1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/snapshot.c 4 * 5 * This file provides system snapshot/restore functionality for swsusp. 6 * 7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 9 */ 10 11 #define pr_fmt(fmt) "PM: hibernation: " fmt 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/memblock.h> 25 #include <linux/nmi.h> 26 #include <linux/syscalls.h> 27 #include <linux/console.h> 28 #include <linux/highmem.h> 29 #include <linux/list.h> 30 #include <linux/slab.h> 31 #include <linux/compiler.h> 32 #include <linux/ktime.h> 33 #include <linux/set_memory.h> 34 35 #include <linux/uaccess.h> 36 #include <asm/mmu_context.h> 37 #include <asm/tlbflush.h> 38 #include <asm/io.h> 39 40 #include "power.h" 41 42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY) 43 static bool hibernate_restore_protection; 44 static bool hibernate_restore_protection_active; 45 46 void enable_restore_image_protection(void) 47 { 48 hibernate_restore_protection = true; 49 } 50 51 static inline void hibernate_restore_protection_begin(void) 52 { 53 hibernate_restore_protection_active = hibernate_restore_protection; 54 } 55 56 static inline void hibernate_restore_protection_end(void) 57 { 58 hibernate_restore_protection_active = false; 59 } 60 61 static inline int __must_check hibernate_restore_protect_page(void *page_address) 62 { 63 if (hibernate_restore_protection_active) 64 return set_memory_ro((unsigned long)page_address, 1); 65 return 0; 66 } 67 68 static inline int hibernate_restore_unprotect_page(void *page_address) 69 { 70 if (hibernate_restore_protection_active) 71 return set_memory_rw((unsigned long)page_address, 1); 72 return 0; 73 } 74 #else 75 static inline void hibernate_restore_protection_begin(void) {} 76 static inline void hibernate_restore_protection_end(void) {} 77 static inline int __must_check hibernate_restore_protect_page(void *page_address) {return 0; } 78 static inline int hibernate_restore_unprotect_page(void *page_address) {return 0; } 79 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */ 80 81 82 /* 83 * The calls to set_direct_map_*() should not fail because remapping a page 84 * here means that we only update protection bits in an existing PTE. 85 * It is still worth to have a warning here if something changes and this 86 * will no longer be the case. 87 */ 88 static inline void hibernate_map_page(struct page *page) 89 { 90 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) { 91 int ret = set_direct_map_default_noflush(page); 92 93 if (ret) 94 pr_warn_once("Failed to remap page\n"); 95 } else { 96 debug_pagealloc_map_pages(page, 1); 97 } 98 } 99 100 static inline void hibernate_unmap_page(struct page *page) 101 { 102 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) { 103 unsigned long addr = (unsigned long)page_address(page); 104 int ret = set_direct_map_invalid_noflush(page); 105 106 if (ret) 107 pr_warn_once("Failed to remap page\n"); 108 109 flush_tlb_kernel_range(addr, addr + PAGE_SIZE); 110 } else { 111 debug_pagealloc_unmap_pages(page, 1); 112 } 113 } 114 115 static int swsusp_page_is_free(struct page *); 116 static void swsusp_set_page_forbidden(struct page *); 117 static void swsusp_unset_page_forbidden(struct page *); 118 119 /* 120 * Number of bytes to reserve for memory allocations made by device drivers 121 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 122 * cause image creation to fail (tunable via /sys/power/reserved_size). 123 */ 124 unsigned long reserved_size; 125 126 void __init hibernate_reserved_size_init(void) 127 { 128 reserved_size = SPARE_PAGES * PAGE_SIZE; 129 } 130 131 /* 132 * Preferred image size in bytes (tunable via /sys/power/image_size). 133 * When it is set to N, swsusp will do its best to ensure the image 134 * size will not exceed N bytes, but if that is impossible, it will 135 * try to create the smallest image possible. 136 */ 137 unsigned long image_size; 138 139 void __init hibernate_image_size_init(void) 140 { 141 image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE; 142 } 143 144 /* 145 * List of PBEs needed for restoring the pages that were allocated before 146 * the suspend and included in the suspend image, but have also been 147 * allocated by the "resume" kernel, so their contents cannot be written 148 * directly to their "original" page frames. 149 */ 150 struct pbe *restore_pblist; 151 152 /* struct linked_page is used to build chains of pages */ 153 154 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 155 156 struct linked_page { 157 struct linked_page *next; 158 char data[LINKED_PAGE_DATA_SIZE]; 159 } __packed; 160 161 /* 162 * List of "safe" pages (ie. pages that were not used by the image kernel 163 * before hibernation) that may be used as temporary storage for image kernel 164 * memory contents. 165 */ 166 static struct linked_page *safe_pages_list; 167 168 /* Pointer to an auxiliary buffer (1 page) */ 169 static void *buffer; 170 171 #define PG_ANY 0 172 #define PG_SAFE 1 173 #define PG_UNSAFE_CLEAR 1 174 #define PG_UNSAFE_KEEP 0 175 176 static unsigned int allocated_unsafe_pages; 177 178 /** 179 * get_image_page - Allocate a page for a hibernation image. 180 * @gfp_mask: GFP mask for the allocation. 181 * @safe_needed: Get pages that were not used before hibernation (restore only) 182 * 183 * During image restoration, for storing the PBE list and the image data, we can 184 * only use memory pages that do not conflict with the pages used before 185 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them 186 * using allocated_unsafe_pages. 187 * 188 * Each allocated image page is marked as PageNosave and PageNosaveFree so that 189 * swsusp_free() can release it. 190 */ 191 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 192 { 193 void *res; 194 195 res = (void *)get_zeroed_page(gfp_mask); 196 if (safe_needed) 197 while (res && swsusp_page_is_free(virt_to_page(res))) { 198 /* The page is unsafe, mark it for swsusp_free() */ 199 swsusp_set_page_forbidden(virt_to_page(res)); 200 allocated_unsafe_pages++; 201 res = (void *)get_zeroed_page(gfp_mask); 202 } 203 if (res) { 204 swsusp_set_page_forbidden(virt_to_page(res)); 205 swsusp_set_page_free(virt_to_page(res)); 206 } 207 return res; 208 } 209 210 static void *__get_safe_page(gfp_t gfp_mask) 211 { 212 if (safe_pages_list) { 213 void *ret = safe_pages_list; 214 215 safe_pages_list = safe_pages_list->next; 216 memset(ret, 0, PAGE_SIZE); 217 return ret; 218 } 219 return get_image_page(gfp_mask, PG_SAFE); 220 } 221 222 unsigned long get_safe_page(gfp_t gfp_mask) 223 { 224 return (unsigned long)__get_safe_page(gfp_mask); 225 } 226 227 static struct page *alloc_image_page(gfp_t gfp_mask) 228 { 229 struct page *page; 230 231 page = alloc_page(gfp_mask); 232 if (page) { 233 swsusp_set_page_forbidden(page); 234 swsusp_set_page_free(page); 235 } 236 return page; 237 } 238 239 static void recycle_safe_page(void *page_address) 240 { 241 struct linked_page *lp = page_address; 242 243 lp->next = safe_pages_list; 244 safe_pages_list = lp; 245 } 246 247 /** 248 * free_image_page - Free a page allocated for hibernation image. 249 * @addr: Address of the page to free. 250 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page. 251 * 252 * The page to free should have been allocated by get_image_page() (page flags 253 * set by it are affected). 254 */ 255 static inline void free_image_page(void *addr, int clear_nosave_free) 256 { 257 struct page *page; 258 259 BUG_ON(!virt_addr_valid(addr)); 260 261 page = virt_to_page(addr); 262 263 swsusp_unset_page_forbidden(page); 264 if (clear_nosave_free) 265 swsusp_unset_page_free(page); 266 267 __free_page(page); 268 } 269 270 static inline void free_list_of_pages(struct linked_page *list, 271 int clear_page_nosave) 272 { 273 while (list) { 274 struct linked_page *lp = list->next; 275 276 free_image_page(list, clear_page_nosave); 277 list = lp; 278 } 279 } 280 281 /* 282 * struct chain_allocator is used for allocating small objects out of 283 * a linked list of pages called 'the chain'. 284 * 285 * The chain grows each time when there is no room for a new object in 286 * the current page. The allocated objects cannot be freed individually. 287 * It is only possible to free them all at once, by freeing the entire 288 * chain. 289 * 290 * NOTE: The chain allocator may be inefficient if the allocated objects 291 * are not much smaller than PAGE_SIZE. 292 */ 293 struct chain_allocator { 294 struct linked_page *chain; /* the chain */ 295 unsigned int used_space; /* total size of objects allocated out 296 of the current page */ 297 gfp_t gfp_mask; /* mask for allocating pages */ 298 int safe_needed; /* if set, only "safe" pages are allocated */ 299 }; 300 301 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask, 302 int safe_needed) 303 { 304 ca->chain = NULL; 305 ca->used_space = LINKED_PAGE_DATA_SIZE; 306 ca->gfp_mask = gfp_mask; 307 ca->safe_needed = safe_needed; 308 } 309 310 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 311 { 312 void *ret; 313 314 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 315 struct linked_page *lp; 316 317 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) : 318 get_image_page(ca->gfp_mask, PG_ANY); 319 if (!lp) 320 return NULL; 321 322 lp->next = ca->chain; 323 ca->chain = lp; 324 ca->used_space = 0; 325 } 326 ret = ca->chain->data + ca->used_space; 327 ca->used_space += size; 328 return ret; 329 } 330 331 /* 332 * Data types related to memory bitmaps. 333 * 334 * Memory bitmap is a structure consisting of many linked lists of 335 * objects. The main list's elements are of type struct zone_bitmap 336 * and each of them corresponds to one zone. For each zone bitmap 337 * object there is a list of objects of type struct bm_block that 338 * represent each blocks of bitmap in which information is stored. 339 * 340 * struct memory_bitmap contains a pointer to the main list of zone 341 * bitmap objects, a struct bm_position used for browsing the bitmap, 342 * and a pointer to the list of pages used for allocating all of the 343 * zone bitmap objects and bitmap block objects. 344 * 345 * NOTE: It has to be possible to lay out the bitmap in memory 346 * using only allocations of order 0. Additionally, the bitmap is 347 * designed to work with arbitrary number of zones (this is over the 348 * top for now, but let's avoid making unnecessary assumptions ;-). 349 * 350 * struct zone_bitmap contains a pointer to a list of bitmap block 351 * objects and a pointer to the bitmap block object that has been 352 * most recently used for setting bits. Additionally, it contains the 353 * PFNs that correspond to the start and end of the represented zone. 354 * 355 * struct bm_block contains a pointer to the memory page in which 356 * information is stored (in the form of a block of bitmap) 357 * It also contains the pfns that correspond to the start and end of 358 * the represented memory area. 359 * 360 * The memory bitmap is organized as a radix tree to guarantee fast random 361 * access to the bits. There is one radix tree for each zone (as returned 362 * from create_mem_extents). 363 * 364 * One radix tree is represented by one struct mem_zone_bm_rtree. There are 365 * two linked lists for the nodes of the tree, one for the inner nodes and 366 * one for the leave nodes. The linked leave nodes are used for fast linear 367 * access of the memory bitmap. 368 * 369 * The struct rtree_node represents one node of the radix tree. 370 */ 371 372 #define BM_END_OF_MAP (~0UL) 373 374 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 375 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3) 376 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1) 377 378 /* 379 * struct rtree_node is a wrapper struct to link the nodes 380 * of the rtree together for easy linear iteration over 381 * bits and easy freeing 382 */ 383 struct rtree_node { 384 struct list_head list; 385 unsigned long *data; 386 }; 387 388 /* 389 * struct mem_zone_bm_rtree represents a bitmap used for one 390 * populated memory zone. 391 */ 392 struct mem_zone_bm_rtree { 393 struct list_head list; /* Link Zones together */ 394 struct list_head nodes; /* Radix Tree inner nodes */ 395 struct list_head leaves; /* Radix Tree leaves */ 396 unsigned long start_pfn; /* Zone start page frame */ 397 unsigned long end_pfn; /* Zone end page frame + 1 */ 398 struct rtree_node *rtree; /* Radix Tree Root */ 399 int levels; /* Number of Radix Tree Levels */ 400 unsigned int blocks; /* Number of Bitmap Blocks */ 401 }; 402 403 /* struct bm_position is used for browsing memory bitmaps */ 404 405 struct bm_position { 406 struct mem_zone_bm_rtree *zone; 407 struct rtree_node *node; 408 unsigned long node_pfn; 409 unsigned long cur_pfn; 410 int node_bit; 411 }; 412 413 struct memory_bitmap { 414 struct list_head zones; 415 struct linked_page *p_list; /* list of pages used to store zone 416 bitmap objects and bitmap block 417 objects */ 418 struct bm_position cur; /* most recently used bit position */ 419 }; 420 421 /* Functions that operate on memory bitmaps */ 422 423 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long)) 424 #if BITS_PER_LONG == 32 425 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2) 426 #else 427 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3) 428 #endif 429 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1) 430 431 /** 432 * alloc_rtree_node - Allocate a new node and add it to the radix tree. 433 * @gfp_mask: GFP mask for the allocation. 434 * @safe_needed: Get pages not used before hibernation (restore only) 435 * @ca: Pointer to a linked list of pages ("a chain") to allocate from 436 * @list: Radix Tree node to add. 437 * 438 * This function is used to allocate inner nodes as well as the 439 * leave nodes of the radix tree. It also adds the node to the 440 * corresponding linked list passed in by the *list parameter. 441 */ 442 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed, 443 struct chain_allocator *ca, 444 struct list_head *list) 445 { 446 struct rtree_node *node; 447 448 node = chain_alloc(ca, sizeof(struct rtree_node)); 449 if (!node) 450 return NULL; 451 452 node->data = get_image_page(gfp_mask, safe_needed); 453 if (!node->data) 454 return NULL; 455 456 list_add_tail(&node->list, list); 457 458 return node; 459 } 460 461 /** 462 * add_rtree_block - Add a new leave node to the radix tree. 463 * 464 * The leave nodes need to be allocated in order to keep the leaves 465 * linked list in order. This is guaranteed by the zone->blocks 466 * counter. 467 */ 468 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask, 469 int safe_needed, struct chain_allocator *ca) 470 { 471 struct rtree_node *node, *block, **dst; 472 unsigned int levels_needed, block_nr; 473 int i; 474 475 block_nr = zone->blocks; 476 levels_needed = 0; 477 478 /* How many levels do we need for this block nr? */ 479 while (block_nr) { 480 levels_needed += 1; 481 block_nr >>= BM_RTREE_LEVEL_SHIFT; 482 } 483 484 /* Make sure the rtree has enough levels */ 485 for (i = zone->levels; i < levels_needed; i++) { 486 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 487 &zone->nodes); 488 if (!node) 489 return -ENOMEM; 490 491 node->data[0] = (unsigned long)zone->rtree; 492 zone->rtree = node; 493 zone->levels += 1; 494 } 495 496 /* Allocate new block */ 497 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves); 498 if (!block) 499 return -ENOMEM; 500 501 /* Now walk the rtree to insert the block */ 502 node = zone->rtree; 503 dst = &zone->rtree; 504 block_nr = zone->blocks; 505 for (i = zone->levels; i > 0; i--) { 506 int index; 507 508 if (!node) { 509 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 510 &zone->nodes); 511 if (!node) 512 return -ENOMEM; 513 *dst = node; 514 } 515 516 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 517 index &= BM_RTREE_LEVEL_MASK; 518 dst = (struct rtree_node **)&((*dst)->data[index]); 519 node = *dst; 520 } 521 522 zone->blocks += 1; 523 *dst = block; 524 525 return 0; 526 } 527 528 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 529 int clear_nosave_free); 530 531 /** 532 * create_zone_bm_rtree - Create a radix tree for one zone. 533 * 534 * Allocated the mem_zone_bm_rtree structure and initializes it. 535 * This function also allocated and builds the radix tree for the 536 * zone. 537 */ 538 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask, 539 int safe_needed, 540 struct chain_allocator *ca, 541 unsigned long start, 542 unsigned long end) 543 { 544 struct mem_zone_bm_rtree *zone; 545 unsigned int i, nr_blocks; 546 unsigned long pages; 547 548 pages = end - start; 549 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree)); 550 if (!zone) 551 return NULL; 552 553 INIT_LIST_HEAD(&zone->nodes); 554 INIT_LIST_HEAD(&zone->leaves); 555 zone->start_pfn = start; 556 zone->end_pfn = end; 557 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 558 559 for (i = 0; i < nr_blocks; i++) { 560 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) { 561 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR); 562 return NULL; 563 } 564 } 565 566 return zone; 567 } 568 569 /** 570 * free_zone_bm_rtree - Free the memory of the radix tree. 571 * 572 * Free all node pages of the radix tree. The mem_zone_bm_rtree 573 * structure itself is not freed here nor are the rtree_node 574 * structs. 575 */ 576 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 577 int clear_nosave_free) 578 { 579 struct rtree_node *node; 580 581 list_for_each_entry(node, &zone->nodes, list) 582 free_image_page(node->data, clear_nosave_free); 583 584 list_for_each_entry(node, &zone->leaves, list) 585 free_image_page(node->data, clear_nosave_free); 586 } 587 588 static void memory_bm_position_reset(struct memory_bitmap *bm) 589 { 590 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree, 591 list); 592 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 593 struct rtree_node, list); 594 bm->cur.node_pfn = 0; 595 bm->cur.cur_pfn = BM_END_OF_MAP; 596 bm->cur.node_bit = 0; 597 } 598 599 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 600 601 struct mem_extent { 602 struct list_head hook; 603 unsigned long start; 604 unsigned long end; 605 }; 606 607 /** 608 * free_mem_extents - Free a list of memory extents. 609 * @list: List of extents to free. 610 */ 611 static void free_mem_extents(struct list_head *list) 612 { 613 struct mem_extent *ext, *aux; 614 615 list_for_each_entry_safe(ext, aux, list, hook) { 616 list_del(&ext->hook); 617 kfree(ext); 618 } 619 } 620 621 /** 622 * create_mem_extents - Create a list of memory extents. 623 * @list: List to put the extents into. 624 * @gfp_mask: Mask to use for memory allocations. 625 * 626 * The extents represent contiguous ranges of PFNs. 627 */ 628 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 629 { 630 struct zone *zone; 631 632 INIT_LIST_HEAD(list); 633 634 for_each_populated_zone(zone) { 635 unsigned long zone_start, zone_end; 636 struct mem_extent *ext, *cur, *aux; 637 638 zone_start = zone->zone_start_pfn; 639 zone_end = zone_end_pfn(zone); 640 641 list_for_each_entry(ext, list, hook) 642 if (zone_start <= ext->end) 643 break; 644 645 if (&ext->hook == list || zone_end < ext->start) { 646 /* New extent is necessary */ 647 struct mem_extent *new_ext; 648 649 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 650 if (!new_ext) { 651 free_mem_extents(list); 652 return -ENOMEM; 653 } 654 new_ext->start = zone_start; 655 new_ext->end = zone_end; 656 list_add_tail(&new_ext->hook, &ext->hook); 657 continue; 658 } 659 660 /* Merge this zone's range of PFNs with the existing one */ 661 if (zone_start < ext->start) 662 ext->start = zone_start; 663 if (zone_end > ext->end) 664 ext->end = zone_end; 665 666 /* More merging may be possible */ 667 cur = ext; 668 list_for_each_entry_safe_continue(cur, aux, list, hook) { 669 if (zone_end < cur->start) 670 break; 671 if (zone_end < cur->end) 672 ext->end = cur->end; 673 list_del(&cur->hook); 674 kfree(cur); 675 } 676 } 677 678 return 0; 679 } 680 681 /** 682 * memory_bm_create - Allocate memory for a memory bitmap. 683 */ 684 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, 685 int safe_needed) 686 { 687 struct chain_allocator ca; 688 struct list_head mem_extents; 689 struct mem_extent *ext; 690 int error; 691 692 chain_init(&ca, gfp_mask, safe_needed); 693 INIT_LIST_HEAD(&bm->zones); 694 695 error = create_mem_extents(&mem_extents, gfp_mask); 696 if (error) 697 return error; 698 699 list_for_each_entry(ext, &mem_extents, hook) { 700 struct mem_zone_bm_rtree *zone; 701 702 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca, 703 ext->start, ext->end); 704 if (!zone) { 705 error = -ENOMEM; 706 goto Error; 707 } 708 list_add_tail(&zone->list, &bm->zones); 709 } 710 711 bm->p_list = ca.chain; 712 memory_bm_position_reset(bm); 713 Exit: 714 free_mem_extents(&mem_extents); 715 return error; 716 717 Error: 718 bm->p_list = ca.chain; 719 memory_bm_free(bm, PG_UNSAFE_CLEAR); 720 goto Exit; 721 } 722 723 /** 724 * memory_bm_free - Free memory occupied by the memory bitmap. 725 * @bm: Memory bitmap. 726 */ 727 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 728 { 729 struct mem_zone_bm_rtree *zone; 730 731 list_for_each_entry(zone, &bm->zones, list) 732 free_zone_bm_rtree(zone, clear_nosave_free); 733 734 free_list_of_pages(bm->p_list, clear_nosave_free); 735 736 INIT_LIST_HEAD(&bm->zones); 737 } 738 739 /** 740 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap. 741 * 742 * Find the bit in memory bitmap @bm that corresponds to the given PFN. 743 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated. 744 * 745 * Walk the radix tree to find the page containing the bit that represents @pfn 746 * and return the position of the bit in @addr and @bit_nr. 747 */ 748 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 749 void **addr, unsigned int *bit_nr) 750 { 751 struct mem_zone_bm_rtree *curr, *zone; 752 struct rtree_node *node; 753 int i, block_nr; 754 755 zone = bm->cur.zone; 756 757 if (pfn >= zone->start_pfn && pfn < zone->end_pfn) 758 goto zone_found; 759 760 zone = NULL; 761 762 /* Find the right zone */ 763 list_for_each_entry(curr, &bm->zones, list) { 764 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) { 765 zone = curr; 766 break; 767 } 768 } 769 770 if (!zone) 771 return -EFAULT; 772 773 zone_found: 774 /* 775 * We have found the zone. Now walk the radix tree to find the leaf node 776 * for our PFN. 777 */ 778 779 /* 780 * If the zone we wish to scan is the current zone and the 781 * pfn falls into the current node then we do not need to walk 782 * the tree. 783 */ 784 node = bm->cur.node; 785 if (zone == bm->cur.zone && 786 ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn) 787 goto node_found; 788 789 node = zone->rtree; 790 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT; 791 792 for (i = zone->levels; i > 0; i--) { 793 int index; 794 795 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 796 index &= BM_RTREE_LEVEL_MASK; 797 BUG_ON(node->data[index] == 0); 798 node = (struct rtree_node *)node->data[index]; 799 } 800 801 node_found: 802 /* Update last position */ 803 bm->cur.zone = zone; 804 bm->cur.node = node; 805 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK; 806 bm->cur.cur_pfn = pfn; 807 808 /* Set return values */ 809 *addr = node->data; 810 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK; 811 812 return 0; 813 } 814 815 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 816 { 817 void *addr; 818 unsigned int bit; 819 int error; 820 821 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 822 BUG_ON(error); 823 set_bit(bit, addr); 824 } 825 826 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 827 { 828 void *addr; 829 unsigned int bit; 830 int error; 831 832 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 833 if (!error) 834 set_bit(bit, addr); 835 836 return error; 837 } 838 839 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 840 { 841 void *addr; 842 unsigned int bit; 843 int error; 844 845 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 846 BUG_ON(error); 847 clear_bit(bit, addr); 848 } 849 850 static void memory_bm_clear_current(struct memory_bitmap *bm) 851 { 852 int bit; 853 854 bit = max(bm->cur.node_bit - 1, 0); 855 clear_bit(bit, bm->cur.node->data); 856 } 857 858 static unsigned long memory_bm_get_current(struct memory_bitmap *bm) 859 { 860 return bm->cur.cur_pfn; 861 } 862 863 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 864 { 865 void *addr; 866 unsigned int bit; 867 int error; 868 869 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 870 BUG_ON(error); 871 return test_bit(bit, addr); 872 } 873 874 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 875 { 876 void *addr; 877 unsigned int bit; 878 879 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 880 } 881 882 /* 883 * rtree_next_node - Jump to the next leaf node. 884 * 885 * Set the position to the beginning of the next node in the 886 * memory bitmap. This is either the next node in the current 887 * zone's radix tree or the first node in the radix tree of the 888 * next zone. 889 * 890 * Return true if there is a next node, false otherwise. 891 */ 892 static bool rtree_next_node(struct memory_bitmap *bm) 893 { 894 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) { 895 bm->cur.node = list_entry(bm->cur.node->list.next, 896 struct rtree_node, list); 897 bm->cur.node_pfn += BM_BITS_PER_BLOCK; 898 bm->cur.node_bit = 0; 899 touch_softlockup_watchdog(); 900 return true; 901 } 902 903 /* No more nodes, goto next zone */ 904 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) { 905 bm->cur.zone = list_entry(bm->cur.zone->list.next, 906 struct mem_zone_bm_rtree, list); 907 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 908 struct rtree_node, list); 909 bm->cur.node_pfn = 0; 910 bm->cur.node_bit = 0; 911 return true; 912 } 913 914 /* No more zones */ 915 return false; 916 } 917 918 /** 919 * memory_bm_next_pfn - Find the next set bit in a memory bitmap. 920 * @bm: Memory bitmap. 921 * 922 * Starting from the last returned position this function searches for the next 923 * set bit in @bm and returns the PFN represented by it. If no more bits are 924 * set, BM_END_OF_MAP is returned. 925 * 926 * It is required to run memory_bm_position_reset() before the first call to 927 * this function for the given memory bitmap. 928 */ 929 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 930 { 931 unsigned long bits, pfn, pages; 932 int bit; 933 934 do { 935 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn; 936 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK); 937 bit = find_next_bit(bm->cur.node->data, bits, 938 bm->cur.node_bit); 939 if (bit < bits) { 940 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit; 941 bm->cur.node_bit = bit + 1; 942 bm->cur.cur_pfn = pfn; 943 return pfn; 944 } 945 } while (rtree_next_node(bm)); 946 947 bm->cur.cur_pfn = BM_END_OF_MAP; 948 return BM_END_OF_MAP; 949 } 950 951 /* 952 * This structure represents a range of page frames the contents of which 953 * should not be saved during hibernation. 954 */ 955 struct nosave_region { 956 struct list_head list; 957 unsigned long start_pfn; 958 unsigned long end_pfn; 959 }; 960 961 static LIST_HEAD(nosave_regions); 962 963 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone) 964 { 965 struct rtree_node *node; 966 967 list_for_each_entry(node, &zone->nodes, list) 968 recycle_safe_page(node->data); 969 970 list_for_each_entry(node, &zone->leaves, list) 971 recycle_safe_page(node->data); 972 } 973 974 static void memory_bm_recycle(struct memory_bitmap *bm) 975 { 976 struct mem_zone_bm_rtree *zone; 977 struct linked_page *p_list; 978 979 list_for_each_entry(zone, &bm->zones, list) 980 recycle_zone_bm_rtree(zone); 981 982 p_list = bm->p_list; 983 while (p_list) { 984 struct linked_page *lp = p_list; 985 986 p_list = lp->next; 987 recycle_safe_page(lp); 988 } 989 } 990 991 /** 992 * register_nosave_region - Register a region of unsaveable memory. 993 * 994 * Register a range of page frames the contents of which should not be saved 995 * during hibernation (to be used in the early initialization code). 996 */ 997 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn) 998 { 999 struct nosave_region *region; 1000 1001 if (start_pfn >= end_pfn) 1002 return; 1003 1004 if (!list_empty(&nosave_regions)) { 1005 /* Try to extend the previous region (they should be sorted) */ 1006 region = list_entry(nosave_regions.prev, 1007 struct nosave_region, list); 1008 if (region->end_pfn == start_pfn) { 1009 region->end_pfn = end_pfn; 1010 goto Report; 1011 } 1012 } 1013 /* This allocation cannot fail */ 1014 region = memblock_alloc_or_panic(sizeof(struct nosave_region), 1015 SMP_CACHE_BYTES); 1016 region->start_pfn = start_pfn; 1017 region->end_pfn = end_pfn; 1018 list_add_tail(®ion->list, &nosave_regions); 1019 Report: 1020 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n", 1021 (unsigned long long) start_pfn << PAGE_SHIFT, 1022 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1023 } 1024 1025 /* 1026 * Set bits in this map correspond to the page frames the contents of which 1027 * should not be saved during the suspend. 1028 */ 1029 static struct memory_bitmap *forbidden_pages_map; 1030 1031 /* Set bits in this map correspond to free page frames. */ 1032 static struct memory_bitmap *free_pages_map; 1033 1034 /* 1035 * Each page frame allocated for creating the image is marked by setting the 1036 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 1037 */ 1038 1039 void swsusp_set_page_free(struct page *page) 1040 { 1041 if (free_pages_map) 1042 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 1043 } 1044 1045 static int swsusp_page_is_free(struct page *page) 1046 { 1047 return free_pages_map ? 1048 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 1049 } 1050 1051 void swsusp_unset_page_free(struct page *page) 1052 { 1053 if (free_pages_map) 1054 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 1055 } 1056 1057 static void swsusp_set_page_forbidden(struct page *page) 1058 { 1059 if (forbidden_pages_map) 1060 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 1061 } 1062 1063 int swsusp_page_is_forbidden(struct page *page) 1064 { 1065 return forbidden_pages_map ? 1066 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 1067 } 1068 1069 static void swsusp_unset_page_forbidden(struct page *page) 1070 { 1071 if (forbidden_pages_map) 1072 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 1073 } 1074 1075 /** 1076 * mark_nosave_pages - Mark pages that should not be saved. 1077 * @bm: Memory bitmap. 1078 * 1079 * Set the bits in @bm that correspond to the page frames the contents of which 1080 * should not be saved. 1081 */ 1082 static void mark_nosave_pages(struct memory_bitmap *bm) 1083 { 1084 struct nosave_region *region; 1085 1086 if (list_empty(&nosave_regions)) 1087 return; 1088 1089 list_for_each_entry(region, &nosave_regions, list) { 1090 unsigned long pfn; 1091 1092 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n", 1093 (unsigned long long) region->start_pfn << PAGE_SHIFT, 1094 ((unsigned long long) region->end_pfn << PAGE_SHIFT) 1095 - 1); 1096 1097 for_each_valid_pfn(pfn, region->start_pfn, region->end_pfn) { 1098 /* 1099 * It is safe to ignore the result of 1100 * mem_bm_set_bit_check() here, since we won't 1101 * touch the PFNs for which the error is 1102 * returned anyway. 1103 */ 1104 mem_bm_set_bit_check(bm, pfn); 1105 } 1106 } 1107 } 1108 1109 /** 1110 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information. 1111 * 1112 * Create bitmaps needed for marking page frames that should not be saved and 1113 * free page frames. The forbidden_pages_map and free_pages_map pointers are 1114 * only modified if everything goes well, because we don't want the bits to be 1115 * touched before both bitmaps are set up. 1116 */ 1117 int create_basic_memory_bitmaps(void) 1118 { 1119 struct memory_bitmap *bm1, *bm2; 1120 int error; 1121 1122 if (forbidden_pages_map && free_pages_map) 1123 return 0; 1124 else 1125 BUG_ON(forbidden_pages_map || free_pages_map); 1126 1127 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1128 if (!bm1) 1129 return -ENOMEM; 1130 1131 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 1132 if (error) 1133 goto Free_first_object; 1134 1135 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1136 if (!bm2) 1137 goto Free_first_bitmap; 1138 1139 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 1140 if (error) 1141 goto Free_second_object; 1142 1143 forbidden_pages_map = bm1; 1144 free_pages_map = bm2; 1145 mark_nosave_pages(forbidden_pages_map); 1146 1147 pr_debug("Basic memory bitmaps created\n"); 1148 1149 return 0; 1150 1151 Free_second_object: 1152 kfree(bm2); 1153 Free_first_bitmap: 1154 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1155 Free_first_object: 1156 kfree(bm1); 1157 return -ENOMEM; 1158 } 1159 1160 /** 1161 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information. 1162 * 1163 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The 1164 * auxiliary pointers are necessary so that the bitmaps themselves are not 1165 * referred to while they are being freed. 1166 */ 1167 void free_basic_memory_bitmaps(void) 1168 { 1169 struct memory_bitmap *bm1, *bm2; 1170 1171 if (WARN_ON(!(forbidden_pages_map && free_pages_map))) 1172 return; 1173 1174 bm1 = forbidden_pages_map; 1175 bm2 = free_pages_map; 1176 forbidden_pages_map = NULL; 1177 free_pages_map = NULL; 1178 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1179 kfree(bm1); 1180 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 1181 kfree(bm2); 1182 1183 pr_debug("Basic memory bitmaps freed\n"); 1184 } 1185 1186 static void clear_or_poison_free_page(struct page *page) 1187 { 1188 if (page_poisoning_enabled_static()) 1189 __kernel_poison_pages(page, 1); 1190 else if (want_init_on_free()) 1191 clear_highpage(page); 1192 } 1193 1194 void clear_or_poison_free_pages(void) 1195 { 1196 struct memory_bitmap *bm = free_pages_map; 1197 unsigned long pfn; 1198 1199 if (WARN_ON(!(free_pages_map))) 1200 return; 1201 1202 if (page_poisoning_enabled() || want_init_on_free()) { 1203 memory_bm_position_reset(bm); 1204 pfn = memory_bm_next_pfn(bm); 1205 while (pfn != BM_END_OF_MAP) { 1206 if (pfn_valid(pfn)) 1207 clear_or_poison_free_page(pfn_to_page(pfn)); 1208 1209 pfn = memory_bm_next_pfn(bm); 1210 } 1211 memory_bm_position_reset(bm); 1212 pr_info("free pages cleared after restore\n"); 1213 } 1214 } 1215 1216 /** 1217 * snapshot_additional_pages - Estimate the number of extra pages needed. 1218 * @zone: Memory zone to carry out the computation for. 1219 * 1220 * Estimate the number of additional pages needed for setting up a hibernation 1221 * image data structures for @zone (usually, the returned value is greater than 1222 * the exact number). 1223 */ 1224 unsigned int snapshot_additional_pages(struct zone *zone) 1225 { 1226 unsigned int rtree, nodes; 1227 1228 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 1229 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node), 1230 LINKED_PAGE_DATA_SIZE); 1231 while (nodes > 1) { 1232 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL); 1233 rtree += nodes; 1234 } 1235 1236 return 2 * rtree; 1237 } 1238 1239 /* 1240 * Touch the watchdog for every WD_PAGE_COUNT pages. 1241 */ 1242 #define WD_PAGE_COUNT (128*1024) 1243 1244 static void mark_free_pages(struct zone *zone) 1245 { 1246 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 1247 unsigned long flags; 1248 unsigned int order, t; 1249 struct page *page; 1250 1251 if (zone_is_empty(zone)) 1252 return; 1253 1254 spin_lock_irqsave(&zone->lock, flags); 1255 1256 max_zone_pfn = zone_end_pfn(zone); 1257 for_each_valid_pfn(pfn, zone->zone_start_pfn, max_zone_pfn) { 1258 page = pfn_to_page(pfn); 1259 1260 if (!--page_count) { 1261 touch_nmi_watchdog(); 1262 page_count = WD_PAGE_COUNT; 1263 } 1264 1265 if (page_zone(page) != zone) 1266 continue; 1267 1268 if (!swsusp_page_is_forbidden(page)) 1269 swsusp_unset_page_free(page); 1270 } 1271 1272 for_each_migratetype_order(order, t) { 1273 list_for_each_entry(page, 1274 &zone->free_area[order].free_list[t], buddy_list) { 1275 unsigned long i; 1276 1277 pfn = page_to_pfn(page); 1278 for (i = 0; i < (1UL << order); i++) { 1279 if (!--page_count) { 1280 touch_nmi_watchdog(); 1281 page_count = WD_PAGE_COUNT; 1282 } 1283 swsusp_set_page_free(pfn_to_page(pfn + i)); 1284 } 1285 } 1286 } 1287 spin_unlock_irqrestore(&zone->lock, flags); 1288 } 1289 1290 #ifdef CONFIG_HIGHMEM 1291 /** 1292 * count_free_highmem_pages - Compute the total number of free highmem pages. 1293 * 1294 * The returned number is system-wide. 1295 */ 1296 static unsigned int count_free_highmem_pages(void) 1297 { 1298 struct zone *zone; 1299 unsigned int cnt = 0; 1300 1301 for_each_populated_zone(zone) 1302 if (is_highmem(zone)) 1303 cnt += zone_page_state(zone, NR_FREE_PAGES); 1304 1305 return cnt; 1306 } 1307 1308 /** 1309 * saveable_highmem_page - Check if a highmem page is saveable. 1310 * 1311 * Determine whether a highmem page should be included in a hibernation image. 1312 * 1313 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 1314 * and it isn't part of a free chunk of pages. 1315 */ 1316 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 1317 { 1318 struct page *page; 1319 1320 if (!pfn_valid(pfn)) 1321 return NULL; 1322 1323 page = pfn_to_online_page(pfn); 1324 if (!page || page_zone(page) != zone) 1325 return NULL; 1326 1327 BUG_ON(!PageHighMem(page)); 1328 1329 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1330 return NULL; 1331 1332 if (PageReserved(page) || PageOffline(page)) 1333 return NULL; 1334 1335 if (page_is_guard(page)) 1336 return NULL; 1337 1338 return page; 1339 } 1340 1341 /** 1342 * count_highmem_pages - Compute the total number of saveable highmem pages. 1343 */ 1344 static unsigned int count_highmem_pages(void) 1345 { 1346 struct zone *zone; 1347 unsigned int n = 0; 1348 1349 for_each_populated_zone(zone) { 1350 unsigned long pfn, max_zone_pfn; 1351 1352 if (!is_highmem(zone)) 1353 continue; 1354 1355 mark_free_pages(zone); 1356 max_zone_pfn = zone_end_pfn(zone); 1357 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1358 if (saveable_highmem_page(zone, pfn)) 1359 n++; 1360 } 1361 return n; 1362 } 1363 #endif /* CONFIG_HIGHMEM */ 1364 1365 /** 1366 * saveable_page - Check if the given page is saveable. 1367 * 1368 * Determine whether a non-highmem page should be included in a hibernation 1369 * image. 1370 * 1371 * We should save the page if it isn't Nosave, and is not in the range 1372 * of pages statically defined as 'unsaveable', and it isn't part of 1373 * a free chunk of pages. 1374 */ 1375 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 1376 { 1377 struct page *page; 1378 1379 if (!pfn_valid(pfn)) 1380 return NULL; 1381 1382 page = pfn_to_online_page(pfn); 1383 if (!page || page_zone(page) != zone) 1384 return NULL; 1385 1386 BUG_ON(PageHighMem(page)); 1387 1388 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1389 return NULL; 1390 1391 if (PageOffline(page)) 1392 return NULL; 1393 1394 if (PageReserved(page) 1395 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 1396 return NULL; 1397 1398 if (page_is_guard(page)) 1399 return NULL; 1400 1401 return page; 1402 } 1403 1404 /** 1405 * count_data_pages - Compute the total number of saveable non-highmem pages. 1406 */ 1407 static unsigned int count_data_pages(void) 1408 { 1409 struct zone *zone; 1410 unsigned long pfn, max_zone_pfn; 1411 unsigned int n = 0; 1412 1413 for_each_populated_zone(zone) { 1414 if (is_highmem(zone)) 1415 continue; 1416 1417 mark_free_pages(zone); 1418 max_zone_pfn = zone_end_pfn(zone); 1419 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1420 if (saveable_page(zone, pfn)) 1421 n++; 1422 } 1423 return n; 1424 } 1425 1426 /* 1427 * This is needed, because copy_page and memcpy are not usable for copying 1428 * task structs. Returns true if the page was filled with only zeros, 1429 * otherwise false. 1430 */ 1431 static inline bool do_copy_page(long *dst, long *src) 1432 { 1433 long z = 0; 1434 int n; 1435 1436 for (n = PAGE_SIZE / sizeof(long); n; n--) { 1437 z |= *src; 1438 *dst++ = *src++; 1439 } 1440 return !z; 1441 } 1442 1443 /** 1444 * safe_copy_page - Copy a page in a safe way. 1445 * 1446 * Check if the page we are going to copy is marked as present in the kernel 1447 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or 1448 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present() 1449 * always returns 'true'. Returns true if the page was entirely composed of 1450 * zeros, otherwise it will return false. 1451 */ 1452 static bool safe_copy_page(void *dst, struct page *s_page) 1453 { 1454 bool zeros_only; 1455 1456 if (kernel_page_present(s_page)) { 1457 zeros_only = do_copy_page(dst, page_address(s_page)); 1458 } else { 1459 hibernate_map_page(s_page); 1460 zeros_only = do_copy_page(dst, page_address(s_page)); 1461 hibernate_unmap_page(s_page); 1462 } 1463 return zeros_only; 1464 } 1465 1466 #ifdef CONFIG_HIGHMEM 1467 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn) 1468 { 1469 return is_highmem(zone) ? 1470 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 1471 } 1472 1473 static bool copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1474 { 1475 struct page *s_page, *d_page; 1476 void *src, *dst; 1477 bool zeros_only; 1478 1479 s_page = pfn_to_page(src_pfn); 1480 d_page = pfn_to_page(dst_pfn); 1481 if (PageHighMem(s_page)) { 1482 src = kmap_local_page(s_page); 1483 dst = kmap_local_page(d_page); 1484 zeros_only = do_copy_page(dst, src); 1485 kunmap_local(dst); 1486 kunmap_local(src); 1487 } else { 1488 if (PageHighMem(d_page)) { 1489 /* 1490 * The page pointed to by src may contain some kernel 1491 * data modified by kmap_atomic() 1492 */ 1493 zeros_only = safe_copy_page(buffer, s_page); 1494 dst = kmap_local_page(d_page); 1495 copy_page(dst, buffer); 1496 kunmap_local(dst); 1497 } else { 1498 zeros_only = safe_copy_page(page_address(d_page), s_page); 1499 } 1500 } 1501 return zeros_only; 1502 } 1503 #else 1504 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1505 1506 static inline int copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1507 { 1508 return safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1509 pfn_to_page(src_pfn)); 1510 } 1511 #endif /* CONFIG_HIGHMEM */ 1512 1513 /* 1514 * Copy data pages will copy all pages into pages pulled from the copy_bm. 1515 * If a page was entirely filled with zeros it will be marked in the zero_bm. 1516 * 1517 * Returns the number of pages copied. 1518 */ 1519 static unsigned long copy_data_pages(struct memory_bitmap *copy_bm, 1520 struct memory_bitmap *orig_bm, 1521 struct memory_bitmap *zero_bm) 1522 { 1523 unsigned long copied_pages = 0; 1524 struct zone *zone; 1525 unsigned long pfn, copy_pfn; 1526 1527 for_each_populated_zone(zone) { 1528 unsigned long max_zone_pfn; 1529 1530 mark_free_pages(zone); 1531 max_zone_pfn = zone_end_pfn(zone); 1532 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1533 if (page_is_saveable(zone, pfn)) 1534 memory_bm_set_bit(orig_bm, pfn); 1535 } 1536 memory_bm_position_reset(orig_bm); 1537 memory_bm_position_reset(copy_bm); 1538 copy_pfn = memory_bm_next_pfn(copy_bm); 1539 for(;;) { 1540 pfn = memory_bm_next_pfn(orig_bm); 1541 if (unlikely(pfn == BM_END_OF_MAP)) 1542 break; 1543 if (copy_data_page(copy_pfn, pfn)) { 1544 memory_bm_set_bit(zero_bm, pfn); 1545 /* Use this copy_pfn for a page that is not full of zeros */ 1546 continue; 1547 } 1548 copied_pages++; 1549 copy_pfn = memory_bm_next_pfn(copy_bm); 1550 } 1551 return copied_pages; 1552 } 1553 1554 /* Total number of image pages */ 1555 static unsigned int nr_copy_pages; 1556 /* Number of pages needed for saving the original pfns of the image pages */ 1557 static unsigned int nr_meta_pages; 1558 /* Number of zero pages */ 1559 static unsigned int nr_zero_pages; 1560 1561 /* 1562 * Numbers of normal and highmem page frames allocated for hibernation image 1563 * before suspending devices. 1564 */ 1565 static unsigned int alloc_normal, alloc_highmem; 1566 /* 1567 * Memory bitmap used for marking saveable pages (during hibernation) or 1568 * hibernation image pages (during restore) 1569 */ 1570 static struct memory_bitmap orig_bm; 1571 /* 1572 * Memory bitmap used during hibernation for marking allocated page frames that 1573 * will contain copies of saveable pages. During restore it is initially used 1574 * for marking hibernation image pages, but then the set bits from it are 1575 * duplicated in @orig_bm and it is released. On highmem systems it is next 1576 * used for marking "safe" highmem pages, but it has to be reinitialized for 1577 * this purpose. 1578 */ 1579 static struct memory_bitmap copy_bm; 1580 1581 /* Memory bitmap which tracks which saveable pages were zero filled. */ 1582 static struct memory_bitmap zero_bm; 1583 1584 /** 1585 * swsusp_free - Free pages allocated for hibernation image. 1586 * 1587 * Image pages are allocated before snapshot creation, so they need to be 1588 * released after resume. 1589 */ 1590 void swsusp_free(void) 1591 { 1592 unsigned long fb_pfn, fr_pfn; 1593 1594 if (!forbidden_pages_map || !free_pages_map) 1595 goto out; 1596 1597 memory_bm_position_reset(forbidden_pages_map); 1598 memory_bm_position_reset(free_pages_map); 1599 1600 loop: 1601 fr_pfn = memory_bm_next_pfn(free_pages_map); 1602 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1603 1604 /* 1605 * Find the next bit set in both bitmaps. This is guaranteed to 1606 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP. 1607 */ 1608 do { 1609 if (fb_pfn < fr_pfn) 1610 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1611 if (fr_pfn < fb_pfn) 1612 fr_pfn = memory_bm_next_pfn(free_pages_map); 1613 } while (fb_pfn != fr_pfn); 1614 1615 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) { 1616 struct page *page = pfn_to_page(fr_pfn); 1617 1618 memory_bm_clear_current(forbidden_pages_map); 1619 memory_bm_clear_current(free_pages_map); 1620 hibernate_restore_unprotect_page(page_address(page)); 1621 __free_page(page); 1622 goto loop; 1623 } 1624 1625 out: 1626 nr_copy_pages = 0; 1627 nr_meta_pages = 0; 1628 nr_zero_pages = 0; 1629 restore_pblist = NULL; 1630 buffer = NULL; 1631 alloc_normal = 0; 1632 alloc_highmem = 0; 1633 hibernate_restore_protection_end(); 1634 } 1635 1636 /* Helper functions used for the shrinking of memory. */ 1637 1638 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1639 1640 /** 1641 * preallocate_image_pages - Allocate a number of pages for hibernation image. 1642 * @nr_pages: Number of page frames to allocate. 1643 * @mask: GFP flags to use for the allocation. 1644 * 1645 * Return value: Number of page frames actually allocated 1646 */ 1647 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1648 { 1649 unsigned long nr_alloc = 0; 1650 1651 while (nr_pages > 0) { 1652 struct page *page; 1653 1654 page = alloc_image_page(mask); 1655 if (!page) 1656 break; 1657 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1658 if (PageHighMem(page)) 1659 alloc_highmem++; 1660 else 1661 alloc_normal++; 1662 nr_pages--; 1663 nr_alloc++; 1664 } 1665 1666 return nr_alloc; 1667 } 1668 1669 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1670 unsigned long avail_normal) 1671 { 1672 unsigned long alloc; 1673 1674 if (avail_normal <= alloc_normal) 1675 return 0; 1676 1677 alloc = avail_normal - alloc_normal; 1678 if (nr_pages < alloc) 1679 alloc = nr_pages; 1680 1681 return preallocate_image_pages(alloc, GFP_IMAGE); 1682 } 1683 1684 #ifdef CONFIG_HIGHMEM 1685 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1686 { 1687 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1688 } 1689 1690 /** 1691 * __fraction - Compute (an approximation of) x * (multiplier / base). 1692 */ 1693 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1694 { 1695 return div64_u64(x * multiplier, base); 1696 } 1697 1698 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1699 unsigned long highmem, 1700 unsigned long total) 1701 { 1702 unsigned long alloc = __fraction(nr_pages, highmem, total); 1703 1704 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1705 } 1706 #else /* CONFIG_HIGHMEM */ 1707 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1708 { 1709 return 0; 1710 } 1711 1712 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1713 unsigned long highmem, 1714 unsigned long total) 1715 { 1716 return 0; 1717 } 1718 #endif /* CONFIG_HIGHMEM */ 1719 1720 /** 1721 * free_unnecessary_pages - Release preallocated pages not needed for the image. 1722 */ 1723 static unsigned long free_unnecessary_pages(void) 1724 { 1725 unsigned long save, to_free_normal, to_free_highmem, free; 1726 1727 save = count_data_pages(); 1728 if (alloc_normal >= save) { 1729 to_free_normal = alloc_normal - save; 1730 save = 0; 1731 } else { 1732 to_free_normal = 0; 1733 save -= alloc_normal; 1734 } 1735 save += count_highmem_pages(); 1736 if (alloc_highmem >= save) { 1737 to_free_highmem = alloc_highmem - save; 1738 } else { 1739 to_free_highmem = 0; 1740 save -= alloc_highmem; 1741 if (to_free_normal > save) 1742 to_free_normal -= save; 1743 else 1744 to_free_normal = 0; 1745 } 1746 free = to_free_normal + to_free_highmem; 1747 1748 memory_bm_position_reset(©_bm); 1749 1750 while (to_free_normal > 0 || to_free_highmem > 0) { 1751 unsigned long pfn = memory_bm_next_pfn(©_bm); 1752 struct page *page = pfn_to_page(pfn); 1753 1754 if (PageHighMem(page)) { 1755 if (!to_free_highmem) 1756 continue; 1757 to_free_highmem--; 1758 alloc_highmem--; 1759 } else { 1760 if (!to_free_normal) 1761 continue; 1762 to_free_normal--; 1763 alloc_normal--; 1764 } 1765 memory_bm_clear_bit(©_bm, pfn); 1766 swsusp_unset_page_forbidden(page); 1767 swsusp_unset_page_free(page); 1768 __free_page(page); 1769 } 1770 1771 return free; 1772 } 1773 1774 /** 1775 * minimum_image_size - Estimate the minimum acceptable size of an image. 1776 * @saveable: Number of saveable pages in the system. 1777 * 1778 * We want to avoid attempting to free too much memory too hard, so estimate the 1779 * minimum acceptable size of a hibernation image to use as the lower limit for 1780 * preallocating memory. 1781 * 1782 * We assume that the minimum image size should be proportional to 1783 * 1784 * [number of saveable pages] - [number of pages that can be freed in theory] 1785 * 1786 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1787 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages. 1788 */ 1789 static unsigned long minimum_image_size(unsigned long saveable) 1790 { 1791 unsigned long size; 1792 1793 size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) 1794 + global_node_page_state(NR_ACTIVE_ANON) 1795 + global_node_page_state(NR_INACTIVE_ANON) 1796 + global_node_page_state(NR_ACTIVE_FILE) 1797 + global_node_page_state(NR_INACTIVE_FILE); 1798 1799 return saveable <= size ? 0 : saveable - size; 1800 } 1801 1802 /** 1803 * hibernate_preallocate_memory - Preallocate memory for hibernation image. 1804 * 1805 * To create a hibernation image it is necessary to make a copy of every page 1806 * frame in use. We also need a number of page frames to be free during 1807 * hibernation for allocations made while saving the image and for device 1808 * drivers, in case they need to allocate memory from their hibernation 1809 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1810 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through 1811 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1812 * total number of available page frames and allocate at least 1813 * 1814 * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2 1815 * - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1816 * 1817 * of them, which corresponds to the maximum size of a hibernation image. 1818 * 1819 * If image_size is set below the number following from the above formula, 1820 * the preallocation of memory is continued until the total number of saveable 1821 * pages in the system is below the requested image size or the minimum 1822 * acceptable image size returned by minimum_image_size(), whichever is greater. 1823 */ 1824 int hibernate_preallocate_memory(void) 1825 { 1826 struct zone *zone; 1827 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1828 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1829 ktime_t start, stop; 1830 int error; 1831 1832 pr_info("Preallocating image memory\n"); 1833 start = ktime_get(); 1834 1835 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1836 if (error) { 1837 pr_err("Cannot allocate original bitmap\n"); 1838 goto err_out; 1839 } 1840 1841 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1842 if (error) { 1843 pr_err("Cannot allocate copy bitmap\n"); 1844 goto err_out; 1845 } 1846 1847 error = memory_bm_create(&zero_bm, GFP_IMAGE, PG_ANY); 1848 if (error) { 1849 pr_err("Cannot allocate zero bitmap\n"); 1850 goto err_out; 1851 } 1852 1853 alloc_normal = 0; 1854 alloc_highmem = 0; 1855 nr_zero_pages = 0; 1856 1857 /* Count the number of saveable data pages. */ 1858 save_highmem = count_highmem_pages(); 1859 saveable = count_data_pages(); 1860 1861 /* 1862 * Compute the total number of page frames we can use (count) and the 1863 * number of pages needed for image metadata (size). 1864 */ 1865 count = saveable; 1866 saveable += save_highmem; 1867 highmem = save_highmem; 1868 size = 0; 1869 for_each_populated_zone(zone) { 1870 size += snapshot_additional_pages(zone); 1871 if (is_highmem(zone)) 1872 highmem += zone_page_state(zone, NR_FREE_PAGES); 1873 else 1874 count += zone_page_state(zone, NR_FREE_PAGES); 1875 } 1876 avail_normal = count; 1877 count += highmem; 1878 count -= totalreserve_pages; 1879 1880 /* Compute the maximum number of saveable pages to leave in memory. */ 1881 max_size = (count - (size + PAGES_FOR_IO)) / 2 1882 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1883 /* Compute the desired number of image pages specified by image_size. */ 1884 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1885 if (size > max_size) 1886 size = max_size; 1887 /* 1888 * If the desired number of image pages is at least as large as the 1889 * current number of saveable pages in memory, allocate page frames for 1890 * the image and we're done. 1891 */ 1892 if (size >= saveable) { 1893 pages = preallocate_image_highmem(save_highmem); 1894 pages += preallocate_image_memory(saveable - pages, avail_normal); 1895 goto out; 1896 } 1897 1898 /* Estimate the minimum size of the image. */ 1899 pages = minimum_image_size(saveable); 1900 /* 1901 * To avoid excessive pressure on the normal zone, leave room in it to 1902 * accommodate an image of the minimum size (unless it's already too 1903 * small, in which case don't preallocate pages from it at all). 1904 */ 1905 if (avail_normal > pages) 1906 avail_normal -= pages; 1907 else 1908 avail_normal = 0; 1909 if (size < pages) 1910 size = min_t(unsigned long, pages, max_size); 1911 1912 /* 1913 * Let the memory management subsystem know that we're going to need a 1914 * large number of page frames to allocate and make it free some memory. 1915 * NOTE: If this is not done, performance will be hurt badly in some 1916 * test cases. 1917 */ 1918 shrink_all_memory(saveable - size); 1919 1920 /* 1921 * The number of saveable pages in memory was too high, so apply some 1922 * pressure to decrease it. First, make room for the largest possible 1923 * image and fail if that doesn't work. Next, try to decrease the size 1924 * of the image as much as indicated by 'size' using allocations from 1925 * highmem and non-highmem zones separately. 1926 */ 1927 pages_highmem = preallocate_image_highmem(highmem / 2); 1928 alloc = count - max_size; 1929 if (alloc > pages_highmem) 1930 alloc -= pages_highmem; 1931 else 1932 alloc = 0; 1933 pages = preallocate_image_memory(alloc, avail_normal); 1934 if (pages < alloc) { 1935 /* We have exhausted non-highmem pages, try highmem. */ 1936 alloc -= pages; 1937 pages += pages_highmem; 1938 pages_highmem = preallocate_image_highmem(alloc); 1939 if (pages_highmem < alloc) { 1940 pr_err("Image allocation is %lu pages short\n", 1941 alloc - pages_highmem); 1942 goto err_out; 1943 } 1944 pages += pages_highmem; 1945 /* 1946 * size is the desired number of saveable pages to leave in 1947 * memory, so try to preallocate (all memory - size) pages. 1948 */ 1949 alloc = (count - pages) - size; 1950 pages += preallocate_image_highmem(alloc); 1951 } else { 1952 /* 1953 * There are approximately max_size saveable pages at this point 1954 * and we want to reduce this number down to size. 1955 */ 1956 alloc = max_size - size; 1957 size = preallocate_highmem_fraction(alloc, highmem, count); 1958 pages_highmem += size; 1959 alloc -= size; 1960 size = preallocate_image_memory(alloc, avail_normal); 1961 pages_highmem += preallocate_image_highmem(alloc - size); 1962 pages += pages_highmem + size; 1963 } 1964 1965 /* 1966 * We only need as many page frames for the image as there are saveable 1967 * pages in memory, but we have allocated more. Release the excessive 1968 * ones now. 1969 */ 1970 pages -= free_unnecessary_pages(); 1971 1972 out: 1973 stop = ktime_get(); 1974 pr_info("Allocated %lu pages for snapshot\n", pages); 1975 swsusp_show_speed(start, stop, pages, "Allocated"); 1976 1977 return 0; 1978 1979 err_out: 1980 swsusp_free(); 1981 return -ENOMEM; 1982 } 1983 1984 #ifdef CONFIG_HIGHMEM 1985 /** 1986 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem. 1987 * 1988 * Compute the number of non-highmem pages that will be necessary for creating 1989 * copies of highmem pages. 1990 */ 1991 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1992 { 1993 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1994 1995 if (free_highmem >= nr_highmem) 1996 nr_highmem = 0; 1997 else 1998 nr_highmem -= free_highmem; 1999 2000 return nr_highmem; 2001 } 2002 #else 2003 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 2004 #endif /* CONFIG_HIGHMEM */ 2005 2006 /** 2007 * enough_free_mem - Check if there is enough free memory for the image. 2008 */ 2009 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 2010 { 2011 struct zone *zone; 2012 unsigned int free = alloc_normal; 2013 2014 for_each_populated_zone(zone) 2015 if (!is_highmem(zone)) 2016 free += zone_page_state(zone, NR_FREE_PAGES); 2017 2018 nr_pages += count_pages_for_highmem(nr_highmem); 2019 pr_debug("Normal pages needed: %u + %u, available pages: %u\n", 2020 nr_pages, PAGES_FOR_IO, free); 2021 2022 return free > nr_pages + PAGES_FOR_IO; 2023 } 2024 2025 #ifdef CONFIG_HIGHMEM 2026 /** 2027 * get_highmem_buffer - Allocate a buffer for highmem pages. 2028 * 2029 * If there are some highmem pages in the hibernation image, we may need a 2030 * buffer to copy them and/or load their data. 2031 */ 2032 static inline int get_highmem_buffer(int safe_needed) 2033 { 2034 buffer = get_image_page(GFP_ATOMIC, safe_needed); 2035 return buffer ? 0 : -ENOMEM; 2036 } 2037 2038 /** 2039 * alloc_highmem_pages - Allocate some highmem pages for the image. 2040 * 2041 * Try to allocate as many pages as needed, but if the number of free highmem 2042 * pages is less than that, allocate them all. 2043 */ 2044 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 2045 unsigned int nr_highmem) 2046 { 2047 unsigned int to_alloc = count_free_highmem_pages(); 2048 2049 if (to_alloc > nr_highmem) 2050 to_alloc = nr_highmem; 2051 2052 nr_highmem -= to_alloc; 2053 while (to_alloc-- > 0) { 2054 struct page *page; 2055 2056 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM); 2057 memory_bm_set_bit(bm, page_to_pfn(page)); 2058 } 2059 return nr_highmem; 2060 } 2061 #else 2062 static inline int get_highmem_buffer(int safe_needed) { return 0; } 2063 2064 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 2065 unsigned int n) { return 0; } 2066 #endif /* CONFIG_HIGHMEM */ 2067 2068 /** 2069 * swsusp_alloc - Allocate memory for hibernation image. 2070 * 2071 * We first try to allocate as many highmem pages as there are 2072 * saveable highmem pages in the system. If that fails, we allocate 2073 * non-highmem pages for the copies of the remaining highmem ones. 2074 * 2075 * In this approach it is likely that the copies of highmem pages will 2076 * also be located in the high memory, because of the way in which 2077 * copy_data_pages() works. 2078 */ 2079 static int swsusp_alloc(struct memory_bitmap *copy_bm, 2080 unsigned int nr_pages, unsigned int nr_highmem) 2081 { 2082 if (nr_highmem > 0) { 2083 if (get_highmem_buffer(PG_ANY)) 2084 goto err_out; 2085 if (nr_highmem > alloc_highmem) { 2086 nr_highmem -= alloc_highmem; 2087 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 2088 } 2089 } 2090 if (nr_pages > alloc_normal) { 2091 nr_pages -= alloc_normal; 2092 while (nr_pages-- > 0) { 2093 struct page *page; 2094 2095 page = alloc_image_page(GFP_ATOMIC); 2096 if (!page) 2097 goto err_out; 2098 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 2099 } 2100 } 2101 2102 return 0; 2103 2104 err_out: 2105 swsusp_free(); 2106 return -ENOMEM; 2107 } 2108 2109 asmlinkage __visible int swsusp_save(void) 2110 { 2111 unsigned int nr_pages, nr_highmem; 2112 2113 pr_info("Creating image:\n"); 2114 2115 drain_local_pages(NULL); 2116 nr_pages = count_data_pages(); 2117 nr_highmem = count_highmem_pages(); 2118 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem); 2119 2120 if (!enough_free_mem(nr_pages, nr_highmem)) { 2121 pr_err("Not enough free memory\n"); 2122 return -ENOMEM; 2123 } 2124 2125 if (swsusp_alloc(©_bm, nr_pages, nr_highmem)) { 2126 pr_err("Memory allocation failed\n"); 2127 return -ENOMEM; 2128 } 2129 2130 /* 2131 * During allocating of suspend pagedir, new cold pages may appear. 2132 * Kill them. 2133 */ 2134 drain_local_pages(NULL); 2135 nr_copy_pages = copy_data_pages(©_bm, &orig_bm, &zero_bm); 2136 2137 /* 2138 * End of critical section. From now on, we can write to memory, 2139 * but we should not touch disk. This specially means we must _not_ 2140 * touch swap space! Except we must write out our image of course. 2141 */ 2142 nr_pages += nr_highmem; 2143 /* We don't actually copy the zero pages */ 2144 nr_zero_pages = nr_pages - nr_copy_pages; 2145 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 2146 2147 pr_info("Image created (%d pages copied, %d zero pages)\n", nr_copy_pages, nr_zero_pages); 2148 2149 return 0; 2150 } 2151 2152 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 2153 static int init_header_complete(struct swsusp_info *info) 2154 { 2155 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 2156 info->version_code = LINUX_VERSION_CODE; 2157 return 0; 2158 } 2159 2160 static const char *check_image_kernel(struct swsusp_info *info) 2161 { 2162 if (info->version_code != LINUX_VERSION_CODE) 2163 return "kernel version"; 2164 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 2165 return "system type"; 2166 if (strcmp(info->uts.release,init_utsname()->release)) 2167 return "kernel release"; 2168 if (strcmp(info->uts.version,init_utsname()->version)) 2169 return "version"; 2170 if (strcmp(info->uts.machine,init_utsname()->machine)) 2171 return "machine"; 2172 return NULL; 2173 } 2174 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 2175 2176 unsigned long snapshot_get_image_size(void) 2177 { 2178 return nr_copy_pages + nr_meta_pages + 1; 2179 } 2180 2181 static int init_header(struct swsusp_info *info) 2182 { 2183 memset(info, 0, sizeof(struct swsusp_info)); 2184 info->num_physpages = get_num_physpages(); 2185 info->image_pages = nr_copy_pages; 2186 info->pages = snapshot_get_image_size(); 2187 info->size = info->pages; 2188 info->size <<= PAGE_SHIFT; 2189 return init_header_complete(info); 2190 } 2191 2192 #define ENCODED_PFN_ZERO_FLAG ((unsigned long)1 << (BITS_PER_LONG - 1)) 2193 #define ENCODED_PFN_MASK (~ENCODED_PFN_ZERO_FLAG) 2194 2195 /** 2196 * pack_pfns - Prepare PFNs for saving. 2197 * @bm: Memory bitmap. 2198 * @buf: Memory buffer to store the PFNs in. 2199 * @zero_bm: Memory bitmap containing PFNs of zero pages. 2200 * 2201 * PFNs corresponding to set bits in @bm are stored in the area of memory 2202 * pointed to by @buf (1 page at a time). Pages which were filled with only 2203 * zeros will have the highest bit set in the packed format to distinguish 2204 * them from PFNs which will be contained in the image file. 2205 */ 2206 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm, 2207 struct memory_bitmap *zero_bm) 2208 { 2209 int j; 2210 2211 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2212 buf[j] = memory_bm_next_pfn(bm); 2213 if (unlikely(buf[j] == BM_END_OF_MAP)) 2214 break; 2215 if (memory_bm_test_bit(zero_bm, buf[j])) 2216 buf[j] |= ENCODED_PFN_ZERO_FLAG; 2217 } 2218 } 2219 2220 /** 2221 * snapshot_read_next - Get the address to read the next image page from. 2222 * @handle: Snapshot handle to be used for the reading. 2223 * 2224 * On the first call, @handle should point to a zeroed snapshot_handle 2225 * structure. The structure gets populated then and a pointer to it should be 2226 * passed to this function every next time. 2227 * 2228 * On success, the function returns a positive number. Then, the caller 2229 * is allowed to read up to the returned number of bytes from the memory 2230 * location computed by the data_of() macro. 2231 * 2232 * The function returns 0 to indicate the end of the data stream condition, 2233 * and negative numbers are returned on errors. If that happens, the structure 2234 * pointed to by @handle is not updated and should not be used any more. 2235 */ 2236 int snapshot_read_next(struct snapshot_handle *handle) 2237 { 2238 if (handle->cur > nr_meta_pages + nr_copy_pages) 2239 return 0; 2240 2241 if (!buffer) { 2242 /* This makes the buffer be freed by swsusp_free() */ 2243 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2244 if (!buffer) 2245 return -ENOMEM; 2246 } 2247 if (!handle->cur) { 2248 int error; 2249 2250 error = init_header((struct swsusp_info *)buffer); 2251 if (error) 2252 return error; 2253 handle->buffer = buffer; 2254 memory_bm_position_reset(&orig_bm); 2255 memory_bm_position_reset(©_bm); 2256 } else if (handle->cur <= nr_meta_pages) { 2257 clear_page(buffer); 2258 pack_pfns(buffer, &orig_bm, &zero_bm); 2259 } else { 2260 struct page *page; 2261 2262 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 2263 if (PageHighMem(page)) { 2264 /* 2265 * Highmem pages are copied to the buffer, 2266 * because we can't return with a kmapped 2267 * highmem page (we may not be called again). 2268 */ 2269 void *kaddr; 2270 2271 kaddr = kmap_local_page(page); 2272 copy_page(buffer, kaddr); 2273 kunmap_local(kaddr); 2274 handle->buffer = buffer; 2275 } else { 2276 handle->buffer = page_address(page); 2277 } 2278 } 2279 handle->cur++; 2280 return PAGE_SIZE; 2281 } 2282 2283 static void duplicate_memory_bitmap(struct memory_bitmap *dst, 2284 struct memory_bitmap *src) 2285 { 2286 unsigned long pfn; 2287 2288 memory_bm_position_reset(src); 2289 pfn = memory_bm_next_pfn(src); 2290 while (pfn != BM_END_OF_MAP) { 2291 memory_bm_set_bit(dst, pfn); 2292 pfn = memory_bm_next_pfn(src); 2293 } 2294 } 2295 2296 /** 2297 * mark_unsafe_pages - Mark pages that were used before hibernation. 2298 * 2299 * Mark the pages that cannot be used for storing the image during restoration, 2300 * because they conflict with the pages that had been used before hibernation. 2301 */ 2302 static void mark_unsafe_pages(struct memory_bitmap *bm) 2303 { 2304 unsigned long pfn; 2305 2306 /* Clear the "free"/"unsafe" bit for all PFNs */ 2307 memory_bm_position_reset(free_pages_map); 2308 pfn = memory_bm_next_pfn(free_pages_map); 2309 while (pfn != BM_END_OF_MAP) { 2310 memory_bm_clear_current(free_pages_map); 2311 pfn = memory_bm_next_pfn(free_pages_map); 2312 } 2313 2314 /* Mark pages that correspond to the "original" PFNs as "unsafe" */ 2315 duplicate_memory_bitmap(free_pages_map, bm); 2316 2317 allocated_unsafe_pages = 0; 2318 } 2319 2320 static int check_header(struct swsusp_info *info) 2321 { 2322 const char *reason; 2323 2324 reason = check_image_kernel(info); 2325 if (!reason && info->num_physpages != get_num_physpages()) 2326 reason = "memory size"; 2327 if (reason) { 2328 pr_err("Image mismatch: %s\n", reason); 2329 return -EPERM; 2330 } 2331 return 0; 2332 } 2333 2334 /** 2335 * load_header - Check the image header and copy the data from it. 2336 */ 2337 static int load_header(struct swsusp_info *info) 2338 { 2339 int error; 2340 2341 restore_pblist = NULL; 2342 error = check_header(info); 2343 if (!error) { 2344 nr_copy_pages = info->image_pages; 2345 nr_meta_pages = info->pages - info->image_pages - 1; 2346 } 2347 return error; 2348 } 2349 2350 /** 2351 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap. 2352 * @bm: Memory bitmap. 2353 * @buf: Area of memory containing the PFNs. 2354 * @zero_bm: Memory bitmap with the zero PFNs marked. 2355 * 2356 * For each element of the array pointed to by @buf (1 page at a time), set the 2357 * corresponding bit in @bm. If the page was originally populated with only 2358 * zeros then a corresponding bit will also be set in @zero_bm. 2359 */ 2360 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm, 2361 struct memory_bitmap *zero_bm) 2362 { 2363 unsigned long decoded_pfn; 2364 bool zero; 2365 int j; 2366 2367 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2368 if (unlikely(buf[j] == BM_END_OF_MAP)) 2369 break; 2370 2371 zero = !!(buf[j] & ENCODED_PFN_ZERO_FLAG); 2372 decoded_pfn = buf[j] & ENCODED_PFN_MASK; 2373 if (pfn_valid(decoded_pfn) && memory_bm_pfn_present(bm, decoded_pfn)) { 2374 memory_bm_set_bit(bm, decoded_pfn); 2375 if (zero) { 2376 memory_bm_set_bit(zero_bm, decoded_pfn); 2377 nr_zero_pages++; 2378 } 2379 } else { 2380 if (!pfn_valid(decoded_pfn)) 2381 pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n", 2382 (unsigned long long)PFN_PHYS(decoded_pfn)); 2383 return -EFAULT; 2384 } 2385 } 2386 2387 return 0; 2388 } 2389 2390 #ifdef CONFIG_HIGHMEM 2391 /* 2392 * struct highmem_pbe is used for creating the list of highmem pages that 2393 * should be restored atomically during the resume from disk, because the page 2394 * frames they have occupied before the suspend are in use. 2395 */ 2396 struct highmem_pbe { 2397 struct page *copy_page; /* data is here now */ 2398 struct page *orig_page; /* data was here before the suspend */ 2399 struct highmem_pbe *next; 2400 }; 2401 2402 /* 2403 * List of highmem PBEs needed for restoring the highmem pages that were 2404 * allocated before the suspend and included in the suspend image, but have 2405 * also been allocated by the "resume" kernel, so their contents cannot be 2406 * written directly to their "original" page frames. 2407 */ 2408 static struct highmem_pbe *highmem_pblist; 2409 2410 /** 2411 * count_highmem_image_pages - Compute the number of highmem pages in the image. 2412 * @bm: Memory bitmap. 2413 * 2414 * The bits in @bm that correspond to image pages are assumed to be set. 2415 */ 2416 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 2417 { 2418 unsigned long pfn; 2419 unsigned int cnt = 0; 2420 2421 memory_bm_position_reset(bm); 2422 pfn = memory_bm_next_pfn(bm); 2423 while (pfn != BM_END_OF_MAP) { 2424 if (PageHighMem(pfn_to_page(pfn))) 2425 cnt++; 2426 2427 pfn = memory_bm_next_pfn(bm); 2428 } 2429 return cnt; 2430 } 2431 2432 static unsigned int safe_highmem_pages; 2433 2434 static struct memory_bitmap *safe_highmem_bm; 2435 2436 /** 2437 * prepare_highmem_image - Allocate memory for loading highmem data from image. 2438 * @bm: Pointer to an uninitialized memory bitmap structure. 2439 * @nr_highmem_p: Pointer to the number of highmem image pages. 2440 * 2441 * Try to allocate as many highmem pages as there are highmem image pages 2442 * (@nr_highmem_p points to the variable containing the number of highmem image 2443 * pages). The pages that are "safe" (ie. will not be overwritten when the 2444 * hibernation image is restored entirely) have the corresponding bits set in 2445 * @bm (it must be uninitialized). 2446 * 2447 * NOTE: This function should not be called if there are no highmem image pages. 2448 */ 2449 static int prepare_highmem_image(struct memory_bitmap *bm, 2450 unsigned int *nr_highmem_p) 2451 { 2452 unsigned int to_alloc; 2453 2454 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 2455 return -ENOMEM; 2456 2457 if (get_highmem_buffer(PG_SAFE)) 2458 return -ENOMEM; 2459 2460 to_alloc = count_free_highmem_pages(); 2461 if (to_alloc > *nr_highmem_p) 2462 to_alloc = *nr_highmem_p; 2463 else 2464 *nr_highmem_p = to_alloc; 2465 2466 safe_highmem_pages = 0; 2467 while (to_alloc-- > 0) { 2468 struct page *page; 2469 2470 page = alloc_page(__GFP_HIGHMEM); 2471 if (!swsusp_page_is_free(page)) { 2472 /* The page is "safe", set its bit the bitmap */ 2473 memory_bm_set_bit(bm, page_to_pfn(page)); 2474 safe_highmem_pages++; 2475 } 2476 /* Mark the page as allocated */ 2477 swsusp_set_page_forbidden(page); 2478 swsusp_set_page_free(page); 2479 } 2480 memory_bm_position_reset(bm); 2481 safe_highmem_bm = bm; 2482 return 0; 2483 } 2484 2485 static struct page *last_highmem_page; 2486 2487 /** 2488 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page. 2489 * 2490 * For a given highmem image page get a buffer that suspend_write_next() should 2491 * return to its caller to write to. 2492 * 2493 * If the page is to be saved to its "original" page frame or a copy of 2494 * the page is to be made in the highmem, @buffer is returned. Otherwise, 2495 * the copy of the page is to be made in normal memory, so the address of 2496 * the copy is returned. 2497 * 2498 * If @buffer is returned, the caller of suspend_write_next() will write 2499 * the page's contents to @buffer, so they will have to be copied to the 2500 * right location on the next call to suspend_write_next() and it is done 2501 * with the help of copy_last_highmem_page(). For this purpose, if 2502 * @buffer is returned, @last_highmem_page is set to the page to which 2503 * the data will have to be copied from @buffer. 2504 */ 2505 static void *get_highmem_page_buffer(struct page *page, 2506 struct chain_allocator *ca) 2507 { 2508 struct highmem_pbe *pbe; 2509 void *kaddr; 2510 2511 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 2512 /* 2513 * We have allocated the "original" page frame and we can 2514 * use it directly to store the loaded page. 2515 */ 2516 last_highmem_page = page; 2517 return buffer; 2518 } 2519 /* 2520 * The "original" page frame has not been allocated and we have to 2521 * use a "safe" page frame to store the loaded page. 2522 */ 2523 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 2524 if (!pbe) { 2525 swsusp_free(); 2526 return ERR_PTR(-ENOMEM); 2527 } 2528 pbe->orig_page = page; 2529 if (safe_highmem_pages > 0) { 2530 struct page *tmp; 2531 2532 /* Copy of the page will be stored in high memory */ 2533 kaddr = buffer; 2534 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 2535 safe_highmem_pages--; 2536 last_highmem_page = tmp; 2537 pbe->copy_page = tmp; 2538 } else { 2539 /* Copy of the page will be stored in normal memory */ 2540 kaddr = __get_safe_page(ca->gfp_mask); 2541 if (!kaddr) 2542 return ERR_PTR(-ENOMEM); 2543 pbe->copy_page = virt_to_page(kaddr); 2544 } 2545 pbe->next = highmem_pblist; 2546 highmem_pblist = pbe; 2547 return kaddr; 2548 } 2549 2550 /** 2551 * copy_last_highmem_page - Copy most the most recent highmem image page. 2552 * 2553 * Copy the contents of a highmem image from @buffer, where the caller of 2554 * snapshot_write_next() has stored them, to the right location represented by 2555 * @last_highmem_page . 2556 */ 2557 static void copy_last_highmem_page(void) 2558 { 2559 if (last_highmem_page) { 2560 void *dst; 2561 2562 dst = kmap_local_page(last_highmem_page); 2563 copy_page(dst, buffer); 2564 kunmap_local(dst); 2565 last_highmem_page = NULL; 2566 } 2567 } 2568 2569 static inline int last_highmem_page_copied(void) 2570 { 2571 return !last_highmem_page; 2572 } 2573 2574 static inline void free_highmem_data(void) 2575 { 2576 if (safe_highmem_bm) 2577 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2578 2579 if (buffer) 2580 free_image_page(buffer, PG_UNSAFE_CLEAR); 2581 } 2582 #else 2583 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2584 2585 static inline int prepare_highmem_image(struct memory_bitmap *bm, 2586 unsigned int *nr_highmem_p) { return 0; } 2587 2588 static inline void *get_highmem_page_buffer(struct page *page, 2589 struct chain_allocator *ca) 2590 { 2591 return ERR_PTR(-EINVAL); 2592 } 2593 2594 static inline void copy_last_highmem_page(void) {} 2595 static inline int last_highmem_page_copied(void) { return 1; } 2596 static inline void free_highmem_data(void) {} 2597 #endif /* CONFIG_HIGHMEM */ 2598 2599 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2600 2601 /** 2602 * prepare_image - Make room for loading hibernation image. 2603 * @new_bm: Uninitialized memory bitmap structure. 2604 * @bm: Memory bitmap with unsafe pages marked. 2605 * @zero_bm: Memory bitmap containing the zero pages. 2606 * 2607 * Use @bm to mark the pages that will be overwritten in the process of 2608 * restoring the system memory state from the suspend image ("unsafe" pages) 2609 * and allocate memory for the image. 2610 * 2611 * The idea is to allocate a new memory bitmap first and then allocate 2612 * as many pages as needed for image data, but without specifying what those 2613 * pages will be used for just yet. Instead, we mark them all as allocated and 2614 * create a lists of "safe" pages to be used later. On systems with high 2615 * memory a list of "safe" highmem pages is created too. 2616 * 2617 * Because it was not known which pages were unsafe when @zero_bm was created, 2618 * make a copy of it and recreate it within safe pages. 2619 */ 2620 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm, 2621 struct memory_bitmap *zero_bm) 2622 { 2623 unsigned int nr_pages, nr_highmem; 2624 struct memory_bitmap tmp; 2625 struct linked_page *lp; 2626 int error; 2627 2628 /* If there is no highmem, the buffer will not be necessary */ 2629 free_image_page(buffer, PG_UNSAFE_CLEAR); 2630 buffer = NULL; 2631 2632 nr_highmem = count_highmem_image_pages(bm); 2633 mark_unsafe_pages(bm); 2634 2635 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2636 if (error) 2637 goto Free; 2638 2639 duplicate_memory_bitmap(new_bm, bm); 2640 memory_bm_free(bm, PG_UNSAFE_KEEP); 2641 2642 /* Make a copy of zero_bm so it can be created in safe pages */ 2643 error = memory_bm_create(&tmp, GFP_ATOMIC, PG_SAFE); 2644 if (error) 2645 goto Free; 2646 2647 duplicate_memory_bitmap(&tmp, zero_bm); 2648 memory_bm_free(zero_bm, PG_UNSAFE_KEEP); 2649 2650 /* Recreate zero_bm in safe pages */ 2651 error = memory_bm_create(zero_bm, GFP_ATOMIC, PG_SAFE); 2652 if (error) 2653 goto Free; 2654 2655 duplicate_memory_bitmap(zero_bm, &tmp); 2656 memory_bm_free(&tmp, PG_UNSAFE_CLEAR); 2657 /* At this point zero_bm is in safe pages and it can be used for restoring. */ 2658 2659 if (nr_highmem > 0) { 2660 error = prepare_highmem_image(bm, &nr_highmem); 2661 if (error) 2662 goto Free; 2663 } 2664 /* 2665 * Reserve some safe pages for potential later use. 2666 * 2667 * NOTE: This way we make sure there will be enough safe pages for the 2668 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2669 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2670 * 2671 * nr_copy_pages cannot be less than allocated_unsafe_pages too. 2672 */ 2673 nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages; 2674 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2675 while (nr_pages > 0) { 2676 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2677 if (!lp) { 2678 error = -ENOMEM; 2679 goto Free; 2680 } 2681 lp->next = safe_pages_list; 2682 safe_pages_list = lp; 2683 nr_pages--; 2684 } 2685 /* Preallocate memory for the image */ 2686 nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages; 2687 while (nr_pages > 0) { 2688 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2689 if (!lp) { 2690 error = -ENOMEM; 2691 goto Free; 2692 } 2693 if (!swsusp_page_is_free(virt_to_page(lp))) { 2694 /* The page is "safe", add it to the list */ 2695 lp->next = safe_pages_list; 2696 safe_pages_list = lp; 2697 } 2698 /* Mark the page as allocated */ 2699 swsusp_set_page_forbidden(virt_to_page(lp)); 2700 swsusp_set_page_free(virt_to_page(lp)); 2701 nr_pages--; 2702 } 2703 return 0; 2704 2705 Free: 2706 swsusp_free(); 2707 return error; 2708 } 2709 2710 /** 2711 * get_buffer - Get the address to store the next image data page. 2712 * 2713 * Get the address that snapshot_write_next() should return to its caller to 2714 * write to. 2715 */ 2716 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2717 { 2718 struct pbe *pbe; 2719 struct page *page; 2720 unsigned long pfn = memory_bm_next_pfn(bm); 2721 2722 if (pfn == BM_END_OF_MAP) 2723 return ERR_PTR(-EFAULT); 2724 2725 page = pfn_to_page(pfn); 2726 if (PageHighMem(page)) 2727 return get_highmem_page_buffer(page, ca); 2728 2729 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2730 /* 2731 * We have allocated the "original" page frame and we can 2732 * use it directly to store the loaded page. 2733 */ 2734 return page_address(page); 2735 2736 /* 2737 * The "original" page frame has not been allocated and we have to 2738 * use a "safe" page frame to store the loaded page. 2739 */ 2740 pbe = chain_alloc(ca, sizeof(struct pbe)); 2741 if (!pbe) { 2742 swsusp_free(); 2743 return ERR_PTR(-ENOMEM); 2744 } 2745 pbe->orig_address = page_address(page); 2746 pbe->address = __get_safe_page(ca->gfp_mask); 2747 if (!pbe->address) 2748 return ERR_PTR(-ENOMEM); 2749 pbe->next = restore_pblist; 2750 restore_pblist = pbe; 2751 return pbe->address; 2752 } 2753 2754 /** 2755 * snapshot_write_next - Get the address to store the next image page. 2756 * @handle: Snapshot handle structure to guide the writing. 2757 * 2758 * On the first call, @handle should point to a zeroed snapshot_handle 2759 * structure. The structure gets populated then and a pointer to it should be 2760 * passed to this function every next time. 2761 * 2762 * On success, the function returns a positive number. Then, the caller 2763 * is allowed to write up to the returned number of bytes to the memory 2764 * location computed by the data_of() macro. 2765 * 2766 * The function returns 0 to indicate the "end of file" condition. Negative 2767 * numbers are returned on errors, in which cases the structure pointed to by 2768 * @handle is not updated and should not be used any more. 2769 */ 2770 int snapshot_write_next(struct snapshot_handle *handle) 2771 { 2772 static struct chain_allocator ca; 2773 int error; 2774 2775 next: 2776 /* Check if we have already loaded the entire image */ 2777 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) 2778 return 0; 2779 2780 if (!handle->cur) { 2781 if (!buffer) 2782 /* This makes the buffer be freed by swsusp_free() */ 2783 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2784 2785 if (!buffer) 2786 return -ENOMEM; 2787 2788 handle->buffer = buffer; 2789 } else if (handle->cur == 1) { 2790 error = load_header(buffer); 2791 if (error) 2792 return error; 2793 2794 safe_pages_list = NULL; 2795 2796 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2797 if (error) 2798 return error; 2799 2800 error = memory_bm_create(&zero_bm, GFP_ATOMIC, PG_ANY); 2801 if (error) 2802 return error; 2803 2804 nr_zero_pages = 0; 2805 2806 hibernate_restore_protection_begin(); 2807 } else if (handle->cur <= nr_meta_pages + 1) { 2808 error = unpack_orig_pfns(buffer, ©_bm, &zero_bm); 2809 if (error) 2810 return error; 2811 2812 if (handle->cur == nr_meta_pages + 1) { 2813 error = prepare_image(&orig_bm, ©_bm, &zero_bm); 2814 if (error) 2815 return error; 2816 2817 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2818 memory_bm_position_reset(&orig_bm); 2819 memory_bm_position_reset(&zero_bm); 2820 restore_pblist = NULL; 2821 handle->buffer = get_buffer(&orig_bm, &ca); 2822 if (IS_ERR(handle->buffer)) 2823 return PTR_ERR(handle->buffer); 2824 } 2825 } else { 2826 copy_last_highmem_page(); 2827 error = hibernate_restore_protect_page(handle->buffer); 2828 if (error) 2829 return error; 2830 handle->buffer = get_buffer(&orig_bm, &ca); 2831 if (IS_ERR(handle->buffer)) 2832 return PTR_ERR(handle->buffer); 2833 } 2834 handle->sync_read = (handle->buffer == buffer); 2835 handle->cur++; 2836 2837 /* Zero pages were not included in the image, memset it and move on. */ 2838 if (handle->cur > nr_meta_pages + 1 && 2839 memory_bm_test_bit(&zero_bm, memory_bm_get_current(&orig_bm))) { 2840 memset(handle->buffer, 0, PAGE_SIZE); 2841 goto next; 2842 } 2843 2844 return PAGE_SIZE; 2845 } 2846 2847 /** 2848 * snapshot_write_finalize - Complete the loading of a hibernation image. 2849 * 2850 * Must be called after the last call to snapshot_write_next() in case the last 2851 * page in the image happens to be a highmem page and its contents should be 2852 * stored in highmem. Additionally, it recycles bitmap memory that's not 2853 * necessary any more. 2854 */ 2855 int snapshot_write_finalize(struct snapshot_handle *handle) 2856 { 2857 int error; 2858 2859 copy_last_highmem_page(); 2860 error = hibernate_restore_protect_page(handle->buffer); 2861 /* Do that only if we have loaded the image entirely */ 2862 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) { 2863 memory_bm_recycle(&orig_bm); 2864 free_highmem_data(); 2865 } 2866 return error; 2867 } 2868 2869 int snapshot_image_loaded(struct snapshot_handle *handle) 2870 { 2871 return !(!nr_copy_pages || !last_highmem_page_copied() || 2872 handle->cur <= nr_meta_pages + nr_copy_pages + nr_zero_pages); 2873 } 2874 2875 #ifdef CONFIG_HIGHMEM 2876 /* Assumes that @buf is ready and points to a "safe" page */ 2877 static inline void swap_two_pages_data(struct page *p1, struct page *p2, 2878 void *buf) 2879 { 2880 void *kaddr1, *kaddr2; 2881 2882 kaddr1 = kmap_local_page(p1); 2883 kaddr2 = kmap_local_page(p2); 2884 copy_page(buf, kaddr1); 2885 copy_page(kaddr1, kaddr2); 2886 copy_page(kaddr2, buf); 2887 kunmap_local(kaddr2); 2888 kunmap_local(kaddr1); 2889 } 2890 2891 /** 2892 * restore_highmem - Put highmem image pages into their original locations. 2893 * 2894 * For each highmem page that was in use before hibernation and is included in 2895 * the image, and also has been allocated by the "restore" kernel, swap its 2896 * current contents with the previous (ie. "before hibernation") ones. 2897 * 2898 * If the restore eventually fails, we can call this function once again and 2899 * restore the highmem state as seen by the restore kernel. 2900 */ 2901 int restore_highmem(void) 2902 { 2903 struct highmem_pbe *pbe = highmem_pblist; 2904 void *buf; 2905 2906 if (!pbe) 2907 return 0; 2908 2909 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2910 if (!buf) 2911 return -ENOMEM; 2912 2913 while (pbe) { 2914 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2915 pbe = pbe->next; 2916 } 2917 free_image_page(buf, PG_UNSAFE_CLEAR); 2918 return 0; 2919 } 2920 #endif /* CONFIG_HIGHMEM */ 2921