1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/kmemleak.h> 35 #include <linux/moduleparam.h> 36 #include <linux/panic.h> 37 #include <linux/panic_notifier.h> 38 #include <linux/percpu.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/mutex.h> 42 #include <linux/time.h> 43 #include <linux/kernel_stat.h> 44 #include <linux/wait.h> 45 #include <linux/kthread.h> 46 #include <uapi/linux/sched/types.h> 47 #include <linux/prefetch.h> 48 #include <linux/delay.h> 49 #include <linux/random.h> 50 #include <linux/trace_events.h> 51 #include <linux/suspend.h> 52 #include <linux/ftrace.h> 53 #include <linux/tick.h> 54 #include <linux/sysrq.h> 55 #include <linux/kprobes.h> 56 #include <linux/gfp.h> 57 #include <linux/oom.h> 58 #include <linux/smpboot.h> 59 #include <linux/jiffies.h> 60 #include <linux/slab.h> 61 #include <linux/sched/isolation.h> 62 #include <linux/sched/clock.h> 63 #include <linux/vmalloc.h> 64 #include <linux/mm.h> 65 #include <linux/kasan.h> 66 #include <linux/context_tracking.h> 67 #include "../time/tick-internal.h" 68 69 #include "tree.h" 70 #include "rcu.h" 71 72 #ifdef MODULE_PARAM_PREFIX 73 #undef MODULE_PARAM_PREFIX 74 #endif 75 #define MODULE_PARAM_PREFIX "rcutree." 76 77 /* Data structures. */ 78 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *); 79 80 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 81 .gpwrap = true, 82 }; 83 84 int rcu_get_gpwrap_count(int cpu) 85 { 86 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 87 88 return READ_ONCE(rdp->gpwrap_count); 89 } 90 EXPORT_SYMBOL_GPL(rcu_get_gpwrap_count); 91 92 static struct rcu_state rcu_state = { 93 .level = { &rcu_state.node[0] }, 94 .gp_state = RCU_GP_IDLE, 95 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 96 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 97 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 98 .name = RCU_NAME, 99 .abbr = RCU_ABBR, 100 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 101 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 102 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 103 .srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work, 104 rcu_sr_normal_gp_cleanup_work), 105 .srs_cleanups_pending = ATOMIC_INIT(0), 106 #ifdef CONFIG_RCU_NOCB_CPU 107 .nocb_mutex = __MUTEX_INITIALIZER(rcu_state.nocb_mutex), 108 #endif 109 }; 110 111 /* Dump rcu_node combining tree at boot to verify correct setup. */ 112 static bool dump_tree; 113 module_param(dump_tree, bool, 0444); 114 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 115 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 116 #ifndef CONFIG_PREEMPT_RT 117 module_param(use_softirq, bool, 0444); 118 #endif 119 /* Control rcu_node-tree auto-balancing at boot time. */ 120 static bool rcu_fanout_exact; 121 module_param(rcu_fanout_exact, bool, 0444); 122 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 123 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 124 module_param(rcu_fanout_leaf, int, 0444); 125 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 126 /* Number of rcu_nodes at specified level. */ 127 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 128 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 129 130 /* 131 * The rcu_scheduler_active variable is initialized to the value 132 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 133 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 134 * RCU can assume that there is but one task, allowing RCU to (for example) 135 * optimize synchronize_rcu() to a simple barrier(). When this variable 136 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 137 * to detect real grace periods. This variable is also used to suppress 138 * boot-time false positives from lockdep-RCU error checking. Finally, it 139 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 140 * is fully initialized, including all of its kthreads having been spawned. 141 */ 142 int rcu_scheduler_active __read_mostly; 143 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 144 145 /* 146 * The rcu_scheduler_fully_active variable transitions from zero to one 147 * during the early_initcall() processing, which is after the scheduler 148 * is capable of creating new tasks. So RCU processing (for example, 149 * creating tasks for RCU priority boosting) must be delayed until after 150 * rcu_scheduler_fully_active transitions from zero to one. We also 151 * currently delay invocation of any RCU callbacks until after this point. 152 * 153 * It might later prove better for people registering RCU callbacks during 154 * early boot to take responsibility for these callbacks, but one step at 155 * a time. 156 */ 157 static int rcu_scheduler_fully_active __read_mostly; 158 159 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 160 unsigned long gps, unsigned long flags); 161 static void invoke_rcu_core(void); 162 static void rcu_report_exp_rdp(struct rcu_data *rdp); 163 static void sync_sched_exp_online_cleanup(int cpu); 164 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 165 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 166 static bool rcu_rdp_cpu_online(struct rcu_data *rdp); 167 static bool rcu_init_invoked(void); 168 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 169 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 170 171 /* 172 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 173 * real-time priority(enabling/disabling) is controlled by 174 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 175 */ 176 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 177 module_param(kthread_prio, int, 0444); 178 179 /* Delay in jiffies for grace-period initialization delays, debug only. */ 180 181 static int gp_preinit_delay; 182 module_param(gp_preinit_delay, int, 0444); 183 static int gp_init_delay; 184 module_param(gp_init_delay, int, 0444); 185 static int gp_cleanup_delay; 186 module_param(gp_cleanup_delay, int, 0444); 187 static int nohz_full_patience_delay; 188 module_param(nohz_full_patience_delay, int, 0444); 189 static int nohz_full_patience_delay_jiffies; 190 191 // Add delay to rcu_read_unlock() for strict grace periods. 192 static int rcu_unlock_delay; 193 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 194 module_param(rcu_unlock_delay, int, 0444); 195 #endif 196 197 /* Retrieve RCU kthreads priority for rcutorture */ 198 int rcu_get_gp_kthreads_prio(void) 199 { 200 return kthread_prio; 201 } 202 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 203 204 /* 205 * Number of grace periods between delays, normalized by the duration of 206 * the delay. The longer the delay, the more the grace periods between 207 * each delay. The reason for this normalization is that it means that, 208 * for non-zero delays, the overall slowdown of grace periods is constant 209 * regardless of the duration of the delay. This arrangement balances 210 * the need for long delays to increase some race probabilities with the 211 * need for fast grace periods to increase other race probabilities. 212 */ 213 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 214 215 /* 216 * Return true if an RCU grace period is in progress. The READ_ONCE()s 217 * permit this function to be invoked without holding the root rcu_node 218 * structure's ->lock, but of course results can be subject to change. 219 */ 220 static int rcu_gp_in_progress(void) 221 { 222 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 223 } 224 225 /* 226 * Return the number of callbacks queued on the specified CPU. 227 * Handles both the nocbs and normal cases. 228 */ 229 static long rcu_get_n_cbs_cpu(int cpu) 230 { 231 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 232 233 if (rcu_segcblist_is_enabled(&rdp->cblist)) 234 return rcu_segcblist_n_cbs(&rdp->cblist); 235 return 0; 236 } 237 238 /** 239 * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing 240 * 241 * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU. 242 * This is a special-purpose function to be used in the softirq 243 * infrastructure and perhaps the occasional long-running softirq 244 * handler. 245 * 246 * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is 247 * equivalent to momentarily completely enabling preemption. For 248 * example, given this code:: 249 * 250 * local_bh_disable(); 251 * do_something(); 252 * rcu_softirq_qs(); // A 253 * do_something_else(); 254 * local_bh_enable(); // B 255 * 256 * A call to synchronize_rcu() that began concurrently with the 257 * call to do_something() would be guaranteed to wait only until 258 * execution reached statement A. Without that rcu_softirq_qs(), 259 * that same synchronize_rcu() would instead be guaranteed to wait 260 * until execution reached statement B. 261 */ 262 void rcu_softirq_qs(void) 263 { 264 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 265 lock_is_held(&rcu_lock_map) || 266 lock_is_held(&rcu_sched_lock_map), 267 "Illegal rcu_softirq_qs() in RCU read-side critical section"); 268 rcu_qs(); 269 rcu_preempt_deferred_qs(current); 270 rcu_tasks_qs(current, false); 271 } 272 273 /* 274 * Reset the current CPU's RCU_WATCHING counter to indicate that the 275 * newly onlined CPU is no longer in an extended quiescent state. 276 * This will either leave the counter unchanged, or increment it 277 * to the next non-quiescent value. 278 * 279 * The non-atomic test/increment sequence works because the upper bits 280 * of the ->state variable are manipulated only by the corresponding CPU, 281 * or when the corresponding CPU is offline. 282 */ 283 static void rcu_watching_online(void) 284 { 285 if (ct_rcu_watching() & CT_RCU_WATCHING) 286 return; 287 ct_state_inc(CT_RCU_WATCHING); 288 } 289 290 /* 291 * Return true if the snapshot returned from ct_rcu_watching() 292 * indicates that RCU is in an extended quiescent state. 293 */ 294 static bool rcu_watching_snap_in_eqs(int snap) 295 { 296 return !(snap & CT_RCU_WATCHING); 297 } 298 299 /** 300 * rcu_watching_snap_stopped_since() - Has RCU stopped watching a given CPU 301 * since the specified @snap? 302 * 303 * @rdp: The rcu_data corresponding to the CPU for which to check EQS. 304 * @snap: rcu_watching snapshot taken when the CPU wasn't in an EQS. 305 * 306 * Returns true if the CPU corresponding to @rdp has spent some time in an 307 * extended quiescent state since @snap. Note that this doesn't check if it 308 * /still/ is in an EQS, just that it went through one since @snap. 309 * 310 * This is meant to be used in a loop waiting for a CPU to go through an EQS. 311 */ 312 static bool rcu_watching_snap_stopped_since(struct rcu_data *rdp, int snap) 313 { 314 /* 315 * The first failing snapshot is already ordered against the accesses 316 * performed by the remote CPU after it exits idle. 317 * 318 * The second snapshot therefore only needs to order against accesses 319 * performed by the remote CPU prior to entering idle and therefore can 320 * rely solely on acquire semantics. 321 */ 322 if (WARN_ON_ONCE(rcu_watching_snap_in_eqs(snap))) 323 return true; 324 325 return snap != ct_rcu_watching_cpu_acquire(rdp->cpu); 326 } 327 328 /* 329 * Return true if the referenced integer is zero while the specified 330 * CPU remains within a single extended quiescent state. 331 */ 332 bool rcu_watching_zero_in_eqs(int cpu, int *vp) 333 { 334 int snap; 335 336 // If not quiescent, force back to earlier extended quiescent state. 337 snap = ct_rcu_watching_cpu(cpu) & ~CT_RCU_WATCHING; 338 smp_rmb(); // Order CT state and *vp reads. 339 if (READ_ONCE(*vp)) 340 return false; // Non-zero, so report failure; 341 smp_rmb(); // Order *vp read and CT state re-read. 342 343 // If still in the same extended quiescent state, we are good! 344 return snap == ct_rcu_watching_cpu(cpu); 345 } 346 347 /* 348 * Let the RCU core know that this CPU has gone through the scheduler, 349 * which is a quiescent state. This is called when the need for a 350 * quiescent state is urgent, so we burn an atomic operation and full 351 * memory barriers to let the RCU core know about it, regardless of what 352 * this CPU might (or might not) do in the near future. 353 * 354 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 355 * 356 * The caller must have disabled interrupts and must not be idle. 357 */ 358 notrace void rcu_momentary_eqs(void) 359 { 360 int seq; 361 362 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 363 seq = ct_state_inc(2 * CT_RCU_WATCHING); 364 /* It is illegal to call this from idle state. */ 365 WARN_ON_ONCE(!(seq & CT_RCU_WATCHING)); 366 rcu_preempt_deferred_qs(current); 367 } 368 EXPORT_SYMBOL_GPL(rcu_momentary_eqs); 369 370 /** 371 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 372 * 373 * If the current CPU is idle and running at a first-level (not nested) 374 * interrupt, or directly, from idle, return true. 375 * 376 * The caller must have at least disabled IRQs. 377 */ 378 static int rcu_is_cpu_rrupt_from_idle(void) 379 { 380 long nesting; 381 382 /* 383 * Usually called from the tick; but also used from smp_function_call() 384 * for expedited grace periods. This latter can result in running from 385 * the idle task, instead of an actual IPI. 386 */ 387 lockdep_assert_irqs_disabled(); 388 389 /* Check for counter underflows */ 390 RCU_LOCKDEP_WARN(ct_nesting() < 0, 391 "RCU nesting counter underflow!"); 392 RCU_LOCKDEP_WARN(ct_nmi_nesting() <= 0, 393 "RCU nmi_nesting counter underflow/zero!"); 394 395 /* Are we at first interrupt nesting level? */ 396 nesting = ct_nmi_nesting(); 397 if (nesting > 1) 398 return false; 399 400 /* 401 * If we're not in an interrupt, we must be in the idle task! 402 */ 403 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 404 405 /* Does CPU appear to be idle from an RCU standpoint? */ 406 return ct_nesting() == 0; 407 } 408 409 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 410 // Maximum callbacks per rcu_do_batch ... 411 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 412 static long blimit = DEFAULT_RCU_BLIMIT; 413 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 414 static long qhimark = DEFAULT_RCU_QHIMARK; 415 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 416 static long qlowmark = DEFAULT_RCU_QLOMARK; 417 #define DEFAULT_RCU_QOVLD_MULT 2 418 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 419 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 420 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 421 422 module_param(blimit, long, 0444); 423 module_param(qhimark, long, 0444); 424 module_param(qlowmark, long, 0444); 425 module_param(qovld, long, 0444); 426 427 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 428 static ulong jiffies_till_next_fqs = ULONG_MAX; 429 static bool rcu_kick_kthreads; 430 static int rcu_divisor = 7; 431 module_param(rcu_divisor, int, 0644); 432 433 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 434 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 435 module_param(rcu_resched_ns, long, 0644); 436 437 /* 438 * How long the grace period must be before we start recruiting 439 * quiescent-state help from rcu_note_context_switch(). 440 */ 441 static ulong jiffies_till_sched_qs = ULONG_MAX; 442 module_param(jiffies_till_sched_qs, ulong, 0444); 443 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 444 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 445 446 /* 447 * Make sure that we give the grace-period kthread time to detect any 448 * idle CPUs before taking active measures to force quiescent states. 449 * However, don't go below 100 milliseconds, adjusted upwards for really 450 * large systems. 451 */ 452 static void adjust_jiffies_till_sched_qs(void) 453 { 454 unsigned long j; 455 456 /* If jiffies_till_sched_qs was specified, respect the request. */ 457 if (jiffies_till_sched_qs != ULONG_MAX) { 458 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 459 return; 460 } 461 /* Otherwise, set to third fqs scan, but bound below on large system. */ 462 j = READ_ONCE(jiffies_till_first_fqs) + 463 2 * READ_ONCE(jiffies_till_next_fqs); 464 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 465 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 466 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 467 WRITE_ONCE(jiffies_to_sched_qs, j); 468 } 469 470 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 471 { 472 ulong j; 473 int ret = kstrtoul(val, 0, &j); 474 475 if (!ret) { 476 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 477 adjust_jiffies_till_sched_qs(); 478 } 479 return ret; 480 } 481 482 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 483 { 484 ulong j; 485 int ret = kstrtoul(val, 0, &j); 486 487 if (!ret) { 488 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 489 adjust_jiffies_till_sched_qs(); 490 } 491 return ret; 492 } 493 494 static const struct kernel_param_ops first_fqs_jiffies_ops = { 495 .set = param_set_first_fqs_jiffies, 496 .get = param_get_ulong, 497 }; 498 499 static const struct kernel_param_ops next_fqs_jiffies_ops = { 500 .set = param_set_next_fqs_jiffies, 501 .get = param_get_ulong, 502 }; 503 504 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 505 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 506 module_param(rcu_kick_kthreads, bool, 0644); 507 508 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 509 static int rcu_pending(int user); 510 511 /* 512 * Return the number of RCU GPs completed thus far for debug & stats. 513 */ 514 unsigned long rcu_get_gp_seq(void) 515 { 516 return READ_ONCE(rcu_state.gp_seq); 517 } 518 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 519 520 /* 521 * Return the number of RCU expedited batches completed thus far for 522 * debug & stats. Odd numbers mean that a batch is in progress, even 523 * numbers mean idle. The value returned will thus be roughly double 524 * the cumulative batches since boot. 525 */ 526 unsigned long rcu_exp_batches_completed(void) 527 { 528 return rcu_state.expedited_sequence; 529 } 530 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 531 532 /* 533 * Return the root node of the rcu_state structure. 534 */ 535 static struct rcu_node *rcu_get_root(void) 536 { 537 return &rcu_state.node[0]; 538 } 539 540 /* 541 * Send along grace-period-related data for rcutorture diagnostics. 542 */ 543 void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq) 544 { 545 *flags = READ_ONCE(rcu_state.gp_flags); 546 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 547 } 548 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 549 550 /* Gather grace-period sequence numbers for rcutorture diagnostics. */ 551 unsigned long long rcutorture_gather_gp_seqs(void) 552 { 553 return ((READ_ONCE(rcu_state.gp_seq) & 0xffffULL) << 40) | 554 ((READ_ONCE(rcu_state.expedited_sequence) & 0xffffffULL) << 16) | 555 (READ_ONCE(rcu_state.gp_seq_polled) & 0xffffULL); 556 } 557 EXPORT_SYMBOL_GPL(rcutorture_gather_gp_seqs); 558 559 /* Format grace-period sequence numbers for rcutorture diagnostics. */ 560 void rcutorture_format_gp_seqs(unsigned long long seqs, char *cp, size_t len) 561 { 562 unsigned int egp = (seqs >> 16) & 0xffffffULL; 563 unsigned int ggp = (seqs >> 40) & 0xffffULL; 564 unsigned int pgp = seqs & 0xffffULL; 565 566 snprintf(cp, len, "g%04x:e%06x:p%04x", ggp, egp, pgp); 567 } 568 EXPORT_SYMBOL_GPL(rcutorture_format_gp_seqs); 569 570 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 571 /* 572 * An empty function that will trigger a reschedule on 573 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 574 */ 575 static void late_wakeup_func(struct irq_work *work) 576 { 577 } 578 579 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 580 IRQ_WORK_INIT(late_wakeup_func); 581 582 /* 583 * If either: 584 * 585 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 586 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 587 * 588 * In these cases the late RCU wake ups aren't supported in the resched loops and our 589 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 590 * get re-enabled again. 591 */ 592 noinstr void rcu_irq_work_resched(void) 593 { 594 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 595 596 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 597 return; 598 599 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 600 return; 601 602 instrumentation_begin(); 603 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 604 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 605 } 606 instrumentation_end(); 607 } 608 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 609 610 #ifdef CONFIG_PROVE_RCU 611 /** 612 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 613 */ 614 void rcu_irq_exit_check_preempt(void) 615 { 616 lockdep_assert_irqs_disabled(); 617 618 RCU_LOCKDEP_WARN(ct_nesting() <= 0, 619 "RCU nesting counter underflow/zero!"); 620 RCU_LOCKDEP_WARN(ct_nmi_nesting() != 621 CT_NESTING_IRQ_NONIDLE, 622 "Bad RCU nmi_nesting counter\n"); 623 RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(), 624 "RCU in extended quiescent state!"); 625 } 626 #endif /* #ifdef CONFIG_PROVE_RCU */ 627 628 #ifdef CONFIG_NO_HZ_FULL 629 /** 630 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 631 * 632 * The scheduler tick is not normally enabled when CPUs enter the kernel 633 * from nohz_full userspace execution. After all, nohz_full userspace 634 * execution is an RCU quiescent state and the time executing in the kernel 635 * is quite short. Except of course when it isn't. And it is not hard to 636 * cause a large system to spend tens of seconds or even minutes looping 637 * in the kernel, which can cause a number of problems, include RCU CPU 638 * stall warnings. 639 * 640 * Therefore, if a nohz_full CPU fails to report a quiescent state 641 * in a timely manner, the RCU grace-period kthread sets that CPU's 642 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 643 * exception will invoke this function, which will turn on the scheduler 644 * tick, which will enable RCU to detect that CPU's quiescent states, 645 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 646 * The tick will be disabled once a quiescent state is reported for 647 * this CPU. 648 * 649 * Of course, in carefully tuned systems, there might never be an 650 * interrupt or exception. In that case, the RCU grace-period kthread 651 * will eventually cause one to happen. However, in less carefully 652 * controlled environments, this function allows RCU to get what it 653 * needs without creating otherwise useless interruptions. 654 */ 655 void __rcu_irq_enter_check_tick(void) 656 { 657 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 658 659 // If we're here from NMI there's nothing to do. 660 if (in_nmi()) 661 return; 662 663 RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(), 664 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 665 666 if (!tick_nohz_full_cpu(rdp->cpu) || 667 !READ_ONCE(rdp->rcu_urgent_qs) || 668 READ_ONCE(rdp->rcu_forced_tick)) { 669 // RCU doesn't need nohz_full help from this CPU, or it is 670 // already getting that help. 671 return; 672 } 673 674 // We get here only when not in an extended quiescent state and 675 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 676 // already watching and (2) The fact that we are in an interrupt 677 // handler and that the rcu_node lock is an irq-disabled lock 678 // prevents self-deadlock. So we can safely recheck under the lock. 679 // Note that the nohz_full state currently cannot change. 680 raw_spin_lock_rcu_node(rdp->mynode); 681 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) { 682 // A nohz_full CPU is in the kernel and RCU needs a 683 // quiescent state. Turn on the tick! 684 WRITE_ONCE(rdp->rcu_forced_tick, true); 685 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 686 } 687 raw_spin_unlock_rcu_node(rdp->mynode); 688 } 689 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); 690 #endif /* CONFIG_NO_HZ_FULL */ 691 692 /* 693 * Check to see if any future non-offloaded RCU-related work will need 694 * to be done by the current CPU, even if none need be done immediately, 695 * returning 1 if so. This function is part of the RCU implementation; 696 * it is -not- an exported member of the RCU API. This is used by 697 * the idle-entry code to figure out whether it is safe to disable the 698 * scheduler-clock interrupt. 699 * 700 * Just check whether or not this CPU has non-offloaded RCU callbacks 701 * queued. 702 */ 703 int rcu_needs_cpu(void) 704 { 705 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 706 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 707 } 708 709 /* 710 * If any sort of urgency was applied to the current CPU (for example, 711 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 712 * to get to a quiescent state, disable it. 713 */ 714 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 715 { 716 raw_lockdep_assert_held_rcu_node(rdp->mynode); 717 WRITE_ONCE(rdp->rcu_urgent_qs, false); 718 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 719 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 720 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 721 WRITE_ONCE(rdp->rcu_forced_tick, false); 722 } 723 } 724 725 /** 726 * rcu_is_watching - RCU read-side critical sections permitted on current CPU? 727 * 728 * Return @true if RCU is watching the running CPU and @false otherwise. 729 * An @true return means that this CPU can safely enter RCU read-side 730 * critical sections. 731 * 732 * Although calls to rcu_is_watching() from most parts of the kernel 733 * will return @true, there are important exceptions. For example, if the 734 * current CPU is deep within its idle loop, in kernel entry/exit code, 735 * or offline, rcu_is_watching() will return @false. 736 * 737 * Make notrace because it can be called by the internal functions of 738 * ftrace, and making this notrace removes unnecessary recursion calls. 739 */ 740 notrace bool rcu_is_watching(void) 741 { 742 bool ret; 743 744 preempt_disable_notrace(); 745 ret = rcu_is_watching_curr_cpu(); 746 preempt_enable_notrace(); 747 return ret; 748 } 749 EXPORT_SYMBOL_GPL(rcu_is_watching); 750 751 /* 752 * If a holdout task is actually running, request an urgent quiescent 753 * state from its CPU. This is unsynchronized, so migrations can cause 754 * the request to go to the wrong CPU. Which is OK, all that will happen 755 * is that the CPU's next context switch will be a bit slower and next 756 * time around this task will generate another request. 757 */ 758 void rcu_request_urgent_qs_task(struct task_struct *t) 759 { 760 int cpu; 761 762 barrier(); 763 cpu = task_cpu(t); 764 if (!task_curr(t)) 765 return; /* This task is not running on that CPU. */ 766 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 767 } 768 769 static unsigned long seq_gpwrap_lag = ULONG_MAX / 4; 770 771 /** 772 * rcu_set_gpwrap_lag - Set RCU GP sequence overflow lag value. 773 * @lag_gps: Set overflow lag to this many grace period worth of counters 774 * which is used by rcutorture to quickly force a gpwrap situation. 775 * @lag_gps = 0 means we reset it back to the boot-time value. 776 */ 777 void rcu_set_gpwrap_lag(unsigned long lag_gps) 778 { 779 unsigned long lag_seq_count; 780 781 lag_seq_count = (lag_gps == 0) 782 ? ULONG_MAX / 4 783 : lag_gps << RCU_SEQ_CTR_SHIFT; 784 WRITE_ONCE(seq_gpwrap_lag, lag_seq_count); 785 } 786 EXPORT_SYMBOL_GPL(rcu_set_gpwrap_lag); 787 788 /* 789 * When trying to report a quiescent state on behalf of some other CPU, 790 * it is our responsibility to check for and handle potential overflow 791 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 792 * After all, the CPU might be in deep idle state, and thus executing no 793 * code whatsoever. 794 */ 795 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 796 { 797 raw_lockdep_assert_held_rcu_node(rnp); 798 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + seq_gpwrap_lag, 799 rnp->gp_seq)) { 800 WRITE_ONCE(rdp->gpwrap, true); 801 WRITE_ONCE(rdp->gpwrap_count, READ_ONCE(rdp->gpwrap_count) + 1); 802 } 803 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 804 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 805 } 806 807 /* 808 * Snapshot the specified CPU's RCU_WATCHING counter so that we can later 809 * credit them with an implicit quiescent state. Return 1 if this CPU 810 * is in dynticks idle mode, which is an extended quiescent state. 811 */ 812 static int rcu_watching_snap_save(struct rcu_data *rdp) 813 { 814 /* 815 * Full ordering between remote CPU's post idle accesses and updater's 816 * accesses prior to current GP (and also the started GP sequence number) 817 * is enforced by rcu_seq_start() implicit barrier and even further by 818 * smp_mb__after_unlock_lock() barriers chained all the way throughout the 819 * rnp locking tree since rcu_gp_init() and up to the current leaf rnp 820 * locking. 821 * 822 * Ordering between remote CPU's pre idle accesses and post grace period 823 * updater's accesses is enforced by the below acquire semantic. 824 */ 825 rdp->watching_snap = ct_rcu_watching_cpu_acquire(rdp->cpu); 826 if (rcu_watching_snap_in_eqs(rdp->watching_snap)) { 827 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 828 rcu_gpnum_ovf(rdp->mynode, rdp); 829 return 1; 830 } 831 return 0; 832 } 833 834 #ifndef arch_irq_stat_cpu 835 #define arch_irq_stat_cpu(cpu) 0 836 #endif 837 838 /* 839 * Returns positive if the specified CPU has passed through a quiescent state 840 * by virtue of being in or having passed through an dynticks idle state since 841 * the last call to rcu_watching_snap_save() for this same CPU, or by 842 * virtue of having been offline. 843 * 844 * Returns negative if the specified CPU needs a force resched. 845 * 846 * Returns zero otherwise. 847 */ 848 static int rcu_watching_snap_recheck(struct rcu_data *rdp) 849 { 850 unsigned long jtsq; 851 int ret = 0; 852 struct rcu_node *rnp = rdp->mynode; 853 854 /* 855 * If the CPU passed through or entered a dynticks idle phase with 856 * no active irq/NMI handlers, then we can safely pretend that the CPU 857 * already acknowledged the request to pass through a quiescent 858 * state. Either way, that CPU cannot possibly be in an RCU 859 * read-side critical section that started before the beginning 860 * of the current RCU grace period. 861 */ 862 if (rcu_watching_snap_stopped_since(rdp, rdp->watching_snap)) { 863 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 864 rcu_gpnum_ovf(rnp, rdp); 865 return 1; 866 } 867 868 /* 869 * Complain if a CPU that is considered to be offline from RCU's 870 * perspective has not yet reported a quiescent state. After all, 871 * the offline CPU should have reported a quiescent state during 872 * the CPU-offline process, or, failing that, by rcu_gp_init() 873 * if it ran concurrently with either the CPU going offline or the 874 * last task on a leaf rcu_node structure exiting its RCU read-side 875 * critical section while all CPUs corresponding to that structure 876 * are offline. This added warning detects bugs in any of these 877 * code paths. 878 * 879 * The rcu_node structure's ->lock is held here, which excludes 880 * the relevant portions the CPU-hotplug code, the grace-period 881 * initialization code, and the rcu_read_unlock() code paths. 882 * 883 * For more detail, please refer to the "Hotplug CPU" section 884 * of RCU's Requirements documentation. 885 */ 886 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 887 struct rcu_node *rnp1; 888 889 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 890 __func__, rnp->grplo, rnp->grphi, rnp->level, 891 (long)rnp->gp_seq, (long)rnp->completedqs); 892 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 893 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 894 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 895 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 896 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 897 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state, 898 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state); 899 return 1; /* Break things loose after complaining. */ 900 } 901 902 /* 903 * A CPU running for an extended time within the kernel can 904 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 905 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 906 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 907 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 908 * variable are safe because the assignments are repeated if this 909 * CPU failed to pass through a quiescent state. This code 910 * also checks .jiffies_resched in case jiffies_to_sched_qs 911 * is set way high. 912 */ 913 jtsq = READ_ONCE(jiffies_to_sched_qs); 914 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 915 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 916 time_after(jiffies, rcu_state.jiffies_resched) || 917 rcu_state.cbovld)) { 918 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 919 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 920 smp_store_release(&rdp->rcu_urgent_qs, true); 921 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 922 WRITE_ONCE(rdp->rcu_urgent_qs, true); 923 } 924 925 /* 926 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 927 * The above code handles this, but only for straight cond_resched(). 928 * And some in-kernel loops check need_resched() before calling 929 * cond_resched(), which defeats the above code for CPUs that are 930 * running in-kernel with scheduling-clock interrupts disabled. 931 * So hit them over the head with the resched_cpu() hammer! 932 */ 933 if (tick_nohz_full_cpu(rdp->cpu) && 934 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 935 rcu_state.cbovld)) { 936 WRITE_ONCE(rdp->rcu_urgent_qs, true); 937 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 938 ret = -1; 939 } 940 941 /* 942 * If more than halfway to RCU CPU stall-warning time, invoke 943 * resched_cpu() more frequently to try to loosen things up a bit. 944 * Also check to see if the CPU is getting hammered with interrupts, 945 * but only once per grace period, just to keep the IPIs down to 946 * a dull roar. 947 */ 948 if (time_after(jiffies, rcu_state.jiffies_resched)) { 949 if (time_after(jiffies, 950 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 951 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 952 ret = -1; 953 } 954 if (IS_ENABLED(CONFIG_IRQ_WORK) && 955 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 956 (rnp->ffmask & rdp->grpmask)) { 957 rdp->rcu_iw_pending = true; 958 rdp->rcu_iw_gp_seq = rnp->gp_seq; 959 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 960 } 961 962 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { 963 int cpu = rdp->cpu; 964 struct rcu_snap_record *rsrp; 965 struct kernel_cpustat *kcsp; 966 967 kcsp = &kcpustat_cpu(cpu); 968 969 rsrp = &rdp->snap_record; 970 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); 971 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); 972 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); 973 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(cpu) + arch_irq_stat_cpu(cpu); 974 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(cpu); 975 rsrp->nr_csw = nr_context_switches_cpu(cpu); 976 rsrp->jiffies = jiffies; 977 rsrp->gp_seq = rdp->gp_seq; 978 } 979 } 980 981 return ret; 982 } 983 984 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 985 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 986 unsigned long gp_seq_req, const char *s) 987 { 988 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 989 gp_seq_req, rnp->level, 990 rnp->grplo, rnp->grphi, s); 991 } 992 993 /* 994 * rcu_start_this_gp - Request the start of a particular grace period 995 * @rnp_start: The leaf node of the CPU from which to start. 996 * @rdp: The rcu_data corresponding to the CPU from which to start. 997 * @gp_seq_req: The gp_seq of the grace period to start. 998 * 999 * Start the specified grace period, as needed to handle newly arrived 1000 * callbacks. The required future grace periods are recorded in each 1001 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1002 * is reason to awaken the grace-period kthread. 1003 * 1004 * The caller must hold the specified rcu_node structure's ->lock, which 1005 * is why the caller is responsible for waking the grace-period kthread. 1006 * 1007 * Returns true if the GP thread needs to be awakened else false. 1008 */ 1009 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1010 unsigned long gp_seq_req) 1011 { 1012 bool ret = false; 1013 struct rcu_node *rnp; 1014 1015 /* 1016 * Use funnel locking to either acquire the root rcu_node 1017 * structure's lock or bail out if the need for this grace period 1018 * has already been recorded -- or if that grace period has in 1019 * fact already started. If there is already a grace period in 1020 * progress in a non-leaf node, no recording is needed because the 1021 * end of the grace period will scan the leaf rcu_node structures. 1022 * Note that rnp_start->lock must not be released. 1023 */ 1024 raw_lockdep_assert_held_rcu_node(rnp_start); 1025 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1026 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1027 if (rnp != rnp_start) 1028 raw_spin_lock_rcu_node(rnp); 1029 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1030 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1031 (rnp != rnp_start && 1032 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1033 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1034 TPS("Prestarted")); 1035 goto unlock_out; 1036 } 1037 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 1038 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1039 /* 1040 * We just marked the leaf or internal node, and a 1041 * grace period is in progress, which means that 1042 * rcu_gp_cleanup() will see the marking. Bail to 1043 * reduce contention. 1044 */ 1045 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1046 TPS("Startedleaf")); 1047 goto unlock_out; 1048 } 1049 if (rnp != rnp_start && rnp->parent != NULL) 1050 raw_spin_unlock_rcu_node(rnp); 1051 if (!rnp->parent) 1052 break; /* At root, and perhaps also leaf. */ 1053 } 1054 1055 /* If GP already in progress, just leave, otherwise start one. */ 1056 if (rcu_gp_in_progress()) { 1057 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1058 goto unlock_out; 1059 } 1060 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1061 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1062 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1063 if (!READ_ONCE(rcu_state.gp_kthread)) { 1064 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1065 goto unlock_out; 1066 } 1067 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1068 ret = true; /* Caller must wake GP kthread. */ 1069 unlock_out: 1070 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1071 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1072 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1073 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1074 } 1075 if (rnp != rnp_start) 1076 raw_spin_unlock_rcu_node(rnp); 1077 return ret; 1078 } 1079 1080 /* 1081 * Clean up any old requests for the just-ended grace period. Also return 1082 * whether any additional grace periods have been requested. 1083 */ 1084 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1085 { 1086 bool needmore; 1087 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1088 1089 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1090 if (!needmore) 1091 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1092 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1093 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1094 return needmore; 1095 } 1096 1097 /* 1098 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1099 * interrupt or softirq handler, in which case we just might immediately 1100 * sleep upon return, resulting in a grace-period hang), and don't bother 1101 * awakening when there is nothing for the grace-period kthread to do 1102 * (as in several CPUs raced to awaken, we lost), and finally don't try 1103 * to awaken a kthread that has not yet been created. If all those checks 1104 * are passed, track some debug information and awaken. 1105 * 1106 * So why do the self-wakeup when in an interrupt or softirq handler 1107 * in the grace-period kthread's context? Because the kthread might have 1108 * been interrupted just as it was going to sleep, and just after the final 1109 * pre-sleep check of the awaken condition. In this case, a wakeup really 1110 * is required, and is therefore supplied. 1111 */ 1112 static void rcu_gp_kthread_wake(void) 1113 { 1114 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1115 1116 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1117 !READ_ONCE(rcu_state.gp_flags) || !t) 1118 return; 1119 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1120 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1121 swake_up_one(&rcu_state.gp_wq); 1122 } 1123 1124 /* 1125 * If there is room, assign a ->gp_seq number to any callbacks on this 1126 * CPU that have not already been assigned. Also accelerate any callbacks 1127 * that were previously assigned a ->gp_seq number that has since proven 1128 * to be too conservative, which can happen if callbacks get assigned a 1129 * ->gp_seq number while RCU is idle, but with reference to a non-root 1130 * rcu_node structure. This function is idempotent, so it does not hurt 1131 * to call it repeatedly. Returns an flag saying that we should awaken 1132 * the RCU grace-period kthread. 1133 * 1134 * The caller must hold rnp->lock with interrupts disabled. 1135 */ 1136 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1137 { 1138 unsigned long gp_seq_req; 1139 bool ret = false; 1140 1141 rcu_lockdep_assert_cblist_protected(rdp); 1142 raw_lockdep_assert_held_rcu_node(rnp); 1143 1144 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1145 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1146 return false; 1147 1148 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1149 1150 /* 1151 * Callbacks are often registered with incomplete grace-period 1152 * information. Something about the fact that getting exact 1153 * information requires acquiring a global lock... RCU therefore 1154 * makes a conservative estimate of the grace period number at which 1155 * a given callback will become ready to invoke. The following 1156 * code checks this estimate and improves it when possible, thus 1157 * accelerating callback invocation to an earlier grace-period 1158 * number. 1159 */ 1160 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1161 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1162 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1163 1164 /* Trace depending on how much we were able to accelerate. */ 1165 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1166 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1167 else 1168 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1169 1170 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1171 1172 return ret; 1173 } 1174 1175 /* 1176 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1177 * rcu_node structure's ->lock be held. It consults the cached value 1178 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1179 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1180 * while holding the leaf rcu_node structure's ->lock. 1181 */ 1182 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1183 struct rcu_data *rdp) 1184 { 1185 unsigned long c; 1186 bool needwake; 1187 1188 rcu_lockdep_assert_cblist_protected(rdp); 1189 c = rcu_seq_snap(&rcu_state.gp_seq); 1190 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1191 /* Old request still live, so mark recent callbacks. */ 1192 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1193 return; 1194 } 1195 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1196 needwake = rcu_accelerate_cbs(rnp, rdp); 1197 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1198 if (needwake) 1199 rcu_gp_kthread_wake(); 1200 } 1201 1202 /* 1203 * Move any callbacks whose grace period has completed to the 1204 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1205 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1206 * sublist. This function is idempotent, so it does not hurt to 1207 * invoke it repeatedly. As long as it is not invoked -too- often... 1208 * Returns true if the RCU grace-period kthread needs to be awakened. 1209 * 1210 * The caller must hold rnp->lock with interrupts disabled. 1211 */ 1212 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1213 { 1214 rcu_lockdep_assert_cblist_protected(rdp); 1215 raw_lockdep_assert_held_rcu_node(rnp); 1216 1217 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1218 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1219 return false; 1220 1221 /* 1222 * Find all callbacks whose ->gp_seq numbers indicate that they 1223 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1224 */ 1225 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1226 1227 /* Classify any remaining callbacks. */ 1228 return rcu_accelerate_cbs(rnp, rdp); 1229 } 1230 1231 /* 1232 * Move and classify callbacks, but only if doing so won't require 1233 * that the RCU grace-period kthread be awakened. 1234 */ 1235 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1236 struct rcu_data *rdp) 1237 { 1238 rcu_lockdep_assert_cblist_protected(rdp); 1239 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1240 return; 1241 // The grace period cannot end while we hold the rcu_node lock. 1242 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1243 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1244 raw_spin_unlock_rcu_node(rnp); 1245 } 1246 1247 /* 1248 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1249 * quiescent state. This is intended to be invoked when the CPU notices 1250 * a new grace period. 1251 */ 1252 static void rcu_strict_gp_check_qs(void) 1253 { 1254 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1255 rcu_read_lock(); 1256 rcu_read_unlock(); 1257 } 1258 } 1259 1260 /* 1261 * Update CPU-local rcu_data state to record the beginnings and ends of 1262 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1263 * structure corresponding to the current CPU, and must have irqs disabled. 1264 * Returns true if the grace-period kthread needs to be awakened. 1265 */ 1266 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1267 { 1268 bool ret = false; 1269 bool need_qs; 1270 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1271 1272 raw_lockdep_assert_held_rcu_node(rnp); 1273 1274 if (rdp->gp_seq == rnp->gp_seq) 1275 return false; /* Nothing to do. */ 1276 1277 /* Handle the ends of any preceding grace periods first. */ 1278 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1279 unlikely(rdp->gpwrap)) { 1280 if (!offloaded) 1281 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1282 rdp->core_needs_qs = false; 1283 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1284 } else { 1285 if (!offloaded) 1286 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1287 if (rdp->core_needs_qs) 1288 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1289 } 1290 1291 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1292 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1293 unlikely(rdp->gpwrap)) { 1294 /* 1295 * If the current grace period is waiting for this CPU, 1296 * set up to detect a quiescent state, otherwise don't 1297 * go looking for one. 1298 */ 1299 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1300 need_qs = !!(rnp->qsmask & rdp->grpmask); 1301 rdp->cpu_no_qs.b.norm = need_qs; 1302 rdp->core_needs_qs = need_qs; 1303 zero_cpu_stall_ticks(rdp); 1304 } 1305 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1306 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1307 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1308 if (IS_ENABLED(CONFIG_PROVE_RCU) && rdp->gpwrap) 1309 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1310 WRITE_ONCE(rdp->gpwrap, false); 1311 rcu_gpnum_ovf(rnp, rdp); 1312 return ret; 1313 } 1314 1315 static void note_gp_changes(struct rcu_data *rdp) 1316 { 1317 unsigned long flags; 1318 bool needwake; 1319 struct rcu_node *rnp; 1320 1321 local_irq_save(flags); 1322 rnp = rdp->mynode; 1323 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1324 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1325 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1326 local_irq_restore(flags); 1327 return; 1328 } 1329 needwake = __note_gp_changes(rnp, rdp); 1330 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1331 rcu_strict_gp_check_qs(); 1332 if (needwake) 1333 rcu_gp_kthread_wake(); 1334 } 1335 1336 static atomic_t *rcu_gp_slow_suppress; 1337 1338 /* Register a counter to suppress debugging grace-period delays. */ 1339 void rcu_gp_slow_register(atomic_t *rgssp) 1340 { 1341 WARN_ON_ONCE(rcu_gp_slow_suppress); 1342 1343 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1344 } 1345 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1346 1347 /* Unregister a counter, with NULL for not caring which. */ 1348 void rcu_gp_slow_unregister(atomic_t *rgssp) 1349 { 1350 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL); 1351 1352 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1353 } 1354 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1355 1356 static bool rcu_gp_slow_is_suppressed(void) 1357 { 1358 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1359 1360 return rgssp && atomic_read(rgssp); 1361 } 1362 1363 static void rcu_gp_slow(int delay) 1364 { 1365 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1366 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1367 schedule_timeout_idle(delay); 1368 } 1369 1370 static unsigned long sleep_duration; 1371 1372 /* Allow rcutorture to stall the grace-period kthread. */ 1373 void rcu_gp_set_torture_wait(int duration) 1374 { 1375 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1376 WRITE_ONCE(sleep_duration, duration); 1377 } 1378 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1379 1380 /* Actually implement the aforementioned wait. */ 1381 static void rcu_gp_torture_wait(void) 1382 { 1383 unsigned long duration; 1384 1385 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1386 return; 1387 duration = xchg(&sleep_duration, 0UL); 1388 if (duration > 0) { 1389 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1390 schedule_timeout_idle(duration); 1391 pr_alert("%s: Wait complete\n", __func__); 1392 } 1393 } 1394 1395 /* 1396 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1397 * processing. 1398 */ 1399 static void rcu_strict_gp_boundary(void *unused) 1400 { 1401 invoke_rcu_core(); 1402 } 1403 1404 // Make the polled API aware of the beginning of a grace period. 1405 static void rcu_poll_gp_seq_start(unsigned long *snap) 1406 { 1407 struct rcu_node *rnp = rcu_get_root(); 1408 1409 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1410 raw_lockdep_assert_held_rcu_node(rnp); 1411 1412 // If RCU was idle, note beginning of GP. 1413 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1414 rcu_seq_start(&rcu_state.gp_seq_polled); 1415 1416 // Either way, record current state. 1417 *snap = rcu_state.gp_seq_polled; 1418 } 1419 1420 // Make the polled API aware of the end of a grace period. 1421 static void rcu_poll_gp_seq_end(unsigned long *snap) 1422 { 1423 struct rcu_node *rnp = rcu_get_root(); 1424 1425 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1426 raw_lockdep_assert_held_rcu_node(rnp); 1427 1428 // If the previously noted GP is still in effect, record the 1429 // end of that GP. Either way, zero counter to avoid counter-wrap 1430 // problems. 1431 if (*snap && *snap == rcu_state.gp_seq_polled) { 1432 rcu_seq_end(&rcu_state.gp_seq_polled); 1433 rcu_state.gp_seq_polled_snap = 0; 1434 rcu_state.gp_seq_polled_exp_snap = 0; 1435 } else { 1436 *snap = 0; 1437 } 1438 } 1439 1440 // Make the polled API aware of the beginning of a grace period, but 1441 // where caller does not hold the root rcu_node structure's lock. 1442 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1443 { 1444 unsigned long flags; 1445 struct rcu_node *rnp = rcu_get_root(); 1446 1447 if (rcu_init_invoked()) { 1448 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1449 lockdep_assert_irqs_enabled(); 1450 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1451 } 1452 rcu_poll_gp_seq_start(snap); 1453 if (rcu_init_invoked()) 1454 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1455 } 1456 1457 // Make the polled API aware of the end of a grace period, but where 1458 // caller does not hold the root rcu_node structure's lock. 1459 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1460 { 1461 unsigned long flags; 1462 struct rcu_node *rnp = rcu_get_root(); 1463 1464 if (rcu_init_invoked()) { 1465 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1466 lockdep_assert_irqs_enabled(); 1467 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1468 } 1469 rcu_poll_gp_seq_end(snap); 1470 if (rcu_init_invoked()) 1471 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1472 } 1473 1474 /* 1475 * There is a single llist, which is used for handling 1476 * synchronize_rcu() users' enqueued rcu_synchronize nodes. 1477 * Within this llist, there are two tail pointers: 1478 * 1479 * wait tail: Tracks the set of nodes, which need to 1480 * wait for the current GP to complete. 1481 * done tail: Tracks the set of nodes, for which grace 1482 * period has elapsed. These nodes processing 1483 * will be done as part of the cleanup work 1484 * execution by a kworker. 1485 * 1486 * At every grace period init, a new wait node is added 1487 * to the llist. This wait node is used as wait tail 1488 * for this new grace period. Given that there are a fixed 1489 * number of wait nodes, if all wait nodes are in use 1490 * (which can happen when kworker callback processing 1491 * is delayed) and additional grace period is requested. 1492 * This means, a system is slow in processing callbacks. 1493 * 1494 * TODO: If a slow processing is detected, a first node 1495 * in the llist should be used as a wait-tail for this 1496 * grace period, therefore users which should wait due 1497 * to a slow process are handled by _this_ grace period 1498 * and not next. 1499 * 1500 * Below is an illustration of how the done and wait 1501 * tail pointers move from one set of rcu_synchronize nodes 1502 * to the other, as grace periods start and finish and 1503 * nodes are processed by kworker. 1504 * 1505 * 1506 * a. Initial llist callbacks list: 1507 * 1508 * +----------+ +--------+ +-------+ 1509 * | | | | | | 1510 * | head |---------> | cb2 |--------->| cb1 | 1511 * | | | | | | 1512 * +----------+ +--------+ +-------+ 1513 * 1514 * 1515 * 1516 * b. New GP1 Start: 1517 * 1518 * WAIT TAIL 1519 * | 1520 * | 1521 * v 1522 * +----------+ +--------+ +--------+ +-------+ 1523 * | | | | | | | | 1524 * | head ------> wait |------> cb2 |------> | cb1 | 1525 * | | | head1 | | | | | 1526 * +----------+ +--------+ +--------+ +-------+ 1527 * 1528 * 1529 * 1530 * c. GP completion: 1531 * 1532 * WAIT_TAIL == DONE_TAIL 1533 * 1534 * DONE TAIL 1535 * | 1536 * | 1537 * v 1538 * +----------+ +--------+ +--------+ +-------+ 1539 * | | | | | | | | 1540 * | head ------> wait |------> cb2 |------> | cb1 | 1541 * | | | head1 | | | | | 1542 * +----------+ +--------+ +--------+ +-------+ 1543 * 1544 * 1545 * 1546 * d. New callbacks and GP2 start: 1547 * 1548 * WAIT TAIL DONE TAIL 1549 * | | 1550 * | | 1551 * v v 1552 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1553 * | | | | | | | | | | | | | | 1554 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 | 1555 * | | | head2| | | | | |head1| | | | | 1556 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1557 * 1558 * 1559 * 1560 * e. GP2 completion: 1561 * 1562 * WAIT_TAIL == DONE_TAIL 1563 * DONE TAIL 1564 * | 1565 * | 1566 * v 1567 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1568 * | | | | | | | | | | | | | | 1569 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 | 1570 * | | | head2| | | | | |head1| | | | | 1571 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1572 * 1573 * 1574 * While the llist state transitions from d to e, a kworker 1575 * can start executing rcu_sr_normal_gp_cleanup_work() and 1576 * can observe either the old done tail (@c) or the new 1577 * done tail (@e). So, done tail updates and reads need 1578 * to use the rel-acq semantics. If the concurrent kworker 1579 * observes the old done tail, the newly queued work 1580 * execution will process the updated done tail. If the 1581 * concurrent kworker observes the new done tail, then 1582 * the newly queued work will skip processing the done 1583 * tail, as workqueue semantics guarantees that the new 1584 * work is executed only after the previous one completes. 1585 * 1586 * f. kworker callbacks processing complete: 1587 * 1588 * 1589 * DONE TAIL 1590 * | 1591 * | 1592 * v 1593 * +----------+ +--------+ 1594 * | | | | 1595 * | head ------> wait | 1596 * | | | head2 | 1597 * +----------+ +--------+ 1598 * 1599 */ 1600 static bool rcu_sr_is_wait_head(struct llist_node *node) 1601 { 1602 return &(rcu_state.srs_wait_nodes)[0].node <= node && 1603 node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node; 1604 } 1605 1606 static struct llist_node *rcu_sr_get_wait_head(void) 1607 { 1608 struct sr_wait_node *sr_wn; 1609 int i; 1610 1611 for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) { 1612 sr_wn = &(rcu_state.srs_wait_nodes)[i]; 1613 1614 if (!atomic_cmpxchg_acquire(&sr_wn->inuse, 0, 1)) 1615 return &sr_wn->node; 1616 } 1617 1618 return NULL; 1619 } 1620 1621 static void rcu_sr_put_wait_head(struct llist_node *node) 1622 { 1623 struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node); 1624 1625 atomic_set_release(&sr_wn->inuse, 0); 1626 } 1627 1628 /* Disabled by default. */ 1629 static int rcu_normal_wake_from_gp; 1630 module_param(rcu_normal_wake_from_gp, int, 0644); 1631 static struct workqueue_struct *sync_wq; 1632 1633 static void rcu_sr_normal_complete(struct llist_node *node) 1634 { 1635 struct rcu_synchronize *rs = container_of( 1636 (struct rcu_head *) node, struct rcu_synchronize, head); 1637 1638 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && 1639 !poll_state_synchronize_rcu_full(&rs->oldstate), 1640 "A full grace period is not passed yet!\n"); 1641 1642 /* Finally. */ 1643 complete(&rs->completion); 1644 } 1645 1646 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work) 1647 { 1648 struct llist_node *done, *rcu, *next, *head; 1649 1650 /* 1651 * This work execution can potentially execute 1652 * while a new done tail is being updated by 1653 * grace period kthread in rcu_sr_normal_gp_cleanup(). 1654 * So, read and updates of done tail need to 1655 * follow acq-rel semantics. 1656 * 1657 * Given that wq semantics guarantees that a single work 1658 * cannot execute concurrently by multiple kworkers, 1659 * the done tail list manipulations are protected here. 1660 */ 1661 done = smp_load_acquire(&rcu_state.srs_done_tail); 1662 if (WARN_ON_ONCE(!done)) 1663 return; 1664 1665 WARN_ON_ONCE(!rcu_sr_is_wait_head(done)); 1666 head = done->next; 1667 done->next = NULL; 1668 1669 /* 1670 * The dummy node, which is pointed to by the 1671 * done tail which is acq-read above is not removed 1672 * here. This allows lockless additions of new 1673 * rcu_synchronize nodes in rcu_sr_normal_add_req(), 1674 * while the cleanup work executes. The dummy 1675 * nodes is removed, in next round of cleanup 1676 * work execution. 1677 */ 1678 llist_for_each_safe(rcu, next, head) { 1679 if (!rcu_sr_is_wait_head(rcu)) { 1680 rcu_sr_normal_complete(rcu); 1681 continue; 1682 } 1683 1684 rcu_sr_put_wait_head(rcu); 1685 } 1686 1687 /* Order list manipulations with atomic access. */ 1688 atomic_dec_return_release(&rcu_state.srs_cleanups_pending); 1689 } 1690 1691 /* 1692 * Helper function for rcu_gp_cleanup(). 1693 */ 1694 static void rcu_sr_normal_gp_cleanup(void) 1695 { 1696 struct llist_node *wait_tail, *next = NULL, *rcu = NULL; 1697 int done = 0; 1698 1699 wait_tail = rcu_state.srs_wait_tail; 1700 if (wait_tail == NULL) 1701 return; 1702 1703 rcu_state.srs_wait_tail = NULL; 1704 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail); 1705 WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail)); 1706 1707 /* 1708 * Process (a) and (d) cases. See an illustration. 1709 */ 1710 llist_for_each_safe(rcu, next, wait_tail->next) { 1711 if (rcu_sr_is_wait_head(rcu)) 1712 break; 1713 1714 rcu_sr_normal_complete(rcu); 1715 // It can be last, update a next on this step. 1716 wait_tail->next = next; 1717 1718 if (++done == SR_MAX_USERS_WAKE_FROM_GP) 1719 break; 1720 } 1721 1722 /* 1723 * Fast path, no more users to process except putting the second last 1724 * wait head if no inflight-workers. If there are in-flight workers, 1725 * they will remove the last wait head. 1726 * 1727 * Note that the ACQUIRE orders atomic access with list manipulation. 1728 */ 1729 if (wait_tail->next && wait_tail->next->next == NULL && 1730 rcu_sr_is_wait_head(wait_tail->next) && 1731 !atomic_read_acquire(&rcu_state.srs_cleanups_pending)) { 1732 rcu_sr_put_wait_head(wait_tail->next); 1733 wait_tail->next = NULL; 1734 } 1735 1736 /* Concurrent sr_normal_gp_cleanup work might observe this update. */ 1737 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail); 1738 smp_store_release(&rcu_state.srs_done_tail, wait_tail); 1739 1740 /* 1741 * We schedule a work in order to perform a final processing 1742 * of outstanding users(if still left) and releasing wait-heads 1743 * added by rcu_sr_normal_gp_init() call. 1744 */ 1745 if (wait_tail->next) { 1746 atomic_inc(&rcu_state.srs_cleanups_pending); 1747 if (!queue_work(sync_wq, &rcu_state.srs_cleanup_work)) 1748 atomic_dec(&rcu_state.srs_cleanups_pending); 1749 } 1750 } 1751 1752 /* 1753 * Helper function for rcu_gp_init(). 1754 */ 1755 static bool rcu_sr_normal_gp_init(void) 1756 { 1757 struct llist_node *first; 1758 struct llist_node *wait_head; 1759 bool start_new_poll = false; 1760 1761 first = READ_ONCE(rcu_state.srs_next.first); 1762 if (!first || rcu_sr_is_wait_head(first)) 1763 return start_new_poll; 1764 1765 wait_head = rcu_sr_get_wait_head(); 1766 if (!wait_head) { 1767 // Kick another GP to retry. 1768 start_new_poll = true; 1769 return start_new_poll; 1770 } 1771 1772 /* Inject a wait-dummy-node. */ 1773 llist_add(wait_head, &rcu_state.srs_next); 1774 1775 /* 1776 * A waiting list of rcu_synchronize nodes should be empty on 1777 * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(), 1778 * rolls it over. If not, it is a BUG, warn a user. 1779 */ 1780 WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL); 1781 rcu_state.srs_wait_tail = wait_head; 1782 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail); 1783 1784 return start_new_poll; 1785 } 1786 1787 static void rcu_sr_normal_add_req(struct rcu_synchronize *rs) 1788 { 1789 llist_add((struct llist_node *) &rs->head, &rcu_state.srs_next); 1790 } 1791 1792 /* 1793 * Initialize a new grace period. Return false if no grace period required. 1794 */ 1795 static noinline_for_stack bool rcu_gp_init(void) 1796 { 1797 unsigned long flags; 1798 unsigned long oldmask; 1799 unsigned long mask; 1800 struct rcu_data *rdp; 1801 struct rcu_node *rnp = rcu_get_root(); 1802 bool start_new_poll; 1803 unsigned long old_gp_seq; 1804 1805 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1806 raw_spin_lock_irq_rcu_node(rnp); 1807 if (!rcu_state.gp_flags) { 1808 /* Spurious wakeup, tell caller to go back to sleep. */ 1809 raw_spin_unlock_irq_rcu_node(rnp); 1810 return false; 1811 } 1812 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1813 1814 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1815 /* 1816 * Grace period already in progress, don't start another. 1817 * Not supposed to be able to happen. 1818 */ 1819 raw_spin_unlock_irq_rcu_node(rnp); 1820 return false; 1821 } 1822 1823 /* Advance to a new grace period and initialize state. */ 1824 record_gp_stall_check_time(); 1825 /* 1826 * A new wait segment must be started before gp_seq advanced, so 1827 * that previous gp waiters won't observe the new gp_seq. 1828 */ 1829 start_new_poll = rcu_sr_normal_gp_init(); 1830 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1831 old_gp_seq = rcu_state.gp_seq; 1832 rcu_seq_start(&rcu_state.gp_seq); 1833 /* Ensure that rcu_seq_done_exact() guardband doesn't give false positives. */ 1834 WARN_ON_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && 1835 rcu_seq_done_exact(&old_gp_seq, rcu_seq_snap(&rcu_state.gp_seq))); 1836 1837 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1838 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1839 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1840 raw_spin_unlock_irq_rcu_node(rnp); 1841 1842 /* 1843 * The "start_new_poll" is set to true, only when this GP is not able 1844 * to handle anything and there are outstanding users. It happens when 1845 * the rcu_sr_normal_gp_init() function was not able to insert a dummy 1846 * separator to the llist, because there were no left any dummy-nodes. 1847 * 1848 * Number of dummy-nodes is fixed, it could be that we are run out of 1849 * them, if so we start a new pool request to repeat a try. It is rare 1850 * and it means that a system is doing a slow processing of callbacks. 1851 */ 1852 if (start_new_poll) 1853 (void) start_poll_synchronize_rcu(); 1854 1855 /* 1856 * Apply per-leaf buffered online and offline operations to 1857 * the rcu_node tree. Note that this new grace period need not 1858 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1859 * offlining path, when combined with checks in this function, 1860 * will handle CPUs that are currently going offline or that will 1861 * go offline later. Please also refer to "Hotplug CPU" section 1862 * of RCU's Requirements documentation. 1863 */ 1864 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1865 /* Exclude CPU hotplug operations. */ 1866 rcu_for_each_leaf_node(rnp) { 1867 local_irq_disable(); 1868 arch_spin_lock(&rcu_state.ofl_lock); 1869 raw_spin_lock_rcu_node(rnp); 1870 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1871 !rnp->wait_blkd_tasks) { 1872 /* Nothing to do on this leaf rcu_node structure. */ 1873 raw_spin_unlock_rcu_node(rnp); 1874 arch_spin_unlock(&rcu_state.ofl_lock); 1875 local_irq_enable(); 1876 continue; 1877 } 1878 1879 /* Record old state, apply changes to ->qsmaskinit field. */ 1880 oldmask = rnp->qsmaskinit; 1881 rnp->qsmaskinit = rnp->qsmaskinitnext; 1882 1883 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1884 if (!oldmask != !rnp->qsmaskinit) { 1885 if (!oldmask) { /* First online CPU for rcu_node. */ 1886 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1887 rcu_init_new_rnp(rnp); 1888 } else if (rcu_preempt_has_tasks(rnp)) { 1889 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1890 } else { /* Last offline CPU and can propagate. */ 1891 rcu_cleanup_dead_rnp(rnp); 1892 } 1893 } 1894 1895 /* 1896 * If all waited-on tasks from prior grace period are 1897 * done, and if all this rcu_node structure's CPUs are 1898 * still offline, propagate up the rcu_node tree and 1899 * clear ->wait_blkd_tasks. Otherwise, if one of this 1900 * rcu_node structure's CPUs has since come back online, 1901 * simply clear ->wait_blkd_tasks. 1902 */ 1903 if (rnp->wait_blkd_tasks && 1904 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1905 rnp->wait_blkd_tasks = false; 1906 if (!rnp->qsmaskinit) 1907 rcu_cleanup_dead_rnp(rnp); 1908 } 1909 1910 raw_spin_unlock_rcu_node(rnp); 1911 arch_spin_unlock(&rcu_state.ofl_lock); 1912 local_irq_enable(); 1913 } 1914 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1915 1916 /* 1917 * Set the quiescent-state-needed bits in all the rcu_node 1918 * structures for all currently online CPUs in breadth-first 1919 * order, starting from the root rcu_node structure, relying on the 1920 * layout of the tree within the rcu_state.node[] array. Note that 1921 * other CPUs will access only the leaves of the hierarchy, thus 1922 * seeing that no grace period is in progress, at least until the 1923 * corresponding leaf node has been initialized. 1924 * 1925 * The grace period cannot complete until the initialization 1926 * process finishes, because this kthread handles both. 1927 */ 1928 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1929 rcu_for_each_node_breadth_first(rnp) { 1930 rcu_gp_slow(gp_init_delay); 1931 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1932 rdp = this_cpu_ptr(&rcu_data); 1933 rcu_preempt_check_blocked_tasks(rnp); 1934 rnp->qsmask = rnp->qsmaskinit; 1935 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1936 if (rnp == rdp->mynode) 1937 (void)__note_gp_changes(rnp, rdp); 1938 rcu_preempt_boost_start_gp(rnp); 1939 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1940 rnp->level, rnp->grplo, 1941 rnp->grphi, rnp->qsmask); 1942 /* Quiescent states for tasks on any now-offline CPUs. */ 1943 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1944 rnp->rcu_gp_init_mask = mask; 1945 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1946 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1947 else 1948 raw_spin_unlock_irq_rcu_node(rnp); 1949 cond_resched_tasks_rcu_qs(); 1950 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1951 } 1952 1953 // If strict, make all CPUs aware of new grace period. 1954 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1955 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1956 1957 return true; 1958 } 1959 1960 /* 1961 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1962 * time. 1963 */ 1964 static bool rcu_gp_fqs_check_wake(int *gfp) 1965 { 1966 struct rcu_node *rnp = rcu_get_root(); 1967 1968 // If under overload conditions, force an immediate FQS scan. 1969 if (*gfp & RCU_GP_FLAG_OVLD) 1970 return true; 1971 1972 // Someone like call_rcu() requested a force-quiescent-state scan. 1973 *gfp = READ_ONCE(rcu_state.gp_flags); 1974 if (*gfp & RCU_GP_FLAG_FQS) 1975 return true; 1976 1977 // The current grace period has completed. 1978 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1979 return true; 1980 1981 return false; 1982 } 1983 1984 /* 1985 * Do one round of quiescent-state forcing. 1986 */ 1987 static void rcu_gp_fqs(bool first_time) 1988 { 1989 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall); 1990 struct rcu_node *rnp = rcu_get_root(); 1991 1992 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1993 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1994 1995 WARN_ON_ONCE(nr_fqs > 3); 1996 /* Only countdown nr_fqs for stall purposes if jiffies moves. */ 1997 if (nr_fqs) { 1998 if (nr_fqs == 1) { 1999 WRITE_ONCE(rcu_state.jiffies_stall, 2000 jiffies + rcu_jiffies_till_stall_check()); 2001 } 2002 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs); 2003 } 2004 2005 if (first_time) { 2006 /* Collect dyntick-idle snapshots. */ 2007 force_qs_rnp(rcu_watching_snap_save); 2008 } else { 2009 /* Handle dyntick-idle and offline CPUs. */ 2010 force_qs_rnp(rcu_watching_snap_recheck); 2011 } 2012 /* Clear flag to prevent immediate re-entry. */ 2013 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2014 raw_spin_lock_irq_rcu_node(rnp); 2015 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS); 2016 raw_spin_unlock_irq_rcu_node(rnp); 2017 } 2018 } 2019 2020 /* 2021 * Loop doing repeated quiescent-state forcing until the grace period ends. 2022 */ 2023 static noinline_for_stack void rcu_gp_fqs_loop(void) 2024 { 2025 bool first_gp_fqs = true; 2026 int gf = 0; 2027 unsigned long j; 2028 int ret; 2029 struct rcu_node *rnp = rcu_get_root(); 2030 2031 j = READ_ONCE(jiffies_till_first_fqs); 2032 if (rcu_state.cbovld) 2033 gf = RCU_GP_FLAG_OVLD; 2034 ret = 0; 2035 for (;;) { 2036 if (rcu_state.cbovld) { 2037 j = (j + 2) / 3; 2038 if (j <= 0) 2039 j = 1; 2040 } 2041 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 2042 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 2043 /* 2044 * jiffies_force_qs before RCU_GP_WAIT_FQS state 2045 * update; required for stall checks. 2046 */ 2047 smp_wmb(); 2048 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 2049 jiffies + (j ? 3 * j : 2)); 2050 } 2051 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2052 TPS("fqswait")); 2053 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 2054 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 2055 rcu_gp_fqs_check_wake(&gf), j); 2056 rcu_gp_torture_wait(); 2057 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 2058 /* Locking provides needed memory barriers. */ 2059 /* 2060 * Exit the loop if the root rcu_node structure indicates that the grace period 2061 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 2062 * is required only for single-node rcu_node trees because readers blocking 2063 * the current grace period are queued only on leaf rcu_node structures. 2064 * For multi-node trees, checking the root node's ->qsmask suffices, because a 2065 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 2066 * the corresponding leaf nodes have passed through their quiescent state. 2067 */ 2068 if (!READ_ONCE(rnp->qsmask) && 2069 !rcu_preempt_blocked_readers_cgp(rnp)) 2070 break; 2071 /* If time for quiescent-state forcing, do it. */ 2072 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 2073 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 2074 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2075 TPS("fqsstart")); 2076 rcu_gp_fqs(first_gp_fqs); 2077 gf = 0; 2078 if (first_gp_fqs) { 2079 first_gp_fqs = false; 2080 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 2081 } 2082 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2083 TPS("fqsend")); 2084 cond_resched_tasks_rcu_qs(); 2085 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2086 ret = 0; /* Force full wait till next FQS. */ 2087 j = READ_ONCE(jiffies_till_next_fqs); 2088 } else { 2089 /* Deal with stray signal. */ 2090 cond_resched_tasks_rcu_qs(); 2091 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2092 WARN_ON(signal_pending(current)); 2093 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2094 TPS("fqswaitsig")); 2095 ret = 1; /* Keep old FQS timing. */ 2096 j = jiffies; 2097 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 2098 j = 1; 2099 else 2100 j = rcu_state.jiffies_force_qs - j; 2101 gf = 0; 2102 } 2103 } 2104 } 2105 2106 /* 2107 * Clean up after the old grace period. 2108 */ 2109 static noinline void rcu_gp_cleanup(void) 2110 { 2111 int cpu; 2112 bool needgp = false; 2113 unsigned long gp_duration; 2114 unsigned long new_gp_seq; 2115 bool offloaded; 2116 struct rcu_data *rdp; 2117 struct rcu_node *rnp = rcu_get_root(); 2118 struct swait_queue_head *sq; 2119 2120 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2121 raw_spin_lock_irq_rcu_node(rnp); 2122 rcu_state.gp_end = jiffies; 2123 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2124 if (gp_duration > rcu_state.gp_max) 2125 rcu_state.gp_max = gp_duration; 2126 2127 /* 2128 * We know the grace period is complete, but to everyone else 2129 * it appears to still be ongoing. But it is also the case 2130 * that to everyone else it looks like there is nothing that 2131 * they can do to advance the grace period. It is therefore 2132 * safe for us to drop the lock in order to mark the grace 2133 * period as completed in all of the rcu_node structures. 2134 */ 2135 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 2136 raw_spin_unlock_irq_rcu_node(rnp); 2137 2138 /* 2139 * Propagate new ->gp_seq value to rcu_node structures so that 2140 * other CPUs don't have to wait until the start of the next grace 2141 * period to process their callbacks. This also avoids some nasty 2142 * RCU grace-period initialization races by forcing the end of 2143 * the current grace period to be completely recorded in all of 2144 * the rcu_node structures before the beginning of the next grace 2145 * period is recorded in any of the rcu_node structures. 2146 */ 2147 new_gp_seq = rcu_state.gp_seq; 2148 rcu_seq_end(&new_gp_seq); 2149 rcu_for_each_node_breadth_first(rnp) { 2150 raw_spin_lock_irq_rcu_node(rnp); 2151 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2152 dump_blkd_tasks(rnp, 10); 2153 WARN_ON_ONCE(rnp->qsmask); 2154 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2155 if (!rnp->parent) 2156 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 2157 rdp = this_cpu_ptr(&rcu_data); 2158 if (rnp == rdp->mynode) 2159 needgp = __note_gp_changes(rnp, rdp) || needgp; 2160 /* smp_mb() provided by prior unlock-lock pair. */ 2161 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2162 // Reset overload indication for CPUs no longer overloaded 2163 if (rcu_is_leaf_node(rnp)) 2164 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 2165 rdp = per_cpu_ptr(&rcu_data, cpu); 2166 check_cb_ovld_locked(rdp, rnp); 2167 } 2168 sq = rcu_nocb_gp_get(rnp); 2169 raw_spin_unlock_irq_rcu_node(rnp); 2170 rcu_nocb_gp_cleanup(sq); 2171 cond_resched_tasks_rcu_qs(); 2172 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2173 rcu_gp_slow(gp_cleanup_delay); 2174 } 2175 rnp = rcu_get_root(); 2176 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2177 2178 /* Declare grace period done, trace first to use old GP number. */ 2179 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2180 rcu_seq_end(&rcu_state.gp_seq); 2181 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 2182 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 2183 /* Check for GP requests since above loop. */ 2184 rdp = this_cpu_ptr(&rcu_data); 2185 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2186 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2187 TPS("CleanupMore")); 2188 needgp = true; 2189 } 2190 /* Advance CBs to reduce false positives below. */ 2191 offloaded = rcu_rdp_is_offloaded(rdp); 2192 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 2193 2194 // We get here if a grace period was needed (“needgp”) 2195 // and the above call to rcu_accelerate_cbs() did not set 2196 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 2197 // the need for another grace period). The purpose 2198 // of the “offloaded” check is to avoid invoking 2199 // rcu_accelerate_cbs() on an offloaded CPU because we do not 2200 // hold the ->nocb_lock needed to safely access an offloaded 2201 // ->cblist. We do not want to acquire that lock because 2202 // it can be heavily contended during callback floods. 2203 2204 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2205 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 2206 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 2207 } else { 2208 2209 // We get here either if there is no need for an 2210 // additional grace period or if rcu_accelerate_cbs() has 2211 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 2212 // So all we need to do is to clear all of the other 2213 // ->gp_flags bits. 2214 2215 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2216 } 2217 raw_spin_unlock_irq_rcu_node(rnp); 2218 2219 // Make synchronize_rcu() users aware of the end of old grace period. 2220 rcu_sr_normal_gp_cleanup(); 2221 2222 // If strict, make all CPUs aware of the end of the old grace period. 2223 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2224 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 2225 } 2226 2227 /* 2228 * Body of kthread that handles grace periods. 2229 */ 2230 static int __noreturn rcu_gp_kthread(void *unused) 2231 { 2232 rcu_bind_gp_kthread(); 2233 for (;;) { 2234 2235 /* Handle grace-period start. */ 2236 for (;;) { 2237 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2238 TPS("reqwait")); 2239 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 2240 swait_event_idle_exclusive(rcu_state.gp_wq, 2241 READ_ONCE(rcu_state.gp_flags) & 2242 RCU_GP_FLAG_INIT); 2243 rcu_gp_torture_wait(); 2244 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 2245 /* Locking provides needed memory barrier. */ 2246 if (rcu_gp_init()) 2247 break; 2248 cond_resched_tasks_rcu_qs(); 2249 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2250 WARN_ON(signal_pending(current)); 2251 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2252 TPS("reqwaitsig")); 2253 } 2254 2255 /* Handle quiescent-state forcing. */ 2256 rcu_gp_fqs_loop(); 2257 2258 /* Handle grace-period end. */ 2259 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 2260 rcu_gp_cleanup(); 2261 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 2262 } 2263 } 2264 2265 /* 2266 * Report a full set of quiescent states to the rcu_state data structure. 2267 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2268 * another grace period is required. Whether we wake the grace-period 2269 * kthread or it awakens itself for the next round of quiescent-state 2270 * forcing, that kthread will clean up after the just-completed grace 2271 * period. Note that the caller must hold rnp->lock, which is released 2272 * before return. 2273 */ 2274 static void rcu_report_qs_rsp(unsigned long flags) 2275 __releases(rcu_get_root()->lock) 2276 { 2277 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2278 WARN_ON_ONCE(!rcu_gp_in_progress()); 2279 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS); 2280 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2281 rcu_gp_kthread_wake(); 2282 } 2283 2284 /* 2285 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2286 * Allows quiescent states for a group of CPUs to be reported at one go 2287 * to the specified rcu_node structure, though all the CPUs in the group 2288 * must be represented by the same rcu_node structure (which need not be a 2289 * leaf rcu_node structure, though it often will be). The gps parameter 2290 * is the grace-period snapshot, which means that the quiescent states 2291 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2292 * must be held upon entry, and it is released before return. 2293 * 2294 * As a special case, if mask is zero, the bit-already-cleared check is 2295 * disabled. This allows propagating quiescent state due to resumed tasks 2296 * during grace-period initialization. 2297 */ 2298 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2299 unsigned long gps, unsigned long flags) 2300 __releases(rnp->lock) 2301 { 2302 unsigned long oldmask = 0; 2303 struct rcu_node *rnp_c; 2304 2305 raw_lockdep_assert_held_rcu_node(rnp); 2306 2307 /* Walk up the rcu_node hierarchy. */ 2308 for (;;) { 2309 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2310 2311 /* 2312 * Our bit has already been cleared, or the 2313 * relevant grace period is already over, so done. 2314 */ 2315 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2316 return; 2317 } 2318 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2319 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2320 rcu_preempt_blocked_readers_cgp(rnp)); 2321 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 2322 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2323 mask, rnp->qsmask, rnp->level, 2324 rnp->grplo, rnp->grphi, 2325 !!rnp->gp_tasks); 2326 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2327 2328 /* Other bits still set at this level, so done. */ 2329 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2330 return; 2331 } 2332 rnp->completedqs = rnp->gp_seq; 2333 mask = rnp->grpmask; 2334 if (rnp->parent == NULL) { 2335 2336 /* No more levels. Exit loop holding root lock. */ 2337 2338 break; 2339 } 2340 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2341 rnp_c = rnp; 2342 rnp = rnp->parent; 2343 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2344 oldmask = READ_ONCE(rnp_c->qsmask); 2345 } 2346 2347 /* 2348 * Get here if we are the last CPU to pass through a quiescent 2349 * state for this grace period. Invoke rcu_report_qs_rsp() 2350 * to clean up and start the next grace period if one is needed. 2351 */ 2352 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2353 } 2354 2355 /* 2356 * Record a quiescent state for all tasks that were previously queued 2357 * on the specified rcu_node structure and that were blocking the current 2358 * RCU grace period. The caller must hold the corresponding rnp->lock with 2359 * irqs disabled, and this lock is released upon return, but irqs remain 2360 * disabled. 2361 */ 2362 static void __maybe_unused 2363 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2364 __releases(rnp->lock) 2365 { 2366 unsigned long gps; 2367 unsigned long mask; 2368 struct rcu_node *rnp_p; 2369 2370 raw_lockdep_assert_held_rcu_node(rnp); 2371 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 2372 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2373 rnp->qsmask != 0) { 2374 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2375 return; /* Still need more quiescent states! */ 2376 } 2377 2378 rnp->completedqs = rnp->gp_seq; 2379 rnp_p = rnp->parent; 2380 if (rnp_p == NULL) { 2381 /* 2382 * Only one rcu_node structure in the tree, so don't 2383 * try to report up to its nonexistent parent! 2384 */ 2385 rcu_report_qs_rsp(flags); 2386 return; 2387 } 2388 2389 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2390 gps = rnp->gp_seq; 2391 mask = rnp->grpmask; 2392 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2393 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2394 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2395 } 2396 2397 /* 2398 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2399 * structure. This must be called from the specified CPU. 2400 */ 2401 static void 2402 rcu_report_qs_rdp(struct rcu_data *rdp) 2403 { 2404 unsigned long flags; 2405 unsigned long mask; 2406 struct rcu_node *rnp; 2407 2408 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2409 rnp = rdp->mynode; 2410 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2411 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2412 rdp->gpwrap) { 2413 2414 /* 2415 * The grace period in which this quiescent state was 2416 * recorded has ended, so don't report it upwards. 2417 * We will instead need a new quiescent state that lies 2418 * within the current grace period. 2419 */ 2420 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2421 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2422 return; 2423 } 2424 mask = rdp->grpmask; 2425 rdp->core_needs_qs = false; 2426 if ((rnp->qsmask & mask) == 0) { 2427 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2428 } else { 2429 /* 2430 * This GP can't end until cpu checks in, so all of our 2431 * callbacks can be processed during the next GP. 2432 * 2433 * NOCB kthreads have their own way to deal with that... 2434 */ 2435 if (!rcu_rdp_is_offloaded(rdp)) { 2436 /* 2437 * The current GP has not yet ended, so it 2438 * should not be possible for rcu_accelerate_cbs() 2439 * to return true. So complain, but don't awaken. 2440 */ 2441 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); 2442 } 2443 2444 rcu_disable_urgency_upon_qs(rdp); 2445 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2446 /* ^^^ Released rnp->lock */ 2447 } 2448 } 2449 2450 /* 2451 * Check to see if there is a new grace period of which this CPU 2452 * is not yet aware, and if so, set up local rcu_data state for it. 2453 * Otherwise, see if this CPU has just passed through its first 2454 * quiescent state for this grace period, and record that fact if so. 2455 */ 2456 static void 2457 rcu_check_quiescent_state(struct rcu_data *rdp) 2458 { 2459 /* Check for grace-period ends and beginnings. */ 2460 note_gp_changes(rdp); 2461 2462 /* 2463 * Does this CPU still need to do its part for current grace period? 2464 * If no, return and let the other CPUs do their part as well. 2465 */ 2466 if (!rdp->core_needs_qs) 2467 return; 2468 2469 /* 2470 * Was there a quiescent state since the beginning of the grace 2471 * period? If no, then exit and wait for the next call. 2472 */ 2473 if (rdp->cpu_no_qs.b.norm) 2474 return; 2475 2476 /* 2477 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2478 * judge of that). 2479 */ 2480 rcu_report_qs_rdp(rdp); 2481 } 2482 2483 /* Return true if callback-invocation time limit exceeded. */ 2484 static bool rcu_do_batch_check_time(long count, long tlimit, 2485 bool jlimit_check, unsigned long jlimit) 2486 { 2487 // Invoke local_clock() only once per 32 consecutive callbacks. 2488 return unlikely(tlimit) && 2489 (!likely(count & 31) || 2490 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) && 2491 jlimit_check && time_after(jiffies, jlimit))) && 2492 local_clock() >= tlimit; 2493 } 2494 2495 /* 2496 * Invoke any RCU callbacks that have made it to the end of their grace 2497 * period. Throttle as specified by rdp->blimit. 2498 */ 2499 static void rcu_do_batch(struct rcu_data *rdp) 2500 { 2501 long bl; 2502 long count = 0; 2503 int div; 2504 bool __maybe_unused empty; 2505 unsigned long flags; 2506 unsigned long jlimit; 2507 bool jlimit_check = false; 2508 long pending; 2509 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2510 struct rcu_head *rhp; 2511 long tlimit = 0; 2512 2513 /* If no callbacks are ready, just return. */ 2514 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2515 trace_rcu_batch_start(rcu_state.name, 2516 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2517 trace_rcu_batch_end(rcu_state.name, 0, 2518 !rcu_segcblist_empty(&rdp->cblist), 2519 need_resched(), is_idle_task(current), 2520 rcu_is_callbacks_kthread(rdp)); 2521 return; 2522 } 2523 2524 /* 2525 * Extract the list of ready callbacks, disabling IRQs to prevent 2526 * races with call_rcu() from interrupt handlers. Leave the 2527 * callback counts, as rcu_barrier() needs to be conservative. 2528 * 2529 * Callbacks execution is fully ordered against preceding grace period 2530 * completion (materialized by rnp->gp_seq update) thanks to the 2531 * smp_mb__after_unlock_lock() upon node locking required for callbacks 2532 * advancing. In NOCB mode this ordering is then further relayed through 2533 * the nocb locking that protects both callbacks advancing and extraction. 2534 */ 2535 rcu_nocb_lock_irqsave(rdp, flags); 2536 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2537 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); 2538 div = READ_ONCE(rcu_divisor); 2539 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2540 bl = max(rdp->blimit, pending >> div); 2541 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) && 2542 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) { 2543 const long npj = NSEC_PER_SEC / HZ; 2544 long rrn = READ_ONCE(rcu_resched_ns); 2545 2546 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2547 tlimit = local_clock() + rrn; 2548 jlimit = jiffies + (rrn + npj + 1) / npj; 2549 jlimit_check = true; 2550 } 2551 trace_rcu_batch_start(rcu_state.name, 2552 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2553 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2554 if (rcu_rdp_is_offloaded(rdp)) 2555 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2556 2557 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2558 rcu_nocb_unlock_irqrestore(rdp, flags); 2559 2560 /* Invoke callbacks. */ 2561 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2562 rhp = rcu_cblist_dequeue(&rcl); 2563 2564 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2565 rcu_callback_t f; 2566 2567 count++; 2568 debug_rcu_head_unqueue(rhp); 2569 2570 rcu_lock_acquire(&rcu_callback_map); 2571 trace_rcu_invoke_callback(rcu_state.name, rhp); 2572 2573 f = rhp->func; 2574 debug_rcu_head_callback(rhp); 2575 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2576 f(rhp); 2577 2578 rcu_lock_release(&rcu_callback_map); 2579 2580 /* 2581 * Stop only if limit reached and CPU has something to do. 2582 */ 2583 if (in_serving_softirq()) { 2584 if (count >= bl && (need_resched() || !is_idle_task(current))) 2585 break; 2586 /* 2587 * Make sure we don't spend too much time here and deprive other 2588 * softirq vectors of CPU cycles. 2589 */ 2590 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) 2591 break; 2592 } else { 2593 // In rcuc/rcuoc context, so no worries about 2594 // depriving other softirq vectors of CPU cycles. 2595 local_bh_enable(); 2596 lockdep_assert_irqs_enabled(); 2597 cond_resched_tasks_rcu_qs(); 2598 lockdep_assert_irqs_enabled(); 2599 local_bh_disable(); 2600 // But rcuc kthreads can delay quiescent-state 2601 // reporting, so check time limits for them. 2602 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING && 2603 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) { 2604 rdp->rcu_cpu_has_work = 1; 2605 break; 2606 } 2607 } 2608 } 2609 2610 rcu_nocb_lock_irqsave(rdp, flags); 2611 rdp->n_cbs_invoked += count; 2612 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2613 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2614 2615 /* Update counts and requeue any remaining callbacks. */ 2616 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2617 rcu_segcblist_add_len(&rdp->cblist, -count); 2618 2619 /* Reinstate batch limit if we have worked down the excess. */ 2620 count = rcu_segcblist_n_cbs(&rdp->cblist); 2621 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2622 rdp->blimit = blimit; 2623 2624 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2625 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2626 rdp->qlen_last_fqs_check = 0; 2627 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2628 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2629 rdp->qlen_last_fqs_check = count; 2630 2631 /* 2632 * The following usually indicates a double call_rcu(). To track 2633 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2634 */ 2635 empty = rcu_segcblist_empty(&rdp->cblist); 2636 WARN_ON_ONCE(count == 0 && !empty); 2637 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2638 count != 0 && empty); 2639 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2640 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2641 2642 rcu_nocb_unlock_irqrestore(rdp, flags); 2643 2644 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2645 } 2646 2647 /* 2648 * This function is invoked from each scheduling-clock interrupt, 2649 * and checks to see if this CPU is in a non-context-switch quiescent 2650 * state, for example, user mode or idle loop. It also schedules RCU 2651 * core processing. If the current grace period has gone on too long, 2652 * it will ask the scheduler to manufacture a context switch for the sole 2653 * purpose of providing the needed quiescent state. 2654 */ 2655 void rcu_sched_clock_irq(int user) 2656 { 2657 unsigned long j; 2658 2659 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2660 j = jiffies; 2661 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2662 __this_cpu_write(rcu_data.last_sched_clock, j); 2663 } 2664 trace_rcu_utilization(TPS("Start scheduler-tick")); 2665 lockdep_assert_irqs_disabled(); 2666 raw_cpu_inc(rcu_data.ticks_this_gp); 2667 /* The load-acquire pairs with the store-release setting to true. */ 2668 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2669 /* Idle and userspace execution already are quiescent states. */ 2670 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2671 set_tsk_need_resched(current); 2672 set_preempt_need_resched(); 2673 } 2674 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2675 } 2676 rcu_flavor_sched_clock_irq(user); 2677 if (rcu_pending(user)) 2678 invoke_rcu_core(); 2679 if (user || rcu_is_cpu_rrupt_from_idle()) 2680 rcu_note_voluntary_context_switch(current); 2681 lockdep_assert_irqs_disabled(); 2682 2683 trace_rcu_utilization(TPS("End scheduler-tick")); 2684 } 2685 2686 /* 2687 * Scan the leaf rcu_node structures. For each structure on which all 2688 * CPUs have reported a quiescent state and on which there are tasks 2689 * blocking the current grace period, initiate RCU priority boosting. 2690 * Otherwise, invoke the specified function to check dyntick state for 2691 * each CPU that has not yet reported a quiescent state. 2692 */ 2693 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2694 { 2695 int cpu; 2696 unsigned long flags; 2697 struct rcu_node *rnp; 2698 2699 rcu_state.cbovld = rcu_state.cbovldnext; 2700 rcu_state.cbovldnext = false; 2701 rcu_for_each_leaf_node(rnp) { 2702 unsigned long mask = 0; 2703 unsigned long rsmask = 0; 2704 2705 cond_resched_tasks_rcu_qs(); 2706 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2707 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2708 if (rnp->qsmask == 0) { 2709 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2710 /* 2711 * No point in scanning bits because they 2712 * are all zero. But we might need to 2713 * priority-boost blocked readers. 2714 */ 2715 rcu_initiate_boost(rnp, flags); 2716 /* rcu_initiate_boost() releases rnp->lock */ 2717 continue; 2718 } 2719 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2720 continue; 2721 } 2722 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2723 struct rcu_data *rdp; 2724 int ret; 2725 2726 rdp = per_cpu_ptr(&rcu_data, cpu); 2727 ret = f(rdp); 2728 if (ret > 0) { 2729 mask |= rdp->grpmask; 2730 rcu_disable_urgency_upon_qs(rdp); 2731 } 2732 if (ret < 0) 2733 rsmask |= rdp->grpmask; 2734 } 2735 if (mask != 0) { 2736 /* Idle/offline CPUs, report (releases rnp->lock). */ 2737 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2738 } else { 2739 /* Nothing to do here, so just drop the lock. */ 2740 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2741 } 2742 2743 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask) 2744 resched_cpu(cpu); 2745 } 2746 } 2747 2748 /* 2749 * Force quiescent states on reluctant CPUs, and also detect which 2750 * CPUs are in dyntick-idle mode. 2751 */ 2752 void rcu_force_quiescent_state(void) 2753 { 2754 unsigned long flags; 2755 bool ret; 2756 struct rcu_node *rnp; 2757 struct rcu_node *rnp_old = NULL; 2758 2759 if (!rcu_gp_in_progress()) 2760 return; 2761 /* Funnel through hierarchy to reduce memory contention. */ 2762 rnp = raw_cpu_read(rcu_data.mynode); 2763 for (; rnp != NULL; rnp = rnp->parent) { 2764 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2765 !raw_spin_trylock(&rnp->fqslock); 2766 if (rnp_old != NULL) 2767 raw_spin_unlock(&rnp_old->fqslock); 2768 if (ret) 2769 return; 2770 rnp_old = rnp; 2771 } 2772 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2773 2774 /* Reached the root of the rcu_node tree, acquire lock. */ 2775 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2776 raw_spin_unlock(&rnp_old->fqslock); 2777 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2778 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2779 return; /* Someone beat us to it. */ 2780 } 2781 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS); 2782 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2783 rcu_gp_kthread_wake(); 2784 } 2785 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2786 2787 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2788 // grace periods. 2789 static void strict_work_handler(struct work_struct *work) 2790 { 2791 rcu_read_lock(); 2792 rcu_read_unlock(); 2793 } 2794 2795 /* Perform RCU core processing work for the current CPU. */ 2796 static __latent_entropy void rcu_core(void) 2797 { 2798 unsigned long flags; 2799 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2800 struct rcu_node *rnp = rdp->mynode; 2801 2802 if (cpu_is_offline(smp_processor_id())) 2803 return; 2804 trace_rcu_utilization(TPS("Start RCU core")); 2805 WARN_ON_ONCE(!rdp->beenonline); 2806 2807 /* Report any deferred quiescent states if preemption enabled. */ 2808 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2809 rcu_preempt_deferred_qs(current); 2810 } else if (rcu_preempt_need_deferred_qs(current)) { 2811 set_tsk_need_resched(current); 2812 set_preempt_need_resched(); 2813 } 2814 2815 /* Update RCU state based on any recent quiescent states. */ 2816 rcu_check_quiescent_state(rdp); 2817 2818 /* No grace period and unregistered callbacks? */ 2819 if (!rcu_gp_in_progress() && 2820 rcu_segcblist_is_enabled(&rdp->cblist) && !rcu_rdp_is_offloaded(rdp)) { 2821 local_irq_save(flags); 2822 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2823 rcu_accelerate_cbs_unlocked(rnp, rdp); 2824 local_irq_restore(flags); 2825 } 2826 2827 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2828 2829 /* If there are callbacks ready, invoke them. */ 2830 if (!rcu_rdp_is_offloaded(rdp) && rcu_segcblist_ready_cbs(&rdp->cblist) && 2831 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2832 rcu_do_batch(rdp); 2833 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2834 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2835 invoke_rcu_core(); 2836 } 2837 2838 /* Do any needed deferred wakeups of rcuo kthreads. */ 2839 do_nocb_deferred_wakeup(rdp); 2840 trace_rcu_utilization(TPS("End RCU core")); 2841 2842 // If strict GPs, schedule an RCU reader in a clean environment. 2843 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2844 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2845 } 2846 2847 static void rcu_core_si(void) 2848 { 2849 rcu_core(); 2850 } 2851 2852 static void rcu_wake_cond(struct task_struct *t, int status) 2853 { 2854 /* 2855 * If the thread is yielding, only wake it when this 2856 * is invoked from idle 2857 */ 2858 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2859 wake_up_process(t); 2860 } 2861 2862 static void invoke_rcu_core_kthread(void) 2863 { 2864 struct task_struct *t; 2865 unsigned long flags; 2866 2867 local_irq_save(flags); 2868 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2869 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2870 if (t != NULL && t != current) 2871 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2872 local_irq_restore(flags); 2873 } 2874 2875 /* 2876 * Wake up this CPU's rcuc kthread to do RCU core processing. 2877 */ 2878 static void invoke_rcu_core(void) 2879 { 2880 if (!cpu_online(smp_processor_id())) 2881 return; 2882 if (use_softirq) 2883 raise_softirq(RCU_SOFTIRQ); 2884 else 2885 invoke_rcu_core_kthread(); 2886 } 2887 2888 static void rcu_cpu_kthread_park(unsigned int cpu) 2889 { 2890 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2891 } 2892 2893 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2894 { 2895 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2896 } 2897 2898 /* 2899 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2900 * the RCU softirq used in configurations of RCU that do not support RCU 2901 * priority boosting. 2902 */ 2903 static void rcu_cpu_kthread(unsigned int cpu) 2904 { 2905 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2906 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2907 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2908 int spincnt; 2909 2910 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2911 for (spincnt = 0; spincnt < 10; spincnt++) { 2912 WRITE_ONCE(*j, jiffies); 2913 local_bh_disable(); 2914 *statusp = RCU_KTHREAD_RUNNING; 2915 local_irq_disable(); 2916 work = *workp; 2917 WRITE_ONCE(*workp, 0); 2918 local_irq_enable(); 2919 if (work) 2920 rcu_core(); 2921 local_bh_enable(); 2922 if (!READ_ONCE(*workp)) { 2923 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2924 *statusp = RCU_KTHREAD_WAITING; 2925 return; 2926 } 2927 } 2928 *statusp = RCU_KTHREAD_YIELDING; 2929 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2930 schedule_timeout_idle(2); 2931 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2932 *statusp = RCU_KTHREAD_WAITING; 2933 WRITE_ONCE(*j, jiffies); 2934 } 2935 2936 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2937 .store = &rcu_data.rcu_cpu_kthread_task, 2938 .thread_should_run = rcu_cpu_kthread_should_run, 2939 .thread_fn = rcu_cpu_kthread, 2940 .thread_comm = "rcuc/%u", 2941 .setup = rcu_cpu_kthread_setup, 2942 .park = rcu_cpu_kthread_park, 2943 }; 2944 2945 /* 2946 * Spawn per-CPU RCU core processing kthreads. 2947 */ 2948 static int __init rcu_spawn_core_kthreads(void) 2949 { 2950 int cpu; 2951 2952 for_each_possible_cpu(cpu) 2953 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2954 if (use_softirq) 2955 return 0; 2956 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2957 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2958 return 0; 2959 } 2960 2961 static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func) 2962 { 2963 rcu_segcblist_enqueue(&rdp->cblist, head); 2964 trace_rcu_callback(rcu_state.name, head, 2965 rcu_segcblist_n_cbs(&rdp->cblist)); 2966 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2967 } 2968 2969 /* 2970 * Handle any core-RCU processing required by a call_rcu() invocation. 2971 */ 2972 static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2973 rcu_callback_t func, unsigned long flags) 2974 { 2975 rcutree_enqueue(rdp, head, func); 2976 /* 2977 * If called from an extended quiescent state, invoke the RCU 2978 * core in order to force a re-evaluation of RCU's idleness. 2979 */ 2980 if (!rcu_is_watching()) 2981 invoke_rcu_core(); 2982 2983 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2984 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2985 return; 2986 2987 /* 2988 * Force the grace period if too many callbacks or too long waiting. 2989 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2990 * if some other CPU has recently done so. Also, don't bother 2991 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2992 * is the only one waiting for a grace period to complete. 2993 */ 2994 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2995 rdp->qlen_last_fqs_check + qhimark)) { 2996 2997 /* Are we ignoring a completed grace period? */ 2998 note_gp_changes(rdp); 2999 3000 /* Start a new grace period if one not already started. */ 3001 if (!rcu_gp_in_progress()) { 3002 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 3003 } else { 3004 /* Give the grace period a kick. */ 3005 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 3006 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 3007 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 3008 rcu_force_quiescent_state(); 3009 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 3010 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 3011 } 3012 } 3013 } 3014 3015 /* 3016 * RCU callback function to leak a callback. 3017 */ 3018 static void rcu_leak_callback(struct rcu_head *rhp) 3019 { 3020 } 3021 3022 /* 3023 * Check and if necessary update the leaf rcu_node structure's 3024 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 3025 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 3026 * structure's ->lock. 3027 */ 3028 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 3029 { 3030 raw_lockdep_assert_held_rcu_node(rnp); 3031 if (qovld_calc <= 0) 3032 return; // Early boot and wildcard value set. 3033 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 3034 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 3035 else 3036 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 3037 } 3038 3039 /* 3040 * Check and if necessary update the leaf rcu_node structure's 3041 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 3042 * number of queued RCU callbacks. No locks need be held, but the 3043 * caller must have disabled interrupts. 3044 * 3045 * Note that this function ignores the possibility that there are a lot 3046 * of callbacks all of which have already seen the end of their respective 3047 * grace periods. This omission is due to the need for no-CBs CPUs to 3048 * be holding ->nocb_lock to do this check, which is too heavy for a 3049 * common-case operation. 3050 */ 3051 static void check_cb_ovld(struct rcu_data *rdp) 3052 { 3053 struct rcu_node *const rnp = rdp->mynode; 3054 3055 if (qovld_calc <= 0 || 3056 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 3057 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 3058 return; // Early boot wildcard value or already set correctly. 3059 raw_spin_lock_rcu_node(rnp); 3060 check_cb_ovld_locked(rdp, rnp); 3061 raw_spin_unlock_rcu_node(rnp); 3062 } 3063 3064 static void 3065 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) 3066 { 3067 static atomic_t doublefrees; 3068 unsigned long flags; 3069 bool lazy; 3070 struct rcu_data *rdp; 3071 3072 /* Misaligned rcu_head! */ 3073 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3074 3075 if (debug_rcu_head_queue(head)) { 3076 /* 3077 * Probable double call_rcu(), so leak the callback. 3078 * Use rcu:rcu_callback trace event to find the previous 3079 * time callback was passed to call_rcu(). 3080 */ 3081 if (atomic_inc_return(&doublefrees) < 4) { 3082 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 3083 mem_dump_obj(head); 3084 } 3085 WRITE_ONCE(head->func, rcu_leak_callback); 3086 return; 3087 } 3088 head->func = func; 3089 head->next = NULL; 3090 kasan_record_aux_stack(head); 3091 3092 local_irq_save(flags); 3093 rdp = this_cpu_ptr(&rcu_data); 3094 RCU_LOCKDEP_WARN(!rcu_rdp_cpu_online(rdp), "Callback enqueued on offline CPU!"); 3095 3096 lazy = lazy_in && !rcu_async_should_hurry(); 3097 3098 /* Add the callback to our list. */ 3099 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 3100 // This can trigger due to call_rcu() from offline CPU: 3101 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 3102 WARN_ON_ONCE(!rcu_is_watching()); 3103 // Very early boot, before rcu_init(). Initialize if needed 3104 // and then drop through to queue the callback. 3105 if (rcu_segcblist_empty(&rdp->cblist)) 3106 rcu_segcblist_init(&rdp->cblist); 3107 } 3108 3109 check_cb_ovld(rdp); 3110 3111 if (unlikely(rcu_rdp_is_offloaded(rdp))) 3112 call_rcu_nocb(rdp, head, func, flags, lazy); 3113 else 3114 call_rcu_core(rdp, head, func, flags); 3115 local_irq_restore(flags); 3116 } 3117 3118 #ifdef CONFIG_RCU_LAZY 3119 static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF); 3120 module_param(enable_rcu_lazy, bool, 0444); 3121 3122 /** 3123 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and 3124 * flush all lazy callbacks (including the new one) to the main ->cblist while 3125 * doing so. 3126 * 3127 * @head: structure to be used for queueing the RCU updates. 3128 * @func: actual callback function to be invoked after the grace period 3129 * 3130 * The callback function will be invoked some time after a full grace 3131 * period elapses, in other words after all pre-existing RCU read-side 3132 * critical sections have completed. 3133 * 3134 * Use this API instead of call_rcu() if you don't want the callback to be 3135 * delayed for very long periods of time, which can happen on systems without 3136 * memory pressure and on systems which are lightly loaded or mostly idle. 3137 * This function will cause callbacks to be invoked sooner than later at the 3138 * expense of extra power. Other than that, this function is identical to, and 3139 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory 3140 * ordering and other functionality. 3141 */ 3142 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 3143 { 3144 __call_rcu_common(head, func, false); 3145 } 3146 EXPORT_SYMBOL_GPL(call_rcu_hurry); 3147 #else 3148 #define enable_rcu_lazy false 3149 #endif 3150 3151 /** 3152 * call_rcu() - Queue an RCU callback for invocation after a grace period. 3153 * By default the callbacks are 'lazy' and are kept hidden from the main 3154 * ->cblist to prevent starting of grace periods too soon. 3155 * If you desire grace periods to start very soon, use call_rcu_hurry(). 3156 * 3157 * @head: structure to be used for queueing the RCU updates. 3158 * @func: actual callback function to be invoked after the grace period 3159 * 3160 * The callback function will be invoked some time after a full grace 3161 * period elapses, in other words after all pre-existing RCU read-side 3162 * critical sections have completed. However, the callback function 3163 * might well execute concurrently with RCU read-side critical sections 3164 * that started after call_rcu() was invoked. 3165 * 3166 * It is perfectly legal to repost an RCU callback, potentially with 3167 * a different callback function, from within its callback function. 3168 * The specified function will be invoked after another full grace period 3169 * has elapsed. This use case is similar in form to the common practice 3170 * of reposting a timer from within its own handler. 3171 * 3172 * RCU read-side critical sections are delimited by rcu_read_lock() 3173 * and rcu_read_unlock(), and may be nested. In addition, but only in 3174 * v5.0 and later, regions of code across which interrupts, preemption, 3175 * or softirqs have been disabled also serve as RCU read-side critical 3176 * sections. This includes hardware interrupt handlers, softirq handlers, 3177 * and NMI handlers. 3178 * 3179 * Note that all CPUs must agree that the grace period extended beyond 3180 * all pre-existing RCU read-side critical section. On systems with more 3181 * than one CPU, this means that when "func()" is invoked, each CPU is 3182 * guaranteed to have executed a full memory barrier since the end of its 3183 * last RCU read-side critical section whose beginning preceded the call 3184 * to call_rcu(). It also means that each CPU executing an RCU read-side 3185 * critical section that continues beyond the start of "func()" must have 3186 * executed a memory barrier after the call_rcu() but before the beginning 3187 * of that RCU read-side critical section. Note that these guarantees 3188 * include CPUs that are offline, idle, or executing in user mode, as 3189 * well as CPUs that are executing in the kernel. 3190 * 3191 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 3192 * resulting RCU callback function "func()", then both CPU A and CPU B are 3193 * guaranteed to execute a full memory barrier during the time interval 3194 * between the call to call_rcu() and the invocation of "func()" -- even 3195 * if CPU A and CPU B are the same CPU (but again only if the system has 3196 * more than one CPU). 3197 * 3198 * Implementation of these memory-ordering guarantees is described here: 3199 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3200 * 3201 * Specific to call_rcu() (as opposed to the other call_rcu*() functions), 3202 * in kernels built with CONFIG_RCU_LAZY=y, call_rcu() might delay for many 3203 * seconds before starting the grace period needed by the corresponding 3204 * callback. This delay can significantly improve energy-efficiency 3205 * on low-utilization battery-powered devices. To avoid this delay, 3206 * in latency-sensitive kernel code, use call_rcu_hurry(). 3207 */ 3208 void call_rcu(struct rcu_head *head, rcu_callback_t func) 3209 { 3210 __call_rcu_common(head, func, enable_rcu_lazy); 3211 } 3212 EXPORT_SYMBOL_GPL(call_rcu); 3213 3214 /* 3215 * During early boot, any blocking grace-period wait automatically 3216 * implies a grace period. 3217 * 3218 * Later on, this could in theory be the case for kernels built with 3219 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3220 * is not a common case. Furthermore, this optimization would cause 3221 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3222 * grace-period optimization is ignored once the scheduler is running. 3223 */ 3224 static int rcu_blocking_is_gp(void) 3225 { 3226 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { 3227 might_sleep(); 3228 return false; 3229 } 3230 return true; 3231 } 3232 3233 /* 3234 * Helper function for the synchronize_rcu() API. 3235 */ 3236 static void synchronize_rcu_normal(void) 3237 { 3238 struct rcu_synchronize rs; 3239 3240 trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("request")); 3241 3242 if (!READ_ONCE(rcu_normal_wake_from_gp)) { 3243 wait_rcu_gp(call_rcu_hurry); 3244 goto trace_complete_out; 3245 } 3246 3247 init_rcu_head_on_stack(&rs.head); 3248 init_completion(&rs.completion); 3249 3250 /* 3251 * This code might be preempted, therefore take a GP 3252 * snapshot before adding a request. 3253 */ 3254 if (IS_ENABLED(CONFIG_PROVE_RCU)) 3255 get_state_synchronize_rcu_full(&rs.oldstate); 3256 3257 rcu_sr_normal_add_req(&rs); 3258 3259 /* Kick a GP and start waiting. */ 3260 (void) start_poll_synchronize_rcu(); 3261 3262 /* Now we can wait. */ 3263 wait_for_completion(&rs.completion); 3264 destroy_rcu_head_on_stack(&rs.head); 3265 3266 trace_complete_out: 3267 trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("complete")); 3268 } 3269 3270 /** 3271 * synchronize_rcu - wait until a grace period has elapsed. 3272 * 3273 * Control will return to the caller some time after a full grace 3274 * period has elapsed, in other words after all currently executing RCU 3275 * read-side critical sections have completed. Note, however, that 3276 * upon return from synchronize_rcu(), the caller might well be executing 3277 * concurrently with new RCU read-side critical sections that began while 3278 * synchronize_rcu() was waiting. 3279 * 3280 * RCU read-side critical sections are delimited by rcu_read_lock() 3281 * and rcu_read_unlock(), and may be nested. In addition, but only in 3282 * v5.0 and later, regions of code across which interrupts, preemption, 3283 * or softirqs have been disabled also serve as RCU read-side critical 3284 * sections. This includes hardware interrupt handlers, softirq handlers, 3285 * and NMI handlers. 3286 * 3287 * Note that this guarantee implies further memory-ordering guarantees. 3288 * On systems with more than one CPU, when synchronize_rcu() returns, 3289 * each CPU is guaranteed to have executed a full memory barrier since 3290 * the end of its last RCU read-side critical section whose beginning 3291 * preceded the call to synchronize_rcu(). In addition, each CPU having 3292 * an RCU read-side critical section that extends beyond the return from 3293 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3294 * after the beginning of synchronize_rcu() and before the beginning of 3295 * that RCU read-side critical section. Note that these guarantees include 3296 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3297 * that are executing in the kernel. 3298 * 3299 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3300 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3301 * to have executed a full memory barrier during the execution of 3302 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3303 * again only if the system has more than one CPU). 3304 * 3305 * Implementation of these memory-ordering guarantees is described here: 3306 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3307 */ 3308 void synchronize_rcu(void) 3309 { 3310 unsigned long flags; 3311 struct rcu_node *rnp; 3312 3313 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3314 lock_is_held(&rcu_lock_map) || 3315 lock_is_held(&rcu_sched_lock_map), 3316 "Illegal synchronize_rcu() in RCU read-side critical section"); 3317 if (!rcu_blocking_is_gp()) { 3318 if (rcu_gp_is_expedited()) 3319 synchronize_rcu_expedited(); 3320 else 3321 synchronize_rcu_normal(); 3322 return; 3323 } 3324 3325 // Context allows vacuous grace periods. 3326 // Note well that this code runs with !PREEMPT && !SMP. 3327 // In addition, all code that advances grace periods runs at 3328 // process level. Therefore, this normal GP overlaps with other 3329 // normal GPs only by being fully nested within them, which allows 3330 // reuse of ->gp_seq_polled_snap. 3331 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3332 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3333 3334 // Update the normal grace-period counters to record 3335 // this grace period, but only those used by the boot CPU. 3336 // The rcu_scheduler_starting() will take care of the rest of 3337 // these counters. 3338 local_irq_save(flags); 3339 WARN_ON_ONCE(num_online_cpus() > 1); 3340 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 3341 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 3342 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 3343 local_irq_restore(flags); 3344 } 3345 EXPORT_SYMBOL_GPL(synchronize_rcu); 3346 3347 /** 3348 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 3349 * @rgosp: Place to put state cookie 3350 * 3351 * Stores into @rgosp a value that will always be treated by functions 3352 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 3353 * has already completed. 3354 */ 3355 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3356 { 3357 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 3358 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 3359 } 3360 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 3361 3362 /** 3363 * get_state_synchronize_rcu - Snapshot current RCU state 3364 * 3365 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3366 * or poll_state_synchronize_rcu() to determine whether or not a full 3367 * grace period has elapsed in the meantime. 3368 */ 3369 unsigned long get_state_synchronize_rcu(void) 3370 { 3371 /* 3372 * Any prior manipulation of RCU-protected data must happen 3373 * before the load from ->gp_seq. 3374 */ 3375 smp_mb(); /* ^^^ */ 3376 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3377 } 3378 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3379 3380 /** 3381 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 3382 * @rgosp: location to place combined normal/expedited grace-period state 3383 * 3384 * Places the normal and expedited grace-period states in @rgosp. This 3385 * state value can be passed to a later call to cond_synchronize_rcu_full() 3386 * or poll_state_synchronize_rcu_full() to determine whether or not a 3387 * grace period (whether normal or expedited) has elapsed in the meantime. 3388 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 3389 * long, but is guaranteed to see all grace periods. In contrast, the 3390 * combined state occupies less memory, but can sometimes fail to take 3391 * grace periods into account. 3392 * 3393 * This does not guarantee that the needed grace period will actually 3394 * start. 3395 */ 3396 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3397 { 3398 /* 3399 * Any prior manipulation of RCU-protected data must happen 3400 * before the loads from ->gp_seq and ->expedited_sequence. 3401 */ 3402 smp_mb(); /* ^^^ */ 3403 3404 // Yes, rcu_state.gp_seq, not rnp_root->gp_seq, the latter's use 3405 // in poll_state_synchronize_rcu_full() notwithstanding. Use of 3406 // the latter here would result in too-short grace periods due to 3407 // interactions with newly onlined CPUs. 3408 rgosp->rgos_norm = rcu_seq_snap(&rcu_state.gp_seq); 3409 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 3410 } 3411 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 3412 3413 /* 3414 * Helper function for start_poll_synchronize_rcu() and 3415 * start_poll_synchronize_rcu_full(). 3416 */ 3417 static void start_poll_synchronize_rcu_common(void) 3418 { 3419 unsigned long flags; 3420 bool needwake; 3421 struct rcu_data *rdp; 3422 struct rcu_node *rnp; 3423 3424 local_irq_save(flags); 3425 rdp = this_cpu_ptr(&rcu_data); 3426 rnp = rdp->mynode; 3427 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3428 // Note it is possible for a grace period to have elapsed between 3429 // the above call to get_state_synchronize_rcu() and the below call 3430 // to rcu_seq_snap. This is OK, the worst that happens is that we 3431 // get a grace period that no one needed. These accesses are ordered 3432 // by smp_mb(), and we are accessing them in the opposite order 3433 // from which they are updated at grace-period start, as required. 3434 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3435 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3436 if (needwake) 3437 rcu_gp_kthread_wake(); 3438 } 3439 3440 /** 3441 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3442 * 3443 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3444 * or poll_state_synchronize_rcu() to determine whether or not a full 3445 * grace period has elapsed in the meantime. If the needed grace period 3446 * is not already slated to start, notifies RCU core of the need for that 3447 * grace period. 3448 */ 3449 unsigned long start_poll_synchronize_rcu(void) 3450 { 3451 unsigned long gp_seq = get_state_synchronize_rcu(); 3452 3453 start_poll_synchronize_rcu_common(); 3454 return gp_seq; 3455 } 3456 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3457 3458 /** 3459 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 3460 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3461 * 3462 * Places the normal and expedited grace-period states in *@rgos. This 3463 * state value can be passed to a later call to cond_synchronize_rcu_full() 3464 * or poll_state_synchronize_rcu_full() to determine whether or not a 3465 * grace period (whether normal or expedited) has elapsed in the meantime. 3466 * If the needed grace period is not already slated to start, notifies 3467 * RCU core of the need for that grace period. 3468 */ 3469 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3470 { 3471 get_state_synchronize_rcu_full(rgosp); 3472 3473 start_poll_synchronize_rcu_common(); 3474 } 3475 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 3476 3477 /** 3478 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 3479 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3480 * 3481 * If a full RCU grace period has elapsed since the earlier call from 3482 * which @oldstate was obtained, return @true, otherwise return @false. 3483 * If @false is returned, it is the caller's responsibility to invoke this 3484 * function later on until it does return @true. Alternatively, the caller 3485 * can explicitly wait for a grace period, for example, by passing @oldstate 3486 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() 3487 * on the one hand or by directly invoking either synchronize_rcu() or 3488 * synchronize_rcu_expedited() on the other. 3489 * 3490 * Yes, this function does not take counter wrap into account. 3491 * But counter wrap is harmless. If the counter wraps, we have waited for 3492 * more than a billion grace periods (and way more on a 64-bit system!). 3493 * Those needing to keep old state values for very long time periods 3494 * (many hours even on 32-bit systems) should check them occasionally and 3495 * either refresh them or set a flag indicating that the grace period has 3496 * completed. Alternatively, they can use get_completed_synchronize_rcu() 3497 * to get a guaranteed-completed grace-period state. 3498 * 3499 * In addition, because oldstate compresses the grace-period state for 3500 * both normal and expedited grace periods into a single unsigned long, 3501 * it can miss a grace period when synchronize_rcu() runs concurrently 3502 * with synchronize_rcu_expedited(). If this is unacceptable, please 3503 * instead use the _full() variant of these polling APIs. 3504 * 3505 * This function provides the same memory-ordering guarantees that 3506 * would be provided by a synchronize_rcu() that was invoked at the call 3507 * to the function that provided @oldstate, and that returned at the end 3508 * of this function. 3509 */ 3510 bool poll_state_synchronize_rcu(unsigned long oldstate) 3511 { 3512 if (oldstate == RCU_GET_STATE_COMPLETED || 3513 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3514 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3515 return true; 3516 } 3517 return false; 3518 } 3519 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3520 3521 /** 3522 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 3523 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3524 * 3525 * If a full RCU grace period has elapsed since the earlier call from 3526 * which *rgosp was obtained, return @true, otherwise return @false. 3527 * If @false is returned, it is the caller's responsibility to invoke this 3528 * function later on until it does return @true. Alternatively, the caller 3529 * can explicitly wait for a grace period, for example, by passing @rgosp 3530 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3531 * 3532 * Yes, this function does not take counter wrap into account. 3533 * But counter wrap is harmless. If the counter wraps, we have waited 3534 * for more than a billion grace periods (and way more on a 64-bit 3535 * system!). Those needing to keep rcu_gp_oldstate values for very 3536 * long time periods (many hours even on 32-bit systems) should check 3537 * them occasionally and either refresh them or set a flag indicating 3538 * that the grace period has completed. Alternatively, they can use 3539 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 3540 * grace-period state. 3541 * 3542 * This function provides the same memory-ordering guarantees that would 3543 * be provided by a synchronize_rcu() that was invoked at the call to 3544 * the function that provided @rgosp, and that returned at the end of this 3545 * function. And this guarantee requires that the root rcu_node structure's 3546 * ->gp_seq field be checked instead of that of the rcu_state structure. 3547 * The problem is that the just-ending grace-period's callbacks can be 3548 * invoked between the time that the root rcu_node structure's ->gp_seq 3549 * field is updated and the time that the rcu_state structure's ->gp_seq 3550 * field is updated. Therefore, if a single synchronize_rcu() is to 3551 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 3552 * then the root rcu_node structure is the one that needs to be polled. 3553 */ 3554 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3555 { 3556 struct rcu_node *rnp = rcu_get_root(); 3557 3558 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 3559 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 3560 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 3561 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 3562 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 3563 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3564 return true; 3565 } 3566 return false; 3567 } 3568 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 3569 3570 /** 3571 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3572 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3573 * 3574 * If a full RCU grace period has elapsed since the earlier call to 3575 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3576 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3577 * 3578 * Yes, this function does not take counter wrap into account. 3579 * But counter wrap is harmless. If the counter wraps, we have waited for 3580 * more than 2 billion grace periods (and way more on a 64-bit system!), 3581 * so waiting for a couple of additional grace periods should be just fine. 3582 * 3583 * This function provides the same memory-ordering guarantees that 3584 * would be provided by a synchronize_rcu() that was invoked at the call 3585 * to the function that provided @oldstate and that returned at the end 3586 * of this function. 3587 */ 3588 void cond_synchronize_rcu(unsigned long oldstate) 3589 { 3590 if (!poll_state_synchronize_rcu(oldstate)) 3591 synchronize_rcu(); 3592 } 3593 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3594 3595 /** 3596 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 3597 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 3598 * 3599 * If a full RCU grace period has elapsed since the call to 3600 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 3601 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 3602 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 3603 * for a full grace period. 3604 * 3605 * Yes, this function does not take counter wrap into account. 3606 * But counter wrap is harmless. If the counter wraps, we have waited for 3607 * more than 2 billion grace periods (and way more on a 64-bit system!), 3608 * so waiting for a couple of additional grace periods should be just fine. 3609 * 3610 * This function provides the same memory-ordering guarantees that 3611 * would be provided by a synchronize_rcu() that was invoked at the call 3612 * to the function that provided @rgosp and that returned at the end of 3613 * this function. 3614 */ 3615 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3616 { 3617 if (!poll_state_synchronize_rcu_full(rgosp)) 3618 synchronize_rcu(); 3619 } 3620 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 3621 3622 /* 3623 * Check to see if there is any immediate RCU-related work to be done by 3624 * the current CPU, returning 1 if so and zero otherwise. The checks are 3625 * in order of increasing expense: checks that can be carried out against 3626 * CPU-local state are performed first. However, we must check for CPU 3627 * stalls first, else we might not get a chance. 3628 */ 3629 static int rcu_pending(int user) 3630 { 3631 bool gp_in_progress; 3632 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3633 struct rcu_node *rnp = rdp->mynode; 3634 3635 lockdep_assert_irqs_disabled(); 3636 3637 /* Check for CPU stalls, if enabled. */ 3638 check_cpu_stall(rdp); 3639 3640 /* Does this CPU need a deferred NOCB wakeup? */ 3641 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3642 return 1; 3643 3644 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3645 gp_in_progress = rcu_gp_in_progress(); 3646 if ((user || rcu_is_cpu_rrupt_from_idle() || 3647 (gp_in_progress && 3648 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + 3649 nohz_full_patience_delay_jiffies))) && 3650 rcu_nohz_full_cpu()) 3651 return 0; 3652 3653 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3654 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3655 return 1; 3656 3657 /* Does this CPU have callbacks ready to invoke? */ 3658 if (!rcu_rdp_is_offloaded(rdp) && 3659 rcu_segcblist_ready_cbs(&rdp->cblist)) 3660 return 1; 3661 3662 /* Has RCU gone idle with this CPU needing another grace period? */ 3663 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3664 !rcu_rdp_is_offloaded(rdp) && 3665 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3666 return 1; 3667 3668 /* Have RCU grace period completed or started? */ 3669 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3670 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3671 return 1; 3672 3673 /* nothing to do */ 3674 return 0; 3675 } 3676 3677 /* 3678 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3679 * the compiler is expected to optimize this away. 3680 */ 3681 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3682 { 3683 trace_rcu_barrier(rcu_state.name, s, cpu, 3684 atomic_read(&rcu_state.barrier_cpu_count), done); 3685 } 3686 3687 /* 3688 * RCU callback function for rcu_barrier(). If we are last, wake 3689 * up the task executing rcu_barrier(). 3690 * 3691 * Note that the value of rcu_state.barrier_sequence must be captured 3692 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3693 * other CPUs might count the value down to zero before this CPU gets 3694 * around to invoking rcu_barrier_trace(), which might result in bogus 3695 * data from the next instance of rcu_barrier(). 3696 */ 3697 static void rcu_barrier_callback(struct rcu_head *rhp) 3698 { 3699 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3700 3701 rhp->next = rhp; // Mark the callback as having been invoked. 3702 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3703 rcu_barrier_trace(TPS("LastCB"), -1, s); 3704 complete(&rcu_state.barrier_completion); 3705 } else { 3706 rcu_barrier_trace(TPS("CB"), -1, s); 3707 } 3708 } 3709 3710 /* 3711 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 3712 */ 3713 static void rcu_barrier_entrain(struct rcu_data *rdp) 3714 { 3715 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 3716 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 3717 bool wake_nocb = false; 3718 bool was_alldone = false; 3719 3720 lockdep_assert_held(&rcu_state.barrier_lock); 3721 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 3722 return; 3723 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3724 rdp->barrier_head.func = rcu_barrier_callback; 3725 debug_rcu_head_queue(&rdp->barrier_head); 3726 rcu_nocb_lock(rdp); 3727 /* 3728 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular 3729 * queue. This way we don't wait for bypass timer that can reach seconds 3730 * if it's fully lazy. 3731 */ 3732 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); 3733 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 3734 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); 3735 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3736 atomic_inc(&rcu_state.barrier_cpu_count); 3737 } else { 3738 debug_rcu_head_unqueue(&rdp->barrier_head); 3739 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 3740 } 3741 rcu_nocb_unlock(rdp); 3742 if (wake_nocb) 3743 wake_nocb_gp(rdp, false); 3744 smp_store_release(&rdp->barrier_seq_snap, gseq); 3745 } 3746 3747 /* 3748 * Called with preemption disabled, and from cross-cpu IRQ context. 3749 */ 3750 static void rcu_barrier_handler(void *cpu_in) 3751 { 3752 uintptr_t cpu = (uintptr_t)cpu_in; 3753 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3754 3755 lockdep_assert_irqs_disabled(); 3756 WARN_ON_ONCE(cpu != rdp->cpu); 3757 WARN_ON_ONCE(cpu != smp_processor_id()); 3758 raw_spin_lock(&rcu_state.barrier_lock); 3759 rcu_barrier_entrain(rdp); 3760 raw_spin_unlock(&rcu_state.barrier_lock); 3761 } 3762 3763 /** 3764 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3765 * 3766 * Note that this primitive does not necessarily wait for an RCU grace period 3767 * to complete. For example, if there are no RCU callbacks queued anywhere 3768 * in the system, then rcu_barrier() is within its rights to return 3769 * immediately, without waiting for anything, much less an RCU grace period. 3770 */ 3771 void rcu_barrier(void) 3772 { 3773 uintptr_t cpu; 3774 unsigned long flags; 3775 unsigned long gseq; 3776 struct rcu_data *rdp; 3777 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3778 3779 rcu_barrier_trace(TPS("Begin"), -1, s); 3780 3781 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3782 mutex_lock(&rcu_state.barrier_mutex); 3783 3784 /* Did someone else do our work for us? */ 3785 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3786 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 3787 smp_mb(); /* caller's subsequent code after above check. */ 3788 mutex_unlock(&rcu_state.barrier_mutex); 3789 return; 3790 } 3791 3792 /* Mark the start of the barrier operation. */ 3793 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3794 rcu_seq_start(&rcu_state.barrier_sequence); 3795 gseq = rcu_state.barrier_sequence; 3796 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3797 3798 /* 3799 * Initialize the count to two rather than to zero in order 3800 * to avoid a too-soon return to zero in case of an immediate 3801 * invocation of the just-enqueued callback (or preemption of 3802 * this task). Exclude CPU-hotplug operations to ensure that no 3803 * offline non-offloaded CPU has callbacks queued. 3804 */ 3805 init_completion(&rcu_state.barrier_completion); 3806 atomic_set(&rcu_state.barrier_cpu_count, 2); 3807 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3808 3809 /* 3810 * Force each CPU with callbacks to register a new callback. 3811 * When that callback is invoked, we will know that all of the 3812 * corresponding CPU's preceding callbacks have been invoked. 3813 */ 3814 for_each_possible_cpu(cpu) { 3815 rdp = per_cpu_ptr(&rcu_data, cpu); 3816 retry: 3817 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 3818 continue; 3819 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3820 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 3821 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 3822 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3823 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 3824 continue; 3825 } 3826 if (!rcu_rdp_cpu_online(rdp)) { 3827 rcu_barrier_entrain(rdp); 3828 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 3829 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3830 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 3831 continue; 3832 } 3833 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3834 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 3835 schedule_timeout_uninterruptible(1); 3836 goto retry; 3837 } 3838 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 3839 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 3840 } 3841 3842 /* 3843 * Now that we have an rcu_barrier_callback() callback on each 3844 * CPU, and thus each counted, remove the initial count. 3845 */ 3846 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 3847 complete(&rcu_state.barrier_completion); 3848 3849 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3850 wait_for_completion(&rcu_state.barrier_completion); 3851 3852 /* Mark the end of the barrier operation. */ 3853 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 3854 rcu_seq_end(&rcu_state.barrier_sequence); 3855 gseq = rcu_state.barrier_sequence; 3856 for_each_possible_cpu(cpu) { 3857 rdp = per_cpu_ptr(&rcu_data, cpu); 3858 3859 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 3860 } 3861 3862 /* Other rcu_barrier() invocations can now safely proceed. */ 3863 mutex_unlock(&rcu_state.barrier_mutex); 3864 } 3865 EXPORT_SYMBOL_GPL(rcu_barrier); 3866 3867 static unsigned long rcu_barrier_last_throttle; 3868 3869 /** 3870 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second 3871 * 3872 * This can be thought of as guard rails around rcu_barrier() that 3873 * permits unrestricted userspace use, at least assuming the hardware's 3874 * try_cmpxchg() is robust. There will be at most one call per second to 3875 * rcu_barrier() system-wide from use of this function, which means that 3876 * callers might needlessly wait a second or three. 3877 * 3878 * This is intended for use by test suites to avoid OOM by flushing RCU 3879 * callbacks from the previous test before starting the next. See the 3880 * rcutree.do_rcu_barrier module parameter for more information. 3881 * 3882 * Why not simply make rcu_barrier() more scalable? That might be 3883 * the eventual endpoint, but let's keep it simple for the time being. 3884 * Note that the module parameter infrastructure serializes calls to a 3885 * given .set() function, but should concurrent .set() invocation ever be 3886 * possible, we are ready! 3887 */ 3888 static void rcu_barrier_throttled(void) 3889 { 3890 unsigned long j = jiffies; 3891 unsigned long old = READ_ONCE(rcu_barrier_last_throttle); 3892 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3893 3894 while (time_in_range(j, old, old + HZ / 16) || 3895 !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) { 3896 schedule_timeout_idle(HZ / 16); 3897 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3898 smp_mb(); /* caller's subsequent code after above check. */ 3899 return; 3900 } 3901 j = jiffies; 3902 old = READ_ONCE(rcu_barrier_last_throttle); 3903 } 3904 rcu_barrier(); 3905 } 3906 3907 /* 3908 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier 3909 * request arrives. We insist on a true value to allow for possible 3910 * future expansion. 3911 */ 3912 static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp) 3913 { 3914 bool b; 3915 int ret; 3916 3917 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) 3918 return -EAGAIN; 3919 ret = kstrtobool(val, &b); 3920 if (!ret && b) { 3921 atomic_inc((atomic_t *)kp->arg); 3922 rcu_barrier_throttled(); 3923 atomic_dec((atomic_t *)kp->arg); 3924 } 3925 return ret; 3926 } 3927 3928 /* 3929 * Output the number of outstanding rcutree.do_rcu_barrier requests. 3930 */ 3931 static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp) 3932 { 3933 return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg)); 3934 } 3935 3936 static const struct kernel_param_ops do_rcu_barrier_ops = { 3937 .set = param_set_do_rcu_barrier, 3938 .get = param_get_do_rcu_barrier, 3939 }; 3940 static atomic_t do_rcu_barrier; 3941 module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644); 3942 3943 /* 3944 * Compute the mask of online CPUs for the specified rcu_node structure. 3945 * This will not be stable unless the rcu_node structure's ->lock is 3946 * held, but the bit corresponding to the current CPU will be stable 3947 * in most contexts. 3948 */ 3949 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 3950 { 3951 return READ_ONCE(rnp->qsmaskinitnext); 3952 } 3953 3954 /* 3955 * Is the CPU corresponding to the specified rcu_data structure online 3956 * from RCU's perspective? This perspective is given by that structure's 3957 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 3958 */ 3959 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 3960 { 3961 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 3962 } 3963 3964 bool rcu_cpu_online(int cpu) 3965 { 3966 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3967 3968 return rcu_rdp_cpu_online(rdp); 3969 } 3970 3971 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 3972 3973 /* 3974 * Is the current CPU online as far as RCU is concerned? 3975 * 3976 * Disable preemption to avoid false positives that could otherwise 3977 * happen due to the current CPU number being sampled, this task being 3978 * preempted, its old CPU being taken offline, resuming on some other CPU, 3979 * then determining that its old CPU is now offline. 3980 * 3981 * Disable checking if in an NMI handler because we cannot safely 3982 * report errors from NMI handlers anyway. In addition, it is OK to use 3983 * RCU on an offline processor during initial boot, hence the check for 3984 * rcu_scheduler_fully_active. 3985 */ 3986 bool rcu_lockdep_current_cpu_online(void) 3987 { 3988 struct rcu_data *rdp; 3989 bool ret = false; 3990 3991 if (in_nmi() || !rcu_scheduler_fully_active) 3992 return true; 3993 preempt_disable_notrace(); 3994 rdp = this_cpu_ptr(&rcu_data); 3995 /* 3996 * Strictly, we care here about the case where the current CPU is 3997 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask 3998 * not being up to date. So arch_spin_is_locked() might have a 3999 * false positive if it's held by some *other* CPU, but that's 4000 * OK because that just means a false *negative* on the warning. 4001 */ 4002 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 4003 ret = true; 4004 preempt_enable_notrace(); 4005 return ret; 4006 } 4007 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 4008 4009 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 4010 4011 // Has rcu_init() been invoked? This is used (for example) to determine 4012 // whether spinlocks may be acquired safely. 4013 static bool rcu_init_invoked(void) 4014 { 4015 return !!READ_ONCE(rcu_state.n_online_cpus); 4016 } 4017 4018 /* 4019 * All CPUs for the specified rcu_node structure have gone offline, 4020 * and all tasks that were preempted within an RCU read-side critical 4021 * section while running on one of those CPUs have since exited their RCU 4022 * read-side critical section. Some other CPU is reporting this fact with 4023 * the specified rcu_node structure's ->lock held and interrupts disabled. 4024 * This function therefore goes up the tree of rcu_node structures, 4025 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 4026 * the leaf rcu_node structure's ->qsmaskinit field has already been 4027 * updated. 4028 * 4029 * This function does check that the specified rcu_node structure has 4030 * all CPUs offline and no blocked tasks, so it is OK to invoke it 4031 * prematurely. That said, invoking it after the fact will cost you 4032 * a needless lock acquisition. So once it has done its work, don't 4033 * invoke it again. 4034 */ 4035 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 4036 { 4037 long mask; 4038 struct rcu_node *rnp = rnp_leaf; 4039 4040 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4041 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 4042 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 4043 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 4044 return; 4045 for (;;) { 4046 mask = rnp->grpmask; 4047 rnp = rnp->parent; 4048 if (!rnp) 4049 break; 4050 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4051 rnp->qsmaskinit &= ~mask; 4052 /* Between grace periods, so better already be zero! */ 4053 WARN_ON_ONCE(rnp->qsmask); 4054 if (rnp->qsmaskinit) { 4055 raw_spin_unlock_rcu_node(rnp); 4056 /* irqs remain disabled. */ 4057 return; 4058 } 4059 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4060 } 4061 } 4062 4063 /* 4064 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4065 * first CPU in a given leaf rcu_node structure coming online. The caller 4066 * must hold the corresponding leaf rcu_node ->lock with interrupts 4067 * disabled. 4068 */ 4069 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4070 { 4071 long mask; 4072 long oldmask; 4073 struct rcu_node *rnp = rnp_leaf; 4074 4075 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4076 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4077 for (;;) { 4078 mask = rnp->grpmask; 4079 rnp = rnp->parent; 4080 if (rnp == NULL) 4081 return; 4082 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4083 oldmask = rnp->qsmaskinit; 4084 rnp->qsmaskinit |= mask; 4085 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4086 if (oldmask) 4087 return; 4088 } 4089 } 4090 4091 /* 4092 * Do boot-time initialization of a CPU's per-CPU RCU data. 4093 */ 4094 static void __init 4095 rcu_boot_init_percpu_data(int cpu) 4096 { 4097 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4098 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4099 4100 /* Set up local state, ensuring consistent view of global state. */ 4101 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4102 INIT_WORK(&rdp->strict_work, strict_work_handler); 4103 WARN_ON_ONCE(ct->nesting != 1); 4104 WARN_ON_ONCE(rcu_watching_snap_in_eqs(ct_rcu_watching_cpu(cpu))); 4105 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4106 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4107 rdp->rcu_ofl_gp_state = RCU_GP_CLEANED; 4108 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4109 rdp->rcu_onl_gp_state = RCU_GP_CLEANED; 4110 rdp->last_sched_clock = jiffies; 4111 rdp->cpu = cpu; 4112 rcu_boot_init_nocb_percpu_data(rdp); 4113 } 4114 4115 static void rcu_thread_affine_rnp(struct task_struct *t, struct rcu_node *rnp) 4116 { 4117 cpumask_var_t affinity; 4118 int cpu; 4119 4120 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) 4121 return; 4122 4123 for_each_leaf_node_possible_cpu(rnp, cpu) 4124 cpumask_set_cpu(cpu, affinity); 4125 4126 kthread_affine_preferred(t, affinity); 4127 4128 free_cpumask_var(affinity); 4129 } 4130 4131 struct kthread_worker *rcu_exp_gp_kworker; 4132 4133 static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp) 4134 { 4135 struct kthread_worker *kworker; 4136 const char *name = "rcu_exp_par_gp_kthread_worker/%d"; 4137 struct sched_param param = { .sched_priority = kthread_prio }; 4138 int rnp_index = rnp - rcu_get_root(); 4139 4140 if (rnp->exp_kworker) 4141 return; 4142 4143 kworker = kthread_create_worker(0, name, rnp_index); 4144 if (IS_ERR_OR_NULL(kworker)) { 4145 pr_err("Failed to create par gp kworker on %d/%d\n", 4146 rnp->grplo, rnp->grphi); 4147 return; 4148 } 4149 WRITE_ONCE(rnp->exp_kworker, kworker); 4150 4151 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) 4152 sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, ¶m); 4153 4154 rcu_thread_affine_rnp(kworker->task, rnp); 4155 wake_up_process(kworker->task); 4156 } 4157 4158 static void __init rcu_start_exp_gp_kworker(void) 4159 { 4160 const char *name = "rcu_exp_gp_kthread_worker"; 4161 struct sched_param param = { .sched_priority = kthread_prio }; 4162 4163 rcu_exp_gp_kworker = kthread_run_worker(0, name); 4164 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4165 pr_err("Failed to create %s!\n", name); 4166 rcu_exp_gp_kworker = NULL; 4167 return; 4168 } 4169 4170 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) 4171 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4172 } 4173 4174 static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp) 4175 { 4176 if (rcu_scheduler_fully_active) { 4177 mutex_lock(&rnp->kthread_mutex); 4178 rcu_spawn_one_boost_kthread(rnp); 4179 rcu_spawn_exp_par_gp_kworker(rnp); 4180 mutex_unlock(&rnp->kthread_mutex); 4181 } 4182 } 4183 4184 /* 4185 * Invoked early in the CPU-online process, when pretty much all services 4186 * are available. The incoming CPU is not present. 4187 * 4188 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4189 * offline event can be happening at a given time. Note also that we can 4190 * accept some slop in the rsp->gp_seq access due to the fact that this 4191 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4192 * And any offloaded callbacks are being numbered elsewhere. 4193 */ 4194 int rcutree_prepare_cpu(unsigned int cpu) 4195 { 4196 unsigned long flags; 4197 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4198 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4199 struct rcu_node *rnp = rcu_get_root(); 4200 4201 /* Set up local state, ensuring consistent view of global state. */ 4202 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4203 rdp->qlen_last_fqs_check = 0; 4204 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4205 rdp->blimit = blimit; 4206 ct->nesting = 1; /* CPU not up, no tearing. */ 4207 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4208 4209 /* 4210 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4211 * (re-)initialized. 4212 */ 4213 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4214 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4215 4216 /* 4217 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4218 * propagation up the rcu_node tree will happen at the beginning 4219 * of the next grace period. 4220 */ 4221 rnp = rdp->mynode; 4222 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4223 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4224 rdp->gp_seq_needed = rdp->gp_seq; 4225 rdp->cpu_no_qs.b.norm = true; 4226 rdp->core_needs_qs = false; 4227 rdp->rcu_iw_pending = false; 4228 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4229 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4230 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4231 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4232 rcu_spawn_rnp_kthreads(rnp); 4233 rcu_spawn_cpu_nocb_kthread(cpu); 4234 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus); 4235 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4236 4237 return 0; 4238 } 4239 4240 /* 4241 * Has the specified (known valid) CPU ever been fully online? 4242 */ 4243 bool rcu_cpu_beenfullyonline(int cpu) 4244 { 4245 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4246 4247 return smp_load_acquire(&rdp->beenonline); 4248 } 4249 4250 /* 4251 * Near the end of the CPU-online process. Pretty much all services 4252 * enabled, and the CPU is now very much alive. 4253 */ 4254 int rcutree_online_cpu(unsigned int cpu) 4255 { 4256 unsigned long flags; 4257 struct rcu_data *rdp; 4258 struct rcu_node *rnp; 4259 4260 rdp = per_cpu_ptr(&rcu_data, cpu); 4261 rnp = rdp->mynode; 4262 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4263 rnp->ffmask |= rdp->grpmask; 4264 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4265 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4266 return 0; /* Too early in boot for scheduler work. */ 4267 sync_sched_exp_online_cleanup(cpu); 4268 4269 // Stop-machine done, so allow nohz_full to disable tick. 4270 tick_dep_clear(TICK_DEP_BIT_RCU); 4271 return 0; 4272 } 4273 4274 /* 4275 * Mark the specified CPU as being online so that subsequent grace periods 4276 * (both expedited and normal) will wait on it. Note that this means that 4277 * incoming CPUs are not allowed to use RCU read-side critical sections 4278 * until this function is called. Failing to observe this restriction 4279 * will result in lockdep splats. 4280 * 4281 * Note that this function is special in that it is invoked directly 4282 * from the incoming CPU rather than from the cpuhp_step mechanism. 4283 * This is because this function must be invoked at a precise location. 4284 * This incoming CPU must not have enabled interrupts yet. 4285 * 4286 * This mirrors the effects of rcutree_report_cpu_dead(). 4287 */ 4288 void rcutree_report_cpu_starting(unsigned int cpu) 4289 { 4290 unsigned long mask; 4291 struct rcu_data *rdp; 4292 struct rcu_node *rnp; 4293 bool newcpu; 4294 4295 lockdep_assert_irqs_disabled(); 4296 rdp = per_cpu_ptr(&rcu_data, cpu); 4297 if (rdp->cpu_started) 4298 return; 4299 rdp->cpu_started = true; 4300 4301 rnp = rdp->mynode; 4302 mask = rdp->grpmask; 4303 arch_spin_lock(&rcu_state.ofl_lock); 4304 rcu_watching_online(); 4305 raw_spin_lock(&rcu_state.barrier_lock); 4306 raw_spin_lock_rcu_node(rnp); 4307 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4308 raw_spin_unlock(&rcu_state.barrier_lock); 4309 newcpu = !(rnp->expmaskinitnext & mask); 4310 rnp->expmaskinitnext |= mask; 4311 /* Allow lockless access for expedited grace periods. */ 4312 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4313 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4314 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4315 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4316 rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state); 4317 4318 /* An incoming CPU should never be blocking a grace period. */ 4319 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4320 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4321 unsigned long flags; 4322 4323 local_irq_save(flags); 4324 rcu_disable_urgency_upon_qs(rdp); 4325 /* Report QS -after- changing ->qsmaskinitnext! */ 4326 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4327 } else { 4328 raw_spin_unlock_rcu_node(rnp); 4329 } 4330 arch_spin_unlock(&rcu_state.ofl_lock); 4331 smp_store_release(&rdp->beenonline, true); 4332 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4333 } 4334 4335 /* 4336 * The outgoing function has no further need of RCU, so remove it from 4337 * the rcu_node tree's ->qsmaskinitnext bit masks. 4338 * 4339 * Note that this function is special in that it is invoked directly 4340 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4341 * This is because this function must be invoked at a precise location. 4342 * 4343 * This mirrors the effect of rcutree_report_cpu_starting(). 4344 */ 4345 void rcutree_report_cpu_dead(void) 4346 { 4347 unsigned long flags; 4348 unsigned long mask; 4349 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4350 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4351 4352 /* 4353 * IRQS must be disabled from now on and until the CPU dies, or an interrupt 4354 * may introduce a new READ-side while it is actually off the QS masks. 4355 */ 4356 lockdep_assert_irqs_disabled(); 4357 // Do any dangling deferred wakeups. 4358 do_nocb_deferred_wakeup(rdp); 4359 4360 rcu_preempt_deferred_qs(current); 4361 4362 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4363 mask = rdp->grpmask; 4364 arch_spin_lock(&rcu_state.ofl_lock); 4365 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4366 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4367 rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state); 4368 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4369 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4370 rcu_disable_urgency_upon_qs(rdp); 4371 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4372 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4373 } 4374 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4375 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4376 arch_spin_unlock(&rcu_state.ofl_lock); 4377 rdp->cpu_started = false; 4378 } 4379 4380 #ifdef CONFIG_HOTPLUG_CPU 4381 /* 4382 * The outgoing CPU has just passed through the dying-idle state, and we 4383 * are being invoked from the CPU that was IPIed to continue the offline 4384 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4385 */ 4386 void rcutree_migrate_callbacks(int cpu) 4387 { 4388 unsigned long flags; 4389 struct rcu_data *my_rdp; 4390 struct rcu_node *my_rnp; 4391 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4392 bool needwake; 4393 4394 if (rcu_rdp_is_offloaded(rdp)) 4395 return; 4396 4397 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4398 if (rcu_segcblist_empty(&rdp->cblist)) { 4399 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4400 return; /* No callbacks to migrate. */ 4401 } 4402 4403 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4404 rcu_barrier_entrain(rdp); 4405 my_rdp = this_cpu_ptr(&rcu_data); 4406 my_rnp = my_rdp->mynode; 4407 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4408 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); 4409 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4410 /* Leverage recent GPs and set GP for new callbacks. */ 4411 needwake = rcu_advance_cbs(my_rnp, rdp) || 4412 rcu_advance_cbs(my_rnp, my_rdp); 4413 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4414 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4415 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4416 rcu_segcblist_disable(&rdp->cblist); 4417 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4418 check_cb_ovld_locked(my_rdp, my_rnp); 4419 if (rcu_rdp_is_offloaded(my_rdp)) { 4420 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4421 __call_rcu_nocb_wake(my_rdp, true, flags); 4422 } else { 4423 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4424 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4425 } 4426 local_irq_restore(flags); 4427 if (needwake) 4428 rcu_gp_kthread_wake(); 4429 lockdep_assert_irqs_enabled(); 4430 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4431 !rcu_segcblist_empty(&rdp->cblist), 4432 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4433 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4434 rcu_segcblist_first_cb(&rdp->cblist)); 4435 } 4436 4437 /* 4438 * The CPU has been completely removed, and some other CPU is reporting 4439 * this fact from process context. Do the remainder of the cleanup. 4440 * There can only be one CPU hotplug operation at a time, so no need for 4441 * explicit locking. 4442 */ 4443 int rcutree_dead_cpu(unsigned int cpu) 4444 { 4445 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus); 4446 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 4447 // Stop-machine done, so allow nohz_full to disable tick. 4448 tick_dep_clear(TICK_DEP_BIT_RCU); 4449 return 0; 4450 } 4451 4452 /* 4453 * Near the end of the offline process. Trace the fact that this CPU 4454 * is going offline. 4455 */ 4456 int rcutree_dying_cpu(unsigned int cpu) 4457 { 4458 bool blkd; 4459 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4460 struct rcu_node *rnp = rdp->mynode; 4461 4462 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); 4463 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 4464 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 4465 return 0; 4466 } 4467 4468 /* 4469 * Near the beginning of the process. The CPU is still very much alive 4470 * with pretty much all services enabled. 4471 */ 4472 int rcutree_offline_cpu(unsigned int cpu) 4473 { 4474 unsigned long flags; 4475 struct rcu_data *rdp; 4476 struct rcu_node *rnp; 4477 4478 rdp = per_cpu_ptr(&rcu_data, cpu); 4479 rnp = rdp->mynode; 4480 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4481 rnp->ffmask &= ~rdp->grpmask; 4482 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4483 4484 // nohz_full CPUs need the tick for stop-machine to work quickly 4485 tick_dep_set(TICK_DEP_BIT_RCU); 4486 return 0; 4487 } 4488 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 4489 4490 /* 4491 * On non-huge systems, use expedited RCU grace periods to make suspend 4492 * and hibernation run faster. 4493 */ 4494 static int rcu_pm_notify(struct notifier_block *self, 4495 unsigned long action, void *hcpu) 4496 { 4497 switch (action) { 4498 case PM_HIBERNATION_PREPARE: 4499 case PM_SUSPEND_PREPARE: 4500 rcu_async_hurry(); 4501 rcu_expedite_gp(); 4502 break; 4503 case PM_POST_HIBERNATION: 4504 case PM_POST_SUSPEND: 4505 rcu_unexpedite_gp(); 4506 rcu_async_relax(); 4507 break; 4508 default: 4509 break; 4510 } 4511 return NOTIFY_OK; 4512 } 4513 4514 /* 4515 * Spawn the kthreads that handle RCU's grace periods. 4516 */ 4517 static int __init rcu_spawn_gp_kthread(void) 4518 { 4519 unsigned long flags; 4520 struct rcu_node *rnp; 4521 struct sched_param sp; 4522 struct task_struct *t; 4523 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4524 4525 rcu_scheduler_fully_active = 1; 4526 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4527 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4528 return 0; 4529 if (kthread_prio) { 4530 sp.sched_priority = kthread_prio; 4531 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4532 } 4533 rnp = rcu_get_root(); 4534 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4535 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4536 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4537 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4538 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4539 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4540 wake_up_process(t); 4541 /* This is a pre-SMP initcall, we expect a single CPU */ 4542 WARN_ON(num_online_cpus() > 1); 4543 /* 4544 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4545 * due to rcu_scheduler_fully_active. 4546 */ 4547 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4548 rcu_spawn_rnp_kthreads(rdp->mynode); 4549 rcu_spawn_core_kthreads(); 4550 /* Create kthread worker for expedited GPs */ 4551 rcu_start_exp_gp_kworker(); 4552 return 0; 4553 } 4554 early_initcall(rcu_spawn_gp_kthread); 4555 4556 /* 4557 * This function is invoked towards the end of the scheduler's 4558 * initialization process. Before this is called, the idle task might 4559 * contain synchronous grace-period primitives (during which time, this idle 4560 * task is booting the system, and such primitives are no-ops). After this 4561 * function is called, any synchronous grace-period primitives are run as 4562 * expedited, with the requesting task driving the grace period forward. 4563 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4564 * runtime RCU functionality. 4565 */ 4566 void rcu_scheduler_starting(void) 4567 { 4568 unsigned long flags; 4569 struct rcu_node *rnp; 4570 4571 WARN_ON(num_online_cpus() != 1); 4572 WARN_ON(nr_context_switches() > 0); 4573 rcu_test_sync_prims(); 4574 4575 // Fix up the ->gp_seq counters. 4576 local_irq_save(flags); 4577 rcu_for_each_node_breadth_first(rnp) 4578 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4579 local_irq_restore(flags); 4580 4581 // Switch out of early boot mode. 4582 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4583 rcu_test_sync_prims(); 4584 } 4585 4586 /* 4587 * Helper function for rcu_init() that initializes the rcu_state structure. 4588 */ 4589 static void __init rcu_init_one(void) 4590 { 4591 static const char * const buf[] = RCU_NODE_NAME_INIT; 4592 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4593 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4594 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4595 4596 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4597 int cpustride = 1; 4598 int i; 4599 int j; 4600 struct rcu_node *rnp; 4601 4602 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4603 4604 /* Silence gcc 4.8 false positive about array index out of range. */ 4605 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4606 panic("rcu_init_one: rcu_num_lvls out of range"); 4607 4608 /* Initialize the level-tracking arrays. */ 4609 4610 for (i = 1; i < rcu_num_lvls; i++) 4611 rcu_state.level[i] = 4612 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4613 rcu_init_levelspread(levelspread, num_rcu_lvl); 4614 4615 /* Initialize the elements themselves, starting from the leaves. */ 4616 4617 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4618 cpustride *= levelspread[i]; 4619 rnp = rcu_state.level[i]; 4620 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4621 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4622 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4623 &rcu_node_class[i], buf[i]); 4624 raw_spin_lock_init(&rnp->fqslock); 4625 lockdep_set_class_and_name(&rnp->fqslock, 4626 &rcu_fqs_class[i], fqs[i]); 4627 rnp->gp_seq = rcu_state.gp_seq; 4628 rnp->gp_seq_needed = rcu_state.gp_seq; 4629 rnp->completedqs = rcu_state.gp_seq; 4630 rnp->qsmask = 0; 4631 rnp->qsmaskinit = 0; 4632 rnp->grplo = j * cpustride; 4633 rnp->grphi = (j + 1) * cpustride - 1; 4634 if (rnp->grphi >= nr_cpu_ids) 4635 rnp->grphi = nr_cpu_ids - 1; 4636 if (i == 0) { 4637 rnp->grpnum = 0; 4638 rnp->grpmask = 0; 4639 rnp->parent = NULL; 4640 } else { 4641 rnp->grpnum = j % levelspread[i - 1]; 4642 rnp->grpmask = BIT(rnp->grpnum); 4643 rnp->parent = rcu_state.level[i - 1] + 4644 j / levelspread[i - 1]; 4645 } 4646 rnp->level = i; 4647 INIT_LIST_HEAD(&rnp->blkd_tasks); 4648 rcu_init_one_nocb(rnp); 4649 init_waitqueue_head(&rnp->exp_wq[0]); 4650 init_waitqueue_head(&rnp->exp_wq[1]); 4651 init_waitqueue_head(&rnp->exp_wq[2]); 4652 init_waitqueue_head(&rnp->exp_wq[3]); 4653 spin_lock_init(&rnp->exp_lock); 4654 mutex_init(&rnp->kthread_mutex); 4655 raw_spin_lock_init(&rnp->exp_poll_lock); 4656 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4657 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4658 } 4659 } 4660 4661 init_swait_queue_head(&rcu_state.gp_wq); 4662 init_swait_queue_head(&rcu_state.expedited_wq); 4663 rnp = rcu_first_leaf_node(); 4664 for_each_possible_cpu(i) { 4665 while (i > rnp->grphi) 4666 rnp++; 4667 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4668 per_cpu_ptr(&rcu_data, i)->barrier_head.next = 4669 &per_cpu_ptr(&rcu_data, i)->barrier_head; 4670 rcu_boot_init_percpu_data(i); 4671 } 4672 } 4673 4674 /* 4675 * Force priority from the kernel command-line into range. 4676 */ 4677 static void __init sanitize_kthread_prio(void) 4678 { 4679 int kthread_prio_in = kthread_prio; 4680 4681 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4682 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4683 kthread_prio = 2; 4684 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4685 kthread_prio = 1; 4686 else if (kthread_prio < 0) 4687 kthread_prio = 0; 4688 else if (kthread_prio > 99) 4689 kthread_prio = 99; 4690 4691 if (kthread_prio != kthread_prio_in) 4692 pr_alert("%s: Limited prio to %d from %d\n", 4693 __func__, kthread_prio, kthread_prio_in); 4694 } 4695 4696 /* 4697 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4698 * replace the definitions in tree.h because those are needed to size 4699 * the ->node array in the rcu_state structure. 4700 */ 4701 void rcu_init_geometry(void) 4702 { 4703 ulong d; 4704 int i; 4705 static unsigned long old_nr_cpu_ids; 4706 int rcu_capacity[RCU_NUM_LVLS]; 4707 static bool initialized; 4708 4709 if (initialized) { 4710 /* 4711 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4712 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4713 */ 4714 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4715 return; 4716 } 4717 4718 old_nr_cpu_ids = nr_cpu_ids; 4719 initialized = true; 4720 4721 /* 4722 * Initialize any unspecified boot parameters. 4723 * The default values of jiffies_till_first_fqs and 4724 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4725 * value, which is a function of HZ, then adding one for each 4726 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4727 */ 4728 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4729 if (jiffies_till_first_fqs == ULONG_MAX) 4730 jiffies_till_first_fqs = d; 4731 if (jiffies_till_next_fqs == ULONG_MAX) 4732 jiffies_till_next_fqs = d; 4733 adjust_jiffies_till_sched_qs(); 4734 4735 /* If the compile-time values are accurate, just leave. */ 4736 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4737 nr_cpu_ids == NR_CPUS) 4738 return; 4739 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4740 rcu_fanout_leaf, nr_cpu_ids); 4741 4742 /* 4743 * The boot-time rcu_fanout_leaf parameter must be at least two 4744 * and cannot exceed the number of bits in the rcu_node masks. 4745 * Complain and fall back to the compile-time values if this 4746 * limit is exceeded. 4747 */ 4748 if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > BITS_PER_LONG) { 4749 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4750 WARN_ON(1); 4751 return; 4752 } 4753 4754 /* 4755 * Compute number of nodes that can be handled an rcu_node tree 4756 * with the given number of levels. 4757 */ 4758 rcu_capacity[0] = rcu_fanout_leaf; 4759 for (i = 1; i < RCU_NUM_LVLS; i++) 4760 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4761 4762 /* 4763 * The tree must be able to accommodate the configured number of CPUs. 4764 * If this limit is exceeded, fall back to the compile-time values. 4765 */ 4766 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4767 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4768 WARN_ON(1); 4769 return; 4770 } 4771 4772 /* Calculate the number of levels in the tree. */ 4773 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4774 } 4775 rcu_num_lvls = i + 1; 4776 4777 /* Calculate the number of rcu_nodes at each level of the tree. */ 4778 for (i = 0; i < rcu_num_lvls; i++) { 4779 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4780 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4781 } 4782 4783 /* Calculate the total number of rcu_node structures. */ 4784 rcu_num_nodes = 0; 4785 for (i = 0; i < rcu_num_lvls; i++) 4786 rcu_num_nodes += num_rcu_lvl[i]; 4787 } 4788 4789 /* 4790 * Dump out the structure of the rcu_node combining tree associated 4791 * with the rcu_state structure. 4792 */ 4793 static void __init rcu_dump_rcu_node_tree(void) 4794 { 4795 int level = 0; 4796 struct rcu_node *rnp; 4797 4798 pr_info("rcu_node tree layout dump\n"); 4799 pr_info(" "); 4800 rcu_for_each_node_breadth_first(rnp) { 4801 if (rnp->level != level) { 4802 pr_cont("\n"); 4803 pr_info(" "); 4804 level = rnp->level; 4805 } 4806 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4807 } 4808 pr_cont("\n"); 4809 } 4810 4811 struct workqueue_struct *rcu_gp_wq; 4812 4813 void __init rcu_init(void) 4814 { 4815 int cpu = smp_processor_id(); 4816 4817 rcu_early_boot_tests(); 4818 4819 rcu_bootup_announce(); 4820 sanitize_kthread_prio(); 4821 rcu_init_geometry(); 4822 rcu_init_one(); 4823 if (dump_tree) 4824 rcu_dump_rcu_node_tree(); 4825 if (use_softirq) 4826 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4827 4828 /* 4829 * We don't need protection against CPU-hotplug here because 4830 * this is called early in boot, before either interrupts 4831 * or the scheduler are operational. 4832 */ 4833 pm_notifier(rcu_pm_notify, 0); 4834 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 4835 rcutree_prepare_cpu(cpu); 4836 rcutree_report_cpu_starting(cpu); 4837 rcutree_online_cpu(cpu); 4838 4839 /* Create workqueue for Tree SRCU and for expedited GPs. */ 4840 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4841 WARN_ON(!rcu_gp_wq); 4842 4843 sync_wq = alloc_workqueue("sync_wq", WQ_MEM_RECLAIM, 0); 4844 WARN_ON(!sync_wq); 4845 4846 /* Fill in default value for rcutree.qovld boot parameter. */ 4847 /* -After- the rcu_node ->lock fields are initialized! */ 4848 if (qovld < 0) 4849 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4850 else 4851 qovld_calc = qovld; 4852 4853 // Kick-start in case any polled grace periods started early. 4854 (void)start_poll_synchronize_rcu_expedited(); 4855 4856 rcu_test_sync_prims(); 4857 4858 tasks_cblist_init_generic(); 4859 } 4860 4861 #include "tree_stall.h" 4862 #include "tree_exp.h" 4863 #include "tree_nocb.h" 4864 #include "tree_plugin.h" 4865