1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 #include <linux/livepatch_sched.h> 70 71 #ifdef CONFIG_PREEMPT_DYNAMIC 72 # ifdef CONFIG_GENERIC_ENTRY 73 # include <linux/entry-common.h> 74 # endif 75 #endif 76 77 #include <uapi/linux/sched/types.h> 78 79 #include <asm/irq_regs.h> 80 #include <asm/switch_to.h> 81 #include <asm/tlb.h> 82 83 #define CREATE_TRACE_POINTS 84 #include <linux/sched/rseq_api.h> 85 #include <trace/events/sched.h> 86 #include <trace/events/ipi.h> 87 #undef CREATE_TRACE_POINTS 88 89 #include "sched.h" 90 #include "stats.h" 91 92 #include "autogroup.h" 93 #include "pelt.h" 94 #include "smp.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 102 103 /* 104 * Export tracepoints that act as a bare tracehook (ie: have no trace event 105 * associated with them) to allow external modules to probe them. 106 */ 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 119 120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 121 122 /* 123 * Debugging: various feature bits 124 * 125 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 126 * sysctl_sched_features, defined in sched.h, to allow constants propagation 127 * at compile time and compiler optimization based on features default. 128 */ 129 #define SCHED_FEAT(name, enabled) \ 130 (1UL << __SCHED_FEAT_##name) * enabled | 131 __read_mostly unsigned int sysctl_sched_features = 132 #include "features.h" 133 0; 134 #undef SCHED_FEAT 135 136 /* 137 * Print a warning if need_resched is set for the given duration (if 138 * LATENCY_WARN is enabled). 139 * 140 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 141 * per boot. 142 */ 143 __read_mostly int sysctl_resched_latency_warn_ms = 100; 144 __read_mostly int sysctl_resched_latency_warn_once = 1; 145 146 /* 147 * Number of tasks to iterate in a single balance run. 148 * Limited because this is done with IRQs disabled. 149 */ 150 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 151 152 __read_mostly int scheduler_running; 153 154 #ifdef CONFIG_SCHED_CORE 155 156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 157 158 /* kernel prio, less is more */ 159 static inline int __task_prio(const struct task_struct *p) 160 { 161 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 162 return -2; 163 164 if (p->dl_server) 165 return -1; /* deadline */ 166 167 if (rt_or_dl_prio(p->prio)) 168 return p->prio; /* [-1, 99] */ 169 170 if (p->sched_class == &idle_sched_class) 171 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 172 173 if (task_on_scx(p)) 174 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 175 176 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 177 } 178 179 /* 180 * l(a,b) 181 * le(a,b) := !l(b,a) 182 * g(a,b) := l(b,a) 183 * ge(a,b) := !l(a,b) 184 */ 185 186 /* real prio, less is less */ 187 static inline bool prio_less(const struct task_struct *a, 188 const struct task_struct *b, bool in_fi) 189 { 190 191 int pa = __task_prio(a), pb = __task_prio(b); 192 193 if (-pa < -pb) 194 return true; 195 196 if (-pb < -pa) 197 return false; 198 199 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 200 const struct sched_dl_entity *a_dl, *b_dl; 201 202 a_dl = &a->dl; 203 /* 204 * Since,'a' and 'b' can be CFS tasks served by DL server, 205 * __task_prio() can return -1 (for DL) even for those. In that 206 * case, get to the dl_server's DL entity. 207 */ 208 if (a->dl_server) 209 a_dl = a->dl_server; 210 211 b_dl = &b->dl; 212 if (b->dl_server) 213 b_dl = b->dl_server; 214 215 return !dl_time_before(a_dl->deadline, b_dl->deadline); 216 } 217 218 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 219 return cfs_prio_less(a, b, in_fi); 220 221 #ifdef CONFIG_SCHED_CLASS_EXT 222 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 223 return scx_prio_less(a, b, in_fi); 224 #endif 225 226 return false; 227 } 228 229 static inline bool __sched_core_less(const struct task_struct *a, 230 const struct task_struct *b) 231 { 232 if (a->core_cookie < b->core_cookie) 233 return true; 234 235 if (a->core_cookie > b->core_cookie) 236 return false; 237 238 /* flip prio, so high prio is leftmost */ 239 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 240 return true; 241 242 return false; 243 } 244 245 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 246 247 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 248 { 249 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 250 } 251 252 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 253 { 254 const struct task_struct *p = __node_2_sc(node); 255 unsigned long cookie = (unsigned long)key; 256 257 if (cookie < p->core_cookie) 258 return -1; 259 260 if (cookie > p->core_cookie) 261 return 1; 262 263 return 0; 264 } 265 266 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 267 { 268 if (p->se.sched_delayed) 269 return; 270 271 rq->core->core_task_seq++; 272 273 if (!p->core_cookie) 274 return; 275 276 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 277 } 278 279 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 280 { 281 if (p->se.sched_delayed) 282 return; 283 284 rq->core->core_task_seq++; 285 286 if (sched_core_enqueued(p)) { 287 rb_erase(&p->core_node, &rq->core_tree); 288 RB_CLEAR_NODE(&p->core_node); 289 } 290 291 /* 292 * Migrating the last task off the cpu, with the cpu in forced idle 293 * state. Reschedule to create an accounting edge for forced idle, 294 * and re-examine whether the core is still in forced idle state. 295 */ 296 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 297 rq->core->core_forceidle_count && rq->curr == rq->idle) 298 resched_curr(rq); 299 } 300 301 static int sched_task_is_throttled(struct task_struct *p, int cpu) 302 { 303 if (p->sched_class->task_is_throttled) 304 return p->sched_class->task_is_throttled(p, cpu); 305 306 return 0; 307 } 308 309 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 310 { 311 struct rb_node *node = &p->core_node; 312 int cpu = task_cpu(p); 313 314 do { 315 node = rb_next(node); 316 if (!node) 317 return NULL; 318 319 p = __node_2_sc(node); 320 if (p->core_cookie != cookie) 321 return NULL; 322 323 } while (sched_task_is_throttled(p, cpu)); 324 325 return p; 326 } 327 328 /* 329 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 330 * If no suitable task is found, NULL will be returned. 331 */ 332 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 333 { 334 struct task_struct *p; 335 struct rb_node *node; 336 337 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 338 if (!node) 339 return NULL; 340 341 p = __node_2_sc(node); 342 if (!sched_task_is_throttled(p, rq->cpu)) 343 return p; 344 345 return sched_core_next(p, cookie); 346 } 347 348 /* 349 * Magic required such that: 350 * 351 * raw_spin_rq_lock(rq); 352 * ... 353 * raw_spin_rq_unlock(rq); 354 * 355 * ends up locking and unlocking the _same_ lock, and all CPUs 356 * always agree on what rq has what lock. 357 * 358 * XXX entirely possible to selectively enable cores, don't bother for now. 359 */ 360 361 static DEFINE_MUTEX(sched_core_mutex); 362 static atomic_t sched_core_count; 363 static struct cpumask sched_core_mask; 364 365 static void sched_core_lock(int cpu, unsigned long *flags) 366 { 367 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 368 int t, i = 0; 369 370 local_irq_save(*flags); 371 for_each_cpu(t, smt_mask) 372 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 373 } 374 375 static void sched_core_unlock(int cpu, unsigned long *flags) 376 { 377 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 378 int t; 379 380 for_each_cpu(t, smt_mask) 381 raw_spin_unlock(&cpu_rq(t)->__lock); 382 local_irq_restore(*flags); 383 } 384 385 static void __sched_core_flip(bool enabled) 386 { 387 unsigned long flags; 388 int cpu, t; 389 390 cpus_read_lock(); 391 392 /* 393 * Toggle the online cores, one by one. 394 */ 395 cpumask_copy(&sched_core_mask, cpu_online_mask); 396 for_each_cpu(cpu, &sched_core_mask) { 397 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 398 399 sched_core_lock(cpu, &flags); 400 401 for_each_cpu(t, smt_mask) 402 cpu_rq(t)->core_enabled = enabled; 403 404 cpu_rq(cpu)->core->core_forceidle_start = 0; 405 406 sched_core_unlock(cpu, &flags); 407 408 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 409 } 410 411 /* 412 * Toggle the offline CPUs. 413 */ 414 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 415 cpu_rq(cpu)->core_enabled = enabled; 416 417 cpus_read_unlock(); 418 } 419 420 static void sched_core_assert_empty(void) 421 { 422 int cpu; 423 424 for_each_possible_cpu(cpu) 425 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 426 } 427 428 static void __sched_core_enable(void) 429 { 430 static_branch_enable(&__sched_core_enabled); 431 /* 432 * Ensure all previous instances of raw_spin_rq_*lock() have finished 433 * and future ones will observe !sched_core_disabled(). 434 */ 435 synchronize_rcu(); 436 __sched_core_flip(true); 437 sched_core_assert_empty(); 438 } 439 440 static void __sched_core_disable(void) 441 { 442 sched_core_assert_empty(); 443 __sched_core_flip(false); 444 static_branch_disable(&__sched_core_enabled); 445 } 446 447 void sched_core_get(void) 448 { 449 if (atomic_inc_not_zero(&sched_core_count)) 450 return; 451 452 mutex_lock(&sched_core_mutex); 453 if (!atomic_read(&sched_core_count)) 454 __sched_core_enable(); 455 456 smp_mb__before_atomic(); 457 atomic_inc(&sched_core_count); 458 mutex_unlock(&sched_core_mutex); 459 } 460 461 static void __sched_core_put(struct work_struct *work) 462 { 463 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 464 __sched_core_disable(); 465 mutex_unlock(&sched_core_mutex); 466 } 467 } 468 469 void sched_core_put(void) 470 { 471 static DECLARE_WORK(_work, __sched_core_put); 472 473 /* 474 * "There can be only one" 475 * 476 * Either this is the last one, or we don't actually need to do any 477 * 'work'. If it is the last *again*, we rely on 478 * WORK_STRUCT_PENDING_BIT. 479 */ 480 if (!atomic_add_unless(&sched_core_count, -1, 1)) 481 schedule_work(&_work); 482 } 483 484 #else /* !CONFIG_SCHED_CORE */ 485 486 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 487 static inline void 488 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 489 490 #endif /* CONFIG_SCHED_CORE */ 491 492 /* need a wrapper since we may need to trace from modules */ 493 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp); 494 495 /* Call via the helper macro trace_set_current_state. */ 496 void __trace_set_current_state(int state_value) 497 { 498 trace_sched_set_state_tp(current, state_value); 499 } 500 EXPORT_SYMBOL(__trace_set_current_state); 501 502 /* 503 * Serialization rules: 504 * 505 * Lock order: 506 * 507 * p->pi_lock 508 * rq->lock 509 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 510 * 511 * rq1->lock 512 * rq2->lock where: rq1 < rq2 513 * 514 * Regular state: 515 * 516 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 517 * local CPU's rq->lock, it optionally removes the task from the runqueue and 518 * always looks at the local rq data structures to find the most eligible task 519 * to run next. 520 * 521 * Task enqueue is also under rq->lock, possibly taken from another CPU. 522 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 523 * the local CPU to avoid bouncing the runqueue state around [ see 524 * ttwu_queue_wakelist() ] 525 * 526 * Task wakeup, specifically wakeups that involve migration, are horribly 527 * complicated to avoid having to take two rq->locks. 528 * 529 * Special state: 530 * 531 * System-calls and anything external will use task_rq_lock() which acquires 532 * both p->pi_lock and rq->lock. As a consequence the state they change is 533 * stable while holding either lock: 534 * 535 * - sched_setaffinity()/ 536 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 537 * - set_user_nice(): p->se.load, p->*prio 538 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 539 * p->se.load, p->rt_priority, 540 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 541 * - sched_setnuma(): p->numa_preferred_nid 542 * - sched_move_task(): p->sched_task_group 543 * - uclamp_update_active() p->uclamp* 544 * 545 * p->state <- TASK_*: 546 * 547 * is changed locklessly using set_current_state(), __set_current_state() or 548 * set_special_state(), see their respective comments, or by 549 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 550 * concurrent self. 551 * 552 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 553 * 554 * is set by activate_task() and cleared by deactivate_task(), under 555 * rq->lock. Non-zero indicates the task is runnable, the special 556 * ON_RQ_MIGRATING state is used for migration without holding both 557 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 558 * 559 * Additionally it is possible to be ->on_rq but still be considered not 560 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 561 * but will be dequeued as soon as they get picked again. See the 562 * task_is_runnable() helper. 563 * 564 * p->on_cpu <- { 0, 1 }: 565 * 566 * is set by prepare_task() and cleared by finish_task() such that it will be 567 * set before p is scheduled-in and cleared after p is scheduled-out, both 568 * under rq->lock. Non-zero indicates the task is running on its CPU. 569 * 570 * [ The astute reader will observe that it is possible for two tasks on one 571 * CPU to have ->on_cpu = 1 at the same time. ] 572 * 573 * task_cpu(p): is changed by set_task_cpu(), the rules are: 574 * 575 * - Don't call set_task_cpu() on a blocked task: 576 * 577 * We don't care what CPU we're not running on, this simplifies hotplug, 578 * the CPU assignment of blocked tasks isn't required to be valid. 579 * 580 * - for try_to_wake_up(), called under p->pi_lock: 581 * 582 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 583 * 584 * - for migration called under rq->lock: 585 * [ see task_on_rq_migrating() in task_rq_lock() ] 586 * 587 * o move_queued_task() 588 * o detach_task() 589 * 590 * - for migration called under double_rq_lock(): 591 * 592 * o __migrate_swap_task() 593 * o push_rt_task() / pull_rt_task() 594 * o push_dl_task() / pull_dl_task() 595 * o dl_task_offline_migration() 596 * 597 */ 598 599 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 600 { 601 raw_spinlock_t *lock; 602 603 /* Matches synchronize_rcu() in __sched_core_enable() */ 604 preempt_disable(); 605 if (sched_core_disabled()) { 606 raw_spin_lock_nested(&rq->__lock, subclass); 607 /* preempt_count *MUST* be > 1 */ 608 preempt_enable_no_resched(); 609 return; 610 } 611 612 for (;;) { 613 lock = __rq_lockp(rq); 614 raw_spin_lock_nested(lock, subclass); 615 if (likely(lock == __rq_lockp(rq))) { 616 /* preempt_count *MUST* be > 1 */ 617 preempt_enable_no_resched(); 618 return; 619 } 620 raw_spin_unlock(lock); 621 } 622 } 623 624 bool raw_spin_rq_trylock(struct rq *rq) 625 { 626 raw_spinlock_t *lock; 627 bool ret; 628 629 /* Matches synchronize_rcu() in __sched_core_enable() */ 630 preempt_disable(); 631 if (sched_core_disabled()) { 632 ret = raw_spin_trylock(&rq->__lock); 633 preempt_enable(); 634 return ret; 635 } 636 637 for (;;) { 638 lock = __rq_lockp(rq); 639 ret = raw_spin_trylock(lock); 640 if (!ret || (likely(lock == __rq_lockp(rq)))) { 641 preempt_enable(); 642 return ret; 643 } 644 raw_spin_unlock(lock); 645 } 646 } 647 648 void raw_spin_rq_unlock(struct rq *rq) 649 { 650 raw_spin_unlock(rq_lockp(rq)); 651 } 652 653 #ifdef CONFIG_SMP 654 /* 655 * double_rq_lock - safely lock two runqueues 656 */ 657 void double_rq_lock(struct rq *rq1, struct rq *rq2) 658 { 659 lockdep_assert_irqs_disabled(); 660 661 if (rq_order_less(rq2, rq1)) 662 swap(rq1, rq2); 663 664 raw_spin_rq_lock(rq1); 665 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 666 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 667 668 double_rq_clock_clear_update(rq1, rq2); 669 } 670 #endif 671 672 /* 673 * __task_rq_lock - lock the rq @p resides on. 674 */ 675 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 676 __acquires(rq->lock) 677 { 678 struct rq *rq; 679 680 lockdep_assert_held(&p->pi_lock); 681 682 for (;;) { 683 rq = task_rq(p); 684 raw_spin_rq_lock(rq); 685 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 686 rq_pin_lock(rq, rf); 687 return rq; 688 } 689 raw_spin_rq_unlock(rq); 690 691 while (unlikely(task_on_rq_migrating(p))) 692 cpu_relax(); 693 } 694 } 695 696 /* 697 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 698 */ 699 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 700 __acquires(p->pi_lock) 701 __acquires(rq->lock) 702 { 703 struct rq *rq; 704 705 for (;;) { 706 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 707 rq = task_rq(p); 708 raw_spin_rq_lock(rq); 709 /* 710 * move_queued_task() task_rq_lock() 711 * 712 * ACQUIRE (rq->lock) 713 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 714 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 715 * [S] ->cpu = new_cpu [L] task_rq() 716 * [L] ->on_rq 717 * RELEASE (rq->lock) 718 * 719 * If we observe the old CPU in task_rq_lock(), the acquire of 720 * the old rq->lock will fully serialize against the stores. 721 * 722 * If we observe the new CPU in task_rq_lock(), the address 723 * dependency headed by '[L] rq = task_rq()' and the acquire 724 * will pair with the WMB to ensure we then also see migrating. 725 */ 726 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 727 rq_pin_lock(rq, rf); 728 return rq; 729 } 730 raw_spin_rq_unlock(rq); 731 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 732 733 while (unlikely(task_on_rq_migrating(p))) 734 cpu_relax(); 735 } 736 } 737 738 /* 739 * RQ-clock updating methods: 740 */ 741 742 static void update_rq_clock_task(struct rq *rq, s64 delta) 743 { 744 /* 745 * In theory, the compile should just see 0 here, and optimize out the call 746 * to sched_rt_avg_update. But I don't trust it... 747 */ 748 s64 __maybe_unused steal = 0, irq_delta = 0; 749 750 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 751 if (irqtime_enabled()) { 752 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 753 754 /* 755 * Since irq_time is only updated on {soft,}irq_exit, we might run into 756 * this case when a previous update_rq_clock() happened inside a 757 * {soft,}IRQ region. 758 * 759 * When this happens, we stop ->clock_task and only update the 760 * prev_irq_time stamp to account for the part that fit, so that a next 761 * update will consume the rest. This ensures ->clock_task is 762 * monotonic. 763 * 764 * It does however cause some slight miss-attribution of {soft,}IRQ 765 * time, a more accurate solution would be to update the irq_time using 766 * the current rq->clock timestamp, except that would require using 767 * atomic ops. 768 */ 769 if (irq_delta > delta) 770 irq_delta = delta; 771 772 rq->prev_irq_time += irq_delta; 773 delta -= irq_delta; 774 delayacct_irq(rq->curr, irq_delta); 775 } 776 #endif 777 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 778 if (static_key_false((¶virt_steal_rq_enabled))) { 779 u64 prev_steal; 780 781 steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); 782 steal -= rq->prev_steal_time_rq; 783 784 if (unlikely(steal > delta)) 785 steal = delta; 786 787 rq->prev_steal_time_rq = prev_steal; 788 delta -= steal; 789 } 790 #endif 791 792 rq->clock_task += delta; 793 794 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 795 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 796 update_irq_load_avg(rq, irq_delta + steal); 797 #endif 798 update_rq_clock_pelt(rq, delta); 799 } 800 801 void update_rq_clock(struct rq *rq) 802 { 803 s64 delta; 804 u64 clock; 805 806 lockdep_assert_rq_held(rq); 807 808 if (rq->clock_update_flags & RQCF_ACT_SKIP) 809 return; 810 811 if (sched_feat(WARN_DOUBLE_CLOCK)) 812 WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED); 813 rq->clock_update_flags |= RQCF_UPDATED; 814 815 clock = sched_clock_cpu(cpu_of(rq)); 816 scx_rq_clock_update(rq, clock); 817 818 delta = clock - rq->clock; 819 if (delta < 0) 820 return; 821 rq->clock += delta; 822 823 update_rq_clock_task(rq, delta); 824 } 825 826 #ifdef CONFIG_SCHED_HRTICK 827 /* 828 * Use HR-timers to deliver accurate preemption points. 829 */ 830 831 static void hrtick_clear(struct rq *rq) 832 { 833 if (hrtimer_active(&rq->hrtick_timer)) 834 hrtimer_cancel(&rq->hrtick_timer); 835 } 836 837 /* 838 * High-resolution timer tick. 839 * Runs from hardirq context with interrupts disabled. 840 */ 841 static enum hrtimer_restart hrtick(struct hrtimer *timer) 842 { 843 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 844 struct rq_flags rf; 845 846 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 847 848 rq_lock(rq, &rf); 849 update_rq_clock(rq); 850 rq->donor->sched_class->task_tick(rq, rq->curr, 1); 851 rq_unlock(rq, &rf); 852 853 return HRTIMER_NORESTART; 854 } 855 856 #ifdef CONFIG_SMP 857 858 static void __hrtick_restart(struct rq *rq) 859 { 860 struct hrtimer *timer = &rq->hrtick_timer; 861 ktime_t time = rq->hrtick_time; 862 863 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 864 } 865 866 /* 867 * called from hardirq (IPI) context 868 */ 869 static void __hrtick_start(void *arg) 870 { 871 struct rq *rq = arg; 872 struct rq_flags rf; 873 874 rq_lock(rq, &rf); 875 __hrtick_restart(rq); 876 rq_unlock(rq, &rf); 877 } 878 879 /* 880 * Called to set the hrtick timer state. 881 * 882 * called with rq->lock held and IRQs disabled 883 */ 884 void hrtick_start(struct rq *rq, u64 delay) 885 { 886 struct hrtimer *timer = &rq->hrtick_timer; 887 s64 delta; 888 889 /* 890 * Don't schedule slices shorter than 10000ns, that just 891 * doesn't make sense and can cause timer DoS. 892 */ 893 delta = max_t(s64, delay, 10000LL); 894 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 895 896 if (rq == this_rq()) 897 __hrtick_restart(rq); 898 else 899 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 900 } 901 902 #else 903 /* 904 * Called to set the hrtick timer state. 905 * 906 * called with rq->lock held and IRQs disabled 907 */ 908 void hrtick_start(struct rq *rq, u64 delay) 909 { 910 /* 911 * Don't schedule slices shorter than 10000ns, that just 912 * doesn't make sense. Rely on vruntime for fairness. 913 */ 914 delay = max_t(u64, delay, 10000LL); 915 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 916 HRTIMER_MODE_REL_PINNED_HARD); 917 } 918 919 #endif /* CONFIG_SMP */ 920 921 static void hrtick_rq_init(struct rq *rq) 922 { 923 #ifdef CONFIG_SMP 924 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 925 #endif 926 hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 927 } 928 #else /* CONFIG_SCHED_HRTICK */ 929 static inline void hrtick_clear(struct rq *rq) 930 { 931 } 932 933 static inline void hrtick_rq_init(struct rq *rq) 934 { 935 } 936 #endif /* CONFIG_SCHED_HRTICK */ 937 938 /* 939 * try_cmpxchg based fetch_or() macro so it works for different integer types: 940 */ 941 #define fetch_or(ptr, mask) \ 942 ({ \ 943 typeof(ptr) _ptr = (ptr); \ 944 typeof(mask) _mask = (mask); \ 945 typeof(*_ptr) _val = *_ptr; \ 946 \ 947 do { \ 948 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 949 _val; \ 950 }) 951 952 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 953 /* 954 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 955 * this avoids any races wrt polling state changes and thereby avoids 956 * spurious IPIs. 957 */ 958 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 959 { 960 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); 961 } 962 963 /* 964 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 965 * 966 * If this returns true, then the idle task promises to call 967 * sched_ttwu_pending() and reschedule soon. 968 */ 969 static bool set_nr_if_polling(struct task_struct *p) 970 { 971 struct thread_info *ti = task_thread_info(p); 972 typeof(ti->flags) val = READ_ONCE(ti->flags); 973 974 do { 975 if (!(val & _TIF_POLLING_NRFLAG)) 976 return false; 977 if (val & _TIF_NEED_RESCHED) 978 return true; 979 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 980 981 return true; 982 } 983 984 #else 985 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 986 { 987 set_ti_thread_flag(ti, tif); 988 return true; 989 } 990 991 #ifdef CONFIG_SMP 992 static inline bool set_nr_if_polling(struct task_struct *p) 993 { 994 return false; 995 } 996 #endif 997 #endif 998 999 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 1000 { 1001 struct wake_q_node *node = &task->wake_q; 1002 1003 /* 1004 * Atomically grab the task, if ->wake_q is !nil already it means 1005 * it's already queued (either by us or someone else) and will get the 1006 * wakeup due to that. 1007 * 1008 * In order to ensure that a pending wakeup will observe our pending 1009 * state, even in the failed case, an explicit smp_mb() must be used. 1010 */ 1011 smp_mb__before_atomic(); 1012 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 1013 return false; 1014 1015 /* 1016 * The head is context local, there can be no concurrency. 1017 */ 1018 *head->lastp = node; 1019 head->lastp = &node->next; 1020 return true; 1021 } 1022 1023 /** 1024 * wake_q_add() - queue a wakeup for 'later' waking. 1025 * @head: the wake_q_head to add @task to 1026 * @task: the task to queue for 'later' wakeup 1027 * 1028 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1029 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1030 * instantly. 1031 * 1032 * This function must be used as-if it were wake_up_process(); IOW the task 1033 * must be ready to be woken at this location. 1034 */ 1035 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1036 { 1037 if (__wake_q_add(head, task)) 1038 get_task_struct(task); 1039 } 1040 1041 /** 1042 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1043 * @head: the wake_q_head to add @task to 1044 * @task: the task to queue for 'later' wakeup 1045 * 1046 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1047 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1048 * instantly. 1049 * 1050 * This function must be used as-if it were wake_up_process(); IOW the task 1051 * must be ready to be woken at this location. 1052 * 1053 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1054 * that already hold reference to @task can call the 'safe' version and trust 1055 * wake_q to do the right thing depending whether or not the @task is already 1056 * queued for wakeup. 1057 */ 1058 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1059 { 1060 if (!__wake_q_add(head, task)) 1061 put_task_struct(task); 1062 } 1063 1064 void wake_up_q(struct wake_q_head *head) 1065 { 1066 struct wake_q_node *node = head->first; 1067 1068 while (node != WAKE_Q_TAIL) { 1069 struct task_struct *task; 1070 1071 task = container_of(node, struct task_struct, wake_q); 1072 node = node->next; 1073 /* pairs with cmpxchg_relaxed() in __wake_q_add() */ 1074 WRITE_ONCE(task->wake_q.next, NULL); 1075 /* Task can safely be re-inserted now. */ 1076 1077 /* 1078 * wake_up_process() executes a full barrier, which pairs with 1079 * the queueing in wake_q_add() so as not to miss wakeups. 1080 */ 1081 wake_up_process(task); 1082 put_task_struct(task); 1083 } 1084 } 1085 1086 /* 1087 * resched_curr - mark rq's current task 'to be rescheduled now'. 1088 * 1089 * On UP this means the setting of the need_resched flag, on SMP it 1090 * might also involve a cross-CPU call to trigger the scheduler on 1091 * the target CPU. 1092 */ 1093 static void __resched_curr(struct rq *rq, int tif) 1094 { 1095 struct task_struct *curr = rq->curr; 1096 struct thread_info *cti = task_thread_info(curr); 1097 int cpu; 1098 1099 lockdep_assert_rq_held(rq); 1100 1101 /* 1102 * Always immediately preempt the idle task; no point in delaying doing 1103 * actual work. 1104 */ 1105 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) 1106 tif = TIF_NEED_RESCHED; 1107 1108 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) 1109 return; 1110 1111 cpu = cpu_of(rq); 1112 1113 if (cpu == smp_processor_id()) { 1114 set_ti_thread_flag(cti, tif); 1115 if (tif == TIF_NEED_RESCHED) 1116 set_preempt_need_resched(); 1117 return; 1118 } 1119 1120 if (set_nr_and_not_polling(cti, tif)) { 1121 if (tif == TIF_NEED_RESCHED) 1122 smp_send_reschedule(cpu); 1123 } else { 1124 trace_sched_wake_idle_without_ipi(cpu); 1125 } 1126 } 1127 1128 void resched_curr(struct rq *rq) 1129 { 1130 __resched_curr(rq, TIF_NEED_RESCHED); 1131 } 1132 1133 #ifdef CONFIG_PREEMPT_DYNAMIC 1134 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); 1135 static __always_inline bool dynamic_preempt_lazy(void) 1136 { 1137 return static_branch_unlikely(&sk_dynamic_preempt_lazy); 1138 } 1139 #else 1140 static __always_inline bool dynamic_preempt_lazy(void) 1141 { 1142 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 1143 } 1144 #endif 1145 1146 static __always_inline int get_lazy_tif_bit(void) 1147 { 1148 if (dynamic_preempt_lazy()) 1149 return TIF_NEED_RESCHED_LAZY; 1150 1151 return TIF_NEED_RESCHED; 1152 } 1153 1154 void resched_curr_lazy(struct rq *rq) 1155 { 1156 __resched_curr(rq, get_lazy_tif_bit()); 1157 } 1158 1159 void resched_cpu(int cpu) 1160 { 1161 struct rq *rq = cpu_rq(cpu); 1162 unsigned long flags; 1163 1164 raw_spin_rq_lock_irqsave(rq, flags); 1165 if (cpu_online(cpu) || cpu == smp_processor_id()) 1166 resched_curr(rq); 1167 raw_spin_rq_unlock_irqrestore(rq, flags); 1168 } 1169 1170 #ifdef CONFIG_SMP 1171 #ifdef CONFIG_NO_HZ_COMMON 1172 /* 1173 * In the semi idle case, use the nearest busy CPU for migrating timers 1174 * from an idle CPU. This is good for power-savings. 1175 * 1176 * We don't do similar optimization for completely idle system, as 1177 * selecting an idle CPU will add more delays to the timers than intended 1178 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1179 */ 1180 int get_nohz_timer_target(void) 1181 { 1182 int i, cpu = smp_processor_id(), default_cpu = -1; 1183 struct sched_domain *sd; 1184 const struct cpumask *hk_mask; 1185 1186 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) { 1187 if (!idle_cpu(cpu)) 1188 return cpu; 1189 default_cpu = cpu; 1190 } 1191 1192 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 1193 1194 guard(rcu)(); 1195 1196 for_each_domain(cpu, sd) { 1197 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1198 if (cpu == i) 1199 continue; 1200 1201 if (!idle_cpu(i)) 1202 return i; 1203 } 1204 } 1205 1206 if (default_cpu == -1) 1207 default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE); 1208 1209 return default_cpu; 1210 } 1211 1212 /* 1213 * When add_timer_on() enqueues a timer into the timer wheel of an 1214 * idle CPU then this timer might expire before the next timer event 1215 * which is scheduled to wake up that CPU. In case of a completely 1216 * idle system the next event might even be infinite time into the 1217 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1218 * leaves the inner idle loop so the newly added timer is taken into 1219 * account when the CPU goes back to idle and evaluates the timer 1220 * wheel for the next timer event. 1221 */ 1222 static void wake_up_idle_cpu(int cpu) 1223 { 1224 struct rq *rq = cpu_rq(cpu); 1225 1226 if (cpu == smp_processor_id()) 1227 return; 1228 1229 /* 1230 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1231 * part of the idle loop. This forces an exit from the idle loop 1232 * and a round trip to schedule(). Now this could be optimized 1233 * because a simple new idle loop iteration is enough to 1234 * re-evaluate the next tick. Provided some re-ordering of tick 1235 * nohz functions that would need to follow TIF_NR_POLLING 1236 * clearing: 1237 * 1238 * - On most architectures, a simple fetch_or on ti::flags with a 1239 * "0" value would be enough to know if an IPI needs to be sent. 1240 * 1241 * - x86 needs to perform a last need_resched() check between 1242 * monitor and mwait which doesn't take timers into account. 1243 * There a dedicated TIF_TIMER flag would be required to 1244 * fetch_or here and be checked along with TIF_NEED_RESCHED 1245 * before mwait(). 1246 * 1247 * However, remote timer enqueue is not such a frequent event 1248 * and testing of the above solutions didn't appear to report 1249 * much benefits. 1250 */ 1251 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) 1252 smp_send_reschedule(cpu); 1253 else 1254 trace_sched_wake_idle_without_ipi(cpu); 1255 } 1256 1257 static bool wake_up_full_nohz_cpu(int cpu) 1258 { 1259 /* 1260 * We just need the target to call irq_exit() and re-evaluate 1261 * the next tick. The nohz full kick at least implies that. 1262 * If needed we can still optimize that later with an 1263 * empty IRQ. 1264 */ 1265 if (cpu_is_offline(cpu)) 1266 return true; /* Don't try to wake offline CPUs. */ 1267 if (tick_nohz_full_cpu(cpu)) { 1268 if (cpu != smp_processor_id() || 1269 tick_nohz_tick_stopped()) 1270 tick_nohz_full_kick_cpu(cpu); 1271 return true; 1272 } 1273 1274 return false; 1275 } 1276 1277 /* 1278 * Wake up the specified CPU. If the CPU is going offline, it is the 1279 * caller's responsibility to deal with the lost wakeup, for example, 1280 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1281 */ 1282 void wake_up_nohz_cpu(int cpu) 1283 { 1284 if (!wake_up_full_nohz_cpu(cpu)) 1285 wake_up_idle_cpu(cpu); 1286 } 1287 1288 static void nohz_csd_func(void *info) 1289 { 1290 struct rq *rq = info; 1291 int cpu = cpu_of(rq); 1292 unsigned int flags; 1293 1294 /* 1295 * Release the rq::nohz_csd. 1296 */ 1297 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1298 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1299 1300 rq->idle_balance = idle_cpu(cpu); 1301 if (rq->idle_balance) { 1302 rq->nohz_idle_balance = flags; 1303 __raise_softirq_irqoff(SCHED_SOFTIRQ); 1304 } 1305 } 1306 1307 #endif /* CONFIG_NO_HZ_COMMON */ 1308 1309 #ifdef CONFIG_NO_HZ_FULL 1310 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1311 { 1312 if (rq->nr_running != 1) 1313 return false; 1314 1315 if (p->sched_class != &fair_sched_class) 1316 return false; 1317 1318 if (!task_on_rq_queued(p)) 1319 return false; 1320 1321 return true; 1322 } 1323 1324 bool sched_can_stop_tick(struct rq *rq) 1325 { 1326 int fifo_nr_running; 1327 1328 /* Deadline tasks, even if single, need the tick */ 1329 if (rq->dl.dl_nr_running) 1330 return false; 1331 1332 /* 1333 * If there are more than one RR tasks, we need the tick to affect the 1334 * actual RR behaviour. 1335 */ 1336 if (rq->rt.rr_nr_running) { 1337 if (rq->rt.rr_nr_running == 1) 1338 return true; 1339 else 1340 return false; 1341 } 1342 1343 /* 1344 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1345 * forced preemption between FIFO tasks. 1346 */ 1347 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1348 if (fifo_nr_running) 1349 return true; 1350 1351 /* 1352 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1353 * left. For CFS, if there's more than one we need the tick for 1354 * involuntary preemption. For SCX, ask. 1355 */ 1356 if (scx_enabled() && !scx_can_stop_tick(rq)) 1357 return false; 1358 1359 if (rq->cfs.h_nr_queued > 1) 1360 return false; 1361 1362 /* 1363 * If there is one task and it has CFS runtime bandwidth constraints 1364 * and it's on the cpu now we don't want to stop the tick. 1365 * This check prevents clearing the bit if a newly enqueued task here is 1366 * dequeued by migrating while the constrained task continues to run. 1367 * E.g. going from 2->1 without going through pick_next_task(). 1368 */ 1369 if (__need_bw_check(rq, rq->curr)) { 1370 if (cfs_task_bw_constrained(rq->curr)) 1371 return false; 1372 } 1373 1374 return true; 1375 } 1376 #endif /* CONFIG_NO_HZ_FULL */ 1377 #endif /* CONFIG_SMP */ 1378 1379 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1380 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1381 /* 1382 * Iterate task_group tree rooted at *from, calling @down when first entering a 1383 * node and @up when leaving it for the final time. 1384 * 1385 * Caller must hold rcu_lock or sufficient equivalent. 1386 */ 1387 int walk_tg_tree_from(struct task_group *from, 1388 tg_visitor down, tg_visitor up, void *data) 1389 { 1390 struct task_group *parent, *child; 1391 int ret; 1392 1393 parent = from; 1394 1395 down: 1396 ret = (*down)(parent, data); 1397 if (ret) 1398 goto out; 1399 list_for_each_entry_rcu(child, &parent->children, siblings) { 1400 parent = child; 1401 goto down; 1402 1403 up: 1404 continue; 1405 } 1406 ret = (*up)(parent, data); 1407 if (ret || parent == from) 1408 goto out; 1409 1410 child = parent; 1411 parent = parent->parent; 1412 if (parent) 1413 goto up; 1414 out: 1415 return ret; 1416 } 1417 1418 int tg_nop(struct task_group *tg, void *data) 1419 { 1420 return 0; 1421 } 1422 #endif 1423 1424 void set_load_weight(struct task_struct *p, bool update_load) 1425 { 1426 int prio = p->static_prio - MAX_RT_PRIO; 1427 struct load_weight lw; 1428 1429 if (task_has_idle_policy(p)) { 1430 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1431 lw.inv_weight = WMULT_IDLEPRIO; 1432 } else { 1433 lw.weight = scale_load(sched_prio_to_weight[prio]); 1434 lw.inv_weight = sched_prio_to_wmult[prio]; 1435 } 1436 1437 /* 1438 * SCHED_OTHER tasks have to update their load when changing their 1439 * weight 1440 */ 1441 if (update_load && p->sched_class->reweight_task) 1442 p->sched_class->reweight_task(task_rq(p), p, &lw); 1443 else 1444 p->se.load = lw; 1445 } 1446 1447 #ifdef CONFIG_UCLAMP_TASK 1448 /* 1449 * Serializes updates of utilization clamp values 1450 * 1451 * The (slow-path) user-space triggers utilization clamp value updates which 1452 * can require updates on (fast-path) scheduler's data structures used to 1453 * support enqueue/dequeue operations. 1454 * While the per-CPU rq lock protects fast-path update operations, user-space 1455 * requests are serialized using a mutex to reduce the risk of conflicting 1456 * updates or API abuses. 1457 */ 1458 static __maybe_unused DEFINE_MUTEX(uclamp_mutex); 1459 1460 /* Max allowed minimum utilization */ 1461 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1462 1463 /* Max allowed maximum utilization */ 1464 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1465 1466 /* 1467 * By default RT tasks run at the maximum performance point/capacity of the 1468 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1469 * SCHED_CAPACITY_SCALE. 1470 * 1471 * This knob allows admins to change the default behavior when uclamp is being 1472 * used. In battery powered devices, particularly, running at the maximum 1473 * capacity and frequency will increase energy consumption and shorten the 1474 * battery life. 1475 * 1476 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1477 * 1478 * This knob will not override the system default sched_util_clamp_min defined 1479 * above. 1480 */ 1481 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1482 1483 /* All clamps are required to be less or equal than these values */ 1484 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1485 1486 /* 1487 * This static key is used to reduce the uclamp overhead in the fast path. It 1488 * primarily disables the call to uclamp_rq_{inc, dec}() in 1489 * enqueue/dequeue_task(). 1490 * 1491 * This allows users to continue to enable uclamp in their kernel config with 1492 * minimum uclamp overhead in the fast path. 1493 * 1494 * As soon as userspace modifies any of the uclamp knobs, the static key is 1495 * enabled, since we have an actual users that make use of uclamp 1496 * functionality. 1497 * 1498 * The knobs that would enable this static key are: 1499 * 1500 * * A task modifying its uclamp value with sched_setattr(). 1501 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1502 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1503 */ 1504 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1505 1506 static inline unsigned int 1507 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1508 unsigned int clamp_value) 1509 { 1510 /* 1511 * Avoid blocked utilization pushing up the frequency when we go 1512 * idle (which drops the max-clamp) by retaining the last known 1513 * max-clamp. 1514 */ 1515 if (clamp_id == UCLAMP_MAX) { 1516 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1517 return clamp_value; 1518 } 1519 1520 return uclamp_none(UCLAMP_MIN); 1521 } 1522 1523 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1524 unsigned int clamp_value) 1525 { 1526 /* Reset max-clamp retention only on idle exit */ 1527 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1528 return; 1529 1530 uclamp_rq_set(rq, clamp_id, clamp_value); 1531 } 1532 1533 static inline 1534 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1535 unsigned int clamp_value) 1536 { 1537 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1538 int bucket_id = UCLAMP_BUCKETS - 1; 1539 1540 /* 1541 * Since both min and max clamps are max aggregated, find the 1542 * top most bucket with tasks in. 1543 */ 1544 for ( ; bucket_id >= 0; bucket_id--) { 1545 if (!bucket[bucket_id].tasks) 1546 continue; 1547 return bucket[bucket_id].value; 1548 } 1549 1550 /* No tasks -- default clamp values */ 1551 return uclamp_idle_value(rq, clamp_id, clamp_value); 1552 } 1553 1554 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1555 { 1556 unsigned int default_util_min; 1557 struct uclamp_se *uc_se; 1558 1559 lockdep_assert_held(&p->pi_lock); 1560 1561 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1562 1563 /* Only sync if user didn't override the default */ 1564 if (uc_se->user_defined) 1565 return; 1566 1567 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1568 uclamp_se_set(uc_se, default_util_min, false); 1569 } 1570 1571 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1572 { 1573 if (!rt_task(p)) 1574 return; 1575 1576 /* Protect updates to p->uclamp_* */ 1577 guard(task_rq_lock)(p); 1578 __uclamp_update_util_min_rt_default(p); 1579 } 1580 1581 static inline struct uclamp_se 1582 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1583 { 1584 /* Copy by value as we could modify it */ 1585 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1586 #ifdef CONFIG_UCLAMP_TASK_GROUP 1587 unsigned int tg_min, tg_max, value; 1588 1589 /* 1590 * Tasks in autogroups or root task group will be 1591 * restricted by system defaults. 1592 */ 1593 if (task_group_is_autogroup(task_group(p))) 1594 return uc_req; 1595 if (task_group(p) == &root_task_group) 1596 return uc_req; 1597 1598 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1599 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1600 value = uc_req.value; 1601 value = clamp(value, tg_min, tg_max); 1602 uclamp_se_set(&uc_req, value, false); 1603 #endif 1604 1605 return uc_req; 1606 } 1607 1608 /* 1609 * The effective clamp bucket index of a task depends on, by increasing 1610 * priority: 1611 * - the task specific clamp value, when explicitly requested from userspace 1612 * - the task group effective clamp value, for tasks not either in the root 1613 * group or in an autogroup 1614 * - the system default clamp value, defined by the sysadmin 1615 */ 1616 static inline struct uclamp_se 1617 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1618 { 1619 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1620 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1621 1622 /* System default restrictions always apply */ 1623 if (unlikely(uc_req.value > uc_max.value)) 1624 return uc_max; 1625 1626 return uc_req; 1627 } 1628 1629 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1630 { 1631 struct uclamp_se uc_eff; 1632 1633 /* Task currently refcounted: use back-annotated (effective) value */ 1634 if (p->uclamp[clamp_id].active) 1635 return (unsigned long)p->uclamp[clamp_id].value; 1636 1637 uc_eff = uclamp_eff_get(p, clamp_id); 1638 1639 return (unsigned long)uc_eff.value; 1640 } 1641 1642 /* 1643 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1644 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1645 * updates the rq's clamp value if required. 1646 * 1647 * Tasks can have a task-specific value requested from user-space, track 1648 * within each bucket the maximum value for tasks refcounted in it. 1649 * This "local max aggregation" allows to track the exact "requested" value 1650 * for each bucket when all its RUNNABLE tasks require the same clamp. 1651 */ 1652 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1653 enum uclamp_id clamp_id) 1654 { 1655 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1656 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1657 struct uclamp_bucket *bucket; 1658 1659 lockdep_assert_rq_held(rq); 1660 1661 /* Update task effective clamp */ 1662 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1663 1664 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1665 bucket->tasks++; 1666 uc_se->active = true; 1667 1668 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1669 1670 /* 1671 * Local max aggregation: rq buckets always track the max 1672 * "requested" clamp value of its RUNNABLE tasks. 1673 */ 1674 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1675 bucket->value = uc_se->value; 1676 1677 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1678 uclamp_rq_set(rq, clamp_id, uc_se->value); 1679 } 1680 1681 /* 1682 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1683 * is released. If this is the last task reference counting the rq's max 1684 * active clamp value, then the rq's clamp value is updated. 1685 * 1686 * Both refcounted tasks and rq's cached clamp values are expected to be 1687 * always valid. If it's detected they are not, as defensive programming, 1688 * enforce the expected state and warn. 1689 */ 1690 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1691 enum uclamp_id clamp_id) 1692 { 1693 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1694 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1695 struct uclamp_bucket *bucket; 1696 unsigned int bkt_clamp; 1697 unsigned int rq_clamp; 1698 1699 lockdep_assert_rq_held(rq); 1700 1701 /* 1702 * If sched_uclamp_used was enabled after task @p was enqueued, 1703 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1704 * 1705 * In this case the uc_se->active flag should be false since no uclamp 1706 * accounting was performed at enqueue time and we can just return 1707 * here. 1708 * 1709 * Need to be careful of the following enqueue/dequeue ordering 1710 * problem too 1711 * 1712 * enqueue(taskA) 1713 * // sched_uclamp_used gets enabled 1714 * enqueue(taskB) 1715 * dequeue(taskA) 1716 * // Must not decrement bucket->tasks here 1717 * dequeue(taskB) 1718 * 1719 * where we could end up with stale data in uc_se and 1720 * bucket[uc_se->bucket_id]. 1721 * 1722 * The following check here eliminates the possibility of such race. 1723 */ 1724 if (unlikely(!uc_se->active)) 1725 return; 1726 1727 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1728 1729 WARN_ON_ONCE(!bucket->tasks); 1730 if (likely(bucket->tasks)) 1731 bucket->tasks--; 1732 1733 uc_se->active = false; 1734 1735 /* 1736 * Keep "local max aggregation" simple and accept to (possibly) 1737 * overboost some RUNNABLE tasks in the same bucket. 1738 * The rq clamp bucket value is reset to its base value whenever 1739 * there are no more RUNNABLE tasks refcounting it. 1740 */ 1741 if (likely(bucket->tasks)) 1742 return; 1743 1744 rq_clamp = uclamp_rq_get(rq, clamp_id); 1745 /* 1746 * Defensive programming: this should never happen. If it happens, 1747 * e.g. due to future modification, warn and fix up the expected value. 1748 */ 1749 WARN_ON_ONCE(bucket->value > rq_clamp); 1750 if (bucket->value >= rq_clamp) { 1751 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1752 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1753 } 1754 } 1755 1756 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) 1757 { 1758 enum uclamp_id clamp_id; 1759 1760 /* 1761 * Avoid any overhead until uclamp is actually used by the userspace. 1762 * 1763 * The condition is constructed such that a NOP is generated when 1764 * sched_uclamp_used is disabled. 1765 */ 1766 if (!uclamp_is_used()) 1767 return; 1768 1769 if (unlikely(!p->sched_class->uclamp_enabled)) 1770 return; 1771 1772 /* Only inc the delayed task which being woken up. */ 1773 if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED)) 1774 return; 1775 1776 for_each_clamp_id(clamp_id) 1777 uclamp_rq_inc_id(rq, p, clamp_id); 1778 1779 /* Reset clamp idle holding when there is one RUNNABLE task */ 1780 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1781 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1782 } 1783 1784 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1785 { 1786 enum uclamp_id clamp_id; 1787 1788 /* 1789 * Avoid any overhead until uclamp is actually used by the userspace. 1790 * 1791 * The condition is constructed such that a NOP is generated when 1792 * sched_uclamp_used is disabled. 1793 */ 1794 if (!uclamp_is_used()) 1795 return; 1796 1797 if (unlikely(!p->sched_class->uclamp_enabled)) 1798 return; 1799 1800 if (p->se.sched_delayed) 1801 return; 1802 1803 for_each_clamp_id(clamp_id) 1804 uclamp_rq_dec_id(rq, p, clamp_id); 1805 } 1806 1807 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1808 enum uclamp_id clamp_id) 1809 { 1810 if (!p->uclamp[clamp_id].active) 1811 return; 1812 1813 uclamp_rq_dec_id(rq, p, clamp_id); 1814 uclamp_rq_inc_id(rq, p, clamp_id); 1815 1816 /* 1817 * Make sure to clear the idle flag if we've transiently reached 0 1818 * active tasks on rq. 1819 */ 1820 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1821 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1822 } 1823 1824 static inline void 1825 uclamp_update_active(struct task_struct *p) 1826 { 1827 enum uclamp_id clamp_id; 1828 struct rq_flags rf; 1829 struct rq *rq; 1830 1831 /* 1832 * Lock the task and the rq where the task is (or was) queued. 1833 * 1834 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1835 * price to pay to safely serialize util_{min,max} updates with 1836 * enqueues, dequeues and migration operations. 1837 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1838 */ 1839 rq = task_rq_lock(p, &rf); 1840 1841 /* 1842 * Setting the clamp bucket is serialized by task_rq_lock(). 1843 * If the task is not yet RUNNABLE and its task_struct is not 1844 * affecting a valid clamp bucket, the next time it's enqueued, 1845 * it will already see the updated clamp bucket value. 1846 */ 1847 for_each_clamp_id(clamp_id) 1848 uclamp_rq_reinc_id(rq, p, clamp_id); 1849 1850 task_rq_unlock(rq, p, &rf); 1851 } 1852 1853 #ifdef CONFIG_UCLAMP_TASK_GROUP 1854 static inline void 1855 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1856 { 1857 struct css_task_iter it; 1858 struct task_struct *p; 1859 1860 css_task_iter_start(css, 0, &it); 1861 while ((p = css_task_iter_next(&it))) 1862 uclamp_update_active(p); 1863 css_task_iter_end(&it); 1864 } 1865 1866 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1867 #endif 1868 1869 #ifdef CONFIG_SYSCTL 1870 #ifdef CONFIG_UCLAMP_TASK_GROUP 1871 static void uclamp_update_root_tg(void) 1872 { 1873 struct task_group *tg = &root_task_group; 1874 1875 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1876 sysctl_sched_uclamp_util_min, false); 1877 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1878 sysctl_sched_uclamp_util_max, false); 1879 1880 guard(rcu)(); 1881 cpu_util_update_eff(&root_task_group.css); 1882 } 1883 #else 1884 static void uclamp_update_root_tg(void) { } 1885 #endif 1886 1887 static void uclamp_sync_util_min_rt_default(void) 1888 { 1889 struct task_struct *g, *p; 1890 1891 /* 1892 * copy_process() sysctl_uclamp 1893 * uclamp_min_rt = X; 1894 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1895 * // link thread smp_mb__after_spinlock() 1896 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1897 * sched_post_fork() for_each_process_thread() 1898 * __uclamp_sync_rt() __uclamp_sync_rt() 1899 * 1900 * Ensures that either sched_post_fork() will observe the new 1901 * uclamp_min_rt or for_each_process_thread() will observe the new 1902 * task. 1903 */ 1904 read_lock(&tasklist_lock); 1905 smp_mb__after_spinlock(); 1906 read_unlock(&tasklist_lock); 1907 1908 guard(rcu)(); 1909 for_each_process_thread(g, p) 1910 uclamp_update_util_min_rt_default(p); 1911 } 1912 1913 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1914 void *buffer, size_t *lenp, loff_t *ppos) 1915 { 1916 bool update_root_tg = false; 1917 int old_min, old_max, old_min_rt; 1918 int result; 1919 1920 guard(mutex)(&uclamp_mutex); 1921 1922 old_min = sysctl_sched_uclamp_util_min; 1923 old_max = sysctl_sched_uclamp_util_max; 1924 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1925 1926 result = proc_dointvec(table, write, buffer, lenp, ppos); 1927 if (result) 1928 goto undo; 1929 if (!write) 1930 return 0; 1931 1932 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1933 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1934 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1935 1936 result = -EINVAL; 1937 goto undo; 1938 } 1939 1940 if (old_min != sysctl_sched_uclamp_util_min) { 1941 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1942 sysctl_sched_uclamp_util_min, false); 1943 update_root_tg = true; 1944 } 1945 if (old_max != sysctl_sched_uclamp_util_max) { 1946 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1947 sysctl_sched_uclamp_util_max, false); 1948 update_root_tg = true; 1949 } 1950 1951 if (update_root_tg) { 1952 sched_uclamp_enable(); 1953 uclamp_update_root_tg(); 1954 } 1955 1956 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1957 sched_uclamp_enable(); 1958 uclamp_sync_util_min_rt_default(); 1959 } 1960 1961 /* 1962 * We update all RUNNABLE tasks only when task groups are in use. 1963 * Otherwise, keep it simple and do just a lazy update at each next 1964 * task enqueue time. 1965 */ 1966 return 0; 1967 1968 undo: 1969 sysctl_sched_uclamp_util_min = old_min; 1970 sysctl_sched_uclamp_util_max = old_max; 1971 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1972 return result; 1973 } 1974 #endif 1975 1976 static void uclamp_fork(struct task_struct *p) 1977 { 1978 enum uclamp_id clamp_id; 1979 1980 /* 1981 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1982 * as the task is still at its early fork stages. 1983 */ 1984 for_each_clamp_id(clamp_id) 1985 p->uclamp[clamp_id].active = false; 1986 1987 if (likely(!p->sched_reset_on_fork)) 1988 return; 1989 1990 for_each_clamp_id(clamp_id) { 1991 uclamp_se_set(&p->uclamp_req[clamp_id], 1992 uclamp_none(clamp_id), false); 1993 } 1994 } 1995 1996 static void uclamp_post_fork(struct task_struct *p) 1997 { 1998 uclamp_update_util_min_rt_default(p); 1999 } 2000 2001 static void __init init_uclamp_rq(struct rq *rq) 2002 { 2003 enum uclamp_id clamp_id; 2004 struct uclamp_rq *uc_rq = rq->uclamp; 2005 2006 for_each_clamp_id(clamp_id) { 2007 uc_rq[clamp_id] = (struct uclamp_rq) { 2008 .value = uclamp_none(clamp_id) 2009 }; 2010 } 2011 2012 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2013 } 2014 2015 static void __init init_uclamp(void) 2016 { 2017 struct uclamp_se uc_max = {}; 2018 enum uclamp_id clamp_id; 2019 int cpu; 2020 2021 for_each_possible_cpu(cpu) 2022 init_uclamp_rq(cpu_rq(cpu)); 2023 2024 for_each_clamp_id(clamp_id) { 2025 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2026 uclamp_none(clamp_id), false); 2027 } 2028 2029 /* System defaults allow max clamp values for both indexes */ 2030 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2031 for_each_clamp_id(clamp_id) { 2032 uclamp_default[clamp_id] = uc_max; 2033 #ifdef CONFIG_UCLAMP_TASK_GROUP 2034 root_task_group.uclamp_req[clamp_id] = uc_max; 2035 root_task_group.uclamp[clamp_id] = uc_max; 2036 #endif 2037 } 2038 } 2039 2040 #else /* !CONFIG_UCLAMP_TASK */ 2041 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { } 2042 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2043 static inline void uclamp_fork(struct task_struct *p) { } 2044 static inline void uclamp_post_fork(struct task_struct *p) { } 2045 static inline void init_uclamp(void) { } 2046 #endif /* CONFIG_UCLAMP_TASK */ 2047 2048 bool sched_task_on_rq(struct task_struct *p) 2049 { 2050 return task_on_rq_queued(p); 2051 } 2052 2053 unsigned long get_wchan(struct task_struct *p) 2054 { 2055 unsigned long ip = 0; 2056 unsigned int state; 2057 2058 if (!p || p == current) 2059 return 0; 2060 2061 /* Only get wchan if task is blocked and we can keep it that way. */ 2062 raw_spin_lock_irq(&p->pi_lock); 2063 state = READ_ONCE(p->__state); 2064 smp_rmb(); /* see try_to_wake_up() */ 2065 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2066 ip = __get_wchan(p); 2067 raw_spin_unlock_irq(&p->pi_lock); 2068 2069 return ip; 2070 } 2071 2072 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2073 { 2074 if (!(flags & ENQUEUE_NOCLOCK)) 2075 update_rq_clock(rq); 2076 2077 /* 2078 * Can be before ->enqueue_task() because uclamp considers the 2079 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared 2080 * in ->enqueue_task(). 2081 */ 2082 uclamp_rq_inc(rq, p, flags); 2083 2084 p->sched_class->enqueue_task(rq, p, flags); 2085 2086 psi_enqueue(p, flags); 2087 2088 if (!(flags & ENQUEUE_RESTORE)) 2089 sched_info_enqueue(rq, p); 2090 2091 if (sched_core_enabled(rq)) 2092 sched_core_enqueue(rq, p); 2093 } 2094 2095 /* 2096 * Must only return false when DEQUEUE_SLEEP. 2097 */ 2098 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2099 { 2100 if (sched_core_enabled(rq)) 2101 sched_core_dequeue(rq, p, flags); 2102 2103 if (!(flags & DEQUEUE_NOCLOCK)) 2104 update_rq_clock(rq); 2105 2106 if (!(flags & DEQUEUE_SAVE)) 2107 sched_info_dequeue(rq, p); 2108 2109 psi_dequeue(p, flags); 2110 2111 /* 2112 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2113 * and mark the task ->sched_delayed. 2114 */ 2115 uclamp_rq_dec(rq, p); 2116 return p->sched_class->dequeue_task(rq, p, flags); 2117 } 2118 2119 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2120 { 2121 if (task_on_rq_migrating(p)) 2122 flags |= ENQUEUE_MIGRATED; 2123 if (flags & ENQUEUE_MIGRATED) 2124 sched_mm_cid_migrate_to(rq, p); 2125 2126 enqueue_task(rq, p, flags); 2127 2128 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2129 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2130 } 2131 2132 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2133 { 2134 WARN_ON_ONCE(flags & DEQUEUE_SLEEP); 2135 2136 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2137 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2138 2139 /* 2140 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2141 * dequeue_task() and cleared *after* enqueue_task(). 2142 */ 2143 2144 dequeue_task(rq, p, flags); 2145 } 2146 2147 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2148 { 2149 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2150 __block_task(rq, p); 2151 } 2152 2153 /** 2154 * task_curr - is this task currently executing on a CPU? 2155 * @p: the task in question. 2156 * 2157 * Return: 1 if the task is currently executing. 0 otherwise. 2158 */ 2159 inline int task_curr(const struct task_struct *p) 2160 { 2161 return cpu_curr(task_cpu(p)) == p; 2162 } 2163 2164 /* 2165 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2166 * mess with locking. 2167 */ 2168 void check_class_changing(struct rq *rq, struct task_struct *p, 2169 const struct sched_class *prev_class) 2170 { 2171 if (prev_class != p->sched_class && p->sched_class->switching_to) 2172 p->sched_class->switching_to(rq, p); 2173 } 2174 2175 /* 2176 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2177 * use the balance_callback list if you want balancing. 2178 * 2179 * this means any call to check_class_changed() must be followed by a call to 2180 * balance_callback(). 2181 */ 2182 void check_class_changed(struct rq *rq, struct task_struct *p, 2183 const struct sched_class *prev_class, 2184 int oldprio) 2185 { 2186 if (prev_class != p->sched_class) { 2187 if (prev_class->switched_from) 2188 prev_class->switched_from(rq, p); 2189 2190 p->sched_class->switched_to(rq, p); 2191 } else if (oldprio != p->prio || dl_task(p)) 2192 p->sched_class->prio_changed(rq, p, oldprio); 2193 } 2194 2195 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2196 { 2197 struct task_struct *donor = rq->donor; 2198 2199 if (p->sched_class == donor->sched_class) 2200 donor->sched_class->wakeup_preempt(rq, p, flags); 2201 else if (sched_class_above(p->sched_class, donor->sched_class)) 2202 resched_curr(rq); 2203 2204 /* 2205 * A queue event has occurred, and we're going to schedule. In 2206 * this case, we can save a useless back to back clock update. 2207 */ 2208 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) 2209 rq_clock_skip_update(rq); 2210 } 2211 2212 static __always_inline 2213 int __task_state_match(struct task_struct *p, unsigned int state) 2214 { 2215 if (READ_ONCE(p->__state) & state) 2216 return 1; 2217 2218 if (READ_ONCE(p->saved_state) & state) 2219 return -1; 2220 2221 return 0; 2222 } 2223 2224 static __always_inline 2225 int task_state_match(struct task_struct *p, unsigned int state) 2226 { 2227 /* 2228 * Serialize against current_save_and_set_rtlock_wait_state(), 2229 * current_restore_rtlock_saved_state(), and __refrigerator(). 2230 */ 2231 guard(raw_spinlock_irq)(&p->pi_lock); 2232 return __task_state_match(p, state); 2233 } 2234 2235 /* 2236 * wait_task_inactive - wait for a thread to unschedule. 2237 * 2238 * Wait for the thread to block in any of the states set in @match_state. 2239 * If it changes, i.e. @p might have woken up, then return zero. When we 2240 * succeed in waiting for @p to be off its CPU, we return a positive number 2241 * (its total switch count). If a second call a short while later returns the 2242 * same number, the caller can be sure that @p has remained unscheduled the 2243 * whole time. 2244 * 2245 * The caller must ensure that the task *will* unschedule sometime soon, 2246 * else this function might spin for a *long* time. This function can't 2247 * be called with interrupts off, or it may introduce deadlock with 2248 * smp_call_function() if an IPI is sent by the same process we are 2249 * waiting to become inactive. 2250 */ 2251 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2252 { 2253 int running, queued, match; 2254 struct rq_flags rf; 2255 unsigned long ncsw; 2256 struct rq *rq; 2257 2258 for (;;) { 2259 /* 2260 * We do the initial early heuristics without holding 2261 * any task-queue locks at all. We'll only try to get 2262 * the runqueue lock when things look like they will 2263 * work out! 2264 */ 2265 rq = task_rq(p); 2266 2267 /* 2268 * If the task is actively running on another CPU 2269 * still, just relax and busy-wait without holding 2270 * any locks. 2271 * 2272 * NOTE! Since we don't hold any locks, it's not 2273 * even sure that "rq" stays as the right runqueue! 2274 * But we don't care, since "task_on_cpu()" will 2275 * return false if the runqueue has changed and p 2276 * is actually now running somewhere else! 2277 */ 2278 while (task_on_cpu(rq, p)) { 2279 if (!task_state_match(p, match_state)) 2280 return 0; 2281 cpu_relax(); 2282 } 2283 2284 /* 2285 * Ok, time to look more closely! We need the rq 2286 * lock now, to be *sure*. If we're wrong, we'll 2287 * just go back and repeat. 2288 */ 2289 rq = task_rq_lock(p, &rf); 2290 /* 2291 * If task is sched_delayed, force dequeue it, to avoid always 2292 * hitting the tick timeout in the queued case 2293 */ 2294 if (p->se.sched_delayed) 2295 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 2296 trace_sched_wait_task(p); 2297 running = task_on_cpu(rq, p); 2298 queued = task_on_rq_queued(p); 2299 ncsw = 0; 2300 if ((match = __task_state_match(p, match_state))) { 2301 /* 2302 * When matching on p->saved_state, consider this task 2303 * still queued so it will wait. 2304 */ 2305 if (match < 0) 2306 queued = 1; 2307 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2308 } 2309 task_rq_unlock(rq, p, &rf); 2310 2311 /* 2312 * If it changed from the expected state, bail out now. 2313 */ 2314 if (unlikely(!ncsw)) 2315 break; 2316 2317 /* 2318 * Was it really running after all now that we 2319 * checked with the proper locks actually held? 2320 * 2321 * Oops. Go back and try again.. 2322 */ 2323 if (unlikely(running)) { 2324 cpu_relax(); 2325 continue; 2326 } 2327 2328 /* 2329 * It's not enough that it's not actively running, 2330 * it must be off the runqueue _entirely_, and not 2331 * preempted! 2332 * 2333 * So if it was still runnable (but just not actively 2334 * running right now), it's preempted, and we should 2335 * yield - it could be a while. 2336 */ 2337 if (unlikely(queued)) { 2338 ktime_t to = NSEC_PER_SEC / HZ; 2339 2340 set_current_state(TASK_UNINTERRUPTIBLE); 2341 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2342 continue; 2343 } 2344 2345 /* 2346 * Ahh, all good. It wasn't running, and it wasn't 2347 * runnable, which means that it will never become 2348 * running in the future either. We're all done! 2349 */ 2350 break; 2351 } 2352 2353 return ncsw; 2354 } 2355 2356 #ifdef CONFIG_SMP 2357 2358 static void 2359 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2360 2361 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2362 { 2363 struct affinity_context ac = { 2364 .new_mask = cpumask_of(rq->cpu), 2365 .flags = SCA_MIGRATE_DISABLE, 2366 }; 2367 2368 if (likely(!p->migration_disabled)) 2369 return; 2370 2371 if (p->cpus_ptr != &p->cpus_mask) 2372 return; 2373 2374 /* 2375 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2376 */ 2377 __do_set_cpus_allowed(p, &ac); 2378 } 2379 2380 void migrate_disable(void) 2381 { 2382 struct task_struct *p = current; 2383 2384 if (p->migration_disabled) { 2385 #ifdef CONFIG_DEBUG_PREEMPT 2386 /* 2387 *Warn about overflow half-way through the range. 2388 */ 2389 WARN_ON_ONCE((s16)p->migration_disabled < 0); 2390 #endif 2391 p->migration_disabled++; 2392 return; 2393 } 2394 2395 guard(preempt)(); 2396 this_rq()->nr_pinned++; 2397 p->migration_disabled = 1; 2398 } 2399 EXPORT_SYMBOL_GPL(migrate_disable); 2400 2401 void migrate_enable(void) 2402 { 2403 struct task_struct *p = current; 2404 struct affinity_context ac = { 2405 .new_mask = &p->cpus_mask, 2406 .flags = SCA_MIGRATE_ENABLE, 2407 }; 2408 2409 #ifdef CONFIG_DEBUG_PREEMPT 2410 /* 2411 * Check both overflow from migrate_disable() and superfluous 2412 * migrate_enable(). 2413 */ 2414 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) 2415 return; 2416 #endif 2417 2418 if (p->migration_disabled > 1) { 2419 p->migration_disabled--; 2420 return; 2421 } 2422 2423 /* 2424 * Ensure stop_task runs either before or after this, and that 2425 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2426 */ 2427 guard(preempt)(); 2428 if (p->cpus_ptr != &p->cpus_mask) 2429 __set_cpus_allowed_ptr(p, &ac); 2430 /* 2431 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2432 * regular cpus_mask, otherwise things that race (eg. 2433 * select_fallback_rq) get confused. 2434 */ 2435 barrier(); 2436 p->migration_disabled = 0; 2437 this_rq()->nr_pinned--; 2438 } 2439 EXPORT_SYMBOL_GPL(migrate_enable); 2440 2441 static inline bool rq_has_pinned_tasks(struct rq *rq) 2442 { 2443 return rq->nr_pinned; 2444 } 2445 2446 /* 2447 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2448 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2449 */ 2450 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2451 { 2452 /* When not in the task's cpumask, no point in looking further. */ 2453 if (!task_allowed_on_cpu(p, cpu)) 2454 return false; 2455 2456 /* migrate_disabled() must be allowed to finish. */ 2457 if (is_migration_disabled(p)) 2458 return cpu_online(cpu); 2459 2460 /* Non kernel threads are not allowed during either online or offline. */ 2461 if (!(p->flags & PF_KTHREAD)) 2462 return cpu_active(cpu); 2463 2464 /* KTHREAD_IS_PER_CPU is always allowed. */ 2465 if (kthread_is_per_cpu(p)) 2466 return cpu_online(cpu); 2467 2468 /* Regular kernel threads don't get to stay during offline. */ 2469 if (cpu_dying(cpu)) 2470 return false; 2471 2472 /* But are allowed during online. */ 2473 return cpu_online(cpu); 2474 } 2475 2476 /* 2477 * This is how migration works: 2478 * 2479 * 1) we invoke migration_cpu_stop() on the target CPU using 2480 * stop_one_cpu(). 2481 * 2) stopper starts to run (implicitly forcing the migrated thread 2482 * off the CPU) 2483 * 3) it checks whether the migrated task is still in the wrong runqueue. 2484 * 4) if it's in the wrong runqueue then the migration thread removes 2485 * it and puts it into the right queue. 2486 * 5) stopper completes and stop_one_cpu() returns and the migration 2487 * is done. 2488 */ 2489 2490 /* 2491 * move_queued_task - move a queued task to new rq. 2492 * 2493 * Returns (locked) new rq. Old rq's lock is released. 2494 */ 2495 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2496 struct task_struct *p, int new_cpu) 2497 { 2498 lockdep_assert_rq_held(rq); 2499 2500 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2501 set_task_cpu(p, new_cpu); 2502 rq_unlock(rq, rf); 2503 2504 rq = cpu_rq(new_cpu); 2505 2506 rq_lock(rq, rf); 2507 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2508 activate_task(rq, p, 0); 2509 wakeup_preempt(rq, p, 0); 2510 2511 return rq; 2512 } 2513 2514 struct migration_arg { 2515 struct task_struct *task; 2516 int dest_cpu; 2517 struct set_affinity_pending *pending; 2518 }; 2519 2520 /* 2521 * @refs: number of wait_for_completion() 2522 * @stop_pending: is @stop_work in use 2523 */ 2524 struct set_affinity_pending { 2525 refcount_t refs; 2526 unsigned int stop_pending; 2527 struct completion done; 2528 struct cpu_stop_work stop_work; 2529 struct migration_arg arg; 2530 }; 2531 2532 /* 2533 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2534 * this because either it can't run here any more (set_cpus_allowed() 2535 * away from this CPU, or CPU going down), or because we're 2536 * attempting to rebalance this task on exec (sched_exec). 2537 * 2538 * So we race with normal scheduler movements, but that's OK, as long 2539 * as the task is no longer on this CPU. 2540 */ 2541 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2542 struct task_struct *p, int dest_cpu) 2543 { 2544 /* Affinity changed (again). */ 2545 if (!is_cpu_allowed(p, dest_cpu)) 2546 return rq; 2547 2548 rq = move_queued_task(rq, rf, p, dest_cpu); 2549 2550 return rq; 2551 } 2552 2553 /* 2554 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2555 * and performs thread migration by bumping thread off CPU then 2556 * 'pushing' onto another runqueue. 2557 */ 2558 static int migration_cpu_stop(void *data) 2559 { 2560 struct migration_arg *arg = data; 2561 struct set_affinity_pending *pending = arg->pending; 2562 struct task_struct *p = arg->task; 2563 struct rq *rq = this_rq(); 2564 bool complete = false; 2565 struct rq_flags rf; 2566 2567 /* 2568 * The original target CPU might have gone down and we might 2569 * be on another CPU but it doesn't matter. 2570 */ 2571 local_irq_save(rf.flags); 2572 /* 2573 * We need to explicitly wake pending tasks before running 2574 * __migrate_task() such that we will not miss enforcing cpus_ptr 2575 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2576 */ 2577 flush_smp_call_function_queue(); 2578 2579 raw_spin_lock(&p->pi_lock); 2580 rq_lock(rq, &rf); 2581 2582 /* 2583 * If we were passed a pending, then ->stop_pending was set, thus 2584 * p->migration_pending must have remained stable. 2585 */ 2586 WARN_ON_ONCE(pending && pending != p->migration_pending); 2587 2588 /* 2589 * If task_rq(p) != rq, it cannot be migrated here, because we're 2590 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2591 * we're holding p->pi_lock. 2592 */ 2593 if (task_rq(p) == rq) { 2594 if (is_migration_disabled(p)) 2595 goto out; 2596 2597 if (pending) { 2598 p->migration_pending = NULL; 2599 complete = true; 2600 2601 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2602 goto out; 2603 } 2604 2605 if (task_on_rq_queued(p)) { 2606 update_rq_clock(rq); 2607 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2608 } else { 2609 p->wake_cpu = arg->dest_cpu; 2610 } 2611 2612 /* 2613 * XXX __migrate_task() can fail, at which point we might end 2614 * up running on a dodgy CPU, AFAICT this can only happen 2615 * during CPU hotplug, at which point we'll get pushed out 2616 * anyway, so it's probably not a big deal. 2617 */ 2618 2619 } else if (pending) { 2620 /* 2621 * This happens when we get migrated between migrate_enable()'s 2622 * preempt_enable() and scheduling the stopper task. At that 2623 * point we're a regular task again and not current anymore. 2624 * 2625 * A !PREEMPT kernel has a giant hole here, which makes it far 2626 * more likely. 2627 */ 2628 2629 /* 2630 * The task moved before the stopper got to run. We're holding 2631 * ->pi_lock, so the allowed mask is stable - if it got 2632 * somewhere allowed, we're done. 2633 */ 2634 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2635 p->migration_pending = NULL; 2636 complete = true; 2637 goto out; 2638 } 2639 2640 /* 2641 * When migrate_enable() hits a rq mis-match we can't reliably 2642 * determine is_migration_disabled() and so have to chase after 2643 * it. 2644 */ 2645 WARN_ON_ONCE(!pending->stop_pending); 2646 preempt_disable(); 2647 task_rq_unlock(rq, p, &rf); 2648 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2649 &pending->arg, &pending->stop_work); 2650 preempt_enable(); 2651 return 0; 2652 } 2653 out: 2654 if (pending) 2655 pending->stop_pending = false; 2656 task_rq_unlock(rq, p, &rf); 2657 2658 if (complete) 2659 complete_all(&pending->done); 2660 2661 return 0; 2662 } 2663 2664 int push_cpu_stop(void *arg) 2665 { 2666 struct rq *lowest_rq = NULL, *rq = this_rq(); 2667 struct task_struct *p = arg; 2668 2669 raw_spin_lock_irq(&p->pi_lock); 2670 raw_spin_rq_lock(rq); 2671 2672 if (task_rq(p) != rq) 2673 goto out_unlock; 2674 2675 if (is_migration_disabled(p)) { 2676 p->migration_flags |= MDF_PUSH; 2677 goto out_unlock; 2678 } 2679 2680 p->migration_flags &= ~MDF_PUSH; 2681 2682 if (p->sched_class->find_lock_rq) 2683 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2684 2685 if (!lowest_rq) 2686 goto out_unlock; 2687 2688 // XXX validate p is still the highest prio task 2689 if (task_rq(p) == rq) { 2690 move_queued_task_locked(rq, lowest_rq, p); 2691 resched_curr(lowest_rq); 2692 } 2693 2694 double_unlock_balance(rq, lowest_rq); 2695 2696 out_unlock: 2697 rq->push_busy = false; 2698 raw_spin_rq_unlock(rq); 2699 raw_spin_unlock_irq(&p->pi_lock); 2700 2701 put_task_struct(p); 2702 return 0; 2703 } 2704 2705 /* 2706 * sched_class::set_cpus_allowed must do the below, but is not required to 2707 * actually call this function. 2708 */ 2709 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2710 { 2711 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2712 p->cpus_ptr = ctx->new_mask; 2713 return; 2714 } 2715 2716 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2717 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2718 2719 /* 2720 * Swap in a new user_cpus_ptr if SCA_USER flag set 2721 */ 2722 if (ctx->flags & SCA_USER) 2723 swap(p->user_cpus_ptr, ctx->user_mask); 2724 } 2725 2726 static void 2727 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2728 { 2729 struct rq *rq = task_rq(p); 2730 bool queued, running; 2731 2732 /* 2733 * This here violates the locking rules for affinity, since we're only 2734 * supposed to change these variables while holding both rq->lock and 2735 * p->pi_lock. 2736 * 2737 * HOWEVER, it magically works, because ttwu() is the only code that 2738 * accesses these variables under p->pi_lock and only does so after 2739 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2740 * before finish_task(). 2741 * 2742 * XXX do further audits, this smells like something putrid. 2743 */ 2744 if (ctx->flags & SCA_MIGRATE_DISABLE) 2745 WARN_ON_ONCE(!p->on_cpu); 2746 else 2747 lockdep_assert_held(&p->pi_lock); 2748 2749 queued = task_on_rq_queued(p); 2750 running = task_current_donor(rq, p); 2751 2752 if (queued) { 2753 /* 2754 * Because __kthread_bind() calls this on blocked tasks without 2755 * holding rq->lock. 2756 */ 2757 lockdep_assert_rq_held(rq); 2758 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2759 } 2760 if (running) 2761 put_prev_task(rq, p); 2762 2763 p->sched_class->set_cpus_allowed(p, ctx); 2764 mm_set_cpus_allowed(p->mm, ctx->new_mask); 2765 2766 if (queued) 2767 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2768 if (running) 2769 set_next_task(rq, p); 2770 } 2771 2772 /* 2773 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2774 * affinity (if any) should be destroyed too. 2775 */ 2776 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2777 { 2778 struct affinity_context ac = { 2779 .new_mask = new_mask, 2780 .user_mask = NULL, 2781 .flags = SCA_USER, /* clear the user requested mask */ 2782 }; 2783 union cpumask_rcuhead { 2784 cpumask_t cpumask; 2785 struct rcu_head rcu; 2786 }; 2787 2788 __do_set_cpus_allowed(p, &ac); 2789 2790 /* 2791 * Because this is called with p->pi_lock held, it is not possible 2792 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2793 * kfree_rcu(). 2794 */ 2795 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2796 } 2797 2798 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2799 int node) 2800 { 2801 cpumask_t *user_mask; 2802 unsigned long flags; 2803 2804 /* 2805 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2806 * may differ by now due to racing. 2807 */ 2808 dst->user_cpus_ptr = NULL; 2809 2810 /* 2811 * This check is racy and losing the race is a valid situation. 2812 * It is not worth the extra overhead of taking the pi_lock on 2813 * every fork/clone. 2814 */ 2815 if (data_race(!src->user_cpus_ptr)) 2816 return 0; 2817 2818 user_mask = alloc_user_cpus_ptr(node); 2819 if (!user_mask) 2820 return -ENOMEM; 2821 2822 /* 2823 * Use pi_lock to protect content of user_cpus_ptr 2824 * 2825 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2826 * do_set_cpus_allowed(). 2827 */ 2828 raw_spin_lock_irqsave(&src->pi_lock, flags); 2829 if (src->user_cpus_ptr) { 2830 swap(dst->user_cpus_ptr, user_mask); 2831 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2832 } 2833 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2834 2835 if (unlikely(user_mask)) 2836 kfree(user_mask); 2837 2838 return 0; 2839 } 2840 2841 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2842 { 2843 struct cpumask *user_mask = NULL; 2844 2845 swap(p->user_cpus_ptr, user_mask); 2846 2847 return user_mask; 2848 } 2849 2850 void release_user_cpus_ptr(struct task_struct *p) 2851 { 2852 kfree(clear_user_cpus_ptr(p)); 2853 } 2854 2855 /* 2856 * This function is wildly self concurrent; here be dragons. 2857 * 2858 * 2859 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2860 * designated task is enqueued on an allowed CPU. If that task is currently 2861 * running, we have to kick it out using the CPU stopper. 2862 * 2863 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2864 * Consider: 2865 * 2866 * Initial conditions: P0->cpus_mask = [0, 1] 2867 * 2868 * P0@CPU0 P1 2869 * 2870 * migrate_disable(); 2871 * <preempted> 2872 * set_cpus_allowed_ptr(P0, [1]); 2873 * 2874 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2875 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2876 * This means we need the following scheme: 2877 * 2878 * P0@CPU0 P1 2879 * 2880 * migrate_disable(); 2881 * <preempted> 2882 * set_cpus_allowed_ptr(P0, [1]); 2883 * <blocks> 2884 * <resumes> 2885 * migrate_enable(); 2886 * __set_cpus_allowed_ptr(); 2887 * <wakes local stopper> 2888 * `--> <woken on migration completion> 2889 * 2890 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2891 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2892 * task p are serialized by p->pi_lock, which we can leverage: the one that 2893 * should come into effect at the end of the Migrate-Disable region is the last 2894 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2895 * but we still need to properly signal those waiting tasks at the appropriate 2896 * moment. 2897 * 2898 * This is implemented using struct set_affinity_pending. The first 2899 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2900 * setup an instance of that struct and install it on the targeted task_struct. 2901 * Any and all further callers will reuse that instance. Those then wait for 2902 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2903 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2904 * 2905 * 2906 * (1) In the cases covered above. There is one more where the completion is 2907 * signaled within affine_move_task() itself: when a subsequent affinity request 2908 * occurs after the stopper bailed out due to the targeted task still being 2909 * Migrate-Disable. Consider: 2910 * 2911 * Initial conditions: P0->cpus_mask = [0, 1] 2912 * 2913 * CPU0 P1 P2 2914 * <P0> 2915 * migrate_disable(); 2916 * <preempted> 2917 * set_cpus_allowed_ptr(P0, [1]); 2918 * <blocks> 2919 * <migration/0> 2920 * migration_cpu_stop() 2921 * is_migration_disabled() 2922 * <bails> 2923 * set_cpus_allowed_ptr(P0, [0, 1]); 2924 * <signal completion> 2925 * <awakes> 2926 * 2927 * Note that the above is safe vs a concurrent migrate_enable(), as any 2928 * pending affinity completion is preceded by an uninstallation of 2929 * p->migration_pending done with p->pi_lock held. 2930 */ 2931 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2932 int dest_cpu, unsigned int flags) 2933 __releases(rq->lock) 2934 __releases(p->pi_lock) 2935 { 2936 struct set_affinity_pending my_pending = { }, *pending = NULL; 2937 bool stop_pending, complete = false; 2938 2939 /* Can the task run on the task's current CPU? If so, we're done */ 2940 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2941 struct task_struct *push_task = NULL; 2942 2943 if ((flags & SCA_MIGRATE_ENABLE) && 2944 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2945 rq->push_busy = true; 2946 push_task = get_task_struct(p); 2947 } 2948 2949 /* 2950 * If there are pending waiters, but no pending stop_work, 2951 * then complete now. 2952 */ 2953 pending = p->migration_pending; 2954 if (pending && !pending->stop_pending) { 2955 p->migration_pending = NULL; 2956 complete = true; 2957 } 2958 2959 preempt_disable(); 2960 task_rq_unlock(rq, p, rf); 2961 if (push_task) { 2962 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2963 p, &rq->push_work); 2964 } 2965 preempt_enable(); 2966 2967 if (complete) 2968 complete_all(&pending->done); 2969 2970 return 0; 2971 } 2972 2973 if (!(flags & SCA_MIGRATE_ENABLE)) { 2974 /* serialized by p->pi_lock */ 2975 if (!p->migration_pending) { 2976 /* Install the request */ 2977 refcount_set(&my_pending.refs, 1); 2978 init_completion(&my_pending.done); 2979 my_pending.arg = (struct migration_arg) { 2980 .task = p, 2981 .dest_cpu = dest_cpu, 2982 .pending = &my_pending, 2983 }; 2984 2985 p->migration_pending = &my_pending; 2986 } else { 2987 pending = p->migration_pending; 2988 refcount_inc(&pending->refs); 2989 /* 2990 * Affinity has changed, but we've already installed a 2991 * pending. migration_cpu_stop() *must* see this, else 2992 * we risk a completion of the pending despite having a 2993 * task on a disallowed CPU. 2994 * 2995 * Serialized by p->pi_lock, so this is safe. 2996 */ 2997 pending->arg.dest_cpu = dest_cpu; 2998 } 2999 } 3000 pending = p->migration_pending; 3001 /* 3002 * - !MIGRATE_ENABLE: 3003 * we'll have installed a pending if there wasn't one already. 3004 * 3005 * - MIGRATE_ENABLE: 3006 * we're here because the current CPU isn't matching anymore, 3007 * the only way that can happen is because of a concurrent 3008 * set_cpus_allowed_ptr() call, which should then still be 3009 * pending completion. 3010 * 3011 * Either way, we really should have a @pending here. 3012 */ 3013 if (WARN_ON_ONCE(!pending)) { 3014 task_rq_unlock(rq, p, rf); 3015 return -EINVAL; 3016 } 3017 3018 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 3019 /* 3020 * MIGRATE_ENABLE gets here because 'p == current', but for 3021 * anything else we cannot do is_migration_disabled(), punt 3022 * and have the stopper function handle it all race-free. 3023 */ 3024 stop_pending = pending->stop_pending; 3025 if (!stop_pending) 3026 pending->stop_pending = true; 3027 3028 if (flags & SCA_MIGRATE_ENABLE) 3029 p->migration_flags &= ~MDF_PUSH; 3030 3031 preempt_disable(); 3032 task_rq_unlock(rq, p, rf); 3033 if (!stop_pending) { 3034 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 3035 &pending->arg, &pending->stop_work); 3036 } 3037 preempt_enable(); 3038 3039 if (flags & SCA_MIGRATE_ENABLE) 3040 return 0; 3041 } else { 3042 3043 if (!is_migration_disabled(p)) { 3044 if (task_on_rq_queued(p)) 3045 rq = move_queued_task(rq, rf, p, dest_cpu); 3046 3047 if (!pending->stop_pending) { 3048 p->migration_pending = NULL; 3049 complete = true; 3050 } 3051 } 3052 task_rq_unlock(rq, p, rf); 3053 3054 if (complete) 3055 complete_all(&pending->done); 3056 } 3057 3058 wait_for_completion(&pending->done); 3059 3060 if (refcount_dec_and_test(&pending->refs)) 3061 wake_up_var(&pending->refs); /* No UaF, just an address */ 3062 3063 /* 3064 * Block the original owner of &pending until all subsequent callers 3065 * have seen the completion and decremented the refcount 3066 */ 3067 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3068 3069 /* ARGH */ 3070 WARN_ON_ONCE(my_pending.stop_pending); 3071 3072 return 0; 3073 } 3074 3075 /* 3076 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3077 */ 3078 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3079 struct affinity_context *ctx, 3080 struct rq *rq, 3081 struct rq_flags *rf) 3082 __releases(rq->lock) 3083 __releases(p->pi_lock) 3084 { 3085 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3086 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3087 bool kthread = p->flags & PF_KTHREAD; 3088 unsigned int dest_cpu; 3089 int ret = 0; 3090 3091 update_rq_clock(rq); 3092 3093 if (kthread || is_migration_disabled(p)) { 3094 /* 3095 * Kernel threads are allowed on online && !active CPUs, 3096 * however, during cpu-hot-unplug, even these might get pushed 3097 * away if not KTHREAD_IS_PER_CPU. 3098 * 3099 * Specifically, migration_disabled() tasks must not fail the 3100 * cpumask_any_and_distribute() pick below, esp. so on 3101 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3102 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3103 */ 3104 cpu_valid_mask = cpu_online_mask; 3105 } 3106 3107 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3108 ret = -EINVAL; 3109 goto out; 3110 } 3111 3112 /* 3113 * Must re-check here, to close a race against __kthread_bind(), 3114 * sched_setaffinity() is not guaranteed to observe the flag. 3115 */ 3116 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3117 ret = -EINVAL; 3118 goto out; 3119 } 3120 3121 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3122 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3123 if (ctx->flags & SCA_USER) 3124 swap(p->user_cpus_ptr, ctx->user_mask); 3125 goto out; 3126 } 3127 3128 if (WARN_ON_ONCE(p == current && 3129 is_migration_disabled(p) && 3130 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3131 ret = -EBUSY; 3132 goto out; 3133 } 3134 } 3135 3136 /* 3137 * Picking a ~random cpu helps in cases where we are changing affinity 3138 * for groups of tasks (ie. cpuset), so that load balancing is not 3139 * immediately required to distribute the tasks within their new mask. 3140 */ 3141 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3142 if (dest_cpu >= nr_cpu_ids) { 3143 ret = -EINVAL; 3144 goto out; 3145 } 3146 3147 __do_set_cpus_allowed(p, ctx); 3148 3149 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3150 3151 out: 3152 task_rq_unlock(rq, p, rf); 3153 3154 return ret; 3155 } 3156 3157 /* 3158 * Change a given task's CPU affinity. Migrate the thread to a 3159 * proper CPU and schedule it away if the CPU it's executing on 3160 * is removed from the allowed bitmask. 3161 * 3162 * NOTE: the caller must have a valid reference to the task, the 3163 * task must not exit() & deallocate itself prematurely. The 3164 * call is not atomic; no spinlocks may be held. 3165 */ 3166 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3167 { 3168 struct rq_flags rf; 3169 struct rq *rq; 3170 3171 rq = task_rq_lock(p, &rf); 3172 /* 3173 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3174 * flags are set. 3175 */ 3176 if (p->user_cpus_ptr && 3177 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3178 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3179 ctx->new_mask = rq->scratch_mask; 3180 3181 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3182 } 3183 3184 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3185 { 3186 struct affinity_context ac = { 3187 .new_mask = new_mask, 3188 .flags = 0, 3189 }; 3190 3191 return __set_cpus_allowed_ptr(p, &ac); 3192 } 3193 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3194 3195 /* 3196 * Change a given task's CPU affinity to the intersection of its current 3197 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3198 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3199 * affinity or use cpu_online_mask instead. 3200 * 3201 * If the resulting mask is empty, leave the affinity unchanged and return 3202 * -EINVAL. 3203 */ 3204 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3205 struct cpumask *new_mask, 3206 const struct cpumask *subset_mask) 3207 { 3208 struct affinity_context ac = { 3209 .new_mask = new_mask, 3210 .flags = 0, 3211 }; 3212 struct rq_flags rf; 3213 struct rq *rq; 3214 int err; 3215 3216 rq = task_rq_lock(p, &rf); 3217 3218 /* 3219 * Forcefully restricting the affinity of a deadline task is 3220 * likely to cause problems, so fail and noisily override the 3221 * mask entirely. 3222 */ 3223 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3224 err = -EPERM; 3225 goto err_unlock; 3226 } 3227 3228 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3229 err = -EINVAL; 3230 goto err_unlock; 3231 } 3232 3233 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3234 3235 err_unlock: 3236 task_rq_unlock(rq, p, &rf); 3237 return err; 3238 } 3239 3240 /* 3241 * Restrict the CPU affinity of task @p so that it is a subset of 3242 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3243 * old affinity mask. If the resulting mask is empty, we warn and walk 3244 * up the cpuset hierarchy until we find a suitable mask. 3245 */ 3246 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3247 { 3248 cpumask_var_t new_mask; 3249 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3250 3251 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3252 3253 /* 3254 * __migrate_task() can fail silently in the face of concurrent 3255 * offlining of the chosen destination CPU, so take the hotplug 3256 * lock to ensure that the migration succeeds. 3257 */ 3258 cpus_read_lock(); 3259 if (!cpumask_available(new_mask)) 3260 goto out_set_mask; 3261 3262 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3263 goto out_free_mask; 3264 3265 /* 3266 * We failed to find a valid subset of the affinity mask for the 3267 * task, so override it based on its cpuset hierarchy. 3268 */ 3269 cpuset_cpus_allowed(p, new_mask); 3270 override_mask = new_mask; 3271 3272 out_set_mask: 3273 if (printk_ratelimit()) { 3274 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3275 task_pid_nr(p), p->comm, 3276 cpumask_pr_args(override_mask)); 3277 } 3278 3279 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3280 out_free_mask: 3281 cpus_read_unlock(); 3282 free_cpumask_var(new_mask); 3283 } 3284 3285 /* 3286 * Restore the affinity of a task @p which was previously restricted by a 3287 * call to force_compatible_cpus_allowed_ptr(). 3288 * 3289 * It is the caller's responsibility to serialise this with any calls to 3290 * force_compatible_cpus_allowed_ptr(@p). 3291 */ 3292 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3293 { 3294 struct affinity_context ac = { 3295 .new_mask = task_user_cpus(p), 3296 .flags = 0, 3297 }; 3298 int ret; 3299 3300 /* 3301 * Try to restore the old affinity mask with __sched_setaffinity(). 3302 * Cpuset masking will be done there too. 3303 */ 3304 ret = __sched_setaffinity(p, &ac); 3305 WARN_ON_ONCE(ret); 3306 } 3307 3308 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3309 { 3310 unsigned int state = READ_ONCE(p->__state); 3311 3312 /* 3313 * We should never call set_task_cpu() on a blocked task, 3314 * ttwu() will sort out the placement. 3315 */ 3316 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3317 3318 /* 3319 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3320 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3321 * time relying on p->on_rq. 3322 */ 3323 WARN_ON_ONCE(state == TASK_RUNNING && 3324 p->sched_class == &fair_sched_class && 3325 (p->on_rq && !task_on_rq_migrating(p))); 3326 3327 #ifdef CONFIG_LOCKDEP 3328 /* 3329 * The caller should hold either p->pi_lock or rq->lock, when changing 3330 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3331 * 3332 * sched_move_task() holds both and thus holding either pins the cgroup, 3333 * see task_group(). 3334 * 3335 * Furthermore, all task_rq users should acquire both locks, see 3336 * task_rq_lock(). 3337 */ 3338 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3339 lockdep_is_held(__rq_lockp(task_rq(p))))); 3340 #endif 3341 /* 3342 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3343 */ 3344 WARN_ON_ONCE(!cpu_online(new_cpu)); 3345 3346 WARN_ON_ONCE(is_migration_disabled(p)); 3347 3348 trace_sched_migrate_task(p, new_cpu); 3349 3350 if (task_cpu(p) != new_cpu) { 3351 if (p->sched_class->migrate_task_rq) 3352 p->sched_class->migrate_task_rq(p, new_cpu); 3353 p->se.nr_migrations++; 3354 rseq_migrate(p); 3355 sched_mm_cid_migrate_from(p); 3356 perf_event_task_migrate(p); 3357 } 3358 3359 __set_task_cpu(p, new_cpu); 3360 } 3361 3362 #ifdef CONFIG_NUMA_BALANCING 3363 static void __migrate_swap_task(struct task_struct *p, int cpu) 3364 { 3365 __schedstat_inc(p->stats.numa_task_swapped); 3366 count_vm_numa_event(NUMA_TASK_SWAP); 3367 count_memcg_event_mm(p->mm, NUMA_TASK_SWAP); 3368 3369 if (task_on_rq_queued(p)) { 3370 struct rq *src_rq, *dst_rq; 3371 struct rq_flags srf, drf; 3372 3373 src_rq = task_rq(p); 3374 dst_rq = cpu_rq(cpu); 3375 3376 rq_pin_lock(src_rq, &srf); 3377 rq_pin_lock(dst_rq, &drf); 3378 3379 move_queued_task_locked(src_rq, dst_rq, p); 3380 wakeup_preempt(dst_rq, p, 0); 3381 3382 rq_unpin_lock(dst_rq, &drf); 3383 rq_unpin_lock(src_rq, &srf); 3384 3385 } else { 3386 /* 3387 * Task isn't running anymore; make it appear like we migrated 3388 * it before it went to sleep. This means on wakeup we make the 3389 * previous CPU our target instead of where it really is. 3390 */ 3391 p->wake_cpu = cpu; 3392 } 3393 } 3394 3395 struct migration_swap_arg { 3396 struct task_struct *src_task, *dst_task; 3397 int src_cpu, dst_cpu; 3398 }; 3399 3400 static int migrate_swap_stop(void *data) 3401 { 3402 struct migration_swap_arg *arg = data; 3403 struct rq *src_rq, *dst_rq; 3404 3405 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3406 return -EAGAIN; 3407 3408 src_rq = cpu_rq(arg->src_cpu); 3409 dst_rq = cpu_rq(arg->dst_cpu); 3410 3411 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3412 guard(double_rq_lock)(src_rq, dst_rq); 3413 3414 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3415 return -EAGAIN; 3416 3417 if (task_cpu(arg->src_task) != arg->src_cpu) 3418 return -EAGAIN; 3419 3420 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3421 return -EAGAIN; 3422 3423 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3424 return -EAGAIN; 3425 3426 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3427 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3428 3429 return 0; 3430 } 3431 3432 /* 3433 * Cross migrate two tasks 3434 */ 3435 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3436 int target_cpu, int curr_cpu) 3437 { 3438 struct migration_swap_arg arg; 3439 int ret = -EINVAL; 3440 3441 arg = (struct migration_swap_arg){ 3442 .src_task = cur, 3443 .src_cpu = curr_cpu, 3444 .dst_task = p, 3445 .dst_cpu = target_cpu, 3446 }; 3447 3448 if (arg.src_cpu == arg.dst_cpu) 3449 goto out; 3450 3451 /* 3452 * These three tests are all lockless; this is OK since all of them 3453 * will be re-checked with proper locks held further down the line. 3454 */ 3455 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3456 goto out; 3457 3458 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3459 goto out; 3460 3461 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3462 goto out; 3463 3464 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3465 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3466 3467 out: 3468 return ret; 3469 } 3470 #endif /* CONFIG_NUMA_BALANCING */ 3471 3472 /*** 3473 * kick_process - kick a running thread to enter/exit the kernel 3474 * @p: the to-be-kicked thread 3475 * 3476 * Cause a process which is running on another CPU to enter 3477 * kernel-mode, without any delay. (to get signals handled.) 3478 * 3479 * NOTE: this function doesn't have to take the runqueue lock, 3480 * because all it wants to ensure is that the remote task enters 3481 * the kernel. If the IPI races and the task has been migrated 3482 * to another CPU then no harm is done and the purpose has been 3483 * achieved as well. 3484 */ 3485 void kick_process(struct task_struct *p) 3486 { 3487 guard(preempt)(); 3488 int cpu = task_cpu(p); 3489 3490 if ((cpu != smp_processor_id()) && task_curr(p)) 3491 smp_send_reschedule(cpu); 3492 } 3493 EXPORT_SYMBOL_GPL(kick_process); 3494 3495 /* 3496 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3497 * 3498 * A few notes on cpu_active vs cpu_online: 3499 * 3500 * - cpu_active must be a subset of cpu_online 3501 * 3502 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3503 * see __set_cpus_allowed_ptr(). At this point the newly online 3504 * CPU isn't yet part of the sched domains, and balancing will not 3505 * see it. 3506 * 3507 * - on CPU-down we clear cpu_active() to mask the sched domains and 3508 * avoid the load balancer to place new tasks on the to be removed 3509 * CPU. Existing tasks will remain running there and will be taken 3510 * off. 3511 * 3512 * This means that fallback selection must not select !active CPUs. 3513 * And can assume that any active CPU must be online. Conversely 3514 * select_task_rq() below may allow selection of !active CPUs in order 3515 * to satisfy the above rules. 3516 */ 3517 static int select_fallback_rq(int cpu, struct task_struct *p) 3518 { 3519 int nid = cpu_to_node(cpu); 3520 const struct cpumask *nodemask = NULL; 3521 enum { cpuset, possible, fail } state = cpuset; 3522 int dest_cpu; 3523 3524 /* 3525 * If the node that the CPU is on has been offlined, cpu_to_node() 3526 * will return -1. There is no CPU on the node, and we should 3527 * select the CPU on the other node. 3528 */ 3529 if (nid != -1) { 3530 nodemask = cpumask_of_node(nid); 3531 3532 /* Look for allowed, online CPU in same node. */ 3533 for_each_cpu(dest_cpu, nodemask) { 3534 if (is_cpu_allowed(p, dest_cpu)) 3535 return dest_cpu; 3536 } 3537 } 3538 3539 for (;;) { 3540 /* Any allowed, online CPU? */ 3541 for_each_cpu(dest_cpu, p->cpus_ptr) { 3542 if (!is_cpu_allowed(p, dest_cpu)) 3543 continue; 3544 3545 goto out; 3546 } 3547 3548 /* No more Mr. Nice Guy. */ 3549 switch (state) { 3550 case cpuset: 3551 if (cpuset_cpus_allowed_fallback(p)) { 3552 state = possible; 3553 break; 3554 } 3555 fallthrough; 3556 case possible: 3557 /* 3558 * XXX When called from select_task_rq() we only 3559 * hold p->pi_lock and again violate locking order. 3560 * 3561 * More yuck to audit. 3562 */ 3563 do_set_cpus_allowed(p, task_cpu_fallback_mask(p)); 3564 state = fail; 3565 break; 3566 case fail: 3567 BUG(); 3568 break; 3569 } 3570 } 3571 3572 out: 3573 if (state != cpuset) { 3574 /* 3575 * Don't tell them about moving exiting tasks or 3576 * kernel threads (both mm NULL), since they never 3577 * leave kernel. 3578 */ 3579 if (p->mm && printk_ratelimit()) { 3580 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3581 task_pid_nr(p), p->comm, cpu); 3582 } 3583 } 3584 3585 return dest_cpu; 3586 } 3587 3588 /* 3589 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3590 */ 3591 static inline 3592 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3593 { 3594 lockdep_assert_held(&p->pi_lock); 3595 3596 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3597 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3598 *wake_flags |= WF_RQ_SELECTED; 3599 } else { 3600 cpu = cpumask_any(p->cpus_ptr); 3601 } 3602 3603 /* 3604 * In order not to call set_task_cpu() on a blocking task we need 3605 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3606 * CPU. 3607 * 3608 * Since this is common to all placement strategies, this lives here. 3609 * 3610 * [ this allows ->select_task() to simply return task_cpu(p) and 3611 * not worry about this generic constraint ] 3612 */ 3613 if (unlikely(!is_cpu_allowed(p, cpu))) 3614 cpu = select_fallback_rq(task_cpu(p), p); 3615 3616 return cpu; 3617 } 3618 3619 void sched_set_stop_task(int cpu, struct task_struct *stop) 3620 { 3621 static struct lock_class_key stop_pi_lock; 3622 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3623 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3624 3625 if (stop) { 3626 /* 3627 * Make it appear like a SCHED_FIFO task, its something 3628 * userspace knows about and won't get confused about. 3629 * 3630 * Also, it will make PI more or less work without too 3631 * much confusion -- but then, stop work should not 3632 * rely on PI working anyway. 3633 */ 3634 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3635 3636 stop->sched_class = &stop_sched_class; 3637 3638 /* 3639 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3640 * adjust the effective priority of a task. As a result, 3641 * rt_mutex_setprio() can trigger (RT) balancing operations, 3642 * which can then trigger wakeups of the stop thread to push 3643 * around the current task. 3644 * 3645 * The stop task itself will never be part of the PI-chain, it 3646 * never blocks, therefore that ->pi_lock recursion is safe. 3647 * Tell lockdep about this by placing the stop->pi_lock in its 3648 * own class. 3649 */ 3650 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3651 } 3652 3653 cpu_rq(cpu)->stop = stop; 3654 3655 if (old_stop) { 3656 /* 3657 * Reset it back to a normal scheduling class so that 3658 * it can die in pieces. 3659 */ 3660 old_stop->sched_class = &rt_sched_class; 3661 } 3662 } 3663 3664 #else /* CONFIG_SMP */ 3665 3666 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3667 3668 static inline bool rq_has_pinned_tasks(struct rq *rq) 3669 { 3670 return false; 3671 } 3672 3673 #endif /* !CONFIG_SMP */ 3674 3675 static void 3676 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3677 { 3678 struct rq *rq; 3679 3680 if (!schedstat_enabled()) 3681 return; 3682 3683 rq = this_rq(); 3684 3685 #ifdef CONFIG_SMP 3686 if (cpu == rq->cpu) { 3687 __schedstat_inc(rq->ttwu_local); 3688 __schedstat_inc(p->stats.nr_wakeups_local); 3689 } else { 3690 struct sched_domain *sd; 3691 3692 __schedstat_inc(p->stats.nr_wakeups_remote); 3693 3694 guard(rcu)(); 3695 for_each_domain(rq->cpu, sd) { 3696 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3697 __schedstat_inc(sd->ttwu_wake_remote); 3698 break; 3699 } 3700 } 3701 } 3702 3703 if (wake_flags & WF_MIGRATED) 3704 __schedstat_inc(p->stats.nr_wakeups_migrate); 3705 #endif /* CONFIG_SMP */ 3706 3707 __schedstat_inc(rq->ttwu_count); 3708 __schedstat_inc(p->stats.nr_wakeups); 3709 3710 if (wake_flags & WF_SYNC) 3711 __schedstat_inc(p->stats.nr_wakeups_sync); 3712 } 3713 3714 /* 3715 * Mark the task runnable. 3716 */ 3717 static inline void ttwu_do_wakeup(struct task_struct *p) 3718 { 3719 WRITE_ONCE(p->__state, TASK_RUNNING); 3720 trace_sched_wakeup(p); 3721 } 3722 3723 static void 3724 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3725 struct rq_flags *rf) 3726 { 3727 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3728 3729 lockdep_assert_rq_held(rq); 3730 3731 if (p->sched_contributes_to_load) 3732 rq->nr_uninterruptible--; 3733 3734 #ifdef CONFIG_SMP 3735 if (wake_flags & WF_RQ_SELECTED) 3736 en_flags |= ENQUEUE_RQ_SELECTED; 3737 if (wake_flags & WF_MIGRATED) 3738 en_flags |= ENQUEUE_MIGRATED; 3739 else 3740 #endif 3741 if (p->in_iowait) { 3742 delayacct_blkio_end(p); 3743 atomic_dec(&task_rq(p)->nr_iowait); 3744 } 3745 3746 activate_task(rq, p, en_flags); 3747 wakeup_preempt(rq, p, wake_flags); 3748 3749 ttwu_do_wakeup(p); 3750 3751 #ifdef CONFIG_SMP 3752 if (p->sched_class->task_woken) { 3753 /* 3754 * Our task @p is fully woken up and running; so it's safe to 3755 * drop the rq->lock, hereafter rq is only used for statistics. 3756 */ 3757 rq_unpin_lock(rq, rf); 3758 p->sched_class->task_woken(rq, p); 3759 rq_repin_lock(rq, rf); 3760 } 3761 3762 if (rq->idle_stamp) { 3763 u64 delta = rq_clock(rq) - rq->idle_stamp; 3764 u64 max = 2*rq->max_idle_balance_cost; 3765 3766 update_avg(&rq->avg_idle, delta); 3767 3768 if (rq->avg_idle > max) 3769 rq->avg_idle = max; 3770 3771 rq->idle_stamp = 0; 3772 } 3773 #endif 3774 } 3775 3776 /* 3777 * Consider @p being inside a wait loop: 3778 * 3779 * for (;;) { 3780 * set_current_state(TASK_UNINTERRUPTIBLE); 3781 * 3782 * if (CONDITION) 3783 * break; 3784 * 3785 * schedule(); 3786 * } 3787 * __set_current_state(TASK_RUNNING); 3788 * 3789 * between set_current_state() and schedule(). In this case @p is still 3790 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3791 * an atomic manner. 3792 * 3793 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3794 * then schedule() must still happen and p->state can be changed to 3795 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3796 * need to do a full wakeup with enqueue. 3797 * 3798 * Returns: %true when the wakeup is done, 3799 * %false otherwise. 3800 */ 3801 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3802 { 3803 struct rq_flags rf; 3804 struct rq *rq; 3805 int ret = 0; 3806 3807 rq = __task_rq_lock(p, &rf); 3808 if (task_on_rq_queued(p)) { 3809 update_rq_clock(rq); 3810 if (p->se.sched_delayed) 3811 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3812 if (!task_on_cpu(rq, p)) { 3813 /* 3814 * When on_rq && !on_cpu the task is preempted, see if 3815 * it should preempt the task that is current now. 3816 */ 3817 wakeup_preempt(rq, p, wake_flags); 3818 } 3819 ttwu_do_wakeup(p); 3820 ret = 1; 3821 } 3822 __task_rq_unlock(rq, &rf); 3823 3824 return ret; 3825 } 3826 3827 #ifdef CONFIG_SMP 3828 void sched_ttwu_pending(void *arg) 3829 { 3830 struct llist_node *llist = arg; 3831 struct rq *rq = this_rq(); 3832 struct task_struct *p, *t; 3833 struct rq_flags rf; 3834 3835 if (!llist) 3836 return; 3837 3838 rq_lock_irqsave(rq, &rf); 3839 update_rq_clock(rq); 3840 3841 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3842 if (WARN_ON_ONCE(p->on_cpu)) 3843 smp_cond_load_acquire(&p->on_cpu, !VAL); 3844 3845 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3846 set_task_cpu(p, cpu_of(rq)); 3847 3848 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3849 } 3850 3851 /* 3852 * Must be after enqueueing at least once task such that 3853 * idle_cpu() does not observe a false-negative -- if it does, 3854 * it is possible for select_idle_siblings() to stack a number 3855 * of tasks on this CPU during that window. 3856 * 3857 * It is OK to clear ttwu_pending when another task pending. 3858 * We will receive IPI after local IRQ enabled and then enqueue it. 3859 * Since now nr_running > 0, idle_cpu() will always get correct result. 3860 */ 3861 WRITE_ONCE(rq->ttwu_pending, 0); 3862 rq_unlock_irqrestore(rq, &rf); 3863 } 3864 3865 /* 3866 * Prepare the scene for sending an IPI for a remote smp_call 3867 * 3868 * Returns true if the caller can proceed with sending the IPI. 3869 * Returns false otherwise. 3870 */ 3871 bool call_function_single_prep_ipi(int cpu) 3872 { 3873 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3874 trace_sched_wake_idle_without_ipi(cpu); 3875 return false; 3876 } 3877 3878 return true; 3879 } 3880 3881 /* 3882 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3883 * necessary. The wakee CPU on receipt of the IPI will queue the task 3884 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3885 * of the wakeup instead of the waker. 3886 */ 3887 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3888 { 3889 struct rq *rq = cpu_rq(cpu); 3890 3891 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3892 3893 WRITE_ONCE(rq->ttwu_pending, 1); 3894 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3895 } 3896 3897 void wake_up_if_idle(int cpu) 3898 { 3899 struct rq *rq = cpu_rq(cpu); 3900 3901 guard(rcu)(); 3902 if (is_idle_task(rcu_dereference(rq->curr))) { 3903 guard(rq_lock_irqsave)(rq); 3904 if (is_idle_task(rq->curr)) 3905 resched_curr(rq); 3906 } 3907 } 3908 3909 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3910 { 3911 if (!sched_asym_cpucap_active()) 3912 return true; 3913 3914 if (this_cpu == that_cpu) 3915 return true; 3916 3917 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3918 } 3919 3920 bool cpus_share_cache(int this_cpu, int that_cpu) 3921 { 3922 if (this_cpu == that_cpu) 3923 return true; 3924 3925 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3926 } 3927 3928 /* 3929 * Whether CPUs are share cache resources, which means LLC on non-cluster 3930 * machines and LLC tag or L2 on machines with clusters. 3931 */ 3932 bool cpus_share_resources(int this_cpu, int that_cpu) 3933 { 3934 if (this_cpu == that_cpu) 3935 return true; 3936 3937 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3938 } 3939 3940 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3941 { 3942 /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ 3943 if (!scx_allow_ttwu_queue(p)) 3944 return false; 3945 3946 /* 3947 * Do not complicate things with the async wake_list while the CPU is 3948 * in hotplug state. 3949 */ 3950 if (!cpu_active(cpu)) 3951 return false; 3952 3953 /* Ensure the task will still be allowed to run on the CPU. */ 3954 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3955 return false; 3956 3957 /* 3958 * If the CPU does not share cache, then queue the task on the 3959 * remote rqs wakelist to avoid accessing remote data. 3960 */ 3961 if (!cpus_share_cache(smp_processor_id(), cpu)) 3962 return true; 3963 3964 if (cpu == smp_processor_id()) 3965 return false; 3966 3967 /* 3968 * If the wakee cpu is idle, or the task is descheduling and the 3969 * only running task on the CPU, then use the wakelist to offload 3970 * the task activation to the idle (or soon-to-be-idle) CPU as 3971 * the current CPU is likely busy. nr_running is checked to 3972 * avoid unnecessary task stacking. 3973 * 3974 * Note that we can only get here with (wakee) p->on_rq=0, 3975 * p->on_cpu can be whatever, we've done the dequeue, so 3976 * the wakee has been accounted out of ->nr_running. 3977 */ 3978 if (!cpu_rq(cpu)->nr_running) 3979 return true; 3980 3981 return false; 3982 } 3983 3984 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3985 { 3986 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3987 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3988 __ttwu_queue_wakelist(p, cpu, wake_flags); 3989 return true; 3990 } 3991 3992 return false; 3993 } 3994 3995 #else /* !CONFIG_SMP */ 3996 3997 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3998 { 3999 return false; 4000 } 4001 4002 #endif /* CONFIG_SMP */ 4003 4004 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 4005 { 4006 struct rq *rq = cpu_rq(cpu); 4007 struct rq_flags rf; 4008 4009 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 4010 return; 4011 4012 rq_lock(rq, &rf); 4013 update_rq_clock(rq); 4014 ttwu_do_activate(rq, p, wake_flags, &rf); 4015 rq_unlock(rq, &rf); 4016 } 4017 4018 /* 4019 * Invoked from try_to_wake_up() to check whether the task can be woken up. 4020 * 4021 * The caller holds p::pi_lock if p != current or has preemption 4022 * disabled when p == current. 4023 * 4024 * The rules of saved_state: 4025 * 4026 * The related locking code always holds p::pi_lock when updating 4027 * p::saved_state, which means the code is fully serialized in both cases. 4028 * 4029 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 4030 * No other bits set. This allows to distinguish all wakeup scenarios. 4031 * 4032 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 4033 * allows us to prevent early wakeup of tasks before they can be run on 4034 * asymmetric ISA architectures (eg ARMv9). 4035 */ 4036 static __always_inline 4037 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 4038 { 4039 int match; 4040 4041 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 4042 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 4043 state != TASK_RTLOCK_WAIT); 4044 } 4045 4046 *success = !!(match = __task_state_match(p, state)); 4047 4048 /* 4049 * Saved state preserves the task state across blocking on 4050 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 4051 * set p::saved_state to TASK_RUNNING, but do not wake the task 4052 * because it waits for a lock wakeup or __thaw_task(). Also 4053 * indicate success because from the regular waker's point of 4054 * view this has succeeded. 4055 * 4056 * After acquiring the lock the task will restore p::__state 4057 * from p::saved_state which ensures that the regular 4058 * wakeup is not lost. The restore will also set 4059 * p::saved_state to TASK_RUNNING so any further tests will 4060 * not result in false positives vs. @success 4061 */ 4062 if (match < 0) 4063 p->saved_state = TASK_RUNNING; 4064 4065 return match > 0; 4066 } 4067 4068 /* 4069 * Notes on Program-Order guarantees on SMP systems. 4070 * 4071 * MIGRATION 4072 * 4073 * The basic program-order guarantee on SMP systems is that when a task [t] 4074 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4075 * execution on its new CPU [c1]. 4076 * 4077 * For migration (of runnable tasks) this is provided by the following means: 4078 * 4079 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4080 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4081 * rq(c1)->lock (if not at the same time, then in that order). 4082 * C) LOCK of the rq(c1)->lock scheduling in task 4083 * 4084 * Release/acquire chaining guarantees that B happens after A and C after B. 4085 * Note: the CPU doing B need not be c0 or c1 4086 * 4087 * Example: 4088 * 4089 * CPU0 CPU1 CPU2 4090 * 4091 * LOCK rq(0)->lock 4092 * sched-out X 4093 * sched-in Y 4094 * UNLOCK rq(0)->lock 4095 * 4096 * LOCK rq(0)->lock // orders against CPU0 4097 * dequeue X 4098 * UNLOCK rq(0)->lock 4099 * 4100 * LOCK rq(1)->lock 4101 * enqueue X 4102 * UNLOCK rq(1)->lock 4103 * 4104 * LOCK rq(1)->lock // orders against CPU2 4105 * sched-out Z 4106 * sched-in X 4107 * UNLOCK rq(1)->lock 4108 * 4109 * 4110 * BLOCKING -- aka. SLEEP + WAKEUP 4111 * 4112 * For blocking we (obviously) need to provide the same guarantee as for 4113 * migration. However the means are completely different as there is no lock 4114 * chain to provide order. Instead we do: 4115 * 4116 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4117 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4118 * 4119 * Example: 4120 * 4121 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4122 * 4123 * LOCK rq(0)->lock LOCK X->pi_lock 4124 * dequeue X 4125 * sched-out X 4126 * smp_store_release(X->on_cpu, 0); 4127 * 4128 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4129 * X->state = WAKING 4130 * set_task_cpu(X,2) 4131 * 4132 * LOCK rq(2)->lock 4133 * enqueue X 4134 * X->state = RUNNING 4135 * UNLOCK rq(2)->lock 4136 * 4137 * LOCK rq(2)->lock // orders against CPU1 4138 * sched-out Z 4139 * sched-in X 4140 * UNLOCK rq(2)->lock 4141 * 4142 * UNLOCK X->pi_lock 4143 * UNLOCK rq(0)->lock 4144 * 4145 * 4146 * However, for wakeups there is a second guarantee we must provide, namely we 4147 * must ensure that CONDITION=1 done by the caller can not be reordered with 4148 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4149 */ 4150 4151 /** 4152 * try_to_wake_up - wake up a thread 4153 * @p: the thread to be awakened 4154 * @state: the mask of task states that can be woken 4155 * @wake_flags: wake modifier flags (WF_*) 4156 * 4157 * Conceptually does: 4158 * 4159 * If (@state & @p->state) @p->state = TASK_RUNNING. 4160 * 4161 * If the task was not queued/runnable, also place it back on a runqueue. 4162 * 4163 * This function is atomic against schedule() which would dequeue the task. 4164 * 4165 * It issues a full memory barrier before accessing @p->state, see the comment 4166 * with set_current_state(). 4167 * 4168 * Uses p->pi_lock to serialize against concurrent wake-ups. 4169 * 4170 * Relies on p->pi_lock stabilizing: 4171 * - p->sched_class 4172 * - p->cpus_ptr 4173 * - p->sched_task_group 4174 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4175 * 4176 * Tries really hard to only take one task_rq(p)->lock for performance. 4177 * Takes rq->lock in: 4178 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4179 * - ttwu_queue() -- new rq, for enqueue of the task; 4180 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4181 * 4182 * As a consequence we race really badly with just about everything. See the 4183 * many memory barriers and their comments for details. 4184 * 4185 * Return: %true if @p->state changes (an actual wakeup was done), 4186 * %false otherwise. 4187 */ 4188 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4189 { 4190 guard(preempt)(); 4191 int cpu, success = 0; 4192 4193 wake_flags |= WF_TTWU; 4194 4195 if (p == current) { 4196 /* 4197 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4198 * == smp_processor_id()'. Together this means we can special 4199 * case the whole 'p->on_rq && ttwu_runnable()' case below 4200 * without taking any locks. 4201 * 4202 * Specifically, given current runs ttwu() we must be before 4203 * schedule()'s block_task(), as such this must not observe 4204 * sched_delayed. 4205 * 4206 * In particular: 4207 * - we rely on Program-Order guarantees for all the ordering, 4208 * - we're serialized against set_special_state() by virtue of 4209 * it disabling IRQs (this allows not taking ->pi_lock). 4210 */ 4211 WARN_ON_ONCE(p->se.sched_delayed); 4212 if (!ttwu_state_match(p, state, &success)) 4213 goto out; 4214 4215 trace_sched_waking(p); 4216 ttwu_do_wakeup(p); 4217 goto out; 4218 } 4219 4220 /* 4221 * If we are going to wake up a thread waiting for CONDITION we 4222 * need to ensure that CONDITION=1 done by the caller can not be 4223 * reordered with p->state check below. This pairs with smp_store_mb() 4224 * in set_current_state() that the waiting thread does. 4225 */ 4226 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4227 smp_mb__after_spinlock(); 4228 if (!ttwu_state_match(p, state, &success)) 4229 break; 4230 4231 trace_sched_waking(p); 4232 4233 /* 4234 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4235 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4236 * in smp_cond_load_acquire() below. 4237 * 4238 * sched_ttwu_pending() try_to_wake_up() 4239 * STORE p->on_rq = 1 LOAD p->state 4240 * UNLOCK rq->lock 4241 * 4242 * __schedule() (switch to task 'p') 4243 * LOCK rq->lock smp_rmb(); 4244 * smp_mb__after_spinlock(); 4245 * UNLOCK rq->lock 4246 * 4247 * [task p] 4248 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4249 * 4250 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4251 * __schedule(). See the comment for smp_mb__after_spinlock(). 4252 * 4253 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4254 */ 4255 smp_rmb(); 4256 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4257 break; 4258 4259 #ifdef CONFIG_SMP 4260 /* 4261 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4262 * possible to, falsely, observe p->on_cpu == 0. 4263 * 4264 * One must be running (->on_cpu == 1) in order to remove oneself 4265 * from the runqueue. 4266 * 4267 * __schedule() (switch to task 'p') try_to_wake_up() 4268 * STORE p->on_cpu = 1 LOAD p->on_rq 4269 * UNLOCK rq->lock 4270 * 4271 * __schedule() (put 'p' to sleep) 4272 * LOCK rq->lock smp_rmb(); 4273 * smp_mb__after_spinlock(); 4274 * STORE p->on_rq = 0 LOAD p->on_cpu 4275 * 4276 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4277 * __schedule(). See the comment for smp_mb__after_spinlock(). 4278 * 4279 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4280 * schedule()'s deactivate_task() has 'happened' and p will no longer 4281 * care about it's own p->state. See the comment in __schedule(). 4282 */ 4283 smp_acquire__after_ctrl_dep(); 4284 4285 /* 4286 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4287 * == 0), which means we need to do an enqueue, change p->state to 4288 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4289 * enqueue, such as ttwu_queue_wakelist(). 4290 */ 4291 WRITE_ONCE(p->__state, TASK_WAKING); 4292 4293 /* 4294 * If the owning (remote) CPU is still in the middle of schedule() with 4295 * this task as prev, considering queueing p on the remote CPUs wake_list 4296 * which potentially sends an IPI instead of spinning on p->on_cpu to 4297 * let the waker make forward progress. This is safe because IRQs are 4298 * disabled and the IPI will deliver after on_cpu is cleared. 4299 * 4300 * Ensure we load task_cpu(p) after p->on_cpu: 4301 * 4302 * set_task_cpu(p, cpu); 4303 * STORE p->cpu = @cpu 4304 * __schedule() (switch to task 'p') 4305 * LOCK rq->lock 4306 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4307 * STORE p->on_cpu = 1 LOAD p->cpu 4308 * 4309 * to ensure we observe the correct CPU on which the task is currently 4310 * scheduling. 4311 */ 4312 if (smp_load_acquire(&p->on_cpu) && 4313 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4314 break; 4315 4316 /* 4317 * If the owning (remote) CPU is still in the middle of schedule() with 4318 * this task as prev, wait until it's done referencing the task. 4319 * 4320 * Pairs with the smp_store_release() in finish_task(). 4321 * 4322 * This ensures that tasks getting woken will be fully ordered against 4323 * their previous state and preserve Program Order. 4324 */ 4325 smp_cond_load_acquire(&p->on_cpu, !VAL); 4326 4327 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4328 if (task_cpu(p) != cpu) { 4329 if (p->in_iowait) { 4330 delayacct_blkio_end(p); 4331 atomic_dec(&task_rq(p)->nr_iowait); 4332 } 4333 4334 wake_flags |= WF_MIGRATED; 4335 psi_ttwu_dequeue(p); 4336 set_task_cpu(p, cpu); 4337 } 4338 #else 4339 cpu = task_cpu(p); 4340 #endif /* CONFIG_SMP */ 4341 4342 ttwu_queue(p, cpu, wake_flags); 4343 } 4344 out: 4345 if (success) 4346 ttwu_stat(p, task_cpu(p), wake_flags); 4347 4348 return success; 4349 } 4350 4351 static bool __task_needs_rq_lock(struct task_struct *p) 4352 { 4353 unsigned int state = READ_ONCE(p->__state); 4354 4355 /* 4356 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4357 * the task is blocked. Make sure to check @state since ttwu() can drop 4358 * locks at the end, see ttwu_queue_wakelist(). 4359 */ 4360 if (state == TASK_RUNNING || state == TASK_WAKING) 4361 return true; 4362 4363 /* 4364 * Ensure we load p->on_rq after p->__state, otherwise it would be 4365 * possible to, falsely, observe p->on_rq == 0. 4366 * 4367 * See try_to_wake_up() for a longer comment. 4368 */ 4369 smp_rmb(); 4370 if (p->on_rq) 4371 return true; 4372 4373 #ifdef CONFIG_SMP 4374 /* 4375 * Ensure the task has finished __schedule() and will not be referenced 4376 * anymore. Again, see try_to_wake_up() for a longer comment. 4377 */ 4378 smp_rmb(); 4379 smp_cond_load_acquire(&p->on_cpu, !VAL); 4380 #endif 4381 4382 return false; 4383 } 4384 4385 /** 4386 * task_call_func - Invoke a function on task in fixed state 4387 * @p: Process for which the function is to be invoked, can be @current. 4388 * @func: Function to invoke. 4389 * @arg: Argument to function. 4390 * 4391 * Fix the task in it's current state by avoiding wakeups and or rq operations 4392 * and call @func(@arg) on it. This function can use task_is_runnable() and 4393 * task_curr() to work out what the state is, if required. Given that @func 4394 * can be invoked with a runqueue lock held, it had better be quite 4395 * lightweight. 4396 * 4397 * Returns: 4398 * Whatever @func returns 4399 */ 4400 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4401 { 4402 struct rq *rq = NULL; 4403 struct rq_flags rf; 4404 int ret; 4405 4406 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4407 4408 if (__task_needs_rq_lock(p)) 4409 rq = __task_rq_lock(p, &rf); 4410 4411 /* 4412 * At this point the task is pinned; either: 4413 * - blocked and we're holding off wakeups (pi->lock) 4414 * - woken, and we're holding off enqueue (rq->lock) 4415 * - queued, and we're holding off schedule (rq->lock) 4416 * - running, and we're holding off de-schedule (rq->lock) 4417 * 4418 * The called function (@func) can use: task_curr(), p->on_rq and 4419 * p->__state to differentiate between these states. 4420 */ 4421 ret = func(p, arg); 4422 4423 if (rq) 4424 rq_unlock(rq, &rf); 4425 4426 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4427 return ret; 4428 } 4429 4430 /** 4431 * cpu_curr_snapshot - Return a snapshot of the currently running task 4432 * @cpu: The CPU on which to snapshot the task. 4433 * 4434 * Returns the task_struct pointer of the task "currently" running on 4435 * the specified CPU. 4436 * 4437 * If the specified CPU was offline, the return value is whatever it 4438 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4439 * task, but there is no guarantee. Callers wishing a useful return 4440 * value must take some action to ensure that the specified CPU remains 4441 * online throughout. 4442 * 4443 * This function executes full memory barriers before and after fetching 4444 * the pointer, which permits the caller to confine this function's fetch 4445 * with respect to the caller's accesses to other shared variables. 4446 */ 4447 struct task_struct *cpu_curr_snapshot(int cpu) 4448 { 4449 struct rq *rq = cpu_rq(cpu); 4450 struct task_struct *t; 4451 struct rq_flags rf; 4452 4453 rq_lock_irqsave(rq, &rf); 4454 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4455 t = rcu_dereference(cpu_curr(cpu)); 4456 rq_unlock_irqrestore(rq, &rf); 4457 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4458 4459 return t; 4460 } 4461 4462 /** 4463 * wake_up_process - Wake up a specific process 4464 * @p: The process to be woken up. 4465 * 4466 * Attempt to wake up the nominated process and move it to the set of runnable 4467 * processes. 4468 * 4469 * Return: 1 if the process was woken up, 0 if it was already running. 4470 * 4471 * This function executes a full memory barrier before accessing the task state. 4472 */ 4473 int wake_up_process(struct task_struct *p) 4474 { 4475 return try_to_wake_up(p, TASK_NORMAL, 0); 4476 } 4477 EXPORT_SYMBOL(wake_up_process); 4478 4479 int wake_up_state(struct task_struct *p, unsigned int state) 4480 { 4481 return try_to_wake_up(p, state, 0); 4482 } 4483 4484 /* 4485 * Perform scheduler related setup for a newly forked process p. 4486 * p is forked by current. 4487 * 4488 * __sched_fork() is basic setup which is also used by sched_init() to 4489 * initialize the boot CPU's idle task. 4490 */ 4491 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4492 { 4493 p->on_rq = 0; 4494 4495 p->se.on_rq = 0; 4496 p->se.exec_start = 0; 4497 p->se.sum_exec_runtime = 0; 4498 p->se.prev_sum_exec_runtime = 0; 4499 p->se.nr_migrations = 0; 4500 p->se.vruntime = 0; 4501 p->se.vlag = 0; 4502 INIT_LIST_HEAD(&p->se.group_node); 4503 4504 /* A delayed task cannot be in clone(). */ 4505 WARN_ON_ONCE(p->se.sched_delayed); 4506 4507 #ifdef CONFIG_FAIR_GROUP_SCHED 4508 p->se.cfs_rq = NULL; 4509 #endif 4510 4511 #ifdef CONFIG_SCHEDSTATS 4512 /* Even if schedstat is disabled, there should not be garbage */ 4513 memset(&p->stats, 0, sizeof(p->stats)); 4514 #endif 4515 4516 init_dl_entity(&p->dl); 4517 4518 INIT_LIST_HEAD(&p->rt.run_list); 4519 p->rt.timeout = 0; 4520 p->rt.time_slice = sched_rr_timeslice; 4521 p->rt.on_rq = 0; 4522 p->rt.on_list = 0; 4523 4524 #ifdef CONFIG_SCHED_CLASS_EXT 4525 init_scx_entity(&p->scx); 4526 #endif 4527 4528 #ifdef CONFIG_PREEMPT_NOTIFIERS 4529 INIT_HLIST_HEAD(&p->preempt_notifiers); 4530 #endif 4531 4532 #ifdef CONFIG_COMPACTION 4533 p->capture_control = NULL; 4534 #endif 4535 init_numa_balancing(clone_flags, p); 4536 #ifdef CONFIG_SMP 4537 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4538 p->migration_pending = NULL; 4539 #endif 4540 init_sched_mm_cid(p); 4541 } 4542 4543 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4544 4545 #ifdef CONFIG_NUMA_BALANCING 4546 4547 int sysctl_numa_balancing_mode; 4548 4549 static void __set_numabalancing_state(bool enabled) 4550 { 4551 if (enabled) 4552 static_branch_enable(&sched_numa_balancing); 4553 else 4554 static_branch_disable(&sched_numa_balancing); 4555 } 4556 4557 void set_numabalancing_state(bool enabled) 4558 { 4559 if (enabled) 4560 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4561 else 4562 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4563 __set_numabalancing_state(enabled); 4564 } 4565 4566 #ifdef CONFIG_PROC_SYSCTL 4567 static void reset_memory_tiering(void) 4568 { 4569 struct pglist_data *pgdat; 4570 4571 for_each_online_pgdat(pgdat) { 4572 pgdat->nbp_threshold = 0; 4573 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4574 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4575 } 4576 } 4577 4578 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4579 void *buffer, size_t *lenp, loff_t *ppos) 4580 { 4581 struct ctl_table t; 4582 int err; 4583 int state = sysctl_numa_balancing_mode; 4584 4585 if (write && !capable(CAP_SYS_ADMIN)) 4586 return -EPERM; 4587 4588 t = *table; 4589 t.data = &state; 4590 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4591 if (err < 0) 4592 return err; 4593 if (write) { 4594 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4595 (state & NUMA_BALANCING_MEMORY_TIERING)) 4596 reset_memory_tiering(); 4597 sysctl_numa_balancing_mode = state; 4598 __set_numabalancing_state(state); 4599 } 4600 return err; 4601 } 4602 #endif 4603 #endif 4604 4605 #ifdef CONFIG_SCHEDSTATS 4606 4607 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4608 4609 static void set_schedstats(bool enabled) 4610 { 4611 if (enabled) 4612 static_branch_enable(&sched_schedstats); 4613 else 4614 static_branch_disable(&sched_schedstats); 4615 } 4616 4617 void force_schedstat_enabled(void) 4618 { 4619 if (!schedstat_enabled()) { 4620 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4621 static_branch_enable(&sched_schedstats); 4622 } 4623 } 4624 4625 static int __init setup_schedstats(char *str) 4626 { 4627 int ret = 0; 4628 if (!str) 4629 goto out; 4630 4631 if (!strcmp(str, "enable")) { 4632 set_schedstats(true); 4633 ret = 1; 4634 } else if (!strcmp(str, "disable")) { 4635 set_schedstats(false); 4636 ret = 1; 4637 } 4638 out: 4639 if (!ret) 4640 pr_warn("Unable to parse schedstats=\n"); 4641 4642 return ret; 4643 } 4644 __setup("schedstats=", setup_schedstats); 4645 4646 #ifdef CONFIG_PROC_SYSCTL 4647 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4648 size_t *lenp, loff_t *ppos) 4649 { 4650 struct ctl_table t; 4651 int err; 4652 int state = static_branch_likely(&sched_schedstats); 4653 4654 if (write && !capable(CAP_SYS_ADMIN)) 4655 return -EPERM; 4656 4657 t = *table; 4658 t.data = &state; 4659 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4660 if (err < 0) 4661 return err; 4662 if (write) 4663 set_schedstats(state); 4664 return err; 4665 } 4666 #endif /* CONFIG_PROC_SYSCTL */ 4667 #endif /* CONFIG_SCHEDSTATS */ 4668 4669 #ifdef CONFIG_SYSCTL 4670 static const struct ctl_table sched_core_sysctls[] = { 4671 #ifdef CONFIG_SCHEDSTATS 4672 { 4673 .procname = "sched_schedstats", 4674 .data = NULL, 4675 .maxlen = sizeof(unsigned int), 4676 .mode = 0644, 4677 .proc_handler = sysctl_schedstats, 4678 .extra1 = SYSCTL_ZERO, 4679 .extra2 = SYSCTL_ONE, 4680 }, 4681 #endif /* CONFIG_SCHEDSTATS */ 4682 #ifdef CONFIG_UCLAMP_TASK 4683 { 4684 .procname = "sched_util_clamp_min", 4685 .data = &sysctl_sched_uclamp_util_min, 4686 .maxlen = sizeof(unsigned int), 4687 .mode = 0644, 4688 .proc_handler = sysctl_sched_uclamp_handler, 4689 }, 4690 { 4691 .procname = "sched_util_clamp_max", 4692 .data = &sysctl_sched_uclamp_util_max, 4693 .maxlen = sizeof(unsigned int), 4694 .mode = 0644, 4695 .proc_handler = sysctl_sched_uclamp_handler, 4696 }, 4697 { 4698 .procname = "sched_util_clamp_min_rt_default", 4699 .data = &sysctl_sched_uclamp_util_min_rt_default, 4700 .maxlen = sizeof(unsigned int), 4701 .mode = 0644, 4702 .proc_handler = sysctl_sched_uclamp_handler, 4703 }, 4704 #endif /* CONFIG_UCLAMP_TASK */ 4705 #ifdef CONFIG_NUMA_BALANCING 4706 { 4707 .procname = "numa_balancing", 4708 .data = NULL, /* filled in by handler */ 4709 .maxlen = sizeof(unsigned int), 4710 .mode = 0644, 4711 .proc_handler = sysctl_numa_balancing, 4712 .extra1 = SYSCTL_ZERO, 4713 .extra2 = SYSCTL_FOUR, 4714 }, 4715 #endif /* CONFIG_NUMA_BALANCING */ 4716 }; 4717 static int __init sched_core_sysctl_init(void) 4718 { 4719 register_sysctl_init("kernel", sched_core_sysctls); 4720 return 0; 4721 } 4722 late_initcall(sched_core_sysctl_init); 4723 #endif /* CONFIG_SYSCTL */ 4724 4725 /* 4726 * fork()/clone()-time setup: 4727 */ 4728 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4729 { 4730 __sched_fork(clone_flags, p); 4731 /* 4732 * We mark the process as NEW here. This guarantees that 4733 * nobody will actually run it, and a signal or other external 4734 * event cannot wake it up and insert it on the runqueue either. 4735 */ 4736 p->__state = TASK_NEW; 4737 4738 /* 4739 * Make sure we do not leak PI boosting priority to the child. 4740 */ 4741 p->prio = current->normal_prio; 4742 4743 uclamp_fork(p); 4744 4745 /* 4746 * Revert to default priority/policy on fork if requested. 4747 */ 4748 if (unlikely(p->sched_reset_on_fork)) { 4749 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4750 p->policy = SCHED_NORMAL; 4751 p->static_prio = NICE_TO_PRIO(0); 4752 p->rt_priority = 0; 4753 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4754 p->static_prio = NICE_TO_PRIO(0); 4755 4756 p->prio = p->normal_prio = p->static_prio; 4757 set_load_weight(p, false); 4758 p->se.custom_slice = 0; 4759 p->se.slice = sysctl_sched_base_slice; 4760 4761 /* 4762 * We don't need the reset flag anymore after the fork. It has 4763 * fulfilled its duty: 4764 */ 4765 p->sched_reset_on_fork = 0; 4766 } 4767 4768 if (dl_prio(p->prio)) 4769 return -EAGAIN; 4770 4771 scx_pre_fork(p); 4772 4773 if (rt_prio(p->prio)) { 4774 p->sched_class = &rt_sched_class; 4775 #ifdef CONFIG_SCHED_CLASS_EXT 4776 } else if (task_should_scx(p->policy)) { 4777 p->sched_class = &ext_sched_class; 4778 #endif 4779 } else { 4780 p->sched_class = &fair_sched_class; 4781 } 4782 4783 init_entity_runnable_average(&p->se); 4784 4785 4786 #ifdef CONFIG_SCHED_INFO 4787 if (likely(sched_info_on())) 4788 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4789 #endif 4790 #if defined(CONFIG_SMP) 4791 p->on_cpu = 0; 4792 #endif 4793 init_task_preempt_count(p); 4794 #ifdef CONFIG_SMP 4795 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4796 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4797 #endif 4798 return 0; 4799 } 4800 4801 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4802 { 4803 unsigned long flags; 4804 4805 /* 4806 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4807 * required yet, but lockdep gets upset if rules are violated. 4808 */ 4809 raw_spin_lock_irqsave(&p->pi_lock, flags); 4810 #ifdef CONFIG_CGROUP_SCHED 4811 if (1) { 4812 struct task_group *tg; 4813 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4814 struct task_group, css); 4815 tg = autogroup_task_group(p, tg); 4816 p->sched_task_group = tg; 4817 } 4818 #endif 4819 rseq_migrate(p); 4820 /* 4821 * We're setting the CPU for the first time, we don't migrate, 4822 * so use __set_task_cpu(). 4823 */ 4824 __set_task_cpu(p, smp_processor_id()); 4825 if (p->sched_class->task_fork) 4826 p->sched_class->task_fork(p); 4827 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4828 4829 return scx_fork(p); 4830 } 4831 4832 void sched_cancel_fork(struct task_struct *p) 4833 { 4834 scx_cancel_fork(p); 4835 } 4836 4837 void sched_post_fork(struct task_struct *p) 4838 { 4839 uclamp_post_fork(p); 4840 scx_post_fork(p); 4841 } 4842 4843 unsigned long to_ratio(u64 period, u64 runtime) 4844 { 4845 if (runtime == RUNTIME_INF) 4846 return BW_UNIT; 4847 4848 /* 4849 * Doing this here saves a lot of checks in all 4850 * the calling paths, and returning zero seems 4851 * safe for them anyway. 4852 */ 4853 if (period == 0) 4854 return 0; 4855 4856 return div64_u64(runtime << BW_SHIFT, period); 4857 } 4858 4859 /* 4860 * wake_up_new_task - wake up a newly created task for the first time. 4861 * 4862 * This function will do some initial scheduler statistics housekeeping 4863 * that must be done for every newly created context, then puts the task 4864 * on the runqueue and wakes it. 4865 */ 4866 void wake_up_new_task(struct task_struct *p) 4867 { 4868 struct rq_flags rf; 4869 struct rq *rq; 4870 int wake_flags = WF_FORK; 4871 4872 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4873 WRITE_ONCE(p->__state, TASK_RUNNING); 4874 #ifdef CONFIG_SMP 4875 /* 4876 * Fork balancing, do it here and not earlier because: 4877 * - cpus_ptr can change in the fork path 4878 * - any previously selected CPU might disappear through hotplug 4879 * 4880 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4881 * as we're not fully set-up yet. 4882 */ 4883 p->recent_used_cpu = task_cpu(p); 4884 rseq_migrate(p); 4885 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4886 #endif 4887 rq = __task_rq_lock(p, &rf); 4888 update_rq_clock(rq); 4889 post_init_entity_util_avg(p); 4890 4891 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4892 trace_sched_wakeup_new(p); 4893 wakeup_preempt(rq, p, wake_flags); 4894 #ifdef CONFIG_SMP 4895 if (p->sched_class->task_woken) { 4896 /* 4897 * Nothing relies on rq->lock after this, so it's fine to 4898 * drop it. 4899 */ 4900 rq_unpin_lock(rq, &rf); 4901 p->sched_class->task_woken(rq, p); 4902 rq_repin_lock(rq, &rf); 4903 } 4904 #endif 4905 task_rq_unlock(rq, p, &rf); 4906 } 4907 4908 #ifdef CONFIG_PREEMPT_NOTIFIERS 4909 4910 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4911 4912 void preempt_notifier_inc(void) 4913 { 4914 static_branch_inc(&preempt_notifier_key); 4915 } 4916 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4917 4918 void preempt_notifier_dec(void) 4919 { 4920 static_branch_dec(&preempt_notifier_key); 4921 } 4922 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4923 4924 /** 4925 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4926 * @notifier: notifier struct to register 4927 */ 4928 void preempt_notifier_register(struct preempt_notifier *notifier) 4929 { 4930 if (!static_branch_unlikely(&preempt_notifier_key)) 4931 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4932 4933 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4934 } 4935 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4936 4937 /** 4938 * preempt_notifier_unregister - no longer interested in preemption notifications 4939 * @notifier: notifier struct to unregister 4940 * 4941 * This is *not* safe to call from within a preemption notifier. 4942 */ 4943 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4944 { 4945 hlist_del(¬ifier->link); 4946 } 4947 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4948 4949 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4950 { 4951 struct preempt_notifier *notifier; 4952 4953 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4954 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4955 } 4956 4957 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4958 { 4959 if (static_branch_unlikely(&preempt_notifier_key)) 4960 __fire_sched_in_preempt_notifiers(curr); 4961 } 4962 4963 static void 4964 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4965 struct task_struct *next) 4966 { 4967 struct preempt_notifier *notifier; 4968 4969 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4970 notifier->ops->sched_out(notifier, next); 4971 } 4972 4973 static __always_inline void 4974 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4975 struct task_struct *next) 4976 { 4977 if (static_branch_unlikely(&preempt_notifier_key)) 4978 __fire_sched_out_preempt_notifiers(curr, next); 4979 } 4980 4981 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4982 4983 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4984 { 4985 } 4986 4987 static inline void 4988 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4989 struct task_struct *next) 4990 { 4991 } 4992 4993 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4994 4995 static inline void prepare_task(struct task_struct *next) 4996 { 4997 #ifdef CONFIG_SMP 4998 /* 4999 * Claim the task as running, we do this before switching to it 5000 * such that any running task will have this set. 5001 * 5002 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 5003 * its ordering comment. 5004 */ 5005 WRITE_ONCE(next->on_cpu, 1); 5006 #endif 5007 } 5008 5009 static inline void finish_task(struct task_struct *prev) 5010 { 5011 #ifdef CONFIG_SMP 5012 /* 5013 * This must be the very last reference to @prev from this CPU. After 5014 * p->on_cpu is cleared, the task can be moved to a different CPU. We 5015 * must ensure this doesn't happen until the switch is completely 5016 * finished. 5017 * 5018 * In particular, the load of prev->state in finish_task_switch() must 5019 * happen before this. 5020 * 5021 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 5022 */ 5023 smp_store_release(&prev->on_cpu, 0); 5024 #endif 5025 } 5026 5027 #ifdef CONFIG_SMP 5028 5029 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 5030 { 5031 void (*func)(struct rq *rq); 5032 struct balance_callback *next; 5033 5034 lockdep_assert_rq_held(rq); 5035 5036 while (head) { 5037 func = (void (*)(struct rq *))head->func; 5038 next = head->next; 5039 head->next = NULL; 5040 head = next; 5041 5042 func(rq); 5043 } 5044 } 5045 5046 static void balance_push(struct rq *rq); 5047 5048 /* 5049 * balance_push_callback is a right abuse of the callback interface and plays 5050 * by significantly different rules. 5051 * 5052 * Where the normal balance_callback's purpose is to be ran in the same context 5053 * that queued it (only later, when it's safe to drop rq->lock again), 5054 * balance_push_callback is specifically targeted at __schedule(). 5055 * 5056 * This abuse is tolerated because it places all the unlikely/odd cases behind 5057 * a single test, namely: rq->balance_callback == NULL. 5058 */ 5059 struct balance_callback balance_push_callback = { 5060 .next = NULL, 5061 .func = balance_push, 5062 }; 5063 5064 static inline struct balance_callback * 5065 __splice_balance_callbacks(struct rq *rq, bool split) 5066 { 5067 struct balance_callback *head = rq->balance_callback; 5068 5069 if (likely(!head)) 5070 return NULL; 5071 5072 lockdep_assert_rq_held(rq); 5073 /* 5074 * Must not take balance_push_callback off the list when 5075 * splice_balance_callbacks() and balance_callbacks() are not 5076 * in the same rq->lock section. 5077 * 5078 * In that case it would be possible for __schedule() to interleave 5079 * and observe the list empty. 5080 */ 5081 if (split && head == &balance_push_callback) 5082 head = NULL; 5083 else 5084 rq->balance_callback = NULL; 5085 5086 return head; 5087 } 5088 5089 struct balance_callback *splice_balance_callbacks(struct rq *rq) 5090 { 5091 return __splice_balance_callbacks(rq, true); 5092 } 5093 5094 static void __balance_callbacks(struct rq *rq) 5095 { 5096 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5097 } 5098 5099 void balance_callbacks(struct rq *rq, struct balance_callback *head) 5100 { 5101 unsigned long flags; 5102 5103 if (unlikely(head)) { 5104 raw_spin_rq_lock_irqsave(rq, flags); 5105 do_balance_callbacks(rq, head); 5106 raw_spin_rq_unlock_irqrestore(rq, flags); 5107 } 5108 } 5109 5110 #else 5111 5112 static inline void __balance_callbacks(struct rq *rq) 5113 { 5114 } 5115 5116 #endif 5117 5118 static inline void 5119 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5120 { 5121 /* 5122 * Since the runqueue lock will be released by the next 5123 * task (which is an invalid locking op but in the case 5124 * of the scheduler it's an obvious special-case), so we 5125 * do an early lockdep release here: 5126 */ 5127 rq_unpin_lock(rq, rf); 5128 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5129 #ifdef CONFIG_DEBUG_SPINLOCK 5130 /* this is a valid case when another task releases the spinlock */ 5131 rq_lockp(rq)->owner = next; 5132 #endif 5133 } 5134 5135 static inline void finish_lock_switch(struct rq *rq) 5136 { 5137 /* 5138 * If we are tracking spinlock dependencies then we have to 5139 * fix up the runqueue lock - which gets 'carried over' from 5140 * prev into current: 5141 */ 5142 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5143 __balance_callbacks(rq); 5144 raw_spin_rq_unlock_irq(rq); 5145 } 5146 5147 /* 5148 * NOP if the arch has not defined these: 5149 */ 5150 5151 #ifndef prepare_arch_switch 5152 # define prepare_arch_switch(next) do { } while (0) 5153 #endif 5154 5155 #ifndef finish_arch_post_lock_switch 5156 # define finish_arch_post_lock_switch() do { } while (0) 5157 #endif 5158 5159 static inline void kmap_local_sched_out(void) 5160 { 5161 #ifdef CONFIG_KMAP_LOCAL 5162 if (unlikely(current->kmap_ctrl.idx)) 5163 __kmap_local_sched_out(); 5164 #endif 5165 } 5166 5167 static inline void kmap_local_sched_in(void) 5168 { 5169 #ifdef CONFIG_KMAP_LOCAL 5170 if (unlikely(current->kmap_ctrl.idx)) 5171 __kmap_local_sched_in(); 5172 #endif 5173 } 5174 5175 /** 5176 * prepare_task_switch - prepare to switch tasks 5177 * @rq: the runqueue preparing to switch 5178 * @prev: the current task that is being switched out 5179 * @next: the task we are going to switch to. 5180 * 5181 * This is called with the rq lock held and interrupts off. It must 5182 * be paired with a subsequent finish_task_switch after the context 5183 * switch. 5184 * 5185 * prepare_task_switch sets up locking and calls architecture specific 5186 * hooks. 5187 */ 5188 static inline void 5189 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5190 struct task_struct *next) 5191 { 5192 kcov_prepare_switch(prev); 5193 sched_info_switch(rq, prev, next); 5194 perf_event_task_sched_out(prev, next); 5195 rseq_preempt(prev); 5196 fire_sched_out_preempt_notifiers(prev, next); 5197 kmap_local_sched_out(); 5198 prepare_task(next); 5199 prepare_arch_switch(next); 5200 } 5201 5202 /** 5203 * finish_task_switch - clean up after a task-switch 5204 * @prev: the thread we just switched away from. 5205 * 5206 * finish_task_switch must be called after the context switch, paired 5207 * with a prepare_task_switch call before the context switch. 5208 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5209 * and do any other architecture-specific cleanup actions. 5210 * 5211 * Note that we may have delayed dropping an mm in context_switch(). If 5212 * so, we finish that here outside of the runqueue lock. (Doing it 5213 * with the lock held can cause deadlocks; see schedule() for 5214 * details.) 5215 * 5216 * The context switch have flipped the stack from under us and restored the 5217 * local variables which were saved when this task called schedule() in the 5218 * past. 'prev == current' is still correct but we need to recalculate this_rq 5219 * because prev may have moved to another CPU. 5220 */ 5221 static struct rq *finish_task_switch(struct task_struct *prev) 5222 __releases(rq->lock) 5223 { 5224 struct rq *rq = this_rq(); 5225 struct mm_struct *mm = rq->prev_mm; 5226 unsigned int prev_state; 5227 5228 /* 5229 * The previous task will have left us with a preempt_count of 2 5230 * because it left us after: 5231 * 5232 * schedule() 5233 * preempt_disable(); // 1 5234 * __schedule() 5235 * raw_spin_lock_irq(&rq->lock) // 2 5236 * 5237 * Also, see FORK_PREEMPT_COUNT. 5238 */ 5239 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5240 "corrupted preempt_count: %s/%d/0x%x\n", 5241 current->comm, current->pid, preempt_count())) 5242 preempt_count_set(FORK_PREEMPT_COUNT); 5243 5244 rq->prev_mm = NULL; 5245 5246 /* 5247 * A task struct has one reference for the use as "current". 5248 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5249 * schedule one last time. The schedule call will never return, and 5250 * the scheduled task must drop that reference. 5251 * 5252 * We must observe prev->state before clearing prev->on_cpu (in 5253 * finish_task), otherwise a concurrent wakeup can get prev 5254 * running on another CPU and we could rave with its RUNNING -> DEAD 5255 * transition, resulting in a double drop. 5256 */ 5257 prev_state = READ_ONCE(prev->__state); 5258 vtime_task_switch(prev); 5259 perf_event_task_sched_in(prev, current); 5260 finish_task(prev); 5261 tick_nohz_task_switch(); 5262 finish_lock_switch(rq); 5263 finish_arch_post_lock_switch(); 5264 kcov_finish_switch(current); 5265 /* 5266 * kmap_local_sched_out() is invoked with rq::lock held and 5267 * interrupts disabled. There is no requirement for that, but the 5268 * sched out code does not have an interrupt enabled section. 5269 * Restoring the maps on sched in does not require interrupts being 5270 * disabled either. 5271 */ 5272 kmap_local_sched_in(); 5273 5274 fire_sched_in_preempt_notifiers(current); 5275 /* 5276 * When switching through a kernel thread, the loop in 5277 * membarrier_{private,global}_expedited() may have observed that 5278 * kernel thread and not issued an IPI. It is therefore possible to 5279 * schedule between user->kernel->user threads without passing though 5280 * switch_mm(). Membarrier requires a barrier after storing to 5281 * rq->curr, before returning to userspace, so provide them here: 5282 * 5283 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5284 * provided by mmdrop_lazy_tlb(), 5285 * - a sync_core for SYNC_CORE. 5286 */ 5287 if (mm) { 5288 membarrier_mm_sync_core_before_usermode(mm); 5289 mmdrop_lazy_tlb_sched(mm); 5290 } 5291 5292 if (unlikely(prev_state == TASK_DEAD)) { 5293 if (prev->sched_class->task_dead) 5294 prev->sched_class->task_dead(prev); 5295 5296 /* Task is done with its stack. */ 5297 put_task_stack(prev); 5298 5299 put_task_struct_rcu_user(prev); 5300 } 5301 5302 return rq; 5303 } 5304 5305 /** 5306 * schedule_tail - first thing a freshly forked thread must call. 5307 * @prev: the thread we just switched away from. 5308 */ 5309 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5310 __releases(rq->lock) 5311 { 5312 /* 5313 * New tasks start with FORK_PREEMPT_COUNT, see there and 5314 * finish_task_switch() for details. 5315 * 5316 * finish_task_switch() will drop rq->lock() and lower preempt_count 5317 * and the preempt_enable() will end up enabling preemption (on 5318 * PREEMPT_COUNT kernels). 5319 */ 5320 5321 finish_task_switch(prev); 5322 /* 5323 * This is a special case: the newly created task has just 5324 * switched the context for the first time. It is returning from 5325 * schedule for the first time in this path. 5326 */ 5327 trace_sched_exit_tp(true, CALLER_ADDR0); 5328 preempt_enable(); 5329 5330 if (current->set_child_tid) 5331 put_user(task_pid_vnr(current), current->set_child_tid); 5332 5333 calculate_sigpending(); 5334 } 5335 5336 /* 5337 * context_switch - switch to the new MM and the new thread's register state. 5338 */ 5339 static __always_inline struct rq * 5340 context_switch(struct rq *rq, struct task_struct *prev, 5341 struct task_struct *next, struct rq_flags *rf) 5342 { 5343 prepare_task_switch(rq, prev, next); 5344 5345 /* 5346 * For paravirt, this is coupled with an exit in switch_to to 5347 * combine the page table reload and the switch backend into 5348 * one hypercall. 5349 */ 5350 arch_start_context_switch(prev); 5351 5352 /* 5353 * kernel -> kernel lazy + transfer active 5354 * user -> kernel lazy + mmgrab_lazy_tlb() active 5355 * 5356 * kernel -> user switch + mmdrop_lazy_tlb() active 5357 * user -> user switch 5358 * 5359 * switch_mm_cid() needs to be updated if the barriers provided 5360 * by context_switch() are modified. 5361 */ 5362 if (!next->mm) { // to kernel 5363 enter_lazy_tlb(prev->active_mm, next); 5364 5365 next->active_mm = prev->active_mm; 5366 if (prev->mm) // from user 5367 mmgrab_lazy_tlb(prev->active_mm); 5368 else 5369 prev->active_mm = NULL; 5370 } else { // to user 5371 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5372 /* 5373 * sys_membarrier() requires an smp_mb() between setting 5374 * rq->curr / membarrier_switch_mm() and returning to userspace. 5375 * 5376 * The below provides this either through switch_mm(), or in 5377 * case 'prev->active_mm == next->mm' through 5378 * finish_task_switch()'s mmdrop(). 5379 */ 5380 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5381 lru_gen_use_mm(next->mm); 5382 5383 if (!prev->mm) { // from kernel 5384 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5385 rq->prev_mm = prev->active_mm; 5386 prev->active_mm = NULL; 5387 } 5388 } 5389 5390 /* switch_mm_cid() requires the memory barriers above. */ 5391 switch_mm_cid(rq, prev, next); 5392 5393 prepare_lock_switch(rq, next, rf); 5394 5395 /* Here we just switch the register state and the stack. */ 5396 switch_to(prev, next, prev); 5397 barrier(); 5398 5399 return finish_task_switch(prev); 5400 } 5401 5402 /* 5403 * nr_running and nr_context_switches: 5404 * 5405 * externally visible scheduler statistics: current number of runnable 5406 * threads, total number of context switches performed since bootup. 5407 */ 5408 unsigned int nr_running(void) 5409 { 5410 unsigned int i, sum = 0; 5411 5412 for_each_online_cpu(i) 5413 sum += cpu_rq(i)->nr_running; 5414 5415 return sum; 5416 } 5417 5418 /* 5419 * Check if only the current task is running on the CPU. 5420 * 5421 * Caution: this function does not check that the caller has disabled 5422 * preemption, thus the result might have a time-of-check-to-time-of-use 5423 * race. The caller is responsible to use it correctly, for example: 5424 * 5425 * - from a non-preemptible section (of course) 5426 * 5427 * - from a thread that is bound to a single CPU 5428 * 5429 * - in a loop with very short iterations (e.g. a polling loop) 5430 */ 5431 bool single_task_running(void) 5432 { 5433 return raw_rq()->nr_running == 1; 5434 } 5435 EXPORT_SYMBOL(single_task_running); 5436 5437 unsigned long long nr_context_switches_cpu(int cpu) 5438 { 5439 return cpu_rq(cpu)->nr_switches; 5440 } 5441 5442 unsigned long long nr_context_switches(void) 5443 { 5444 int i; 5445 unsigned long long sum = 0; 5446 5447 for_each_possible_cpu(i) 5448 sum += cpu_rq(i)->nr_switches; 5449 5450 return sum; 5451 } 5452 5453 /* 5454 * Consumers of these two interfaces, like for example the cpuidle menu 5455 * governor, are using nonsensical data. Preferring shallow idle state selection 5456 * for a CPU that has IO-wait which might not even end up running the task when 5457 * it does become runnable. 5458 */ 5459 5460 unsigned int nr_iowait_cpu(int cpu) 5461 { 5462 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5463 } 5464 5465 /* 5466 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5467 * 5468 * The idea behind IO-wait account is to account the idle time that we could 5469 * have spend running if it were not for IO. That is, if we were to improve the 5470 * storage performance, we'd have a proportional reduction in IO-wait time. 5471 * 5472 * This all works nicely on UP, where, when a task blocks on IO, we account 5473 * idle time as IO-wait, because if the storage were faster, it could've been 5474 * running and we'd not be idle. 5475 * 5476 * This has been extended to SMP, by doing the same for each CPU. This however 5477 * is broken. 5478 * 5479 * Imagine for instance the case where two tasks block on one CPU, only the one 5480 * CPU will have IO-wait accounted, while the other has regular idle. Even 5481 * though, if the storage were faster, both could've ran at the same time, 5482 * utilising both CPUs. 5483 * 5484 * This means, that when looking globally, the current IO-wait accounting on 5485 * SMP is a lower bound, by reason of under accounting. 5486 * 5487 * Worse, since the numbers are provided per CPU, they are sometimes 5488 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5489 * associated with any one particular CPU, it can wake to another CPU than it 5490 * blocked on. This means the per CPU IO-wait number is meaningless. 5491 * 5492 * Task CPU affinities can make all that even more 'interesting'. 5493 */ 5494 5495 unsigned int nr_iowait(void) 5496 { 5497 unsigned int i, sum = 0; 5498 5499 for_each_possible_cpu(i) 5500 sum += nr_iowait_cpu(i); 5501 5502 return sum; 5503 } 5504 5505 #ifdef CONFIG_SMP 5506 5507 /* 5508 * sched_exec - execve() is a valuable balancing opportunity, because at 5509 * this point the task has the smallest effective memory and cache footprint. 5510 */ 5511 void sched_exec(void) 5512 { 5513 struct task_struct *p = current; 5514 struct migration_arg arg; 5515 int dest_cpu; 5516 5517 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5518 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5519 if (dest_cpu == smp_processor_id()) 5520 return; 5521 5522 if (unlikely(!cpu_active(dest_cpu))) 5523 return; 5524 5525 arg = (struct migration_arg){ p, dest_cpu }; 5526 } 5527 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5528 } 5529 5530 #endif 5531 5532 DEFINE_PER_CPU(struct kernel_stat, kstat); 5533 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5534 5535 EXPORT_PER_CPU_SYMBOL(kstat); 5536 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5537 5538 /* 5539 * The function fair_sched_class.update_curr accesses the struct curr 5540 * and its field curr->exec_start; when called from task_sched_runtime(), 5541 * we observe a high rate of cache misses in practice. 5542 * Prefetching this data results in improved performance. 5543 */ 5544 static inline void prefetch_curr_exec_start(struct task_struct *p) 5545 { 5546 #ifdef CONFIG_FAIR_GROUP_SCHED 5547 struct sched_entity *curr = p->se.cfs_rq->curr; 5548 #else 5549 struct sched_entity *curr = task_rq(p)->cfs.curr; 5550 #endif 5551 prefetch(curr); 5552 prefetch(&curr->exec_start); 5553 } 5554 5555 /* 5556 * Return accounted runtime for the task. 5557 * In case the task is currently running, return the runtime plus current's 5558 * pending runtime that have not been accounted yet. 5559 */ 5560 unsigned long long task_sched_runtime(struct task_struct *p) 5561 { 5562 struct rq_flags rf; 5563 struct rq *rq; 5564 u64 ns; 5565 5566 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5567 /* 5568 * 64-bit doesn't need locks to atomically read a 64-bit value. 5569 * So we have a optimization chance when the task's delta_exec is 0. 5570 * Reading ->on_cpu is racy, but this is OK. 5571 * 5572 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5573 * If we race with it entering CPU, unaccounted time is 0. This is 5574 * indistinguishable from the read occurring a few cycles earlier. 5575 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5576 * been accounted, so we're correct here as well. 5577 */ 5578 if (!p->on_cpu || !task_on_rq_queued(p)) 5579 return p->se.sum_exec_runtime; 5580 #endif 5581 5582 rq = task_rq_lock(p, &rf); 5583 /* 5584 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5585 * project cycles that may never be accounted to this 5586 * thread, breaking clock_gettime(). 5587 */ 5588 if (task_current_donor(rq, p) && task_on_rq_queued(p)) { 5589 prefetch_curr_exec_start(p); 5590 update_rq_clock(rq); 5591 p->sched_class->update_curr(rq); 5592 } 5593 ns = p->se.sum_exec_runtime; 5594 task_rq_unlock(rq, p, &rf); 5595 5596 return ns; 5597 } 5598 5599 static u64 cpu_resched_latency(struct rq *rq) 5600 { 5601 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5602 u64 resched_latency, now = rq_clock(rq); 5603 static bool warned_once; 5604 5605 if (sysctl_resched_latency_warn_once && warned_once) 5606 return 0; 5607 5608 if (!need_resched() || !latency_warn_ms) 5609 return 0; 5610 5611 if (system_state == SYSTEM_BOOTING) 5612 return 0; 5613 5614 if (!rq->last_seen_need_resched_ns) { 5615 rq->last_seen_need_resched_ns = now; 5616 rq->ticks_without_resched = 0; 5617 return 0; 5618 } 5619 5620 rq->ticks_without_resched++; 5621 resched_latency = now - rq->last_seen_need_resched_ns; 5622 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5623 return 0; 5624 5625 warned_once = true; 5626 5627 return resched_latency; 5628 } 5629 5630 static int __init setup_resched_latency_warn_ms(char *str) 5631 { 5632 long val; 5633 5634 if ((kstrtol(str, 0, &val))) { 5635 pr_warn("Unable to set resched_latency_warn_ms\n"); 5636 return 1; 5637 } 5638 5639 sysctl_resched_latency_warn_ms = val; 5640 return 1; 5641 } 5642 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5643 5644 /* 5645 * This function gets called by the timer code, with HZ frequency. 5646 * We call it with interrupts disabled. 5647 */ 5648 void sched_tick(void) 5649 { 5650 int cpu = smp_processor_id(); 5651 struct rq *rq = cpu_rq(cpu); 5652 /* accounting goes to the donor task */ 5653 struct task_struct *donor; 5654 struct rq_flags rf; 5655 unsigned long hw_pressure; 5656 u64 resched_latency; 5657 5658 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5659 arch_scale_freq_tick(); 5660 5661 sched_clock_tick(); 5662 5663 rq_lock(rq, &rf); 5664 donor = rq->donor; 5665 5666 psi_account_irqtime(rq, donor, NULL); 5667 5668 update_rq_clock(rq); 5669 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5670 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5671 5672 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) 5673 resched_curr(rq); 5674 5675 donor->sched_class->task_tick(rq, donor, 0); 5676 if (sched_feat(LATENCY_WARN)) 5677 resched_latency = cpu_resched_latency(rq); 5678 calc_global_load_tick(rq); 5679 sched_core_tick(rq); 5680 task_tick_mm_cid(rq, donor); 5681 scx_tick(rq); 5682 5683 rq_unlock(rq, &rf); 5684 5685 if (sched_feat(LATENCY_WARN) && resched_latency) 5686 resched_latency_warn(cpu, resched_latency); 5687 5688 perf_event_task_tick(); 5689 5690 if (donor->flags & PF_WQ_WORKER) 5691 wq_worker_tick(donor); 5692 5693 #ifdef CONFIG_SMP 5694 if (!scx_switched_all()) { 5695 rq->idle_balance = idle_cpu(cpu); 5696 sched_balance_trigger(rq); 5697 } 5698 #endif 5699 } 5700 5701 #ifdef CONFIG_NO_HZ_FULL 5702 5703 struct tick_work { 5704 int cpu; 5705 atomic_t state; 5706 struct delayed_work work; 5707 }; 5708 /* Values for ->state, see diagram below. */ 5709 #define TICK_SCHED_REMOTE_OFFLINE 0 5710 #define TICK_SCHED_REMOTE_OFFLINING 1 5711 #define TICK_SCHED_REMOTE_RUNNING 2 5712 5713 /* 5714 * State diagram for ->state: 5715 * 5716 * 5717 * TICK_SCHED_REMOTE_OFFLINE 5718 * | ^ 5719 * | | 5720 * | | sched_tick_remote() 5721 * | | 5722 * | | 5723 * +--TICK_SCHED_REMOTE_OFFLINING 5724 * | ^ 5725 * | | 5726 * sched_tick_start() | | sched_tick_stop() 5727 * | | 5728 * V | 5729 * TICK_SCHED_REMOTE_RUNNING 5730 * 5731 * 5732 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5733 * and sched_tick_start() are happy to leave the state in RUNNING. 5734 */ 5735 5736 static struct tick_work __percpu *tick_work_cpu; 5737 5738 static void sched_tick_remote(struct work_struct *work) 5739 { 5740 struct delayed_work *dwork = to_delayed_work(work); 5741 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5742 int cpu = twork->cpu; 5743 struct rq *rq = cpu_rq(cpu); 5744 int os; 5745 5746 /* 5747 * Handle the tick only if it appears the remote CPU is running in full 5748 * dynticks mode. The check is racy by nature, but missing a tick or 5749 * having one too much is no big deal because the scheduler tick updates 5750 * statistics and checks timeslices in a time-independent way, regardless 5751 * of when exactly it is running. 5752 */ 5753 if (tick_nohz_tick_stopped_cpu(cpu)) { 5754 guard(rq_lock_irq)(rq); 5755 struct task_struct *curr = rq->curr; 5756 5757 if (cpu_online(cpu)) { 5758 /* 5759 * Since this is a remote tick for full dynticks mode, 5760 * we are always sure that there is no proxy (only a 5761 * single task is running). 5762 */ 5763 WARN_ON_ONCE(rq->curr != rq->donor); 5764 update_rq_clock(rq); 5765 5766 if (!is_idle_task(curr)) { 5767 /* 5768 * Make sure the next tick runs within a 5769 * reasonable amount of time. 5770 */ 5771 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5772 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5773 } 5774 curr->sched_class->task_tick(rq, curr, 0); 5775 5776 calc_load_nohz_remote(rq); 5777 } 5778 } 5779 5780 /* 5781 * Run the remote tick once per second (1Hz). This arbitrary 5782 * frequency is large enough to avoid overload but short enough 5783 * to keep scheduler internal stats reasonably up to date. But 5784 * first update state to reflect hotplug activity if required. 5785 */ 5786 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5787 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5788 if (os == TICK_SCHED_REMOTE_RUNNING) 5789 queue_delayed_work(system_unbound_wq, dwork, HZ); 5790 } 5791 5792 static void sched_tick_start(int cpu) 5793 { 5794 int os; 5795 struct tick_work *twork; 5796 5797 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5798 return; 5799 5800 WARN_ON_ONCE(!tick_work_cpu); 5801 5802 twork = per_cpu_ptr(tick_work_cpu, cpu); 5803 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5804 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5805 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5806 twork->cpu = cpu; 5807 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5808 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5809 } 5810 } 5811 5812 #ifdef CONFIG_HOTPLUG_CPU 5813 static void sched_tick_stop(int cpu) 5814 { 5815 struct tick_work *twork; 5816 int os; 5817 5818 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5819 return; 5820 5821 WARN_ON_ONCE(!tick_work_cpu); 5822 5823 twork = per_cpu_ptr(tick_work_cpu, cpu); 5824 /* There cannot be competing actions, but don't rely on stop-machine. */ 5825 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5826 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5827 /* Don't cancel, as this would mess up the state machine. */ 5828 } 5829 #endif /* CONFIG_HOTPLUG_CPU */ 5830 5831 int __init sched_tick_offload_init(void) 5832 { 5833 tick_work_cpu = alloc_percpu(struct tick_work); 5834 BUG_ON(!tick_work_cpu); 5835 return 0; 5836 } 5837 5838 #else /* !CONFIG_NO_HZ_FULL */ 5839 static inline void sched_tick_start(int cpu) { } 5840 static inline void sched_tick_stop(int cpu) { } 5841 #endif 5842 5843 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5844 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5845 /* 5846 * If the value passed in is equal to the current preempt count 5847 * then we just disabled preemption. Start timing the latency. 5848 */ 5849 static inline void preempt_latency_start(int val) 5850 { 5851 if (preempt_count() == val) { 5852 unsigned long ip = get_lock_parent_ip(); 5853 #ifdef CONFIG_DEBUG_PREEMPT 5854 current->preempt_disable_ip = ip; 5855 #endif 5856 trace_preempt_off(CALLER_ADDR0, ip); 5857 } 5858 } 5859 5860 void preempt_count_add(int val) 5861 { 5862 #ifdef CONFIG_DEBUG_PREEMPT 5863 /* 5864 * Underflow? 5865 */ 5866 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5867 return; 5868 #endif 5869 __preempt_count_add(val); 5870 #ifdef CONFIG_DEBUG_PREEMPT 5871 /* 5872 * Spinlock count overflowing soon? 5873 */ 5874 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5875 PREEMPT_MASK - 10); 5876 #endif 5877 preempt_latency_start(val); 5878 } 5879 EXPORT_SYMBOL(preempt_count_add); 5880 NOKPROBE_SYMBOL(preempt_count_add); 5881 5882 /* 5883 * If the value passed in equals to the current preempt count 5884 * then we just enabled preemption. Stop timing the latency. 5885 */ 5886 static inline void preempt_latency_stop(int val) 5887 { 5888 if (preempt_count() == val) 5889 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5890 } 5891 5892 void preempt_count_sub(int val) 5893 { 5894 #ifdef CONFIG_DEBUG_PREEMPT 5895 /* 5896 * Underflow? 5897 */ 5898 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5899 return; 5900 /* 5901 * Is the spinlock portion underflowing? 5902 */ 5903 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5904 !(preempt_count() & PREEMPT_MASK))) 5905 return; 5906 #endif 5907 5908 preempt_latency_stop(val); 5909 __preempt_count_sub(val); 5910 } 5911 EXPORT_SYMBOL(preempt_count_sub); 5912 NOKPROBE_SYMBOL(preempt_count_sub); 5913 5914 #else 5915 static inline void preempt_latency_start(int val) { } 5916 static inline void preempt_latency_stop(int val) { } 5917 #endif 5918 5919 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5920 { 5921 #ifdef CONFIG_DEBUG_PREEMPT 5922 return p->preempt_disable_ip; 5923 #else 5924 return 0; 5925 #endif 5926 } 5927 5928 /* 5929 * Print scheduling while atomic bug: 5930 */ 5931 static noinline void __schedule_bug(struct task_struct *prev) 5932 { 5933 /* Save this before calling printk(), since that will clobber it */ 5934 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5935 5936 if (oops_in_progress) 5937 return; 5938 5939 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5940 prev->comm, prev->pid, preempt_count()); 5941 5942 debug_show_held_locks(prev); 5943 print_modules(); 5944 if (irqs_disabled()) 5945 print_irqtrace_events(prev); 5946 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5947 pr_err("Preemption disabled at:"); 5948 print_ip_sym(KERN_ERR, preempt_disable_ip); 5949 } 5950 check_panic_on_warn("scheduling while atomic"); 5951 5952 dump_stack(); 5953 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5954 } 5955 5956 /* 5957 * Various schedule()-time debugging checks and statistics: 5958 */ 5959 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5960 { 5961 #ifdef CONFIG_SCHED_STACK_END_CHECK 5962 if (task_stack_end_corrupted(prev)) 5963 panic("corrupted stack end detected inside scheduler\n"); 5964 5965 if (task_scs_end_corrupted(prev)) 5966 panic("corrupted shadow stack detected inside scheduler\n"); 5967 #endif 5968 5969 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5970 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5971 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5972 prev->comm, prev->pid, prev->non_block_count); 5973 dump_stack(); 5974 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5975 } 5976 #endif 5977 5978 if (unlikely(in_atomic_preempt_off())) { 5979 __schedule_bug(prev); 5980 preempt_count_set(PREEMPT_DISABLED); 5981 } 5982 rcu_sleep_check(); 5983 WARN_ON_ONCE(ct_state() == CT_STATE_USER); 5984 5985 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5986 5987 schedstat_inc(this_rq()->sched_count); 5988 } 5989 5990 static void prev_balance(struct rq *rq, struct task_struct *prev, 5991 struct rq_flags *rf) 5992 { 5993 const struct sched_class *start_class = prev->sched_class; 5994 const struct sched_class *class; 5995 5996 #ifdef CONFIG_SCHED_CLASS_EXT 5997 /* 5998 * SCX requires a balance() call before every pick_task() including when 5999 * waking up from SCHED_IDLE. If @start_class is below SCX, start from 6000 * SCX instead. Also, set a flag to detect missing balance() call. 6001 */ 6002 if (scx_enabled()) { 6003 rq->scx.flags |= SCX_RQ_BAL_PENDING; 6004 if (sched_class_above(&ext_sched_class, start_class)) 6005 start_class = &ext_sched_class; 6006 } 6007 #endif 6008 6009 /* 6010 * We must do the balancing pass before put_prev_task(), such 6011 * that when we release the rq->lock the task is in the same 6012 * state as before we took rq->lock. 6013 * 6014 * We can terminate the balance pass as soon as we know there is 6015 * a runnable task of @class priority or higher. 6016 */ 6017 for_active_class_range(class, start_class, &idle_sched_class) { 6018 if (class->balance && class->balance(rq, prev, rf)) 6019 break; 6020 } 6021 } 6022 6023 /* 6024 * Pick up the highest-prio task: 6025 */ 6026 static inline struct task_struct * 6027 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6028 { 6029 const struct sched_class *class; 6030 struct task_struct *p; 6031 6032 rq->dl_server = NULL; 6033 6034 if (scx_enabled()) 6035 goto restart; 6036 6037 /* 6038 * Optimization: we know that if all tasks are in the fair class we can 6039 * call that function directly, but only if the @prev task wasn't of a 6040 * higher scheduling class, because otherwise those lose the 6041 * opportunity to pull in more work from other CPUs. 6042 */ 6043 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 6044 rq->nr_running == rq->cfs.h_nr_queued)) { 6045 6046 p = pick_next_task_fair(rq, prev, rf); 6047 if (unlikely(p == RETRY_TASK)) 6048 goto restart; 6049 6050 /* Assume the next prioritized class is idle_sched_class */ 6051 if (!p) { 6052 p = pick_task_idle(rq); 6053 put_prev_set_next_task(rq, prev, p); 6054 } 6055 6056 return p; 6057 } 6058 6059 restart: 6060 prev_balance(rq, prev, rf); 6061 6062 for_each_active_class(class) { 6063 if (class->pick_next_task) { 6064 p = class->pick_next_task(rq, prev); 6065 if (p) 6066 return p; 6067 } else { 6068 p = class->pick_task(rq); 6069 if (p) { 6070 put_prev_set_next_task(rq, prev, p); 6071 return p; 6072 } 6073 } 6074 } 6075 6076 BUG(); /* The idle class should always have a runnable task. */ 6077 } 6078 6079 #ifdef CONFIG_SCHED_CORE 6080 static inline bool is_task_rq_idle(struct task_struct *t) 6081 { 6082 return (task_rq(t)->idle == t); 6083 } 6084 6085 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 6086 { 6087 return is_task_rq_idle(a) || (a->core_cookie == cookie); 6088 } 6089 6090 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6091 { 6092 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6093 return true; 6094 6095 return a->core_cookie == b->core_cookie; 6096 } 6097 6098 static inline struct task_struct *pick_task(struct rq *rq) 6099 { 6100 const struct sched_class *class; 6101 struct task_struct *p; 6102 6103 rq->dl_server = NULL; 6104 6105 for_each_active_class(class) { 6106 p = class->pick_task(rq); 6107 if (p) 6108 return p; 6109 } 6110 6111 BUG(); /* The idle class should always have a runnable task. */ 6112 } 6113 6114 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6115 6116 static void queue_core_balance(struct rq *rq); 6117 6118 static struct task_struct * 6119 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6120 { 6121 struct task_struct *next, *p, *max = NULL; 6122 const struct cpumask *smt_mask; 6123 bool fi_before = false; 6124 bool core_clock_updated = (rq == rq->core); 6125 unsigned long cookie; 6126 int i, cpu, occ = 0; 6127 struct rq *rq_i; 6128 bool need_sync; 6129 6130 if (!sched_core_enabled(rq)) 6131 return __pick_next_task(rq, prev, rf); 6132 6133 cpu = cpu_of(rq); 6134 6135 /* Stopper task is switching into idle, no need core-wide selection. */ 6136 if (cpu_is_offline(cpu)) { 6137 /* 6138 * Reset core_pick so that we don't enter the fastpath when 6139 * coming online. core_pick would already be migrated to 6140 * another cpu during offline. 6141 */ 6142 rq->core_pick = NULL; 6143 rq->core_dl_server = NULL; 6144 return __pick_next_task(rq, prev, rf); 6145 } 6146 6147 /* 6148 * If there were no {en,de}queues since we picked (IOW, the task 6149 * pointers are all still valid), and we haven't scheduled the last 6150 * pick yet, do so now. 6151 * 6152 * rq->core_pick can be NULL if no selection was made for a CPU because 6153 * it was either offline or went offline during a sibling's core-wide 6154 * selection. In this case, do a core-wide selection. 6155 */ 6156 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6157 rq->core->core_pick_seq != rq->core_sched_seq && 6158 rq->core_pick) { 6159 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6160 6161 next = rq->core_pick; 6162 rq->dl_server = rq->core_dl_server; 6163 rq->core_pick = NULL; 6164 rq->core_dl_server = NULL; 6165 goto out_set_next; 6166 } 6167 6168 prev_balance(rq, prev, rf); 6169 6170 smt_mask = cpu_smt_mask(cpu); 6171 need_sync = !!rq->core->core_cookie; 6172 6173 /* reset state */ 6174 rq->core->core_cookie = 0UL; 6175 if (rq->core->core_forceidle_count) { 6176 if (!core_clock_updated) { 6177 update_rq_clock(rq->core); 6178 core_clock_updated = true; 6179 } 6180 sched_core_account_forceidle(rq); 6181 /* reset after accounting force idle */ 6182 rq->core->core_forceidle_start = 0; 6183 rq->core->core_forceidle_count = 0; 6184 rq->core->core_forceidle_occupation = 0; 6185 need_sync = true; 6186 fi_before = true; 6187 } 6188 6189 /* 6190 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6191 * 6192 * @task_seq guards the task state ({en,de}queues) 6193 * @pick_seq is the @task_seq we did a selection on 6194 * @sched_seq is the @pick_seq we scheduled 6195 * 6196 * However, preemptions can cause multiple picks on the same task set. 6197 * 'Fix' this by also increasing @task_seq for every pick. 6198 */ 6199 rq->core->core_task_seq++; 6200 6201 /* 6202 * Optimize for common case where this CPU has no cookies 6203 * and there are no cookied tasks running on siblings. 6204 */ 6205 if (!need_sync) { 6206 next = pick_task(rq); 6207 if (!next->core_cookie) { 6208 rq->core_pick = NULL; 6209 rq->core_dl_server = NULL; 6210 /* 6211 * For robustness, update the min_vruntime_fi for 6212 * unconstrained picks as well. 6213 */ 6214 WARN_ON_ONCE(fi_before); 6215 task_vruntime_update(rq, next, false); 6216 goto out_set_next; 6217 } 6218 } 6219 6220 /* 6221 * For each thread: do the regular task pick and find the max prio task 6222 * amongst them. 6223 * 6224 * Tie-break prio towards the current CPU 6225 */ 6226 for_each_cpu_wrap(i, smt_mask, cpu) { 6227 rq_i = cpu_rq(i); 6228 6229 /* 6230 * Current cpu always has its clock updated on entrance to 6231 * pick_next_task(). If the current cpu is not the core, 6232 * the core may also have been updated above. 6233 */ 6234 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6235 update_rq_clock(rq_i); 6236 6237 rq_i->core_pick = p = pick_task(rq_i); 6238 rq_i->core_dl_server = rq_i->dl_server; 6239 6240 if (!max || prio_less(max, p, fi_before)) 6241 max = p; 6242 } 6243 6244 cookie = rq->core->core_cookie = max->core_cookie; 6245 6246 /* 6247 * For each thread: try and find a runnable task that matches @max or 6248 * force idle. 6249 */ 6250 for_each_cpu(i, smt_mask) { 6251 rq_i = cpu_rq(i); 6252 p = rq_i->core_pick; 6253 6254 if (!cookie_equals(p, cookie)) { 6255 p = NULL; 6256 if (cookie) 6257 p = sched_core_find(rq_i, cookie); 6258 if (!p) 6259 p = idle_sched_class.pick_task(rq_i); 6260 } 6261 6262 rq_i->core_pick = p; 6263 rq_i->core_dl_server = NULL; 6264 6265 if (p == rq_i->idle) { 6266 if (rq_i->nr_running) { 6267 rq->core->core_forceidle_count++; 6268 if (!fi_before) 6269 rq->core->core_forceidle_seq++; 6270 } 6271 } else { 6272 occ++; 6273 } 6274 } 6275 6276 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6277 rq->core->core_forceidle_start = rq_clock(rq->core); 6278 rq->core->core_forceidle_occupation = occ; 6279 } 6280 6281 rq->core->core_pick_seq = rq->core->core_task_seq; 6282 next = rq->core_pick; 6283 rq->core_sched_seq = rq->core->core_pick_seq; 6284 6285 /* Something should have been selected for current CPU */ 6286 WARN_ON_ONCE(!next); 6287 6288 /* 6289 * Reschedule siblings 6290 * 6291 * NOTE: L1TF -- at this point we're no longer running the old task and 6292 * sending an IPI (below) ensures the sibling will no longer be running 6293 * their task. This ensures there is no inter-sibling overlap between 6294 * non-matching user state. 6295 */ 6296 for_each_cpu(i, smt_mask) { 6297 rq_i = cpu_rq(i); 6298 6299 /* 6300 * An online sibling might have gone offline before a task 6301 * could be picked for it, or it might be offline but later 6302 * happen to come online, but its too late and nothing was 6303 * picked for it. That's Ok - it will pick tasks for itself, 6304 * so ignore it. 6305 */ 6306 if (!rq_i->core_pick) 6307 continue; 6308 6309 /* 6310 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6311 * fi_before fi update? 6312 * 0 0 1 6313 * 0 1 1 6314 * 1 0 1 6315 * 1 1 0 6316 */ 6317 if (!(fi_before && rq->core->core_forceidle_count)) 6318 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6319 6320 rq_i->core_pick->core_occupation = occ; 6321 6322 if (i == cpu) { 6323 rq_i->core_pick = NULL; 6324 rq_i->core_dl_server = NULL; 6325 continue; 6326 } 6327 6328 /* Did we break L1TF mitigation requirements? */ 6329 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6330 6331 if (rq_i->curr == rq_i->core_pick) { 6332 rq_i->core_pick = NULL; 6333 rq_i->core_dl_server = NULL; 6334 continue; 6335 } 6336 6337 resched_curr(rq_i); 6338 } 6339 6340 out_set_next: 6341 put_prev_set_next_task(rq, prev, next); 6342 if (rq->core->core_forceidle_count && next == rq->idle) 6343 queue_core_balance(rq); 6344 6345 return next; 6346 } 6347 6348 static bool try_steal_cookie(int this, int that) 6349 { 6350 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6351 struct task_struct *p; 6352 unsigned long cookie; 6353 bool success = false; 6354 6355 guard(irq)(); 6356 guard(double_rq_lock)(dst, src); 6357 6358 cookie = dst->core->core_cookie; 6359 if (!cookie) 6360 return false; 6361 6362 if (dst->curr != dst->idle) 6363 return false; 6364 6365 p = sched_core_find(src, cookie); 6366 if (!p) 6367 return false; 6368 6369 do { 6370 if (p == src->core_pick || p == src->curr) 6371 goto next; 6372 6373 if (!is_cpu_allowed(p, this)) 6374 goto next; 6375 6376 if (p->core_occupation > dst->idle->core_occupation) 6377 goto next; 6378 /* 6379 * sched_core_find() and sched_core_next() will ensure 6380 * that task @p is not throttled now, we also need to 6381 * check whether the runqueue of the destination CPU is 6382 * being throttled. 6383 */ 6384 if (sched_task_is_throttled(p, this)) 6385 goto next; 6386 6387 move_queued_task_locked(src, dst, p); 6388 resched_curr(dst); 6389 6390 success = true; 6391 break; 6392 6393 next: 6394 p = sched_core_next(p, cookie); 6395 } while (p); 6396 6397 return success; 6398 } 6399 6400 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6401 { 6402 int i; 6403 6404 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6405 if (i == cpu) 6406 continue; 6407 6408 if (need_resched()) 6409 break; 6410 6411 if (try_steal_cookie(cpu, i)) 6412 return true; 6413 } 6414 6415 return false; 6416 } 6417 6418 static void sched_core_balance(struct rq *rq) 6419 { 6420 struct sched_domain *sd; 6421 int cpu = cpu_of(rq); 6422 6423 guard(preempt)(); 6424 guard(rcu)(); 6425 6426 raw_spin_rq_unlock_irq(rq); 6427 for_each_domain(cpu, sd) { 6428 if (need_resched()) 6429 break; 6430 6431 if (steal_cookie_task(cpu, sd)) 6432 break; 6433 } 6434 raw_spin_rq_lock_irq(rq); 6435 } 6436 6437 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6438 6439 static void queue_core_balance(struct rq *rq) 6440 { 6441 if (!sched_core_enabled(rq)) 6442 return; 6443 6444 if (!rq->core->core_cookie) 6445 return; 6446 6447 if (!rq->nr_running) /* not forced idle */ 6448 return; 6449 6450 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6451 } 6452 6453 DEFINE_LOCK_GUARD_1(core_lock, int, 6454 sched_core_lock(*_T->lock, &_T->flags), 6455 sched_core_unlock(*_T->lock, &_T->flags), 6456 unsigned long flags) 6457 6458 static void sched_core_cpu_starting(unsigned int cpu) 6459 { 6460 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6461 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6462 int t; 6463 6464 guard(core_lock)(&cpu); 6465 6466 WARN_ON_ONCE(rq->core != rq); 6467 6468 /* if we're the first, we'll be our own leader */ 6469 if (cpumask_weight(smt_mask) == 1) 6470 return; 6471 6472 /* find the leader */ 6473 for_each_cpu(t, smt_mask) { 6474 if (t == cpu) 6475 continue; 6476 rq = cpu_rq(t); 6477 if (rq->core == rq) { 6478 core_rq = rq; 6479 break; 6480 } 6481 } 6482 6483 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6484 return; 6485 6486 /* install and validate core_rq */ 6487 for_each_cpu(t, smt_mask) { 6488 rq = cpu_rq(t); 6489 6490 if (t == cpu) 6491 rq->core = core_rq; 6492 6493 WARN_ON_ONCE(rq->core != core_rq); 6494 } 6495 } 6496 6497 static void sched_core_cpu_deactivate(unsigned int cpu) 6498 { 6499 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6500 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6501 int t; 6502 6503 guard(core_lock)(&cpu); 6504 6505 /* if we're the last man standing, nothing to do */ 6506 if (cpumask_weight(smt_mask) == 1) { 6507 WARN_ON_ONCE(rq->core != rq); 6508 return; 6509 } 6510 6511 /* if we're not the leader, nothing to do */ 6512 if (rq->core != rq) 6513 return; 6514 6515 /* find a new leader */ 6516 for_each_cpu(t, smt_mask) { 6517 if (t == cpu) 6518 continue; 6519 core_rq = cpu_rq(t); 6520 break; 6521 } 6522 6523 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6524 return; 6525 6526 /* copy the shared state to the new leader */ 6527 core_rq->core_task_seq = rq->core_task_seq; 6528 core_rq->core_pick_seq = rq->core_pick_seq; 6529 core_rq->core_cookie = rq->core_cookie; 6530 core_rq->core_forceidle_count = rq->core_forceidle_count; 6531 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6532 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6533 6534 /* 6535 * Accounting edge for forced idle is handled in pick_next_task(). 6536 * Don't need another one here, since the hotplug thread shouldn't 6537 * have a cookie. 6538 */ 6539 core_rq->core_forceidle_start = 0; 6540 6541 /* install new leader */ 6542 for_each_cpu(t, smt_mask) { 6543 rq = cpu_rq(t); 6544 rq->core = core_rq; 6545 } 6546 } 6547 6548 static inline void sched_core_cpu_dying(unsigned int cpu) 6549 { 6550 struct rq *rq = cpu_rq(cpu); 6551 6552 if (rq->core != rq) 6553 rq->core = rq; 6554 } 6555 6556 #else /* !CONFIG_SCHED_CORE */ 6557 6558 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6559 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6560 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6561 6562 static struct task_struct * 6563 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6564 { 6565 return __pick_next_task(rq, prev, rf); 6566 } 6567 6568 #endif /* CONFIG_SCHED_CORE */ 6569 6570 /* 6571 * Constants for the sched_mode argument of __schedule(). 6572 * 6573 * The mode argument allows RT enabled kernels to differentiate a 6574 * preemption from blocking on an 'sleeping' spin/rwlock. 6575 */ 6576 #define SM_IDLE (-1) 6577 #define SM_NONE 0 6578 #define SM_PREEMPT 1 6579 #define SM_RTLOCK_WAIT 2 6580 6581 /* 6582 * Helper function for __schedule() 6583 * 6584 * If a task does not have signals pending, deactivate it 6585 * Otherwise marks the task's __state as RUNNING 6586 */ 6587 static bool try_to_block_task(struct rq *rq, struct task_struct *p, 6588 unsigned long *task_state_p) 6589 { 6590 unsigned long task_state = *task_state_p; 6591 int flags = DEQUEUE_NOCLOCK; 6592 6593 if (signal_pending_state(task_state, p)) { 6594 WRITE_ONCE(p->__state, TASK_RUNNING); 6595 *task_state_p = TASK_RUNNING; 6596 return false; 6597 } 6598 6599 p->sched_contributes_to_load = 6600 (task_state & TASK_UNINTERRUPTIBLE) && 6601 !(task_state & TASK_NOLOAD) && 6602 !(task_state & TASK_FROZEN); 6603 6604 if (unlikely(is_special_task_state(task_state))) 6605 flags |= DEQUEUE_SPECIAL; 6606 6607 /* 6608 * __schedule() ttwu() 6609 * prev_state = prev->state; if (p->on_rq && ...) 6610 * if (prev_state) goto out; 6611 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6612 * p->state = TASK_WAKING 6613 * 6614 * Where __schedule() and ttwu() have matching control dependencies. 6615 * 6616 * After this, schedule() must not care about p->state any more. 6617 */ 6618 block_task(rq, p, flags); 6619 return true; 6620 } 6621 6622 /* 6623 * __schedule() is the main scheduler function. 6624 * 6625 * The main means of driving the scheduler and thus entering this function are: 6626 * 6627 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6628 * 6629 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6630 * paths. For example, see arch/x86/entry_64.S. 6631 * 6632 * To drive preemption between tasks, the scheduler sets the flag in timer 6633 * interrupt handler sched_tick(). 6634 * 6635 * 3. Wakeups don't really cause entry into schedule(). They add a 6636 * task to the run-queue and that's it. 6637 * 6638 * Now, if the new task added to the run-queue preempts the current 6639 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6640 * called on the nearest possible occasion: 6641 * 6642 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6643 * 6644 * - in syscall or exception context, at the next outmost 6645 * preempt_enable(). (this might be as soon as the wake_up()'s 6646 * spin_unlock()!) 6647 * 6648 * - in IRQ context, return from interrupt-handler to 6649 * preemptible context 6650 * 6651 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6652 * then at the next: 6653 * 6654 * - cond_resched() call 6655 * - explicit schedule() call 6656 * - return from syscall or exception to user-space 6657 * - return from interrupt-handler to user-space 6658 * 6659 * WARNING: must be called with preemption disabled! 6660 */ 6661 static void __sched notrace __schedule(int sched_mode) 6662 { 6663 struct task_struct *prev, *next; 6664 /* 6665 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6666 * as a preemption by schedule_debug() and RCU. 6667 */ 6668 bool preempt = sched_mode > SM_NONE; 6669 bool is_switch = false; 6670 unsigned long *switch_count; 6671 unsigned long prev_state; 6672 struct rq_flags rf; 6673 struct rq *rq; 6674 int cpu; 6675 6676 trace_sched_entry_tp(preempt, CALLER_ADDR0); 6677 6678 cpu = smp_processor_id(); 6679 rq = cpu_rq(cpu); 6680 prev = rq->curr; 6681 6682 schedule_debug(prev, preempt); 6683 6684 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6685 hrtick_clear(rq); 6686 6687 klp_sched_try_switch(prev); 6688 6689 local_irq_disable(); 6690 rcu_note_context_switch(preempt); 6691 6692 /* 6693 * Make sure that signal_pending_state()->signal_pending() below 6694 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6695 * done by the caller to avoid the race with signal_wake_up(): 6696 * 6697 * __set_current_state(@state) signal_wake_up() 6698 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6699 * wake_up_state(p, state) 6700 * LOCK rq->lock LOCK p->pi_state 6701 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6702 * if (signal_pending_state()) if (p->state & @state) 6703 * 6704 * Also, the membarrier system call requires a full memory barrier 6705 * after coming from user-space, before storing to rq->curr; this 6706 * barrier matches a full barrier in the proximity of the membarrier 6707 * system call exit. 6708 */ 6709 rq_lock(rq, &rf); 6710 smp_mb__after_spinlock(); 6711 6712 /* Promote REQ to ACT */ 6713 rq->clock_update_flags <<= 1; 6714 update_rq_clock(rq); 6715 rq->clock_update_flags = RQCF_UPDATED; 6716 6717 switch_count = &prev->nivcsw; 6718 6719 /* Task state changes only considers SM_PREEMPT as preemption */ 6720 preempt = sched_mode == SM_PREEMPT; 6721 6722 /* 6723 * We must load prev->state once (task_struct::state is volatile), such 6724 * that we form a control dependency vs deactivate_task() below. 6725 */ 6726 prev_state = READ_ONCE(prev->__state); 6727 if (sched_mode == SM_IDLE) { 6728 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6729 if (!rq->nr_running && !scx_enabled()) { 6730 next = prev; 6731 goto picked; 6732 } 6733 } else if (!preempt && prev_state) { 6734 try_to_block_task(rq, prev, &prev_state); 6735 switch_count = &prev->nvcsw; 6736 } 6737 6738 next = pick_next_task(rq, prev, &rf); 6739 rq_set_donor(rq, next); 6740 picked: 6741 clear_tsk_need_resched(prev); 6742 clear_preempt_need_resched(); 6743 rq->last_seen_need_resched_ns = 0; 6744 6745 is_switch = prev != next; 6746 if (likely(is_switch)) { 6747 rq->nr_switches++; 6748 /* 6749 * RCU users of rcu_dereference(rq->curr) may not see 6750 * changes to task_struct made by pick_next_task(). 6751 */ 6752 RCU_INIT_POINTER(rq->curr, next); 6753 /* 6754 * The membarrier system call requires each architecture 6755 * to have a full memory barrier after updating 6756 * rq->curr, before returning to user-space. 6757 * 6758 * Here are the schemes providing that barrier on the 6759 * various architectures: 6760 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6761 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6762 * on PowerPC and on RISC-V. 6763 * - finish_lock_switch() for weakly-ordered 6764 * architectures where spin_unlock is a full barrier, 6765 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6766 * is a RELEASE barrier), 6767 * 6768 * The barrier matches a full barrier in the proximity of 6769 * the membarrier system call entry. 6770 * 6771 * On RISC-V, this barrier pairing is also needed for the 6772 * SYNC_CORE command when switching between processes, cf. 6773 * the inline comments in membarrier_arch_switch_mm(). 6774 */ 6775 ++*switch_count; 6776 6777 migrate_disable_switch(rq, prev); 6778 psi_account_irqtime(rq, prev, next); 6779 psi_sched_switch(prev, next, !task_on_rq_queued(prev) || 6780 prev->se.sched_delayed); 6781 6782 trace_sched_switch(preempt, prev, next, prev_state); 6783 6784 /* Also unlocks the rq: */ 6785 rq = context_switch(rq, prev, next, &rf); 6786 } else { 6787 rq_unpin_lock(rq, &rf); 6788 __balance_callbacks(rq); 6789 raw_spin_rq_unlock_irq(rq); 6790 } 6791 trace_sched_exit_tp(is_switch, CALLER_ADDR0); 6792 } 6793 6794 void __noreturn do_task_dead(void) 6795 { 6796 /* Causes final put_task_struct in finish_task_switch(): */ 6797 set_special_state(TASK_DEAD); 6798 6799 /* Tell freezer to ignore us: */ 6800 current->flags |= PF_NOFREEZE; 6801 6802 __schedule(SM_NONE); 6803 BUG(); 6804 6805 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6806 for (;;) 6807 cpu_relax(); 6808 } 6809 6810 static inline void sched_submit_work(struct task_struct *tsk) 6811 { 6812 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6813 unsigned int task_flags; 6814 6815 /* 6816 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6817 * will use a blocking primitive -- which would lead to recursion. 6818 */ 6819 lock_map_acquire_try(&sched_map); 6820 6821 task_flags = tsk->flags; 6822 /* 6823 * If a worker goes to sleep, notify and ask workqueue whether it 6824 * wants to wake up a task to maintain concurrency. 6825 */ 6826 if (task_flags & PF_WQ_WORKER) 6827 wq_worker_sleeping(tsk); 6828 else if (task_flags & PF_IO_WORKER) 6829 io_wq_worker_sleeping(tsk); 6830 6831 /* 6832 * spinlock and rwlock must not flush block requests. This will 6833 * deadlock if the callback attempts to acquire a lock which is 6834 * already acquired. 6835 */ 6836 WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT); 6837 6838 /* 6839 * If we are going to sleep and we have plugged IO queued, 6840 * make sure to submit it to avoid deadlocks. 6841 */ 6842 blk_flush_plug(tsk->plug, true); 6843 6844 lock_map_release(&sched_map); 6845 } 6846 6847 static void sched_update_worker(struct task_struct *tsk) 6848 { 6849 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6850 if (tsk->flags & PF_BLOCK_TS) 6851 blk_plug_invalidate_ts(tsk); 6852 if (tsk->flags & PF_WQ_WORKER) 6853 wq_worker_running(tsk); 6854 else if (tsk->flags & PF_IO_WORKER) 6855 io_wq_worker_running(tsk); 6856 } 6857 } 6858 6859 static __always_inline void __schedule_loop(int sched_mode) 6860 { 6861 do { 6862 preempt_disable(); 6863 __schedule(sched_mode); 6864 sched_preempt_enable_no_resched(); 6865 } while (need_resched()); 6866 } 6867 6868 asmlinkage __visible void __sched schedule(void) 6869 { 6870 struct task_struct *tsk = current; 6871 6872 #ifdef CONFIG_RT_MUTEXES 6873 lockdep_assert(!tsk->sched_rt_mutex); 6874 #endif 6875 6876 if (!task_is_running(tsk)) 6877 sched_submit_work(tsk); 6878 __schedule_loop(SM_NONE); 6879 sched_update_worker(tsk); 6880 } 6881 EXPORT_SYMBOL(schedule); 6882 6883 /* 6884 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6885 * state (have scheduled out non-voluntarily) by making sure that all 6886 * tasks have either left the run queue or have gone into user space. 6887 * As idle tasks do not do either, they must not ever be preempted 6888 * (schedule out non-voluntarily). 6889 * 6890 * schedule_idle() is similar to schedule_preempt_disable() except that it 6891 * never enables preemption because it does not call sched_submit_work(). 6892 */ 6893 void __sched schedule_idle(void) 6894 { 6895 /* 6896 * As this skips calling sched_submit_work(), which the idle task does 6897 * regardless because that function is a NOP when the task is in a 6898 * TASK_RUNNING state, make sure this isn't used someplace that the 6899 * current task can be in any other state. Note, idle is always in the 6900 * TASK_RUNNING state. 6901 */ 6902 WARN_ON_ONCE(current->__state); 6903 do { 6904 __schedule(SM_IDLE); 6905 } while (need_resched()); 6906 } 6907 6908 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6909 asmlinkage __visible void __sched schedule_user(void) 6910 { 6911 /* 6912 * If we come here after a random call to set_need_resched(), 6913 * or we have been woken up remotely but the IPI has not yet arrived, 6914 * we haven't yet exited the RCU idle mode. Do it here manually until 6915 * we find a better solution. 6916 * 6917 * NB: There are buggy callers of this function. Ideally we 6918 * should warn if prev_state != CT_STATE_USER, but that will trigger 6919 * too frequently to make sense yet. 6920 */ 6921 enum ctx_state prev_state = exception_enter(); 6922 schedule(); 6923 exception_exit(prev_state); 6924 } 6925 #endif 6926 6927 /** 6928 * schedule_preempt_disabled - called with preemption disabled 6929 * 6930 * Returns with preemption disabled. Note: preempt_count must be 1 6931 */ 6932 void __sched schedule_preempt_disabled(void) 6933 { 6934 sched_preempt_enable_no_resched(); 6935 schedule(); 6936 preempt_disable(); 6937 } 6938 6939 #ifdef CONFIG_PREEMPT_RT 6940 void __sched notrace schedule_rtlock(void) 6941 { 6942 __schedule_loop(SM_RTLOCK_WAIT); 6943 } 6944 NOKPROBE_SYMBOL(schedule_rtlock); 6945 #endif 6946 6947 static void __sched notrace preempt_schedule_common(void) 6948 { 6949 do { 6950 /* 6951 * Because the function tracer can trace preempt_count_sub() 6952 * and it also uses preempt_enable/disable_notrace(), if 6953 * NEED_RESCHED is set, the preempt_enable_notrace() called 6954 * by the function tracer will call this function again and 6955 * cause infinite recursion. 6956 * 6957 * Preemption must be disabled here before the function 6958 * tracer can trace. Break up preempt_disable() into two 6959 * calls. One to disable preemption without fear of being 6960 * traced. The other to still record the preemption latency, 6961 * which can also be traced by the function tracer. 6962 */ 6963 preempt_disable_notrace(); 6964 preempt_latency_start(1); 6965 __schedule(SM_PREEMPT); 6966 preempt_latency_stop(1); 6967 preempt_enable_no_resched_notrace(); 6968 6969 /* 6970 * Check again in case we missed a preemption opportunity 6971 * between schedule and now. 6972 */ 6973 } while (need_resched()); 6974 } 6975 6976 #ifdef CONFIG_PREEMPTION 6977 /* 6978 * This is the entry point to schedule() from in-kernel preemption 6979 * off of preempt_enable. 6980 */ 6981 asmlinkage __visible void __sched notrace preempt_schedule(void) 6982 { 6983 /* 6984 * If there is a non-zero preempt_count or interrupts are disabled, 6985 * we do not want to preempt the current task. Just return.. 6986 */ 6987 if (likely(!preemptible())) 6988 return; 6989 preempt_schedule_common(); 6990 } 6991 NOKPROBE_SYMBOL(preempt_schedule); 6992 EXPORT_SYMBOL(preempt_schedule); 6993 6994 #ifdef CONFIG_PREEMPT_DYNAMIC 6995 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6996 #ifndef preempt_schedule_dynamic_enabled 6997 #define preempt_schedule_dynamic_enabled preempt_schedule 6998 #define preempt_schedule_dynamic_disabled NULL 6999 #endif 7000 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 7001 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 7002 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7003 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 7004 void __sched notrace dynamic_preempt_schedule(void) 7005 { 7006 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 7007 return; 7008 preempt_schedule(); 7009 } 7010 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 7011 EXPORT_SYMBOL(dynamic_preempt_schedule); 7012 #endif 7013 #endif 7014 7015 /** 7016 * preempt_schedule_notrace - preempt_schedule called by tracing 7017 * 7018 * The tracing infrastructure uses preempt_enable_notrace to prevent 7019 * recursion and tracing preempt enabling caused by the tracing 7020 * infrastructure itself. But as tracing can happen in areas coming 7021 * from userspace or just about to enter userspace, a preempt enable 7022 * can occur before user_exit() is called. This will cause the scheduler 7023 * to be called when the system is still in usermode. 7024 * 7025 * To prevent this, the preempt_enable_notrace will use this function 7026 * instead of preempt_schedule() to exit user context if needed before 7027 * calling the scheduler. 7028 */ 7029 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 7030 { 7031 enum ctx_state prev_ctx; 7032 7033 if (likely(!preemptible())) 7034 return; 7035 7036 do { 7037 /* 7038 * Because the function tracer can trace preempt_count_sub() 7039 * and it also uses preempt_enable/disable_notrace(), if 7040 * NEED_RESCHED is set, the preempt_enable_notrace() called 7041 * by the function tracer will call this function again and 7042 * cause infinite recursion. 7043 * 7044 * Preemption must be disabled here before the function 7045 * tracer can trace. Break up preempt_disable() into two 7046 * calls. One to disable preemption without fear of being 7047 * traced. The other to still record the preemption latency, 7048 * which can also be traced by the function tracer. 7049 */ 7050 preempt_disable_notrace(); 7051 preempt_latency_start(1); 7052 /* 7053 * Needs preempt disabled in case user_exit() is traced 7054 * and the tracer calls preempt_enable_notrace() causing 7055 * an infinite recursion. 7056 */ 7057 prev_ctx = exception_enter(); 7058 __schedule(SM_PREEMPT); 7059 exception_exit(prev_ctx); 7060 7061 preempt_latency_stop(1); 7062 preempt_enable_no_resched_notrace(); 7063 } while (need_resched()); 7064 } 7065 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 7066 7067 #ifdef CONFIG_PREEMPT_DYNAMIC 7068 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7069 #ifndef preempt_schedule_notrace_dynamic_enabled 7070 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 7071 #define preempt_schedule_notrace_dynamic_disabled NULL 7072 #endif 7073 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 7074 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 7075 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7076 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 7077 void __sched notrace dynamic_preempt_schedule_notrace(void) 7078 { 7079 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 7080 return; 7081 preempt_schedule_notrace(); 7082 } 7083 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 7084 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 7085 #endif 7086 #endif 7087 7088 #endif /* CONFIG_PREEMPTION */ 7089 7090 /* 7091 * This is the entry point to schedule() from kernel preemption 7092 * off of IRQ context. 7093 * Note, that this is called and return with IRQs disabled. This will 7094 * protect us against recursive calling from IRQ contexts. 7095 */ 7096 asmlinkage __visible void __sched preempt_schedule_irq(void) 7097 { 7098 enum ctx_state prev_state; 7099 7100 /* Catch callers which need to be fixed */ 7101 BUG_ON(preempt_count() || !irqs_disabled()); 7102 7103 prev_state = exception_enter(); 7104 7105 do { 7106 preempt_disable(); 7107 local_irq_enable(); 7108 __schedule(SM_PREEMPT); 7109 local_irq_disable(); 7110 sched_preempt_enable_no_resched(); 7111 } while (need_resched()); 7112 7113 exception_exit(prev_state); 7114 } 7115 7116 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7117 void *key) 7118 { 7119 WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7120 return try_to_wake_up(curr->private, mode, wake_flags); 7121 } 7122 EXPORT_SYMBOL(default_wake_function); 7123 7124 const struct sched_class *__setscheduler_class(int policy, int prio) 7125 { 7126 if (dl_prio(prio)) 7127 return &dl_sched_class; 7128 7129 if (rt_prio(prio)) 7130 return &rt_sched_class; 7131 7132 #ifdef CONFIG_SCHED_CLASS_EXT 7133 if (task_should_scx(policy)) 7134 return &ext_sched_class; 7135 #endif 7136 7137 return &fair_sched_class; 7138 } 7139 7140 #ifdef CONFIG_RT_MUTEXES 7141 7142 /* 7143 * Would be more useful with typeof()/auto_type but they don't mix with 7144 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7145 * name such that if someone were to implement this function we get to compare 7146 * notes. 7147 */ 7148 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7149 7150 void rt_mutex_pre_schedule(void) 7151 { 7152 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7153 sched_submit_work(current); 7154 } 7155 7156 void rt_mutex_schedule(void) 7157 { 7158 lockdep_assert(current->sched_rt_mutex); 7159 __schedule_loop(SM_NONE); 7160 } 7161 7162 void rt_mutex_post_schedule(void) 7163 { 7164 sched_update_worker(current); 7165 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7166 } 7167 7168 /* 7169 * rt_mutex_setprio - set the current priority of a task 7170 * @p: task to boost 7171 * @pi_task: donor task 7172 * 7173 * This function changes the 'effective' priority of a task. It does 7174 * not touch ->normal_prio like __setscheduler(). 7175 * 7176 * Used by the rt_mutex code to implement priority inheritance 7177 * logic. Call site only calls if the priority of the task changed. 7178 */ 7179 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7180 { 7181 int prio, oldprio, queued, running, queue_flag = 7182 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7183 const struct sched_class *prev_class, *next_class; 7184 struct rq_flags rf; 7185 struct rq *rq; 7186 7187 /* XXX used to be waiter->prio, not waiter->task->prio */ 7188 prio = __rt_effective_prio(pi_task, p->normal_prio); 7189 7190 /* 7191 * If nothing changed; bail early. 7192 */ 7193 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7194 return; 7195 7196 rq = __task_rq_lock(p, &rf); 7197 update_rq_clock(rq); 7198 /* 7199 * Set under pi_lock && rq->lock, such that the value can be used under 7200 * either lock. 7201 * 7202 * Note that there is loads of tricky to make this pointer cache work 7203 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7204 * ensure a task is de-boosted (pi_task is set to NULL) before the 7205 * task is allowed to run again (and can exit). This ensures the pointer 7206 * points to a blocked task -- which guarantees the task is present. 7207 */ 7208 p->pi_top_task = pi_task; 7209 7210 /* 7211 * For FIFO/RR we only need to set prio, if that matches we're done. 7212 */ 7213 if (prio == p->prio && !dl_prio(prio)) 7214 goto out_unlock; 7215 7216 /* 7217 * Idle task boosting is a no-no in general. There is one 7218 * exception, when PREEMPT_RT and NOHZ is active: 7219 * 7220 * The idle task calls get_next_timer_interrupt() and holds 7221 * the timer wheel base->lock on the CPU and another CPU wants 7222 * to access the timer (probably to cancel it). We can safely 7223 * ignore the boosting request, as the idle CPU runs this code 7224 * with interrupts disabled and will complete the lock 7225 * protected section without being interrupted. So there is no 7226 * real need to boost. 7227 */ 7228 if (unlikely(p == rq->idle)) { 7229 WARN_ON(p != rq->curr); 7230 WARN_ON(p->pi_blocked_on); 7231 goto out_unlock; 7232 } 7233 7234 trace_sched_pi_setprio(p, pi_task); 7235 oldprio = p->prio; 7236 7237 if (oldprio == prio) 7238 queue_flag &= ~DEQUEUE_MOVE; 7239 7240 prev_class = p->sched_class; 7241 next_class = __setscheduler_class(p->policy, prio); 7242 7243 if (prev_class != next_class && p->se.sched_delayed) 7244 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); 7245 7246 queued = task_on_rq_queued(p); 7247 running = task_current_donor(rq, p); 7248 if (queued) 7249 dequeue_task(rq, p, queue_flag); 7250 if (running) 7251 put_prev_task(rq, p); 7252 7253 /* 7254 * Boosting condition are: 7255 * 1. -rt task is running and holds mutex A 7256 * --> -dl task blocks on mutex A 7257 * 7258 * 2. -dl task is running and holds mutex A 7259 * --> -dl task blocks on mutex A and could preempt the 7260 * running task 7261 */ 7262 if (dl_prio(prio)) { 7263 if (!dl_prio(p->normal_prio) || 7264 (pi_task && dl_prio(pi_task->prio) && 7265 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7266 p->dl.pi_se = pi_task->dl.pi_se; 7267 queue_flag |= ENQUEUE_REPLENISH; 7268 } else { 7269 p->dl.pi_se = &p->dl; 7270 } 7271 } else if (rt_prio(prio)) { 7272 if (dl_prio(oldprio)) 7273 p->dl.pi_se = &p->dl; 7274 if (oldprio < prio) 7275 queue_flag |= ENQUEUE_HEAD; 7276 } else { 7277 if (dl_prio(oldprio)) 7278 p->dl.pi_se = &p->dl; 7279 if (rt_prio(oldprio)) 7280 p->rt.timeout = 0; 7281 } 7282 7283 p->sched_class = next_class; 7284 p->prio = prio; 7285 7286 check_class_changing(rq, p, prev_class); 7287 7288 if (queued) 7289 enqueue_task(rq, p, queue_flag); 7290 if (running) 7291 set_next_task(rq, p); 7292 7293 check_class_changed(rq, p, prev_class, oldprio); 7294 out_unlock: 7295 /* Avoid rq from going away on us: */ 7296 preempt_disable(); 7297 7298 rq_unpin_lock(rq, &rf); 7299 __balance_callbacks(rq); 7300 raw_spin_rq_unlock(rq); 7301 7302 preempt_enable(); 7303 } 7304 #endif 7305 7306 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7307 int __sched __cond_resched(void) 7308 { 7309 if (should_resched(0) && !irqs_disabled()) { 7310 preempt_schedule_common(); 7311 return 1; 7312 } 7313 /* 7314 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick 7315 * whether the current CPU is in an RCU read-side critical section, 7316 * so the tick can report quiescent states even for CPUs looping 7317 * in kernel context. In contrast, in non-preemptible kernels, 7318 * RCU readers leave no in-memory hints, which means that CPU-bound 7319 * processes executing in kernel context might never report an 7320 * RCU quiescent state. Therefore, the following code causes 7321 * cond_resched() to report a quiescent state, but only when RCU 7322 * is in urgent need of one. 7323 * A third case, preemptible, but non-PREEMPT_RCU provides for 7324 * urgently needed quiescent states via rcu_flavor_sched_clock_irq(). 7325 */ 7326 #ifndef CONFIG_PREEMPT_RCU 7327 rcu_all_qs(); 7328 #endif 7329 return 0; 7330 } 7331 EXPORT_SYMBOL(__cond_resched); 7332 #endif 7333 7334 #ifdef CONFIG_PREEMPT_DYNAMIC 7335 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7336 #define cond_resched_dynamic_enabled __cond_resched 7337 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7338 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7339 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7340 7341 #define might_resched_dynamic_enabled __cond_resched 7342 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7343 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7344 EXPORT_STATIC_CALL_TRAMP(might_resched); 7345 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7346 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7347 int __sched dynamic_cond_resched(void) 7348 { 7349 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7350 return 0; 7351 return __cond_resched(); 7352 } 7353 EXPORT_SYMBOL(dynamic_cond_resched); 7354 7355 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7356 int __sched dynamic_might_resched(void) 7357 { 7358 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7359 return 0; 7360 return __cond_resched(); 7361 } 7362 EXPORT_SYMBOL(dynamic_might_resched); 7363 #endif 7364 #endif 7365 7366 /* 7367 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7368 * call schedule, and on return reacquire the lock. 7369 * 7370 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7371 * operations here to prevent schedule() from being called twice (once via 7372 * spin_unlock(), once by hand). 7373 */ 7374 int __cond_resched_lock(spinlock_t *lock) 7375 { 7376 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7377 int ret = 0; 7378 7379 lockdep_assert_held(lock); 7380 7381 if (spin_needbreak(lock) || resched) { 7382 spin_unlock(lock); 7383 if (!_cond_resched()) 7384 cpu_relax(); 7385 ret = 1; 7386 spin_lock(lock); 7387 } 7388 return ret; 7389 } 7390 EXPORT_SYMBOL(__cond_resched_lock); 7391 7392 int __cond_resched_rwlock_read(rwlock_t *lock) 7393 { 7394 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7395 int ret = 0; 7396 7397 lockdep_assert_held_read(lock); 7398 7399 if (rwlock_needbreak(lock) || resched) { 7400 read_unlock(lock); 7401 if (!_cond_resched()) 7402 cpu_relax(); 7403 ret = 1; 7404 read_lock(lock); 7405 } 7406 return ret; 7407 } 7408 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7409 7410 int __cond_resched_rwlock_write(rwlock_t *lock) 7411 { 7412 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7413 int ret = 0; 7414 7415 lockdep_assert_held_write(lock); 7416 7417 if (rwlock_needbreak(lock) || resched) { 7418 write_unlock(lock); 7419 if (!_cond_resched()) 7420 cpu_relax(); 7421 ret = 1; 7422 write_lock(lock); 7423 } 7424 return ret; 7425 } 7426 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7427 7428 #ifdef CONFIG_PREEMPT_DYNAMIC 7429 7430 #ifdef CONFIG_GENERIC_ENTRY 7431 #include <linux/entry-common.h> 7432 #endif 7433 7434 /* 7435 * SC:cond_resched 7436 * SC:might_resched 7437 * SC:preempt_schedule 7438 * SC:preempt_schedule_notrace 7439 * SC:irqentry_exit_cond_resched 7440 * 7441 * 7442 * NONE: 7443 * cond_resched <- __cond_resched 7444 * might_resched <- RET0 7445 * preempt_schedule <- NOP 7446 * preempt_schedule_notrace <- NOP 7447 * irqentry_exit_cond_resched <- NOP 7448 * dynamic_preempt_lazy <- false 7449 * 7450 * VOLUNTARY: 7451 * cond_resched <- __cond_resched 7452 * might_resched <- __cond_resched 7453 * preempt_schedule <- NOP 7454 * preempt_schedule_notrace <- NOP 7455 * irqentry_exit_cond_resched <- NOP 7456 * dynamic_preempt_lazy <- false 7457 * 7458 * FULL: 7459 * cond_resched <- RET0 7460 * might_resched <- RET0 7461 * preempt_schedule <- preempt_schedule 7462 * preempt_schedule_notrace <- preempt_schedule_notrace 7463 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7464 * dynamic_preempt_lazy <- false 7465 * 7466 * LAZY: 7467 * cond_resched <- RET0 7468 * might_resched <- RET0 7469 * preempt_schedule <- preempt_schedule 7470 * preempt_schedule_notrace <- preempt_schedule_notrace 7471 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7472 * dynamic_preempt_lazy <- true 7473 */ 7474 7475 enum { 7476 preempt_dynamic_undefined = -1, 7477 preempt_dynamic_none, 7478 preempt_dynamic_voluntary, 7479 preempt_dynamic_full, 7480 preempt_dynamic_lazy, 7481 }; 7482 7483 int preempt_dynamic_mode = preempt_dynamic_undefined; 7484 7485 int sched_dynamic_mode(const char *str) 7486 { 7487 #ifndef CONFIG_PREEMPT_RT 7488 if (!strcmp(str, "none")) 7489 return preempt_dynamic_none; 7490 7491 if (!strcmp(str, "voluntary")) 7492 return preempt_dynamic_voluntary; 7493 #endif 7494 7495 if (!strcmp(str, "full")) 7496 return preempt_dynamic_full; 7497 7498 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY 7499 if (!strcmp(str, "lazy")) 7500 return preempt_dynamic_lazy; 7501 #endif 7502 7503 return -EINVAL; 7504 } 7505 7506 #define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) 7507 #define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) 7508 7509 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7510 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7511 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7512 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7513 #define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) 7514 #define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) 7515 #else 7516 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7517 #endif 7518 7519 static DEFINE_MUTEX(sched_dynamic_mutex); 7520 7521 static void __sched_dynamic_update(int mode) 7522 { 7523 /* 7524 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7525 * the ZERO state, which is invalid. 7526 */ 7527 preempt_dynamic_enable(cond_resched); 7528 preempt_dynamic_enable(might_resched); 7529 preempt_dynamic_enable(preempt_schedule); 7530 preempt_dynamic_enable(preempt_schedule_notrace); 7531 preempt_dynamic_enable(irqentry_exit_cond_resched); 7532 preempt_dynamic_key_disable(preempt_lazy); 7533 7534 switch (mode) { 7535 case preempt_dynamic_none: 7536 preempt_dynamic_enable(cond_resched); 7537 preempt_dynamic_disable(might_resched); 7538 preempt_dynamic_disable(preempt_schedule); 7539 preempt_dynamic_disable(preempt_schedule_notrace); 7540 preempt_dynamic_disable(irqentry_exit_cond_resched); 7541 preempt_dynamic_key_disable(preempt_lazy); 7542 if (mode != preempt_dynamic_mode) 7543 pr_info("Dynamic Preempt: none\n"); 7544 break; 7545 7546 case preempt_dynamic_voluntary: 7547 preempt_dynamic_enable(cond_resched); 7548 preempt_dynamic_enable(might_resched); 7549 preempt_dynamic_disable(preempt_schedule); 7550 preempt_dynamic_disable(preempt_schedule_notrace); 7551 preempt_dynamic_disable(irqentry_exit_cond_resched); 7552 preempt_dynamic_key_disable(preempt_lazy); 7553 if (mode != preempt_dynamic_mode) 7554 pr_info("Dynamic Preempt: voluntary\n"); 7555 break; 7556 7557 case preempt_dynamic_full: 7558 preempt_dynamic_disable(cond_resched); 7559 preempt_dynamic_disable(might_resched); 7560 preempt_dynamic_enable(preempt_schedule); 7561 preempt_dynamic_enable(preempt_schedule_notrace); 7562 preempt_dynamic_enable(irqentry_exit_cond_resched); 7563 preempt_dynamic_key_disable(preempt_lazy); 7564 if (mode != preempt_dynamic_mode) 7565 pr_info("Dynamic Preempt: full\n"); 7566 break; 7567 7568 case preempt_dynamic_lazy: 7569 preempt_dynamic_disable(cond_resched); 7570 preempt_dynamic_disable(might_resched); 7571 preempt_dynamic_enable(preempt_schedule); 7572 preempt_dynamic_enable(preempt_schedule_notrace); 7573 preempt_dynamic_enable(irqentry_exit_cond_resched); 7574 preempt_dynamic_key_enable(preempt_lazy); 7575 if (mode != preempt_dynamic_mode) 7576 pr_info("Dynamic Preempt: lazy\n"); 7577 break; 7578 } 7579 7580 preempt_dynamic_mode = mode; 7581 } 7582 7583 void sched_dynamic_update(int mode) 7584 { 7585 mutex_lock(&sched_dynamic_mutex); 7586 __sched_dynamic_update(mode); 7587 mutex_unlock(&sched_dynamic_mutex); 7588 } 7589 7590 static int __init setup_preempt_mode(char *str) 7591 { 7592 int mode = sched_dynamic_mode(str); 7593 if (mode < 0) { 7594 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7595 return 0; 7596 } 7597 7598 sched_dynamic_update(mode); 7599 return 1; 7600 } 7601 __setup("preempt=", setup_preempt_mode); 7602 7603 static void __init preempt_dynamic_init(void) 7604 { 7605 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7606 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7607 sched_dynamic_update(preempt_dynamic_none); 7608 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7609 sched_dynamic_update(preempt_dynamic_voluntary); 7610 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7611 sched_dynamic_update(preempt_dynamic_lazy); 7612 } else { 7613 /* Default static call setting, nothing to do */ 7614 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7615 preempt_dynamic_mode = preempt_dynamic_full; 7616 pr_info("Dynamic Preempt: full\n"); 7617 } 7618 } 7619 } 7620 7621 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7622 bool preempt_model_##mode(void) \ 7623 { \ 7624 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7625 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7626 } \ 7627 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7628 7629 PREEMPT_MODEL_ACCESSOR(none); 7630 PREEMPT_MODEL_ACCESSOR(voluntary); 7631 PREEMPT_MODEL_ACCESSOR(full); 7632 PREEMPT_MODEL_ACCESSOR(lazy); 7633 7634 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7635 7636 #define preempt_dynamic_mode -1 7637 7638 static inline void preempt_dynamic_init(void) { } 7639 7640 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7641 7642 const char *preempt_modes[] = { 7643 "none", "voluntary", "full", "lazy", NULL, 7644 }; 7645 7646 const char *preempt_model_str(void) 7647 { 7648 bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) && 7649 (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) || 7650 IS_ENABLED(CONFIG_PREEMPT_LAZY)); 7651 static char buf[128]; 7652 7653 if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) { 7654 struct seq_buf s; 7655 7656 seq_buf_init(&s, buf, sizeof(buf)); 7657 seq_buf_puts(&s, "PREEMPT"); 7658 7659 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 7660 seq_buf_printf(&s, "%sRT%s", 7661 brace ? "_{" : "_", 7662 brace ? "," : ""); 7663 7664 if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) { 7665 seq_buf_printf(&s, "(%s)%s", 7666 preempt_dynamic_mode > 0 ? 7667 preempt_modes[preempt_dynamic_mode] : "undef", 7668 brace ? "}" : ""); 7669 return seq_buf_str(&s); 7670 } 7671 7672 if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7673 seq_buf_printf(&s, "LAZY%s", 7674 brace ? "}" : ""); 7675 return seq_buf_str(&s); 7676 } 7677 7678 return seq_buf_str(&s); 7679 } 7680 7681 if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD)) 7682 return "VOLUNTARY"; 7683 7684 return "NONE"; 7685 } 7686 7687 int io_schedule_prepare(void) 7688 { 7689 int old_iowait = current->in_iowait; 7690 7691 current->in_iowait = 1; 7692 blk_flush_plug(current->plug, true); 7693 return old_iowait; 7694 } 7695 7696 void io_schedule_finish(int token) 7697 { 7698 current->in_iowait = token; 7699 } 7700 7701 /* 7702 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7703 * that process accounting knows that this is a task in IO wait state. 7704 */ 7705 long __sched io_schedule_timeout(long timeout) 7706 { 7707 int token; 7708 long ret; 7709 7710 token = io_schedule_prepare(); 7711 ret = schedule_timeout(timeout); 7712 io_schedule_finish(token); 7713 7714 return ret; 7715 } 7716 EXPORT_SYMBOL(io_schedule_timeout); 7717 7718 void __sched io_schedule(void) 7719 { 7720 int token; 7721 7722 token = io_schedule_prepare(); 7723 schedule(); 7724 io_schedule_finish(token); 7725 } 7726 EXPORT_SYMBOL(io_schedule); 7727 7728 void sched_show_task(struct task_struct *p) 7729 { 7730 unsigned long free; 7731 int ppid; 7732 7733 if (!try_get_task_stack(p)) 7734 return; 7735 7736 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7737 7738 if (task_is_running(p)) 7739 pr_cont(" running task "); 7740 free = stack_not_used(p); 7741 ppid = 0; 7742 rcu_read_lock(); 7743 if (pid_alive(p)) 7744 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7745 rcu_read_unlock(); 7746 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n", 7747 free, task_pid_nr(p), task_tgid_nr(p), 7748 ppid, p->flags, read_task_thread_flags(p)); 7749 7750 print_worker_info(KERN_INFO, p); 7751 print_stop_info(KERN_INFO, p); 7752 print_scx_info(KERN_INFO, p); 7753 show_stack(p, NULL, KERN_INFO); 7754 put_task_stack(p); 7755 } 7756 EXPORT_SYMBOL_GPL(sched_show_task); 7757 7758 static inline bool 7759 state_filter_match(unsigned long state_filter, struct task_struct *p) 7760 { 7761 unsigned int state = READ_ONCE(p->__state); 7762 7763 /* no filter, everything matches */ 7764 if (!state_filter) 7765 return true; 7766 7767 /* filter, but doesn't match */ 7768 if (!(state & state_filter)) 7769 return false; 7770 7771 /* 7772 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7773 * TASK_KILLABLE). 7774 */ 7775 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7776 return false; 7777 7778 return true; 7779 } 7780 7781 7782 void show_state_filter(unsigned int state_filter) 7783 { 7784 struct task_struct *g, *p; 7785 7786 rcu_read_lock(); 7787 for_each_process_thread(g, p) { 7788 /* 7789 * reset the NMI-timeout, listing all files on a slow 7790 * console might take a lot of time: 7791 * Also, reset softlockup watchdogs on all CPUs, because 7792 * another CPU might be blocked waiting for us to process 7793 * an IPI. 7794 */ 7795 touch_nmi_watchdog(); 7796 touch_all_softlockup_watchdogs(); 7797 if (state_filter_match(state_filter, p)) 7798 sched_show_task(p); 7799 } 7800 7801 if (!state_filter) 7802 sysrq_sched_debug_show(); 7803 7804 rcu_read_unlock(); 7805 /* 7806 * Only show locks if all tasks are dumped: 7807 */ 7808 if (!state_filter) 7809 debug_show_all_locks(); 7810 } 7811 7812 /** 7813 * init_idle - set up an idle thread for a given CPU 7814 * @idle: task in question 7815 * @cpu: CPU the idle task belongs to 7816 * 7817 * NOTE: this function does not set the idle thread's NEED_RESCHED 7818 * flag, to make booting more robust. 7819 */ 7820 void __init init_idle(struct task_struct *idle, int cpu) 7821 { 7822 #ifdef CONFIG_SMP 7823 struct affinity_context ac = (struct affinity_context) { 7824 .new_mask = cpumask_of(cpu), 7825 .flags = 0, 7826 }; 7827 #endif 7828 struct rq *rq = cpu_rq(cpu); 7829 unsigned long flags; 7830 7831 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7832 raw_spin_rq_lock(rq); 7833 7834 idle->__state = TASK_RUNNING; 7835 idle->se.exec_start = sched_clock(); 7836 /* 7837 * PF_KTHREAD should already be set at this point; regardless, make it 7838 * look like a proper per-CPU kthread. 7839 */ 7840 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7841 kthread_set_per_cpu(idle, cpu); 7842 7843 #ifdef CONFIG_SMP 7844 /* 7845 * No validation and serialization required at boot time and for 7846 * setting up the idle tasks of not yet online CPUs. 7847 */ 7848 set_cpus_allowed_common(idle, &ac); 7849 #endif 7850 /* 7851 * We're having a chicken and egg problem, even though we are 7852 * holding rq->lock, the CPU isn't yet set to this CPU so the 7853 * lockdep check in task_group() will fail. 7854 * 7855 * Similar case to sched_fork(). / Alternatively we could 7856 * use task_rq_lock() here and obtain the other rq->lock. 7857 * 7858 * Silence PROVE_RCU 7859 */ 7860 rcu_read_lock(); 7861 __set_task_cpu(idle, cpu); 7862 rcu_read_unlock(); 7863 7864 rq->idle = idle; 7865 rq_set_donor(rq, idle); 7866 rcu_assign_pointer(rq->curr, idle); 7867 idle->on_rq = TASK_ON_RQ_QUEUED; 7868 #ifdef CONFIG_SMP 7869 idle->on_cpu = 1; 7870 #endif 7871 raw_spin_rq_unlock(rq); 7872 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7873 7874 /* Set the preempt count _outside_ the spinlocks! */ 7875 init_idle_preempt_count(idle, cpu); 7876 7877 /* 7878 * The idle tasks have their own, simple scheduling class: 7879 */ 7880 idle->sched_class = &idle_sched_class; 7881 ftrace_graph_init_idle_task(idle, cpu); 7882 vtime_init_idle(idle, cpu); 7883 #ifdef CONFIG_SMP 7884 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7885 #endif 7886 } 7887 7888 #ifdef CONFIG_SMP 7889 7890 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7891 const struct cpumask *trial) 7892 { 7893 int ret = 1; 7894 7895 if (cpumask_empty(cur)) 7896 return ret; 7897 7898 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7899 7900 return ret; 7901 } 7902 7903 int task_can_attach(struct task_struct *p) 7904 { 7905 int ret = 0; 7906 7907 /* 7908 * Kthreads which disallow setaffinity shouldn't be moved 7909 * to a new cpuset; we don't want to change their CPU 7910 * affinity and isolating such threads by their set of 7911 * allowed nodes is unnecessary. Thus, cpusets are not 7912 * applicable for such threads. This prevents checking for 7913 * success of set_cpus_allowed_ptr() on all attached tasks 7914 * before cpus_mask may be changed. 7915 */ 7916 if (p->flags & PF_NO_SETAFFINITY) 7917 ret = -EINVAL; 7918 7919 return ret; 7920 } 7921 7922 bool sched_smp_initialized __read_mostly; 7923 7924 #ifdef CONFIG_NUMA_BALANCING 7925 /* Migrate current task p to target_cpu */ 7926 int migrate_task_to(struct task_struct *p, int target_cpu) 7927 { 7928 struct migration_arg arg = { p, target_cpu }; 7929 int curr_cpu = task_cpu(p); 7930 7931 if (curr_cpu == target_cpu) 7932 return 0; 7933 7934 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7935 return -EINVAL; 7936 7937 __schedstat_inc(p->stats.numa_task_migrated); 7938 count_vm_numa_event(NUMA_TASK_MIGRATE); 7939 count_memcg_event_mm(p->mm, NUMA_TASK_MIGRATE); 7940 trace_sched_move_numa(p, curr_cpu, target_cpu); 7941 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7942 } 7943 7944 /* 7945 * Requeue a task on a given node and accurately track the number of NUMA 7946 * tasks on the runqueues 7947 */ 7948 void sched_setnuma(struct task_struct *p, int nid) 7949 { 7950 bool queued, running; 7951 struct rq_flags rf; 7952 struct rq *rq; 7953 7954 rq = task_rq_lock(p, &rf); 7955 queued = task_on_rq_queued(p); 7956 running = task_current_donor(rq, p); 7957 7958 if (queued) 7959 dequeue_task(rq, p, DEQUEUE_SAVE); 7960 if (running) 7961 put_prev_task(rq, p); 7962 7963 p->numa_preferred_nid = nid; 7964 7965 if (queued) 7966 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7967 if (running) 7968 set_next_task(rq, p); 7969 task_rq_unlock(rq, p, &rf); 7970 } 7971 #endif /* CONFIG_NUMA_BALANCING */ 7972 7973 #ifdef CONFIG_HOTPLUG_CPU 7974 /* 7975 * Invoked on the outgoing CPU in context of the CPU hotplug thread 7976 * after ensuring that there are no user space tasks left on the CPU. 7977 * 7978 * If there is a lazy mm in use on the hotplug thread, drop it and 7979 * switch to init_mm. 7980 * 7981 * The reference count on init_mm is dropped in finish_cpu(). 7982 */ 7983 static void sched_force_init_mm(void) 7984 { 7985 struct mm_struct *mm = current->active_mm; 7986 7987 if (mm != &init_mm) { 7988 mmgrab_lazy_tlb(&init_mm); 7989 local_irq_disable(); 7990 current->active_mm = &init_mm; 7991 switch_mm_irqs_off(mm, &init_mm, current); 7992 local_irq_enable(); 7993 finish_arch_post_lock_switch(); 7994 mmdrop_lazy_tlb(mm); 7995 } 7996 7997 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7998 } 7999 8000 static int __balance_push_cpu_stop(void *arg) 8001 { 8002 struct task_struct *p = arg; 8003 struct rq *rq = this_rq(); 8004 struct rq_flags rf; 8005 int cpu; 8006 8007 raw_spin_lock_irq(&p->pi_lock); 8008 rq_lock(rq, &rf); 8009 8010 update_rq_clock(rq); 8011 8012 if (task_rq(p) == rq && task_on_rq_queued(p)) { 8013 cpu = select_fallback_rq(rq->cpu, p); 8014 rq = __migrate_task(rq, &rf, p, cpu); 8015 } 8016 8017 rq_unlock(rq, &rf); 8018 raw_spin_unlock_irq(&p->pi_lock); 8019 8020 put_task_struct(p); 8021 8022 return 0; 8023 } 8024 8025 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8026 8027 /* 8028 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8029 * 8030 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8031 * effective when the hotplug motion is down. 8032 */ 8033 static void balance_push(struct rq *rq) 8034 { 8035 struct task_struct *push_task = rq->curr; 8036 8037 lockdep_assert_rq_held(rq); 8038 8039 /* 8040 * Ensure the thing is persistent until balance_push_set(.on = false); 8041 */ 8042 rq->balance_callback = &balance_push_callback; 8043 8044 /* 8045 * Only active while going offline and when invoked on the outgoing 8046 * CPU. 8047 */ 8048 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8049 return; 8050 8051 /* 8052 * Both the cpu-hotplug and stop task are in this case and are 8053 * required to complete the hotplug process. 8054 */ 8055 if (kthread_is_per_cpu(push_task) || 8056 is_migration_disabled(push_task)) { 8057 8058 /* 8059 * If this is the idle task on the outgoing CPU try to wake 8060 * up the hotplug control thread which might wait for the 8061 * last task to vanish. The rcuwait_active() check is 8062 * accurate here because the waiter is pinned on this CPU 8063 * and can't obviously be running in parallel. 8064 * 8065 * On RT kernels this also has to check whether there are 8066 * pinned and scheduled out tasks on the runqueue. They 8067 * need to leave the migrate disabled section first. 8068 */ 8069 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8070 rcuwait_active(&rq->hotplug_wait)) { 8071 raw_spin_rq_unlock(rq); 8072 rcuwait_wake_up(&rq->hotplug_wait); 8073 raw_spin_rq_lock(rq); 8074 } 8075 return; 8076 } 8077 8078 get_task_struct(push_task); 8079 /* 8080 * Temporarily drop rq->lock such that we can wake-up the stop task. 8081 * Both preemption and IRQs are still disabled. 8082 */ 8083 preempt_disable(); 8084 raw_spin_rq_unlock(rq); 8085 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8086 this_cpu_ptr(&push_work)); 8087 preempt_enable(); 8088 /* 8089 * At this point need_resched() is true and we'll take the loop in 8090 * schedule(). The next pick is obviously going to be the stop task 8091 * which kthread_is_per_cpu() and will push this task away. 8092 */ 8093 raw_spin_rq_lock(rq); 8094 } 8095 8096 static void balance_push_set(int cpu, bool on) 8097 { 8098 struct rq *rq = cpu_rq(cpu); 8099 struct rq_flags rf; 8100 8101 rq_lock_irqsave(rq, &rf); 8102 if (on) { 8103 WARN_ON_ONCE(rq->balance_callback); 8104 rq->balance_callback = &balance_push_callback; 8105 } else if (rq->balance_callback == &balance_push_callback) { 8106 rq->balance_callback = NULL; 8107 } 8108 rq_unlock_irqrestore(rq, &rf); 8109 } 8110 8111 /* 8112 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8113 * inactive. All tasks which are not per CPU kernel threads are either 8114 * pushed off this CPU now via balance_push() or placed on a different CPU 8115 * during wakeup. Wait until the CPU is quiescent. 8116 */ 8117 static void balance_hotplug_wait(void) 8118 { 8119 struct rq *rq = this_rq(); 8120 8121 rcuwait_wait_event(&rq->hotplug_wait, 8122 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8123 TASK_UNINTERRUPTIBLE); 8124 } 8125 8126 #else 8127 8128 static inline void balance_push(struct rq *rq) 8129 { 8130 } 8131 8132 static inline void balance_push_set(int cpu, bool on) 8133 { 8134 } 8135 8136 static inline void balance_hotplug_wait(void) 8137 { 8138 } 8139 8140 #endif /* CONFIG_HOTPLUG_CPU */ 8141 8142 void set_rq_online(struct rq *rq) 8143 { 8144 if (!rq->online) { 8145 const struct sched_class *class; 8146 8147 cpumask_set_cpu(rq->cpu, rq->rd->online); 8148 rq->online = 1; 8149 8150 for_each_class(class) { 8151 if (class->rq_online) 8152 class->rq_online(rq); 8153 } 8154 } 8155 } 8156 8157 void set_rq_offline(struct rq *rq) 8158 { 8159 if (rq->online) { 8160 const struct sched_class *class; 8161 8162 update_rq_clock(rq); 8163 for_each_class(class) { 8164 if (class->rq_offline) 8165 class->rq_offline(rq); 8166 } 8167 8168 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8169 rq->online = 0; 8170 } 8171 } 8172 8173 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8174 { 8175 struct rq_flags rf; 8176 8177 rq_lock_irqsave(rq, &rf); 8178 if (rq->rd) { 8179 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8180 set_rq_online(rq); 8181 } 8182 rq_unlock_irqrestore(rq, &rf); 8183 } 8184 8185 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8186 { 8187 struct rq_flags rf; 8188 8189 rq_lock_irqsave(rq, &rf); 8190 if (rq->rd) { 8191 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8192 set_rq_offline(rq); 8193 } 8194 rq_unlock_irqrestore(rq, &rf); 8195 } 8196 8197 /* 8198 * used to mark begin/end of suspend/resume: 8199 */ 8200 static int num_cpus_frozen; 8201 8202 /* 8203 * Update cpusets according to cpu_active mask. If cpusets are 8204 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8205 * around partition_sched_domains(). 8206 * 8207 * If we come here as part of a suspend/resume, don't touch cpusets because we 8208 * want to restore it back to its original state upon resume anyway. 8209 */ 8210 static void cpuset_cpu_active(void) 8211 { 8212 if (cpuhp_tasks_frozen) { 8213 /* 8214 * num_cpus_frozen tracks how many CPUs are involved in suspend 8215 * resume sequence. As long as this is not the last online 8216 * operation in the resume sequence, just build a single sched 8217 * domain, ignoring cpusets. 8218 */ 8219 cpuset_reset_sched_domains(); 8220 if (--num_cpus_frozen) 8221 return; 8222 /* 8223 * This is the last CPU online operation. So fall through and 8224 * restore the original sched domains by considering the 8225 * cpuset configurations. 8226 */ 8227 cpuset_force_rebuild(); 8228 } 8229 cpuset_update_active_cpus(); 8230 } 8231 8232 static void cpuset_cpu_inactive(unsigned int cpu) 8233 { 8234 if (!cpuhp_tasks_frozen) { 8235 cpuset_update_active_cpus(); 8236 } else { 8237 num_cpus_frozen++; 8238 cpuset_reset_sched_domains(); 8239 } 8240 } 8241 8242 static inline void sched_smt_present_inc(int cpu) 8243 { 8244 #ifdef CONFIG_SCHED_SMT 8245 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8246 static_branch_inc_cpuslocked(&sched_smt_present); 8247 #endif 8248 } 8249 8250 static inline void sched_smt_present_dec(int cpu) 8251 { 8252 #ifdef CONFIG_SCHED_SMT 8253 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8254 static_branch_dec_cpuslocked(&sched_smt_present); 8255 #endif 8256 } 8257 8258 int sched_cpu_activate(unsigned int cpu) 8259 { 8260 struct rq *rq = cpu_rq(cpu); 8261 8262 /* 8263 * Clear the balance_push callback and prepare to schedule 8264 * regular tasks. 8265 */ 8266 balance_push_set(cpu, false); 8267 8268 /* 8269 * When going up, increment the number of cores with SMT present. 8270 */ 8271 sched_smt_present_inc(cpu); 8272 set_cpu_active(cpu, true); 8273 8274 if (sched_smp_initialized) { 8275 sched_update_numa(cpu, true); 8276 sched_domains_numa_masks_set(cpu); 8277 cpuset_cpu_active(); 8278 } 8279 8280 scx_rq_activate(rq); 8281 8282 /* 8283 * Put the rq online, if not already. This happens: 8284 * 8285 * 1) In the early boot process, because we build the real domains 8286 * after all CPUs have been brought up. 8287 * 8288 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8289 * domains. 8290 */ 8291 sched_set_rq_online(rq, cpu); 8292 8293 return 0; 8294 } 8295 8296 int sched_cpu_deactivate(unsigned int cpu) 8297 { 8298 struct rq *rq = cpu_rq(cpu); 8299 int ret; 8300 8301 ret = dl_bw_deactivate(cpu); 8302 8303 if (ret) 8304 return ret; 8305 8306 /* 8307 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8308 * load balancing when not active 8309 */ 8310 nohz_balance_exit_idle(rq); 8311 8312 set_cpu_active(cpu, false); 8313 8314 /* 8315 * From this point forward, this CPU will refuse to run any task that 8316 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8317 * push those tasks away until this gets cleared, see 8318 * sched_cpu_dying(). 8319 */ 8320 balance_push_set(cpu, true); 8321 8322 /* 8323 * We've cleared cpu_active_mask / set balance_push, wait for all 8324 * preempt-disabled and RCU users of this state to go away such that 8325 * all new such users will observe it. 8326 * 8327 * Specifically, we rely on ttwu to no longer target this CPU, see 8328 * ttwu_queue_cond() and is_cpu_allowed(). 8329 * 8330 * Do sync before park smpboot threads to take care the RCU boost case. 8331 */ 8332 synchronize_rcu(); 8333 8334 sched_set_rq_offline(rq, cpu); 8335 8336 scx_rq_deactivate(rq); 8337 8338 /* 8339 * When going down, decrement the number of cores with SMT present. 8340 */ 8341 sched_smt_present_dec(cpu); 8342 8343 #ifdef CONFIG_SCHED_SMT 8344 sched_core_cpu_deactivate(cpu); 8345 #endif 8346 8347 if (!sched_smp_initialized) 8348 return 0; 8349 8350 sched_update_numa(cpu, false); 8351 cpuset_cpu_inactive(cpu); 8352 sched_domains_numa_masks_clear(cpu); 8353 return 0; 8354 } 8355 8356 static void sched_rq_cpu_starting(unsigned int cpu) 8357 { 8358 struct rq *rq = cpu_rq(cpu); 8359 8360 rq->calc_load_update = calc_load_update; 8361 update_max_interval(); 8362 } 8363 8364 int sched_cpu_starting(unsigned int cpu) 8365 { 8366 sched_core_cpu_starting(cpu); 8367 sched_rq_cpu_starting(cpu); 8368 sched_tick_start(cpu); 8369 return 0; 8370 } 8371 8372 #ifdef CONFIG_HOTPLUG_CPU 8373 8374 /* 8375 * Invoked immediately before the stopper thread is invoked to bring the 8376 * CPU down completely. At this point all per CPU kthreads except the 8377 * hotplug thread (current) and the stopper thread (inactive) have been 8378 * either parked or have been unbound from the outgoing CPU. Ensure that 8379 * any of those which might be on the way out are gone. 8380 * 8381 * If after this point a bound task is being woken on this CPU then the 8382 * responsible hotplug callback has failed to do it's job. 8383 * sched_cpu_dying() will catch it with the appropriate fireworks. 8384 */ 8385 int sched_cpu_wait_empty(unsigned int cpu) 8386 { 8387 balance_hotplug_wait(); 8388 sched_force_init_mm(); 8389 return 0; 8390 } 8391 8392 /* 8393 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8394 * might have. Called from the CPU stopper task after ensuring that the 8395 * stopper is the last running task on the CPU, so nr_active count is 8396 * stable. We need to take the tear-down thread which is calling this into 8397 * account, so we hand in adjust = 1 to the load calculation. 8398 * 8399 * Also see the comment "Global load-average calculations". 8400 */ 8401 static void calc_load_migrate(struct rq *rq) 8402 { 8403 long delta = calc_load_fold_active(rq, 1); 8404 8405 if (delta) 8406 atomic_long_add(delta, &calc_load_tasks); 8407 } 8408 8409 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8410 { 8411 struct task_struct *g, *p; 8412 int cpu = cpu_of(rq); 8413 8414 lockdep_assert_rq_held(rq); 8415 8416 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8417 for_each_process_thread(g, p) { 8418 if (task_cpu(p) != cpu) 8419 continue; 8420 8421 if (!task_on_rq_queued(p)) 8422 continue; 8423 8424 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8425 } 8426 } 8427 8428 int sched_cpu_dying(unsigned int cpu) 8429 { 8430 struct rq *rq = cpu_rq(cpu); 8431 struct rq_flags rf; 8432 8433 /* Handle pending wakeups and then migrate everything off */ 8434 sched_tick_stop(cpu); 8435 8436 rq_lock_irqsave(rq, &rf); 8437 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8438 WARN(true, "Dying CPU not properly vacated!"); 8439 dump_rq_tasks(rq, KERN_WARNING); 8440 } 8441 rq_unlock_irqrestore(rq, &rf); 8442 8443 calc_load_migrate(rq); 8444 update_max_interval(); 8445 hrtick_clear(rq); 8446 sched_core_cpu_dying(cpu); 8447 return 0; 8448 } 8449 #endif 8450 8451 void __init sched_init_smp(void) 8452 { 8453 sched_init_numa(NUMA_NO_NODE); 8454 8455 /* 8456 * There's no userspace yet to cause hotplug operations; hence all the 8457 * CPU masks are stable and all blatant races in the below code cannot 8458 * happen. 8459 */ 8460 sched_domains_mutex_lock(); 8461 sched_init_domains(cpu_active_mask); 8462 sched_domains_mutex_unlock(); 8463 8464 /* Move init over to a non-isolated CPU */ 8465 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8466 BUG(); 8467 current->flags &= ~PF_NO_SETAFFINITY; 8468 sched_init_granularity(); 8469 8470 init_sched_rt_class(); 8471 init_sched_dl_class(); 8472 8473 sched_smp_initialized = true; 8474 } 8475 8476 static int __init migration_init(void) 8477 { 8478 sched_cpu_starting(smp_processor_id()); 8479 return 0; 8480 } 8481 early_initcall(migration_init); 8482 8483 #else 8484 void __init sched_init_smp(void) 8485 { 8486 sched_init_granularity(); 8487 } 8488 #endif /* CONFIG_SMP */ 8489 8490 int in_sched_functions(unsigned long addr) 8491 { 8492 return in_lock_functions(addr) || 8493 (addr >= (unsigned long)__sched_text_start 8494 && addr < (unsigned long)__sched_text_end); 8495 } 8496 8497 #ifdef CONFIG_CGROUP_SCHED 8498 /* 8499 * Default task group. 8500 * Every task in system belongs to this group at bootup. 8501 */ 8502 struct task_group root_task_group; 8503 LIST_HEAD(task_groups); 8504 8505 /* Cacheline aligned slab cache for task_group */ 8506 static struct kmem_cache *task_group_cache __ro_after_init; 8507 #endif 8508 8509 void __init sched_init(void) 8510 { 8511 unsigned long ptr = 0; 8512 int i; 8513 8514 /* Make sure the linker didn't screw up */ 8515 #ifdef CONFIG_SMP 8516 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8517 #endif 8518 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8519 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8520 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8521 #ifdef CONFIG_SCHED_CLASS_EXT 8522 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8523 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8524 #endif 8525 8526 wait_bit_init(); 8527 8528 #ifdef CONFIG_FAIR_GROUP_SCHED 8529 ptr += 2 * nr_cpu_ids * sizeof(void **); 8530 #endif 8531 #ifdef CONFIG_RT_GROUP_SCHED 8532 ptr += 2 * nr_cpu_ids * sizeof(void **); 8533 #endif 8534 if (ptr) { 8535 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8536 8537 #ifdef CONFIG_FAIR_GROUP_SCHED 8538 root_task_group.se = (struct sched_entity **)ptr; 8539 ptr += nr_cpu_ids * sizeof(void **); 8540 8541 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8542 ptr += nr_cpu_ids * sizeof(void **); 8543 8544 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8545 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8546 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8547 #ifdef CONFIG_EXT_GROUP_SCHED 8548 root_task_group.scx_weight = CGROUP_WEIGHT_DFL; 8549 #endif /* CONFIG_EXT_GROUP_SCHED */ 8550 #ifdef CONFIG_RT_GROUP_SCHED 8551 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8552 ptr += nr_cpu_ids * sizeof(void **); 8553 8554 root_task_group.rt_rq = (struct rt_rq **)ptr; 8555 ptr += nr_cpu_ids * sizeof(void **); 8556 8557 #endif /* CONFIG_RT_GROUP_SCHED */ 8558 } 8559 8560 #ifdef CONFIG_SMP 8561 init_defrootdomain(); 8562 #endif 8563 8564 #ifdef CONFIG_RT_GROUP_SCHED 8565 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8566 global_rt_period(), global_rt_runtime()); 8567 #endif /* CONFIG_RT_GROUP_SCHED */ 8568 8569 #ifdef CONFIG_CGROUP_SCHED 8570 task_group_cache = KMEM_CACHE(task_group, 0); 8571 8572 list_add(&root_task_group.list, &task_groups); 8573 INIT_LIST_HEAD(&root_task_group.children); 8574 INIT_LIST_HEAD(&root_task_group.siblings); 8575 autogroup_init(&init_task); 8576 #endif /* CONFIG_CGROUP_SCHED */ 8577 8578 for_each_possible_cpu(i) { 8579 struct rq *rq; 8580 8581 rq = cpu_rq(i); 8582 raw_spin_lock_init(&rq->__lock); 8583 rq->nr_running = 0; 8584 rq->calc_load_active = 0; 8585 rq->calc_load_update = jiffies + LOAD_FREQ; 8586 init_cfs_rq(&rq->cfs); 8587 init_rt_rq(&rq->rt); 8588 init_dl_rq(&rq->dl); 8589 #ifdef CONFIG_FAIR_GROUP_SCHED 8590 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8591 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8592 /* 8593 * How much CPU bandwidth does root_task_group get? 8594 * 8595 * In case of task-groups formed through the cgroup filesystem, it 8596 * gets 100% of the CPU resources in the system. This overall 8597 * system CPU resource is divided among the tasks of 8598 * root_task_group and its child task-groups in a fair manner, 8599 * based on each entity's (task or task-group's) weight 8600 * (se->load.weight). 8601 * 8602 * In other words, if root_task_group has 10 tasks of weight 8603 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8604 * then A0's share of the CPU resource is: 8605 * 8606 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8607 * 8608 * We achieve this by letting root_task_group's tasks sit 8609 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8610 */ 8611 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8612 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8613 8614 #ifdef CONFIG_RT_GROUP_SCHED 8615 /* 8616 * This is required for init cpu because rt.c:__enable_runtime() 8617 * starts working after scheduler_running, which is not the case 8618 * yet. 8619 */ 8620 rq->rt.rt_runtime = global_rt_runtime(); 8621 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8622 #endif 8623 #ifdef CONFIG_SMP 8624 rq->sd = NULL; 8625 rq->rd = NULL; 8626 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8627 rq->balance_callback = &balance_push_callback; 8628 rq->active_balance = 0; 8629 rq->next_balance = jiffies; 8630 rq->push_cpu = 0; 8631 rq->cpu = i; 8632 rq->online = 0; 8633 rq->idle_stamp = 0; 8634 rq->avg_idle = 2*sysctl_sched_migration_cost; 8635 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8636 8637 INIT_LIST_HEAD(&rq->cfs_tasks); 8638 8639 rq_attach_root(rq, &def_root_domain); 8640 #ifdef CONFIG_NO_HZ_COMMON 8641 rq->last_blocked_load_update_tick = jiffies; 8642 atomic_set(&rq->nohz_flags, 0); 8643 8644 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8645 #endif 8646 #ifdef CONFIG_HOTPLUG_CPU 8647 rcuwait_init(&rq->hotplug_wait); 8648 #endif 8649 #endif /* CONFIG_SMP */ 8650 hrtick_rq_init(rq); 8651 atomic_set(&rq->nr_iowait, 0); 8652 fair_server_init(rq); 8653 8654 #ifdef CONFIG_SCHED_CORE 8655 rq->core = rq; 8656 rq->core_pick = NULL; 8657 rq->core_dl_server = NULL; 8658 rq->core_enabled = 0; 8659 rq->core_tree = RB_ROOT; 8660 rq->core_forceidle_count = 0; 8661 rq->core_forceidle_occupation = 0; 8662 rq->core_forceidle_start = 0; 8663 8664 rq->core_cookie = 0UL; 8665 #endif 8666 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8667 } 8668 8669 set_load_weight(&init_task, false); 8670 init_task.se.slice = sysctl_sched_base_slice, 8671 8672 /* 8673 * The boot idle thread does lazy MMU switching as well: 8674 */ 8675 mmgrab_lazy_tlb(&init_mm); 8676 enter_lazy_tlb(&init_mm, current); 8677 8678 /* 8679 * The idle task doesn't need the kthread struct to function, but it 8680 * is dressed up as a per-CPU kthread and thus needs to play the part 8681 * if we want to avoid special-casing it in code that deals with per-CPU 8682 * kthreads. 8683 */ 8684 WARN_ON(!set_kthread_struct(current)); 8685 8686 /* 8687 * Make us the idle thread. Technically, schedule() should not be 8688 * called from this thread, however somewhere below it might be, 8689 * but because we are the idle thread, we just pick up running again 8690 * when this runqueue becomes "idle". 8691 */ 8692 __sched_fork(0, current); 8693 init_idle(current, smp_processor_id()); 8694 8695 calc_load_update = jiffies + LOAD_FREQ; 8696 8697 #ifdef CONFIG_SMP 8698 idle_thread_set_boot_cpu(); 8699 balance_push_set(smp_processor_id(), false); 8700 #endif 8701 init_sched_fair_class(); 8702 init_sched_ext_class(); 8703 8704 psi_init(); 8705 8706 init_uclamp(); 8707 8708 preempt_dynamic_init(); 8709 8710 scheduler_running = 1; 8711 } 8712 8713 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8714 8715 void __might_sleep(const char *file, int line) 8716 { 8717 unsigned int state = get_current_state(); 8718 /* 8719 * Blocking primitives will set (and therefore destroy) current->state, 8720 * since we will exit with TASK_RUNNING make sure we enter with it, 8721 * otherwise we will destroy state. 8722 */ 8723 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8724 "do not call blocking ops when !TASK_RUNNING; " 8725 "state=%x set at [<%p>] %pS\n", state, 8726 (void *)current->task_state_change, 8727 (void *)current->task_state_change); 8728 8729 __might_resched(file, line, 0); 8730 } 8731 EXPORT_SYMBOL(__might_sleep); 8732 8733 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8734 { 8735 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8736 return; 8737 8738 if (preempt_count() == preempt_offset) 8739 return; 8740 8741 pr_err("Preemption disabled at:"); 8742 print_ip_sym(KERN_ERR, ip); 8743 } 8744 8745 static inline bool resched_offsets_ok(unsigned int offsets) 8746 { 8747 unsigned int nested = preempt_count(); 8748 8749 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8750 8751 return nested == offsets; 8752 } 8753 8754 void __might_resched(const char *file, int line, unsigned int offsets) 8755 { 8756 /* Ratelimiting timestamp: */ 8757 static unsigned long prev_jiffy; 8758 8759 unsigned long preempt_disable_ip; 8760 8761 /* WARN_ON_ONCE() by default, no rate limit required: */ 8762 rcu_sleep_check(); 8763 8764 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8765 !is_idle_task(current) && !current->non_block_count) || 8766 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8767 oops_in_progress) 8768 return; 8769 8770 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8771 return; 8772 prev_jiffy = jiffies; 8773 8774 /* Save this before calling printk(), since that will clobber it: */ 8775 preempt_disable_ip = get_preempt_disable_ip(current); 8776 8777 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8778 file, line); 8779 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8780 in_atomic(), irqs_disabled(), current->non_block_count, 8781 current->pid, current->comm); 8782 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8783 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8784 8785 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8786 pr_err("RCU nest depth: %d, expected: %u\n", 8787 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8788 } 8789 8790 if (task_stack_end_corrupted(current)) 8791 pr_emerg("Thread overran stack, or stack corrupted\n"); 8792 8793 debug_show_held_locks(current); 8794 if (irqs_disabled()) 8795 print_irqtrace_events(current); 8796 8797 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8798 preempt_disable_ip); 8799 8800 dump_stack(); 8801 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8802 } 8803 EXPORT_SYMBOL(__might_resched); 8804 8805 void __cant_sleep(const char *file, int line, int preempt_offset) 8806 { 8807 static unsigned long prev_jiffy; 8808 8809 if (irqs_disabled()) 8810 return; 8811 8812 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8813 return; 8814 8815 if (preempt_count() > preempt_offset) 8816 return; 8817 8818 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8819 return; 8820 prev_jiffy = jiffies; 8821 8822 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8823 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8824 in_atomic(), irqs_disabled(), 8825 current->pid, current->comm); 8826 8827 debug_show_held_locks(current); 8828 dump_stack(); 8829 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8830 } 8831 EXPORT_SYMBOL_GPL(__cant_sleep); 8832 8833 #ifdef CONFIG_SMP 8834 void __cant_migrate(const char *file, int line) 8835 { 8836 static unsigned long prev_jiffy; 8837 8838 if (irqs_disabled()) 8839 return; 8840 8841 if (is_migration_disabled(current)) 8842 return; 8843 8844 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8845 return; 8846 8847 if (preempt_count() > 0) 8848 return; 8849 8850 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8851 return; 8852 prev_jiffy = jiffies; 8853 8854 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8855 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8856 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8857 current->pid, current->comm); 8858 8859 debug_show_held_locks(current); 8860 dump_stack(); 8861 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8862 } 8863 EXPORT_SYMBOL_GPL(__cant_migrate); 8864 #endif 8865 #endif 8866 8867 #ifdef CONFIG_MAGIC_SYSRQ 8868 void normalize_rt_tasks(void) 8869 { 8870 struct task_struct *g, *p; 8871 struct sched_attr attr = { 8872 .sched_policy = SCHED_NORMAL, 8873 }; 8874 8875 read_lock(&tasklist_lock); 8876 for_each_process_thread(g, p) { 8877 /* 8878 * Only normalize user tasks: 8879 */ 8880 if (p->flags & PF_KTHREAD) 8881 continue; 8882 8883 p->se.exec_start = 0; 8884 schedstat_set(p->stats.wait_start, 0); 8885 schedstat_set(p->stats.sleep_start, 0); 8886 schedstat_set(p->stats.block_start, 0); 8887 8888 if (!rt_or_dl_task(p)) { 8889 /* 8890 * Renice negative nice level userspace 8891 * tasks back to 0: 8892 */ 8893 if (task_nice(p) < 0) 8894 set_user_nice(p, 0); 8895 continue; 8896 } 8897 8898 __sched_setscheduler(p, &attr, false, false); 8899 } 8900 read_unlock(&tasklist_lock); 8901 } 8902 8903 #endif /* CONFIG_MAGIC_SYSRQ */ 8904 8905 #if defined(CONFIG_KGDB_KDB) 8906 /* 8907 * These functions are only useful for KDB. 8908 * 8909 * They can only be called when the whole system has been 8910 * stopped - every CPU needs to be quiescent, and no scheduling 8911 * activity can take place. Using them for anything else would 8912 * be a serious bug, and as a result, they aren't even visible 8913 * under any other configuration. 8914 */ 8915 8916 /** 8917 * curr_task - return the current task for a given CPU. 8918 * @cpu: the processor in question. 8919 * 8920 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8921 * 8922 * Return: The current task for @cpu. 8923 */ 8924 struct task_struct *curr_task(int cpu) 8925 { 8926 return cpu_curr(cpu); 8927 } 8928 8929 #endif /* defined(CONFIG_KGDB_KDB) */ 8930 8931 #ifdef CONFIG_CGROUP_SCHED 8932 /* task_group_lock serializes the addition/removal of task groups */ 8933 static DEFINE_SPINLOCK(task_group_lock); 8934 8935 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8936 struct task_group *parent) 8937 { 8938 #ifdef CONFIG_UCLAMP_TASK_GROUP 8939 enum uclamp_id clamp_id; 8940 8941 for_each_clamp_id(clamp_id) { 8942 uclamp_se_set(&tg->uclamp_req[clamp_id], 8943 uclamp_none(clamp_id), false); 8944 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8945 } 8946 #endif 8947 } 8948 8949 static void sched_free_group(struct task_group *tg) 8950 { 8951 free_fair_sched_group(tg); 8952 free_rt_sched_group(tg); 8953 autogroup_free(tg); 8954 kmem_cache_free(task_group_cache, tg); 8955 } 8956 8957 static void sched_free_group_rcu(struct rcu_head *rcu) 8958 { 8959 sched_free_group(container_of(rcu, struct task_group, rcu)); 8960 } 8961 8962 static void sched_unregister_group(struct task_group *tg) 8963 { 8964 unregister_fair_sched_group(tg); 8965 unregister_rt_sched_group(tg); 8966 /* 8967 * We have to wait for yet another RCU grace period to expire, as 8968 * print_cfs_stats() might run concurrently. 8969 */ 8970 call_rcu(&tg->rcu, sched_free_group_rcu); 8971 } 8972 8973 /* allocate runqueue etc for a new task group */ 8974 struct task_group *sched_create_group(struct task_group *parent) 8975 { 8976 struct task_group *tg; 8977 8978 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8979 if (!tg) 8980 return ERR_PTR(-ENOMEM); 8981 8982 if (!alloc_fair_sched_group(tg, parent)) 8983 goto err; 8984 8985 if (!alloc_rt_sched_group(tg, parent)) 8986 goto err; 8987 8988 scx_group_set_weight(tg, CGROUP_WEIGHT_DFL); 8989 alloc_uclamp_sched_group(tg, parent); 8990 8991 return tg; 8992 8993 err: 8994 sched_free_group(tg); 8995 return ERR_PTR(-ENOMEM); 8996 } 8997 8998 void sched_online_group(struct task_group *tg, struct task_group *parent) 8999 { 9000 unsigned long flags; 9001 9002 spin_lock_irqsave(&task_group_lock, flags); 9003 list_add_tail_rcu(&tg->list, &task_groups); 9004 9005 /* Root should already exist: */ 9006 WARN_ON(!parent); 9007 9008 tg->parent = parent; 9009 INIT_LIST_HEAD(&tg->children); 9010 list_add_rcu(&tg->siblings, &parent->children); 9011 spin_unlock_irqrestore(&task_group_lock, flags); 9012 9013 online_fair_sched_group(tg); 9014 } 9015 9016 /* RCU callback to free various structures associated with a task group */ 9017 static void sched_unregister_group_rcu(struct rcu_head *rhp) 9018 { 9019 /* Now it should be safe to free those cfs_rqs: */ 9020 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 9021 } 9022 9023 void sched_destroy_group(struct task_group *tg) 9024 { 9025 /* Wait for possible concurrent references to cfs_rqs complete: */ 9026 call_rcu(&tg->rcu, sched_unregister_group_rcu); 9027 } 9028 9029 void sched_release_group(struct task_group *tg) 9030 { 9031 unsigned long flags; 9032 9033 /* 9034 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 9035 * sched_cfs_period_timer()). 9036 * 9037 * For this to be effective, we have to wait for all pending users of 9038 * this task group to leave their RCU critical section to ensure no new 9039 * user will see our dying task group any more. Specifically ensure 9040 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 9041 * 9042 * We therefore defer calling unregister_fair_sched_group() to 9043 * sched_unregister_group() which is guarantied to get called only after the 9044 * current RCU grace period has expired. 9045 */ 9046 spin_lock_irqsave(&task_group_lock, flags); 9047 list_del_rcu(&tg->list); 9048 list_del_rcu(&tg->siblings); 9049 spin_unlock_irqrestore(&task_group_lock, flags); 9050 } 9051 9052 static void sched_change_group(struct task_struct *tsk) 9053 { 9054 struct task_group *tg; 9055 9056 /* 9057 * All callers are synchronized by task_rq_lock(); we do not use RCU 9058 * which is pointless here. Thus, we pass "true" to task_css_check() 9059 * to prevent lockdep warnings. 9060 */ 9061 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9062 struct task_group, css); 9063 tg = autogroup_task_group(tsk, tg); 9064 tsk->sched_task_group = tg; 9065 9066 #ifdef CONFIG_FAIR_GROUP_SCHED 9067 if (tsk->sched_class->task_change_group) 9068 tsk->sched_class->task_change_group(tsk); 9069 else 9070 #endif 9071 set_task_rq(tsk, task_cpu(tsk)); 9072 } 9073 9074 /* 9075 * Change task's runqueue when it moves between groups. 9076 * 9077 * The caller of this function should have put the task in its new group by 9078 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9079 * its new group. 9080 */ 9081 void sched_move_task(struct task_struct *tsk, bool for_autogroup) 9082 { 9083 int queued, running, queue_flags = 9084 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9085 struct rq *rq; 9086 9087 CLASS(task_rq_lock, rq_guard)(tsk); 9088 rq = rq_guard.rq; 9089 9090 update_rq_clock(rq); 9091 9092 running = task_current_donor(rq, tsk); 9093 queued = task_on_rq_queued(tsk); 9094 9095 if (queued) 9096 dequeue_task(rq, tsk, queue_flags); 9097 if (running) 9098 put_prev_task(rq, tsk); 9099 9100 sched_change_group(tsk); 9101 if (!for_autogroup) 9102 scx_cgroup_move_task(tsk); 9103 9104 if (queued) 9105 enqueue_task(rq, tsk, queue_flags); 9106 if (running) { 9107 set_next_task(rq, tsk); 9108 /* 9109 * After changing group, the running task may have joined a 9110 * throttled one but it's still the running task. Trigger a 9111 * resched to make sure that task can still run. 9112 */ 9113 resched_curr(rq); 9114 } 9115 } 9116 9117 static struct cgroup_subsys_state * 9118 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9119 { 9120 struct task_group *parent = css_tg(parent_css); 9121 struct task_group *tg; 9122 9123 if (!parent) { 9124 /* This is early initialization for the top cgroup */ 9125 return &root_task_group.css; 9126 } 9127 9128 tg = sched_create_group(parent); 9129 if (IS_ERR(tg)) 9130 return ERR_PTR(-ENOMEM); 9131 9132 return &tg->css; 9133 } 9134 9135 /* Expose task group only after completing cgroup initialization */ 9136 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9137 { 9138 struct task_group *tg = css_tg(css); 9139 struct task_group *parent = css_tg(css->parent); 9140 int ret; 9141 9142 ret = scx_tg_online(tg); 9143 if (ret) 9144 return ret; 9145 9146 if (parent) 9147 sched_online_group(tg, parent); 9148 9149 #ifdef CONFIG_UCLAMP_TASK_GROUP 9150 /* Propagate the effective uclamp value for the new group */ 9151 guard(mutex)(&uclamp_mutex); 9152 guard(rcu)(); 9153 cpu_util_update_eff(css); 9154 #endif 9155 9156 return 0; 9157 } 9158 9159 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9160 { 9161 struct task_group *tg = css_tg(css); 9162 9163 scx_tg_offline(tg); 9164 } 9165 9166 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9167 { 9168 struct task_group *tg = css_tg(css); 9169 9170 sched_release_group(tg); 9171 } 9172 9173 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9174 { 9175 struct task_group *tg = css_tg(css); 9176 9177 /* 9178 * Relies on the RCU grace period between css_released() and this. 9179 */ 9180 sched_unregister_group(tg); 9181 } 9182 9183 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9184 { 9185 #ifdef CONFIG_RT_GROUP_SCHED 9186 struct task_struct *task; 9187 struct cgroup_subsys_state *css; 9188 9189 if (!rt_group_sched_enabled()) 9190 goto scx_check; 9191 9192 cgroup_taskset_for_each(task, css, tset) { 9193 if (!sched_rt_can_attach(css_tg(css), task)) 9194 return -EINVAL; 9195 } 9196 scx_check: 9197 #endif /* CONFIG_RT_GROUP_SCHED */ 9198 return scx_cgroup_can_attach(tset); 9199 } 9200 9201 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9202 { 9203 struct task_struct *task; 9204 struct cgroup_subsys_state *css; 9205 9206 cgroup_taskset_for_each(task, css, tset) 9207 sched_move_task(task, false); 9208 9209 scx_cgroup_finish_attach(); 9210 } 9211 9212 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9213 { 9214 scx_cgroup_cancel_attach(tset); 9215 } 9216 9217 #ifdef CONFIG_UCLAMP_TASK_GROUP 9218 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9219 { 9220 struct cgroup_subsys_state *top_css = css; 9221 struct uclamp_se *uc_parent = NULL; 9222 struct uclamp_se *uc_se = NULL; 9223 unsigned int eff[UCLAMP_CNT]; 9224 enum uclamp_id clamp_id; 9225 unsigned int clamps; 9226 9227 lockdep_assert_held(&uclamp_mutex); 9228 WARN_ON_ONCE(!rcu_read_lock_held()); 9229 9230 css_for_each_descendant_pre(css, top_css) { 9231 uc_parent = css_tg(css)->parent 9232 ? css_tg(css)->parent->uclamp : NULL; 9233 9234 for_each_clamp_id(clamp_id) { 9235 /* Assume effective clamps matches requested clamps */ 9236 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9237 /* Cap effective clamps with parent's effective clamps */ 9238 if (uc_parent && 9239 eff[clamp_id] > uc_parent[clamp_id].value) { 9240 eff[clamp_id] = uc_parent[clamp_id].value; 9241 } 9242 } 9243 /* Ensure protection is always capped by limit */ 9244 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9245 9246 /* Propagate most restrictive effective clamps */ 9247 clamps = 0x0; 9248 uc_se = css_tg(css)->uclamp; 9249 for_each_clamp_id(clamp_id) { 9250 if (eff[clamp_id] == uc_se[clamp_id].value) 9251 continue; 9252 uc_se[clamp_id].value = eff[clamp_id]; 9253 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9254 clamps |= (0x1 << clamp_id); 9255 } 9256 if (!clamps) { 9257 css = css_rightmost_descendant(css); 9258 continue; 9259 } 9260 9261 /* Immediately update descendants RUNNABLE tasks */ 9262 uclamp_update_active_tasks(css); 9263 } 9264 } 9265 9266 /* 9267 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9268 * C expression. Since there is no way to convert a macro argument (N) into a 9269 * character constant, use two levels of macros. 9270 */ 9271 #define _POW10(exp) ((unsigned int)1e##exp) 9272 #define POW10(exp) _POW10(exp) 9273 9274 struct uclamp_request { 9275 #define UCLAMP_PERCENT_SHIFT 2 9276 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9277 s64 percent; 9278 u64 util; 9279 int ret; 9280 }; 9281 9282 static inline struct uclamp_request 9283 capacity_from_percent(char *buf) 9284 { 9285 struct uclamp_request req = { 9286 .percent = UCLAMP_PERCENT_SCALE, 9287 .util = SCHED_CAPACITY_SCALE, 9288 .ret = 0, 9289 }; 9290 9291 buf = strim(buf); 9292 if (strcmp(buf, "max")) { 9293 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9294 &req.percent); 9295 if (req.ret) 9296 return req; 9297 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9298 req.ret = -ERANGE; 9299 return req; 9300 } 9301 9302 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9303 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9304 } 9305 9306 return req; 9307 } 9308 9309 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9310 size_t nbytes, loff_t off, 9311 enum uclamp_id clamp_id) 9312 { 9313 struct uclamp_request req; 9314 struct task_group *tg; 9315 9316 req = capacity_from_percent(buf); 9317 if (req.ret) 9318 return req.ret; 9319 9320 sched_uclamp_enable(); 9321 9322 guard(mutex)(&uclamp_mutex); 9323 guard(rcu)(); 9324 9325 tg = css_tg(of_css(of)); 9326 if (tg->uclamp_req[clamp_id].value != req.util) 9327 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9328 9329 /* 9330 * Because of not recoverable conversion rounding we keep track of the 9331 * exact requested value 9332 */ 9333 tg->uclamp_pct[clamp_id] = req.percent; 9334 9335 /* Update effective clamps to track the most restrictive value */ 9336 cpu_util_update_eff(of_css(of)); 9337 9338 return nbytes; 9339 } 9340 9341 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9342 char *buf, size_t nbytes, 9343 loff_t off) 9344 { 9345 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9346 } 9347 9348 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9349 char *buf, size_t nbytes, 9350 loff_t off) 9351 { 9352 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9353 } 9354 9355 static inline void cpu_uclamp_print(struct seq_file *sf, 9356 enum uclamp_id clamp_id) 9357 { 9358 struct task_group *tg; 9359 u64 util_clamp; 9360 u64 percent; 9361 u32 rem; 9362 9363 scoped_guard (rcu) { 9364 tg = css_tg(seq_css(sf)); 9365 util_clamp = tg->uclamp_req[clamp_id].value; 9366 } 9367 9368 if (util_clamp == SCHED_CAPACITY_SCALE) { 9369 seq_puts(sf, "max\n"); 9370 return; 9371 } 9372 9373 percent = tg->uclamp_pct[clamp_id]; 9374 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9375 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9376 } 9377 9378 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9379 { 9380 cpu_uclamp_print(sf, UCLAMP_MIN); 9381 return 0; 9382 } 9383 9384 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9385 { 9386 cpu_uclamp_print(sf, UCLAMP_MAX); 9387 return 0; 9388 } 9389 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9390 9391 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9392 static unsigned long tg_weight(struct task_group *tg) 9393 { 9394 #ifdef CONFIG_FAIR_GROUP_SCHED 9395 return scale_load_down(tg->shares); 9396 #else 9397 return sched_weight_from_cgroup(tg->scx_weight); 9398 #endif 9399 } 9400 9401 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9402 struct cftype *cftype, u64 shareval) 9403 { 9404 int ret; 9405 9406 if (shareval > scale_load_down(ULONG_MAX)) 9407 shareval = MAX_SHARES; 9408 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9409 if (!ret) 9410 scx_group_set_weight(css_tg(css), 9411 sched_weight_to_cgroup(shareval)); 9412 return ret; 9413 } 9414 9415 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9416 struct cftype *cft) 9417 { 9418 return tg_weight(css_tg(css)); 9419 } 9420 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9421 9422 #ifdef CONFIG_CFS_BANDWIDTH 9423 static DEFINE_MUTEX(cfs_constraints_mutex); 9424 9425 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9426 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9427 /* More than 203 days if BW_SHIFT equals 20. */ 9428 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9429 9430 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9431 9432 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9433 u64 burst) 9434 { 9435 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9436 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9437 9438 if (tg == &root_task_group) 9439 return -EINVAL; 9440 9441 /* 9442 * Ensure we have at some amount of bandwidth every period. This is 9443 * to prevent reaching a state of large arrears when throttled via 9444 * entity_tick() resulting in prolonged exit starvation. 9445 */ 9446 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9447 return -EINVAL; 9448 9449 /* 9450 * Likewise, bound things on the other side by preventing insane quota 9451 * periods. This also allows us to normalize in computing quota 9452 * feasibility. 9453 */ 9454 if (period > max_cfs_quota_period) 9455 return -EINVAL; 9456 9457 /* 9458 * Bound quota to defend quota against overflow during bandwidth shift. 9459 */ 9460 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9461 return -EINVAL; 9462 9463 if (quota != RUNTIME_INF && (burst > quota || 9464 burst + quota > max_cfs_runtime)) 9465 return -EINVAL; 9466 9467 /* 9468 * Prevent race between setting of cfs_rq->runtime_enabled and 9469 * unthrottle_offline_cfs_rqs(). 9470 */ 9471 guard(cpus_read_lock)(); 9472 guard(mutex)(&cfs_constraints_mutex); 9473 9474 ret = __cfs_schedulable(tg, period, quota); 9475 if (ret) 9476 return ret; 9477 9478 runtime_enabled = quota != RUNTIME_INF; 9479 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9480 /* 9481 * If we need to toggle cfs_bandwidth_used, off->on must occur 9482 * before making related changes, and on->off must occur afterwards 9483 */ 9484 if (runtime_enabled && !runtime_was_enabled) 9485 cfs_bandwidth_usage_inc(); 9486 9487 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9488 cfs_b->period = ns_to_ktime(period); 9489 cfs_b->quota = quota; 9490 cfs_b->burst = burst; 9491 9492 __refill_cfs_bandwidth_runtime(cfs_b); 9493 9494 /* 9495 * Restart the period timer (if active) to handle new 9496 * period expiry: 9497 */ 9498 if (runtime_enabled) 9499 start_cfs_bandwidth(cfs_b); 9500 } 9501 9502 for_each_online_cpu(i) { 9503 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9504 struct rq *rq = cfs_rq->rq; 9505 9506 guard(rq_lock_irq)(rq); 9507 cfs_rq->runtime_enabled = runtime_enabled; 9508 cfs_rq->runtime_remaining = 0; 9509 9510 if (cfs_rq->throttled) 9511 unthrottle_cfs_rq(cfs_rq); 9512 } 9513 9514 if (runtime_was_enabled && !runtime_enabled) 9515 cfs_bandwidth_usage_dec(); 9516 9517 return 0; 9518 } 9519 9520 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9521 { 9522 u64 quota, period, burst; 9523 9524 period = ktime_to_ns(tg->cfs_bandwidth.period); 9525 burst = tg->cfs_bandwidth.burst; 9526 if (cfs_quota_us < 0) 9527 quota = RUNTIME_INF; 9528 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9529 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9530 else 9531 return -EINVAL; 9532 9533 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9534 } 9535 9536 static long tg_get_cfs_quota(struct task_group *tg) 9537 { 9538 u64 quota_us; 9539 9540 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9541 return -1; 9542 9543 quota_us = tg->cfs_bandwidth.quota; 9544 do_div(quota_us, NSEC_PER_USEC); 9545 9546 return quota_us; 9547 } 9548 9549 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9550 { 9551 u64 quota, period, burst; 9552 9553 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9554 return -EINVAL; 9555 9556 period = (u64)cfs_period_us * NSEC_PER_USEC; 9557 quota = tg->cfs_bandwidth.quota; 9558 burst = tg->cfs_bandwidth.burst; 9559 9560 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9561 } 9562 9563 static long tg_get_cfs_period(struct task_group *tg) 9564 { 9565 u64 cfs_period_us; 9566 9567 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9568 do_div(cfs_period_us, NSEC_PER_USEC); 9569 9570 return cfs_period_us; 9571 } 9572 9573 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9574 { 9575 u64 quota, period, burst; 9576 9577 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9578 return -EINVAL; 9579 9580 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9581 period = ktime_to_ns(tg->cfs_bandwidth.period); 9582 quota = tg->cfs_bandwidth.quota; 9583 9584 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9585 } 9586 9587 static long tg_get_cfs_burst(struct task_group *tg) 9588 { 9589 u64 burst_us; 9590 9591 burst_us = tg->cfs_bandwidth.burst; 9592 do_div(burst_us, NSEC_PER_USEC); 9593 9594 return burst_us; 9595 } 9596 9597 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9598 struct cftype *cft) 9599 { 9600 return tg_get_cfs_quota(css_tg(css)); 9601 } 9602 9603 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9604 struct cftype *cftype, s64 cfs_quota_us) 9605 { 9606 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9607 } 9608 9609 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9610 struct cftype *cft) 9611 { 9612 return tg_get_cfs_period(css_tg(css)); 9613 } 9614 9615 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9616 struct cftype *cftype, u64 cfs_period_us) 9617 { 9618 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9619 } 9620 9621 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9622 struct cftype *cft) 9623 { 9624 return tg_get_cfs_burst(css_tg(css)); 9625 } 9626 9627 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9628 struct cftype *cftype, u64 cfs_burst_us) 9629 { 9630 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9631 } 9632 9633 struct cfs_schedulable_data { 9634 struct task_group *tg; 9635 u64 period, quota; 9636 }; 9637 9638 /* 9639 * normalize group quota/period to be quota/max_period 9640 * note: units are usecs 9641 */ 9642 static u64 normalize_cfs_quota(struct task_group *tg, 9643 struct cfs_schedulable_data *d) 9644 { 9645 u64 quota, period; 9646 9647 if (tg == d->tg) { 9648 period = d->period; 9649 quota = d->quota; 9650 } else { 9651 period = tg_get_cfs_period(tg); 9652 quota = tg_get_cfs_quota(tg); 9653 } 9654 9655 /* note: these should typically be equivalent */ 9656 if (quota == RUNTIME_INF || quota == -1) 9657 return RUNTIME_INF; 9658 9659 return to_ratio(period, quota); 9660 } 9661 9662 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9663 { 9664 struct cfs_schedulable_data *d = data; 9665 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9666 s64 quota = 0, parent_quota = -1; 9667 9668 if (!tg->parent) { 9669 quota = RUNTIME_INF; 9670 } else { 9671 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9672 9673 quota = normalize_cfs_quota(tg, d); 9674 parent_quota = parent_b->hierarchical_quota; 9675 9676 /* 9677 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9678 * always take the non-RUNTIME_INF min. On cgroup1, only 9679 * inherit when no limit is set. In both cases this is used 9680 * by the scheduler to determine if a given CFS task has a 9681 * bandwidth constraint at some higher level. 9682 */ 9683 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9684 if (quota == RUNTIME_INF) 9685 quota = parent_quota; 9686 else if (parent_quota != RUNTIME_INF) 9687 quota = min(quota, parent_quota); 9688 } else { 9689 if (quota == RUNTIME_INF) 9690 quota = parent_quota; 9691 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9692 return -EINVAL; 9693 } 9694 } 9695 cfs_b->hierarchical_quota = quota; 9696 9697 return 0; 9698 } 9699 9700 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9701 { 9702 struct cfs_schedulable_data data = { 9703 .tg = tg, 9704 .period = period, 9705 .quota = quota, 9706 }; 9707 9708 if (quota != RUNTIME_INF) { 9709 do_div(data.period, NSEC_PER_USEC); 9710 do_div(data.quota, NSEC_PER_USEC); 9711 } 9712 9713 guard(rcu)(); 9714 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9715 } 9716 9717 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9718 { 9719 struct task_group *tg = css_tg(seq_css(sf)); 9720 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9721 9722 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9723 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9724 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9725 9726 if (schedstat_enabled() && tg != &root_task_group) { 9727 struct sched_statistics *stats; 9728 u64 ws = 0; 9729 int i; 9730 9731 for_each_possible_cpu(i) { 9732 stats = __schedstats_from_se(tg->se[i]); 9733 ws += schedstat_val(stats->wait_sum); 9734 } 9735 9736 seq_printf(sf, "wait_sum %llu\n", ws); 9737 } 9738 9739 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9740 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9741 9742 return 0; 9743 } 9744 9745 static u64 throttled_time_self(struct task_group *tg) 9746 { 9747 int i; 9748 u64 total = 0; 9749 9750 for_each_possible_cpu(i) { 9751 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9752 } 9753 9754 return total; 9755 } 9756 9757 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9758 { 9759 struct task_group *tg = css_tg(seq_css(sf)); 9760 9761 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9762 9763 return 0; 9764 } 9765 #endif /* CONFIG_CFS_BANDWIDTH */ 9766 9767 #ifdef CONFIG_RT_GROUP_SCHED 9768 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9769 struct cftype *cft, s64 val) 9770 { 9771 return sched_group_set_rt_runtime(css_tg(css), val); 9772 } 9773 9774 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9775 struct cftype *cft) 9776 { 9777 return sched_group_rt_runtime(css_tg(css)); 9778 } 9779 9780 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9781 struct cftype *cftype, u64 rt_period_us) 9782 { 9783 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9784 } 9785 9786 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9787 struct cftype *cft) 9788 { 9789 return sched_group_rt_period(css_tg(css)); 9790 } 9791 #endif /* CONFIG_RT_GROUP_SCHED */ 9792 9793 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9794 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9795 struct cftype *cft) 9796 { 9797 return css_tg(css)->idle; 9798 } 9799 9800 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9801 struct cftype *cft, s64 idle) 9802 { 9803 int ret; 9804 9805 ret = sched_group_set_idle(css_tg(css), idle); 9806 if (!ret) 9807 scx_group_set_idle(css_tg(css), idle); 9808 return ret; 9809 } 9810 #endif 9811 9812 static struct cftype cpu_legacy_files[] = { 9813 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9814 { 9815 .name = "shares", 9816 .read_u64 = cpu_shares_read_u64, 9817 .write_u64 = cpu_shares_write_u64, 9818 }, 9819 { 9820 .name = "idle", 9821 .read_s64 = cpu_idle_read_s64, 9822 .write_s64 = cpu_idle_write_s64, 9823 }, 9824 #endif 9825 #ifdef CONFIG_CFS_BANDWIDTH 9826 { 9827 .name = "cfs_quota_us", 9828 .read_s64 = cpu_cfs_quota_read_s64, 9829 .write_s64 = cpu_cfs_quota_write_s64, 9830 }, 9831 { 9832 .name = "cfs_period_us", 9833 .read_u64 = cpu_cfs_period_read_u64, 9834 .write_u64 = cpu_cfs_period_write_u64, 9835 }, 9836 { 9837 .name = "cfs_burst_us", 9838 .read_u64 = cpu_cfs_burst_read_u64, 9839 .write_u64 = cpu_cfs_burst_write_u64, 9840 }, 9841 { 9842 .name = "stat", 9843 .seq_show = cpu_cfs_stat_show, 9844 }, 9845 { 9846 .name = "stat.local", 9847 .seq_show = cpu_cfs_local_stat_show, 9848 }, 9849 #endif 9850 #ifdef CONFIG_UCLAMP_TASK_GROUP 9851 { 9852 .name = "uclamp.min", 9853 .flags = CFTYPE_NOT_ON_ROOT, 9854 .seq_show = cpu_uclamp_min_show, 9855 .write = cpu_uclamp_min_write, 9856 }, 9857 { 9858 .name = "uclamp.max", 9859 .flags = CFTYPE_NOT_ON_ROOT, 9860 .seq_show = cpu_uclamp_max_show, 9861 .write = cpu_uclamp_max_write, 9862 }, 9863 #endif 9864 { } /* Terminate */ 9865 }; 9866 9867 #ifdef CONFIG_RT_GROUP_SCHED 9868 static struct cftype rt_group_files[] = { 9869 { 9870 .name = "rt_runtime_us", 9871 .read_s64 = cpu_rt_runtime_read, 9872 .write_s64 = cpu_rt_runtime_write, 9873 }, 9874 { 9875 .name = "rt_period_us", 9876 .read_u64 = cpu_rt_period_read_uint, 9877 .write_u64 = cpu_rt_period_write_uint, 9878 }, 9879 { } /* Terminate */ 9880 }; 9881 9882 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 9883 DEFINE_STATIC_KEY_FALSE(rt_group_sched); 9884 # else 9885 DEFINE_STATIC_KEY_TRUE(rt_group_sched); 9886 # endif 9887 9888 static int __init setup_rt_group_sched(char *str) 9889 { 9890 long val; 9891 9892 if (kstrtol(str, 0, &val) || val < 0 || val > 1) { 9893 pr_warn("Unable to set rt_group_sched\n"); 9894 return 1; 9895 } 9896 if (val) 9897 static_branch_enable(&rt_group_sched); 9898 else 9899 static_branch_disable(&rt_group_sched); 9900 9901 return 1; 9902 } 9903 __setup("rt_group_sched=", setup_rt_group_sched); 9904 9905 static int __init cpu_rt_group_init(void) 9906 { 9907 if (!rt_group_sched_enabled()) 9908 return 0; 9909 9910 WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files)); 9911 return 0; 9912 } 9913 subsys_initcall(cpu_rt_group_init); 9914 #endif /* CONFIG_RT_GROUP_SCHED */ 9915 9916 static int cpu_extra_stat_show(struct seq_file *sf, 9917 struct cgroup_subsys_state *css) 9918 { 9919 #ifdef CONFIG_CFS_BANDWIDTH 9920 { 9921 struct task_group *tg = css_tg(css); 9922 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9923 u64 throttled_usec, burst_usec; 9924 9925 throttled_usec = cfs_b->throttled_time; 9926 do_div(throttled_usec, NSEC_PER_USEC); 9927 burst_usec = cfs_b->burst_time; 9928 do_div(burst_usec, NSEC_PER_USEC); 9929 9930 seq_printf(sf, "nr_periods %d\n" 9931 "nr_throttled %d\n" 9932 "throttled_usec %llu\n" 9933 "nr_bursts %d\n" 9934 "burst_usec %llu\n", 9935 cfs_b->nr_periods, cfs_b->nr_throttled, 9936 throttled_usec, cfs_b->nr_burst, burst_usec); 9937 } 9938 #endif 9939 return 0; 9940 } 9941 9942 static int cpu_local_stat_show(struct seq_file *sf, 9943 struct cgroup_subsys_state *css) 9944 { 9945 #ifdef CONFIG_CFS_BANDWIDTH 9946 { 9947 struct task_group *tg = css_tg(css); 9948 u64 throttled_self_usec; 9949 9950 throttled_self_usec = throttled_time_self(tg); 9951 do_div(throttled_self_usec, NSEC_PER_USEC); 9952 9953 seq_printf(sf, "throttled_usec %llu\n", 9954 throttled_self_usec); 9955 } 9956 #endif 9957 return 0; 9958 } 9959 9960 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9961 9962 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9963 struct cftype *cft) 9964 { 9965 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9966 } 9967 9968 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9969 struct cftype *cft, u64 cgrp_weight) 9970 { 9971 unsigned long weight; 9972 int ret; 9973 9974 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9975 return -ERANGE; 9976 9977 weight = sched_weight_from_cgroup(cgrp_weight); 9978 9979 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9980 if (!ret) 9981 scx_group_set_weight(css_tg(css), cgrp_weight); 9982 return ret; 9983 } 9984 9985 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9986 struct cftype *cft) 9987 { 9988 unsigned long weight = tg_weight(css_tg(css)); 9989 int last_delta = INT_MAX; 9990 int prio, delta; 9991 9992 /* find the closest nice value to the current weight */ 9993 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9994 delta = abs(sched_prio_to_weight[prio] - weight); 9995 if (delta >= last_delta) 9996 break; 9997 last_delta = delta; 9998 } 9999 10000 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10001 } 10002 10003 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10004 struct cftype *cft, s64 nice) 10005 { 10006 unsigned long weight; 10007 int idx, ret; 10008 10009 if (nice < MIN_NICE || nice > MAX_NICE) 10010 return -ERANGE; 10011 10012 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10013 idx = array_index_nospec(idx, 40); 10014 weight = sched_prio_to_weight[idx]; 10015 10016 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 10017 if (!ret) 10018 scx_group_set_weight(css_tg(css), 10019 sched_weight_to_cgroup(weight)); 10020 return ret; 10021 } 10022 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 10023 10024 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10025 long period, long quota) 10026 { 10027 if (quota < 0) 10028 seq_puts(sf, "max"); 10029 else 10030 seq_printf(sf, "%ld", quota); 10031 10032 seq_printf(sf, " %ld\n", period); 10033 } 10034 10035 /* caller should put the current value in *@periodp before calling */ 10036 static int __maybe_unused cpu_period_quota_parse(char *buf, 10037 u64 *periodp, u64 *quotap) 10038 { 10039 char tok[21]; /* U64_MAX */ 10040 10041 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 10042 return -EINVAL; 10043 10044 *periodp *= NSEC_PER_USEC; 10045 10046 if (sscanf(tok, "%llu", quotap)) 10047 *quotap *= NSEC_PER_USEC; 10048 else if (!strcmp(tok, "max")) 10049 *quotap = RUNTIME_INF; 10050 else 10051 return -EINVAL; 10052 10053 return 0; 10054 } 10055 10056 #ifdef CONFIG_CFS_BANDWIDTH 10057 static int cpu_max_show(struct seq_file *sf, void *v) 10058 { 10059 struct task_group *tg = css_tg(seq_css(sf)); 10060 10061 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 10062 return 0; 10063 } 10064 10065 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10066 char *buf, size_t nbytes, loff_t off) 10067 { 10068 struct task_group *tg = css_tg(of_css(of)); 10069 u64 period = tg_get_cfs_period(tg); 10070 u64 burst = tg->cfs_bandwidth.burst; 10071 u64 quota; 10072 int ret; 10073 10074 ret = cpu_period_quota_parse(buf, &period, "a); 10075 if (!ret) 10076 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 10077 return ret ?: nbytes; 10078 } 10079 #endif 10080 10081 static struct cftype cpu_files[] = { 10082 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10083 { 10084 .name = "weight", 10085 .flags = CFTYPE_NOT_ON_ROOT, 10086 .read_u64 = cpu_weight_read_u64, 10087 .write_u64 = cpu_weight_write_u64, 10088 }, 10089 { 10090 .name = "weight.nice", 10091 .flags = CFTYPE_NOT_ON_ROOT, 10092 .read_s64 = cpu_weight_nice_read_s64, 10093 .write_s64 = cpu_weight_nice_write_s64, 10094 }, 10095 { 10096 .name = "idle", 10097 .flags = CFTYPE_NOT_ON_ROOT, 10098 .read_s64 = cpu_idle_read_s64, 10099 .write_s64 = cpu_idle_write_s64, 10100 }, 10101 #endif 10102 #ifdef CONFIG_CFS_BANDWIDTH 10103 { 10104 .name = "max", 10105 .flags = CFTYPE_NOT_ON_ROOT, 10106 .seq_show = cpu_max_show, 10107 .write = cpu_max_write, 10108 }, 10109 { 10110 .name = "max.burst", 10111 .flags = CFTYPE_NOT_ON_ROOT, 10112 .read_u64 = cpu_cfs_burst_read_u64, 10113 .write_u64 = cpu_cfs_burst_write_u64, 10114 }, 10115 #endif 10116 #ifdef CONFIG_UCLAMP_TASK_GROUP 10117 { 10118 .name = "uclamp.min", 10119 .flags = CFTYPE_NOT_ON_ROOT, 10120 .seq_show = cpu_uclamp_min_show, 10121 .write = cpu_uclamp_min_write, 10122 }, 10123 { 10124 .name = "uclamp.max", 10125 .flags = CFTYPE_NOT_ON_ROOT, 10126 .seq_show = cpu_uclamp_max_show, 10127 .write = cpu_uclamp_max_write, 10128 }, 10129 #endif 10130 { } /* terminate */ 10131 }; 10132 10133 struct cgroup_subsys cpu_cgrp_subsys = { 10134 .css_alloc = cpu_cgroup_css_alloc, 10135 .css_online = cpu_cgroup_css_online, 10136 .css_offline = cpu_cgroup_css_offline, 10137 .css_released = cpu_cgroup_css_released, 10138 .css_free = cpu_cgroup_css_free, 10139 .css_extra_stat_show = cpu_extra_stat_show, 10140 .css_local_stat_show = cpu_local_stat_show, 10141 .can_attach = cpu_cgroup_can_attach, 10142 .attach = cpu_cgroup_attach, 10143 .cancel_attach = cpu_cgroup_cancel_attach, 10144 .legacy_cftypes = cpu_legacy_files, 10145 .dfl_cftypes = cpu_files, 10146 .early_init = true, 10147 .threaded = true, 10148 }; 10149 10150 #endif /* CONFIG_CGROUP_SCHED */ 10151 10152 void dump_cpu_task(int cpu) 10153 { 10154 if (in_hardirq() && cpu == smp_processor_id()) { 10155 struct pt_regs *regs; 10156 10157 regs = get_irq_regs(); 10158 if (regs) { 10159 show_regs(regs); 10160 return; 10161 } 10162 } 10163 10164 if (trigger_single_cpu_backtrace(cpu)) 10165 return; 10166 10167 pr_info("Task dump for CPU %d:\n", cpu); 10168 sched_show_task(cpu_curr(cpu)); 10169 } 10170 10171 /* 10172 * Nice levels are multiplicative, with a gentle 10% change for every 10173 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10174 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10175 * that remained on nice 0. 10176 * 10177 * The "10% effect" is relative and cumulative: from _any_ nice level, 10178 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10179 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10180 * If a task goes up by ~10% and another task goes down by ~10% then 10181 * the relative distance between them is ~25%.) 10182 */ 10183 const int sched_prio_to_weight[40] = { 10184 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10185 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10186 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10187 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10188 /* 0 */ 1024, 820, 655, 526, 423, 10189 /* 5 */ 335, 272, 215, 172, 137, 10190 /* 10 */ 110, 87, 70, 56, 45, 10191 /* 15 */ 36, 29, 23, 18, 15, 10192 }; 10193 10194 /* 10195 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10196 * 10197 * In cases where the weight does not change often, we can use the 10198 * pre-calculated inverse to speed up arithmetics by turning divisions 10199 * into multiplications: 10200 */ 10201 const u32 sched_prio_to_wmult[40] = { 10202 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10203 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10204 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10205 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10206 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10207 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10208 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10209 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10210 }; 10211 10212 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10213 { 10214 trace_sched_update_nr_running_tp(rq, count); 10215 } 10216 10217 #ifdef CONFIG_SCHED_MM_CID 10218 10219 /* 10220 * @cid_lock: Guarantee forward-progress of cid allocation. 10221 * 10222 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 10223 * is only used when contention is detected by the lock-free allocation so 10224 * forward progress can be guaranteed. 10225 */ 10226 DEFINE_RAW_SPINLOCK(cid_lock); 10227 10228 /* 10229 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 10230 * 10231 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 10232 * detected, it is set to 1 to ensure that all newly coming allocations are 10233 * serialized by @cid_lock until the allocation which detected contention 10234 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 10235 * of a cid allocation. 10236 */ 10237 int use_cid_lock; 10238 10239 /* 10240 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 10241 * concurrently with respect to the execution of the source runqueue context 10242 * switch. 10243 * 10244 * There is one basic properties we want to guarantee here: 10245 * 10246 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 10247 * used by a task. That would lead to concurrent allocation of the cid and 10248 * userspace corruption. 10249 * 10250 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 10251 * that a pair of loads observe at least one of a pair of stores, which can be 10252 * shown as: 10253 * 10254 * X = Y = 0 10255 * 10256 * w[X]=1 w[Y]=1 10257 * MB MB 10258 * r[Y]=y r[X]=x 10259 * 10260 * Which guarantees that x==0 && y==0 is impossible. But rather than using 10261 * values 0 and 1, this algorithm cares about specific state transitions of the 10262 * runqueue current task (as updated by the scheduler context switch), and the 10263 * per-mm/cpu cid value. 10264 * 10265 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 10266 * task->mm != mm for the rest of the discussion. There are two scheduler state 10267 * transitions on context switch we care about: 10268 * 10269 * (TSA) Store to rq->curr with transition from (N) to (Y) 10270 * 10271 * (TSB) Store to rq->curr with transition from (Y) to (N) 10272 * 10273 * On the remote-clear side, there is one transition we care about: 10274 * 10275 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 10276 * 10277 * There is also a transition to UNSET state which can be performed from all 10278 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 10279 * guarantees that only a single thread will succeed: 10280 * 10281 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 10282 * 10283 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 10284 * when a thread is actively using the cid (property (1)). 10285 * 10286 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 10287 * 10288 * Scenario A) (TSA)+(TMA) (from next task perspective) 10289 * 10290 * CPU0 CPU1 10291 * 10292 * Context switch CS-1 Remote-clear 10293 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 10294 * (implied barrier after cmpxchg) 10295 * - switch_mm_cid() 10296 * - memory barrier (see switch_mm_cid() 10297 * comment explaining how this barrier 10298 * is combined with other scheduler 10299 * barriers) 10300 * - mm_cid_get (next) 10301 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 10302 * 10303 * This Dekker ensures that either task (Y) is observed by the 10304 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 10305 * observed. 10306 * 10307 * If task (Y) store is observed by rcu_dereference(), it means that there is 10308 * still an active task on the cpu. Remote-clear will therefore not transition 10309 * to UNSET, which fulfills property (1). 10310 * 10311 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 10312 * it will move its state to UNSET, which clears the percpu cid perhaps 10313 * uselessly (which is not an issue for correctness). Because task (Y) is not 10314 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 10315 * state to UNSET is done with a cmpxchg expecting that the old state has the 10316 * LAZY flag set, only one thread will successfully UNSET. 10317 * 10318 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 10319 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 10320 * CPU1 will observe task (Y) and do nothing more, which is fine. 10321 * 10322 * What we are effectively preventing with this Dekker is a scenario where 10323 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 10324 * because this would UNSET a cid which is actively used. 10325 */ 10326 10327 void sched_mm_cid_migrate_from(struct task_struct *t) 10328 { 10329 t->migrate_from_cpu = task_cpu(t); 10330 } 10331 10332 static 10333 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 10334 struct task_struct *t, 10335 struct mm_cid *src_pcpu_cid) 10336 { 10337 struct mm_struct *mm = t->mm; 10338 struct task_struct *src_task; 10339 int src_cid, last_mm_cid; 10340 10341 if (!mm) 10342 return -1; 10343 10344 last_mm_cid = t->last_mm_cid; 10345 /* 10346 * If the migrated task has no last cid, or if the current 10347 * task on src rq uses the cid, it means the source cid does not need 10348 * to be moved to the destination cpu. 10349 */ 10350 if (last_mm_cid == -1) 10351 return -1; 10352 src_cid = READ_ONCE(src_pcpu_cid->cid); 10353 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10354 return -1; 10355 10356 /* 10357 * If we observe an active task using the mm on this rq, it means we 10358 * are not the last task to be migrated from this cpu for this mm, so 10359 * there is no need to move src_cid to the destination cpu. 10360 */ 10361 guard(rcu)(); 10362 src_task = rcu_dereference(src_rq->curr); 10363 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10364 t->last_mm_cid = -1; 10365 return -1; 10366 } 10367 10368 return src_cid; 10369 } 10370 10371 static 10372 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10373 struct task_struct *t, 10374 struct mm_cid *src_pcpu_cid, 10375 int src_cid) 10376 { 10377 struct task_struct *src_task; 10378 struct mm_struct *mm = t->mm; 10379 int lazy_cid; 10380 10381 if (src_cid == -1) 10382 return -1; 10383 10384 /* 10385 * Attempt to clear the source cpu cid to move it to the destination 10386 * cpu. 10387 */ 10388 lazy_cid = mm_cid_set_lazy_put(src_cid); 10389 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10390 return -1; 10391 10392 /* 10393 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10394 * rq->curr->mm matches the scheduler barrier in context_switch() 10395 * between store to rq->curr and load of prev and next task's 10396 * per-mm/cpu cid. 10397 * 10398 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10399 * rq->curr->mm_cid_active matches the barrier in 10400 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10401 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10402 * load of per-mm/cpu cid. 10403 */ 10404 10405 /* 10406 * If we observe an active task using the mm on this rq after setting 10407 * the lazy-put flag, this task will be responsible for transitioning 10408 * from lazy-put flag set to MM_CID_UNSET. 10409 */ 10410 scoped_guard (rcu) { 10411 src_task = rcu_dereference(src_rq->curr); 10412 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10413 /* 10414 * We observed an active task for this mm, there is therefore 10415 * no point in moving this cid to the destination cpu. 10416 */ 10417 t->last_mm_cid = -1; 10418 return -1; 10419 } 10420 } 10421 10422 /* 10423 * The src_cid is unused, so it can be unset. 10424 */ 10425 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10426 return -1; 10427 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); 10428 return src_cid; 10429 } 10430 10431 /* 10432 * Migration to dst cpu. Called with dst_rq lock held. 10433 * Interrupts are disabled, which keeps the window of cid ownership without the 10434 * source rq lock held small. 10435 */ 10436 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10437 { 10438 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10439 struct mm_struct *mm = t->mm; 10440 int src_cid, src_cpu; 10441 bool dst_cid_is_set; 10442 struct rq *src_rq; 10443 10444 lockdep_assert_rq_held(dst_rq); 10445 10446 if (!mm) 10447 return; 10448 src_cpu = t->migrate_from_cpu; 10449 if (src_cpu == -1) { 10450 t->last_mm_cid = -1; 10451 return; 10452 } 10453 /* 10454 * Move the src cid if the dst cid is unset. This keeps id 10455 * allocation closest to 0 in cases where few threads migrate around 10456 * many CPUs. 10457 * 10458 * If destination cid or recent cid is already set, we may have 10459 * to just clear the src cid to ensure compactness in frequent 10460 * migrations scenarios. 10461 * 10462 * It is not useful to clear the src cid when the number of threads is 10463 * greater or equal to the number of allowed CPUs, because user-space 10464 * can expect that the number of allowed cids can reach the number of 10465 * allowed CPUs. 10466 */ 10467 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10468 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || 10469 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); 10470 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) 10471 return; 10472 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10473 src_rq = cpu_rq(src_cpu); 10474 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10475 if (src_cid == -1) 10476 return; 10477 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10478 src_cid); 10479 if (src_cid == -1) 10480 return; 10481 if (dst_cid_is_set) { 10482 __mm_cid_put(mm, src_cid); 10483 return; 10484 } 10485 /* Move src_cid to dst cpu. */ 10486 mm_cid_snapshot_time(dst_rq, mm); 10487 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10488 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); 10489 } 10490 10491 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10492 int cpu) 10493 { 10494 struct rq *rq = cpu_rq(cpu); 10495 struct task_struct *t; 10496 int cid, lazy_cid; 10497 10498 cid = READ_ONCE(pcpu_cid->cid); 10499 if (!mm_cid_is_valid(cid)) 10500 return; 10501 10502 /* 10503 * Clear the cpu cid if it is set to keep cid allocation compact. If 10504 * there happens to be other tasks left on the source cpu using this 10505 * mm, the next task using this mm will reallocate its cid on context 10506 * switch. 10507 */ 10508 lazy_cid = mm_cid_set_lazy_put(cid); 10509 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10510 return; 10511 10512 /* 10513 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10514 * rq->curr->mm matches the scheduler barrier in context_switch() 10515 * between store to rq->curr and load of prev and next task's 10516 * per-mm/cpu cid. 10517 * 10518 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10519 * rq->curr->mm_cid_active matches the barrier in 10520 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10521 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10522 * load of per-mm/cpu cid. 10523 */ 10524 10525 /* 10526 * If we observe an active task using the mm on this rq after setting 10527 * the lazy-put flag, that task will be responsible for transitioning 10528 * from lazy-put flag set to MM_CID_UNSET. 10529 */ 10530 scoped_guard (rcu) { 10531 t = rcu_dereference(rq->curr); 10532 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10533 return; 10534 } 10535 10536 /* 10537 * The cid is unused, so it can be unset. 10538 * Disable interrupts to keep the window of cid ownership without rq 10539 * lock small. 10540 */ 10541 scoped_guard (irqsave) { 10542 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10543 __mm_cid_put(mm, cid); 10544 } 10545 } 10546 10547 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10548 { 10549 struct rq *rq = cpu_rq(cpu); 10550 struct mm_cid *pcpu_cid; 10551 struct task_struct *curr; 10552 u64 rq_clock; 10553 10554 /* 10555 * rq->clock load is racy on 32-bit but one spurious clear once in a 10556 * while is irrelevant. 10557 */ 10558 rq_clock = READ_ONCE(rq->clock); 10559 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10560 10561 /* 10562 * In order to take care of infrequently scheduled tasks, bump the time 10563 * snapshot associated with this cid if an active task using the mm is 10564 * observed on this rq. 10565 */ 10566 scoped_guard (rcu) { 10567 curr = rcu_dereference(rq->curr); 10568 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10569 WRITE_ONCE(pcpu_cid->time, rq_clock); 10570 return; 10571 } 10572 } 10573 10574 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10575 return; 10576 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10577 } 10578 10579 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10580 int weight) 10581 { 10582 struct mm_cid *pcpu_cid; 10583 int cid; 10584 10585 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10586 cid = READ_ONCE(pcpu_cid->cid); 10587 if (!mm_cid_is_valid(cid) || cid < weight) 10588 return; 10589 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10590 } 10591 10592 static void task_mm_cid_work(struct callback_head *work) 10593 { 10594 unsigned long now = jiffies, old_scan, next_scan; 10595 struct task_struct *t = current; 10596 struct cpumask *cidmask; 10597 struct mm_struct *mm; 10598 int weight, cpu; 10599 10600 WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work)); 10601 10602 work->next = work; /* Prevent double-add */ 10603 if (t->flags & PF_EXITING) 10604 return; 10605 mm = t->mm; 10606 if (!mm) 10607 return; 10608 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10609 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10610 if (!old_scan) { 10611 unsigned long res; 10612 10613 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10614 if (res != old_scan) 10615 old_scan = res; 10616 else 10617 old_scan = next_scan; 10618 } 10619 if (time_before(now, old_scan)) 10620 return; 10621 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10622 return; 10623 cidmask = mm_cidmask(mm); 10624 /* Clear cids that were not recently used. */ 10625 for_each_possible_cpu(cpu) 10626 sched_mm_cid_remote_clear_old(mm, cpu); 10627 weight = cpumask_weight(cidmask); 10628 /* 10629 * Clear cids that are greater or equal to the cidmask weight to 10630 * recompact it. 10631 */ 10632 for_each_possible_cpu(cpu) 10633 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10634 } 10635 10636 void init_sched_mm_cid(struct task_struct *t) 10637 { 10638 struct mm_struct *mm = t->mm; 10639 int mm_users = 0; 10640 10641 if (mm) { 10642 mm_users = atomic_read(&mm->mm_users); 10643 if (mm_users == 1) 10644 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10645 } 10646 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10647 init_task_work(&t->cid_work, task_mm_cid_work); 10648 } 10649 10650 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10651 { 10652 struct callback_head *work = &curr->cid_work; 10653 unsigned long now = jiffies; 10654 10655 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10656 work->next != work) 10657 return; 10658 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10659 return; 10660 10661 /* No page allocation under rq lock */ 10662 task_work_add(curr, work, TWA_RESUME); 10663 } 10664 10665 void sched_mm_cid_exit_signals(struct task_struct *t) 10666 { 10667 struct mm_struct *mm = t->mm; 10668 struct rq *rq; 10669 10670 if (!mm) 10671 return; 10672 10673 preempt_disable(); 10674 rq = this_rq(); 10675 guard(rq_lock_irqsave)(rq); 10676 preempt_enable_no_resched(); /* holding spinlock */ 10677 WRITE_ONCE(t->mm_cid_active, 0); 10678 /* 10679 * Store t->mm_cid_active before loading per-mm/cpu cid. 10680 * Matches barrier in sched_mm_cid_remote_clear_old(). 10681 */ 10682 smp_mb(); 10683 mm_cid_put(mm); 10684 t->last_mm_cid = t->mm_cid = -1; 10685 } 10686 10687 void sched_mm_cid_before_execve(struct task_struct *t) 10688 { 10689 struct mm_struct *mm = t->mm; 10690 struct rq *rq; 10691 10692 if (!mm) 10693 return; 10694 10695 preempt_disable(); 10696 rq = this_rq(); 10697 guard(rq_lock_irqsave)(rq); 10698 preempt_enable_no_resched(); /* holding spinlock */ 10699 WRITE_ONCE(t->mm_cid_active, 0); 10700 /* 10701 * Store t->mm_cid_active before loading per-mm/cpu cid. 10702 * Matches barrier in sched_mm_cid_remote_clear_old(). 10703 */ 10704 smp_mb(); 10705 mm_cid_put(mm); 10706 t->last_mm_cid = t->mm_cid = -1; 10707 } 10708 10709 void sched_mm_cid_after_execve(struct task_struct *t) 10710 { 10711 struct mm_struct *mm = t->mm; 10712 struct rq *rq; 10713 10714 if (!mm) 10715 return; 10716 10717 preempt_disable(); 10718 rq = this_rq(); 10719 scoped_guard (rq_lock_irqsave, rq) { 10720 preempt_enable_no_resched(); /* holding spinlock */ 10721 WRITE_ONCE(t->mm_cid_active, 1); 10722 /* 10723 * Store t->mm_cid_active before loading per-mm/cpu cid. 10724 * Matches barrier in sched_mm_cid_remote_clear_old(). 10725 */ 10726 smp_mb(); 10727 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); 10728 } 10729 } 10730 10731 void sched_mm_cid_fork(struct task_struct *t) 10732 { 10733 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10734 t->mm_cid_active = 1; 10735 } 10736 #endif 10737 10738 #ifdef CONFIG_SCHED_CLASS_EXT 10739 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10740 struct sched_enq_and_set_ctx *ctx) 10741 { 10742 struct rq *rq = task_rq(p); 10743 10744 lockdep_assert_rq_held(rq); 10745 10746 *ctx = (struct sched_enq_and_set_ctx){ 10747 .p = p, 10748 .queue_flags = queue_flags, 10749 .queued = task_on_rq_queued(p), 10750 .running = task_current(rq, p), 10751 }; 10752 10753 update_rq_clock(rq); 10754 if (ctx->queued) 10755 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10756 if (ctx->running) 10757 put_prev_task(rq, p); 10758 } 10759 10760 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10761 { 10762 struct rq *rq = task_rq(ctx->p); 10763 10764 lockdep_assert_rq_held(rq); 10765 10766 if (ctx->queued) 10767 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10768 if (ctx->running) 10769 set_next_task(rq, ctx->p); 10770 } 10771 #endif /* CONFIG_SCHED_CLASS_EXT */ 10772