1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/swap.c 4 * 5 * This file provides functions for reading the suspend image from 6 * and writing it to a swap partition. 7 * 8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz> 9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com> 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <crypto/acompress.h> 16 #include <linux/module.h> 17 #include <linux/file.h> 18 #include <linux/delay.h> 19 #include <linux/bitops.h> 20 #include <linux/device.h> 21 #include <linux/bio.h> 22 #include <linux/blkdev.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/pm.h> 26 #include <linux/slab.h> 27 #include <linux/vmalloc.h> 28 #include <linux/cpumask.h> 29 #include <linux/atomic.h> 30 #include <linux/kthread.h> 31 #include <linux/crc32.h> 32 #include <linux/ktime.h> 33 34 #include "power.h" 35 36 #define HIBERNATE_SIG "S1SUSPEND" 37 38 u32 swsusp_hardware_signature; 39 40 /* 41 * When reading an {un,}compressed image, we may restore pages in place, 42 * in which case some architectures need these pages cleaning before they 43 * can be executed. We don't know which pages these may be, so clean the lot. 44 */ 45 static bool clean_pages_on_read; 46 static bool clean_pages_on_decompress; 47 48 /* 49 * The swap map is a data structure used for keeping track of each page 50 * written to a swap partition. It consists of many swap_map_page 51 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries. 52 * These structures are stored on the swap and linked together with the 53 * help of the .next_swap member. 54 * 55 * The swap map is created during suspend. The swap map pages are 56 * allocated and populated one at a time, so we only need one memory 57 * page to set up the entire structure. 58 * 59 * During resume we pick up all swap_map_page structures into a list. 60 */ 61 62 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) 63 64 /* 65 * Number of free pages that are not high. 66 */ 67 static inline unsigned long low_free_pages(void) 68 { 69 return nr_free_pages() - nr_free_highpages(); 70 } 71 72 /* 73 * Number of pages required to be kept free while writing the image. Always 74 * half of all available low pages before the writing starts. 75 */ 76 static inline unsigned long reqd_free_pages(void) 77 { 78 return low_free_pages() / 2; 79 } 80 81 struct swap_map_page { 82 sector_t entries[MAP_PAGE_ENTRIES]; 83 sector_t next_swap; 84 }; 85 86 struct swap_map_page_list { 87 struct swap_map_page *map; 88 struct swap_map_page_list *next; 89 }; 90 91 /* 92 * The swap_map_handle structure is used for handling swap in 93 * a file-alike way 94 */ 95 96 struct swap_map_handle { 97 struct swap_map_page *cur; 98 struct swap_map_page_list *maps; 99 sector_t cur_swap; 100 sector_t first_sector; 101 unsigned int k; 102 unsigned long reqd_free_pages; 103 u32 crc32; 104 }; 105 106 struct swsusp_header { 107 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) - 108 sizeof(u32) - sizeof(u32)]; 109 u32 hw_sig; 110 u32 crc32; 111 sector_t image; 112 unsigned int flags; /* Flags to pass to the "boot" kernel */ 113 char orig_sig[10]; 114 char sig[10]; 115 } __packed; 116 117 static struct swsusp_header *swsusp_header; 118 119 /* 120 * The following functions are used for tracing the allocated 121 * swap pages, so that they can be freed in case of an error. 122 */ 123 124 struct swsusp_extent { 125 struct rb_node node; 126 unsigned long start; 127 unsigned long end; 128 }; 129 130 static struct rb_root swsusp_extents = RB_ROOT; 131 132 static int swsusp_extents_insert(unsigned long swap_offset) 133 { 134 struct rb_node **new = &(swsusp_extents.rb_node); 135 struct rb_node *parent = NULL; 136 struct swsusp_extent *ext; 137 138 /* Figure out where to put the new node */ 139 while (*new) { 140 ext = rb_entry(*new, struct swsusp_extent, node); 141 parent = *new; 142 if (swap_offset < ext->start) { 143 /* Try to merge */ 144 if (swap_offset == ext->start - 1) { 145 ext->start--; 146 return 0; 147 } 148 new = &((*new)->rb_left); 149 } else if (swap_offset > ext->end) { 150 /* Try to merge */ 151 if (swap_offset == ext->end + 1) { 152 ext->end++; 153 return 0; 154 } 155 new = &((*new)->rb_right); 156 } else { 157 /* It already is in the tree */ 158 return -EINVAL; 159 } 160 } 161 /* Add the new node and rebalance the tree. */ 162 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL); 163 if (!ext) 164 return -ENOMEM; 165 166 ext->start = swap_offset; 167 ext->end = swap_offset; 168 rb_link_node(&ext->node, parent, new); 169 rb_insert_color(&ext->node, &swsusp_extents); 170 return 0; 171 } 172 173 /* 174 * alloc_swapdev_block - allocate a swap page and register that it has 175 * been allocated, so that it can be freed in case of an error. 176 */ 177 178 sector_t alloc_swapdev_block(int swap) 179 { 180 unsigned long offset; 181 182 offset = swp_offset(get_swap_page_of_type(swap)); 183 if (offset) { 184 if (swsusp_extents_insert(offset)) 185 swap_free(swp_entry(swap, offset)); 186 else 187 return swapdev_block(swap, offset); 188 } 189 return 0; 190 } 191 192 /* 193 * free_all_swap_pages - free swap pages allocated for saving image data. 194 * It also frees the extents used to register which swap entries had been 195 * allocated. 196 */ 197 198 void free_all_swap_pages(int swap) 199 { 200 struct rb_node *node; 201 202 while ((node = swsusp_extents.rb_node)) { 203 struct swsusp_extent *ext; 204 205 ext = rb_entry(node, struct swsusp_extent, node); 206 rb_erase(node, &swsusp_extents); 207 swap_free_nr(swp_entry(swap, ext->start), 208 ext->end - ext->start + 1); 209 210 kfree(ext); 211 } 212 } 213 214 int swsusp_swap_in_use(void) 215 { 216 return (swsusp_extents.rb_node != NULL); 217 } 218 219 /* 220 * General things 221 */ 222 223 static unsigned short root_swap = 0xffff; 224 static struct file *hib_resume_bdev_file; 225 226 struct hib_bio_batch { 227 atomic_t count; 228 wait_queue_head_t wait; 229 blk_status_t error; 230 struct blk_plug plug; 231 }; 232 233 static void hib_init_batch(struct hib_bio_batch *hb) 234 { 235 atomic_set(&hb->count, 0); 236 init_waitqueue_head(&hb->wait); 237 hb->error = BLK_STS_OK; 238 blk_start_plug(&hb->plug); 239 } 240 241 static void hib_finish_batch(struct hib_bio_batch *hb) 242 { 243 blk_finish_plug(&hb->plug); 244 } 245 246 static void hib_end_io(struct bio *bio) 247 { 248 struct hib_bio_batch *hb = bio->bi_private; 249 struct page *page = bio_first_page_all(bio); 250 251 if (bio->bi_status) { 252 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n", 253 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 254 (unsigned long long)bio->bi_iter.bi_sector); 255 } 256 257 if (bio_data_dir(bio) == WRITE) 258 put_page(page); 259 else if (clean_pages_on_read) 260 flush_icache_range((unsigned long)page_address(page), 261 (unsigned long)page_address(page) + PAGE_SIZE); 262 263 if (bio->bi_status && !hb->error) 264 hb->error = bio->bi_status; 265 if (atomic_dec_and_test(&hb->count)) 266 wake_up(&hb->wait); 267 268 bio_put(bio); 269 } 270 271 static int hib_submit_io_sync(blk_opf_t opf, pgoff_t page_off, void *addr) 272 { 273 return bdev_rw_virt(file_bdev(hib_resume_bdev_file), 274 page_off * (PAGE_SIZE >> 9), addr, PAGE_SIZE, opf); 275 } 276 277 static int hib_submit_io_async(blk_opf_t opf, pgoff_t page_off, void *addr, 278 struct hib_bio_batch *hb) 279 { 280 struct bio *bio; 281 282 bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf, 283 GFP_NOIO | __GFP_HIGH); 284 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9); 285 bio_add_virt_nofail(bio, addr, PAGE_SIZE); 286 bio->bi_end_io = hib_end_io; 287 bio->bi_private = hb; 288 atomic_inc(&hb->count); 289 submit_bio(bio); 290 return 0; 291 } 292 293 static int hib_wait_io(struct hib_bio_batch *hb) 294 { 295 /* 296 * We are relying on the behavior of blk_plug that a thread with 297 * a plug will flush the plug list before sleeping. 298 */ 299 wait_event(hb->wait, atomic_read(&hb->count) == 0); 300 return blk_status_to_errno(hb->error); 301 } 302 303 /* 304 * Saving part 305 */ 306 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) 307 { 308 int error; 309 310 hib_submit_io_sync(REQ_OP_READ, swsusp_resume_block, swsusp_header); 311 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || 312 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { 313 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); 314 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10); 315 swsusp_header->image = handle->first_sector; 316 if (swsusp_hardware_signature) { 317 swsusp_header->hw_sig = swsusp_hardware_signature; 318 flags |= SF_HW_SIG; 319 } 320 swsusp_header->flags = flags; 321 if (flags & SF_CRC32_MODE) 322 swsusp_header->crc32 = handle->crc32; 323 error = hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC, 324 swsusp_resume_block, swsusp_header); 325 } else { 326 pr_err("Swap header not found!\n"); 327 error = -ENODEV; 328 } 329 return error; 330 } 331 332 /* 333 * Hold the swsusp_header flag. This is used in software_resume() in 334 * 'kernel/power/hibernate' to check if the image is compressed and query 335 * for the compression algorithm support(if so). 336 */ 337 unsigned int swsusp_header_flags; 338 339 /** 340 * swsusp_swap_check - check if the resume device is a swap device 341 * and get its index (if so) 342 * 343 * This is called before saving image 344 */ 345 static int swsusp_swap_check(void) 346 { 347 int res; 348 349 if (swsusp_resume_device) 350 res = swap_type_of(swsusp_resume_device, swsusp_resume_block); 351 else 352 res = find_first_swap(&swsusp_resume_device); 353 if (res < 0) 354 return res; 355 root_swap = res; 356 357 hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device, 358 BLK_OPEN_WRITE, NULL, NULL); 359 if (IS_ERR(hib_resume_bdev_file)) 360 return PTR_ERR(hib_resume_bdev_file); 361 362 return 0; 363 } 364 365 /** 366 * write_page - Write one page to given swap location. 367 * @buf: Address we're writing. 368 * @offset: Offset of the swap page we're writing to. 369 * @hb: bio completion batch 370 */ 371 372 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb) 373 { 374 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 375 void *src; 376 int ret; 377 378 if (!offset) 379 return -ENOSPC; 380 381 if (!hb) 382 goto sync_io; 383 384 src = (void *)__get_free_page(gfp); 385 if (!src) { 386 ret = hib_wait_io(hb); /* Free pages */ 387 if (ret) 388 return ret; 389 src = (void *)__get_free_page(gfp); 390 if (WARN_ON_ONCE(!src)) 391 goto sync_io; 392 } 393 394 copy_page(src, buf); 395 return hib_submit_io_async(REQ_OP_WRITE | REQ_SYNC, offset, src, hb); 396 sync_io: 397 return hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC, offset, buf); 398 } 399 400 static void release_swap_writer(struct swap_map_handle *handle) 401 { 402 if (handle->cur) 403 free_page((unsigned long)handle->cur); 404 handle->cur = NULL; 405 } 406 407 static int get_swap_writer(struct swap_map_handle *handle) 408 { 409 int ret; 410 411 ret = swsusp_swap_check(); 412 if (ret) { 413 if (ret != -ENOSPC) 414 pr_err("Cannot find swap device, try swapon -a\n"); 415 return ret; 416 } 417 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); 418 if (!handle->cur) { 419 ret = -ENOMEM; 420 goto err_close; 421 } 422 handle->cur_swap = alloc_swapdev_block(root_swap); 423 if (!handle->cur_swap) { 424 ret = -ENOSPC; 425 goto err_rel; 426 } 427 handle->k = 0; 428 handle->reqd_free_pages = reqd_free_pages(); 429 handle->first_sector = handle->cur_swap; 430 return 0; 431 err_rel: 432 release_swap_writer(handle); 433 err_close: 434 swsusp_close(); 435 return ret; 436 } 437 438 static int swap_write_page(struct swap_map_handle *handle, void *buf, 439 struct hib_bio_batch *hb) 440 { 441 int error; 442 sector_t offset; 443 444 if (!handle->cur) 445 return -EINVAL; 446 offset = alloc_swapdev_block(root_swap); 447 error = write_page(buf, offset, hb); 448 if (error) 449 return error; 450 handle->cur->entries[handle->k++] = offset; 451 if (handle->k >= MAP_PAGE_ENTRIES) { 452 offset = alloc_swapdev_block(root_swap); 453 if (!offset) 454 return -ENOSPC; 455 handle->cur->next_swap = offset; 456 error = write_page(handle->cur, handle->cur_swap, hb); 457 if (error) 458 goto out; 459 clear_page(handle->cur); 460 handle->cur_swap = offset; 461 handle->k = 0; 462 463 if (hb && low_free_pages() <= handle->reqd_free_pages) { 464 error = hib_wait_io(hb); 465 if (error) 466 goto out; 467 /* 468 * Recalculate the number of required free pages, to 469 * make sure we never take more than half. 470 */ 471 handle->reqd_free_pages = reqd_free_pages(); 472 } 473 } 474 out: 475 return error; 476 } 477 478 static int flush_swap_writer(struct swap_map_handle *handle) 479 { 480 if (handle->cur && handle->cur_swap) 481 return write_page(handle->cur, handle->cur_swap, NULL); 482 else 483 return -EINVAL; 484 } 485 486 static int swap_writer_finish(struct swap_map_handle *handle, 487 unsigned int flags, int error) 488 { 489 if (!error) { 490 pr_info("S"); 491 error = mark_swapfiles(handle, flags); 492 pr_cont("|\n"); 493 flush_swap_writer(handle); 494 } 495 496 if (error) 497 free_all_swap_pages(root_swap); 498 release_swap_writer(handle); 499 swsusp_close(); 500 501 return error; 502 } 503 504 /* 505 * Bytes we need for compressed data in worst case. We assume(limitation) 506 * this is the worst of all the compression algorithms. 507 */ 508 #define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2) 509 510 /* We need to remember how much compressed data we need to read. */ 511 #define CMP_HEADER sizeof(size_t) 512 513 /* Number of pages/bytes we'll compress at one time. */ 514 #define UNC_PAGES 32 515 #define UNC_SIZE (UNC_PAGES * PAGE_SIZE) 516 517 /* Number of pages we need for compressed data (worst case). */ 518 #define CMP_PAGES DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \ 519 CMP_HEADER, PAGE_SIZE) 520 #define CMP_SIZE (CMP_PAGES * PAGE_SIZE) 521 522 /* Maximum number of threads for compression/decompression. */ 523 #define CMP_THREADS 3 524 525 /* Minimum/maximum number of pages for read buffering. */ 526 #define CMP_MIN_RD_PAGES 1024 527 #define CMP_MAX_RD_PAGES 8192 528 529 /** 530 * save_image - save the suspend image data 531 */ 532 533 static int save_image(struct swap_map_handle *handle, 534 struct snapshot_handle *snapshot, 535 unsigned int nr_to_write) 536 { 537 unsigned int m; 538 int ret; 539 int nr_pages; 540 int err2; 541 struct hib_bio_batch hb; 542 ktime_t start; 543 ktime_t stop; 544 545 hib_init_batch(&hb); 546 547 pr_info("Saving image data pages (%u pages)...\n", 548 nr_to_write); 549 m = nr_to_write / 10; 550 if (!m) 551 m = 1; 552 nr_pages = 0; 553 start = ktime_get(); 554 while (1) { 555 ret = snapshot_read_next(snapshot); 556 if (ret <= 0) 557 break; 558 ret = swap_write_page(handle, data_of(*snapshot), &hb); 559 if (ret) 560 break; 561 if (!(nr_pages % m)) 562 pr_info("Image saving progress: %3d%%\n", 563 nr_pages / m * 10); 564 nr_pages++; 565 } 566 err2 = hib_wait_io(&hb); 567 hib_finish_batch(&hb); 568 stop = ktime_get(); 569 if (!ret) 570 ret = err2; 571 if (!ret) 572 pr_info("Image saving done\n"); 573 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 574 return ret; 575 } 576 577 /* 578 * Structure used for CRC32. 579 */ 580 struct crc_data { 581 struct task_struct *thr; /* thread */ 582 atomic_t ready; /* ready to start flag */ 583 atomic_t stop; /* ready to stop flag */ 584 unsigned run_threads; /* nr current threads */ 585 wait_queue_head_t go; /* start crc update */ 586 wait_queue_head_t done; /* crc update done */ 587 u32 *crc32; /* points to handle's crc32 */ 588 size_t *unc_len[CMP_THREADS]; /* uncompressed lengths */ 589 unsigned char *unc[CMP_THREADS]; /* uncompressed data */ 590 }; 591 592 /* 593 * CRC32 update function that runs in its own thread. 594 */ 595 static int crc32_threadfn(void *data) 596 { 597 struct crc_data *d = data; 598 unsigned i; 599 600 while (1) { 601 wait_event(d->go, atomic_read_acquire(&d->ready) || 602 kthread_should_stop()); 603 if (kthread_should_stop()) { 604 d->thr = NULL; 605 atomic_set_release(&d->stop, 1); 606 wake_up(&d->done); 607 break; 608 } 609 atomic_set(&d->ready, 0); 610 611 for (i = 0; i < d->run_threads; i++) 612 *d->crc32 = crc32_le(*d->crc32, 613 d->unc[i], *d->unc_len[i]); 614 atomic_set_release(&d->stop, 1); 615 wake_up(&d->done); 616 } 617 return 0; 618 } 619 /* 620 * Structure used for data compression. 621 */ 622 struct cmp_data { 623 struct task_struct *thr; /* thread */ 624 struct crypto_acomp *cc; /* crypto compressor */ 625 struct acomp_req *cr; /* crypto request */ 626 atomic_t ready; /* ready to start flag */ 627 atomic_t stop; /* ready to stop flag */ 628 int ret; /* return code */ 629 wait_queue_head_t go; /* start compression */ 630 wait_queue_head_t done; /* compression done */ 631 size_t unc_len; /* uncompressed length */ 632 size_t cmp_len; /* compressed length */ 633 unsigned char unc[UNC_SIZE]; /* uncompressed buffer */ 634 unsigned char cmp[CMP_SIZE]; /* compressed buffer */ 635 }; 636 637 /* Indicates the image size after compression */ 638 static atomic_t compressed_size = ATOMIC_INIT(0); 639 640 /* 641 * Compression function that runs in its own thread. 642 */ 643 static int compress_threadfn(void *data) 644 { 645 struct cmp_data *d = data; 646 647 while (1) { 648 wait_event(d->go, atomic_read_acquire(&d->ready) || 649 kthread_should_stop()); 650 if (kthread_should_stop()) { 651 d->thr = NULL; 652 d->ret = -1; 653 atomic_set_release(&d->stop, 1); 654 wake_up(&d->done); 655 break; 656 } 657 atomic_set(&d->ready, 0); 658 659 acomp_request_set_callback(d->cr, CRYPTO_TFM_REQ_MAY_SLEEP, 660 NULL, NULL); 661 acomp_request_set_src_nondma(d->cr, d->unc, d->unc_len); 662 acomp_request_set_dst_nondma(d->cr, d->cmp + CMP_HEADER, 663 CMP_SIZE - CMP_HEADER); 664 d->ret = crypto_acomp_compress(d->cr); 665 d->cmp_len = d->cr->dlen; 666 667 atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len); 668 atomic_set_release(&d->stop, 1); 669 wake_up(&d->done); 670 } 671 return 0; 672 } 673 674 /** 675 * save_compressed_image - Save the suspend image data after compression. 676 * @handle: Swap map handle to use for saving the image. 677 * @snapshot: Image to read data from. 678 * @nr_to_write: Number of pages to save. 679 */ 680 static int save_compressed_image(struct swap_map_handle *handle, 681 struct snapshot_handle *snapshot, 682 unsigned int nr_to_write) 683 { 684 unsigned int m; 685 int ret = 0; 686 int nr_pages; 687 int err2; 688 struct hib_bio_batch hb; 689 ktime_t start; 690 ktime_t stop; 691 size_t off; 692 unsigned thr, run_threads, nr_threads; 693 unsigned char *page = NULL; 694 struct cmp_data *data = NULL; 695 struct crc_data *crc = NULL; 696 697 hib_init_batch(&hb); 698 699 atomic_set(&compressed_size, 0); 700 701 /* 702 * We'll limit the number of threads for compression to limit memory 703 * footprint. 704 */ 705 nr_threads = num_online_cpus() - 1; 706 nr_threads = clamp_val(nr_threads, 1, CMP_THREADS); 707 708 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH); 709 if (!page) { 710 pr_err("Failed to allocate %s page\n", hib_comp_algo); 711 ret = -ENOMEM; 712 goto out_clean; 713 } 714 715 data = vzalloc(array_size(nr_threads, sizeof(*data))); 716 if (!data) { 717 pr_err("Failed to allocate %s data\n", hib_comp_algo); 718 ret = -ENOMEM; 719 goto out_clean; 720 } 721 722 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 723 if (!crc) { 724 pr_err("Failed to allocate crc\n"); 725 ret = -ENOMEM; 726 goto out_clean; 727 } 728 729 /* 730 * Start the compression threads. 731 */ 732 for (thr = 0; thr < nr_threads; thr++) { 733 init_waitqueue_head(&data[thr].go); 734 init_waitqueue_head(&data[thr].done); 735 736 data[thr].cc = crypto_alloc_acomp(hib_comp_algo, 0, CRYPTO_ALG_ASYNC); 737 if (IS_ERR_OR_NULL(data[thr].cc)) { 738 pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc)); 739 ret = -EFAULT; 740 goto out_clean; 741 } 742 743 data[thr].cr = acomp_request_alloc(data[thr].cc); 744 if (!data[thr].cr) { 745 pr_err("Could not allocate comp request\n"); 746 ret = -ENOMEM; 747 goto out_clean; 748 } 749 750 data[thr].thr = kthread_run(compress_threadfn, 751 &data[thr], 752 "image_compress/%u", thr); 753 if (IS_ERR(data[thr].thr)) { 754 data[thr].thr = NULL; 755 pr_err("Cannot start compression threads\n"); 756 ret = -ENOMEM; 757 goto out_clean; 758 } 759 } 760 761 /* 762 * Start the CRC32 thread. 763 */ 764 init_waitqueue_head(&crc->go); 765 init_waitqueue_head(&crc->done); 766 767 handle->crc32 = 0; 768 crc->crc32 = &handle->crc32; 769 for (thr = 0; thr < nr_threads; thr++) { 770 crc->unc[thr] = data[thr].unc; 771 crc->unc_len[thr] = &data[thr].unc_len; 772 } 773 774 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 775 if (IS_ERR(crc->thr)) { 776 crc->thr = NULL; 777 pr_err("Cannot start CRC32 thread\n"); 778 ret = -ENOMEM; 779 goto out_clean; 780 } 781 782 /* 783 * Adjust the number of required free pages after all allocations have 784 * been done. We don't want to run out of pages when writing. 785 */ 786 handle->reqd_free_pages = reqd_free_pages(); 787 788 pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo); 789 pr_info("Compressing and saving image data (%u pages)...\n", 790 nr_to_write); 791 m = nr_to_write / 10; 792 if (!m) 793 m = 1; 794 nr_pages = 0; 795 start = ktime_get(); 796 for (;;) { 797 for (thr = 0; thr < nr_threads; thr++) { 798 for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) { 799 ret = snapshot_read_next(snapshot); 800 if (ret < 0) 801 goto out_finish; 802 803 if (!ret) 804 break; 805 806 memcpy(data[thr].unc + off, 807 data_of(*snapshot), PAGE_SIZE); 808 809 if (!(nr_pages % m)) 810 pr_info("Image saving progress: %3d%%\n", 811 nr_pages / m * 10); 812 nr_pages++; 813 } 814 if (!off) 815 break; 816 817 data[thr].unc_len = off; 818 819 atomic_set_release(&data[thr].ready, 1); 820 wake_up(&data[thr].go); 821 } 822 823 if (!thr) 824 break; 825 826 crc->run_threads = thr; 827 atomic_set_release(&crc->ready, 1); 828 wake_up(&crc->go); 829 830 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 831 wait_event(data[thr].done, 832 atomic_read_acquire(&data[thr].stop)); 833 atomic_set(&data[thr].stop, 0); 834 835 ret = data[thr].ret; 836 837 if (ret < 0) { 838 pr_err("%s compression failed\n", hib_comp_algo); 839 goto out_finish; 840 } 841 842 if (unlikely(!data[thr].cmp_len || 843 data[thr].cmp_len > 844 bytes_worst_compress(data[thr].unc_len))) { 845 pr_err("Invalid %s compressed length\n", hib_comp_algo); 846 ret = -1; 847 goto out_finish; 848 } 849 850 *(size_t *)data[thr].cmp = data[thr].cmp_len; 851 852 /* 853 * Given we are writing one page at a time to disk, we 854 * copy that much from the buffer, although the last 855 * bit will likely be smaller than full page. This is 856 * OK - we saved the length of the compressed data, so 857 * any garbage at the end will be discarded when we 858 * read it. 859 */ 860 for (off = 0; 861 off < CMP_HEADER + data[thr].cmp_len; 862 off += PAGE_SIZE) { 863 memcpy(page, data[thr].cmp + off, PAGE_SIZE); 864 865 ret = swap_write_page(handle, page, &hb); 866 if (ret) 867 goto out_finish; 868 } 869 } 870 871 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 872 atomic_set(&crc->stop, 0); 873 } 874 875 out_finish: 876 err2 = hib_wait_io(&hb); 877 stop = ktime_get(); 878 if (!ret) 879 ret = err2; 880 if (!ret) 881 pr_info("Image saving done\n"); 882 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 883 pr_info("Image size after compression: %d kbytes\n", 884 (atomic_read(&compressed_size) / 1024)); 885 886 out_clean: 887 hib_finish_batch(&hb); 888 if (crc) { 889 if (crc->thr) 890 kthread_stop(crc->thr); 891 kfree(crc); 892 } 893 if (data) { 894 for (thr = 0; thr < nr_threads; thr++) { 895 if (data[thr].thr) 896 kthread_stop(data[thr].thr); 897 acomp_request_free(data[thr].cr); 898 crypto_free_acomp(data[thr].cc); 899 } 900 vfree(data); 901 } 902 if (page) free_page((unsigned long)page); 903 904 return ret; 905 } 906 907 /** 908 * enough_swap - Make sure we have enough swap to save the image. 909 * 910 * Returns TRUE or FALSE after checking the total amount of swap 911 * space available from the resume partition. 912 */ 913 914 static int enough_swap(unsigned int nr_pages) 915 { 916 unsigned int free_swap = count_swap_pages(root_swap, 1); 917 unsigned int required; 918 919 pr_debug("Free swap pages: %u\n", free_swap); 920 921 required = PAGES_FOR_IO + nr_pages; 922 return free_swap > required; 923 } 924 925 /** 926 * swsusp_write - Write entire image and metadata. 927 * @flags: flags to pass to the "boot" kernel in the image header 928 * 929 * It is important _NOT_ to umount filesystems at this point. We want 930 * them synced (in case something goes wrong) but we DO not want to mark 931 * filesystem clean: it is not. (And it does not matter, if we resume 932 * correctly, we'll mark system clean, anyway.) 933 */ 934 935 int swsusp_write(unsigned int flags) 936 { 937 struct swap_map_handle handle; 938 struct snapshot_handle snapshot; 939 struct swsusp_info *header; 940 unsigned long pages; 941 int error; 942 943 pages = snapshot_get_image_size(); 944 error = get_swap_writer(&handle); 945 if (error) { 946 pr_err("Cannot get swap writer\n"); 947 return error; 948 } 949 if (flags & SF_NOCOMPRESS_MODE) { 950 if (!enough_swap(pages)) { 951 pr_err("Not enough free swap\n"); 952 error = -ENOSPC; 953 goto out_finish; 954 } 955 } 956 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 957 error = snapshot_read_next(&snapshot); 958 if (error < (int)PAGE_SIZE) { 959 if (error >= 0) 960 error = -EFAULT; 961 962 goto out_finish; 963 } 964 header = (struct swsusp_info *)data_of(snapshot); 965 error = swap_write_page(&handle, header, NULL); 966 if (!error) { 967 error = (flags & SF_NOCOMPRESS_MODE) ? 968 save_image(&handle, &snapshot, pages - 1) : 969 save_compressed_image(&handle, &snapshot, pages - 1); 970 } 971 out_finish: 972 error = swap_writer_finish(&handle, flags, error); 973 return error; 974 } 975 976 /* 977 * The following functions allow us to read data using a swap map 978 * in a file-like way. 979 */ 980 981 static void release_swap_reader(struct swap_map_handle *handle) 982 { 983 struct swap_map_page_list *tmp; 984 985 while (handle->maps) { 986 if (handle->maps->map) 987 free_page((unsigned long)handle->maps->map); 988 tmp = handle->maps; 989 handle->maps = handle->maps->next; 990 kfree(tmp); 991 } 992 handle->cur = NULL; 993 } 994 995 static int get_swap_reader(struct swap_map_handle *handle, 996 unsigned int *flags_p) 997 { 998 int error; 999 struct swap_map_page_list *tmp, *last; 1000 sector_t offset; 1001 1002 *flags_p = swsusp_header->flags; 1003 1004 if (!swsusp_header->image) /* how can this happen? */ 1005 return -EINVAL; 1006 1007 handle->cur = NULL; 1008 last = handle->maps = NULL; 1009 offset = swsusp_header->image; 1010 while (offset) { 1011 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL); 1012 if (!tmp) { 1013 release_swap_reader(handle); 1014 return -ENOMEM; 1015 } 1016 if (!handle->maps) 1017 handle->maps = tmp; 1018 if (last) 1019 last->next = tmp; 1020 last = tmp; 1021 1022 tmp->map = (struct swap_map_page *) 1023 __get_free_page(GFP_NOIO | __GFP_HIGH); 1024 if (!tmp->map) { 1025 release_swap_reader(handle); 1026 return -ENOMEM; 1027 } 1028 1029 error = hib_submit_io_sync(REQ_OP_READ, offset, tmp->map); 1030 if (error) { 1031 release_swap_reader(handle); 1032 return error; 1033 } 1034 offset = tmp->map->next_swap; 1035 } 1036 handle->k = 0; 1037 handle->cur = handle->maps->map; 1038 return 0; 1039 } 1040 1041 static int swap_read_page(struct swap_map_handle *handle, void *buf, 1042 struct hib_bio_batch *hb) 1043 { 1044 sector_t offset; 1045 int error; 1046 struct swap_map_page_list *tmp; 1047 1048 if (!handle->cur) 1049 return -EINVAL; 1050 offset = handle->cur->entries[handle->k]; 1051 if (!offset) 1052 return -EFAULT; 1053 if (hb) 1054 error = hib_submit_io_async(REQ_OP_READ, offset, buf, hb); 1055 else 1056 error = hib_submit_io_sync(REQ_OP_READ, offset, buf); 1057 if (error) 1058 return error; 1059 if (++handle->k >= MAP_PAGE_ENTRIES) { 1060 handle->k = 0; 1061 free_page((unsigned long)handle->maps->map); 1062 tmp = handle->maps; 1063 handle->maps = handle->maps->next; 1064 kfree(tmp); 1065 if (!handle->maps) 1066 release_swap_reader(handle); 1067 else 1068 handle->cur = handle->maps->map; 1069 } 1070 return error; 1071 } 1072 1073 static int swap_reader_finish(struct swap_map_handle *handle) 1074 { 1075 release_swap_reader(handle); 1076 1077 return 0; 1078 } 1079 1080 /** 1081 * load_image - load the image using the swap map handle 1082 * @handle and the snapshot handle @snapshot 1083 * (assume there are @nr_pages pages to load) 1084 */ 1085 1086 static int load_image(struct swap_map_handle *handle, 1087 struct snapshot_handle *snapshot, 1088 unsigned int nr_to_read) 1089 { 1090 unsigned int m; 1091 int ret = 0; 1092 ktime_t start; 1093 ktime_t stop; 1094 struct hib_bio_batch hb; 1095 int err2; 1096 unsigned nr_pages; 1097 1098 hib_init_batch(&hb); 1099 1100 clean_pages_on_read = true; 1101 pr_info("Loading image data pages (%u pages)...\n", nr_to_read); 1102 m = nr_to_read / 10; 1103 if (!m) 1104 m = 1; 1105 nr_pages = 0; 1106 start = ktime_get(); 1107 for ( ; ; ) { 1108 ret = snapshot_write_next(snapshot); 1109 if (ret <= 0) 1110 break; 1111 ret = swap_read_page(handle, data_of(*snapshot), &hb); 1112 if (ret) 1113 break; 1114 if (snapshot->sync_read) 1115 ret = hib_wait_io(&hb); 1116 if (ret) 1117 break; 1118 if (!(nr_pages % m)) 1119 pr_info("Image loading progress: %3d%%\n", 1120 nr_pages / m * 10); 1121 nr_pages++; 1122 } 1123 err2 = hib_wait_io(&hb); 1124 hib_finish_batch(&hb); 1125 stop = ktime_get(); 1126 if (!ret) 1127 ret = err2; 1128 if (!ret) { 1129 pr_info("Image loading done\n"); 1130 ret = snapshot_write_finalize(snapshot); 1131 if (!ret && !snapshot_image_loaded(snapshot)) 1132 ret = -ENODATA; 1133 } 1134 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1135 return ret; 1136 } 1137 1138 /* 1139 * Structure used for data decompression. 1140 */ 1141 struct dec_data { 1142 struct task_struct *thr; /* thread */ 1143 struct crypto_acomp *cc; /* crypto compressor */ 1144 struct acomp_req *cr; /* crypto request */ 1145 atomic_t ready; /* ready to start flag */ 1146 atomic_t stop; /* ready to stop flag */ 1147 int ret; /* return code */ 1148 wait_queue_head_t go; /* start decompression */ 1149 wait_queue_head_t done; /* decompression done */ 1150 size_t unc_len; /* uncompressed length */ 1151 size_t cmp_len; /* compressed length */ 1152 unsigned char unc[UNC_SIZE]; /* uncompressed buffer */ 1153 unsigned char cmp[CMP_SIZE]; /* compressed buffer */ 1154 }; 1155 1156 /* 1157 * Decompression function that runs in its own thread. 1158 */ 1159 static int decompress_threadfn(void *data) 1160 { 1161 struct dec_data *d = data; 1162 1163 while (1) { 1164 wait_event(d->go, atomic_read_acquire(&d->ready) || 1165 kthread_should_stop()); 1166 if (kthread_should_stop()) { 1167 d->thr = NULL; 1168 d->ret = -1; 1169 atomic_set_release(&d->stop, 1); 1170 wake_up(&d->done); 1171 break; 1172 } 1173 atomic_set(&d->ready, 0); 1174 1175 acomp_request_set_callback(d->cr, CRYPTO_TFM_REQ_MAY_SLEEP, 1176 NULL, NULL); 1177 acomp_request_set_src_nondma(d->cr, d->cmp + CMP_HEADER, 1178 d->cmp_len); 1179 acomp_request_set_dst_nondma(d->cr, d->unc, UNC_SIZE); 1180 d->ret = crypto_acomp_decompress(d->cr); 1181 d->unc_len = d->cr->dlen; 1182 1183 if (clean_pages_on_decompress) 1184 flush_icache_range((unsigned long)d->unc, 1185 (unsigned long)d->unc + d->unc_len); 1186 1187 atomic_set_release(&d->stop, 1); 1188 wake_up(&d->done); 1189 } 1190 return 0; 1191 } 1192 1193 /** 1194 * load_compressed_image - Load compressed image data and decompress it. 1195 * @handle: Swap map handle to use for loading data. 1196 * @snapshot: Image to copy uncompressed data into. 1197 * @nr_to_read: Number of pages to load. 1198 */ 1199 static int load_compressed_image(struct swap_map_handle *handle, 1200 struct snapshot_handle *snapshot, 1201 unsigned int nr_to_read) 1202 { 1203 unsigned int m; 1204 int ret = 0; 1205 int eof = 0; 1206 struct hib_bio_batch hb; 1207 ktime_t start; 1208 ktime_t stop; 1209 unsigned nr_pages; 1210 size_t off; 1211 unsigned i, thr, run_threads, nr_threads; 1212 unsigned ring = 0, pg = 0, ring_size = 0, 1213 have = 0, want, need, asked = 0; 1214 unsigned long read_pages = 0; 1215 unsigned char **page = NULL; 1216 struct dec_data *data = NULL; 1217 struct crc_data *crc = NULL; 1218 1219 hib_init_batch(&hb); 1220 1221 /* 1222 * We'll limit the number of threads for decompression to limit memory 1223 * footprint. 1224 */ 1225 nr_threads = num_online_cpus() - 1; 1226 nr_threads = clamp_val(nr_threads, 1, CMP_THREADS); 1227 1228 page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page))); 1229 if (!page) { 1230 pr_err("Failed to allocate %s page\n", hib_comp_algo); 1231 ret = -ENOMEM; 1232 goto out_clean; 1233 } 1234 1235 data = vzalloc(array_size(nr_threads, sizeof(*data))); 1236 if (!data) { 1237 pr_err("Failed to allocate %s data\n", hib_comp_algo); 1238 ret = -ENOMEM; 1239 goto out_clean; 1240 } 1241 1242 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 1243 if (!crc) { 1244 pr_err("Failed to allocate crc\n"); 1245 ret = -ENOMEM; 1246 goto out_clean; 1247 } 1248 1249 clean_pages_on_decompress = true; 1250 1251 /* 1252 * Start the decompression threads. 1253 */ 1254 for (thr = 0; thr < nr_threads; thr++) { 1255 init_waitqueue_head(&data[thr].go); 1256 init_waitqueue_head(&data[thr].done); 1257 1258 data[thr].cc = crypto_alloc_acomp(hib_comp_algo, 0, CRYPTO_ALG_ASYNC); 1259 if (IS_ERR_OR_NULL(data[thr].cc)) { 1260 pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc)); 1261 ret = -EFAULT; 1262 goto out_clean; 1263 } 1264 1265 data[thr].cr = acomp_request_alloc(data[thr].cc); 1266 if (!data[thr].cr) { 1267 pr_err("Could not allocate comp request\n"); 1268 ret = -ENOMEM; 1269 goto out_clean; 1270 } 1271 1272 data[thr].thr = kthread_run(decompress_threadfn, 1273 &data[thr], 1274 "image_decompress/%u", thr); 1275 if (IS_ERR(data[thr].thr)) { 1276 data[thr].thr = NULL; 1277 pr_err("Cannot start decompression threads\n"); 1278 ret = -ENOMEM; 1279 goto out_clean; 1280 } 1281 } 1282 1283 /* 1284 * Start the CRC32 thread. 1285 */ 1286 init_waitqueue_head(&crc->go); 1287 init_waitqueue_head(&crc->done); 1288 1289 handle->crc32 = 0; 1290 crc->crc32 = &handle->crc32; 1291 for (thr = 0; thr < nr_threads; thr++) { 1292 crc->unc[thr] = data[thr].unc; 1293 crc->unc_len[thr] = &data[thr].unc_len; 1294 } 1295 1296 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 1297 if (IS_ERR(crc->thr)) { 1298 crc->thr = NULL; 1299 pr_err("Cannot start CRC32 thread\n"); 1300 ret = -ENOMEM; 1301 goto out_clean; 1302 } 1303 1304 /* 1305 * Set the number of pages for read buffering. 1306 * This is complete guesswork, because we'll only know the real 1307 * picture once prepare_image() is called, which is much later on 1308 * during the image load phase. We'll assume the worst case and 1309 * say that none of the image pages are from high memory. 1310 */ 1311 if (low_free_pages() > snapshot_get_image_size()) 1312 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2; 1313 read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES); 1314 1315 for (i = 0; i < read_pages; i++) { 1316 page[i] = (void *)__get_free_page(i < CMP_PAGES ? 1317 GFP_NOIO | __GFP_HIGH : 1318 GFP_NOIO | __GFP_NOWARN | 1319 __GFP_NORETRY); 1320 1321 if (!page[i]) { 1322 if (i < CMP_PAGES) { 1323 ring_size = i; 1324 pr_err("Failed to allocate %s pages\n", hib_comp_algo); 1325 ret = -ENOMEM; 1326 goto out_clean; 1327 } else { 1328 break; 1329 } 1330 } 1331 } 1332 want = ring_size = i; 1333 1334 pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo); 1335 pr_info("Loading and decompressing image data (%u pages)...\n", 1336 nr_to_read); 1337 m = nr_to_read / 10; 1338 if (!m) 1339 m = 1; 1340 nr_pages = 0; 1341 start = ktime_get(); 1342 1343 ret = snapshot_write_next(snapshot); 1344 if (ret <= 0) 1345 goto out_finish; 1346 1347 for(;;) { 1348 for (i = 0; !eof && i < want; i++) { 1349 ret = swap_read_page(handle, page[ring], &hb); 1350 if (ret) { 1351 /* 1352 * On real read error, finish. On end of data, 1353 * set EOF flag and just exit the read loop. 1354 */ 1355 if (handle->cur && 1356 handle->cur->entries[handle->k]) { 1357 goto out_finish; 1358 } else { 1359 eof = 1; 1360 break; 1361 } 1362 } 1363 if (++ring >= ring_size) 1364 ring = 0; 1365 } 1366 asked += i; 1367 want -= i; 1368 1369 /* 1370 * We are out of data, wait for some more. 1371 */ 1372 if (!have) { 1373 if (!asked) 1374 break; 1375 1376 ret = hib_wait_io(&hb); 1377 if (ret) 1378 goto out_finish; 1379 have += asked; 1380 asked = 0; 1381 if (eof) 1382 eof = 2; 1383 } 1384 1385 if (crc->run_threads) { 1386 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 1387 atomic_set(&crc->stop, 0); 1388 crc->run_threads = 0; 1389 } 1390 1391 for (thr = 0; have && thr < nr_threads; thr++) { 1392 data[thr].cmp_len = *(size_t *)page[pg]; 1393 if (unlikely(!data[thr].cmp_len || 1394 data[thr].cmp_len > 1395 bytes_worst_compress(UNC_SIZE))) { 1396 pr_err("Invalid %s compressed length\n", hib_comp_algo); 1397 ret = -1; 1398 goto out_finish; 1399 } 1400 1401 need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER, 1402 PAGE_SIZE); 1403 if (need > have) { 1404 if (eof > 1) { 1405 ret = -1; 1406 goto out_finish; 1407 } 1408 break; 1409 } 1410 1411 for (off = 0; 1412 off < CMP_HEADER + data[thr].cmp_len; 1413 off += PAGE_SIZE) { 1414 memcpy(data[thr].cmp + off, 1415 page[pg], PAGE_SIZE); 1416 have--; 1417 want++; 1418 if (++pg >= ring_size) 1419 pg = 0; 1420 } 1421 1422 atomic_set_release(&data[thr].ready, 1); 1423 wake_up(&data[thr].go); 1424 } 1425 1426 /* 1427 * Wait for more data while we are decompressing. 1428 */ 1429 if (have < CMP_PAGES && asked) { 1430 ret = hib_wait_io(&hb); 1431 if (ret) 1432 goto out_finish; 1433 have += asked; 1434 asked = 0; 1435 if (eof) 1436 eof = 2; 1437 } 1438 1439 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 1440 wait_event(data[thr].done, 1441 atomic_read_acquire(&data[thr].stop)); 1442 atomic_set(&data[thr].stop, 0); 1443 1444 ret = data[thr].ret; 1445 1446 if (ret < 0) { 1447 pr_err("%s decompression failed\n", hib_comp_algo); 1448 goto out_finish; 1449 } 1450 1451 if (unlikely(!data[thr].unc_len || 1452 data[thr].unc_len > UNC_SIZE || 1453 data[thr].unc_len & (PAGE_SIZE - 1))) { 1454 pr_err("Invalid %s uncompressed length\n", hib_comp_algo); 1455 ret = -1; 1456 goto out_finish; 1457 } 1458 1459 for (off = 0; 1460 off < data[thr].unc_len; off += PAGE_SIZE) { 1461 memcpy(data_of(*snapshot), 1462 data[thr].unc + off, PAGE_SIZE); 1463 1464 if (!(nr_pages % m)) 1465 pr_info("Image loading progress: %3d%%\n", 1466 nr_pages / m * 10); 1467 nr_pages++; 1468 1469 ret = snapshot_write_next(snapshot); 1470 if (ret <= 0) { 1471 crc->run_threads = thr + 1; 1472 atomic_set_release(&crc->ready, 1); 1473 wake_up(&crc->go); 1474 goto out_finish; 1475 } 1476 } 1477 } 1478 1479 crc->run_threads = thr; 1480 atomic_set_release(&crc->ready, 1); 1481 wake_up(&crc->go); 1482 } 1483 1484 out_finish: 1485 if (crc->run_threads) { 1486 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 1487 atomic_set(&crc->stop, 0); 1488 } 1489 stop = ktime_get(); 1490 if (!ret) { 1491 pr_info("Image loading done\n"); 1492 ret = snapshot_write_finalize(snapshot); 1493 if (!ret && !snapshot_image_loaded(snapshot)) 1494 ret = -ENODATA; 1495 if (!ret) { 1496 if (swsusp_header->flags & SF_CRC32_MODE) { 1497 if(handle->crc32 != swsusp_header->crc32) { 1498 pr_err("Invalid image CRC32!\n"); 1499 ret = -ENODATA; 1500 } 1501 } 1502 } 1503 } 1504 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1505 out_clean: 1506 hib_finish_batch(&hb); 1507 for (i = 0; i < ring_size; i++) 1508 free_page((unsigned long)page[i]); 1509 if (crc) { 1510 if (crc->thr) 1511 kthread_stop(crc->thr); 1512 kfree(crc); 1513 } 1514 if (data) { 1515 for (thr = 0; thr < nr_threads; thr++) { 1516 if (data[thr].thr) 1517 kthread_stop(data[thr].thr); 1518 acomp_request_free(data[thr].cr); 1519 crypto_free_acomp(data[thr].cc); 1520 } 1521 vfree(data); 1522 } 1523 vfree(page); 1524 1525 return ret; 1526 } 1527 1528 /** 1529 * swsusp_read - read the hibernation image. 1530 * @flags_p: flags passed by the "frozen" kernel in the image header should 1531 * be written into this memory location 1532 */ 1533 1534 int swsusp_read(unsigned int *flags_p) 1535 { 1536 int error; 1537 struct swap_map_handle handle; 1538 struct snapshot_handle snapshot; 1539 struct swsusp_info *header; 1540 1541 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 1542 error = snapshot_write_next(&snapshot); 1543 if (error < (int)PAGE_SIZE) 1544 return error < 0 ? error : -EFAULT; 1545 header = (struct swsusp_info *)data_of(snapshot); 1546 error = get_swap_reader(&handle, flags_p); 1547 if (error) 1548 goto end; 1549 if (!error) 1550 error = swap_read_page(&handle, header, NULL); 1551 if (!error) { 1552 error = (*flags_p & SF_NOCOMPRESS_MODE) ? 1553 load_image(&handle, &snapshot, header->pages - 1) : 1554 load_compressed_image(&handle, &snapshot, header->pages - 1); 1555 } 1556 swap_reader_finish(&handle); 1557 end: 1558 if (!error) 1559 pr_debug("Image successfully loaded\n"); 1560 else 1561 pr_debug("Error %d resuming\n", error); 1562 return error; 1563 } 1564 1565 static void *swsusp_holder; 1566 1567 /** 1568 * swsusp_check - Open the resume device and check for the swsusp signature. 1569 * @exclusive: Open the resume device exclusively. 1570 */ 1571 1572 int swsusp_check(bool exclusive) 1573 { 1574 void *holder = exclusive ? &swsusp_holder : NULL; 1575 int error; 1576 1577 hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device, 1578 BLK_OPEN_READ, holder, NULL); 1579 if (!IS_ERR(hib_resume_bdev_file)) { 1580 clear_page(swsusp_header); 1581 error = hib_submit_io_sync(REQ_OP_READ, swsusp_resume_block, 1582 swsusp_header); 1583 if (error) 1584 goto put; 1585 1586 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) { 1587 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); 1588 swsusp_header_flags = swsusp_header->flags; 1589 /* Reset swap signature now */ 1590 error = hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC, 1591 swsusp_resume_block, 1592 swsusp_header); 1593 } else { 1594 error = -EINVAL; 1595 } 1596 if (!error && swsusp_header->flags & SF_HW_SIG && 1597 swsusp_header->hw_sig != swsusp_hardware_signature) { 1598 pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n", 1599 swsusp_header->hw_sig, swsusp_hardware_signature); 1600 error = -EINVAL; 1601 } 1602 1603 put: 1604 if (error) 1605 bdev_fput(hib_resume_bdev_file); 1606 else 1607 pr_debug("Image signature found, resuming\n"); 1608 } else { 1609 error = PTR_ERR(hib_resume_bdev_file); 1610 } 1611 1612 if (error) 1613 pr_debug("Image not found (code %d)\n", error); 1614 1615 return error; 1616 } 1617 1618 /** 1619 * swsusp_close - close resume device. 1620 */ 1621 1622 void swsusp_close(void) 1623 { 1624 if (IS_ERR(hib_resume_bdev_file)) { 1625 pr_debug("Image device not initialised\n"); 1626 return; 1627 } 1628 1629 fput(hib_resume_bdev_file); 1630 } 1631 1632 /** 1633 * swsusp_unmark - Unmark swsusp signature in the resume device 1634 */ 1635 1636 #ifdef CONFIG_SUSPEND 1637 int swsusp_unmark(void) 1638 { 1639 int error; 1640 1641 hib_submit_io_sync(REQ_OP_READ, swsusp_resume_block, swsusp_header); 1642 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) { 1643 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10); 1644 error = hib_submit_io_sync(REQ_OP_WRITE | REQ_SYNC, 1645 swsusp_resume_block, 1646 swsusp_header); 1647 } else { 1648 pr_err("Cannot find swsusp signature!\n"); 1649 error = -ENODEV; 1650 } 1651 1652 /* 1653 * We just returned from suspend, we don't need the image any more. 1654 */ 1655 free_all_swap_pages(root_swap); 1656 1657 return error; 1658 } 1659 #endif 1660 1661 static int __init swsusp_header_init(void) 1662 { 1663 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL); 1664 if (!swsusp_header) 1665 panic("Could not allocate memory for swsusp_header\n"); 1666 return 0; 1667 } 1668 1669 core_initcall(swsusp_header_init); 1670