748 
2749 	queued = task_on_rq_queued(p);
2750 	running = task_current_donor(rq, p);
2751 
2752 	if (queued) {
2753 		/*
2754 		 * Because __kthread_bind() calls this on blocked tasks without
2755 		 * holding rq->lock.
2756 		 */
2757 		lockdep_assert_rq_held(rq);
2758 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2759 	}
2760 	if (running)
2761 		put_prev_task(rq, p);
2762 
2763 	p->sched_class->set_cpus_allowed(p, ctx);
2764 	mm_set_cpus_allowed(p->mm, ctx->new_mask);
2765 
2766 	if (queued)
2767 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2768 	if (running)
2769 		set_next_task(rq, p);
2770 }
2771 
2772 /*
2773  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2774  * affinity (if any) should be destroyed too.
2775  */
2776 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2777 {
2778 	struct affinity_context ac = {
2779 		.new_mask  = new_mask,
2780 		.user_mask = NULL,
2781 		.flags     = SCA_USER,	/* clear the user requested mask */
2782 	};
2783 	union cpumask_rcuhead {
2784 		cpumask_t cpumask;
2785 		struct rcu_head rcu;
2786 	};
2787 
2788 	__do_set_cpus_allowed(p, &ac);
2789 
2790 	/*
2791 	 * Because this is called with p->pi_lock held, it is not possible
2792 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2793 	 * kfree_rcu().
2794 	 */
2795 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2796 }
2797 
2798 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2799 		      int node)
2800 {
2801 	cpumask_t *user_mask;
2802 	unsigned long flags;
2803 
2804 	/*
2805 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2806 	 * may differ by now due to racing.
2807 	 */
2808 	dst->user_cpus_ptr = NULL;
2809 
2810 	/*
2811 	 * This check is racy and losing the race is a valid situation.
2812 	 * It is not worth the extra overhead of taking the pi_lock on
2813 	 * every fork/clone.
2814 	 */
2815 	if (data_race(!src->user_cpus_ptr))
2816 		return 0;
2817 
2818 	user_mask = alloc_user_cpus_ptr(node);
2819 	if (!user_mask)
2820 		return -ENOMEM;
2821 
2822 	/*
2823 	 * Use pi_lock to protect content of user_cpus_ptr
2824 	 *
2825 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2826 	 * do_set_cpus_allowed().
2827 	 */
2828 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2829 	if (src->user_cpus_ptr) {
2830 		swap(dst->user_cpus_ptr, user_mask);
2831 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2832 	}
2833 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2834 
2835 	if (unlikely(user_mask))
2836 		kfree(user_mask);
2837 
2838 	return 0;
2839 }
2840 
2841 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2842 {
2843 	struct cpumask *user_mask = NULL;
2844 
2845 	swap(p->user_cpus_ptr, user_mask);
2846 
2847 	return user_mask;
2848 }
2849 
2850 void release_user_cpus_ptr(struct task_struct *p)
2851 {
2852 	kfree(clear_user_cpus_ptr(p));
2853 }
2854 
2855 /*
2856  * This function is wildly self concurrent; here be dragons.
2857  *
2858  *
2859  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2860  * designated task is enqueued on an allowed CPU. If that task is currently
2861  * running, we have to kick it out using the CPU stopper.
2862  *
2863  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2864  * Consider:
2865  *
2866  *     Initial conditions: P0->cpus_mask = [0, 1]
2867  *
2868  *     P0@CPU0                  P1
2869  *
2870  *     migrate_disable();
2871  *     <preempted>
2872  *                              set_cpus_allowed_ptr(P0, [1]);
2873  *
2874  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2875  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2876  * This means we need the following scheme:
2877  *
2878  *     P0@CPU0                  P1
2879  *
2880  *     migrate_disable();
2881  *     <preempted>
2882  *                              set_cpus_allowed_ptr(P0, [1]);
2883  *                                <blocks>
2884  *     <resumes>
2885  *     migrate_enable();
2886  *       __set_cpus_allowed_ptr();
2887  *       <wakes local stopper>
2888  *                         `--> <woken on migration completion>
2889  *
2890  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2891  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2892  * task p are serialized by p->pi_lock, which we can leverage: the one that
2893  * should come into effect at the end of the Migrate-Disable region is the last
2894  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2895  * but we still need to properly signal those waiting tasks at the appropriate
2896  * moment.
2897  *
2898  * This is implemented using struct set_affinity_pending. The first
2899  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2900  * setup an instance of that struct and install it on the targeted task_struct.
2901  * Any and all further callers will reuse that instance. Those then wait for
2902  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2903  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2904  *
2905  *
2906  * (1) In the cases covered above. There is one more where the completion is
2907  * signaled within affine_move_task() itself: when a subsequent affinity request
2908  * occurs after the stopper bailed out due to the targeted task still being
2909  * Migrate-Disable. Consider:
2910  *
2911  *     Initial conditions: P0->cpus_mask = [0, 1]
2912  *
2913  *     CPU0		  P1				P2
2914  *     <P0>
2915  *       migrate_disable();
2916  *       <preempted>
2917  *                        set_cpus_allowed_ptr(P0, [1]);
2918  *                          <blocks>
2919  *     <migration/0>
2920  *       migration_cpu_stop()
2921  *         is_migration_disabled()
2922  *           <bails>
2923  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2924  *                                                         <signal completion>
2925  *                          <awakes>
2926  *
2927  * Note that the above is safe vs a concurrent migrate_enable(), as any
2928  * pending affinity completion is preceded by an uninstallation of
2929  * p->migration_pending done with p->pi_lock held.
2930  */
2931 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2932 			    int dest_cpu, unsigned int flags)
2933 	__releases(rq->lock)
2934 	__releases(p->pi_lock)
2935 {
2936 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2937 	bool stop_pending, complete = false;
2938 
2939 	/* Can the task run on the task's current CPU? If so, we're done */
2940 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2941 		struct task_struct *push_task = NULL;
2942 
2943 		if ((flags & SCA_MIGRATE_ENABLE) &&
2944 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2945 			rq->push_busy = true;
2946 			push_task = get_task_struct(p);
2947 		}
2948 
2949 		/*
2950 		 * If there are pending waiters, but no pending stop_work,
2951 		 * then complete now.
2952 		 */
2953 		pending = p->migration_pending;
2954 		if (pending && !pending->stop_pending) {
2955 			p->migration_pending = NULL;
2956 			complete = true;
2957 		}
2958 
2959 		preempt_disable();
2960 		task_rq_unlock(rq, p, rf);
2961 		if (push_task) {
2962 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2963 					    p, &rq->push_work);
2964 		}
2965 		preempt_enable();
2966 
2967 		if (complete)
2968 			complete_all(&pending->done);
2969 
2970 		return 0;
2971 	}
2972 
2973 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2974 		/* serialized by p->pi_lock */
2975 		if (!p->migration_pending) {
2976 			/* Install the request */
2977 			refcount_set(&my_pending.refs, 1);
2978 			init_completion(&my_pending.done);
2979 			my_pending.arg = (struct migration_arg) {
2980 				.task = p,
2981 				.dest_cpu = dest_cpu,
2982 				.pending = &my_pending,
2983 			};
2984 
2985 			p->migration_pending = &my_pending;
2986 		} else {
2987 			pending = p->migration_pending;
2988 			refcount_inc(&pending->refs);
2989 			/*
2990 			 * Affinity has changed, but we've already installed a
2991 			 * pending. migration_cpu_stop() *must* see this, else
2992 			 * we risk a completion of the pending despite having a
2993 			 * task on a disallowed CPU.
2994 			 *
2995 			 * Serialized by p->pi_lock, so this is safe.
2996 			 */
2997 			pending->arg.dest_cpu = dest_cpu;
2998 		}
2999 	}
3000 	pending = p->migration_pending;
3001 	/*
3002 	 * - !MIGRATE_ENABLE:
3003 	 *   we'll have installed a pending if there wasn't one already.
3004 	 *
3005 	 * - MIGRATE_ENABLE:
3006 	 *   we're here because the current CPU isn't matching anymore,
3007 	 *   the only way that can happen is because of a concurrent
3008 	 *   set_cpus_allowed_ptr() call, which should then still be
3009 	 *   pending completion.
3010 	 *
3011 	 * Either way, we really should have a @pending here.
3012 	 */
3013 	if (WARN_ON_ONCE(!pending)) {
3014 		task_rq_unlock(rq, p, rf);
3015 		return -EINVAL;
3016 	}
3017 
3018 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3019 		/*
3020 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3021 		 * anything else we cannot do is_migration_disabled(), punt
3022 		 * and have the stopper function handle it all race-free.
3023 		 */
3024 		stop_pending = pending->stop_pending;
3025 		if (!stop_pending)
3026 			pending->stop_pending = true;
3027 
3028 		if (flags & SCA_MIGRATE_ENABLE)
3029 			p->migration_flags &= ~MDF_PUSH;
3030 
3031 		preempt_disable();
3032 		task_rq_unlock(rq, p, rf);
3033 		if (!stop_pending) {
3034 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3035 					    &pending->arg, &pending->stop_work);
3036 		}
3037 		preempt_enable();
3038 
3039 		if (flags & SCA_MIGRATE_ENABLE)
3040 			return 0;
3041 	} else {
3042 
3043 		if (!is_migration_disabled(p)) {
3044 			if (task_on_rq_queued(p))
3045 				rq = move_queued_task(rq, rf, p, dest_cpu);
3046 
3047 			if (!pending->stop_pending) {
3048 				p->migration_pending = NULL;
3049 				complete = true;
3050 			}
3051 		}
3052 		task_rq_unlock(rq, p, rf);
3053 
3054 		if (complete)
3055 			complete_all(&pending->done);
3056 	}
3057 
3058 	wait_for_completion(&pending->done);
3059 
3060 	if (refcount_dec_and_test(&pending->refs))
3061 		wake_up_var(&pending->refs); /* No UaF, just an address */
3062 
3063 	/*
3064 	 * Block the original owner of &pending until all subsequent callers
3065 	 * have seen the completion and decremented the refcount
3066 	 */
3067 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3068 
3069 	/* ARGH */
3070 	WARN_ON_ONCE(my_pending.stop_pending);
3071 
3072 	return 0;
3073 }
3074 
3075 /*
3076  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3077  */
3078 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3079 					 struct affinity_context *ctx,
3080 					 struct rq *rq,
3081 					 struct rq_flags *rf)
3082 	__releases(rq->lock)
3083 	__releases(p->pi_lock)
3084 {
3085 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3086 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3087 	bool kthread = p->flags & PF_KTHREAD;
3088 	unsigned int dest_cpu;
3089 	int ret = 0;
3090 
3091 	update_rq_clock(rq);
3092 
3093 	if (kthread || is_migration_disabled(p)) {
3094 		/*
3095 		 * Kernel threads are allowed on online && !active CPUs,
3096 		 * however, during cpu-hot-unplug, even these might get pushed
3097 		 * away if not KTHREAD_IS_PER_CPU.
3098 		 *
3099 		 * Specifically, migration_disabled() tasks must not fail the
3100 		 * cpumask_any_and_distribute() pick below, esp. so on
3101 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3102 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3103 		 */
3104 		cpu_valid_mask = cpu_online_mask;
3105 	}
3106 
3107 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3108 		ret = -EINVAL;
3109 		goto out;
3110 	}
3111 
3112 	/*
3113 	 * Must re-check here, to close a race against __kthread_bind(),
3114 	 * sched_setaffinity() is not guaranteed to observe the flag.
3115 	 */
3116 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3117 		ret = -EINVAL;
3118 		goto out;
3119 	}
3120 
3121 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3122 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3123 			if (ctx->flags & SCA_USER)
3124 				swap(p->user_cpus_ptr, ctx->user_mask);
3125 			goto out;
3126 		}
3127 
3128 		if (WARN_ON_ONCE(p == current &&
3129 				 is_migration_disabled(p) &&
3130 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3131 			ret = -EBUSY;
3132 			goto out;
3133 		}
3134 	}
3135 
3136 	/*
3137 	 * Picking a ~random cpu helps in cases where we are changing affinity
3138 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3139 	 * immediately required to distribute the tasks within their new mask.
3140 	 */
3141 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3142 	if (dest_cpu >= nr_cpu_ids) {
3143 		ret = -EINVAL;
3144 		goto out;
3145 	}
3146 
3147 	__do_set_cpus_allowed(p, ctx);
3148 
3149 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3150 
3151 out:
3152 	task_rq_unlock(rq, p, rf);
3153 
3154 	return ret;
3155 }
3156 
3157 /*
3158  * Change a given task's CPU affinity. Migrate the thread to a
3159  * proper CPU and schedule it away if the CPU it's executing on
3160  * is removed from the allowed bitmask.
3161  *
3162  * NOTE: the caller must have a valid reference to the task, the
3163  * task must not exit() & deallocate itself prematurely. The
3164  * call is not atomic; no spinlocks may be held.
3165  */
3166 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3167 {
3168 	struct rq_flags rf;
3169 	struct rq *rq;
3170 
3171 	rq = task_rq_lock(p, &rf);
3172 	/*
3173 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3174 	 * flags are set.
3175 	 */
3176 	if (p->user_cpus_ptr &&
3177 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3178 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3179 		ctx->new_mask = rq->scratch_mask;
3180 
3181 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3182 }
3183 
3184 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3185 {
3186 	struct affinity_context ac = {
3187 		.new_mask  = new_mask,
3188 		.flags     = 0,
3189 	};
3190 
3191 	return __set_cpus_allowed_ptr(p, &ac);
3192 }
3193 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3194 
3195 /*
3196  * Change a given task's CPU affinity to the intersection of its current
3197  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3198  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3199  * affinity or use cpu_online_mask instead.
3200  *
3201  * If the resulting mask is empty, leave the affinity unchanged and return
3202  * -EINVAL.
3203  */
3204 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3205 				     struct cpumask *new_mask,
3206 				     const struct cpumask *subset_mask)
3207 {
3208 	struct affinity_context ac = {
3209 		.new_mask  = new_mask,
3210 		.flags     = 0,
3211 	};
3212 	struct rq_flags rf;
3213 	struct rq *rq;
3214 	int err;
3215 
3216 	rq = task_rq_lock(p, &rf);
3217 
3218 	/*
3219 	 * Forcefully restricting the affinity of a deadline task is
3220 	 * likely to cause problems, so fail and noisily override the
3221 	 * mask entirely.
3222 	 */
3223 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3224 		err = -EPERM;
3225 		goto err_unlock;
3226 	}
3227 
3228 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3229 		err = -EINVAL;
3230 		goto err_unlock;
3231 	}
3232 
3233 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3234 
3235 err_unlock:
3236 	task_rq_unlock(rq, p, &rf);
3237 	return err;
3238 }
3239 
3240 /*
3241  * Restrict the CPU affinity of task @p so that it is a subset of
3242  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3243  * old affinity mask. If the resulting mask is empty, we warn and walk
3244  * up the cpuset hierarchy until we find a suitable mask.
3245  */
3246 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3247 {
3248 	cpumask_var_t new_mask;
3249 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3250 
3251 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3252 
3253 	/*
3254 	 * __migrate_task() can fail silently in the face of concurrent
3255 	 * offlining of the chosen destination CPU, so take the hotplug
3256 	 * lock to ensure that the migration succeeds.
3257 	 */
3258 	cpus_read_lock();
3259 	if (!cpumask_available(new_mask))
3260 		goto out_set_mask;
3261 
3262 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3263 		goto out_free_mask;
3264 
3265 	/*
3266 	 * We failed to find a valid subset of the affinity mask for the
3267 	 * task, so override it based on its cpuset hierarchy.
3268 	 */
3269 	cpuset_cpus_allowed(p, new_mask);
3270 	override_mask = new_mask;
3271 
3272 out_set_mask:
3273 	if (printk_ratelimit()) {
3274 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3275 				task_pid_nr(p), p->comm,
3276 				cpumask_pr_args(override_mask));
3277 	}
3278 
3279 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3280 out_free_mask:
3281 	cpus_read_unlock();
3282 	free_cpumask_var(new_mask);
3283 }
3284 
3285 /*
3286  * Restore the affinity of a task @p which was previously restricted by a
3287  * call to force_compatible_cpus_allowed_ptr().
3288  *
3289  * It is the caller's responsibility to serialise this with any calls to
3290  * force_compatible_cpus_allowed_ptr(@p).
3291  */
3292 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3293 {
3294 	struct affinity_context ac = {
3295 		.new_mask  = task_user_cpus(p),
3296 		.flags     = 0,
3297 	};
3298 	int ret;
3299 
3300 	/*
3301 	 * Try to restore the old affinity mask with __sched_setaffinity().
3302 	 * Cpuset masking will be done there too.
3303 	 */
3304 	ret = __sched_setaffinity(p, &ac);
3305 	WARN_ON_ONCE(ret);
3306 }
3307 
3308 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3309 {
3310 	unsigned int state = READ_ONCE(p->__state);
3311 
3312 	/*
3313 	 * We should never call set_task_cpu() on a blocked task,
3314 	 * ttwu() will sort out the placement.
3315 	 */
3316 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3317 
3318 	/*
3319 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3320 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3321 	 * time relying on p->on_rq.
3322 	 */
3323 	WARN_ON_ONCE(state == TASK_RUNNING &&
3324 		     p->sched_class == &fair_sched_class &&
3325 		     (p->on_rq && !task_on_rq_migrating(p)));
3326 
3327 #ifdef CONFIG_LOCKDEP
3328 	/*
3329 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3330 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3331 	 *
3332 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3333 	 * see task_group().
3334 	 *
3335 	 * Furthermore, all task_rq users should acquire both locks, see
3336 	 * task_rq_lock().
3337 	 */
3338 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3339 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3340 #endif
3341 	/*
3342 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3343 	 */
3344 	WARN_ON_ONCE(!cpu_online(new_cpu));
3345 
3346 	WARN_ON_ONCE(is_migration_disabled(p));
3347 
3348 	trace_sched_migrate_task(p, new_cpu);
3349 
3350 	if (task_cpu(p) != new_cpu) {
3351 		if (p->sched_class->migrate_task_rq)
3352 			p->sched_class->migrate_task_rq(p, new_cpu);
3353 		p->se.nr_migrations++;
3354 		rseq_migrate(p);
3355 		sched_mm_cid_migrate_from(p);
3356 		perf_event_task_migrate(p);
3357 	}
3358 
3359 	__set_task_cpu(p, new_cpu);
3360 }
3361 
3362 #ifdef CONFIG_NUMA_BALANCING
3363 static void __migrate_swap_task(struct task_struct *p, int cpu)
3364 {
3365 	__schedstat_inc(p->stats.numa_task_swapped);
3366 	count_vm_numa_event(NUMA_TASK_SWAP);
3367 	count_memcg_event_mm(p->mm, NUMA_TASK_SWAP);
3368 
3369 	if (task_on_rq_queued(p)) {
3370 		struct rq *src_rq, *dst_rq;
3371 		struct rq_flags srf, drf;
3372 
3373 		src_rq = task_rq(p);
3374 		dst_rq = cpu_rq(cpu);
3375 
3376 		rq_pin_lock(src_rq, &srf);
3377 		rq_pin_lock(dst_rq, &drf);
3378 
3379 		move_queued_task_locked(src_rq, dst_rq, p);
3380 		wakeup_preempt(dst_rq, p, 0);
3381 
3382 		rq_unpin_lock(dst_rq, &drf);
3383 		rq_unpin_lock(src_rq, &srf);
3384 
3385 	} else {
3386 		/*
3387 		 * Task isn't running anymore; make it appear like we migrated
3388 		 * it before it went to sleep. This means on wakeup we make the
3389 		 * previous CPU our target instead of where it really is.
3390 		 */
3391 		p->wake_cpu = cpu;
3392 	}
3393 }
3394 
3395 struct migration_swap_arg {
3396 	struct task_struct *src_task, *dst_task;
3397 	int src_cpu, dst_cpu;
3398 };
3399 
3400 static int migrate_swap_stop(void *data)
3401 {
3402 	struct migration_swap_arg *arg = data;
3403 	struct rq *src_rq, *dst_rq;
3404 
3405 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3406 		return -EAGAIN;
3407 
3408 	src_rq = cpu_rq(arg->src_cpu);
3409 	dst_rq = cpu_rq(arg->dst_cpu);
3410 
3411 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3412 	guard(double_rq_lock)(src_rq, dst_rq);
3413 
3414 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3415 		return -EAGAIN;
3416 
3417 	if (task_cpu(arg->src_task) != arg->src_cpu)
3418 		return -EAGAIN;
3419 
3420 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3421 		return -EAGAIN;
3422 
3423 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3424 		return -EAGAIN;
3425 
3426 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3427 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3428 
3429 	return 0;
3430 }
3431 
3432 /*
3433  * Cross migrate two tasks
3434  */
3435 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3436 		int target_cpu, int curr_cpu)
3437 {
3438 	struct migration_swap_arg arg;
3439 	int ret = -EINVAL;
3440 
3441 	arg = (struct migration_swap_arg){
3442 		.src_task = cur,
3443 		.src_cpu = curr_cpu,
3444 		.dst_task = p,
3445 		.dst_cpu = target_cpu,
3446 	};
3447 
3448 	if (arg.src_cpu == arg.dst_cpu)
3449 		goto out;
3450 
3451 	/*
3452 	 * These three tests are all lockless; this is OK since all of them
3453 	 * will be re-checked with proper locks held further down the line.
3454 	 */
3455 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3456 		goto out;
3457 
3458 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3459 		goto out;
3460 
3461 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3462 		goto out;
3463 
3464 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3465 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3466 
3467 out:
3468 	return ret;
3469 }
3470 #endif /* CONFIG_NUMA_BALANCING */
3471 
3472 /***
3473  * kick_process - kick a running thread to enter/exit the kernel
3474  * @p: the to-be-kicked thread
3475  *
3476  * Cause a process which is running on another CPU to enter
3477  * kernel-mode, without any delay. (to get signals handled.)
3478  *
3479  * NOTE: this function doesn't have to take the runqueue lock,
3480  * because all it wants to ensure is that the remote task enters
3481  * the kernel. If the IPI races and the task has been migrated
3482  * to another CPU then no harm is done and the purpose has been
3483  * achieved as well.
3484  */
3485 void kick_process(struct task_struct *p)
3486 {
3487 	guard(preempt)();
3488 	int cpu = task_cpu(p);
3489 
3490 	if ((cpu != smp_processor_id()) && task_curr(p))
3491 		smp_send_reschedule(cpu);
3492 }
3493 EXPORT_SYMBOL_GPL(kick_process);
3494 
3495 /*
3496  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3497  *
3498  * A few notes on cpu_active vs cpu_online:
3499  *
3500  *  - cpu_active must be a subset of cpu_online
3501  *
3502  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3503  *    see __set_cpus_allowed_ptr(). At this point the newly online
3504  *    CPU isn't yet part of the sched domains, and balancing will not
3505  *    see it.
3506  *
3507  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3508  *    avoid the load balancer to place new tasks on the to be removed
3509  *    CPU. Existing tasks will remain running there and will be taken
3510  *    off.
3511  *
3512  * This means that fallback selection must not select !active CPUs.
3513  * And can assume that any active CPU must be online. Conversely
3514  * select_task_rq() below may allow selection of !active CPUs in order
3515  * to satisfy the above rules.
3516  */
3517 static int select_fallback_rq(int cpu, struct task_struct *p)
3518 {
3519 	int nid = cpu_to_node(cpu);
3520 	const struct cpumask *nodemask = NULL;
3521 	enum { cpuset, possible, fail } state = cpuset;
3522 	int dest_cpu;
3523 
3524 	/*
3525 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3526 	 * will return -1. There is no CPU on the node, and we should
3527 	 * select the CPU on the other node.
3528 	 */
3529 	if (nid != -1) {
3530 		nodemask = cpumask_of_node(nid);
3531 
3532 		/* Look for allowed, online CPU in same node. */
3533 		for_each_cpu(dest_cpu, nodemask) {
3534 			if (is_cpu_allowed(p, dest_cpu))
3535 				return dest_cpu;
3536 		}
3537 	}
3538 
3539 	for (;;) {
3540 		/* Any allowed, online CPU? */
3541 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3542 			if (!is_cpu_allowed(p, dest_cpu))
3543 				continue;
3544 
3545 			goto out;
3546 		}
3547 
3548 		/* No more Mr. Nice Guy. */
3549 		switch (state) {
3550 		case cpuset:
3551 			if (cpuset_cpus_allowed_fallback(p)) {
3552 				state = possible;
3553 				break;
3554 			}
3555 			fallthrough;
3556 		case possible:
3557 			/*
3558 			 * XXX When called from select_task_rq() we only
3559 			 * hold p->pi_lock and again violate locking order.
3560 			 *
3561 			 * More yuck to audit.
3562 			 */
3563 			do_set_cpus_allowed(p, task_cpu_fallback_mask(p));
3564 			state = fail;
3565 			break;
3566 		case fail:
3567 			BUG();
3568 			break;
3569 		}
3570 	}
3571 
3572 out:
3573 	if (state != cpuset) {
3574 		/*
3575 		 * Don't tell them about moving exiting tasks or
3576 		 * kernel threads (both mm NULL), since they never
3577 		 * leave kernel.
3578 		 */
3579 		if (p->mm && printk_ratelimit()) {
3580 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3581 					task_pid_nr(p), p->comm, cpu);
3582 		}
3583 	}
3584 
3585 	return dest_cpu;
3586 }
3587 
3588 /*
3589  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3590  */
3591 static inline
3592 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3593 {
3594 	lockdep_assert_held(&p->pi_lock);
3595 
3596 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3597 		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3598 		*wake_flags |= WF_RQ_SELECTED;
3599 	} else {
3600 		cpu = cpumask_any(p->cpus_ptr);
3601 	}
3602 
3603 	/*
3604 	 * In order not to call set_task_cpu() on a blocking task we need
3605 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3606 	 * CPU.
3607 	 *
3608 	 * Since this is common to all placement strategies, this lives here.
3609 	 *
3610 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3611 	 *   not worry about this generic constraint ]
3612 	 */
3613 	if (unlikely(!is_cpu_allowed(p, cpu)))
3614 		cpu = select_fallback_rq(task_cpu(p), p);
3615 
3616 	return cpu;
3617 }
3618 
3619 void sched_set_stop_task(int cpu, struct task_struct *stop)
3620 {
3621 	static struct lock_class_key stop_pi_lock;
3622 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3623 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3624 
3625 	if (stop) {
3626 		/*
3627 		 * Make it appear like a SCHED_FIFO task, its something
3628 		 * userspace knows about and won't get confused about.
3629 		 *
3630 		 * Also, it will make PI more or less work without too
3631 		 * much confusion -- but then, stop work should not
3632 		 * rely on PI working anyway.
3633 		 */
3634 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3635 
3636 		stop->sched_class = &stop_sched_class;
3637 
3638 		/*
3639 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3640 		 * adjust the effective priority of a task. As a result,
3641 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3642 		 * which can then trigger wakeups of the stop thread to push
3643 		 * around the current task.
3644 		 *
3645 		 * The stop task itself will never be part of the PI-chain, it
3646 		 * never blocks, therefore that ->pi_lock recursion is safe.
3647 		 * Tell lockdep about this by placing the stop->pi_lock in its
3648 		 * own class.
3649 		 */
3650 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3651 	}
3652 
3653 	cpu_rq(cpu)->stop = stop;
3654 
3655 	if (old_stop) {
3656 		/*
3657 		 * Reset it back to a normal scheduling class so that
3658 		 * it can die in pieces.
3659 		 */
3660 		old_stop->sched_class = &rt_sched_class;
3661 	}
3662 }
3663 
3664 #else /* CONFIG_SMP */
3665 
3666 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3667 
3668 static inline bool rq_has_pinned_tasks(struct rq *rq)
3669 {
3670 	return false;
3671 }
3672 
3673 #endif /* !CONFIG_SMP */
3674 
3675 static void
3676 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3677 {
3678 	struct rq *rq;
3679 
3680 	if (!schedstat_enabled())
3681 		return;
3682 
3683 	rq = this_rq();
3684 
3685 #ifdef CONFIG_SMP
3686 	if (cpu == rq->cpu) {
3687 		__schedstat_inc(rq->ttwu_local);
3688 		__schedstat_inc(p->stats.nr_wakeups_local);
3689 	} else {
3690 		struct sched_domain *sd;
3691 
3692 		__schedstat_inc(p->stats.nr_wakeups_remote);
3693 
3694 		guard(rcu)();
3695 		for_each_domain(rq->cpu, sd) {
3696 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3697 				__schedstat_inc(sd->ttwu_wake_remote);
3698 				break;
3699 			}
3700 		}
3701 	}
3702 
3703 	if (wake_flags & WF_MIGRATED)
3704 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3705 #endif /* CONFIG_SMP */
3706 
3707 	__schedstat_inc(rq->ttwu_count);
3708 	__schedstat_inc(p->stats.nr_wakeups);
3709 
3710 	if (wake_flags & WF_SYNC)
3711 		__schedstat_inc(p->stats.nr_wakeups_sync);
3712 }
3713 
3714 /*
3715  * Mark the task runnable.
3716  */
3717 static inline void ttwu_do_wakeup(struct task_struct *p)
3718 {
3719 	WRITE_ONCE(p->__state, TASK_RUNNING);
3720 	trace_sched_wakeup(p);
3721 }
3722 
3723 static void
3724 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3725 		 struct rq_flags *rf)
3726 {
3727 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3728 
3729 	lockdep_assert_rq_held(rq);
3730 
3731 	if (p->sched_contributes_to_load)
3732 		rq->nr_uninterruptible--;
3733 
3734 #ifdef CONFIG_SMP
3735 	if (wake_flags & WF_RQ_SELECTED)
3736 		en_flags |= ENQUEUE_RQ_SELECTED;
3737 	if (wake_flags & WF_MIGRATED)
3738 		en_flags |= ENQUEUE_MIGRATED;
3739 	else
3740 #endif
3741 	if (p->in_iowait) {
3742 		delayacct_blkio_end(p);
3743 		atomic_dec(&task_rq(p)->nr_iowait);
3744 	}
3745 
3746 	activate_task(rq, p, en_flags);
3747 	wakeup_preempt(rq, p, wake_flags);
3748 
3749 	ttwu_do_wakeup(p);
3750 
3751 #ifdef CONFIG_SMP
3752 	if (p->sched_class->task_woken) {
3753 		/*
3754 		 * Our task @p is fully woken up and running; so it's safe to
3755 		 * drop the rq->lock, hereafter rq is only used for statistics.
3756 		 */
3757 		rq_unpin_lock(rq, rf);
3758 		p->sched_class->task_woken(rq, p);
3759 		rq_repin_lock(rq, rf);
3760 	}
3761 
3762 	if (rq->idle_stamp) {
3763 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3764 		u64 max = 2*rq->max_idle_balance_cost;
3765 
3766 		update_avg(&rq->avg_idle, delta);
3767 
3768 		if (rq->avg_idle > max)
3769 			rq->avg_idle = max;
3770 
3771 		rq->idle_stamp = 0;
3772 	}
3773 #endif
3774 }
3775 
3776 /*
3777  * Consider @p being inside a wait loop:
3778  *
3779  *   for (;;) {
3780  *      set_current_state(TASK_UNINTERRUPTIBLE);
3781  *
3782  *      if (CONDITION)
3783  *         break;
3784  *
3785  *      schedule();
3786  *   }
3787  *   __set_current_state(TASK_RUNNING);
3788  *
3789  * between set_current_state() and schedule(). In this case @p is still
3790  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3791  * an atomic manner.
3792  *
3793  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3794  * then schedule() must still happen and p->state can be changed to
3795  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3796  * need to do a full wakeup with enqueue.
3797  *
3798  * Returns: %true when the wakeup is done,
3799  *          %false otherwise.
3800  */
3801 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3802 {
3803 	struct rq_flags rf;
3804 	struct rq *rq;
3805 	int ret = 0;
3806 
3807 	rq = __task_rq_lock(p, &rf);
3808 	if (task_on_rq_queued(p)) {
3809 		update_rq_clock(rq);
3810 		if (p->se.sched_delayed)
3811 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3812 		if (!task_on_cpu(rq, p)) {
3813 			/*
3814 			 * When on_rq && !on_cpu the task is preempted, see if
3815 			 * it should preempt the task that is current now.
3816 			 */
3817 			wakeup_preempt(rq, p, wake_flags);
3818 		}
3819 		ttwu_do_wakeup(p);
3820 		ret = 1;
3821 	}
3822 	__task_rq_unlock(rq, &rf);
3823 
3824 	return ret;
3825 }
3826 
3827 #ifdef CONFIG_SMP
3828 void sched_ttwu_pending(void *arg)
3829 {
3830 	struct llist_node *llist = arg;
3831 	struct rq *rq = this_rq();
3832 	struct task_struct *p, *t;
3833 	struct rq_flags rf;
3834 
3835 	if (!llist)
3836 		return;
3837 
3838 	rq_lock_irqsave(rq, &rf);
3839 	update_rq_clock(rq);
3840 
3841 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3842 		if (WARN_ON_ONCE(p->on_cpu))
3843 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3844 
3845 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3846 			set_task_cpu(p, cpu_of(rq));
3847 
3848 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3849 	}
3850 
3851 	/*
3852 	 * Must be after enqueueing at least once task such that
3853 	 * idle_cpu() does not observe a false-negative -- if it does,
3854 	 * it is possible for select_idle_siblings() to stack a number
3855 	 * of tasks on this CPU during that window.
3856 	 *
3857 	 * It is OK to clear ttwu_pending when another task pending.
3858 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3859 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3860 	 */
3861 	WRITE_ONCE(rq->ttwu_pending, 0);
3862 	rq_unlock_irqrestore(rq, &rf);
3863 }
3864 
3865 /*
3866  * Prepare the scene for sending an IPI for a remote smp_call
3867  *
3868  * Returns true if the caller can proceed with sending the IPI.
3869  * Returns false otherwise.
3870  */
3871 bool call_function_single_prep_ipi(int cpu)
3872 {
3873 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3874 		trace_sched_wake_idle_without_ipi(cpu);
3875 		return false;
3876 	}
3877 
3878 	return true;
3879 }
3880 
3881 /*
3882  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3883  * necessary. The wakee CPU on receipt of the IPI will queue the task
3884  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3885  * of the wakeup instead of the waker.
3886  */
3887 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3888 {
3889 	struct rq *rq = cpu_rq(cpu);
3890 
3891 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3892 
3893 	WRITE_ONCE(rq->ttwu_pending, 1);
3894 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3895 }
3896 
3897 void wake_up_if_idle(int cpu)
3898 {
3899 	struct rq *rq = cpu_rq(cpu);
3900 
3901 	guard(rcu)();
3902 	if (is_idle_task(rcu_dereference(rq->curr))) {
3903 		guard(rq_lock_irqsave)(rq);
3904 		if (is_idle_task(rq->curr))
3905 			resched_curr(rq);
3906 	}
3907 }
3908 
3909 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3910 {
3911 	if (!sched_asym_cpucap_active())
3912 		return true;
3913 
3914 	if (this_cpu == that_cpu)
3915 		return true;
3916 
3917 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3918 }
3919 
3920 bool cpus_share_cache(int this_cpu, int that_cpu)
3921 {
3922 	if (this_cpu == that_cpu)
3923 		return true;
3924 
3925 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3926 }
3927 
3928 /*
3929  * Whether CPUs are share cache resources, which means LLC on non-cluster
3930  * machines and LLC tag or L2 on machines with clusters.
3931  */
3932 bool cpus_share_resources(int this_cpu, int that_cpu)
3933 {
3934 	if (this_cpu == that_cpu)
3935 		return true;
3936 
3937 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3938 }
3939 
3940 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3941 {
3942 	/* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */
3943 	if (!scx_allow_ttwu_queue(p))
3944 		return false;
3945 
3946 	/*
3947 	 * Do not complicate things with the async wake_list while the CPU is
3948 	 * in hotplug state.
3949 	 */
3950 	if (!cpu_active(cpu))
3951 		return false;
3952 
3953 	/* Ensure the task will still be allowed to run on the CPU. */
3954 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3955 		return false;
3956 
3957 	/*
3958 	 * If the CPU does not share cache, then queue the task on the
3959 	 * remote rqs wakelist to avoid accessing remote data.
3960 	 */
3961 	if (!cpus_share_cache(smp_processor_id(), cpu))
3962 		return true;
3963 
3964 	if (cpu == smp_processor_id())
3965 		return false;
3966 
3967 	/*
3968 	 * If the wakee cpu is idle, or the task is descheduling and the
3969 	 * only running task on the CPU, then use the wakelist to offload
3970 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3971 	 * the current CPU is likely busy. nr_running is checked to
3972 	 * avoid unnecessary task stacking.
3973 	 *
3974 	 * Note that we can only get here with (wakee) p->on_rq=0,
3975 	 * p->on_cpu can be whatever, we've done the dequeue, so
3976 	 * the wakee has been accounted out of ->nr_running.
3977 	 */
3978 	if (!cpu_rq(cpu)->nr_running)
3979 		return true;
3980 
3981 	return false;
3982 }
3983 
3984 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3985 {
3986 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3987 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3988 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3989 		return true;
3990 	}
3991 
3992 	return false;
3993 }
3994 
3995 #else /* !CONFIG_SMP */
3996 
3997 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3998 {
3999 	return false;
4000 }
4001 
4002 #endif /* CONFIG_SMP */
4003 
4004 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4005 {
4006 	struct rq *rq = cpu_rq(cpu);
4007 	struct rq_flags rf;
4008 
4009 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4010 		return;
4011 
4012 	rq_lock(rq, &rf);
4013 	update_rq_clock(rq);
4014 	ttwu_do_activate(rq, p, wake_flags, &rf);
4015 	rq_unlock(rq, &rf);
4016 }
4017 
4018 /*
4019  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4020  *
4021  * The caller holds p::pi_lock if p != current or has preemption
4022  * disabled when p == current.
4023  *
4024  * The rules of saved_state:
4025  *
4026  *   The related locking code always holds p::pi_lock when updating
4027  *   p::saved_state, which means the code is fully serialized in both cases.
4028  *
4029  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4030  *   No other bits set. This allows to distinguish all wakeup scenarios.
4031  *
4032  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4033  *   allows us to prevent early wakeup of tasks before they can be run on
4034  *   asymmetric ISA architectures (eg ARMv9).
4035  */
4036 static __always_inline
4037 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4038 {
4039 	int match;
4040 
4041 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4042 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4043 			     state != TASK_RTLOCK_WAIT);
4044 	}
4045 
4046 	*success = !!(match = __task_state_match(p, state));
4047 
4048 	/*
4049 	 * Saved state preserves the task state across blocking on
4050 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4051 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4052 	 * because it waits for a lock wakeup or __thaw_task(). Also
4053 	 * indicate success because from the regular waker's point of
4054 	 * view this has succeeded.
4055 	 *
4056 	 * After acquiring the lock the task will restore p::__state
4057 	 * from p::saved_state which ensures that the regular
4058 	 * wakeup is not lost. The restore will also set
4059 	 * p::saved_state to TASK_RUNNING so any further tests will
4060 	 * not result in false positives vs. @success
4061 	 */
4062 	if (match < 0)
4063 		p->saved_state = TASK_RUNNING;
4064 
4065 	return match > 0;
4066 }
4067 
4068 /*
4069  * Notes on Program-Order guarantees on SMP systems.
4070  *
4071  *  MIGRATION
4072  *
4073  * The basic program-order guarantee on SMP systems is that when a task [t]
4074  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4075  * execution on its new CPU [c1].
4076  *
4077  * For migration (of runnable tasks) this is provided by the following means:
4078  *
4079  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4080  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4081  *     rq(c1)->lock (if not at the same time, then in that order).
4082  *  C) LOCK of the rq(c1)->lock scheduling in task
4083  *
4084  * Release/acquire chaining guarantees that B happens after A and C after B.
4085  * Note: the CPU doing B need not be c0 or c1
4086  *
4087  * Example:
4088  *
4089  *   CPU0            CPU1            CPU2
4090  *
4091  *   LOCK rq(0)->lock
4092  *   sched-out X
4093  *   sched-in Y
4094  *   UNLOCK rq(0)->lock
4095  *
4096  *                                   LOCK rq(0)->lock // orders against CPU0
4097  *                                   dequeue X
4098  *                                   UNLOCK rq(0)->lock
4099  *
4100  *                                   LOCK rq(1)->lock
4101  *                                   enqueue X
4102  *                                   UNLOCK rq(1)->lock
4103  *
4104  *                   LOCK rq(1)->lock // orders against CPU2
4105  *                   sched-out Z
4106  *                   sched-in X
4107  *                   UNLOCK rq(1)->lock
4108  *
4109  *
4110  *  BLOCKING -- aka. SLEEP + WAKEUP
4111  *
4112  * For blocking we (obviously) need to provide the same guarantee as for
4113  * migration. However the means are completely different as there is no lock
4114  * chain to provide order. Instead we do:
4115  *
4116  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4117  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4118  *
4119  * Example:
4120  *
4121  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4122  *
4123  *   LOCK rq(0)->lock LOCK X->pi_lock
4124  *   dequeue X
4125  *   sched-out X
4126  *   smp_store_release(X->on_cpu, 0);
4127  *
4128  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4129  *                    X->state = WAKING
4130  *                    set_task_cpu(X,2)
4131  *
4132  *                    LOCK rq(2)->lock
4133  *                    enqueue X
4134  *                    X->state = RUNNING
4135  *                    UNLOCK rq(2)->lock
4136  *
4137  *                                          LOCK rq(2)->lock // orders against CPU1
4138  *                                          sched-out Z
4139  *                                          sched-in X
4140  *                                          UNLOCK rq(2)->lock
4141  *
4142  *                    UNLOCK X->pi_lock
4143  *   UNLOCK rq(0)->lock
4144  *
4145  *
4146  * However, for wakeups there is a second guarantee we must provide, namely we
4147  * must ensure that CONDITION=1 done by the caller can not be reordered with
4148  * accesses to the task state; see try_to_wake_up() and set_current_state().
4149  */
4150 
4151 /**
4152  * try_to_wake_up - wake up a thread
4153  * @p: the thread to be awakened
4154  * @state: the mask of task states that can be woken
4155  * @wake_flags: wake modifier flags (WF_*)
4156  *
4157  * Conceptually does:
4158  *
4159  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4160  *
4161  * If the task was not queued/runnable, also place it back on a runqueue.
4162  *
4163  * This function is atomic against schedule() which would dequeue the task.
4164  *
4165  * It issues a full memory barrier before accessing @p->state, see the comment
4166  * with set_current_state().
4167  *
4168  * Uses p->pi_lock to serialize against concurrent wake-ups.
4169  *
4170  * Relies on p->pi_lock stabilizing:
4171  *  - p->sched_class
4172  *  - p->cpus_ptr
4173  *  - p->sched_task_group
4174  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4175  *
4176  * Tries really hard to only take one task_rq(p)->lock for performance.
4177  * Takes rq->lock in:
4178  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4179  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4180  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4181  *
4182  * As a consequence we race really badly with just about everything. See the
4183  * many memory barriers and their comments for details.
4184  *
4185  * Return: %true if @p->state changes (an actual wakeup was done),
4186  *	   %false otherwise.
4187  */
4188 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4189 {
4190 	guard(preempt)();
4191 	int cpu, success = 0;
4192 
4193 	wake_flags |= WF_TTWU;
4194 
4195 	if (p == current) {
4196 		/*
4197 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4198 		 * == smp_processor_id()'. Together this means we can special
4199 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4200 		 * without taking any locks.
4201 		 *
4202 		 * Specifically, given current runs ttwu() we must be before
4203 		 * schedule()'s block_task(), as such this must not observe
4204 		 * sched_delayed.
4205 		 *
4206 		 * In particular:
4207 		 *  - we rely on Program-Order guarantees for all the ordering,
4208 		 *  - we're serialized against set_special_state() by virtue of
4209 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4210 		 */
4211 		WARN_ON_ONCE(p->se.sched_delayed);
4212 		if (!ttwu_state_match(p, state, &success))
4213 			goto out;
4214 
4215 		trace_sched_waking(p);
4216 		ttwu_do_wakeup(p);
4217 		goto out;
4218 	}
4219 
4220 	/*
4221 	 * If we are going to wake up a thread waiting for CONDITION we
4222 	 * need to ensure that CONDITION=1 done by the caller can not be
4223 	 * reordered with p->state check below. This pairs with smp_store_mb()
4224 	 * in set_current_state() that the waiting thread does.
4225 	 */
4226 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4227 		smp_mb__after_spinlock();
4228 		if (!ttwu_state_match(p, state, &success))
4229 			break;
4230 
4231 		trace_sched_waking(p);
4232 
4233 		/*
4234 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4235 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4236 		 * in smp_cond_load_acquire() below.
4237 		 *
4238 		 * sched_ttwu_pending()			try_to_wake_up()
4239 		 *   STORE p->on_rq = 1			  LOAD p->state
4240 		 *   UNLOCK rq->lock
4241 		 *
4242 		 * __schedule() (switch to task 'p')
4243 		 *   LOCK rq->lock			  smp_rmb();
4244 		 *   smp_mb__after_spinlock();
4245 		 *   UNLOCK rq->lock
4246 		 *
4247 		 * [task p]
4248 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4249 		 *
4250 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4251 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4252 		 *
4253 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4254 		 */
4255 		smp_rmb();
4256 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4257 			break;
4258 
4259 #ifdef CONFIG_SMP
4260 		/*
4261 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4262 		 * possible to, falsely, observe p->on_cpu == 0.
4263 		 *
4264 		 * One must be running (->on_cpu == 1) in order to remove oneself
4265 		 * from the runqueue.
4266 		 *
4267 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4268 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4269 		 *   UNLOCK rq->lock
4270 		 *
4271 		 * __schedule() (put 'p' to sleep)
4272 		 *   LOCK rq->lock			  smp_rmb();
4273 		 *   smp_mb__after_spinlock();
4274 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4275 		 *
4276 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4277 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4278 		 *
4279 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4280 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4281 		 * care about it's own p->state. See the comment in __schedule().
4282 		 */
4283 		smp_acquire__after_ctrl_dep();
4284 
4285 		/*
4286 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4287 		 * == 0), which means we need to do an enqueue, change p->state to
4288 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4289 		 * enqueue, such as ttwu_queue_wakelist().
4290 		 */
4291 		WRITE_ONCE(p->__state, TASK_WAKING);
4292 
4293 		/*
4294 		 * If the owning (remote) CPU is still in the middle of schedule() with
4295 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4296 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4297 		 * let the waker make forward progress. This is safe because IRQs are
4298 		 * disabled and the IPI will deliver after on_cpu is cleared.
4299 		 *
4300 		 * Ensure we load task_cpu(p) after p->on_cpu:
4301 		 *
4302 		 * set_task_cpu(p, cpu);
4303 		 *   STORE p->cpu = @cpu
4304 		 * __schedule() (switch to task 'p')
4305 		 *   LOCK rq->lock
4306 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4307 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4308 		 *
4309 		 * to ensure we observe the correct CPU on which the task is currently
4310 		 * scheduling.
4311 		 */
4312 		if (smp_load_acquire(&p->on_cpu) &&
4313 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4314 			break;
4315 
4316 		/*
4317 		 * If the owning (remote) CPU is still in the middle of schedule() with
4318 		 * this task as prev, wait until it's done referencing the task.
4319 		 *
4320 		 * Pairs with the smp_store_release() in finish_task().
4321 		 *
4322 		 * This ensures that tasks getting woken will be fully ordered against
4323 		 * their previous state and preserve Program Order.
4324 		 */
4325 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4326 
4327 		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4328 		if (task_cpu(p) != cpu) {
4329 			if (p->in_iowait) {
4330 				delayacct_blkio_end(p);
4331 				atomic_dec(&task_rq(p)->nr_iowait);
4332 			}
4333 
4334 			wake_flags |= WF_MIGRATED;
4335 			psi_ttwu_dequeue(p);
4336 			set_task_cpu(p, cpu);
4337 		}
4338 #else
4339 		cpu = task_cpu(p);
4340 #endif /* CONFIG_SMP */
4341 
4342 		ttwu_queue(p, cpu, wake_flags);
4343 	}
4344 out:
4345 	if (success)
4346 		ttwu_stat(p, task_cpu(p), wake_flags);
4347 
4348 	return success;
4349 }
4350 
4351 static bool __task_needs_rq_lock(struct task_struct *p)
4352 {
4353 	unsigned int state = READ_ONCE(p->__state);
4354 
4355 	/*
4356 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4357 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4358 	 * locks at the end, see ttwu_queue_wakelist().
4359 	 */
4360 	if (state == TASK_RUNNING || state == TASK_WAKING)
4361 		return true;
4362 
4363 	/*
4364 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4365 	 * possible to, falsely, observe p->on_rq == 0.
4366 	 *
4367 	 * See try_to_wake_up() for a longer comment.
4368 	 */
4369 	smp_rmb();
4370 	if (p->on_rq)
4371 		return true;
4372 
4373 #ifdef CONFIG_SMP
4374 	/*
4375 	 * Ensure the task has finished __schedule() and will not be referenced
4376 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4377 	 */
4378 	smp_rmb();
4379 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4380 #endif
4381 
4382 	return false;
4383 }
4384 
4385 /**
4386  * task_call_func - Invoke a function on task in fixed state
4387  * @p: Process for which the function is to be invoked, can be @current.
4388  * @func: Function to invoke.
4389  * @arg: Argument to function.
4390  *
4391  * Fix the task in it's current state by avoiding wakeups and or rq operations
4392  * and call @func(@arg) on it.  This function can use task_is_runnable() and
4393  * task_curr() to work out what the state is, if required.  Given that @func
4394  * can be invoked with a runqueue lock held, it had better be quite
4395  * lightweight.
4396  *
4397  * Returns:
4398  *   Whatever @func returns
4399  */
4400 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4401 {
4402 	struct rq *rq = NULL;
4403 	struct rq_flags rf;
4404 	int ret;
4405 
4406 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4407 
4408 	if (__task_needs_rq_lock(p))
4409 		rq = __task_rq_lock(p, &rf);
4410 
4411 	/*
4412 	 * At this point the task is pinned; either:
4413 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4414 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4415 	 *  - queued, and we're holding off schedule	 (rq->lock)
4416 	 *  - running, and we're holding off de-schedule (rq->lock)
4417 	 *
4418 	 * The called function (@func) can use: task_curr(), p->on_rq and
4419 	 * p->__state to differentiate between these states.
4420 	 */
4421 	ret = func(p, arg);
4422 
4423 	if (rq)
4424 		rq_unlock(rq, &rf);
4425 
4426 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4427 	return ret;
4428 }
4429 
4430 /**
4431  * cpu_curr_snapshot - Return a snapshot of the currently running task
4432  * @cpu: The CPU on which to snapshot the task.
4433  *
4434  * Returns the task_struct pointer of the task "currently" running on
4435  * the specified CPU.
4436  *
4437  * If the specified CPU was offline, the return value is whatever it
4438  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4439  * task, but there is no guarantee.  Callers wishing a useful return
4440  * value must take some action to ensure that the specified CPU remains
4441  * online throughout.
4442  *
4443  * This function executes full memory barriers before and after fetching
4444  * the pointer, which permits the caller to confine this function's fetch
4445  * with respect to the caller's accesses to other shared variables.
4446  */
4447 struct task_struct *cpu_curr_snapshot(int cpu)
4448 {
4449 	struct rq *rq = cpu_rq(cpu);
4450 	struct task_struct *t;
4451 	struct rq_flags rf;
4452 
4453 	rq_lock_irqsave(rq, &rf);
4454 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4455 	t = rcu_dereference(cpu_curr(cpu));
4456 	rq_unlock_irqrestore(rq, &rf);
4457 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4458 
4459 	return t;
4460 }
4461 
4462 /**
4463  * wake_up_process - Wake up a specific process
4464  * @p: The process to be woken up.
4465  *
4466  * Attempt to wake up the nominated process and move it to the set of runnable
4467  * processes.
4468  *
4469  * Return: 1 if the process was woken up, 0 if it was already running.
4470  *
4471  * This function executes a full memory barrier before accessing the task state.
4472  */
4473 int wake_up_process(struct task_struct *p)
4474 {
4475 	return try_to_wake_up(p, TASK_NORMAL, 0);
4476 }
4477 EXPORT_SYMBOL(wake_up_process);
4478 
4479 int wake_up_state(struct task_struct *p, unsigned int state)
4480 {
4481 	return try_to_wake_up(p, state, 0);
4482 }
4483 
4484 /*
4485  * Perform scheduler related setup for a newly forked process p.
4486  * p is forked by current.
4487  *
4488  * __sched_fork() is basic setup which is also used by sched_init() to
4489  * initialize the boot CPU's idle task.
4490  */
4491 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4492 {
4493 	p->on_rq			= 0;
4494 
4495 	p->se.on_rq			= 0;
4496 	p->se.exec_start		= 0;
4497 	p->se.sum_exec_runtime		= 0;
4498 	p->se.prev_sum_exec_runtime	= 0;
4499 	p->se.nr_migrations		= 0;
4500 	p->se.vruntime			= 0;
4501 	p->se.vlag			= 0;
4502 	INIT_LIST_HEAD(&p->se.group_node);
4503 
4504 	/* A delayed task cannot be in clone(). */
4505 	WARN_ON_ONCE(p->se.sched_delayed);
4506 
4507 #ifdef CONFIG_FAIR_GROUP_SCHED
4508 	p->se.cfs_rq			= NULL;
4509 #endif
4510 
4511 #ifdef CONFIG_SCHEDSTATS
4512 	/* Even if schedstat is disabled, there should not be garbage */
4513 	memset(&p->stats, 0, sizeof(p->stats));
4514 #endif
4515 
4516 	init_dl_entity(&p->dl);
4517 
4518 	INIT_LIST_HEAD(&p->rt.run_list);
4519 	p->rt.timeout		= 0;
4520 	p->rt.time_slice	= sched_rr_timeslice;
4521 	p->rt.on_rq		= 0;
4522 	p->rt.on_list		= 0;
4523 
4524 #ifdef CONFIG_SCHED_CLASS_EXT
4525 	init_scx_entity(&p->scx);
4526 #endif
4527 
4528 #ifdef CONFIG_PREEMPT_NOTIFIERS
4529 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4530 #endif
4531 
4532 #ifdef CONFIG_COMPACTION
4533 	p->capture_control = NULL;
4534 #endif
4535 	init_numa_balancing(clone_flags, p);
4536 #ifdef CONFIG_SMP
4537 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4538 	p->migration_pending = NULL;
4539 #endif
4540 	init_sched_mm_cid(p);
4541 }
4542 
4543 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4544 
4545 #ifdef CONFIG_NUMA_BALANCING
4546 
4547 int sysctl_numa_balancing_mode;
4548 
4549 static void __set_numabalancing_state(bool enabled)
4550 {
4551 	if (enabled)
4552 		static_branch_enable(&sched_numa_balancing);
4553 	else
4554 		static_branch_disable(&sched_numa_balancing);
4555 }
4556 
4557 void set_numabalancing_state(bool enabled)
4558 {
4559 	if (enabled)
4560 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4561 	else
4562 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4563 	__set_numabalancing_state(enabled);
4564 }
4565 
4566 #ifdef CONFIG_PROC_SYSCTL
4567 static void reset_memory_tiering(void)
4568 {
4569 	struct pglist_data *pgdat;
4570 
4571 	for_each_online_pgdat(pgdat) {
4572 		pgdat->nbp_threshold = 0;
4573 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4574 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4575 	}
4576 }
4577 
4578 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4579 			  void *buffer, size_t *lenp, loff_t *ppos)
4580 {
4581 	struct ctl_table t;
4582 	int err;
4583 	int state = sysctl_numa_balancing_mode;
4584 
4585 	if (write && !capable(CAP_SYS_ADMIN))
4586 		return -EPERM;
4587 
4588 	t = *table;
4589 	t.data = &state;
4590 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4591 	if (err < 0)
4592 		return err;
4593 	if (write) {
4594 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4595 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4596 			reset_memory_tiering();
4597 		sysctl_numa_balancing_mode = state;
4598 		__set_numabalancing_state(state);
4599 	}
4600 	return err;
4601 }
4602 #endif
4603 #endif
4604 
4605 #ifdef CONFIG_SCHEDSTATS
4606 
4607 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4608 
4609 static void set_schedstats(bool enabled)
4610 {
4611 	if (enabled)
4612 		static_branch_enable(&sched_schedstats);
4613 	else
4614 		static_branch_disable(&sched_schedstats);
4615 }
4616 
4617 void force_schedstat_enabled(void)
4618 {
4619 	if (!schedstat_enabled()) {
4620 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4621 		static_branch_enable(&sched_schedstats);
4622 	}
4623 }
4624 
4625 static int __init setup_schedstats(char *str)
4626 {
4627 	int ret = 0;
4628 	if (!str)
4629 		goto out;
4630 
4631 	if (!strcmp(str, "enable")) {
4632 		set_schedstats(true);
4633 		ret = 1;
4634 	} else if (!strcmp(str, "disable")) {
4635 		set_schedstats(false);
4636 		ret = 1;
4637 	}
4638 out:
4639 	if (!ret)
4640 		pr_warn("Unable to parse schedstats=\n");
4641 
4642 	return ret;
4643 }
4644 __setup("schedstats=", setup_schedstats);
4645 
4646 #ifdef CONFIG_PROC_SYSCTL
4647 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4648 		size_t *lenp, loff_t *ppos)
4649 {
4650 	struct ctl_table t;
4651 	int err;
4652 	int state = static_branch_likely(&sched_schedstats);
4653 
4654 	if (write && !capable(CAP_SYS_ADMIN))
4655 		return -EPERM;
4656 
4657 	t = *table;
4658 	t.data = &state;
4659 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4660 	if (err < 0)
4661 		return err;
4662 	if (write)
4663 		set_schedstats(state);
4664 	return err;
4665 }
4666 #endif /* CONFIG_PROC_SYSCTL */
4667 #endif /* CONFIG_SCHEDSTATS */
4668 
4669 #ifdef CONFIG_SYSCTL
4670 static const struct ctl_table sched_core_sysctls[] = {
4671 #ifdef CONFIG_SCHEDSTATS
4672 	{
4673 		.procname       = "sched_schedstats",
4674 		.data           = NULL,
4675 		.maxlen         = sizeof(unsigned int),
4676 		.mode           = 0644,
4677 		.proc_handler   = sysctl_schedstats,
4678 		.extra1         = SYSCTL_ZERO,
4679 		.extra2         = SYSCTL_ONE,
4680 	},
4681 #endif /* CONFIG_SCHEDSTATS */
4682 #ifdef CONFIG_UCLAMP_TASK
4683 	{
4684 		.procname       = "sched_util_clamp_min",
4685 		.data           = &sysctl_sched_uclamp_util_min,
4686 		.maxlen         = sizeof(unsigned int),
4687 		.mode           = 0644,
4688 		.proc_handler   = sysctl_sched_uclamp_handler,
4689 	},
4690 	{
4691 		.procname       = "sched_util_clamp_max",
4692 		.data           = &sysctl_sched_uclamp_util_max,
4693 		.maxlen         = sizeof(unsigned int),
4694 		.mode           = 0644,
4695 		.proc_handler   = sysctl_sched_uclamp_handler,
4696 	},
4697 	{
4698 		.procname       = "sched_util_clamp_min_rt_default",
4699 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4700 		.maxlen         = sizeof(unsigned int),
4701 		.mode           = 0644,
4702 		.proc_handler   = sysctl_sched_uclamp_handler,
4703 	},
4704 #endif /* CONFIG_UCLAMP_TASK */
4705 #ifdef CONFIG_NUMA_BALANCING
4706 	{
4707 		.procname	= "numa_balancing",
4708 		.data		= NULL, /* filled in by handler */
4709 		.maxlen		= sizeof(unsigned int),
4710 		.mode		= 0644,
4711 		.proc_handler	= sysctl_numa_balancing,
4712 		.extra1		= SYSCTL_ZERO,
4713 		.extra2		= SYSCTL_FOUR,
4714 	},
4715 #endif /* CONFIG_NUMA_BALANCING */
4716 };
4717 static int __init sched_core_sysctl_init(void)
4718 {
4719 	register_sysctl_init("kernel", sched_core_sysctls);
4720 	return 0;
4721 }
4722 late_initcall(sched_core_sysctl_init);
4723 #endif /* CONFIG_SYSCTL */
4724 
4725 /*
4726  * fork()/clone()-time setup:
4727  */
4728 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4729 {
4730 	__sched_fork(clone_flags, p);
4731 	/*
4732 	 * We mark the process as NEW here. This guarantees that
4733 	 * nobody will actually run it, and a signal or other external
4734 	 * event cannot wake it up and insert it on the runqueue either.
4735 	 */
4736 	p->__state = TASK_NEW;
4737 
4738 	/*
4739 	 * Make sure we do not leak PI boosting priority to the child.
4740 	 */
4741 	p->prio = current->normal_prio;
4742 
4743 	uclamp_fork(p);
4744 
4745 	/*
4746 	 * Revert to default priority/policy on fork if requested.
4747 	 */
4748 	if (unlikely(p->sched_reset_on_fork)) {
4749 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4750 			p->policy = SCHED_NORMAL;
4751 			p->static_prio = NICE_TO_PRIO(0);
4752 			p->rt_priority = 0;
4753 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4754 			p->static_prio = NICE_TO_PRIO(0);
4755 
4756 		p->prio = p->normal_prio = p->static_prio;
4757 		set_load_weight(p, false);
4758 		p->se.custom_slice = 0;
4759 		p->se.slice = sysctl_sched_base_slice;
4760 
4761 		/*
4762 		 * We don't need the reset flag anymore after the fork. It has
4763 		 * fulfilled its duty:
4764 		 */
4765 		p->sched_reset_on_fork = 0;
4766 	}
4767 
4768 	if (dl_prio(p->prio))
4769 		return -EAGAIN;
4770 
4771 	scx_pre_fork(p);
4772 
4773 	if (rt_prio(p->prio)) {
4774 		p->sched_class = &rt_sched_class;
4775 #ifdef CONFIG_SCHED_CLASS_EXT
4776 	} else if (task_should_scx(p->policy)) {
4777 		p->sched_class = &ext_sched_class;
4778 #endif
4779 	} else {
4780 		p->sched_class = &fair_sched_class;
4781 	}
4782 
4783 	init_entity_runnable_average(&p->se);
4784 
4785 
4786 #ifdef CONFIG_SCHED_INFO
4787 	if (likely(sched_info_on()))
4788 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4789 #endif
4790 #if defined(CONFIG_SMP)
4791 	p->on_cpu = 0;
4792 #endif
4793 	init_task_preempt_count(p);
4794 #ifdef CONFIG_SMP
4795 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4796 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4797 #endif
4798 	return 0;
4799 }
4800 
4801 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4802 {
4803 	unsigned long flags;
4804 
4805 	/*
4806 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4807 	 * required yet, but lockdep gets upset if rules are violated.
4808 	 */
4809 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4810 #ifdef CONFIG_CGROUP_SCHED
4811 	if (1) {
4812 		struct task_group *tg;
4813 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4814 				  struct task_group, css);
4815 		tg = autogroup_task_group(p, tg);
4816 		p->sched_task_group = tg;
4817 	}
4818 #endif
4819 	rseq_migrate(p);
4820 	/*
4821 	 * We're setting the CPU for the first time, we don't migrate,
4822 	 * so use __set_task_cpu().
4823 	 */
4824 	__set_task_cpu(p, smp_processor_id());
4825 	if (p->sched_class->task_fork)
4826 		p->sched_class->task_fork(p);
4827 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4828 
4829 	return scx_fork(p);
4830 }
4831 
4832 void sched_cancel_fork(struct task_struct *p)
4833 {
4834 	scx_cancel_fork(p);
4835 }
4836 
4837 void sched_post_fork(struct task_struct *p)
4838 {
4839 	uclamp_post_fork(p);
4840 	scx_post_fork(p);
4841 }
4842 
4843 unsigned long to_ratio(u64 period, u64 runtime)
4844 {
4845 	if (runtime == RUNTIME_INF)
4846 		return BW_UNIT;
4847 
4848 	/*
4849 	 * Doing this here saves a lot of checks in all
4850 	 * the calling paths, and returning zero seems
4851 	 * safe for them anyway.
4852 	 */
4853 	if (period == 0)
4854 		return 0;
4855 
4856 	return div64_u64(runtime << BW_SHIFT, period);
4857 }
4858 
4859 /*
4860  * wake_up_new_task - wake up a newly created task for the first time.
4861  *
4862  * This function will do some initial scheduler statistics housekeeping
4863  * that must be done for every newly created context, then puts the task
4864  * on the runqueue and wakes it.
4865  */
4866 void wake_up_new_task(struct task_struct *p)
4867 {
4868 	struct rq_flags rf;
4869 	struct rq *rq;
4870 	int wake_flags = WF_FORK;
4871 
4872 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4873 	WRITE_ONCE(p->__state, TASK_RUNNING);
4874 #ifdef CONFIG_SMP
4875 	/*
4876 	 * Fork balancing, do it here and not earlier because:
4877 	 *  - cpus_ptr can change in the fork path
4878 	 *  - any previously selected CPU might disappear through hotplug
4879 	 *
4880 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4881 	 * as we're not fully set-up yet.
4882 	 */
4883 	p->recent_used_cpu = task_cpu(p);
4884 	rseq_migrate(p);
4885 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4886 #endif
4887 	rq = __task_rq_lock(p, &rf);
4888 	update_rq_clock(rq);
4889 	post_init_entity_util_avg(p);
4890 
4891 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4892 	trace_sched_wakeup_new(p);
4893 	wakeup_preempt(rq, p, wake_flags);
4894 #ifdef CONFIG_SMP
4895 	if (p->sched_class->task_woken) {
4896 		/*
4897 		 * Nothing relies on rq->lock after this, so it's fine to
4898 		 * drop it.
4899 		 */
4900 		rq_unpin_lock(rq, &rf);
4901 		p->sched_class->task_woken(rq, p);
4902 		rq_repin_lock(rq, &rf);
4903 	}
4904 #endif
4905 	task_rq_unlock(rq, p, &rf);
4906 }
4907 
4908 #ifdef CONFIG_PREEMPT_NOTIFIERS
4909 
4910 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4911 
4912 void preempt_notifier_inc(void)
4913 {
4914 	static_branch_inc(&preempt_notifier_key);
4915 }
4916 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4917 
4918 void preempt_notifier_dec(void)
4919 {
4920 	static_branch_dec(&preempt_notifier_key);
4921 }
4922 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4923 
4924 /**
4925  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4926  * @notifier: notifier struct to register
4927  */
4928 void preempt_notifier_register(struct preempt_notifier *notifier)
4929 {
4930 	if (!static_branch_unlikely(&preempt_notifier_key))
4931 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4932 
4933 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4934 }
4935 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4936 
4937 /**
4938  * preempt_notifier_unregister - no longer interested in preemption notifications
4939  * @notifier: notifier struct to unregister
4940  *
4941  * This is *not* safe to call from within a preemption notifier.
4942  */
4943 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4944 {
4945 	hlist_del(&notifier->link);
4946 }
4947 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4948 
4949 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4950 {
4951 	struct preempt_notifier *notifier;
4952 
4953 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4954 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4955 }
4956 
4957 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4958 {
4959 	if (static_branch_unlikely(&preempt_notifier_key))
4960 		__fire_sched_in_preempt_notifiers(curr);
4961 }
4962 
4963 static void
4964 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4965 				   struct task_struct *next)
4966 {
4967 	struct preempt_notifier *notifier;
4968 
4969 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4970 		notifier->ops->sched_out(notifier, next);
4971 }
4972 
4973 static __always_inline void
4974 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4975 				 struct task_struct *next)
4976 {
4977 	if (static_branch_unlikely(&preempt_notifier_key))
4978 		__fire_sched_out_preempt_notifiers(curr, next);
4979 }
4980 
4981 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4982 
4983 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4984 {
4985 }
4986 
4987 static inline void
4988 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4989 				 struct task_struct *next)
4990 {
4991 }
4992 
4993 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4994 
4995 static inline void prepare_task(struct task_struct *next)
4996 {
4997 #ifdef CONFIG_SMP
4998 	/*
4999 	 * Claim the task as running, we do this before switching to it
5000 	 * such that any running task will have this set.
5001 	 *
5002 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5003 	 * its ordering comment.
5004 	 */
5005 	WRITE_ONCE(next->on_cpu, 1);
5006 #endif
5007 }
5008 
5009 static inline void finish_task(struct task_struct *prev)
5010 {
5011 #ifdef CONFIG_SMP
5012 	/*
5013 	 * This must be the very last reference to @prev from this CPU. After
5014 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5015 	 * must ensure this doesn't happen until the switch is completely
5016 	 * finished.
5017 	 *
5018 	 * In particular, the load of prev->state in finish_task_switch() must
5019 	 * happen before this.
5020 	 *
5021 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5022 	 */
5023 	smp_store_release(&prev->on_cpu, 0);
5024 #endif
5025 }
5026 
5027 #ifdef CONFIG_SMP
5028 
5029 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5030 {
5031 	void (*func)(struct rq *rq);
5032 	struct balance_callback *next;
5033 
5034 	lockdep_assert_rq_held(rq);
5035 
5036 	while (head) {
5037 		func = (void (*)(struct rq *))head->func;
5038 		next = head->next;
5039 		head->next = NULL;
5040 		head = next;
5041 
5042 		func(rq);
5043 	}
5044 }
5045 
5046 static void balance_push(struct rq *rq);
5047 
5048 /*
5049  * balance_push_callback is a right abuse of the callback interface and plays
5050  * by significantly different rules.
5051  *
5052  * Where the normal balance_callback's purpose is to be ran in the same context
5053  * that queued it (only later, when it's safe to drop rq->lock again),
5054  * balance_push_callback is specifically targeted at __schedule().
5055  *
5056  * This abuse is tolerated because it places all the unlikely/odd cases behind
5057  * a single test, namely: rq->balance_callback == NULL.
5058  */
5059 struct balance_callback balance_push_callback = {
5060 	.next = NULL,
5061 	.func = balance_push,
5062 };
5063 
5064 static inline struct balance_callback *
5065 __splice_balance_callbacks(struct rq *rq, bool split)
5066 {
5067 	struct balance_callback *head = rq->balance_callback;
5068 
5069 	if (likely(!head))
5070 		return NULL;
5071 
5072 	lockdep_assert_rq_held(rq);
5073 	/*
5074 	 * Must not take balance_push_callback off the list when
5075 	 * splice_balance_callbacks() and balance_callbacks() are not
5076 	 * in the same rq->lock section.
5077 	 *
5078 	 * In that case it would be possible for __schedule() to interleave
5079 	 * and observe the list empty.
5080 	 */
5081 	if (split && head == &balance_push_callback)
5082 		head = NULL;
5083 	else
5084 		rq->balance_callback = NULL;
5085 
5086 	return head;
5087 }
5088 
5089 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5090 {
5091 	return __splice_balance_callbacks(rq, true);
5092 }
5093 
5094 static void __balance_callbacks(struct rq *rq)
5095 {
5096 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5097 }
5098 
5099 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5100 {
5101 	unsigned long flags;
5102 
5103 	if (unlikely(head)) {
5104 		raw_spin_rq_lock_irqsave(rq, flags);
5105 		do_balance_callbacks(rq, head);
5106 		raw_spin_rq_unlock_irqrestore(rq, flags);
5107 	}
5108 }
5109 
5110 #else
5111 
5112 static inline void __balance_callbacks(struct rq *rq)
5113 {
5114 }
5115 
5116 #endif
5117 
5118 static inline void
5119 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5120 {
5121 	/*
5122 	 * Since the runqueue lock will be released by the next
5123 	 * task (which is an invalid locking op but in the case
5124 	 * of the scheduler it's an obvious special-case), so we
5125 	 * do an early lockdep release here:
5126 	 */
5127 	rq_unpin_lock(rq, rf);
5128 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5129 #ifdef CONFIG_DEBUG_SPINLOCK
5130 	/* this is a valid case when another task releases the spinlock */
5131 	rq_lockp(rq)->owner = next;
5132 #endif
5133 }
5134 
5135 static inline void finish_lock_switch(struct rq *rq)
5136 {
5137 	/*
5138 	 * If we are tracking spinlock dependencies then we have to
5139 	 * fix up the runqueue lock - which gets 'carried over' from
5140 	 * prev into current:
5141 	 */
5142 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5143 	__balance_callbacks(rq);
5144 	raw_spin_rq_unlock_irq(rq);
5145 }
5146 
5147 /*
5148  * NOP if the arch has not defined these:
5149  */
5150 
5151 #ifndef prepare_arch_switch
5152 # define prepare_arch_switch(next)	do { } while (0)
5153 #endif
5154 
5155 #ifndef finish_arch_post_lock_switch
5156 # define finish_arch_post_lock_switch()	do { } while (0)
5157 #endif
5158 
5159 static inline void kmap_local_sched_out(void)
5160 {
5161 #ifdef CONFIG_KMAP_LOCAL
5162 	if (unlikely(current->kmap_ctrl.idx))
5163 		__kmap_local_sched_out();
5164 #endif
5165 }
5166 
5167 static inline void kmap_local_sched_in(void)
5168 {
5169 #ifdef CONFIG_KMAP_LOCAL
5170 	if (unlikely(current->kmap_ctrl.idx))
5171 		__kmap_local_sched_in();
5172 #endif
5173 }
5174 
5175 /**
5176  * prepare_task_switch - prepare to switch tasks
5177  * @rq: the runqueue preparing to switch
5178  * @prev: the current task that is being switched out
5179  * @next: the task we are going to switch to.
5180  *
5181  * This is called with the rq lock held and interrupts off. It must
5182  * be paired with a subsequent finish_task_switch after the context
5183  * switch.
5184  *
5185  * prepare_task_switch sets up locking and calls architecture specific
5186  * hooks.
5187  */
5188 static inline void
5189 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5190 		    struct task_struct *next)
5191 {
5192 	kcov_prepare_switch(prev);
5193 	sched_info_switch(rq, prev, next);
5194 	perf_event_task_sched_out(prev, next);
5195 	rseq_preempt(prev);
5196 	fire_sched_out_preempt_notifiers(prev, next);
5197 	kmap_local_sched_out();
5198 	prepare_task(next);
5199 	prepare_arch_switch(next);
5200 }
5201 
5202 /**
5203  * finish_task_switch - clean up after a task-switch
5204  * @prev: the thread we just switched away from.
5205  *
5206  * finish_task_switch must be called after the context switch, paired
5207  * with a prepare_task_switch call before the context switch.
5208  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5209  * and do any other architecture-specific cleanup actions.
5210  *
5211  * Note that we may have delayed dropping an mm in context_switch(). If
5212  * so, we finish that here outside of the runqueue lock. (Doing it
5213  * with the lock held can cause deadlocks; see schedule() for
5214  * details.)
5215  *
5216  * The context switch have flipped the stack from under us and restored the
5217  * local variables which were saved when this task called schedule() in the
5218  * past. 'prev == current' is still correct but we need to recalculate this_rq
5219  * because prev may have moved to another CPU.
5220  */
5221 static struct rq *finish_task_switch(struct task_struct *prev)
5222 	__releases(rq->lock)
5223 {
5224 	struct rq *rq = this_rq();
5225 	struct mm_struct *mm = rq->prev_mm;
5226 	unsigned int prev_state;
5227 
5228 	/*
5229 	 * The previous task will have left us with a preempt_count of 2
5230 	 * because it left us after:
5231 	 *
5232 	 *	schedule()
5233 	 *	  preempt_disable();			// 1
5234 	 *	  __schedule()
5235 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5236 	 *
5237 	 * Also, see FORK_PREEMPT_COUNT.
5238 	 */
5239 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5240 		      "corrupted preempt_count: %s/%d/0x%x\n",
5241 		      current->comm, current->pid, preempt_count()))
5242 		preempt_count_set(FORK_PREEMPT_COUNT);
5243 
5244 	rq->prev_mm = NULL;
5245 
5246 	/*
5247 	 * A task struct has one reference for the use as "current".
5248 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5249 	 * schedule one last time. The schedule call will never return, and
5250 	 * the scheduled task must drop that reference.
5251 	 *
5252 	 * We must observe prev->state before clearing prev->on_cpu (in
5253 	 * finish_task), otherwise a concurrent wakeup can get prev
5254 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5255 	 * transition, resulting in a double drop.
5256 	 */
5257 	prev_state = READ_ONCE(prev->__state);
5258 	vtime_task_switch(prev);
5259 	perf_event_task_sched_in(prev, current);
5260 	finish_task(prev);
5261 	tick_nohz_task_switch();
5262 	finish_lock_switch(rq);
5263 	finish_arch_post_lock_switch();
5264 	kcov_finish_switch(current);
5265 	/*
5266 	 * kmap_local_sched_out() is invoked with rq::lock held and
5267 	 * interrupts disabled. There is no requirement for that, but the
5268 	 * sched out code does not have an interrupt enabled section.
5269 	 * Restoring the maps on sched in does not require interrupts being
5270 	 * disabled either.
5271 	 */
5272 	kmap_local_sched_in();
5273 
5274 	fire_sched_in_preempt_notifiers(current);
5275 	/*
5276 	 * When switching through a kernel thread, the loop in
5277 	 * membarrier_{private,global}_expedited() may have observed that
5278 	 * kernel thread and not issued an IPI. It is therefore possible to
5279 	 * schedule between user->kernel->user threads without passing though
5280 	 * switch_mm(). Membarrier requires a barrier after storing to
5281 	 * rq->curr, before returning to userspace, so provide them here:
5282 	 *
5283 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5284 	 *   provided by mmdrop_lazy_tlb(),
5285 	 * - a sync_core for SYNC_CORE.
5286 	 */
5287 	if (mm) {
5288 		membarrier_mm_sync_core_before_usermode(mm);
5289 		mmdrop_lazy_tlb_sched(mm);
5290 	}
5291 
5292 	if (unlikely(prev_state == TASK_DEAD)) {
5293 		if (prev->sched_class->task_dead)
5294 			prev->sched_class->task_dead(prev);
5295 
5296 		/* Task is done with its stack. */
5297 		put_task_stack(prev);
5298 
5299 		put_task_struct_rcu_user(prev);
5300 	}
5301 
5302 	return rq;
5303 }
5304 
5305 /**
5306  * schedule_tail - first thing a freshly forked thread must call.
5307  * @prev: the thread we just switched away from.
5308  */
5309 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5310 	__releases(rq->lock)
5311 {
5312 	/*
5313 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5314 	 * finish_task_switch() for details.
5315 	 *
5316 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5317 	 * and the preempt_enable() will end up enabling preemption (on
5318 	 * PREEMPT_COUNT kernels).
5319 	 */
5320 
5321 	finish_task_switch(prev);
5322 	/*
5323 	 * This is a special case: the newly created task has just
5324 	 * switched the context for the first time. It is returning from
5325 	 * schedule for the first time in this path.
5326 	 */
5327 	trace_sched_exit_tp(true, CALLER_ADDR0);
5328 	preempt_enable();
5329 
5330 	if (current->set_child_tid)
5331 		put_user(task_pid_vnr(current), current->set_child_tid);
5332 
5333 	calculate_sigpending();
5334 }
5335 
5336 /*
5337  * context_switch - switch to the new MM and the new thread's register state.
5338  */
5339 static __always_inline struct rq *
5340 context_switch(struct rq *rq, struct task_struct *prev,
5341 	       struct task_struct *next, struct rq_flags *rf)
5342 {
5343 	prepare_task_switch(rq, prev, next);
5344 
5345 	/*
5346 	 * For paravirt, this is coupled with an exit in switch_to to
5347 	 * combine the page table reload and the switch backend into
5348 	 * one hypercall.
5349 	 */
5350 	arch_start_context_switch(prev);
5351 
5352 	/*
5353 	 * kernel -> kernel   lazy + transfer active
5354 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5355 	 *
5356 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5357 	 *   user ->   user   switch
5358 	 *
5359 	 * switch_mm_cid() needs to be updated if the barriers provided
5360 	 * by context_switch() are modified.
5361 	 */
5362 	if (!next->mm) {                                // to kernel
5363 		enter_lazy_tlb(prev->active_mm, next);
5364 
5365 		next->active_mm = prev->active_mm;
5366 		if (prev->mm)                           // from user
5367 			mmgrab_lazy_tlb(prev->active_mm);
5368 		else
5369 			prev->active_mm = NULL;
5370 	} else {                                        // to user
5371 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5372 		/*
5373 		 * sys_membarrier() requires an smp_mb() between setting
5374 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5375 		 *
5376 		 * The below provides this either through switch_mm(), or in
5377 		 * case 'prev->active_mm == next->mm' through
5378 		 * finish_task_switch()'s mmdrop().
5379 		 */
5380 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5381 		lru_gen_use_mm(next->mm);
5382 
5383 		if (!prev->mm) {                        // from kernel
5384 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5385 			rq->prev_mm = prev->active_mm;
5386 			prev->active_mm = NULL;
5387 		}
5388 	}
5389 
5390 	/* switch_mm_cid() requires the memory barriers above. */
5391 	switch_mm_cid(rq, prev, next);
5392 
5393 	prepare_lock_switch(rq, next, rf);
5394 
5395 	/* Here we just switch the register state and the stack. */
5396 	switch_to(prev, next, prev);
5397 	barrier();
5398 
5399 	return finish_task_switch(prev);
5400 }
5401 
5402 /*
5403  * nr_running and nr_context_switches:
5404  *
5405  * externally visible scheduler statistics: current number of runnable
5406  * threads, total number of context switches performed since bootup.
5407  */
5408 unsigned int nr_running(void)
5409 {
5410 	unsigned int i, sum = 0;
5411 
5412 	for_each_online_cpu(i)
5413 		sum += cpu_rq(i)->nr_running;
5414 
5415 	return sum;
5416 }
5417 
5418 /*
5419  * Check if only the current task is running on the CPU.
5420  *
5421  * Caution: this function does not check that the caller has disabled
5422  * preemption, thus the result might have a time-of-check-to-time-of-use
5423  * race.  The caller is responsible to use it correctly, for example:
5424  *
5425  * - from a non-preemptible section (of course)
5426  *
5427  * - from a thread that is bound to a single CPU
5428  *
5429  * - in a loop with very short iterations (e.g. a polling loop)
5430  */
5431 bool single_task_running(void)
5432 {
5433 	return raw_rq()->nr_running == 1;
5434 }
5435 EXPORT_SYMBOL(single_task_running);
5436 
5437 unsigned long long nr_context_switches_cpu(int cpu)
5438 {
5439 	return cpu_rq(cpu)->nr_switches;
5440 }
5441 
5442 unsigned long long nr_context_switches(void)
5443 {
5444 	int i;
5445 	unsigned long long sum = 0;
5446 
5447 	for_each_possible_cpu(i)
5448 		sum += cpu_rq(i)->nr_switches;
5449 
5450 	return sum;
5451 }
5452 
5453 /*
5454  * Consumers of these two interfaces, like for example the cpuidle menu
5455  * governor, are using nonsensical data. Preferring shallow idle state selection
5456  * for a CPU that has IO-wait which might not even end up running the task when
5457  * it does become runnable.
5458  */
5459 
5460 unsigned int nr_iowait_cpu(int cpu)
5461 {
5462 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5463 }
5464 
5465 /*
5466  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5467  *
5468  * The idea behind IO-wait account is to account the idle time that we could
5469  * have spend running if it were not for IO. That is, if we were to improve the
5470  * storage performance, we'd have a proportional reduction in IO-wait time.
5471  *
5472  * This all works nicely on UP, where, when a task blocks on IO, we account
5473  * idle time as IO-wait, because if the storage were faster, it could've been
5474  * running and we'd not be idle.
5475  *
5476  * This has been extended to SMP, by doing the same for each CPU. This however
5477  * is broken.
5478  *
5479  * Imagine for instance the case where two tasks block on one CPU, only the one
5480  * CPU will have IO-wait accounted, while the other has regular idle. Even
5481  * though, if the storage were faster, both could've ran at the same time,
5482  * utilising both CPUs.
5483  *
5484  * This means, that when looking globally, the current IO-wait accounting on
5485  * SMP is a lower bound, by reason of under accounting.
5486  *
5487  * Worse, since the numbers are provided per CPU, they are sometimes
5488  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5489  * associated with any one particular CPU, it can wake to another CPU than it
5490  * blocked on. This means the per CPU IO-wait number is meaningless.
5491  *
5492  * Task CPU affinities can make all that even more 'interesting'.
5493  */
5494 
5495 unsigned int nr_iowait(void)
5496 {
5497 	unsigned int i, sum = 0;
5498 
5499 	for_each_possible_cpu(i)
5500 		sum += nr_iowait_cpu(i);
5501 
5502 	return sum;
5503 }
5504 
5505 #ifdef CONFIG_SMP
5506 
5507 /*
5508  * sched_exec - execve() is a valuable balancing opportunity, because at
5509  * this point the task has the smallest effective memory and cache footprint.
5510  */
5511 void sched_exec(void)
5512 {
5513 	struct task_struct *p = current;
5514 	struct migration_arg arg;
5515 	int dest_cpu;
5516 
5517 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5518 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5519 		if (dest_cpu == smp_processor_id())
5520 			return;
5521 
5522 		if (unlikely(!cpu_active(dest_cpu)))
5523 			return;
5524 
5525 		arg = (struct migration_arg){ p, dest_cpu };
5526 	}
5527 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5528 }
5529 
5530 #endif
5531 
5532 DEFINE_PER_CPU(struct kernel_stat, kstat);
5533 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5534 
5535 EXPORT_PER_CPU_SYMBOL(kstat);
5536 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5537 
5538 /*
5539  * The function fair_sched_class.update_curr accesses the struct curr
5540  * and its field curr->exec_start; when called from task_sched_runtime(),
5541  * we observe a high rate of cache misses in practice.
5542  * Prefetching this data results in improved performance.
5543  */
5544 static inline void prefetch_curr_exec_start(struct task_struct *p)
5545 {
5546 #ifdef CONFIG_FAIR_GROUP_SCHED
5547 	struct sched_entity *curr = p->se.cfs_rq->curr;
5548 #else
5549 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5550 #endif
5551 	prefetch(curr);
5552 	prefetch(&curr->exec_start);
5553 }
5554 
5555 /*
5556  * Return accounted runtime for the task.
5557  * In case the task is currently running, return the runtime plus current's
5558  * pending runtime that have not been accounted yet.
5559  */
5560 unsigned long long task_sched_runtime(struct task_struct *p)
5561 {
5562 	struct rq_flags rf;
5563 	struct rq *rq;
5564 	u64 ns;
5565 
5566 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5567 	/*
5568 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5569 	 * So we have a optimization chance when the task's delta_exec is 0.
5570 	 * Reading ->on_cpu is racy, but this is OK.
5571 	 *
5572 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5573 	 * If we race with it entering CPU, unaccounted time is 0. This is
5574 	 * indistinguishable from the read occurring a few cycles earlier.
5575 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5576 	 * been accounted, so we're correct here as well.
5577 	 */
5578 	if (!p->on_cpu || !task_on_rq_queued(p))
5579 		return p->se.sum_exec_runtime;
5580 #endif
5581 
5582 	rq = task_rq_lock(p, &rf);
5583 	/*
5584 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5585 	 * project cycles that may never be accounted to this
5586 	 * thread, breaking clock_gettime().
5587 	 */
5588 	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5589 		prefetch_curr_exec_start(p);
5590 		update_rq_clock(rq);
5591 		p->sched_class->update_curr(rq);
5592 	}
5593 	ns = p->se.sum_exec_runtime;
5594 	task_rq_unlock(rq, p, &rf);
5595 
5596 	return ns;
5597 }
5598 
5599 static u64 cpu_resched_latency(struct rq *rq)
5600 {
5601 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5602 	u64 resched_latency, now = rq_clock(rq);
5603 	static bool warned_once;
5604 
5605 	if (sysctl_resched_latency_warn_once && warned_once)
5606 		return 0;
5607 
5608 	if (!need_resched() || !latency_warn_ms)
5609 		return 0;
5610 
5611 	if (system_state == SYSTEM_BOOTING)
5612 		return 0;
5613 
5614 	if (!rq->last_seen_need_resched_ns) {
5615 		rq->last_seen_need_resched_ns = now;
5616 		rq->ticks_without_resched = 0;
5617 		return 0;
5618 	}
5619 
5620 	rq->ticks_without_resched++;
5621 	resched_latency = now - rq->last_seen_need_resched_ns;
5622 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5623 		return 0;
5624 
5625 	warned_once = true;
5626 
5627 	return resched_latency;
5628 }
5629 
5630 static int __init setup_resched_latency_warn_ms(char *str)
5631 {
5632 	long val;
5633 
5634 	if ((kstrtol(str, 0, &val))) {
5635 		pr_warn("Unable to set resched_latency_warn_ms\n");
5636 		return 1;
5637 	}
5638 
5639 	sysctl_resched_latency_warn_ms = val;
5640 	return 1;
5641 }
5642 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5643 
5644 /*
5645  * This function gets called by the timer code, with HZ frequency.
5646  * We call it with interrupts disabled.
5647  */
5648 void sched_tick(void)
5649 {
5650 	int cpu = smp_processor_id();
5651 	struct rq *rq = cpu_rq(cpu);
5652 	/* accounting goes to the donor task */
5653 	struct task_struct *donor;
5654 	struct rq_flags rf;
5655 	unsigned long hw_pressure;
5656 	u64 resched_latency;
5657 
5658 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5659 		arch_scale_freq_tick();
5660 
5661 	sched_clock_tick();
5662 
5663 	rq_lock(rq, &rf);
5664 	donor = rq->donor;
5665 
5666 	psi_account_irqtime(rq, donor, NULL);
5667 
5668 	update_rq_clock(rq);
5669 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5670 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5671 
5672 	if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5673 		resched_curr(rq);
5674 
5675 	donor->sched_class->task_tick(rq, donor, 0);
5676 	if (sched_feat(LATENCY_WARN))
5677 		resched_latency = cpu_resched_latency(rq);
5678 	calc_global_load_tick(rq);
5679 	sched_core_tick(rq);
5680 	task_tick_mm_cid(rq, donor);
5681 	scx_tick(rq);
5682 
5683 	rq_unlock(rq, &rf);
5684 
5685 	if (sched_feat(LATENCY_WARN) && resched_latency)
5686 		resched_latency_warn(cpu, resched_latency);
5687 
5688 	perf_event_task_tick();
5689 
5690 	if (donor->flags & PF_WQ_WORKER)
5691 		wq_worker_tick(donor);
5692 
5693 #ifdef CONFIG_SMP
5694 	if (!scx_switched_all()) {
5695 		rq->idle_balance = idle_cpu(cpu);
5696 		sched_balance_trigger(rq);
5697 	}
5698 #endif
5699 }
5700 
5701 #ifdef CONFIG_NO_HZ_FULL
5702 
5703 struct tick_work {
5704 	int			cpu;
5705 	atomic_t		state;
5706 	struct delayed_work	work;
5707 };
5708 /* Values for ->state, see diagram below. */
5709 #define TICK_SCHED_REMOTE_OFFLINE	0
5710 #define TICK_SCHED_REMOTE_OFFLINING	1
5711 #define TICK_SCHED_REMOTE_RUNNING	2
5712 
5713 /*
5714  * State diagram for ->state:
5715  *
5716  *
5717  *          TICK_SCHED_REMOTE_OFFLINE
5718  *                    |   ^
5719  *                    |   |
5720  *                    |   | sched_tick_remote()
5721  *                    |   |
5722  *                    |   |
5723  *                    +--TICK_SCHED_REMOTE_OFFLINING
5724  *                    |   ^
5725  *                    |   |
5726  * sched_tick_start() |   | sched_tick_stop()
5727  *                    |   |
5728  *                    V   |
5729  *          TICK_SCHED_REMOTE_RUNNING
5730  *
5731  *
5732  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5733  * and sched_tick_start() are happy to leave the state in RUNNING.
5734  */
5735 
5736 static struct tick_work __percpu *tick_work_cpu;
5737 
5738 static void sched_tick_remote(struct work_struct *work)
5739 {
5740 	struct delayed_work *dwork = to_delayed_work(work);
5741 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5742 	int cpu = twork->cpu;
5743 	struct rq *rq = cpu_rq(cpu);
5744 	int os;
5745 
5746 	/*
5747 	 * Handle the tick only if it appears the remote CPU is running in full
5748 	 * dynticks mode. The check is racy by nature, but missing a tick or
5749 	 * having one too much is no big deal because the scheduler tick updates
5750 	 * statistics and checks timeslices in a time-independent way, regardless
5751 	 * of when exactly it is running.
5752 	 */
5753 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5754 		guard(rq_lock_irq)(rq);
5755 		struct task_struct *curr = rq->curr;
5756 
5757 		if (cpu_online(cpu)) {
5758 			/*
5759 			 * Since this is a remote tick for full dynticks mode,
5760 			 * we are always sure that there is no proxy (only a
5761 			 * single task is running).
5762 			 */
5763 			WARN_ON_ONCE(rq->curr != rq->donor);
5764 			update_rq_clock(rq);
5765 
5766 			if (!is_idle_task(curr)) {
5767 				/*
5768 				 * Make sure the next tick runs within a
5769 				 * reasonable amount of time.
5770 				 */
5771 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5772 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5773 			}
5774 			curr->sched_class->task_tick(rq, curr, 0);
5775 
5776 			calc_load_nohz_remote(rq);
5777 		}
5778 	}
5779 
5780 	/*
5781 	 * Run the remote tick once per second (1Hz). This arbitrary
5782 	 * frequency is large enough to avoid overload but short enough
5783 	 * to keep scheduler internal stats reasonably up to date.  But
5784 	 * first update state to reflect hotplug activity if required.
5785 	 */
5786 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5787 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5788 	if (os == TICK_SCHED_REMOTE_RUNNING)
5789 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5790 }
5791 
5792 static void sched_tick_start(int cpu)
5793 {
5794 	int os;
5795 	struct tick_work *twork;
5796 
5797 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5798 		return;
5799 
5800 	WARN_ON_ONCE(!tick_work_cpu);
5801 
5802 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5803 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5804 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5805 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5806 		twork->cpu = cpu;
5807 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5808 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5809 	}
5810 }
5811 
5812 #ifdef CONFIG_HOTPLUG_CPU
5813 static void sched_tick_stop(int cpu)
5814 {
5815 	struct tick_work *twork;
5816 	int os;
5817 
5818 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5819 		return;
5820 
5821 	WARN_ON_ONCE(!tick_work_cpu);
5822 
5823 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5824 	/* There cannot be competing actions, but don't rely on stop-machine. */
5825 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5826 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5827 	/* Don't cancel, as this would mess up the state machine. */
5828 }
5829 #endif /* CONFIG_HOTPLUG_CPU */
5830 
5831 int __init sched_tick_offload_init(void)
5832 {
5833 	tick_work_cpu = alloc_percpu(struct tick_work);
5834 	BUG_ON(!tick_work_cpu);
5835 	return 0;
5836 }
5837 
5838 #else /* !CONFIG_NO_HZ_FULL */
5839 static inline void sched_tick_start(int cpu) { }
5840 static inline void sched_tick_stop(int cpu) { }
5841 #endif
5842 
5843 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5844 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5845 /*
5846  * If the value passed in is equal to the current preempt count
5847  * then we just disabled preemption. Start timing the latency.
5848  */
5849 static inline void preempt_latency_start(int val)
5850 {
5851 	if (preempt_count() == val) {
5852 		unsigned long ip = get_lock_parent_ip();
5853 #ifdef CONFIG_DEBUG_PREEMPT
5854 		current->preempt_disable_ip = ip;
5855 #endif
5856 		trace_preempt_off(CALLER_ADDR0, ip);
5857 	}
5858 }
5859 
5860 void preempt_count_add(int val)
5861 {
5862 #ifdef CONFIG_DEBUG_PREEMPT
5863 	/*
5864 	 * Underflow?
5865 	 */
5866 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5867 		return;
5868 #endif
5869 	__preempt_count_add(val);
5870 #ifdef CONFIG_DEBUG_PREEMPT
5871 	/*
5872 	 * Spinlock count overflowing soon?
5873 	 */
5874 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5875 				PREEMPT_MASK - 10);
5876 #endif
5877 	preempt_latency_start(val);
5878 }
5879 EXPORT_SYMBOL(preempt_count_add);
5880 NOKPROBE_SYMBOL(preempt_count_add);
5881 
5882 /*
5883  * If the value passed in equals to the current preempt count
5884  * then we just enabled preemption. Stop timing the latency.
5885  */
5886 static inline void preempt_latency_stop(int val)
5887 {
5888 	if (preempt_count() == val)
5889 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5890 }
5891 
5892 void preempt_count_sub(int val)
5893 {
5894 #ifdef CONFIG_DEBUG_PREEMPT
5895 	/*
5896 	 * Underflow?
5897 	 */
5898 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5899 		return;
5900 	/*
5901 	 * Is the spinlock portion underflowing?
5902 	 */
5903 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5904 			!(preempt_count() & PREEMPT_MASK)))
5905 		return;
5906 #endif
5907 
5908 	preempt_latency_stop(val);
5909 	__preempt_count_sub(val);
5910 }
5911 EXPORT_SYMBOL(preempt_count_sub);
5912 NOKPROBE_SYMBOL(preempt_count_sub);
5913 
5914 #else
5915 static inline void preempt_latency_start(int val) { }
5916 static inline void preempt_latency_stop(int val) { }
5917 #endif
5918 
5919 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5920 {
5921 #ifdef CONFIG_DEBUG_PREEMPT
5922 	return p->preempt_disable_ip;
5923 #else
5924 	return 0;
5925 #endif
5926 }
5927 
5928 /*
5929  * Print scheduling while atomic bug:
5930  */
5931 static noinline void __schedule_bug(struct task_struct *prev)
5932 {
5933 	/* Save this before calling printk(), since that will clobber it */
5934 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5935 
5936 	if (oops_in_progress)
5937 		return;
5938 
5939 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5940 		prev->comm, prev->pid, preempt_count());
5941 
5942 	debug_show_held_locks(prev);
5943 	print_modules();
5944 	if (irqs_disabled())
5945 		print_irqtrace_events(prev);
5946 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5947 		pr_err("Preemption disabled at:");
5948 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5949 	}
5950 	check_panic_on_warn("scheduling while atomic");
5951 
5952 	dump_stack();
5953 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5954 }
5955 
5956 /*
5957  * Various schedule()-time debugging checks and statistics:
5958  */
5959 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5960 {
5961 #ifdef CONFIG_SCHED_STACK_END_CHECK
5962 	if (task_stack_end_corrupted(prev))
5963 		panic("corrupted stack end detected inside scheduler\n");
5964 
5965 	if (task_scs_end_corrupted(prev))
5966 		panic("corrupted shadow stack detected inside scheduler\n");
5967 #endif
5968 
5969 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5970 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5971 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5972 			prev->comm, prev->pid, prev->non_block_count);
5973 		dump_stack();
5974 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5975 	}
5976 #endif
5977 
5978 	if (unlikely(in_atomic_preempt_off())) {
5979 		__schedule_bug(prev);
5980 		preempt_count_set(PREEMPT_DISABLED);
5981 	}
5982 	rcu_sleep_check();
5983 	WARN_ON_ONCE(ct_state() == CT_STATE_USER);
5984 
5985 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5986 
5987 	schedstat_inc(this_rq()->sched_count);
5988 }
5989 
5990 static void prev_balance(struct rq *rq, struct task_struct *prev,
5991 			 struct rq_flags *rf)
5992 {
5993 	const struct sched_class *start_class = prev->sched_class;
5994 	const struct sched_class *class;
5995 
5996 #ifdef CONFIG_SCHED_CLASS_EXT
5997 	/*
5998 	 * SCX requires a balance() call before every pick_task() including when
5999 	 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
6000 	 * SCX instead. Also, set a flag to detect missing balance() call.
6001 	 */
6002 	if (scx_enabled()) {
6003 		rq->scx.flags |= SCX_RQ_BAL_PENDING;
6004 		if (sched_class_above(&ext_sched_class, start_class))
6005 			start_class = &ext_sched_class;
6006 	}
6007 #endif
6008 
6009 	/*
6010 	 * We must do the balancing pass before put_prev_task(), such
6011 	 * that when we release the rq->lock the task is in the same
6012 	 * state as before we took rq->lock.
6013 	 *
6014 	 * We can terminate the balance pass as soon as we know there is
6015 	 * a runnable task of @class priority or higher.
6016 	 */
6017 	for_active_class_range(class, start_class, &idle_sched_class) {
6018 		if (class->balance && class->balance(rq, prev, rf))
6019 			break;
6020 	}
6021 }
6022 
6023 /*
6024  * Pick up the highest-prio task:
6025  */
6026 static inline struct task_struct *
6027 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6028 {
6029 	const struct sched_class *class;
6030 	struct task_struct *p;
6031 
6032 	rq->dl_server = NULL;
6033 
6034 	if (scx_enabled())
6035 		goto restart;
6036 
6037 	/*
6038 	 * Optimization: we know that if all tasks are in the fair class we can
6039 	 * call that function directly, but only if the @prev task wasn't of a
6040 	 * higher scheduling class, because otherwise those lose the
6041 	 * opportunity to pull in more work from other CPUs.
6042 	 */
6043 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6044 		   rq->nr_running == rq->cfs.h_nr_queued)) {
6045 
6046 		p = pick_next_task_fair(rq, prev, rf);
6047 		if (unlikely(p == RETRY_TASK))
6048 			goto restart;
6049 
6050 		/* Assume the next prioritized class is idle_sched_class */
6051 		if (!p) {
6052 			p = pick_task_idle(rq);
6053 			put_prev_set_next_task(rq, prev, p);
6054 		}
6055 
6056 		return p;
6057 	}
6058 
6059 restart:
6060 	prev_balance(rq, prev, rf);
6061 
6062 	for_each_active_class(class) {
6063 		if (class->pick_next_task) {
6064 			p = class->pick_next_task(rq, prev);
6065 			if (p)
6066 				return p;
6067 		} else {
6068 			p = class->pick_task(rq);
6069 			if (p) {
6070 				put_prev_set_next_task(rq, prev, p);
6071 				return p;
6072 			}
6073 		}
6074 	}
6075 
6076 	BUG(); /* The idle class should always have a runnable task. */
6077 }
6078 
6079 #ifdef CONFIG_SCHED_CORE
6080 static inline bool is_task_rq_idle(struct task_struct *t)
6081 {
6082 	return (task_rq(t)->idle == t);
6083 }
6084 
6085 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6086 {
6087 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6088 }
6089 
6090 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6091 {
6092 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6093 		return true;
6094 
6095 	return a->core_cookie == b->core_cookie;
6096 }
6097 
6098 static inline struct task_struct *pick_task(struct rq *rq)
6099 {
6100 	const struct sched_class *class;
6101 	struct task_struct *p;
6102 
6103 	rq->dl_server = NULL;
6104 
6105 	for_each_active_class(class) {
6106 		p = class->pick_task(rq);
6107 		if (p)
6108 			return p;
6109 	}
6110 
6111 	BUG(); /* The idle class should always have a runnable task. */
6112 }
6113 
6114 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6115 
6116 static void queue_core_balance(struct rq *rq);
6117 
6118 static struct task_struct *
6119 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6120 {
6121 	struct task_struct *next, *p, *max = NULL;
6122 	const struct cpumask *smt_mask;
6123 	bool fi_before = false;
6124 	bool core_clock_updated = (rq == rq->core);
6125 	unsigned long cookie;
6126 	int i, cpu, occ = 0;
6127 	struct rq *rq_i;
6128 	bool need_sync;
6129 
6130 	if (!sched_core_enabled(rq))
6131 		return __pick_next_task(rq, prev, rf);
6132 
6133 	cpu = cpu_of(rq);
6134 
6135 	/* Stopper task is switching into idle, no need core-wide selection. */
6136 	if (cpu_is_offline(cpu)) {
6137 		/*
6138 		 * Reset core_pick so that we don't enter the fastpath when
6139 		 * coming online. core_pick would already be migrated to
6140 		 * another cpu during offline.
6141 		 */
6142 		rq->core_pick = NULL;
6143 		rq->core_dl_server = NULL;
6144 		return __pick_next_task(rq, prev, rf);
6145 	}
6146 
6147 	/*
6148 	 * If there were no {en,de}queues since we picked (IOW, the task
6149 	 * pointers are all still valid), and we haven't scheduled the last
6150 	 * pick yet, do so now.
6151 	 *
6152 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6153 	 * it was either offline or went offline during a sibling's core-wide
6154 	 * selection. In this case, do a core-wide selection.
6155 	 */
6156 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6157 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6158 	    rq->core_pick) {
6159 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6160 
6161 		next = rq->core_pick;
6162 		rq->dl_server = rq->core_dl_server;
6163 		rq->core_pick = NULL;
6164 		rq->core_dl_server = NULL;
6165 		goto out_set_next;
6166 	}
6167 
6168 	prev_balance(rq, prev, rf);
6169 
6170 	smt_mask = cpu_smt_mask(cpu);
6171 	need_sync = !!rq->core->core_cookie;
6172 
6173 	/* reset state */
6174 	rq->core->core_cookie = 0UL;
6175 	if (rq->core->core_forceidle_count) {
6176 		if (!core_clock_updated) {
6177 			update_rq_clock(rq->core);
6178 			core_clock_updated = true;
6179 		}
6180 		sched_core_account_forceidle(rq);
6181 		/* reset after accounting force idle */
6182 		rq->core->core_forceidle_start = 0;
6183 		rq->core->core_forceidle_count = 0;
6184 		rq->core->core_forceidle_occupation = 0;
6185 		need_sync = true;
6186 		fi_before = true;
6187 	}
6188 
6189 	/*
6190 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6191 	 *
6192 	 * @task_seq guards the task state ({en,de}queues)
6193 	 * @pick_seq is the @task_seq we did a selection on
6194 	 * @sched_seq is the @pick_seq we scheduled
6195 	 *
6196 	 * However, preemptions can cause multiple picks on the same task set.
6197 	 * 'Fix' this by also increasing @task_seq for every pick.
6198 	 */
6199 	rq->core->core_task_seq++;
6200 
6201 	/*
6202 	 * Optimize for common case where this CPU has no cookies
6203 	 * and there are no cookied tasks running on siblings.
6204 	 */
6205 	if (!need_sync) {
6206 		next = pick_task(rq);
6207 		if (!next->core_cookie) {
6208 			rq->core_pick = NULL;
6209 			rq->core_dl_server = NULL;
6210 			/*
6211 			 * For robustness, update the min_vruntime_fi for
6212 			 * unconstrained picks as well.
6213 			 */
6214 			WARN_ON_ONCE(fi_before);
6215 			task_vruntime_update(rq, next, false);
6216 			goto out_set_next;
6217 		}
6218 	}
6219 
6220 	/*
6221 	 * For each thread: do the regular task pick and find the max prio task
6222 	 * amongst them.
6223 	 *
6224 	 * Tie-break prio towards the current CPU
6225 	 */
6226 	for_each_cpu_wrap(i, smt_mask, cpu) {
6227 		rq_i = cpu_rq(i);
6228 
6229 		/*
6230 		 * Current cpu always has its clock updated on entrance to
6231 		 * pick_next_task(). If the current cpu is not the core,
6232 		 * the core may also have been updated above.
6233 		 */
6234 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6235 			update_rq_clock(rq_i);
6236 
6237 		rq_i->core_pick = p = pick_task(rq_i);
6238 		rq_i->core_dl_server = rq_i->dl_server;
6239 
6240 		if (!max || prio_less(max, p, fi_before))
6241 			max = p;
6242 	}
6243 
6244 	cookie = rq->core->core_cookie = max->core_cookie;
6245 
6246 	/*
6247 	 * For each thread: try and find a runnable task that matches @max or
6248 	 * force idle.
6249 	 */
6250 	for_each_cpu(i, smt_mask) {
6251 		rq_i = cpu_rq(i);
6252 		p = rq_i->core_pick;
6253 
6254 		if (!cookie_equals(p, cookie)) {
6255 			p = NULL;
6256 			if (cookie)
6257 				p = sched_core_find(rq_i, cookie);
6258 			if (!p)
6259 				p = idle_sched_class.pick_task(rq_i);
6260 		}
6261 
6262 		rq_i->core_pick = p;
6263 		rq_i->core_dl_server = NULL;
6264 
6265 		if (p == rq_i->idle) {
6266 			if (rq_i->nr_running) {
6267 				rq->core->core_forceidle_count++;
6268 				if (!fi_before)
6269 					rq->core->core_forceidle_seq++;
6270 			}
6271 		} else {
6272 			occ++;
6273 		}
6274 	}
6275 
6276 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6277 		rq->core->core_forceidle_start = rq_clock(rq->core);
6278 		rq->core->core_forceidle_occupation = occ;
6279 	}
6280 
6281 	rq->core->core_pick_seq = rq->core->core_task_seq;
6282 	next = rq->core_pick;
6283 	rq->core_sched_seq = rq->core->core_pick_seq;
6284 
6285 	/* Something should have been selected for current CPU */
6286 	WARN_ON_ONCE(!next);
6287 
6288 	/*
6289 	 * Reschedule siblings
6290 	 *
6291 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6292 	 * sending an IPI (below) ensures the sibling will no longer be running
6293 	 * their task. This ensures there is no inter-sibling overlap between
6294 	 * non-matching user state.
6295 	 */
6296 	for_each_cpu(i, smt_mask) {
6297 		rq_i = cpu_rq(i);
6298 
6299 		/*
6300 		 * An online sibling might have gone offline before a task
6301 		 * could be picked for it, or it might be offline but later
6302 		 * happen to come online, but its too late and nothing was
6303 		 * picked for it.  That's Ok - it will pick tasks for itself,
6304 		 * so ignore it.
6305 		 */
6306 		if (!rq_i->core_pick)
6307 			continue;
6308 
6309 		/*
6310 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6311 		 * fi_before     fi      update?
6312 		 *  0            0       1
6313 		 *  0            1       1
6314 		 *  1            0       1
6315 		 *  1            1       0
6316 		 */
6317 		if (!(fi_before && rq->core->core_forceidle_count))
6318 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6319 
6320 		rq_i->core_pick->core_occupation = occ;
6321 
6322 		if (i == cpu) {
6323 			rq_i->core_pick = NULL;
6324 			rq_i->core_dl_server = NULL;
6325 			continue;
6326 		}
6327 
6328 		/* Did we break L1TF mitigation requirements? */
6329 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6330 
6331 		if (rq_i->curr == rq_i->core_pick) {
6332 			rq_i->core_pick = NULL;
6333 			rq_i->core_dl_server = NULL;
6334 			continue;
6335 		}
6336 
6337 		resched_curr(rq_i);
6338 	}
6339 
6340 out_set_next:
6341 	put_prev_set_next_task(rq, prev, next);
6342 	if (rq->core->core_forceidle_count && next == rq->idle)
6343 		queue_core_balance(rq);
6344 
6345 	return next;
6346 }
6347 
6348 static bool try_steal_cookie(int this, int that)
6349 {
6350 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6351 	struct task_struct *p;
6352 	unsigned long cookie;
6353 	bool success = false;
6354 
6355 	guard(irq)();
6356 	guard(double_rq_lock)(dst, src);
6357 
6358 	cookie = dst->core->core_cookie;
6359 	if (!cookie)
6360 		return false;
6361 
6362 	if (dst->curr != dst->idle)
6363 		return false;
6364 
6365 	p = sched_core_find(src, cookie);
6366 	if (!p)
6367 		return false;
6368 
6369 	do {
6370 		if (p == src->core_pick || p == src->curr)
6371 			goto next;
6372 
6373 		if (!is_cpu_allowed(p, this))
6374 			goto next;
6375 
6376 		if (p->core_occupation > dst->idle->core_occupation)
6377 			goto next;
6378 		/*
6379 		 * sched_core_find() and sched_core_next() will ensure
6380 		 * that task @p is not throttled now, we also need to
6381 		 * check whether the runqueue of the destination CPU is
6382 		 * being throttled.
6383 		 */
6384 		if (sched_task_is_throttled(p, this))
6385 			goto next;
6386 
6387 		move_queued_task_locked(src, dst, p);
6388 		resched_curr(dst);
6389 
6390 		success = true;
6391 		break;
6392 
6393 next:
6394 		p = sched_core_next(p, cookie);
6395 	} while (p);
6396 
6397 	return success;
6398 }
6399 
6400 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6401 {
6402 	int i;
6403 
6404 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6405 		if (i == cpu)
6406 			continue;
6407 
6408 		if (need_resched())
6409 			break;
6410 
6411 		if (try_steal_cookie(cpu, i))
6412 			return true;
6413 	}
6414 
6415 	return false;
6416 }
6417 
6418 static void sched_core_balance(struct rq *rq)
6419 {
6420 	struct sched_domain *sd;
6421 	int cpu = cpu_of(rq);
6422 
6423 	guard(preempt)();
6424 	guard(rcu)();
6425 
6426 	raw_spin_rq_unlock_irq(rq);
6427 	for_each_domain(cpu, sd) {
6428 		if (need_resched())
6429 			break;
6430 
6431 		if (steal_cookie_task(cpu, sd))
6432 			break;
6433 	}
6434 	raw_spin_rq_lock_irq(rq);
6435 }
6436 
6437 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6438 
6439 static void queue_core_balance(struct rq *rq)
6440 {
6441 	if (!sched_core_enabled(rq))
6442 		return;
6443 
6444 	if (!rq->core->core_cookie)
6445 		return;
6446 
6447 	if (!rq->nr_running) /* not forced idle */
6448 		return;
6449 
6450 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6451 }
6452 
6453 DEFINE_LOCK_GUARD_1(core_lock, int,
6454 		    sched_core_lock(*_T->lock, &_T->flags),
6455 		    sched_core_unlock(*_T->lock, &_T->flags),
6456 		    unsigned long flags)
6457 
6458 static void sched_core_cpu_starting(unsigned int cpu)
6459 {
6460 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6461 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6462 	int t;
6463 
6464 	guard(core_lock)(&cpu);
6465 
6466 	WARN_ON_ONCE(rq->core != rq);
6467 
6468 	/* if we're the first, we'll be our own leader */
6469 	if (cpumask_weight(smt_mask) == 1)
6470 		return;
6471 
6472 	/* find the leader */
6473 	for_each_cpu(t, smt_mask) {
6474 		if (t == cpu)
6475 			continue;
6476 		rq = cpu_rq(t);
6477 		if (rq->core == rq) {
6478 			core_rq = rq;
6479 			break;
6480 		}
6481 	}
6482 
6483 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6484 		return;
6485 
6486 	/* install and validate core_rq */
6487 	for_each_cpu(t, smt_mask) {
6488 		rq = cpu_rq(t);
6489 
6490 		if (t == cpu)
6491 			rq->core = core_rq;
6492 
6493 		WARN_ON_ONCE(rq->core != core_rq);
6494 	}
6495 }
6496 
6497 static void sched_core_cpu_deactivate(unsigned int cpu)
6498 {
6499 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6500 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6501 	int t;
6502 
6503 	guard(core_lock)(&cpu);
6504 
6505 	/* if we're the last man standing, nothing to do */
6506 	if (cpumask_weight(smt_mask) == 1) {
6507 		WARN_ON_ONCE(rq->core != rq);
6508 		return;
6509 	}
6510 
6511 	/* if we're not the leader, nothing to do */
6512 	if (rq->core != rq)
6513 		return;
6514 
6515 	/* find a new leader */
6516 	for_each_cpu(t, smt_mask) {
6517 		if (t == cpu)
6518 			continue;
6519 		core_rq = cpu_rq(t);
6520 		break;
6521 	}
6522 
6523 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6524 		return;
6525 
6526 	/* copy the shared state to the new leader */
6527 	core_rq->core_task_seq             = rq->core_task_seq;
6528 	core_rq->core_pick_seq             = rq->core_pick_seq;
6529 	core_rq->core_cookie               = rq->core_cookie;
6530 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6531 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6532 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6533 
6534 	/*
6535 	 * Accounting edge for forced idle is handled in pick_next_task().
6536 	 * Don't need another one here, since the hotplug thread shouldn't
6537 	 * have a cookie.
6538 	 */
6539 	core_rq->core_forceidle_start = 0;
6540 
6541 	/* install new leader */
6542 	for_each_cpu(t, smt_mask) {
6543 		rq = cpu_rq(t);
6544 		rq->core = core_rq;
6545 	}
6546 }
6547 
6548 static inline void sched_core_cpu_dying(unsigned int cpu)
6549 {
6550 	struct rq *rq = cpu_rq(cpu);
6551 
6552 	if (rq->core != rq)
6553 		rq->core = rq;
6554 }
6555 
6556 #else /* !CONFIG_SCHED_CORE */
6557 
6558 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6559 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6560 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6561 
6562 static struct task_struct *
6563 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6564 {
6565 	return __pick_next_task(rq, prev, rf);
6566 }
6567 
6568 #endif /* CONFIG_SCHED_CORE */
6569 
6570 /*
6571  * Constants for the sched_mode argument of __schedule().
6572  *
6573  * The mode argument allows RT enabled kernels to differentiate a
6574  * preemption from blocking on an 'sleeping' spin/rwlock.
6575  */
6576 #define SM_IDLE			(-1)
6577 #define SM_NONE			0
6578 #define SM_PREEMPT		1
6579 #define SM_RTLOCK_WAIT		2
6580 
6581 /*
6582  * Helper function for __schedule()
6583  *
6584  * If a task does not have signals pending, deactivate it
6585  * Otherwise marks the task's __state as RUNNING
6586  */
6587 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6588 			      unsigned long *task_state_p)
6589 {
6590 	unsigned long task_state = *task_state_p;
6591 	int flags = DEQUEUE_NOCLOCK;
6592 
6593 	if (signal_pending_state(task_state, p)) {
6594 		WRITE_ONCE(p->__state, TASK_RUNNING);
6595 		*task_state_p = TASK_RUNNING;
6596 		return false;
6597 	}
6598 
6599 	p->sched_contributes_to_load =
6600 		(task_state & TASK_UNINTERRUPTIBLE) &&
6601 		!(task_state & TASK_NOLOAD) &&
6602 		!(task_state & TASK_FROZEN);
6603 
6604 	if (unlikely(is_special_task_state(task_state)))
6605 		flags |= DEQUEUE_SPECIAL;
6606 
6607 	/*
6608 	 * __schedule()			ttwu()
6609 	 *   prev_state = prev->state;    if (p->on_rq && ...)
6610 	 *   if (prev_state)		    goto out;
6611 	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6612 	 *				  p->state = TASK_WAKING
6613 	 *
6614 	 * Where __schedule() and ttwu() have matching control dependencies.
6615 	 *
6616 	 * After this, schedule() must not care about p->state any more.
6617 	 */
6618 	block_task(rq, p, flags);
6619 	return true;
6620 }
6621 
6622 /*
6623  * __schedule() is the main scheduler function.
6624  *
6625  * The main means of driving the scheduler and thus entering this function are:
6626  *
6627  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6628  *
6629  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6630  *      paths. For example, see arch/x86/entry_64.S.
6631  *
6632  *      To drive preemption between tasks, the scheduler sets the flag in timer
6633  *      interrupt handler sched_tick().
6634  *
6635  *   3. Wakeups don't really cause entry into schedule(). They add a
6636  *      task to the run-queue and that's it.
6637  *
6638  *      Now, if the new task added to the run-queue preempts the current
6639  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6640  *      called on the nearest possible occasion:
6641  *
6642  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6643  *
6644  *         - in syscall or exception context, at the next outmost
6645  *           preempt_enable(). (this might be as soon as the wake_up()'s
6646  *           spin_unlock()!)
6647  *
6648  *         - in IRQ context, return from interrupt-handler to
6649  *           preemptible context
6650  *
6651  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6652  *         then at the next:
6653  *
6654  *          - cond_resched() call
6655  *          - explicit schedule() call
6656  *          - return from syscall or exception to user-space
6657  *          - return from interrupt-handler to user-space
6658  *
6659  * WARNING: must be called with preemption disabled!
6660  */
6661 static void __sched notrace __schedule(int sched_mode)
6662 {
6663 	struct task_struct *prev, *next;
6664 	/*
6665 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6666 	 * as a preemption by schedule_debug() and RCU.
6667 	 */
6668 	bool preempt = sched_mode > SM_NONE;
6669 	bool is_switch = false;
6670 	unsigned long *switch_count;
6671 	unsigned long prev_state;
6672 	struct rq_flags rf;
6673 	struct rq *rq;
6674 	int cpu;
6675 
6676 	trace_sched_entry_tp(preempt, CALLER_ADDR0);
6677 
6678 	cpu = smp_processor_id();
6679 	rq = cpu_rq(cpu);
6680 	prev = rq->curr;
6681 
6682 	schedule_debug(prev, preempt);
6683 
6684 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6685 		hrtick_clear(rq);
6686 
6687 	klp_sched_try_switch(prev);
6688 
6689 	local_irq_disable();
6690 	rcu_note_context_switch(preempt);
6691 
6692 	/*
6693 	 * Make sure that signal_pending_state()->signal_pending() below
6694 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6695 	 * done by the caller to avoid the race with signal_wake_up():
6696 	 *
6697 	 * __set_current_state(@state)		signal_wake_up()
6698 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6699 	 *					  wake_up_state(p, state)
6700 	 *   LOCK rq->lock			    LOCK p->pi_state
6701 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6702 	 *     if (signal_pending_state())	    if (p->state & @state)
6703 	 *
6704 	 * Also, the membarrier system call requires a full memory barrier
6705 	 * after coming from user-space, before storing to rq->curr; this
6706 	 * barrier matches a full barrier in the proximity of the membarrier
6707 	 * system call exit.
6708 	 */
6709 	rq_lock(rq, &rf);
6710 	smp_mb__after_spinlock();
6711 
6712 	/* Promote REQ to ACT */
6713 	rq->clock_update_flags <<= 1;
6714 	update_rq_clock(rq);
6715 	rq->clock_update_flags = RQCF_UPDATED;
6716 
6717 	switch_count = &prev->nivcsw;
6718 
6719 	/* Task state changes only considers SM_PREEMPT as preemption */
6720 	preempt = sched_mode == SM_PREEMPT;
6721 
6722 	/*
6723 	 * We must load prev->state once (task_struct::state is volatile), such
6724 	 * that we form a control dependency vs deactivate_task() below.
6725 	 */
6726 	prev_state = READ_ONCE(prev->__state);
6727 	if (sched_mode == SM_IDLE) {
6728 		/* SCX must consult the BPF scheduler to tell if rq is empty */
6729 		if (!rq->nr_running && !scx_enabled()) {
6730 			next = prev;
6731 			goto picked;
6732 		}
6733 	} else if (!preempt && prev_state) {
6734 		try_to_block_task(rq, prev, &prev_state);
6735 		switch_count = &prev->nvcsw;
6736 	}
6737 
6738 	next = pick_next_task(rq, prev, &rf);
6739 	rq_set_donor(rq, next);
6740 picked:
6741 	clear_tsk_need_resched(prev);
6742 	clear_preempt_need_resched();
6743 	rq->last_seen_need_resched_ns = 0;
6744 
6745 	is_switch = prev != next;
6746 	if (likely(is_switch)) {
6747 		rq->nr_switches++;
6748 		/*
6749 		 * RCU users of rcu_dereference(rq->curr) may not see
6750 		 * changes to task_struct made by pick_next_task().
6751 		 */
6752 		RCU_INIT_POINTER(rq->curr, next);
6753 		/*
6754 		 * The membarrier system call requires each architecture
6755 		 * to have a full memory barrier after updating
6756 		 * rq->curr, before returning to user-space.
6757 		 *
6758 		 * Here are the schemes providing that barrier on the
6759 		 * various architectures:
6760 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6761 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6762 		 *   on PowerPC and on RISC-V.
6763 		 * - finish_lock_switch() for weakly-ordered
6764 		 *   architectures where spin_unlock is a full barrier,
6765 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6766 		 *   is a RELEASE barrier),
6767 		 *
6768 		 * The barrier matches a full barrier in the proximity of
6769 		 * the membarrier system call entry.
6770 		 *
6771 		 * On RISC-V, this barrier pairing is also needed for the
6772 		 * SYNC_CORE command when switching between processes, cf.
6773 		 * the inline comments in membarrier_arch_switch_mm().
6774 		 */
6775 		++*switch_count;
6776 
6777 		migrate_disable_switch(rq, prev);
6778 		psi_account_irqtime(rq, prev, next);
6779 		psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6780 					     prev->se.sched_delayed);
6781 
6782 		trace_sched_switch(preempt, prev, next, prev_state);
6783 
6784 		/* Also unlocks the rq: */
6785 		rq = context_switch(rq, prev, next, &rf);
6786 	} else {
6787 		rq_unpin_lock(rq, &rf);
6788 		__balance_callbacks(rq);
6789 		raw_spin_rq_unlock_irq(rq);
6790 	}
6791 	trace_sched_exit_tp(is_switch, CALLER_ADDR0);
6792 }
6793 
6794 void __noreturn do_task_dead(void)
6795 {
6796 	/* Causes final put_task_struct in finish_task_switch(): */
6797 	set_special_state(TASK_DEAD);
6798 
6799 	/* Tell freezer to ignore us: */
6800 	current->flags |= PF_NOFREEZE;
6801 
6802 	__schedule(SM_NONE);
6803 	BUG();
6804 
6805 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6806 	for (;;)
6807 		cpu_relax();
6808 }
6809 
6810 static inline void sched_submit_work(struct task_struct *tsk)
6811 {
6812 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6813 	unsigned int task_flags;
6814 
6815 	/*
6816 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6817 	 * will use a blocking primitive -- which would lead to recursion.
6818 	 */
6819 	lock_map_acquire_try(&sched_map);
6820 
6821 	task_flags = tsk->flags;
6822 	/*
6823 	 * If a worker goes to sleep, notify and ask workqueue whether it
6824 	 * wants to wake up a task to maintain concurrency.
6825 	 */
6826 	if (task_flags & PF_WQ_WORKER)
6827 		wq_worker_sleeping(tsk);
6828 	else if (task_flags & PF_IO_WORKER)
6829 		io_wq_worker_sleeping(tsk);
6830 
6831 	/*
6832 	 * spinlock and rwlock must not flush block requests.  This will
6833 	 * deadlock if the callback attempts to acquire a lock which is
6834 	 * already acquired.
6835 	 */
6836 	WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT);
6837 
6838 	/*
6839 	 * If we are going to sleep and we have plugged IO queued,
6840 	 * make sure to submit it to avoid deadlocks.
6841 	 */
6842 	blk_flush_plug(tsk->plug, true);
6843 
6844 	lock_map_release(&sched_map);
6845 }
6846 
6847 static void sched_update_worker(struct task_struct *tsk)
6848 {
6849 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6850 		if (tsk->flags & PF_BLOCK_TS)
6851 			blk_plug_invalidate_ts(tsk);
6852 		if (tsk->flags & PF_WQ_WORKER)
6853 			wq_worker_running(tsk);
6854 		else if (tsk->flags & PF_IO_WORKER)
6855 			io_wq_worker_running(tsk);
6856 	}
6857 }
6858 
6859 static __always_inline void __schedule_loop(int sched_mode)
6860 {
6861 	do {
6862 		preempt_disable();
6863 		__schedule(sched_mode);
6864 		sched_preempt_enable_no_resched();
6865 	} while (need_resched());
6866 }
6867 
6868 asmlinkage __visible void __sched schedule(void)
6869 {
6870 	struct task_struct *tsk = current;
6871 
6872 #ifdef CONFIG_RT_MUTEXES
6873 	lockdep_assert(!tsk->sched_rt_mutex);
6874 #endif
6875 
6876 	if (!task_is_running(tsk))
6877 		sched_submit_work(tsk);
6878 	__schedule_loop(SM_NONE);
6879 	sched_update_worker(tsk);
6880 }
6881 EXPORT_SYMBOL(schedule);
6882 
6883 /*
6884  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6885  * state (have scheduled out non-voluntarily) by making sure that all
6886  * tasks have either left the run queue or have gone into user space.
6887  * As idle tasks do not do either, they must not ever be preempted
6888  * (schedule out non-voluntarily).
6889  *
6890  * schedule_idle() is similar to schedule_preempt_disable() except that it
6891  * never enables preemption because it does not call sched_submit_work().
6892  */
6893 void __sched schedule_idle(void)
6894 {
6895 	/*
6896 	 * As this skips calling sched_submit_work(), which the idle task does
6897 	 * regardless because that function is a NOP when the task is in a
6898 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6899 	 * current task can be in any other state. Note, idle is always in the
6900 	 * TASK_RUNNING state.
6901 	 */
6902 	WARN_ON_ONCE(current->__state);
6903 	do {
6904 		__schedule(SM_IDLE);
6905 	} while (need_resched());
6906 }
6907 
6908 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6909 asmlinkage __visible void __sched schedule_user(void)
6910 {
6911 	/*
6912 	 * If we come here after a random call to set_need_resched(),
6913 	 * or we have been woken up remotely but the IPI has not yet arrived,
6914 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6915 	 * we find a better solution.
6916 	 *
6917 	 * NB: There are buggy callers of this function.  Ideally we
6918 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
6919 	 * too frequently to make sense yet.
6920 	 */
6921 	enum ctx_state prev_state = exception_enter();
6922 	schedule();
6923 	exception_exit(prev_state);
6924 }
6925 #endif
6926 
6927 /**
6928  * schedule_preempt_disabled - called with preemption disabled
6929  *
6930  * Returns with preemption disabled. Note: preempt_count must be 1
6931  */
6932 void __sched schedule_preempt_disabled(void)
6933 {
6934 	sched_preempt_enable_no_resched();
6935 	schedule();
6936 	preempt_disable();
6937 }
6938 
6939 #ifdef CONFIG_PREEMPT_RT
6940 void __sched notrace schedule_rtlock(void)
6941 {
6942 	__schedule_loop(SM_RTLOCK_WAIT);
6943 }
6944 NOKPROBE_SYMBOL(schedule_rtlock);
6945 #endif
6946 
6947 static void __sched notrace preempt_schedule_common(void)
6948 {
6949 	do {
6950 		/*
6951 		 * Because the function tracer can trace preempt_count_sub()
6952 		 * and it also uses preempt_enable/disable_notrace(), if
6953 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6954 		 * by the function tracer will call this function again and
6955 		 * cause infinite recursion.
6956 		 *
6957 		 * Preemption must be disabled here before the function
6958 		 * tracer can trace. Break up preempt_disable() into two
6959 		 * calls. One to disable preemption without fear of being
6960 		 * traced. The other to still record the preemption latency,
6961 		 * which can also be traced by the function tracer.
6962 		 */
6963 		preempt_disable_notrace();
6964 		preempt_latency_start(1);
6965 		__schedule(SM_PREEMPT);
6966 		preempt_latency_stop(1);
6967 		preempt_enable_no_resched_notrace();
6968 
6969 		/*
6970 		 * Check again in case we missed a preemption opportunity
6971 		 * between schedule and now.
6972 		 */
6973 	} while (need_resched());
6974 }
6975 
6976 #ifdef CONFIG_PREEMPTION
6977 /*
6978  * This is the entry point to schedule() from in-kernel preemption
6979  * off of preempt_enable.
6980  */
6981 asmlinkage __visible void __sched notrace preempt_schedule(void)
6982 {
6983 	/*
6984 	 * If there is a non-zero preempt_count or interrupts are disabled,
6985 	 * we do not want to preempt the current task. Just return..
6986 	 */
6987 	if (likely(!preemptible()))
6988 		return;
6989 	preempt_schedule_common();
6990 }
6991 NOKPROBE_SYMBOL(preempt_schedule);
6992 EXPORT_SYMBOL(preempt_schedule);
6993 
6994 #ifdef CONFIG_PREEMPT_DYNAMIC
6995 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6996 #ifndef preempt_schedule_dynamic_enabled
6997 #define preempt_schedule_dynamic_enabled	preempt_schedule
6998 #define preempt_schedule_dynamic_disabled	NULL
6999 #endif
7000 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
7001 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
7002 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7003 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
7004 void __sched notrace dynamic_preempt_schedule(void)
7005 {
7006 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
7007 		return;
7008 	preempt_schedule();
7009 }
7010 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
7011 EXPORT_SYMBOL(dynamic_preempt_schedule);
7012 #endif
7013 #endif
7014 
7015 /**
7016  * preempt_schedule_notrace - preempt_schedule called by tracing
7017  *
7018  * The tracing infrastructure uses preempt_enable_notrace to prevent
7019  * recursion and tracing preempt enabling caused by the tracing
7020  * infrastructure itself. But as tracing can happen in areas coming
7021  * from userspace or just about to enter userspace, a preempt enable
7022  * can occur before user_exit() is called. This will cause the scheduler
7023  * to be called when the system is still in usermode.
7024  *
7025  * To prevent this, the preempt_enable_notrace will use this function
7026  * instead of preempt_schedule() to exit user context if needed before
7027  * calling the scheduler.
7028  */
7029 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7030 {
7031 	enum ctx_state prev_ctx;
7032 
7033 	if (likely(!preemptible()))
7034 		return;
7035 
7036 	do {
7037 		/*
7038 		 * Because the function tracer can trace preempt_count_sub()
7039 		 * and it also uses preempt_enable/disable_notrace(), if
7040 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7041 		 * by the function tracer will call this function again and
7042 		 * cause infinite recursion.
7043 		 *
7044 		 * Preemption must be disabled here before the function
7045 		 * tracer can trace. Break up preempt_disable() into two
7046 		 * calls. One to disable preemption without fear of being
7047 		 * traced. The other to still record the preemption latency,
7048 		 * which can also be traced by the function tracer.
7049 		 */
7050 		preempt_disable_notrace();
7051 		preempt_latency_start(1);
7052 		/*
7053 		 * Needs preempt disabled in case user_exit() is traced
7054 		 * and the tracer calls preempt_enable_notrace() causing
7055 		 * an infinite recursion.
7056 		 */
7057 		prev_ctx = exception_enter();
7058 		__schedule(SM_PREEMPT);
7059 		exception_exit(prev_ctx);
7060 
7061 		preempt_latency_stop(1);
7062 		preempt_enable_no_resched_notrace();
7063 	} while (need_resched());
7064 }
7065 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7066 
7067 #ifdef CONFIG_PREEMPT_DYNAMIC
7068 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7069 #ifndef preempt_schedule_notrace_dynamic_enabled
7070 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7071 #define preempt_schedule_notrace_dynamic_disabled	NULL
7072 #endif
7073 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7074 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7075 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7076 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7077 void __sched notrace dynamic_preempt_schedule_notrace(void)
7078 {
7079 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7080 		return;
7081 	preempt_schedule_notrace();
7082 }
7083 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7084 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7085 #endif
7086 #endif
7087 
7088 #endif /* CONFIG_PREEMPTION */
7089 
7090 /*
7091  * This is the entry point to schedule() from kernel preemption
7092  * off of IRQ context.
7093  * Note, that this is called and return with IRQs disabled. This will
7094  * protect us against recursive calling from IRQ contexts.
7095  */
7096 asmlinkage __visible void __sched preempt_schedule_irq(void)
7097 {
7098 	enum ctx_state prev_state;
7099 
7100 	/* Catch callers which need to be fixed */
7101 	BUG_ON(preempt_count() || !irqs_disabled());
7102 
7103 	prev_state = exception_enter();
7104 
7105 	do {
7106 		preempt_disable();
7107 		local_irq_enable();
7108 		__schedule(SM_PREEMPT);
7109 		local_irq_disable();
7110 		sched_preempt_enable_no_resched();
7111 	} while (need_resched());
7112 
7113 	exception_exit(prev_state);
7114 }
7115 
7116 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7117 			  void *key)
7118 {
7119 	WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7120 	return try_to_wake_up(curr->private, mode, wake_flags);
7121 }
7122 EXPORT_SYMBOL(default_wake_function);
7123 
7124 const struct sched_class *__setscheduler_class(int policy, int prio)
7125 {
7126 	if (dl_prio(prio))
7127 		return &dl_sched_class;
7128 
7129 	if (rt_prio(prio))
7130 		return &rt_sched_class;
7131 
7132 #ifdef CONFIG_SCHED_CLASS_EXT
7133 	if (task_should_scx(policy))
7134 		return &ext_sched_class;
7135 #endif
7136 
7137 	return &fair_sched_class;
7138 }
7139 
7140 #ifdef CONFIG_RT_MUTEXES
7141 
7142 /*
7143  * Would be more useful with typeof()/auto_type but they don't mix with
7144  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7145  * name such that if someone were to implement this function we get to compare
7146  * notes.
7147  */
7148 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7149 
7150 void rt_mutex_pre_schedule(void)
7151 {
7152 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7153 	sched_submit_work(current);
7154 }
7155 
7156 void rt_mutex_schedule(void)
7157 {
7158 	lockdep_assert(current->sched_rt_mutex);
7159 	__schedule_loop(SM_NONE);
7160 }
7161 
7162 void rt_mutex_post_schedule(void)
7163 {
7164 	sched_update_worker(current);
7165 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7166 }
7167 
7168 /*
7169  * rt_mutex_setprio - set the current priority of a task
7170  * @p: task to boost
7171  * @pi_task: donor task
7172  *
7173  * This function changes the 'effective' priority of a task. It does
7174  * not touch ->normal_prio like __setscheduler().
7175  *
7176  * Used by the rt_mutex code to implement priority inheritance
7177  * logic. Call site only calls if the priority of the task changed.
7178  */
7179 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7180 {
7181 	int prio, oldprio, queued, running, queue_flag =
7182 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7183 	const struct sched_class *prev_class, *next_class;
7184 	struct rq_flags rf;
7185 	struct rq *rq;
7186 
7187 	/* XXX used to be waiter->prio, not waiter->task->prio */
7188 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7189 
7190 	/*
7191 	 * If nothing changed; bail early.
7192 	 */
7193 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7194 		return;
7195 
7196 	rq = __task_rq_lock(p, &rf);
7197 	update_rq_clock(rq);
7198 	/*
7199 	 * Set under pi_lock && rq->lock, such that the value can be used under
7200 	 * either lock.
7201 	 *
7202 	 * Note that there is loads of tricky to make this pointer cache work
7203 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7204 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7205 	 * task is allowed to run again (and can exit). This ensures the pointer
7206 	 * points to a blocked task -- which guarantees the task is present.
7207 	 */
7208 	p->pi_top_task = pi_task;
7209 
7210 	/*
7211 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7212 	 */
7213 	if (prio == p->prio && !dl_prio(prio))
7214 		goto out_unlock;
7215 
7216 	/*
7217 	 * Idle task boosting is a no-no in general. There is one
7218 	 * exception, when PREEMPT_RT and NOHZ is active:
7219 	 *
7220 	 * The idle task calls get_next_timer_interrupt() and holds
7221 	 * the timer wheel base->lock on the CPU and another CPU wants
7222 	 * to access the timer (probably to cancel it). We can safely
7223 	 * ignore the boosting request, as the idle CPU runs this code
7224 	 * with interrupts disabled and will complete the lock
7225 	 * protected section without being interrupted. So there is no
7226 	 * real need to boost.
7227 	 */
7228 	if (unlikely(p == rq->idle)) {
7229 		WARN_ON(p != rq->curr);
7230 		WARN_ON(p->pi_blocked_on);
7231 		goto out_unlock;
7232 	}
7233 
7234 	trace_sched_pi_setprio(p, pi_task);
7235 	oldprio = p->prio;
7236 
7237 	if (oldprio == prio)
7238 		queue_flag &= ~DEQUEUE_MOVE;
7239 
7240 	prev_class = p->sched_class;
7241 	next_class = __setscheduler_class(p->policy, prio);
7242 
7243 	if (prev_class != next_class && p->se.sched_delayed)
7244 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7245 
7246 	queued = task_on_rq_queued(p);
7247 	running = task_current_donor(rq, p);
7248 	if (queued)
7249 		dequeue_task(rq, p, queue_flag);
7250 	if (running)
7251 		put_prev_task(rq, p);
7252 
7253 	/*
7254 	 * Boosting condition are:
7255 	 * 1. -rt task is running and holds mutex A
7256 	 *      --> -dl task blocks on mutex A
7257 	 *
7258 	 * 2. -dl task is running and holds mutex A
7259 	 *      --> -dl task blocks on mutex A and could preempt the
7260 	 *          running task
7261 	 */
7262 	if (dl_prio(prio)) {
7263 		if (!dl_prio(p->normal_prio) ||
7264 		    (pi_task && dl_prio(pi_task->prio) &&
7265 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7266 			p->dl.pi_se = pi_task->dl.pi_se;
7267 			queue_flag |= ENQUEUE_REPLENISH;
7268 		} else {
7269 			p->dl.pi_se = &p->dl;
7270 		}
7271 	} else if (rt_prio(prio)) {
7272 		if (dl_prio(oldprio))
7273 			p->dl.pi_se = &p->dl;
7274 		if (oldprio < prio)
7275 			queue_flag |= ENQUEUE_HEAD;
7276 	} else {
7277 		if (dl_prio(oldprio))
7278 			p->dl.pi_se = &p->dl;
7279 		if (rt_prio(oldprio))
7280 			p->rt.timeout = 0;
7281 	}
7282 
7283 	p->sched_class = next_class;
7284 	p->prio = prio;
7285 
7286 	check_class_changing(rq, p, prev_class);
7287 
7288 	if (queued)
7289 		enqueue_task(rq, p, queue_flag);
7290 	if (running)
7291 		set_next_task(rq, p);
7292 
7293 	check_class_changed(rq, p, prev_class, oldprio);
7294 out_unlock:
7295 	/* Avoid rq from going away on us: */
7296 	preempt_disable();
7297 
7298 	rq_unpin_lock(rq, &rf);
7299 	__balance_callbacks(rq);
7300 	raw_spin_rq_unlock(rq);
7301 
7302 	preempt_enable();
7303 }
7304 #endif
7305 
7306 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7307 int __sched __cond_resched(void)
7308 {
7309 	if (should_resched(0) && !irqs_disabled()) {
7310 		preempt_schedule_common();
7311 		return 1;
7312 	}
7313 	/*
7314 	 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick
7315 	 * whether the current CPU is in an RCU read-side critical section,
7316 	 * so the tick can report quiescent states even for CPUs looping
7317 	 * in kernel context.  In contrast, in non-preemptible kernels,
7318 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7319 	 * processes executing in kernel context might never report an
7320 	 * RCU quiescent state.  Therefore, the following code causes
7321 	 * cond_resched() to report a quiescent state, but only when RCU
7322 	 * is in urgent need of one.
7323 	 * A third case, preemptible, but non-PREEMPT_RCU provides for
7324 	 * urgently needed quiescent states via rcu_flavor_sched_clock_irq().
7325 	 */
7326 #ifndef CONFIG_PREEMPT_RCU
7327 	rcu_all_qs();
7328 #endif
7329 	return 0;
7330 }
7331 EXPORT_SYMBOL(__cond_resched);
7332 #endif
7333 
7334 #ifdef CONFIG_PREEMPT_DYNAMIC
7335 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7336 #define cond_resched_dynamic_enabled	__cond_resched
7337 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7338 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7339 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7340 
7341 #define might_resched_dynamic_enabled	__cond_resched
7342 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
7343 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7344 EXPORT_STATIC_CALL_TRAMP(might_resched);
7345 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7346 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7347 int __sched dynamic_cond_resched(void)
7348 {
7349 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7350 		return 0;
7351 	return __cond_resched();
7352 }
7353 EXPORT_SYMBOL(dynamic_cond_resched);
7354 
7355 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7356 int __sched dynamic_might_resched(void)
7357 {
7358 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7359 		return 0;
7360 	return __cond_resched();
7361 }
7362 EXPORT_SYMBOL(dynamic_might_resched);
7363 #endif
7364 #endif
7365 
7366 /*
7367  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7368  * call schedule, and on return reacquire the lock.
7369  *
7370  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7371  * operations here to prevent schedule() from being called twice (once via
7372  * spin_unlock(), once by hand).
7373  */
7374 int __cond_resched_lock(spinlock_t *lock)
7375 {
7376 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7377 	int ret = 0;
7378 
7379 	lockdep_assert_held(lock);
7380 
7381 	if (spin_needbreak(lock) || resched) {
7382 		spin_unlock(lock);
7383 		if (!_cond_resched())
7384 			cpu_relax();
7385 		ret = 1;
7386 		spin_lock(lock);
7387 	}
7388 	return ret;
7389 }
7390 EXPORT_SYMBOL(__cond_resched_lock);
7391 
7392 int __cond_resched_rwlock_read(rwlock_t *lock)
7393 {
7394 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7395 	int ret = 0;
7396 
7397 	lockdep_assert_held_read(lock);
7398 
7399 	if (rwlock_needbreak(lock) || resched) {
7400 		read_unlock(lock);
7401 		if (!_cond_resched())
7402 			cpu_relax();
7403 		ret = 1;
7404 		read_lock(lock);
7405 	}
7406 	return ret;
7407 }
7408 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7409 
7410 int __cond_resched_rwlock_write(rwlock_t *lock)
7411 {
7412 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7413 	int ret = 0;
7414 
7415 	lockdep_assert_held_write(lock);
7416 
7417 	if (rwlock_needbreak(lock) || resched) {
7418 		write_unlock(lock);
7419 		if (!_cond_resched())
7420 			cpu_relax();
7421 		ret = 1;
7422 		write_lock(lock);
7423 	}
7424 	return ret;
7425 }
7426 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7427 
7428 #ifdef CONFIG_PREEMPT_DYNAMIC
7429 
7430 #ifdef CONFIG_GENERIC_ENTRY
7431 #include <linux/entry-common.h>
7432 #endif
7433 
7434 /*
7435  * SC:cond_resched
7436  * SC:might_resched
7437  * SC:preempt_schedule
7438  * SC:preempt_schedule_notrace
7439  * SC:irqentry_exit_cond_resched
7440  *
7441  *
7442  * NONE:
7443  *   cond_resched               <- __cond_resched
7444  *   might_resched              <- RET0
7445  *   preempt_schedule           <- NOP
7446  *   preempt_schedule_notrace   <- NOP
7447  *   irqentry_exit_cond_resched <- NOP
7448  *   dynamic_preempt_lazy       <- false
7449  *
7450  * VOLUNTARY:
7451  *   cond_resched               <- __cond_resched
7452  *   might_resched              <- __cond_resched
7453  *   preempt_schedule           <- NOP
7454  *   preempt_schedule_notrace   <- NOP
7455  *   irqentry_exit_cond_resched <- NOP
7456  *   dynamic_preempt_lazy       <- false
7457  *
7458  * FULL:
7459  *   cond_resched               <- RET0
7460  *   might_resched              <- RET0
7461  *   preempt_schedule           <- preempt_schedule
7462  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7463  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7464  *   dynamic_preempt_lazy       <- false
7465  *
7466  * LAZY:
7467  *   cond_resched               <- RET0
7468  *   might_resched              <- RET0
7469  *   preempt_schedule           <- preempt_schedule
7470  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7471  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7472  *   dynamic_preempt_lazy       <- true
7473  */
7474 
7475 enum {
7476 	preempt_dynamic_undefined = -1,
7477 	preempt_dynamic_none,
7478 	preempt_dynamic_voluntary,
7479 	preempt_dynamic_full,
7480 	preempt_dynamic_lazy,
7481 };
7482 
7483 int preempt_dynamic_mode = preempt_dynamic_undefined;
7484 
7485 int sched_dynamic_mode(const char *str)
7486 {
7487 #ifndef CONFIG_PREEMPT_RT
7488 	if (!strcmp(str, "none"))
7489 		return preempt_dynamic_none;
7490 
7491 	if (!strcmp(str, "voluntary"))
7492 		return preempt_dynamic_voluntary;
7493 #endif
7494 
7495 	if (!strcmp(str, "full"))
7496 		return preempt_dynamic_full;
7497 
7498 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7499 	if (!strcmp(str, "lazy"))
7500 		return preempt_dynamic_lazy;
7501 #endif
7502 
7503 	return -EINVAL;
7504 }
7505 
7506 #define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7507 #define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7508 
7509 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7510 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7511 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7512 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7513 #define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f)
7514 #define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f)
7515 #else
7516 #error "Unsupported PREEMPT_DYNAMIC mechanism"
7517 #endif
7518 
7519 static DEFINE_MUTEX(sched_dynamic_mutex);
7520 
7521 static void __sched_dynamic_update(int mode)
7522 {
7523 	/*
7524 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7525 	 * the ZERO state, which is invalid.
7526 	 */
7527 	preempt_dynamic_enable(cond_resched);
7528 	preempt_dynamic_enable(might_resched);
7529 	preempt_dynamic_enable(preempt_schedule);
7530 	preempt_dynamic_enable(preempt_schedule_notrace);
7531 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7532 	preempt_dynamic_key_disable(preempt_lazy);
7533 
7534 	switch (mode) {
7535 	case preempt_dynamic_none:
7536 		preempt_dynamic_enable(cond_resched);
7537 		preempt_dynamic_disable(might_resched);
7538 		preempt_dynamic_disable(preempt_schedule);
7539 		preempt_dynamic_disable(preempt_schedule_notrace);
7540 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7541 		preempt_dynamic_key_disable(preempt_lazy);
7542 		if (mode != preempt_dynamic_mode)
7543 			pr_info("Dynamic Preempt: none\n");
7544 		break;
7545 
7546 	case preempt_dynamic_voluntary:
7547 		preempt_dynamic_enable(cond_resched);
7548 		preempt_dynamic_enable(might_resched);
7549 		preempt_dynamic_disable(preempt_schedule);
7550 		preempt_dynamic_disable(preempt_schedule_notrace);
7551 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7552 		preempt_dynamic_key_disable(preempt_lazy);
7553 		if (mode != preempt_dynamic_mode)
7554 			pr_info("Dynamic Preempt: voluntary\n");
7555 		break;
7556 
7557 	case preempt_dynamic_full:
7558 		preempt_dynamic_disable(cond_resched);
7559 		preempt_dynamic_disable(might_resched);
7560 		preempt_dynamic_enable(preempt_schedule);
7561 		preempt_dynamic_enable(preempt_schedule_notrace);
7562 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7563 		preempt_dynamic_key_disable(preempt_lazy);
7564 		if (mode != preempt_dynamic_mode)
7565 			pr_info("Dynamic Preempt: full\n");
7566 		break;
7567 
7568 	case preempt_dynamic_lazy:
7569 		preempt_dynamic_disable(cond_resched);
7570 		preempt_dynamic_disable(might_resched);
7571 		preempt_dynamic_enable(preempt_schedule);
7572 		preempt_dynamic_enable(preempt_schedule_notrace);
7573 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7574 		preempt_dynamic_key_enable(preempt_lazy);
7575 		if (mode != preempt_dynamic_mode)
7576 			pr_info("Dynamic Preempt: lazy\n");
7577 		break;
7578 	}
7579 
7580 	preempt_dynamic_mode = mode;
7581 }
7582 
7583 void sched_dynamic_update(int mode)
7584 {
7585 	mutex_lock(&sched_dynamic_mutex);
7586 	__sched_dynamic_update(mode);
7587 	mutex_unlock(&sched_dynamic_mutex);
7588 }
7589 
7590 static int __init setup_preempt_mode(char *str)
7591 {
7592 	int mode = sched_dynamic_mode(str);
7593 	if (mode < 0) {
7594 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7595 		return 0;
7596 	}
7597 
7598 	sched_dynamic_update(mode);
7599 	return 1;
7600 }
7601 __setup("preempt=", setup_preempt_mode);
7602 
7603 static void __init preempt_dynamic_init(void)
7604 {
7605 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7606 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7607 			sched_dynamic_update(preempt_dynamic_none);
7608 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7609 			sched_dynamic_update(preempt_dynamic_voluntary);
7610 		} else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7611 			sched_dynamic_update(preempt_dynamic_lazy);
7612 		} else {
7613 			/* Default static call setting, nothing to do */
7614 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7615 			preempt_dynamic_mode = preempt_dynamic_full;
7616 			pr_info("Dynamic Preempt: full\n");
7617 		}
7618 	}
7619 }
7620 
7621 #define PREEMPT_MODEL_ACCESSOR(mode) \
7622 	bool preempt_model_##mode(void)						 \
7623 	{									 \
7624 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7625 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7626 	}									 \
7627 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7628 
7629 PREEMPT_MODEL_ACCESSOR(none);
7630 PREEMPT_MODEL_ACCESSOR(voluntary);
7631 PREEMPT_MODEL_ACCESSOR(full);
7632 PREEMPT_MODEL_ACCESSOR(lazy);
7633 
7634 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7635 
7636 #define preempt_dynamic_mode -1
7637 
7638 static inline void preempt_dynamic_init(void) { }
7639 
7640 #endif /* CONFIG_PREEMPT_DYNAMIC */
7641 
7642 const char *preempt_modes[] = {
7643 	"none", "voluntary", "full", "lazy", NULL,
7644 };
7645 
7646 const char *preempt_model_str(void)
7647 {
7648 	bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) &&
7649 		(IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) ||
7650 		 IS_ENABLED(CONFIG_PREEMPT_LAZY));
7651 	static char buf[128];
7652 
7653 	if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) {
7654 		struct seq_buf s;
7655 
7656 		seq_buf_init(&s, buf, sizeof(buf));
7657 		seq_buf_puts(&s, "PREEMPT");
7658 
7659 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
7660 			seq_buf_printf(&s, "%sRT%s",
7661 				       brace ? "_{" : "_",
7662 				       brace ? "," : "");
7663 
7664 		if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) {
7665 			seq_buf_printf(&s, "(%s)%s",
7666 				       preempt_dynamic_mode > 0 ?
7667 				       preempt_modes[preempt_dynamic_mode] : "undef",
7668 				       brace ? "}" : "");
7669 			return seq_buf_str(&s);
7670 		}
7671 
7672 		if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7673 			seq_buf_printf(&s, "LAZY%s",
7674 				       brace ? "}" : "");
7675 			return seq_buf_str(&s);
7676 		}
7677 
7678 		return seq_buf_str(&s);
7679 	}
7680 
7681 	if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD))
7682 		return "VOLUNTARY";
7683 
7684 	return "NONE";
7685 }
7686 
7687 int io_schedule_prepare(void)
7688 {
7689 	int old_iowait = current->in_iowait;
7690 
7691 	current->in_iowait = 1;
7692 	blk_flush_plug(current->plug, true);
7693 	return old_iowait;
7694 }
7695 
7696 void io_schedule_finish(int token)
7697 {
7698 	current->in_iowait = token;
7699 }
7700 
7701 /*
7702  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7703  * that process accounting knows that this is a task in IO wait state.
7704  */
7705 long __sched io_schedule_timeout(long timeout)
7706 {
7707 	int token;
7708 	long ret;
7709 
7710 	token = io_schedule_prepare();
7711 	ret = schedule_timeout(timeout);
7712 	io_schedule_finish(token);
7713 
7714 	return ret;
7715 }
7716 EXPORT_SYMBOL(io_schedule_timeout);
7717 
7718 void __sched io_schedule(void)
7719 {
7720 	int token;
7721 
7722 	token = io_schedule_prepare();
7723 	schedule();
7724 	io_schedule_finish(token);
7725 }
7726 EXPORT_SYMBOL(io_schedule);
7727 
7728 void sched_show_task(struct task_struct *p)
7729 {
7730 	unsigned long free;
7731 	int ppid;
7732 
7733 	if (!try_get_task_stack(p))
7734 		return;
7735 
7736 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7737 
7738 	if (task_is_running(p))
7739 		pr_cont("  running task    ");
7740 	free = stack_not_used(p);
7741 	ppid = 0;
7742 	rcu_read_lock();
7743 	if (pid_alive(p))
7744 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7745 	rcu_read_unlock();
7746 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
7747 		free, task_pid_nr(p), task_tgid_nr(p),
7748 		ppid, p->flags, read_task_thread_flags(p));
7749 
7750 	print_worker_info(KERN_INFO, p);
7751 	print_stop_info(KERN_INFO, p);
7752 	print_scx_info(KERN_INFO, p);
7753 	show_stack(p, NULL, KERN_INFO);
7754 	put_task_stack(p);
7755 }
7756 EXPORT_SYMBOL_GPL(sched_show_task);
7757 
7758 static inline bool
7759 state_filter_match(unsigned long state_filter, struct task_struct *p)
7760 {
7761 	unsigned int state = READ_ONCE(p->__state);
7762 
7763 	/* no filter, everything matches */
7764 	if (!state_filter)
7765 		return true;
7766 
7767 	/* filter, but doesn't match */
7768 	if (!(state & state_filter))
7769 		return false;
7770 
7771 	/*
7772 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7773 	 * TASK_KILLABLE).
7774 	 */
7775 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7776 		return false;
7777 
7778 	return true;
7779 }
7780 
7781 
7782 void show_state_filter(unsigned int state_filter)
7783 {
7784 	struct task_struct *g, *p;
7785 
7786 	rcu_read_lock();
7787 	for_each_process_thread(g, p) {
7788 		/*
7789 		 * reset the NMI-timeout, listing all files on a slow
7790 		 * console might take a lot of time:
7791 		 * Also, reset softlockup watchdogs on all CPUs, because
7792 		 * another CPU might be blocked waiting for us to process
7793 		 * an IPI.
7794 		 */
7795 		touch_nmi_watchdog();
7796 		touch_all_softlockup_watchdogs();
7797 		if (state_filter_match(state_filter, p))
7798 			sched_show_task(p);
7799 	}
7800 
7801 	if (!state_filter)
7802 		sysrq_sched_debug_show();
7803 
7804 	rcu_read_unlock();
7805 	/*
7806 	 * Only show locks if all tasks are dumped:
7807 	 */
7808 	if (!state_filter)
7809 		debug_show_all_locks();
7810 }
7811 
7812 /**
7813  * init_idle - set up an idle thread for a given CPU
7814  * @idle: task in question
7815  * @cpu: CPU the idle task belongs to
7816  *
7817  * NOTE: this function does not set the idle thread's NEED_RESCHED
7818  * flag, to make booting more robust.
7819  */
7820 void __init init_idle(struct task_struct *idle, int cpu)
7821 {
7822 #ifdef CONFIG_SMP
7823 	struct affinity_context ac = (struct affinity_context) {
7824 		.new_mask  = cpumask_of(cpu),
7825 		.flags     = 0,
7826 	};
7827 #endif
7828 	struct rq *rq = cpu_rq(cpu);
7829 	unsigned long flags;
7830 
7831 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7832 	raw_spin_rq_lock(rq);
7833 
7834 	idle->__state = TASK_RUNNING;
7835 	idle->se.exec_start = sched_clock();
7836 	/*
7837 	 * PF_KTHREAD should already be set at this point; regardless, make it
7838 	 * look like a proper per-CPU kthread.
7839 	 */
7840 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7841 	kthread_set_per_cpu(idle, cpu);
7842 
7843 #ifdef CONFIG_SMP
7844 	/*
7845 	 * No validation and serialization required at boot time and for
7846 	 * setting up the idle tasks of not yet online CPUs.
7847 	 */
7848 	set_cpus_allowed_common(idle, &ac);
7849 #endif
7850 	/*
7851 	 * We're having a chicken and egg problem, even though we are
7852 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7853 	 * lockdep check in task_group() will fail.
7854 	 *
7855 	 * Similar case to sched_fork(). / Alternatively we could
7856 	 * use task_rq_lock() here and obtain the other rq->lock.
7857 	 *
7858 	 * Silence PROVE_RCU
7859 	 */
7860 	rcu_read_lock();
7861 	__set_task_cpu(idle, cpu);
7862 	rcu_read_unlock();
7863 
7864 	rq->idle = idle;
7865 	rq_set_donor(rq, idle);
7866 	rcu_assign_pointer(rq->curr, idle);
7867 	idle->on_rq = TASK_ON_RQ_QUEUED;
7868 #ifdef CONFIG_SMP
7869 	idle->on_cpu = 1;
7870 #endif
7871 	raw_spin_rq_unlock(rq);
7872 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7873 
7874 	/* Set the preempt count _outside_ the spinlocks! */
7875 	init_idle_preempt_count(idle, cpu);
7876 
7877 	/*
7878 	 * The idle tasks have their own, simple scheduling class:
7879 	 */
7880 	idle->sched_class = &idle_sched_class;
7881 	ftrace_graph_init_idle_task(idle, cpu);
7882 	vtime_init_idle(idle, cpu);
7883 #ifdef CONFIG_SMP
7884 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7885 #endif
7886 }
7887 
7888 #ifdef CONFIG_SMP
7889 
7890 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7891 			      const struct cpumask *trial)
7892 {
7893 	int ret = 1;
7894 
7895 	if (cpumask_empty(cur))
7896 		return ret;
7897 
7898 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7899 
7900 	return ret;
7901 }
7902 
7903 int task_can_attach(struct task_struct *p)
7904 {
7905 	int ret = 0;
7906 
7907 	/*
7908 	 * Kthreads which disallow setaffinity shouldn't be moved
7909 	 * to a new cpuset; we don't want to change their CPU
7910 	 * affinity and isolating such threads by their set of
7911 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7912 	 * applicable for such threads.  This prevents checking for
7913 	 * success of set_cpus_allowed_ptr() on all attached tasks
7914 	 * before cpus_mask may be changed.
7915 	 */
7916 	if (p->flags & PF_NO_SETAFFINITY)
7917 		ret = -EINVAL;
7918 
7919 	return ret;
7920 }
7921 
7922 bool sched_smp_initialized __read_mostly;
7923 
7924 #ifdef CONFIG_NUMA_BALANCING
7925 /* Migrate current task p to target_cpu */
7926 int migrate_task_to(struct task_struct *p, int target_cpu)
7927 {
7928 	struct migration_arg arg = { p, target_cpu };
7929 	int curr_cpu = task_cpu(p);
7930 
7931 	if (curr_cpu == target_cpu)
7932 		return 0;
7933 
7934 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7935 		return -EINVAL;
7936 
7937 	__schedstat_inc(p->stats.numa_task_migrated);
7938 	count_vm_numa_event(NUMA_TASK_MIGRATE);
7939 	count_memcg_event_mm(p->mm, NUMA_TASK_MIGRATE);
7940 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7941 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7942 }
7943 
7944 /*
7945  * Requeue a task on a given node and accurately track the number of NUMA
7946  * tasks on the runqueues
7947  */
7948 void sched_setnuma(struct task_struct *p, int nid)
7949 {
7950 	bool queued, running;
7951 	struct rq_flags rf;
7952 	struct rq *rq;
7953 
7954 	rq = task_rq_lock(p, &rf);
7955 	queued = task_on_rq_queued(p);
7956 	running = task_current_donor(rq, p);
7957 
7958 	if (queued)
7959 		dequeue_task(rq, p, DEQUEUE_SAVE);
7960 	if (running)
7961 		put_prev_task(rq, p);
7962 
7963 	p->numa_preferred_nid = nid;
7964 
7965 	if (queued)
7966 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7967 	if (running)
7968 		set_next_task(rq, p);
7969 	task_rq_unlock(rq, p, &rf);
7970 }
7971 #endif /* CONFIG_NUMA_BALANCING */
7972 
7973 #ifdef CONFIG_HOTPLUG_CPU
7974 /*
7975  * Invoked on the outgoing CPU in context of the CPU hotplug thread
7976  * after ensuring that there are no user space tasks left on the CPU.
7977  *
7978  * If there is a lazy mm in use on the hotplug thread, drop it and
7979  * switch to init_mm.
7980  *
7981  * The reference count on init_mm is dropped in finish_cpu().
7982  */
7983 static void sched_force_init_mm(void)
7984 {
7985 	struct mm_struct *mm = current->active_mm;
7986 
7987 	if (mm != &init_mm) {
7988 		mmgrab_lazy_tlb(&init_mm);
7989 		local_irq_disable();
7990 		current->active_mm = &init_mm;
7991 		switch_mm_irqs_off(mm, &init_mm, current);
7992 		local_irq_enable();
7993 		finish_arch_post_lock_switch();
7994 		mmdrop_lazy_tlb(mm);
7995 	}
7996 
7997 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7998 }
7999 
8000 static int __balance_push_cpu_stop(void *arg)
8001 {
8002 	struct task_struct *p = arg;
8003 	struct rq *rq = this_rq();
8004 	struct rq_flags rf;
8005 	int cpu;
8006 
8007 	raw_spin_lock_irq(&p->pi_lock);
8008 	rq_lock(rq, &rf);
8009 
8010 	update_rq_clock(rq);
8011 
8012 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8013 		cpu = select_fallback_rq(rq->cpu, p);
8014 		rq = __migrate_task(rq, &rf, p, cpu);
8015 	}
8016 
8017 	rq_unlock(rq, &rf);
8018 	raw_spin_unlock_irq(&p->pi_lock);
8019 
8020 	put_task_struct(p);
8021 
8022 	return 0;
8023 }
8024 
8025 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8026 
8027 /*
8028  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8029  *
8030  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8031  * effective when the hotplug motion is down.
8032  */
8033 static void balance_push(struct rq *rq)
8034 {
8035 	struct task_struct *push_task = rq->curr;
8036 
8037 	lockdep_assert_rq_held(rq);
8038 
8039 	/*
8040 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8041 	 */
8042 	rq->balance_callback = &balance_push_callback;
8043 
8044 	/*
8045 	 * Only active while going offline and when invoked on the outgoing
8046 	 * CPU.
8047 	 */
8048 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8049 		return;
8050 
8051 	/*
8052 	 * Both the cpu-hotplug and stop task are in this case and are
8053 	 * required to complete the hotplug process.
8054 	 */
8055 	if (kthread_is_per_cpu(push_task) ||
8056 	    is_migration_disabled(push_task)) {
8057 
8058 		/*
8059 		 * If this is the idle task on the outgoing CPU try to wake
8060 		 * up the hotplug control thread which might wait for the
8061 		 * last task to vanish. The rcuwait_active() check is
8062 		 * accurate here because the waiter is pinned on this CPU
8063 		 * and can't obviously be running in parallel.
8064 		 *
8065 		 * On RT kernels this also has to check whether there are
8066 		 * pinned and scheduled out tasks on the runqueue. They
8067 		 * need to leave the migrate disabled section first.
8068 		 */
8069 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8070 		    rcuwait_active(&rq->hotplug_wait)) {
8071 			raw_spin_rq_unlock(rq);
8072 			rcuwait_wake_up(&rq->hotplug_wait);
8073 			raw_spin_rq_lock(rq);
8074 		}
8075 		return;
8076 	}
8077 
8078 	get_task_struct(push_task);
8079 	/*
8080 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8081 	 * Both preemption and IRQs are still disabled.
8082 	 */
8083 	preempt_disable();
8084 	raw_spin_rq_unlock(rq);
8085 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8086 			    this_cpu_ptr(&push_work));
8087 	preempt_enable();
8088 	/*
8089 	 * At this point need_resched() is true and we'll take the loop in
8090 	 * schedule(). The next pick is obviously going to be the stop task
8091 	 * which kthread_is_per_cpu() and will push this task away.
8092 	 */
8093 	raw_spin_rq_lock(rq);
8094 }
8095 
8096 static void balance_push_set(int cpu, bool on)
8097 {
8098 	struct rq *rq = cpu_rq(cpu);
8099 	struct rq_flags rf;
8100 
8101 	rq_lock_irqsave(rq, &rf);
8102 	if (on) {
8103 		WARN_ON_ONCE(rq->balance_callback);
8104 		rq->balance_callback = &balance_push_callback;
8105 	} else if (rq->balance_callback == &balance_push_callback) {
8106 		rq->balance_callback = NULL;
8107 	}
8108 	rq_unlock_irqrestore(rq, &rf);
8109 }
8110 
8111 /*
8112  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8113  * inactive. All tasks which are not per CPU kernel threads are either
8114  * pushed off this CPU now via balance_push() or placed on a different CPU
8115  * during wakeup. Wait until the CPU is quiescent.
8116  */
8117 static void balance_hotplug_wait(void)
8118 {
8119 	struct rq *rq = this_rq();
8120 
8121 	rcuwait_wait_event(&rq->hotplug_wait,
8122 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8123 			   TASK_UNINTERRUPTIBLE);
8124 }
8125 
8126 #else
8127 
8128 static inline void balance_push(struct rq *rq)
8129 {
8130 }
8131 
8132 static inline void balance_push_set(int cpu, bool on)
8133 {
8134 }
8135 
8136 static inline void balance_hotplug_wait(void)
8137 {
8138 }
8139 
8140 #endif /* CONFIG_HOTPLUG_CPU */
8141 
8142 void set_rq_online(struct rq *rq)
8143 {
8144 	if (!rq->online) {
8145 		const struct sched_class *class;
8146 
8147 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8148 		rq->online = 1;
8149 
8150 		for_each_class(class) {
8151 			if (class->rq_online)
8152 				class->rq_online(rq);
8153 		}
8154 	}
8155 }
8156 
8157 void set_rq_offline(struct rq *rq)
8158 {
8159 	if (rq->online) {
8160 		const struct sched_class *class;
8161 
8162 		update_rq_clock(rq);
8163 		for_each_class(class) {
8164 			if (class->rq_offline)
8165 				class->rq_offline(rq);
8166 		}
8167 
8168 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8169 		rq->online = 0;
8170 	}
8171 }
8172 
8173 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8174 {
8175 	struct rq_flags rf;
8176 
8177 	rq_lock_irqsave(rq, &rf);
8178 	if (rq->rd) {
8179 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8180 		set_rq_online(rq);
8181 	}
8182 	rq_unlock_irqrestore(rq, &rf);
8183 }
8184 
8185 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8186 {
8187 	struct rq_flags rf;
8188 
8189 	rq_lock_irqsave(rq, &rf);
8190 	if (rq->rd) {
8191 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8192 		set_rq_offline(rq);
8193 	}
8194 	rq_unlock_irqrestore(rq, &rf);
8195 }
8196 
8197 /*
8198  * used to mark begin/end of suspend/resume:
8199  */
8200 static int num_cpus_frozen;
8201 
8202 /*
8203  * Update cpusets according to cpu_active mask.  If cpusets are
8204  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8205  * around partition_sched_domains().
8206  *
8207  * If we come here as part of a suspend/resume, don't touch cpusets because we
8208  * want to restore it back to its original state upon resume anyway.
8209  */
8210 static void cpuset_cpu_active(void)
8211 {
8212 	if (cpuhp_tasks_frozen) {
8213 		/*
8214 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8215 		 * resume sequence. As long as this is not the last online
8216 		 * operation in the resume sequence, just build a single sched
8217 		 * domain, ignoring cpusets.
8218 		 */
8219 		cpuset_reset_sched_domains();
8220 		if (--num_cpus_frozen)
8221 			return;
8222 		/*
8223 		 * This is the last CPU online operation. So fall through and
8224 		 * restore the original sched domains by considering the
8225 		 * cpuset configurations.
8226 		 */
8227 		cpuset_force_rebuild();
8228 	}
8229 	cpuset_update_active_cpus();
8230 }
8231 
8232 static void cpuset_cpu_inactive(unsigned int cpu)
8233 {
8234 	if (!cpuhp_tasks_frozen) {
8235 		cpuset_update_active_cpus();
8236 	} else {
8237 		num_cpus_frozen++;
8238 		cpuset_reset_sched_domains();
8239 	}
8240 }
8241 
8242 static inline void sched_smt_present_inc(int cpu)
8243 {
8244 #ifdef CONFIG_SCHED_SMT
8245 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8246 		static_branch_inc_cpuslocked(&sched_smt_present);
8247 #endif
8248 }
8249 
8250 static inline void sched_smt_present_dec(int cpu)
8251 {
8252 #ifdef CONFIG_SCHED_SMT
8253 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8254 		static_branch_dec_cpuslocked(&sched_smt_present);
8255 #endif
8256 }
8257 
8258 int sched_cpu_activate(unsigned int cpu)
8259 {
8260 	struct rq *rq = cpu_rq(cpu);
8261 
8262 	/*
8263 	 * Clear the balance_push callback and prepare to schedule
8264 	 * regular tasks.
8265 	 */
8266 	balance_push_set(cpu, false);
8267 
8268 	/*
8269 	 * When going up, increment the number of cores with SMT present.
8270 	 */
8271 	sched_smt_present_inc(cpu);
8272 	set_cpu_active(cpu, true);
8273 
8274 	if (sched_smp_initialized) {
8275 		sched_update_numa(cpu, true);
8276 		sched_domains_numa_masks_set(cpu);
8277 		cpuset_cpu_active();
8278 	}
8279 
8280 	scx_rq_activate(rq);
8281 
8282 	/*
8283 	 * Put the rq online, if not already. This happens:
8284 	 *
8285 	 * 1) In the early boot process, because we build the real domains
8286 	 *    after all CPUs have been brought up.
8287 	 *
8288 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8289 	 *    domains.
8290 	 */
8291 	sched_set_rq_online(rq, cpu);
8292 
8293 	return 0;
8294 }
8295 
8296 int sched_cpu_deactivate(unsigned int cpu)
8297 {
8298 	struct rq *rq = cpu_rq(cpu);
8299 	int ret;
8300 
8301 	ret = dl_bw_deactivate(cpu);
8302 
8303 	if (ret)
8304 		return ret;
8305 
8306 	/*
8307 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8308 	 * load balancing when not active
8309 	 */
8310 	nohz_balance_exit_idle(rq);
8311 
8312 	set_cpu_active(cpu, false);
8313 
8314 	/*
8315 	 * From this point forward, this CPU will refuse to run any task that
8316 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8317 	 * push those tasks away until this gets cleared, see
8318 	 * sched_cpu_dying().
8319 	 */
8320 	balance_push_set(cpu, true);
8321 
8322 	/*
8323 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8324 	 * preempt-disabled and RCU users of this state to go away such that
8325 	 * all new such users will observe it.
8326 	 *
8327 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8328 	 * ttwu_queue_cond() and is_cpu_allowed().
8329 	 *
8330 	 * Do sync before park smpboot threads to take care the RCU boost case.
8331 	 */
8332 	synchronize_rcu();
8333 
8334 	sched_set_rq_offline(rq, cpu);
8335 
8336 	scx_rq_deactivate(rq);
8337 
8338 	/*
8339 	 * When going down, decrement the number of cores with SMT present.
8340 	 */
8341 	sched_smt_present_dec(cpu);
8342 
8343 #ifdef CONFIG_SCHED_SMT
8344 	sched_core_cpu_deactivate(cpu);
8345 #endif
8346 
8347 	if (!sched_smp_initialized)
8348 		return 0;
8349 
8350 	sched_update_numa(cpu, false);
8351 	cpuset_cpu_inactive(cpu);
8352 	sched_domains_numa_masks_clear(cpu);
8353 	return 0;
8354 }
8355 
8356 static void sched_rq_cpu_starting(unsigned int cpu)
8357 {
8358 	struct rq *rq = cpu_rq(cpu);
8359 
8360 	rq->calc_load_update = calc_load_update;
8361 	update_max_interval();
8362 }
8363 
8364 int sched_cpu_starting(unsigned int cpu)
8365 {
8366 	sched_core_cpu_starting(cpu);
8367 	sched_rq_cpu_starting(cpu);
8368 	sched_tick_start(cpu);
8369 	return 0;
8370 }
8371 
8372 #ifdef CONFIG_HOTPLUG_CPU
8373 
8374 /*
8375  * Invoked immediately before the stopper thread is invoked to bring the
8376  * CPU down completely. At this point all per CPU kthreads except the
8377  * hotplug thread (current) and the stopper thread (inactive) have been
8378  * either parked or have been unbound from the outgoing CPU. Ensure that
8379  * any of those which might be on the way out are gone.
8380  *
8381  * If after this point a bound task is being woken on this CPU then the
8382  * responsible hotplug callback has failed to do it's job.
8383  * sched_cpu_dying() will catch it with the appropriate fireworks.
8384  */
8385 int sched_cpu_wait_empty(unsigned int cpu)
8386 {
8387 	balance_hotplug_wait();
8388 	sched_force_init_mm();
8389 	return 0;
8390 }
8391 
8392 /*
8393  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8394  * might have. Called from the CPU stopper task after ensuring that the
8395  * stopper is the last running task on the CPU, so nr_active count is
8396  * stable. We need to take the tear-down thread which is calling this into
8397  * account, so we hand in adjust = 1 to the load calculation.
8398  *
8399  * Also see the comment "Global load-average calculations".
8400  */
8401 static void calc_load_migrate(struct rq *rq)
8402 {
8403 	long delta = calc_load_fold_active(rq, 1);
8404 
8405 	if (delta)
8406 		atomic_long_add(delta, &calc_load_tasks);
8407 }
8408 
8409 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8410 {
8411 	struct task_struct *g, *p;
8412 	int cpu = cpu_of(rq);
8413 
8414 	lockdep_assert_rq_held(rq);
8415 
8416 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8417 	for_each_process_thread(g, p) {
8418 		if (task_cpu(p) != cpu)
8419 			continue;
8420 
8421 		if (!task_on_rq_queued(p))
8422 			continue;
8423 
8424 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8425 	}
8426 }
8427 
8428 int sched_cpu_dying(unsigned int cpu)
8429 {
8430 	struct rq *rq = cpu_rq(cpu);
8431 	struct rq_flags rf;
8432 
8433 	/* Handle pending wakeups and then migrate everything off */
8434 	sched_tick_stop(cpu);
8435 
8436 	rq_lock_irqsave(rq, &rf);
8437 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8438 		WARN(true, "Dying CPU not properly vacated!");
8439 		dump_rq_tasks(rq, KERN_WARNING);
8440 	}
8441 	rq_unlock_irqrestore(rq, &rf);
8442 
8443 	calc_load_migrate(rq);
8444 	update_max_interval();
8445 	hrtick_clear(rq);
8446 	sched_core_cpu_dying(cpu);
8447 	return 0;
8448 }
8449 #endif
8450 
8451 void __init sched_init_smp(void)
8452 {
8453 	sched_init_numa(NUMA_NO_NODE);
8454 
8455 	/*
8456 	 * There's no userspace yet to cause hotplug operations; hence all the
8457 	 * CPU masks are stable and all blatant races in the below code cannot
8458 	 * happen.
8459 	 */
8460 	sched_domains_mutex_lock();
8461 	sched_init_domains(cpu_active_mask);
8462 	sched_domains_mutex_unlock();
8463 
8464 	/* Move init over to a non-isolated CPU */
8465 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8466 		BUG();
8467 	current->flags &= ~PF_NO_SETAFFINITY;
8468 	sched_init_granularity();
8469 
8470 	init_sched_rt_class();
8471 	init_sched_dl_class();
8472 
8473 	sched_smp_initialized = true;
8474 }
8475 
8476 static int __init migration_init(void)
8477 {
8478 	sched_cpu_starting(smp_processor_id());
8479 	return 0;
8480 }
8481 early_initcall(migration_init);
8482 
8483 #else
8484 void __init sched_init_smp(void)
8485 {
8486 	sched_init_granularity();
8487 }
8488 #endif /* CONFIG_SMP */
8489 
8490 int in_sched_functions(unsigned long addr)
8491 {
8492 	return in_lock_functions(addr) ||
8493 		(addr >= (unsigned long)__sched_text_start
8494 		&& addr < (unsigned long)__sched_text_end);
8495 }
8496 
8497 #ifdef CONFIG_CGROUP_SCHED
8498 /*
8499  * Default task group.
8500  * Every task in system belongs to this group at bootup.
8501  */
8502 struct task_group root_task_group;
8503 LIST_HEAD(task_groups);
8504 
8505 /* Cacheline aligned slab cache for task_group */
8506 static struct kmem_cache *task_group_cache __ro_after_init;
8507 #endif
8508 
8509 void __init sched_init(void)
8510 {
8511 	unsigned long ptr = 0;
8512 	int i;
8513 
8514 	/* Make sure the linker didn't screw up */
8515 #ifdef CONFIG_SMP
8516 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8517 #endif
8518 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8519 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8520 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8521 #ifdef CONFIG_SCHED_CLASS_EXT
8522 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8523 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8524 #endif
8525 
8526 	wait_bit_init();
8527 
8528 #ifdef CONFIG_FAIR_GROUP_SCHED
8529 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8530 #endif
8531 #ifdef CONFIG_RT_GROUP_SCHED
8532 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8533 #endif
8534 	if (ptr) {
8535 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8536 
8537 #ifdef CONFIG_FAIR_GROUP_SCHED
8538 		root_task_group.se = (struct sched_entity **)ptr;
8539 		ptr += nr_cpu_ids * sizeof(void **);
8540 
8541 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8542 		ptr += nr_cpu_ids * sizeof(void **);
8543 
8544 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8545 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8546 #endif /* CONFIG_FAIR_GROUP_SCHED */
8547 #ifdef CONFIG_EXT_GROUP_SCHED
8548 		root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
8549 #endif /* CONFIG_EXT_GROUP_SCHED */
8550 #ifdef CONFIG_RT_GROUP_SCHED
8551 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8552 		ptr += nr_cpu_ids * sizeof(void **);
8553 
8554 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8555 		ptr += nr_cpu_ids * sizeof(void **);
8556 
8557 #endif /* CONFIG_RT_GROUP_SCHED */
8558 	}
8559 
8560 #ifdef CONFIG_SMP
8561 	init_defrootdomain();
8562 #endif
8563 
8564 #ifdef CONFIG_RT_GROUP_SCHED
8565 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8566 			global_rt_period(), global_rt_runtime());
8567 #endif /* CONFIG_RT_GROUP_SCHED */
8568 
8569 #ifdef CONFIG_CGROUP_SCHED
8570 	task_group_cache = KMEM_CACHE(task_group, 0);
8571 
8572 	list_add(&root_task_group.list, &task_groups);
8573 	INIT_LIST_HEAD(&root_task_group.children);
8574 	INIT_LIST_HEAD(&root_task_group.siblings);
8575 	autogroup_init(&init_task);
8576 #endif /* CONFIG_CGROUP_SCHED */
8577 
8578 	for_each_possible_cpu(i) {
8579 		struct rq *rq;
8580 
8581 		rq = cpu_rq(i);
8582 		raw_spin_lock_init(&rq->__lock);
8583 		rq->nr_running = 0;
8584 		rq->calc_load_active = 0;
8585 		rq->calc_load_update = jiffies + LOAD_FREQ;
8586 		init_cfs_rq(&rq->cfs);
8587 		init_rt_rq(&rq->rt);
8588 		init_dl_rq(&rq->dl);
8589 #ifdef CONFIG_FAIR_GROUP_SCHED
8590 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8591 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8592 		/*
8593 		 * How much CPU bandwidth does root_task_group get?
8594 		 *
8595 		 * In case of task-groups formed through the cgroup filesystem, it
8596 		 * gets 100% of the CPU resources in the system. This overall
8597 		 * system CPU resource is divided among the tasks of
8598 		 * root_task_group and its child task-groups in a fair manner,
8599 		 * based on each entity's (task or task-group's) weight
8600 		 * (se->load.weight).
8601 		 *
8602 		 * In other words, if root_task_group has 10 tasks of weight
8603 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8604 		 * then A0's share of the CPU resource is:
8605 		 *
8606 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8607 		 *
8608 		 * We achieve this by letting root_task_group's tasks sit
8609 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8610 		 */
8611 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8612 #endif /* CONFIG_FAIR_GROUP_SCHED */
8613 
8614 #ifdef CONFIG_RT_GROUP_SCHED
8615 		/*
8616 		 * This is required for init cpu because rt.c:__enable_runtime()
8617 		 * starts working after scheduler_running, which is not the case
8618 		 * yet.
8619 		 */
8620 		rq->rt.rt_runtime = global_rt_runtime();
8621 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8622 #endif
8623 #ifdef CONFIG_SMP
8624 		rq->sd = NULL;
8625 		rq->rd = NULL;
8626 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8627 		rq->balance_callback = &balance_push_callback;
8628 		rq->active_balance = 0;
8629 		rq->next_balance = jiffies;
8630 		rq->push_cpu = 0;
8631 		rq->cpu = i;
8632 		rq->online = 0;
8633 		rq->idle_stamp = 0;
8634 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8635 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8636 
8637 		INIT_LIST_HEAD(&rq->cfs_tasks);
8638 
8639 		rq_attach_root(rq, &def_root_domain);
8640 #ifdef CONFIG_NO_HZ_COMMON
8641 		rq->last_blocked_load_update_tick = jiffies;
8642 		atomic_set(&rq->nohz_flags, 0);
8643 
8644 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8645 #endif
8646 #ifdef CONFIG_HOTPLUG_CPU
8647 		rcuwait_init(&rq->hotplug_wait);
8648 #endif
8649 #endif /* CONFIG_SMP */
8650 		hrtick_rq_init(rq);
8651 		atomic_set(&rq->nr_iowait, 0);
8652 		fair_server_init(rq);
8653 
8654 #ifdef CONFIG_SCHED_CORE
8655 		rq->core = rq;
8656 		rq->core_pick = NULL;
8657 		rq->core_dl_server = NULL;
8658 		rq->core_enabled = 0;
8659 		rq->core_tree = RB_ROOT;
8660 		rq->core_forceidle_count = 0;
8661 		rq->core_forceidle_occupation = 0;
8662 		rq->core_forceidle_start = 0;
8663 
8664 		rq->core_cookie = 0UL;
8665 #endif
8666 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8667 	}
8668 
8669 	set_load_weight(&init_task, false);
8670 	init_task.se.slice = sysctl_sched_base_slice,
8671 
8672 	/*
8673 	 * The boot idle thread does lazy MMU switching as well:
8674 	 */
8675 	mmgrab_lazy_tlb(&init_mm);
8676 	enter_lazy_tlb(&init_mm, current);
8677 
8678 	/*
8679 	 * The idle task doesn't need the kthread struct to function, but it
8680 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8681 	 * if we want to avoid special-casing it in code that deals with per-CPU
8682 	 * kthreads.
8683 	 */
8684 	WARN_ON(!set_kthread_struct(current));
8685 
8686 	/*
8687 	 * Make us the idle thread. Technically, schedule() should not be
8688 	 * called from this thread, however somewhere below it might be,
8689 	 * but because we are the idle thread, we just pick up running again
8690 	 * when this runqueue becomes "idle".
8691 	 */
8692 	__sched_fork(0, current);
8693 	init_idle(current, smp_processor_id());
8694 
8695 	calc_load_update = jiffies + LOAD_FREQ;
8696 
8697 #ifdef CONFIG_SMP
8698 	idle_thread_set_boot_cpu();
8699 	balance_push_set(smp_processor_id(), false);
8700 #endif
8701 	init_sched_fair_class();
8702 	init_sched_ext_class();
8703 
8704 	psi_init();
8705 
8706 	init_uclamp();
8707 
8708 	preempt_dynamic_init();
8709 
8710 	scheduler_running = 1;
8711 }
8712 
8713 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8714 
8715 void __might_sleep(const char *file, int line)
8716 {
8717 	unsigned int state = get_current_state();
8718 	/*
8719 	 * Blocking primitives will set (and therefore destroy) current->state,
8720 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8721 	 * otherwise we will destroy state.
8722 	 */
8723 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8724 			"do not call blocking ops when !TASK_RUNNING; "
8725 			"state=%x set at [<%p>] %pS\n", state,
8726 			(void *)current->task_state_change,
8727 			(void *)current->task_state_change);
8728 
8729 	__might_resched(file, line, 0);
8730 }
8731 EXPORT_SYMBOL(__might_sleep);
8732 
8733 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8734 {
8735 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8736 		return;
8737 
8738 	if (preempt_count() == preempt_offset)
8739 		return;
8740 
8741 	pr_err("Preemption disabled at:");
8742 	print_ip_sym(KERN_ERR, ip);
8743 }
8744 
8745 static inline bool resched_offsets_ok(unsigned int offsets)
8746 {
8747 	unsigned int nested = preempt_count();
8748 
8749 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8750 
8751 	return nested == offsets;
8752 }
8753 
8754 void __might_resched(const char *file, int line, unsigned int offsets)
8755 {
8756 	/* Ratelimiting timestamp: */
8757 	static unsigned long prev_jiffy;
8758 
8759 	unsigned long preempt_disable_ip;
8760 
8761 	/* WARN_ON_ONCE() by default, no rate limit required: */
8762 	rcu_sleep_check();
8763 
8764 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8765 	     !is_idle_task(current) && !current->non_block_count) ||
8766 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8767 	    oops_in_progress)
8768 		return;
8769 
8770 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8771 		return;
8772 	prev_jiffy = jiffies;
8773 
8774 	/* Save this before calling printk(), since that will clobber it: */
8775 	preempt_disable_ip = get_preempt_disable_ip(current);
8776 
8777 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8778 	       file, line);
8779 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8780 	       in_atomic(), irqs_disabled(), current->non_block_count,
8781 	       current->pid, current->comm);
8782 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8783 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8784 
8785 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8786 		pr_err("RCU nest depth: %d, expected: %u\n",
8787 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8788 	}
8789 
8790 	if (task_stack_end_corrupted(current))
8791 		pr_emerg("Thread overran stack, or stack corrupted\n");
8792 
8793 	debug_show_held_locks(current);
8794 	if (irqs_disabled())
8795 		print_irqtrace_events(current);
8796 
8797 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8798 				 preempt_disable_ip);
8799 
8800 	dump_stack();
8801 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8802 }
8803 EXPORT_SYMBOL(__might_resched);
8804 
8805 void __cant_sleep(const char *file, int line, int preempt_offset)
8806 {
8807 	static unsigned long prev_jiffy;
8808 
8809 	if (irqs_disabled())
8810 		return;
8811 
8812 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8813 		return;
8814 
8815 	if (preempt_count() > preempt_offset)
8816 		return;
8817 
8818 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8819 		return;
8820 	prev_jiffy = jiffies;
8821 
8822 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8823 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8824 			in_atomic(), irqs_disabled(),
8825 			current->pid, current->comm);
8826 
8827 	debug_show_held_locks(current);
8828 	dump_stack();
8829 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8830 }
8831 EXPORT_SYMBOL_GPL(__cant_sleep);
8832 
8833 #ifdef CONFIG_SMP
8834 void __cant_migrate(const char *file, int line)
8835 {
8836 	static unsigned long prev_jiffy;
8837 
8838 	if (irqs_disabled())
8839 		return;
8840 
8841 	if (is_migration_disabled(current))
8842 		return;
8843 
8844 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8845 		return;
8846 
8847 	if (preempt_count() > 0)
8848 		return;
8849 
8850 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8851 		return;
8852 	prev_jiffy = jiffies;
8853 
8854 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8855 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8856 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8857 	       current->pid, current->comm);
8858 
8859 	debug_show_held_locks(current);
8860 	dump_stack();
8861 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8862 }
8863 EXPORT_SYMBOL_GPL(__cant_migrate);
8864 #endif
8865 #endif
8866 
8867 #ifdef CONFIG_MAGIC_SYSRQ
8868 void normalize_rt_tasks(void)
8869 {
8870 	struct task_struct *g, *p;
8871 	struct sched_attr attr = {
8872 		.sched_policy = SCHED_NORMAL,
8873 	};
8874 
8875 	read_lock(&tasklist_lock);
8876 	for_each_process_thread(g, p) {
8877 		/*
8878 		 * Only normalize user tasks:
8879 		 */
8880 		if (p->flags & PF_KTHREAD)
8881 			continue;
8882 
8883 		p->se.exec_start = 0;
8884 		schedstat_set(p->stats.wait_start,  0);
8885 		schedstat_set(p->stats.sleep_start, 0);
8886 		schedstat_set(p->stats.block_start, 0);
8887 
8888 		if (!rt_or_dl_task(p)) {
8889 			/*
8890 			 * Renice negative nice level userspace
8891 			 * tasks back to 0:
8892 			 */
8893 			if (task_nice(p) < 0)
8894 				set_user_nice(p, 0);
8895 			continue;
8896 		}
8897 
8898 		__sched_setscheduler(p, &attr, false, false);
8899 	}
8900 	read_unlock(&tasklist_lock);
8901 }
8902 
8903 #endif /* CONFIG_MAGIC_SYSRQ */
8904 
8905 #if defined(CONFIG_KGDB_KDB)
8906 /*
8907  * These functions are only useful for KDB.
8908  *
8909  * They can only be called when the whole system has been
8910  * stopped - every CPU needs to be quiescent, and no scheduling
8911  * activity can take place. Using them for anything else would
8912  * be a serious bug, and as a result, they aren't even visible
8913  * under any other configuration.
8914  */
8915 
8916 /**
8917  * curr_task - return the current task for a given CPU.
8918  * @cpu: the processor in question.
8919  *
8920  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8921  *
8922  * Return: The current task for @cpu.
8923  */
8924 struct task_struct *curr_task(int cpu)
8925 {
8926 	return cpu_curr(cpu);
8927 }
8928 
8929 #endif /* defined(CONFIG_KGDB_KDB) */
8930 
8931 #ifdef CONFIG_CGROUP_SCHED
8932 /* task_group_lock serializes the addition/removal of task groups */
8933 static DEFINE_SPINLOCK(task_group_lock);
8934 
8935 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8936 					    struct task_group *parent)
8937 {
8938 #ifdef CONFIG_UCLAMP_TASK_GROUP
8939 	enum uclamp_id clamp_id;
8940 
8941 	for_each_clamp_id(clamp_id) {
8942 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8943 			      uclamp_none(clamp_id), false);
8944 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8945 	}
8946 #endif
8947 }
8948 
8949 static void sched_free_group(struct task_group *tg)
8950 {
8951 	free_fair_sched_group(tg);
8952 	free_rt_sched_group(tg);
8953 	autogroup_free(tg);
8954 	kmem_cache_free(task_group_cache, tg);
8955 }
8956 
8957 static void sched_free_group_rcu(struct rcu_head *rcu)
8958 {
8959 	sched_free_group(container_of(rcu, struct task_group, rcu));
8960 }
8961 
8962 static void sched_unregister_group(struct task_group *tg)
8963 {
8964 	unregister_fair_sched_group(tg);
8965 	unregister_rt_sched_group(tg);
8966 	/*
8967 	 * We have to wait for yet another RCU grace period to expire, as
8968 	 * print_cfs_stats() might run concurrently.
8969 	 */
8970 	call_rcu(&tg->rcu, sched_free_group_rcu);
8971 }
8972 
8973 /* allocate runqueue etc for a new task group */
8974 struct task_group *sched_create_group(struct task_group *parent)
8975 {
8976 	struct task_group *tg;
8977 
8978 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8979 	if (!tg)
8980 		return ERR_PTR(-ENOMEM);
8981 
8982 	if (!alloc_fair_sched_group(tg, parent))
8983 		goto err;
8984 
8985 	if (!alloc_rt_sched_group(tg, parent))
8986 		goto err;
8987 
8988 	scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
8989 	alloc_uclamp_sched_group(tg, parent);
8990 
8991 	return tg;
8992 
8993 err:
8994 	sched_free_group(tg);
8995 	return ERR_PTR(-ENOMEM);
8996 }
8997 
8998 void sched_online_group(struct task_group *tg, struct task_group *parent)
8999 {
9000 	unsigned long flags;
9001 
9002 	spin_lock_irqsave(&task_group_lock, flags);
9003 	list_add_tail_rcu(&tg->list, &task_groups);
9004 
9005 	/* Root should already exist: */
9006 	WARN_ON(!parent);
9007 
9008 	tg->parent = parent;
9009 	INIT_LIST_HEAD(&tg->children);
9010 	list_add_rcu(&tg->siblings, &parent->children);
9011 	spin_unlock_irqrestore(&task_group_lock, flags);
9012 
9013 	online_fair_sched_group(tg);
9014 }
9015 
9016 /* RCU callback to free various structures associated with a task group */
9017 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9018 {
9019 	/* Now it should be safe to free those cfs_rqs: */
9020 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
9021 }
9022 
9023 void sched_destroy_group(struct task_group *tg)
9024 {
9025 	/* Wait for possible concurrent references to cfs_rqs complete: */
9026 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
9027 }
9028 
9029 void sched_release_group(struct task_group *tg)
9030 {
9031 	unsigned long flags;
9032 
9033 	/*
9034 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9035 	 * sched_cfs_period_timer()).
9036 	 *
9037 	 * For this to be effective, we have to wait for all pending users of
9038 	 * this task group to leave their RCU critical section to ensure no new
9039 	 * user will see our dying task group any more. Specifically ensure
9040 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9041 	 *
9042 	 * We therefore defer calling unregister_fair_sched_group() to
9043 	 * sched_unregister_group() which is guarantied to get called only after the
9044 	 * current RCU grace period has expired.
9045 	 */
9046 	spin_lock_irqsave(&task_group_lock, flags);
9047 	list_del_rcu(&tg->list);
9048 	list_del_rcu(&tg->siblings);
9049 	spin_unlock_irqrestore(&task_group_lock, flags);
9050 }
9051 
9052 static void sched_change_group(struct task_struct *tsk)
9053 {
9054 	struct task_group *tg;
9055 
9056 	/*
9057 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9058 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9059 	 * to prevent lockdep warnings.
9060 	 */
9061 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9062 			  struct task_group, css);
9063 	tg = autogroup_task_group(tsk, tg);
9064 	tsk->sched_task_group = tg;
9065 
9066 #ifdef CONFIG_FAIR_GROUP_SCHED
9067 	if (tsk->sched_class->task_change_group)
9068 		tsk->sched_class->task_change_group(tsk);
9069 	else
9070 #endif
9071 		set_task_rq(tsk, task_cpu(tsk));
9072 }
9073 
9074 /*
9075  * Change task's runqueue when it moves between groups.
9076  *
9077  * The caller of this function should have put the task in its new group by
9078  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9079  * its new group.
9080  */
9081 void sched_move_task(struct task_struct *tsk, bool for_autogroup)
9082 {
9083 	int queued, running, queue_flags =
9084 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9085 	struct rq *rq;
9086 
9087 	CLASS(task_rq_lock, rq_guard)(tsk);
9088 	rq = rq_guard.rq;
9089 
9090 	update_rq_clock(rq);
9091 
9092 	running = task_current_donor(rq, tsk);
9093 	queued = task_on_rq_queued(tsk);
9094 
9095 	if (queued)
9096 		dequeue_task(rq, tsk, queue_flags);
9097 	if (running)
9098 		put_prev_task(rq, tsk);
9099 
9100 	sched_change_group(tsk);
9101 	if (!for_autogroup)
9102 		scx_cgroup_move_task(tsk);
9103 
9104 	if (queued)
9105 		enqueue_task(rq, tsk, queue_flags);
9106 	if (running) {
9107 		set_next_task(rq, tsk);
9108 		/*
9109 		 * After changing group, the running task may have joined a
9110 		 * throttled one but it's still the running task. Trigger a
9111 		 * resched to make sure that task can still run.
9112 		 */
9113 		resched_curr(rq);
9114 	}
9115 }
9116 
9117 static struct cgroup_subsys_state *
9118 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9119 {
9120 	struct task_group *parent = css_tg(parent_css);
9121 	struct task_group *tg;
9122 
9123 	if (!parent) {
9124 		/* This is early initialization for the top cgroup */
9125 		return &root_task_group.css;
9126 	}
9127 
9128 	tg = sched_create_group(parent);
9129 	if (IS_ERR(tg))
9130 		return ERR_PTR(-ENOMEM);
9131 
9132 	return &tg->css;
9133 }
9134 
9135 /* Expose task group only after completing cgroup initialization */
9136 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9137 {
9138 	struct task_group *tg = css_tg(css);
9139 	struct task_group *parent = css_tg(css->parent);
9140 	int ret;
9141 
9142 	ret = scx_tg_online(tg);
9143 	if (ret)
9144 		return ret;
9145 
9146 	if (parent)
9147 		sched_online_group(tg, parent);
9148 
9149 #ifdef CONFIG_UCLAMP_TASK_GROUP
9150 	/* Propagate the effective uclamp value for the new group */
9151 	guard(mutex)(&uclamp_mutex);
9152 	guard(rcu)();
9153 	cpu_util_update_eff(css);
9154 #endif
9155 
9156 	return 0;
9157 }
9158 
9159 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9160 {
9161 	struct task_group *tg = css_tg(css);
9162 
9163 	scx_tg_offline(tg);
9164 }
9165 
9166 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9167 {
9168 	struct task_group *tg = css_tg(css);
9169 
9170 	sched_release_group(tg);
9171 }
9172 
9173 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9174 {
9175 	struct task_group *tg = css_tg(css);
9176 
9177 	/*
9178 	 * Relies on the RCU grace period between css_released() and this.
9179 	 */
9180 	sched_unregister_group(tg);
9181 }
9182 
9183 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9184 {
9185 #ifdef CONFIG_RT_GROUP_SCHED
9186 	struct task_struct *task;
9187 	struct cgroup_subsys_state *css;
9188 
9189 	if (!rt_group_sched_enabled())
9190 		goto scx_check;
9191 
9192 	cgroup_taskset_for_each(task, css, tset) {
9193 		if (!sched_rt_can_attach(css_tg(css), task))
9194 			return -EINVAL;
9195 	}
9196 scx_check:
9197 #endif /* CONFIG_RT_GROUP_SCHED */
9198 	return scx_cgroup_can_attach(tset);
9199 }
9200 
9201 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9202 {
9203 	struct task_struct *task;
9204 	struct cgroup_subsys_state *css;
9205 
9206 	cgroup_taskset_for_each(task, css, tset)
9207 		sched_move_task(task, false);
9208 
9209 	scx_cgroup_finish_attach();
9210 }
9211 
9212 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9213 {
9214 	scx_cgroup_cancel_attach(tset);
9215 }
9216 
9217 #ifdef CONFIG_UCLAMP_TASK_GROUP
9218 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9219 {
9220 	struct cgroup_subsys_state *top_css = css;
9221 	struct uclamp_se *uc_parent = NULL;
9222 	struct uclamp_se *uc_se = NULL;
9223 	unsigned int eff[UCLAMP_CNT];
9224 	enum uclamp_id clamp_id;
9225 	unsigned int clamps;
9226 
9227 	lockdep_assert_held(&uclamp_mutex);
9228 	WARN_ON_ONCE(!rcu_read_lock_held());
9229 
9230 	css_for_each_descendant_pre(css, top_css) {
9231 		uc_parent = css_tg(css)->parent
9232 			? css_tg(css)->parent->uclamp : NULL;
9233 
9234 		for_each_clamp_id(clamp_id) {
9235 			/* Assume effective clamps matches requested clamps */
9236 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9237 			/* Cap effective clamps with parent's effective clamps */
9238 			if (uc_parent &&
9239 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9240 				eff[clamp_id] = uc_parent[clamp_id].value;
9241 			}
9242 		}
9243 		/* Ensure protection is always capped by limit */
9244 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9245 
9246 		/* Propagate most restrictive effective clamps */
9247 		clamps = 0x0;
9248 		uc_se = css_tg(css)->uclamp;
9249 		for_each_clamp_id(clamp_id) {
9250 			if (eff[clamp_id] == uc_se[clamp_id].value)
9251 				continue;
9252 			uc_se[clamp_id].value = eff[clamp_id];
9253 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9254 			clamps |= (0x1 << clamp_id);
9255 		}
9256 		if (!clamps) {
9257 			css = css_rightmost_descendant(css);
9258 			continue;
9259 		}
9260 
9261 		/* Immediately update descendants RUNNABLE tasks */
9262 		uclamp_update_active_tasks(css);
9263 	}
9264 }
9265 
9266 /*
9267  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9268  * C expression. Since there is no way to convert a macro argument (N) into a
9269  * character constant, use two levels of macros.
9270  */
9271 #define _POW10(exp) ((unsigned int)1e##exp)
9272 #define POW10(exp) _POW10(exp)
9273 
9274 struct uclamp_request {
9275 #define UCLAMP_PERCENT_SHIFT	2
9276 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9277 	s64 percent;
9278 	u64 util;
9279 	int ret;
9280 };
9281 
9282 static inline struct uclamp_request
9283 capacity_from_percent(char *buf)
9284 {
9285 	struct uclamp_request req = {
9286 		.percent = UCLAMP_PERCENT_SCALE,
9287 		.util = SCHED_CAPACITY_SCALE,
9288 		.ret = 0,
9289 	};
9290 
9291 	buf = strim(buf);
9292 	if (strcmp(buf, "max")) {
9293 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9294 					     &req.percent);
9295 		if (req.ret)
9296 			return req;
9297 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9298 			req.ret = -ERANGE;
9299 			return req;
9300 		}
9301 
9302 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9303 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9304 	}
9305 
9306 	return req;
9307 }
9308 
9309 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9310 				size_t nbytes, loff_t off,
9311 				enum uclamp_id clamp_id)
9312 {
9313 	struct uclamp_request req;
9314 	struct task_group *tg;
9315 
9316 	req = capacity_from_percent(buf);
9317 	if (req.ret)
9318 		return req.ret;
9319 
9320 	sched_uclamp_enable();
9321 
9322 	guard(mutex)(&uclamp_mutex);
9323 	guard(rcu)();
9324 
9325 	tg = css_tg(of_css(of));
9326 	if (tg->uclamp_req[clamp_id].value != req.util)
9327 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9328 
9329 	/*
9330 	 * Because of not recoverable conversion rounding we keep track of the
9331 	 * exact requested value
9332 	 */
9333 	tg->uclamp_pct[clamp_id] = req.percent;
9334 
9335 	/* Update effective clamps to track the most restrictive value */
9336 	cpu_util_update_eff(of_css(of));
9337 
9338 	return nbytes;
9339 }
9340 
9341 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9342 				    char *buf, size_t nbytes,
9343 				    loff_t off)
9344 {
9345 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9346 }
9347 
9348 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9349 				    char *buf, size_t nbytes,
9350 				    loff_t off)
9351 {
9352 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9353 }
9354 
9355 static inline void cpu_uclamp_print(struct seq_file *sf,
9356 				    enum uclamp_id clamp_id)
9357 {
9358 	struct task_group *tg;
9359 	u64 util_clamp;
9360 	u64 percent;
9361 	u32 rem;
9362 
9363 	scoped_guard (rcu) {
9364 		tg = css_tg(seq_css(sf));
9365 		util_clamp = tg->uclamp_req[clamp_id].value;
9366 	}
9367 
9368 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9369 		seq_puts(sf, "max\n");
9370 		return;
9371 	}
9372 
9373 	percent = tg->uclamp_pct[clamp_id];
9374 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9375 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9376 }
9377 
9378 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9379 {
9380 	cpu_uclamp_print(sf, UCLAMP_MIN);
9381 	return 0;
9382 }
9383 
9384 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9385 {
9386 	cpu_uclamp_print(sf, UCLAMP_MAX);
9387 	return 0;
9388 }
9389 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9390 
9391 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9392 static unsigned long tg_weight(struct task_group *tg)
9393 {
9394 #ifdef CONFIG_FAIR_GROUP_SCHED
9395 	return scale_load_down(tg->shares);
9396 #else
9397 	return sched_weight_from_cgroup(tg->scx_weight);
9398 #endif
9399 }
9400 
9401 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9402 				struct cftype *cftype, u64 shareval)
9403 {
9404 	int ret;
9405 
9406 	if (shareval > scale_load_down(ULONG_MAX))
9407 		shareval = MAX_SHARES;
9408 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9409 	if (!ret)
9410 		scx_group_set_weight(css_tg(css),
9411 				     sched_weight_to_cgroup(shareval));
9412 	return ret;
9413 }
9414 
9415 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9416 			       struct cftype *cft)
9417 {
9418 	return tg_weight(css_tg(css));
9419 }
9420 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9421 
9422 #ifdef CONFIG_CFS_BANDWIDTH
9423 static DEFINE_MUTEX(cfs_constraints_mutex);
9424 
9425 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9426 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9427 /* More than 203 days if BW_SHIFT equals 20. */
9428 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9429 
9430 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9431 
9432 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9433 				u64 burst)
9434 {
9435 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9436 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9437 
9438 	if (tg == &root_task_group)
9439 		return -EINVAL;
9440 
9441 	/*
9442 	 * Ensure we have at some amount of bandwidth every period.  This is
9443 	 * to prevent reaching a state of large arrears when throttled via
9444 	 * entity_tick() resulting in prolonged exit starvation.
9445 	 */
9446 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9447 		return -EINVAL;
9448 
9449 	/*
9450 	 * Likewise, bound things on the other side by preventing insane quota
9451 	 * periods.  This also allows us to normalize in computing quota
9452 	 * feasibility.
9453 	 */
9454 	if (period > max_cfs_quota_period)
9455 		return -EINVAL;
9456 
9457 	/*
9458 	 * Bound quota to defend quota against overflow during bandwidth shift.
9459 	 */
9460 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9461 		return -EINVAL;
9462 
9463 	if (quota != RUNTIME_INF && (burst > quota ||
9464 				     burst + quota > max_cfs_runtime))
9465 		return -EINVAL;
9466 
9467 	/*
9468 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9469 	 * unthrottle_offline_cfs_rqs().
9470 	 */
9471 	guard(cpus_read_lock)();
9472 	guard(mutex)(&cfs_constraints_mutex);
9473 
9474 	ret = __cfs_schedulable(tg, period, quota);
9475 	if (ret)
9476 		return ret;
9477 
9478 	runtime_enabled = quota != RUNTIME_INF;
9479 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9480 	/*
9481 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9482 	 * before making related changes, and on->off must occur afterwards
9483 	 */
9484 	if (runtime_enabled && !runtime_was_enabled)
9485 		cfs_bandwidth_usage_inc();
9486 
9487 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9488 		cfs_b->period = ns_to_ktime(period);
9489 		cfs_b->quota = quota;
9490 		cfs_b->burst = burst;
9491 
9492 		__refill_cfs_bandwidth_runtime(cfs_b);
9493 
9494 		/*
9495 		 * Restart the period timer (if active) to handle new
9496 		 * period expiry:
9497 		 */
9498 		if (runtime_enabled)
9499 			start_cfs_bandwidth(cfs_b);
9500 	}
9501 
9502 	for_each_online_cpu(i) {
9503 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9504 		struct rq *rq = cfs_rq->rq;
9505 
9506 		guard(rq_lock_irq)(rq);
9507 		cfs_rq->runtime_enabled = runtime_enabled;
9508 		cfs_rq->runtime_remaining = 0;
9509 
9510 		if (cfs_rq->throttled)
9511 			unthrottle_cfs_rq(cfs_rq);
9512 	}
9513 
9514 	if (runtime_was_enabled && !runtime_enabled)
9515 		cfs_bandwidth_usage_dec();
9516 
9517 	return 0;
9518 }
9519 
9520 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9521 {
9522 	u64 quota, period, burst;
9523 
9524 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9525 	burst = tg->cfs_bandwidth.burst;
9526 	if (cfs_quota_us < 0)
9527 		quota = RUNTIME_INF;
9528 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9529 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9530 	else
9531 		return -EINVAL;
9532 
9533 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9534 }
9535 
9536 static long tg_get_cfs_quota(struct task_group *tg)
9537 {
9538 	u64 quota_us;
9539 
9540 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9541 		return -1;
9542 
9543 	quota_us = tg->cfs_bandwidth.quota;
9544 	do_div(quota_us, NSEC_PER_USEC);
9545 
9546 	return quota_us;
9547 }
9548 
9549 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9550 {
9551 	u64 quota, period, burst;
9552 
9553 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9554 		return -EINVAL;
9555 
9556 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9557 	quota = tg->cfs_bandwidth.quota;
9558 	burst = tg->cfs_bandwidth.burst;
9559 
9560 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9561 }
9562 
9563 static long tg_get_cfs_period(struct task_group *tg)
9564 {
9565 	u64 cfs_period_us;
9566 
9567 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9568 	do_div(cfs_period_us, NSEC_PER_USEC);
9569 
9570 	return cfs_period_us;
9571 }
9572 
9573 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9574 {
9575 	u64 quota, period, burst;
9576 
9577 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9578 		return -EINVAL;
9579 
9580 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9581 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9582 	quota = tg->cfs_bandwidth.quota;
9583 
9584 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9585 }
9586 
9587 static long tg_get_cfs_burst(struct task_group *tg)
9588 {
9589 	u64 burst_us;
9590 
9591 	burst_us = tg->cfs_bandwidth.burst;
9592 	do_div(burst_us, NSEC_PER_USEC);
9593 
9594 	return burst_us;
9595 }
9596 
9597 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9598 				  struct cftype *cft)
9599 {
9600 	return tg_get_cfs_quota(css_tg(css));
9601 }
9602 
9603 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9604 				   struct cftype *cftype, s64 cfs_quota_us)
9605 {
9606 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9607 }
9608 
9609 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9610 				   struct cftype *cft)
9611 {
9612 	return tg_get_cfs_period(css_tg(css));
9613 }
9614 
9615 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9616 				    struct cftype *cftype, u64 cfs_period_us)
9617 {
9618 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9619 }
9620 
9621 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9622 				  struct cftype *cft)
9623 {
9624 	return tg_get_cfs_burst(css_tg(css));
9625 }
9626 
9627 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9628 				   struct cftype *cftype, u64 cfs_burst_us)
9629 {
9630 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9631 }
9632 
9633 struct cfs_schedulable_data {
9634 	struct task_group *tg;
9635 	u64 period, quota;
9636 };
9637 
9638 /*
9639  * normalize group quota/period to be quota/max_period
9640  * note: units are usecs
9641  */
9642 static u64 normalize_cfs_quota(struct task_group *tg,
9643 			       struct cfs_schedulable_data *d)
9644 {
9645 	u64 quota, period;
9646 
9647 	if (tg == d->tg) {
9648 		period = d->period;
9649 		quota = d->quota;
9650 	} else {
9651 		period = tg_get_cfs_period(tg);
9652 		quota = tg_get_cfs_quota(tg);
9653 	}
9654 
9655 	/* note: these should typically be equivalent */
9656 	if (quota == RUNTIME_INF || quota == -1)
9657 		return RUNTIME_INF;
9658 
9659 	return to_ratio(period, quota);
9660 }
9661 
9662 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9663 {
9664 	struct cfs_schedulable_data *d = data;
9665 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9666 	s64 quota = 0, parent_quota = -1;
9667 
9668 	if (!tg->parent) {
9669 		quota = RUNTIME_INF;
9670 	} else {
9671 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9672 
9673 		quota = normalize_cfs_quota(tg, d);
9674 		parent_quota = parent_b->hierarchical_quota;
9675 
9676 		/*
9677 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9678 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9679 		 * inherit when no limit is set. In both cases this is used
9680 		 * by the scheduler to determine if a given CFS task has a
9681 		 * bandwidth constraint at some higher level.
9682 		 */
9683 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9684 			if (quota == RUNTIME_INF)
9685 				quota = parent_quota;
9686 			else if (parent_quota != RUNTIME_INF)
9687 				quota = min(quota, parent_quota);
9688 		} else {
9689 			if (quota == RUNTIME_INF)
9690 				quota = parent_quota;
9691 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9692 				return -EINVAL;
9693 		}
9694 	}
9695 	cfs_b->hierarchical_quota = quota;
9696 
9697 	return 0;
9698 }
9699 
9700 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9701 {
9702 	struct cfs_schedulable_data data = {
9703 		.tg = tg,
9704 		.period = period,
9705 		.quota = quota,
9706 	};
9707 
9708 	if (quota != RUNTIME_INF) {
9709 		do_div(data.period, NSEC_PER_USEC);
9710 		do_div(data.quota, NSEC_PER_USEC);
9711 	}
9712 
9713 	guard(rcu)();
9714 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9715 }
9716 
9717 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9718 {
9719 	struct task_group *tg = css_tg(seq_css(sf));
9720 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9721 
9722 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9723 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9724 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9725 
9726 	if (schedstat_enabled() && tg != &root_task_group) {
9727 		struct sched_statistics *stats;
9728 		u64 ws = 0;
9729 		int i;
9730 
9731 		for_each_possible_cpu(i) {
9732 			stats = __schedstats_from_se(tg->se[i]);
9733 			ws += schedstat_val(stats->wait_sum);
9734 		}
9735 
9736 		seq_printf(sf, "wait_sum %llu\n", ws);
9737 	}
9738 
9739 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9740 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9741 
9742 	return 0;
9743 }
9744 
9745 static u64 throttled_time_self(struct task_group *tg)
9746 {
9747 	int i;
9748 	u64 total = 0;
9749 
9750 	for_each_possible_cpu(i) {
9751 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9752 	}
9753 
9754 	return total;
9755 }
9756 
9757 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9758 {
9759 	struct task_group *tg = css_tg(seq_css(sf));
9760 
9761 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9762 
9763 	return 0;
9764 }
9765 #endif /* CONFIG_CFS_BANDWIDTH */
9766 
9767 #ifdef CONFIG_RT_GROUP_SCHED
9768 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9769 				struct cftype *cft, s64 val)
9770 {
9771 	return sched_group_set_rt_runtime(css_tg(css), val);
9772 }
9773 
9774 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9775 			       struct cftype *cft)
9776 {
9777 	return sched_group_rt_runtime(css_tg(css));
9778 }
9779 
9780 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9781 				    struct cftype *cftype, u64 rt_period_us)
9782 {
9783 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9784 }
9785 
9786 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9787 				   struct cftype *cft)
9788 {
9789 	return sched_group_rt_period(css_tg(css));
9790 }
9791 #endif /* CONFIG_RT_GROUP_SCHED */
9792 
9793 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9794 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9795 			       struct cftype *cft)
9796 {
9797 	return css_tg(css)->idle;
9798 }
9799 
9800 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9801 				struct cftype *cft, s64 idle)
9802 {
9803 	int ret;
9804 
9805 	ret = sched_group_set_idle(css_tg(css), idle);
9806 	if (!ret)
9807 		scx_group_set_idle(css_tg(css), idle);
9808 	return ret;
9809 }
9810 #endif
9811 
9812 static struct cftype cpu_legacy_files[] = {
9813 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9814 	{
9815 		.name = "shares",
9816 		.read_u64 = cpu_shares_read_u64,
9817 		.write_u64 = cpu_shares_write_u64,
9818 	},
9819 	{
9820 		.name = "idle",
9821 		.read_s64 = cpu_idle_read_s64,
9822 		.write_s64 = cpu_idle_write_s64,
9823 	},
9824 #endif
9825 #ifdef CONFIG_CFS_BANDWIDTH
9826 	{
9827 		.name = "cfs_quota_us",
9828 		.read_s64 = cpu_cfs_quota_read_s64,
9829 		.write_s64 = cpu_cfs_quota_write_s64,
9830 	},
9831 	{
9832 		.name = "cfs_period_us",
9833 		.read_u64 = cpu_cfs_period_read_u64,
9834 		.write_u64 = cpu_cfs_period_write_u64,
9835 	},
9836 	{
9837 		.name = "cfs_burst_us",
9838 		.read_u64 = cpu_cfs_burst_read_u64,
9839 		.write_u64 = cpu_cfs_burst_write_u64,
9840 	},
9841 	{
9842 		.name = "stat",
9843 		.seq_show = cpu_cfs_stat_show,
9844 	},
9845 	{
9846 		.name = "stat.local",
9847 		.seq_show = cpu_cfs_local_stat_show,
9848 	},
9849 #endif
9850 #ifdef CONFIG_UCLAMP_TASK_GROUP
9851 	{
9852 		.name = "uclamp.min",
9853 		.flags = CFTYPE_NOT_ON_ROOT,
9854 		.seq_show = cpu_uclamp_min_show,
9855 		.write = cpu_uclamp_min_write,
9856 	},
9857 	{
9858 		.name = "uclamp.max",
9859 		.flags = CFTYPE_NOT_ON_ROOT,
9860 		.seq_show = cpu_uclamp_max_show,
9861 		.write = cpu_uclamp_max_write,
9862 	},
9863 #endif
9864 	{ }	/* Terminate */
9865 };
9866 
9867 #ifdef CONFIG_RT_GROUP_SCHED
9868 static struct cftype rt_group_files[] = {
9869 	{
9870 		.name = "rt_runtime_us",
9871 		.read_s64 = cpu_rt_runtime_read,
9872 		.write_s64 = cpu_rt_runtime_write,
9873 	},
9874 	{
9875 		.name = "rt_period_us",
9876 		.read_u64 = cpu_rt_period_read_uint,
9877 		.write_u64 = cpu_rt_period_write_uint,
9878 	},
9879 	{ }	/* Terminate */
9880 };
9881 
9882 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
9883 DEFINE_STATIC_KEY_FALSE(rt_group_sched);
9884 # else
9885 DEFINE_STATIC_KEY_TRUE(rt_group_sched);
9886 # endif
9887 
9888 static int __init setup_rt_group_sched(char *str)
9889 {
9890 	long val;
9891 
9892 	if (kstrtol(str, 0, &val) || val < 0 || val > 1) {
9893 		pr_warn("Unable to set rt_group_sched\n");
9894 		return 1;
9895 	}
9896 	if (val)
9897 		static_branch_enable(&rt_group_sched);
9898 	else
9899 		static_branch_disable(&rt_group_sched);
9900 
9901 	return 1;
9902 }
9903 __setup("rt_group_sched=", setup_rt_group_sched);
9904 
9905 static int __init cpu_rt_group_init(void)
9906 {
9907 	if (!rt_group_sched_enabled())
9908 		return 0;
9909 
9910 	WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files));
9911 	return 0;
9912 }
9913 subsys_initcall(cpu_rt_group_init);
9914 #endif /* CONFIG_RT_GROUP_SCHED */
9915 
9916 static int cpu_extra_stat_show(struct seq_file *sf,
9917 			       struct cgroup_subsys_state *css)
9918 {
9919 #ifdef CONFIG_CFS_BANDWIDTH
9920 	{
9921 		struct task_group *tg = css_tg(css);
9922 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9923 		u64 throttled_usec, burst_usec;
9924 
9925 		throttled_usec = cfs_b->throttled_time;
9926 		do_div(throttled_usec, NSEC_PER_USEC);
9927 		burst_usec = cfs_b->burst_time;
9928 		do_div(burst_usec, NSEC_PER_USEC);
9929 
9930 		seq_printf(sf, "nr_periods %d\n"
9931 			   "nr_throttled %d\n"
9932 			   "throttled_usec %llu\n"
9933 			   "nr_bursts %d\n"
9934 			   "burst_usec %llu\n",
9935 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9936 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9937 	}
9938 #endif
9939 	return 0;
9940 }
9941 
9942 static int cpu_local_stat_show(struct seq_file *sf,
9943 			       struct cgroup_subsys_state *css)
9944 {
9945 #ifdef CONFIG_CFS_BANDWIDTH
9946 	{
9947 		struct task_group *tg = css_tg(css);
9948 		u64 throttled_self_usec;
9949 
9950 		throttled_self_usec = throttled_time_self(tg);
9951 		do_div(throttled_self_usec, NSEC_PER_USEC);
9952 
9953 		seq_printf(sf, "throttled_usec %llu\n",
9954 			   throttled_self_usec);
9955 	}
9956 #endif
9957 	return 0;
9958 }
9959 
9960 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9961 
9962 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9963 			       struct cftype *cft)
9964 {
9965 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9966 }
9967 
9968 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9969 				struct cftype *cft, u64 cgrp_weight)
9970 {
9971 	unsigned long weight;
9972 	int ret;
9973 
9974 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9975 		return -ERANGE;
9976 
9977 	weight = sched_weight_from_cgroup(cgrp_weight);
9978 
9979 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9980 	if (!ret)
9981 		scx_group_set_weight(css_tg(css), cgrp_weight);
9982 	return ret;
9983 }
9984 
9985 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9986 				    struct cftype *cft)
9987 {
9988 	unsigned long weight = tg_weight(css_tg(css));
9989 	int last_delta = INT_MAX;
9990 	int prio, delta;
9991 
9992 	/* find the closest nice value to the current weight */
9993 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9994 		delta = abs(sched_prio_to_weight[prio] - weight);
9995 		if (delta >= last_delta)
9996 			break;
9997 		last_delta = delta;
9998 	}
9999 
10000 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10001 }
10002 
10003 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10004 				     struct cftype *cft, s64 nice)
10005 {
10006 	unsigned long weight;
10007 	int idx, ret;
10008 
10009 	if (nice < MIN_NICE || nice > MAX_NICE)
10010 		return -ERANGE;
10011 
10012 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10013 	idx = array_index_nospec(idx, 40);
10014 	weight = sched_prio_to_weight[idx];
10015 
10016 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
10017 	if (!ret)
10018 		scx_group_set_weight(css_tg(css),
10019 				     sched_weight_to_cgroup(weight));
10020 	return ret;
10021 }
10022 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
10023 
10024 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10025 						  long period, long quota)
10026 {
10027 	if (quota < 0)
10028 		seq_puts(sf, "max");
10029 	else
10030 		seq_printf(sf, "%ld", quota);
10031 
10032 	seq_printf(sf, " %ld\n", period);
10033 }
10034 
10035 /* caller should put the current value in *@periodp before calling */
10036 static int __maybe_unused cpu_period_quota_parse(char *buf,
10037 						 u64 *periodp, u64 *quotap)
10038 {
10039 	char tok[21];	/* U64_MAX */
10040 
10041 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10042 		return -EINVAL;
10043 
10044 	*periodp *= NSEC_PER_USEC;
10045 
10046 	if (sscanf(tok, "%llu", quotap))
10047 		*quotap *= NSEC_PER_USEC;
10048 	else if (!strcmp(tok, "max"))
10049 		*quotap = RUNTIME_INF;
10050 	else
10051 		return -EINVAL;
10052 
10053 	return 0;
10054 }
10055 
10056 #ifdef CONFIG_CFS_BANDWIDTH
10057 static int cpu_max_show(struct seq_file *sf, void *v)
10058 {
10059 	struct task_group *tg = css_tg(seq_css(sf));
10060 
10061 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10062 	return 0;
10063 }
10064 
10065 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10066 			     char *buf, size_t nbytes, loff_t off)
10067 {
10068 	struct task_group *tg = css_tg(of_css(of));
10069 	u64 period = tg_get_cfs_period(tg);
10070 	u64 burst = tg->cfs_bandwidth.burst;
10071 	u64 quota;
10072 	int ret;
10073 
10074 	ret = cpu_period_quota_parse(buf, &period, &quota);
10075 	if (!ret)
10076 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10077 	return ret ?: nbytes;
10078 }
10079 #endif
10080 
10081 static struct cftype cpu_files[] = {
10082 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10083 	{
10084 		.name = "weight",
10085 		.flags = CFTYPE_NOT_ON_ROOT,
10086 		.read_u64 = cpu_weight_read_u64,
10087 		.write_u64 = cpu_weight_write_u64,
10088 	},
10089 	{
10090 		.name = "weight.nice",
10091 		.flags = CFTYPE_NOT_ON_ROOT,
10092 		.read_s64 = cpu_weight_nice_read_s64,
10093 		.write_s64 = cpu_weight_nice_write_s64,
10094 	},
10095 	{
10096 		.name = "idle",
10097 		.flags = CFTYPE_NOT_ON_ROOT,
10098 		.read_s64 = cpu_idle_read_s64,
10099 		.write_s64 = cpu_idle_write_s64,
10100 	},
10101 #endif
10102 #ifdef CONFIG_CFS_BANDWIDTH
10103 	{
10104 		.name = "max",
10105 		.flags = CFTYPE_NOT_ON_ROOT,
10106 		.seq_show = cpu_max_show,
10107 		.write = cpu_max_write,
10108 	},
10109 	{
10110 		.name = "max.burst",
10111 		.flags = CFTYPE_NOT_ON_ROOT,
10112 		.read_u64 = cpu_cfs_burst_read_u64,
10113 		.write_u64 = cpu_cfs_burst_write_u64,
10114 	},
10115 #endif
10116 #ifdef CONFIG_UCLAMP_TASK_GROUP
10117 	{
10118 		.name = "uclamp.min",
10119 		.flags = CFTYPE_NOT_ON_ROOT,
10120 		.seq_show = cpu_uclamp_min_show,
10121 		.write = cpu_uclamp_min_write,
10122 	},
10123 	{
10124 		.name = "uclamp.max",
10125 		.flags = CFTYPE_NOT_ON_ROOT,
10126 		.seq_show = cpu_uclamp_max_show,
10127 		.write = cpu_uclamp_max_write,
10128 	},
10129 #endif
10130 	{ }	/* terminate */
10131 };
10132 
10133 struct cgroup_subsys cpu_cgrp_subsys = {
10134 	.css_alloc	= cpu_cgroup_css_alloc,
10135 	.css_online	= cpu_cgroup_css_online,
10136 	.css_offline	= cpu_cgroup_css_offline,
10137 	.css_released	= cpu_cgroup_css_released,
10138 	.css_free	= cpu_cgroup_css_free,
10139 	.css_extra_stat_show = cpu_extra_stat_show,
10140 	.css_local_stat_show = cpu_local_stat_show,
10141 	.can_attach	= cpu_cgroup_can_attach,
10142 	.attach		= cpu_cgroup_attach,
10143 	.cancel_attach	= cpu_cgroup_cancel_attach,
10144 	.legacy_cftypes	= cpu_legacy_files,
10145 	.dfl_cftypes	= cpu_files,
10146 	.early_init	= true,
10147 	.threaded	= true,
10148 };
10149 
10150 #endif	/* CONFIG_CGROUP_SCHED */
10151 
10152 void dump_cpu_task(int cpu)
10153 {
10154 	if (in_hardirq() && cpu == smp_processor_id()) {
10155 		struct pt_regs *regs;
10156 
10157 		regs = get_irq_regs();
10158 		if (regs) {
10159 			show_regs(regs);
10160 			return;
10161 		}
10162 	}
10163 
10164 	if (trigger_single_cpu_backtrace(cpu))
10165 		return;
10166 
10167 	pr_info("Task dump for CPU %d:\n", cpu);
10168 	sched_show_task(cpu_curr(cpu));
10169 }
10170 
10171 /*
10172  * Nice levels are multiplicative, with a gentle 10% change for every
10173  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10174  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10175  * that remained on nice 0.
10176  *
10177  * The "10% effect" is relative and cumulative: from _any_ nice level,
10178  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10179  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10180  * If a task goes up by ~10% and another task goes down by ~10% then
10181  * the relative distance between them is ~25%.)
10182  */
10183 const int sched_prio_to_weight[40] = {
10184  /* -20 */     88761,     71755,     56483,     46273,     36291,
10185  /* -15 */     29154,     23254,     18705,     14949,     11916,
10186  /* -10 */      9548,      7620,      6100,      4904,      3906,
10187  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10188  /*   0 */      1024,       820,       655,       526,       423,
10189  /*   5 */       335,       272,       215,       172,       137,
10190  /*  10 */       110,        87,        70,        56,        45,
10191  /*  15 */        36,        29,        23,        18,        15,
10192 };
10193 
10194 /*
10195  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10196  *
10197  * In cases where the weight does not change often, we can use the
10198  * pre-calculated inverse to speed up arithmetics by turning divisions
10199  * into multiplications:
10200  */
10201 const u32 sched_prio_to_wmult[40] = {
10202  /* -20 */     48388,     59856,     76040,     92818,    118348,
10203  /* -15 */    147320,    184698,    229616,    287308,    360437,
10204  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10205  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10206  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10207  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10208  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10209  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10210 };
10211 
10212 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10213 {
10214         trace_sched_update_nr_running_tp(rq, count);
10215 }
10216 
10217 #ifdef CONFIG_SCHED_MM_CID
10218 
10219 /*
10220  * @cid_lock: Guarantee forward-progress of cid allocation.
10221  *
10222  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10223  * is only used when contention is detected by the lock-free allocation so
10224  * forward progress can be guaranteed.
10225  */
10226 DEFINE_RAW_SPINLOCK(cid_lock);
10227 
10228 /*
10229  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10230  *
10231  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10232  * detected, it is set to 1 to ensure that all newly coming allocations are
10233  * serialized by @cid_lock until the allocation which detected contention
10234  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10235  * of a cid allocation.
10236  */
10237 int use_cid_lock;
10238 
10239 /*
10240  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10241  * concurrently with respect to the execution of the source runqueue context
10242  * switch.
10243  *
10244  * There is one basic properties we want to guarantee here:
10245  *
10246  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10247  * used by a task. That would lead to concurrent allocation of the cid and
10248  * userspace corruption.
10249  *
10250  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10251  * that a pair of loads observe at least one of a pair of stores, which can be
10252  * shown as:
10253  *
10254  *      X = Y = 0
10255  *
10256  *      w[X]=1          w[Y]=1
10257  *      MB              MB
10258  *      r[Y]=y          r[X]=x
10259  *
10260  * Which guarantees that x==0 && y==0 is impossible. But rather than using
10261  * values 0 and 1, this algorithm cares about specific state transitions of the
10262  * runqueue current task (as updated by the scheduler context switch), and the
10263  * per-mm/cpu cid value.
10264  *
10265  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10266  * task->mm != mm for the rest of the discussion. There are two scheduler state
10267  * transitions on context switch we care about:
10268  *
10269  * (TSA) Store to rq->curr with transition from (N) to (Y)
10270  *
10271  * (TSB) Store to rq->curr with transition from (Y) to (N)
10272  *
10273  * On the remote-clear side, there is one transition we care about:
10274  *
10275  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10276  *
10277  * There is also a transition to UNSET state which can be performed from all
10278  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10279  * guarantees that only a single thread will succeed:
10280  *
10281  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10282  *
10283  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10284  * when a thread is actively using the cid (property (1)).
10285  *
10286  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10287  *
10288  * Scenario A) (TSA)+(TMA) (from next task perspective)
10289  *
10290  * CPU0                                      CPU1
10291  *
10292  * Context switch CS-1                       Remote-clear
10293  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10294  *                                             (implied barrier after cmpxchg)
10295  *   - switch_mm_cid()
10296  *     - memory barrier (see switch_mm_cid()
10297  *       comment explaining how this barrier
10298  *       is combined with other scheduler
10299  *       barriers)
10300  *     - mm_cid_get (next)
10301  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10302  *
10303  * This Dekker ensures that either task (Y) is observed by the
10304  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10305  * observed.
10306  *
10307  * If task (Y) store is observed by rcu_dereference(), it means that there is
10308  * still an active task on the cpu. Remote-clear will therefore not transition
10309  * to UNSET, which fulfills property (1).
10310  *
10311  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10312  * it will move its state to UNSET, which clears the percpu cid perhaps
10313  * uselessly (which is not an issue for correctness). Because task (Y) is not
10314  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10315  * state to UNSET is done with a cmpxchg expecting that the old state has the
10316  * LAZY flag set, only one thread will successfully UNSET.
10317  *
10318  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10319  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10320  * CPU1 will observe task (Y) and do nothing more, which is fine.
10321  *
10322  * What we are effectively preventing with this Dekker is a scenario where
10323  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10324  * because this would UNSET a cid which is actively used.
10325  */
10326 
10327 void sched_mm_cid_migrate_from(struct task_struct *t)
10328 {
10329 	t->migrate_from_cpu = task_cpu(t);
10330 }
10331 
10332 static
10333 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10334 					  struct task_struct *t,
10335 					  struct mm_cid *src_pcpu_cid)
10336 {
10337 	struct mm_struct *mm = t->mm;
10338 	struct task_struct *src_task;
10339 	int src_cid, last_mm_cid;
10340 
10341 	if (!mm)
10342 		return -1;
10343 
10344 	last_mm_cid = t->last_mm_cid;
10345 	/*
10346 	 * If the migrated task has no last cid, or if the current
10347 	 * task on src rq uses the cid, it means the source cid does not need
10348 	 * to be moved to the destination cpu.
10349 	 */
10350 	if (last_mm_cid == -1)
10351 		return -1;
10352 	src_cid = READ_ONCE(src_pcpu_cid->cid);
10353 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10354 		return -1;
10355 
10356 	/*
10357 	 * If we observe an active task using the mm on this rq, it means we
10358 	 * are not the last task to be migrated from this cpu for this mm, so
10359 	 * there is no need to move src_cid to the destination cpu.
10360 	 */
10361 	guard(rcu)();
10362 	src_task = rcu_dereference(src_rq->curr);
10363 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10364 		t->last_mm_cid = -1;
10365 		return -1;
10366 	}
10367 
10368 	return src_cid;
10369 }
10370 
10371 static
10372 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10373 					      struct task_struct *t,
10374 					      struct mm_cid *src_pcpu_cid,
10375 					      int src_cid)
10376 {
10377 	struct task_struct *src_task;
10378 	struct mm_struct *mm = t->mm;
10379 	int lazy_cid;
10380 
10381 	if (src_cid == -1)
10382 		return -1;
10383 
10384 	/*
10385 	 * Attempt to clear the source cpu cid to move it to the destination
10386 	 * cpu.
10387 	 */
10388 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10389 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10390 		return -1;
10391 
10392 	/*
10393 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10394 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10395 	 * between store to rq->curr and load of prev and next task's
10396 	 * per-mm/cpu cid.
10397 	 *
10398 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10399 	 * rq->curr->mm_cid_active matches the barrier in
10400 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10401 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10402 	 * load of per-mm/cpu cid.
10403 	 */
10404 
10405 	/*
10406 	 * If we observe an active task using the mm on this rq after setting
10407 	 * the lazy-put flag, this task will be responsible for transitioning
10408 	 * from lazy-put flag set to MM_CID_UNSET.
10409 	 */
10410 	scoped_guard (rcu) {
10411 		src_task = rcu_dereference(src_rq->curr);
10412 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10413 			/*
10414 			 * We observed an active task for this mm, there is therefore
10415 			 * no point in moving this cid to the destination cpu.
10416 			 */
10417 			t->last_mm_cid = -1;
10418 			return -1;
10419 		}
10420 	}
10421 
10422 	/*
10423 	 * The src_cid is unused, so it can be unset.
10424 	 */
10425 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10426 		return -1;
10427 	WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10428 	return src_cid;
10429 }
10430 
10431 /*
10432  * Migration to dst cpu. Called with dst_rq lock held.
10433  * Interrupts are disabled, which keeps the window of cid ownership without the
10434  * source rq lock held small.
10435  */
10436 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10437 {
10438 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10439 	struct mm_struct *mm = t->mm;
10440 	int src_cid, src_cpu;
10441 	bool dst_cid_is_set;
10442 	struct rq *src_rq;
10443 
10444 	lockdep_assert_rq_held(dst_rq);
10445 
10446 	if (!mm)
10447 		return;
10448 	src_cpu = t->migrate_from_cpu;
10449 	if (src_cpu == -1) {
10450 		t->last_mm_cid = -1;
10451 		return;
10452 	}
10453 	/*
10454 	 * Move the src cid if the dst cid is unset. This keeps id
10455 	 * allocation closest to 0 in cases where few threads migrate around
10456 	 * many CPUs.
10457 	 *
10458 	 * If destination cid or recent cid is already set, we may have
10459 	 * to just clear the src cid to ensure compactness in frequent
10460 	 * migrations scenarios.
10461 	 *
10462 	 * It is not useful to clear the src cid when the number of threads is
10463 	 * greater or equal to the number of allowed CPUs, because user-space
10464 	 * can expect that the number of allowed cids can reach the number of
10465 	 * allowed CPUs.
10466 	 */
10467 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10468 	dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10469 			 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10470 	if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10471 		return;
10472 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10473 	src_rq = cpu_rq(src_cpu);
10474 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10475 	if (src_cid == -1)
10476 		return;
10477 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10478 							    src_cid);
10479 	if (src_cid == -1)
10480 		return;
10481 	if (dst_cid_is_set) {
10482 		__mm_cid_put(mm, src_cid);
10483 		return;
10484 	}
10485 	/* Move src_cid to dst cpu. */
10486 	mm_cid_snapshot_time(dst_rq, mm);
10487 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10488 	WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10489 }
10490 
10491 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10492 				      int cpu)
10493 {
10494 	struct rq *rq = cpu_rq(cpu);
10495 	struct task_struct *t;
10496 	int cid, lazy_cid;
10497 
10498 	cid = READ_ONCE(pcpu_cid->cid);
10499 	if (!mm_cid_is_valid(cid))
10500 		return;
10501 
10502 	/*
10503 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10504 	 * there happens to be other tasks left on the source cpu using this
10505 	 * mm, the next task using this mm will reallocate its cid on context
10506 	 * switch.
10507 	 */
10508 	lazy_cid = mm_cid_set_lazy_put(cid);
10509 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10510 		return;
10511 
10512 	/*
10513 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10514 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10515 	 * between store to rq->curr and load of prev and next task's
10516 	 * per-mm/cpu cid.
10517 	 *
10518 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10519 	 * rq->curr->mm_cid_active matches the barrier in
10520 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10521 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10522 	 * load of per-mm/cpu cid.
10523 	 */
10524 
10525 	/*
10526 	 * If we observe an active task using the mm on this rq after setting
10527 	 * the lazy-put flag, that task will be responsible for transitioning
10528 	 * from lazy-put flag set to MM_CID_UNSET.
10529 	 */
10530 	scoped_guard (rcu) {
10531 		t = rcu_dereference(rq->curr);
10532 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10533 			return;
10534 	}
10535 
10536 	/*
10537 	 * The cid is unused, so it can be unset.
10538 	 * Disable interrupts to keep the window of cid ownership without rq
10539 	 * lock small.
10540 	 */
10541 	scoped_guard (irqsave) {
10542 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10543 			__mm_cid_put(mm, cid);
10544 	}
10545 }
10546 
10547 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10548 {
10549 	struct rq *rq = cpu_rq(cpu);
10550 	struct mm_cid *pcpu_cid;
10551 	struct task_struct *curr;
10552 	u64 rq_clock;
10553 
10554 	/*
10555 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10556 	 * while is irrelevant.
10557 	 */
10558 	rq_clock = READ_ONCE(rq->clock);
10559 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10560 
10561 	/*
10562 	 * In order to take care of infrequently scheduled tasks, bump the time
10563 	 * snapshot associated with this cid if an active task using the mm is
10564 	 * observed on this rq.
10565 	 */
10566 	scoped_guard (rcu) {
10567 		curr = rcu_dereference(rq->curr);
10568 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10569 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10570 			return;
10571 		}
10572 	}
10573 
10574 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10575 		return;
10576 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10577 }
10578 
10579 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10580 					     int weight)
10581 {
10582 	struct mm_cid *pcpu_cid;
10583 	int cid;
10584 
10585 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10586 	cid = READ_ONCE(pcpu_cid->cid);
10587 	if (!mm_cid_is_valid(cid) || cid < weight)
10588 		return;
10589 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10590 }
10591 
10592 static void task_mm_cid_work(struct callback_head *work)
10593 {
10594 	unsigned long now = jiffies, old_scan, next_scan;
10595 	struct task_struct *t = current;
10596 	struct cpumask *cidmask;
10597 	struct mm_struct *mm;
10598 	int weight, cpu;
10599 
10600 	WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work));
10601 
10602 	work->next = work;	/* Prevent double-add */
10603 	if (t->flags & PF_EXITING)
10604 		return;
10605 	mm = t->mm;
10606 	if (!mm)
10607 		return;
10608 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10609 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10610 	if (!old_scan) {
10611 		unsigned long res;
10612 
10613 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10614 		if (res != old_scan)
10615 			old_scan = res;
10616 		else
10617 			old_scan = next_scan;
10618 	}
10619 	if (time_before(now, old_scan))
10620 		return;
10621 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10622 		return;
10623 	cidmask = mm_cidmask(mm);
10624 	/* Clear cids that were not recently used. */
10625 	for_each_possible_cpu(cpu)
10626 		sched_mm_cid_remote_clear_old(mm, cpu);
10627 	weight = cpumask_weight(cidmask);
10628 	/*
10629 	 * Clear cids that are greater or equal to the cidmask weight to
10630 	 * recompact it.
10631 	 */
10632 	for_each_possible_cpu(cpu)
10633 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10634 }
10635 
10636 void init_sched_mm_cid(struct task_struct *t)
10637 {
10638 	struct mm_struct *mm = t->mm;
10639 	int mm_users = 0;
10640 
10641 	if (mm) {
10642 		mm_users = atomic_read(&mm->mm_users);
10643 		if (mm_users == 1)
10644 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10645 	}
10646 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10647 	init_task_work(&t->cid_work, task_mm_cid_work);
10648 }
10649 
10650 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10651 {
10652 	struct callback_head *work = &curr->cid_work;
10653 	unsigned long now = jiffies;
10654 
10655 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10656 	    work->next != work)
10657 		return;
10658 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10659 		return;
10660 
10661 	/* No page allocation under rq lock */
10662 	task_work_add(curr, work, TWA_RESUME);
10663 }
10664 
10665 void sched_mm_cid_exit_signals(struct task_struct *t)
10666 {
10667 	struct mm_struct *mm = t->mm;
10668 	struct rq *rq;
10669 
10670 	if (!mm)
10671 		return;
10672 
10673 	preempt_disable();
10674 	rq = this_rq();
10675 	guard(rq_lock_irqsave)(rq);
10676 	preempt_enable_no_resched();	/* holding spinlock */
10677 	WRITE_ONCE(t->mm_cid_active, 0);
10678 	/*
10679 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10680 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10681 	 */
10682 	smp_mb();
10683 	mm_cid_put(mm);
10684 	t->last_mm_cid = t->mm_cid = -1;
10685 }
10686 
10687 void sched_mm_cid_before_execve(struct task_struct *t)
10688 {
10689 	struct mm_struct *mm = t->mm;
10690 	struct rq *rq;
10691 
10692 	if (!mm)
10693 		return;
10694 
10695 	preempt_disable();
10696 	rq = this_rq();
10697 	guard(rq_lock_irqsave)(rq);
10698 	preempt_enable_no_resched();	/* holding spinlock */
10699 	WRITE_ONCE(t->mm_cid_active, 0);
10700 	/*
10701 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10702 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10703 	 */
10704 	smp_mb();
10705 	mm_cid_put(mm);
10706 	t->last_mm_cid = t->mm_cid = -1;
10707 }
10708 
10709 void sched_mm_cid_after_execve(struct task_struct *t)
10710 {
10711 	struct mm_struct *mm = t->mm;
10712 	struct rq *rq;
10713 
10714 	if (!mm)
10715 		return;
10716 
10717 	preempt_disable();
10718 	rq = this_rq();
10719 	scoped_guard (rq_lock_irqsave, rq) {
10720 		preempt_enable_no_resched();	/* holding spinlock */
10721 		WRITE_ONCE(t->mm_cid_active, 1);
10722 		/*
10723 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10724 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10725 		 */
10726 		smp_mb();
10727 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10728 	}
10729 }
10730 
10731 void sched_mm_cid_fork(struct task_struct *t)
10732 {
10733 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10734 	t->mm_cid_active = 1;
10735 }
10736 #endif
10737 
10738 #ifdef CONFIG_SCHED_CLASS_EXT
10739 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10740 			    struct sched_enq_and_set_ctx *ctx)
10741 {
10742 	struct rq *rq = task_rq(p);
10743 
10744 	lockdep_assert_rq_held(rq);
10745 
10746 	*ctx = (struct sched_enq_and_set_ctx){
10747 		.p = p,
10748 		.queue_flags = queue_flags,
10749 		.queued = task_on_rq_queued(p),
10750 		.running = task_current(rq, p),
10751 	};
10752 
10753 	update_rq_clock(rq);
10754 	if (ctx->queued)
10755 		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10756 	if (ctx->running)
10757 		put_prev_task(rq, p);
10758 }
10759 
10760 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10761 {
10762 	struct rq *rq = task_rq(ctx->p);
10763 
10764 	lockdep_assert_rq_held(rq);
10765 
10766 	if (ctx->queued)
10767 		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10768 	if (ctx->running)
10769 		set_next_task(rq, ctx->p);
10770 }
10771 #endif	/* CONFIG_SCHED_CLASS_EXT */
10772