1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org> 6 */ 7 8 #define INCLUDE_VERMAGIC 9 10 #include <linux/export.h> 11 #include <linux/extable.h> 12 #include <linux/moduleloader.h> 13 #include <linux/module_signature.h> 14 #include <linux/trace_events.h> 15 #include <linux/init.h> 16 #include <linux/kallsyms.h> 17 #include <linux/buildid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/kstrtox.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/elf.h> 25 #include <linux/seq_file.h> 26 #include <linux/syscalls.h> 27 #include <linux/fcntl.h> 28 #include <linux/rcupdate.h> 29 #include <linux/capability.h> 30 #include <linux/cpu.h> 31 #include <linux/moduleparam.h> 32 #include <linux/errno.h> 33 #include <linux/err.h> 34 #include <linux/vermagic.h> 35 #include <linux/notifier.h> 36 #include <linux/sched.h> 37 #include <linux/device.h> 38 #include <linux/string.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <linux/set_memory.h> 44 #include <asm/mmu_context.h> 45 #include <linux/license.h> 46 #include <asm/sections.h> 47 #include <linux/tracepoint.h> 48 #include <linux/ftrace.h> 49 #include <linux/livepatch.h> 50 #include <linux/async.h> 51 #include <linux/percpu.h> 52 #include <linux/kmemleak.h> 53 #include <linux/jump_label.h> 54 #include <linux/pfn.h> 55 #include <linux/bsearch.h> 56 #include <linux/dynamic_debug.h> 57 #include <linux/audit.h> 58 #include <linux/cfi.h> 59 #include <linux/codetag.h> 60 #include <linux/debugfs.h> 61 #include <linux/execmem.h> 62 #include <uapi/linux/module.h> 63 #include "internal.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/module.h> 67 68 /* 69 * Mutex protects: 70 * 1) List of modules (also safely readable within RCU read section), 71 * 2) module_use links, 72 * 3) mod_tree.addr_min/mod_tree.addr_max. 73 * (delete and add uses RCU list operations). 74 */ 75 DEFINE_MUTEX(module_mutex); 76 LIST_HEAD(modules); 77 78 /* Work queue for freeing init sections in success case */ 79 static void do_free_init(struct work_struct *w); 80 static DECLARE_WORK(init_free_wq, do_free_init); 81 static LLIST_HEAD(init_free_list); 82 83 struct mod_tree_root mod_tree __cacheline_aligned = { 84 .addr_min = -1UL, 85 }; 86 87 struct symsearch { 88 const struct kernel_symbol *start, *stop; 89 const u32 *crcs; 90 enum mod_license license; 91 }; 92 93 /* 94 * Bounds of module memory, for speeding up __module_address. 95 * Protected by module_mutex. 96 */ 97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base, 98 unsigned int size, struct mod_tree_root *tree) 99 { 100 unsigned long min = (unsigned long)base; 101 unsigned long max = min + size; 102 103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 104 if (mod_mem_type_is_core_data(type)) { 105 if (min < tree->data_addr_min) 106 tree->data_addr_min = min; 107 if (max > tree->data_addr_max) 108 tree->data_addr_max = max; 109 return; 110 } 111 #endif 112 if (min < tree->addr_min) 113 tree->addr_min = min; 114 if (max > tree->addr_max) 115 tree->addr_max = max; 116 } 117 118 static void mod_update_bounds(struct module *mod) 119 { 120 for_each_mod_mem_type(type) { 121 struct module_memory *mod_mem = &mod->mem[type]; 122 123 if (mod_mem->size) 124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree); 125 } 126 } 127 128 /* Block module loading/unloading? */ 129 int modules_disabled; 130 core_param(nomodule, modules_disabled, bint, 0); 131 132 /* Waiting for a module to finish initializing? */ 133 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 134 135 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 136 137 int register_module_notifier(struct notifier_block *nb) 138 { 139 return blocking_notifier_chain_register(&module_notify_list, nb); 140 } 141 EXPORT_SYMBOL(register_module_notifier); 142 143 int unregister_module_notifier(struct notifier_block *nb) 144 { 145 return blocking_notifier_chain_unregister(&module_notify_list, nb); 146 } 147 EXPORT_SYMBOL(unregister_module_notifier); 148 149 /* 150 * We require a truly strong try_module_get(): 0 means success. 151 * Otherwise an error is returned due to ongoing or failed 152 * initialization etc. 153 */ 154 static inline int strong_try_module_get(struct module *mod) 155 { 156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 157 if (mod && mod->state == MODULE_STATE_COMING) 158 return -EBUSY; 159 if (try_module_get(mod)) 160 return 0; 161 else 162 return -ENOENT; 163 } 164 165 static inline void add_taint_module(struct module *mod, unsigned flag, 166 enum lockdep_ok lockdep_ok) 167 { 168 add_taint(flag, lockdep_ok); 169 set_bit(flag, &mod->taints); 170 } 171 172 /* 173 * Like strncmp(), except s/-/_/g as per scripts/Makefile.lib:name-fix-token rule. 174 */ 175 static int mod_strncmp(const char *str_a, const char *str_b, size_t n) 176 { 177 for (int i = 0; i < n; i++) { 178 char a = str_a[i]; 179 char b = str_b[i]; 180 int d; 181 182 if (a == '-') a = '_'; 183 if (b == '-') b = '_'; 184 185 d = a - b; 186 if (d) 187 return d; 188 189 if (!a) 190 break; 191 } 192 193 return 0; 194 } 195 196 /* 197 * A thread that wants to hold a reference to a module only while it 198 * is running can call this to safely exit. 199 */ 200 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 201 { 202 module_put(mod); 203 kthread_exit(code); 204 } 205 EXPORT_SYMBOL(__module_put_and_kthread_exit); 206 207 /* Find a module section: 0 means not found. */ 208 static unsigned int find_sec(const struct load_info *info, const char *name) 209 { 210 unsigned int i; 211 212 for (i = 1; i < info->hdr->e_shnum; i++) { 213 Elf_Shdr *shdr = &info->sechdrs[i]; 214 /* Alloc bit cleared means "ignore it." */ 215 if ((shdr->sh_flags & SHF_ALLOC) 216 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 217 return i; 218 } 219 return 0; 220 } 221 222 /** 223 * find_any_unique_sec() - Find a unique section index by name 224 * @info: Load info for the module to scan 225 * @name: Name of the section we're looking for 226 * 227 * Locates a unique section by name. Ignores SHF_ALLOC. 228 * 229 * Return: Section index if found uniquely, zero if absent, negative count 230 * of total instances if multiple were found. 231 */ 232 static int find_any_unique_sec(const struct load_info *info, const char *name) 233 { 234 unsigned int idx; 235 unsigned int count = 0; 236 int i; 237 238 for (i = 1; i < info->hdr->e_shnum; i++) { 239 if (strcmp(info->secstrings + info->sechdrs[i].sh_name, 240 name) == 0) { 241 count++; 242 idx = i; 243 } 244 } 245 if (count == 1) { 246 return idx; 247 } else if (count == 0) { 248 return 0; 249 } else { 250 return -count; 251 } 252 } 253 254 /* Find a module section, or NULL. */ 255 static void *section_addr(const struct load_info *info, const char *name) 256 { 257 /* Section 0 has sh_addr 0. */ 258 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 259 } 260 261 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 262 static void *section_objs(const struct load_info *info, 263 const char *name, 264 size_t object_size, 265 unsigned int *num) 266 { 267 unsigned int sec = find_sec(info, name); 268 269 /* Section 0 has sh_addr 0 and sh_size 0. */ 270 *num = info->sechdrs[sec].sh_size / object_size; 271 return (void *)info->sechdrs[sec].sh_addr; 272 } 273 274 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 275 static unsigned int find_any_sec(const struct load_info *info, const char *name) 276 { 277 unsigned int i; 278 279 for (i = 1; i < info->hdr->e_shnum; i++) { 280 Elf_Shdr *shdr = &info->sechdrs[i]; 281 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 282 return i; 283 } 284 return 0; 285 } 286 287 /* 288 * Find a module section, or NULL. Fill in number of "objects" in section. 289 * Ignores SHF_ALLOC flag. 290 */ 291 static __maybe_unused void *any_section_objs(const struct load_info *info, 292 const char *name, 293 size_t object_size, 294 unsigned int *num) 295 { 296 unsigned int sec = find_any_sec(info, name); 297 298 /* Section 0 has sh_addr 0 and sh_size 0. */ 299 *num = info->sechdrs[sec].sh_size / object_size; 300 return (void *)info->sechdrs[sec].sh_addr; 301 } 302 303 #ifndef CONFIG_MODVERSIONS 304 #define symversion(base, idx) NULL 305 #else 306 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 307 #endif 308 309 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 310 { 311 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 312 return offset_to_ptr(&sym->name_offset); 313 #else 314 return sym->name; 315 #endif 316 } 317 318 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 319 { 320 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 321 if (!sym->namespace_offset) 322 return NULL; 323 return offset_to_ptr(&sym->namespace_offset); 324 #else 325 return sym->namespace; 326 #endif 327 } 328 329 int cmp_name(const void *name, const void *sym) 330 { 331 return strcmp(name, kernel_symbol_name(sym)); 332 } 333 334 static bool find_exported_symbol_in_section(const struct symsearch *syms, 335 struct module *owner, 336 struct find_symbol_arg *fsa) 337 { 338 struct kernel_symbol *sym; 339 340 if (!fsa->gplok && syms->license == GPL_ONLY) 341 return false; 342 343 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 344 sizeof(struct kernel_symbol), cmp_name); 345 if (!sym) 346 return false; 347 348 fsa->owner = owner; 349 fsa->crc = symversion(syms->crcs, sym - syms->start); 350 fsa->sym = sym; 351 fsa->license = syms->license; 352 353 return true; 354 } 355 356 /* 357 * Find an exported symbol and return it, along with, (optional) crc and 358 * (optional) module which owns it. Needs RCU or module_mutex. 359 */ 360 bool find_symbol(struct find_symbol_arg *fsa) 361 { 362 static const struct symsearch arr[] = { 363 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 364 NOT_GPL_ONLY }, 365 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 366 __start___kcrctab_gpl, 367 GPL_ONLY }, 368 }; 369 struct module *mod; 370 unsigned int i; 371 372 for (i = 0; i < ARRAY_SIZE(arr); i++) 373 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 374 return true; 375 376 list_for_each_entry_rcu(mod, &modules, list, 377 lockdep_is_held(&module_mutex)) { 378 struct symsearch arr[] = { 379 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 380 NOT_GPL_ONLY }, 381 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 382 mod->gpl_crcs, 383 GPL_ONLY }, 384 }; 385 386 if (mod->state == MODULE_STATE_UNFORMED) 387 continue; 388 389 for (i = 0; i < ARRAY_SIZE(arr); i++) 390 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 391 return true; 392 } 393 394 pr_debug("Failed to find symbol %s\n", fsa->name); 395 return false; 396 } 397 398 /* 399 * Search for module by name: must hold module_mutex (or RCU for read-only 400 * access). 401 */ 402 struct module *find_module_all(const char *name, size_t len, 403 bool even_unformed) 404 { 405 struct module *mod; 406 407 list_for_each_entry_rcu(mod, &modules, list, 408 lockdep_is_held(&module_mutex)) { 409 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 410 continue; 411 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 412 return mod; 413 } 414 return NULL; 415 } 416 417 struct module *find_module(const char *name) 418 { 419 return find_module_all(name, strlen(name), false); 420 } 421 422 #ifdef CONFIG_SMP 423 424 static inline void __percpu *mod_percpu(struct module *mod) 425 { 426 return mod->percpu; 427 } 428 429 static int percpu_modalloc(struct module *mod, struct load_info *info) 430 { 431 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 432 unsigned long align = pcpusec->sh_addralign; 433 434 if (!pcpusec->sh_size) 435 return 0; 436 437 if (align > PAGE_SIZE) { 438 pr_warn("%s: per-cpu alignment %li > %li\n", 439 mod->name, align, PAGE_SIZE); 440 align = PAGE_SIZE; 441 } 442 443 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 444 if (!mod->percpu) { 445 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 446 mod->name, (unsigned long)pcpusec->sh_size); 447 return -ENOMEM; 448 } 449 mod->percpu_size = pcpusec->sh_size; 450 return 0; 451 } 452 453 static void percpu_modfree(struct module *mod) 454 { 455 free_percpu(mod->percpu); 456 } 457 458 static unsigned int find_pcpusec(struct load_info *info) 459 { 460 return find_sec(info, ".data..percpu"); 461 } 462 463 static void percpu_modcopy(struct module *mod, 464 const void *from, unsigned long size) 465 { 466 int cpu; 467 468 for_each_possible_cpu(cpu) 469 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 470 } 471 472 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 473 { 474 struct module *mod; 475 unsigned int cpu; 476 477 guard(rcu)(); 478 list_for_each_entry_rcu(mod, &modules, list) { 479 if (mod->state == MODULE_STATE_UNFORMED) 480 continue; 481 if (!mod->percpu_size) 482 continue; 483 for_each_possible_cpu(cpu) { 484 void *start = per_cpu_ptr(mod->percpu, cpu); 485 void *va = (void *)addr; 486 487 if (va >= start && va < start + mod->percpu_size) { 488 if (can_addr) { 489 *can_addr = (unsigned long) (va - start); 490 *can_addr += (unsigned long) 491 per_cpu_ptr(mod->percpu, 492 get_boot_cpu_id()); 493 } 494 return true; 495 } 496 } 497 } 498 return false; 499 } 500 501 /** 502 * is_module_percpu_address() - test whether address is from module static percpu 503 * @addr: address to test 504 * 505 * Test whether @addr belongs to module static percpu area. 506 * 507 * Return: %true if @addr is from module static percpu area 508 */ 509 bool is_module_percpu_address(unsigned long addr) 510 { 511 return __is_module_percpu_address(addr, NULL); 512 } 513 514 #else /* ... !CONFIG_SMP */ 515 516 static inline void __percpu *mod_percpu(struct module *mod) 517 { 518 return NULL; 519 } 520 static int percpu_modalloc(struct module *mod, struct load_info *info) 521 { 522 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 523 if (info->sechdrs[info->index.pcpu].sh_size != 0) 524 return -ENOMEM; 525 return 0; 526 } 527 static inline void percpu_modfree(struct module *mod) 528 { 529 } 530 static unsigned int find_pcpusec(struct load_info *info) 531 { 532 return 0; 533 } 534 static inline void percpu_modcopy(struct module *mod, 535 const void *from, unsigned long size) 536 { 537 /* pcpusec should be 0, and size of that section should be 0. */ 538 BUG_ON(size != 0); 539 } 540 bool is_module_percpu_address(unsigned long addr) 541 { 542 return false; 543 } 544 545 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 546 { 547 return false; 548 } 549 550 #endif /* CONFIG_SMP */ 551 552 #define MODINFO_ATTR(field) \ 553 static void setup_modinfo_##field(struct module *mod, const char *s) \ 554 { \ 555 mod->field = kstrdup(s, GFP_KERNEL); \ 556 } \ 557 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \ 558 struct module_kobject *mk, char *buffer) \ 559 { \ 560 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 561 } \ 562 static int modinfo_##field##_exists(struct module *mod) \ 563 { \ 564 return mod->field != NULL; \ 565 } \ 566 static void free_modinfo_##field(struct module *mod) \ 567 { \ 568 kfree(mod->field); \ 569 mod->field = NULL; \ 570 } \ 571 static const struct module_attribute modinfo_##field = { \ 572 .attr = { .name = __stringify(field), .mode = 0444 }, \ 573 .show = show_modinfo_##field, \ 574 .setup = setup_modinfo_##field, \ 575 .test = modinfo_##field##_exists, \ 576 .free = free_modinfo_##field, \ 577 }; 578 579 MODINFO_ATTR(version); 580 MODINFO_ATTR(srcversion); 581 582 static struct { 583 char name[MODULE_NAME_LEN + 1]; 584 char taints[MODULE_FLAGS_BUF_SIZE]; 585 } last_unloaded_module; 586 587 #ifdef CONFIG_MODULE_UNLOAD 588 589 EXPORT_TRACEPOINT_SYMBOL(module_get); 590 591 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 592 #define MODULE_REF_BASE 1 593 594 /* Init the unload section of the module. */ 595 static int module_unload_init(struct module *mod) 596 { 597 /* 598 * Initialize reference counter to MODULE_REF_BASE. 599 * refcnt == 0 means module is going. 600 */ 601 atomic_set(&mod->refcnt, MODULE_REF_BASE); 602 603 INIT_LIST_HEAD(&mod->source_list); 604 INIT_LIST_HEAD(&mod->target_list); 605 606 /* Hold reference count during initialization. */ 607 atomic_inc(&mod->refcnt); 608 609 return 0; 610 } 611 612 /* Does a already use b? */ 613 static int already_uses(struct module *a, struct module *b) 614 { 615 struct module_use *use; 616 617 list_for_each_entry(use, &b->source_list, source_list) { 618 if (use->source == a) 619 return 1; 620 } 621 pr_debug("%s does not use %s!\n", a->name, b->name); 622 return 0; 623 } 624 625 /* 626 * Module a uses b 627 * - we add 'a' as a "source", 'b' as a "target" of module use 628 * - the module_use is added to the list of 'b' sources (so 629 * 'b' can walk the list to see who sourced them), and of 'a' 630 * targets (so 'a' can see what modules it targets). 631 */ 632 static int add_module_usage(struct module *a, struct module *b) 633 { 634 struct module_use *use; 635 636 pr_debug("Allocating new usage for %s.\n", a->name); 637 use = kmalloc(sizeof(*use), GFP_ATOMIC); 638 if (!use) 639 return -ENOMEM; 640 641 use->source = a; 642 use->target = b; 643 list_add(&use->source_list, &b->source_list); 644 list_add(&use->target_list, &a->target_list); 645 return 0; 646 } 647 648 /* Module a uses b: caller needs module_mutex() */ 649 static int ref_module(struct module *a, struct module *b) 650 { 651 int err; 652 653 if (b == NULL || already_uses(a, b)) 654 return 0; 655 656 /* If module isn't available, we fail. */ 657 err = strong_try_module_get(b); 658 if (err) 659 return err; 660 661 err = add_module_usage(a, b); 662 if (err) { 663 module_put(b); 664 return err; 665 } 666 return 0; 667 } 668 669 /* Clear the unload stuff of the module. */ 670 static void module_unload_free(struct module *mod) 671 { 672 struct module_use *use, *tmp; 673 674 mutex_lock(&module_mutex); 675 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 676 struct module *i = use->target; 677 pr_debug("%s unusing %s\n", mod->name, i->name); 678 module_put(i); 679 list_del(&use->source_list); 680 list_del(&use->target_list); 681 kfree(use); 682 } 683 mutex_unlock(&module_mutex); 684 } 685 686 #ifdef CONFIG_MODULE_FORCE_UNLOAD 687 static inline int try_force_unload(unsigned int flags) 688 { 689 int ret = (flags & O_TRUNC); 690 if (ret) 691 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 692 return ret; 693 } 694 #else 695 static inline int try_force_unload(unsigned int flags) 696 { 697 return 0; 698 } 699 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 700 701 /* Try to release refcount of module, 0 means success. */ 702 static int try_release_module_ref(struct module *mod) 703 { 704 int ret; 705 706 /* Try to decrement refcnt which we set at loading */ 707 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 708 BUG_ON(ret < 0); 709 if (ret) 710 /* Someone can put this right now, recover with checking */ 711 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 712 713 return ret; 714 } 715 716 static int try_stop_module(struct module *mod, int flags, int *forced) 717 { 718 /* If it's not unused, quit unless we're forcing. */ 719 if (try_release_module_ref(mod) != 0) { 720 *forced = try_force_unload(flags); 721 if (!(*forced)) 722 return -EWOULDBLOCK; 723 } 724 725 /* Mark it as dying. */ 726 mod->state = MODULE_STATE_GOING; 727 728 return 0; 729 } 730 731 /** 732 * module_refcount() - return the refcount or -1 if unloading 733 * @mod: the module we're checking 734 * 735 * Return: 736 * -1 if the module is in the process of unloading 737 * otherwise the number of references in the kernel to the module 738 */ 739 int module_refcount(struct module *mod) 740 { 741 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 742 } 743 EXPORT_SYMBOL(module_refcount); 744 745 /* This exists whether we can unload or not */ 746 static void free_module(struct module *mod); 747 748 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 749 unsigned int, flags) 750 { 751 struct module *mod; 752 char name[MODULE_NAME_LEN]; 753 char buf[MODULE_FLAGS_BUF_SIZE]; 754 int ret, forced = 0; 755 756 if (!capable(CAP_SYS_MODULE) || modules_disabled) 757 return -EPERM; 758 759 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 760 return -EFAULT; 761 name[MODULE_NAME_LEN-1] = '\0'; 762 763 audit_log_kern_module(name); 764 765 if (mutex_lock_interruptible(&module_mutex) != 0) 766 return -EINTR; 767 768 mod = find_module(name); 769 if (!mod) { 770 ret = -ENOENT; 771 goto out; 772 } 773 774 if (!list_empty(&mod->source_list)) { 775 /* Other modules depend on us: get rid of them first. */ 776 ret = -EWOULDBLOCK; 777 goto out; 778 } 779 780 /* Doing init or already dying? */ 781 if (mod->state != MODULE_STATE_LIVE) { 782 /* FIXME: if (force), slam module count damn the torpedoes */ 783 pr_debug("%s already dying\n", mod->name); 784 ret = -EBUSY; 785 goto out; 786 } 787 788 /* If it has an init func, it must have an exit func to unload */ 789 if (mod->init && !mod->exit) { 790 forced = try_force_unload(flags); 791 if (!forced) { 792 /* This module can't be removed */ 793 ret = -EBUSY; 794 goto out; 795 } 796 } 797 798 ret = try_stop_module(mod, flags, &forced); 799 if (ret != 0) 800 goto out; 801 802 mutex_unlock(&module_mutex); 803 /* Final destruction now no one is using it. */ 804 if (mod->exit != NULL) 805 mod->exit(); 806 blocking_notifier_call_chain(&module_notify_list, 807 MODULE_STATE_GOING, mod); 808 klp_module_going(mod); 809 ftrace_release_mod(mod); 810 811 async_synchronize_full(); 812 813 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 814 strscpy(last_unloaded_module.name, mod->name); 815 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false)); 816 817 free_module(mod); 818 /* someone could wait for the module in add_unformed_module() */ 819 wake_up_all(&module_wq); 820 return 0; 821 out: 822 mutex_unlock(&module_mutex); 823 return ret; 824 } 825 826 void __symbol_put(const char *symbol) 827 { 828 struct find_symbol_arg fsa = { 829 .name = symbol, 830 .gplok = true, 831 }; 832 833 guard(rcu)(); 834 BUG_ON(!find_symbol(&fsa)); 835 module_put(fsa.owner); 836 } 837 EXPORT_SYMBOL(__symbol_put); 838 839 /* Note this assumes addr is a function, which it currently always is. */ 840 void symbol_put_addr(void *addr) 841 { 842 struct module *modaddr; 843 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 844 845 if (core_kernel_text(a)) 846 return; 847 848 /* 849 * Even though we hold a reference on the module; we still need to 850 * RCU read section in order to safely traverse the data structure. 851 */ 852 guard(rcu)(); 853 modaddr = __module_text_address(a); 854 BUG_ON(!modaddr); 855 module_put(modaddr); 856 } 857 EXPORT_SYMBOL_GPL(symbol_put_addr); 858 859 static ssize_t show_refcnt(const struct module_attribute *mattr, 860 struct module_kobject *mk, char *buffer) 861 { 862 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 863 } 864 865 static const struct module_attribute modinfo_refcnt = 866 __ATTR(refcnt, 0444, show_refcnt, NULL); 867 868 void __module_get(struct module *module) 869 { 870 if (module) { 871 atomic_inc(&module->refcnt); 872 trace_module_get(module, _RET_IP_); 873 } 874 } 875 EXPORT_SYMBOL(__module_get); 876 877 bool try_module_get(struct module *module) 878 { 879 bool ret = true; 880 881 if (module) { 882 /* Note: here, we can fail to get a reference */ 883 if (likely(module_is_live(module) && 884 atomic_inc_not_zero(&module->refcnt) != 0)) 885 trace_module_get(module, _RET_IP_); 886 else 887 ret = false; 888 } 889 return ret; 890 } 891 EXPORT_SYMBOL(try_module_get); 892 893 void module_put(struct module *module) 894 { 895 int ret; 896 897 if (module) { 898 ret = atomic_dec_if_positive(&module->refcnt); 899 WARN_ON(ret < 0); /* Failed to put refcount */ 900 trace_module_put(module, _RET_IP_); 901 } 902 } 903 EXPORT_SYMBOL(module_put); 904 905 #else /* !CONFIG_MODULE_UNLOAD */ 906 static inline void module_unload_free(struct module *mod) 907 { 908 } 909 910 static int ref_module(struct module *a, struct module *b) 911 { 912 return strong_try_module_get(b); 913 } 914 915 static inline int module_unload_init(struct module *mod) 916 { 917 return 0; 918 } 919 #endif /* CONFIG_MODULE_UNLOAD */ 920 921 size_t module_flags_taint(unsigned long taints, char *buf) 922 { 923 size_t l = 0; 924 int i; 925 926 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 927 if (taint_flags[i].module && test_bit(i, &taints)) 928 buf[l++] = taint_flags[i].c_true; 929 } 930 931 return l; 932 } 933 934 static ssize_t show_initstate(const struct module_attribute *mattr, 935 struct module_kobject *mk, char *buffer) 936 { 937 const char *state = "unknown"; 938 939 switch (mk->mod->state) { 940 case MODULE_STATE_LIVE: 941 state = "live"; 942 break; 943 case MODULE_STATE_COMING: 944 state = "coming"; 945 break; 946 case MODULE_STATE_GOING: 947 state = "going"; 948 break; 949 default: 950 BUG(); 951 } 952 return sprintf(buffer, "%s\n", state); 953 } 954 955 static const struct module_attribute modinfo_initstate = 956 __ATTR(initstate, 0444, show_initstate, NULL); 957 958 static ssize_t store_uevent(const struct module_attribute *mattr, 959 struct module_kobject *mk, 960 const char *buffer, size_t count) 961 { 962 int rc; 963 964 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 965 return rc ? rc : count; 966 } 967 968 const struct module_attribute module_uevent = 969 __ATTR(uevent, 0200, NULL, store_uevent); 970 971 static ssize_t show_coresize(const struct module_attribute *mattr, 972 struct module_kobject *mk, char *buffer) 973 { 974 unsigned int size = mk->mod->mem[MOD_TEXT].size; 975 976 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) { 977 for_class_mod_mem_type(type, core_data) 978 size += mk->mod->mem[type].size; 979 } 980 return sprintf(buffer, "%u\n", size); 981 } 982 983 static const struct module_attribute modinfo_coresize = 984 __ATTR(coresize, 0444, show_coresize, NULL); 985 986 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 987 static ssize_t show_datasize(const struct module_attribute *mattr, 988 struct module_kobject *mk, char *buffer) 989 { 990 unsigned int size = 0; 991 992 for_class_mod_mem_type(type, core_data) 993 size += mk->mod->mem[type].size; 994 return sprintf(buffer, "%u\n", size); 995 } 996 997 static const struct module_attribute modinfo_datasize = 998 __ATTR(datasize, 0444, show_datasize, NULL); 999 #endif 1000 1001 static ssize_t show_initsize(const struct module_attribute *mattr, 1002 struct module_kobject *mk, char *buffer) 1003 { 1004 unsigned int size = 0; 1005 1006 for_class_mod_mem_type(type, init) 1007 size += mk->mod->mem[type].size; 1008 return sprintf(buffer, "%u\n", size); 1009 } 1010 1011 static const struct module_attribute modinfo_initsize = 1012 __ATTR(initsize, 0444, show_initsize, NULL); 1013 1014 static ssize_t show_taint(const struct module_attribute *mattr, 1015 struct module_kobject *mk, char *buffer) 1016 { 1017 size_t l; 1018 1019 l = module_flags_taint(mk->mod->taints, buffer); 1020 buffer[l++] = '\n'; 1021 return l; 1022 } 1023 1024 static const struct module_attribute modinfo_taint = 1025 __ATTR(taint, 0444, show_taint, NULL); 1026 1027 const struct module_attribute *const modinfo_attrs[] = { 1028 &module_uevent, 1029 &modinfo_version, 1030 &modinfo_srcversion, 1031 &modinfo_initstate, 1032 &modinfo_coresize, 1033 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 1034 &modinfo_datasize, 1035 #endif 1036 &modinfo_initsize, 1037 &modinfo_taint, 1038 #ifdef CONFIG_MODULE_UNLOAD 1039 &modinfo_refcnt, 1040 #endif 1041 NULL, 1042 }; 1043 1044 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 1045 1046 static const char vermagic[] = VERMAGIC_STRING; 1047 1048 int try_to_force_load(struct module *mod, const char *reason) 1049 { 1050 #ifdef CONFIG_MODULE_FORCE_LOAD 1051 if (!test_taint(TAINT_FORCED_MODULE)) 1052 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 1053 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 1054 return 0; 1055 #else 1056 return -ENOEXEC; 1057 #endif 1058 } 1059 1060 /* Parse tag=value strings from .modinfo section */ 1061 char *module_next_tag_pair(char *string, unsigned long *secsize) 1062 { 1063 /* Skip non-zero chars */ 1064 while (string[0]) { 1065 string++; 1066 if ((*secsize)-- <= 1) 1067 return NULL; 1068 } 1069 1070 /* Skip any zero padding. */ 1071 while (!string[0]) { 1072 string++; 1073 if ((*secsize)-- <= 1) 1074 return NULL; 1075 } 1076 return string; 1077 } 1078 1079 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1080 char *prev) 1081 { 1082 char *p; 1083 unsigned int taglen = strlen(tag); 1084 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1085 unsigned long size = infosec->sh_size; 1086 1087 /* 1088 * get_modinfo() calls made before rewrite_section_headers() 1089 * must use sh_offset, as sh_addr isn't set! 1090 */ 1091 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1092 1093 if (prev) { 1094 size -= prev - modinfo; 1095 modinfo = module_next_tag_pair(prev, &size); 1096 } 1097 1098 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) { 1099 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1100 return p + taglen + 1; 1101 } 1102 return NULL; 1103 } 1104 1105 static char *get_modinfo(const struct load_info *info, const char *tag) 1106 { 1107 return get_next_modinfo(info, tag, NULL); 1108 } 1109 1110 /** 1111 * verify_module_namespace() - does @modname have access to this symbol's @namespace 1112 * @namespace: export symbol namespace 1113 * @modname: module name 1114 * 1115 * If @namespace is prefixed with "module:" to indicate it is a module namespace 1116 * then test if @modname matches any of the comma separated patterns. 1117 * 1118 * The patterns only support tail-glob. 1119 */ 1120 static bool verify_module_namespace(const char *namespace, const char *modname) 1121 { 1122 size_t len, modlen = strlen(modname); 1123 const char *prefix = "module:"; 1124 const char *sep; 1125 bool glob; 1126 1127 if (!strstarts(namespace, prefix)) 1128 return false; 1129 1130 for (namespace += strlen(prefix); *namespace; namespace = sep) { 1131 sep = strchrnul(namespace, ','); 1132 len = sep - namespace; 1133 1134 glob = false; 1135 if (sep[-1] == '*') { 1136 len--; 1137 glob = true; 1138 } 1139 1140 if (*sep) 1141 sep++; 1142 1143 if (mod_strncmp(namespace, modname, len) == 0 && (glob || len == modlen)) 1144 return true; 1145 } 1146 1147 return false; 1148 } 1149 1150 static int verify_namespace_is_imported(const struct load_info *info, 1151 const struct kernel_symbol *sym, 1152 struct module *mod) 1153 { 1154 const char *namespace; 1155 char *imported_namespace; 1156 1157 namespace = kernel_symbol_namespace(sym); 1158 if (namespace && namespace[0]) { 1159 1160 if (verify_module_namespace(namespace, mod->name)) 1161 return 0; 1162 1163 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1164 if (strcmp(namespace, imported_namespace) == 0) 1165 return 0; 1166 } 1167 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1168 pr_warn( 1169 #else 1170 pr_err( 1171 #endif 1172 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1173 mod->name, kernel_symbol_name(sym), namespace); 1174 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1175 return -EINVAL; 1176 #endif 1177 } 1178 return 0; 1179 } 1180 1181 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1182 { 1183 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1184 return true; 1185 1186 if (mod->using_gplonly_symbols) { 1187 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1188 mod->name, name, owner->name); 1189 return false; 1190 } 1191 1192 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1193 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1194 mod->name, name, owner->name); 1195 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1196 } 1197 return true; 1198 } 1199 1200 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1201 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1202 const struct load_info *info, 1203 const char *name, 1204 char ownername[]) 1205 { 1206 struct find_symbol_arg fsa = { 1207 .name = name, 1208 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1209 .warn = true, 1210 }; 1211 int err; 1212 1213 /* 1214 * The module_mutex should not be a heavily contended lock; 1215 * if we get the occasional sleep here, we'll go an extra iteration 1216 * in the wait_event_interruptible(), which is harmless. 1217 */ 1218 sched_annotate_sleep(); 1219 mutex_lock(&module_mutex); 1220 if (!find_symbol(&fsa)) 1221 goto unlock; 1222 1223 if (fsa.license == GPL_ONLY) 1224 mod->using_gplonly_symbols = true; 1225 1226 if (!inherit_taint(mod, fsa.owner, name)) { 1227 fsa.sym = NULL; 1228 goto getname; 1229 } 1230 1231 if (!check_version(info, name, mod, fsa.crc)) { 1232 fsa.sym = ERR_PTR(-EINVAL); 1233 goto getname; 1234 } 1235 1236 err = verify_namespace_is_imported(info, fsa.sym, mod); 1237 if (err) { 1238 fsa.sym = ERR_PTR(err); 1239 goto getname; 1240 } 1241 1242 err = ref_module(mod, fsa.owner); 1243 if (err) { 1244 fsa.sym = ERR_PTR(err); 1245 goto getname; 1246 } 1247 1248 getname: 1249 /* We must make copy under the lock if we failed to get ref. */ 1250 strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1251 unlock: 1252 mutex_unlock(&module_mutex); 1253 return fsa.sym; 1254 } 1255 1256 static const struct kernel_symbol * 1257 resolve_symbol_wait(struct module *mod, 1258 const struct load_info *info, 1259 const char *name) 1260 { 1261 const struct kernel_symbol *ksym; 1262 char owner[MODULE_NAME_LEN]; 1263 1264 if (wait_event_interruptible_timeout(module_wq, 1265 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1266 || PTR_ERR(ksym) != -EBUSY, 1267 30 * HZ) <= 0) { 1268 pr_warn("%s: gave up waiting for init of module %s.\n", 1269 mod->name, owner); 1270 } 1271 return ksym; 1272 } 1273 1274 void __weak module_arch_cleanup(struct module *mod) 1275 { 1276 } 1277 1278 void __weak module_arch_freeing_init(struct module *mod) 1279 { 1280 } 1281 1282 static int module_memory_alloc(struct module *mod, enum mod_mem_type type) 1283 { 1284 unsigned int size = PAGE_ALIGN(mod->mem[type].size); 1285 enum execmem_type execmem_type; 1286 void *ptr; 1287 1288 mod->mem[type].size = size; 1289 1290 if (mod_mem_type_is_data(type)) 1291 execmem_type = EXECMEM_MODULE_DATA; 1292 else 1293 execmem_type = EXECMEM_MODULE_TEXT; 1294 1295 ptr = execmem_alloc(execmem_type, size); 1296 if (!ptr) 1297 return -ENOMEM; 1298 1299 if (execmem_is_rox(execmem_type)) { 1300 int err = execmem_make_temp_rw(ptr, size); 1301 1302 if (err) { 1303 execmem_free(ptr); 1304 return -ENOMEM; 1305 } 1306 1307 mod->mem[type].is_rox = true; 1308 } 1309 1310 /* 1311 * The pointer to these blocks of memory are stored on the module 1312 * structure and we keep that around so long as the module is 1313 * around. We only free that memory when we unload the module. 1314 * Just mark them as not being a leak then. The .init* ELF 1315 * sections *do* get freed after boot so we *could* treat them 1316 * slightly differently with kmemleak_ignore() and only grey 1317 * them out as they work as typical memory allocations which 1318 * *do* eventually get freed, but let's just keep things simple 1319 * and avoid *any* false positives. 1320 */ 1321 if (!mod->mem[type].is_rox) 1322 kmemleak_not_leak(ptr); 1323 1324 memset(ptr, 0, size); 1325 mod->mem[type].base = ptr; 1326 1327 return 0; 1328 } 1329 1330 static void module_memory_restore_rox(struct module *mod) 1331 { 1332 for_class_mod_mem_type(type, text) { 1333 struct module_memory *mem = &mod->mem[type]; 1334 1335 if (mem->is_rox) 1336 execmem_restore_rox(mem->base, mem->size); 1337 } 1338 } 1339 1340 static void module_memory_free(struct module *mod, enum mod_mem_type type) 1341 { 1342 struct module_memory *mem = &mod->mem[type]; 1343 1344 execmem_free(mem->base); 1345 } 1346 1347 static void free_mod_mem(struct module *mod) 1348 { 1349 for_each_mod_mem_type(type) { 1350 struct module_memory *mod_mem = &mod->mem[type]; 1351 1352 if (type == MOD_DATA) 1353 continue; 1354 1355 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1356 lockdep_free_key_range(mod_mem->base, mod_mem->size); 1357 if (mod_mem->size) 1358 module_memory_free(mod, type); 1359 } 1360 1361 /* MOD_DATA hosts mod, so free it at last */ 1362 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size); 1363 module_memory_free(mod, MOD_DATA); 1364 } 1365 1366 /* Free a module, remove from lists, etc. */ 1367 static void free_module(struct module *mod) 1368 { 1369 trace_module_free(mod); 1370 1371 codetag_unload_module(mod); 1372 1373 mod_sysfs_teardown(mod); 1374 1375 /* 1376 * We leave it in list to prevent duplicate loads, but make sure 1377 * that noone uses it while it's being deconstructed. 1378 */ 1379 mutex_lock(&module_mutex); 1380 mod->state = MODULE_STATE_UNFORMED; 1381 mutex_unlock(&module_mutex); 1382 1383 /* Arch-specific cleanup. */ 1384 module_arch_cleanup(mod); 1385 1386 /* Module unload stuff */ 1387 module_unload_free(mod); 1388 1389 /* Free any allocated parameters. */ 1390 destroy_params(mod->kp, mod->num_kp); 1391 1392 if (is_livepatch_module(mod)) 1393 free_module_elf(mod); 1394 1395 /* Now we can delete it from the lists */ 1396 mutex_lock(&module_mutex); 1397 /* Unlink carefully: kallsyms could be walking list. */ 1398 list_del_rcu(&mod->list); 1399 mod_tree_remove(mod); 1400 /* Remove this module from bug list, this uses list_del_rcu */ 1401 module_bug_cleanup(mod); 1402 /* Wait for RCU synchronizing before releasing mod->list and buglist. */ 1403 synchronize_rcu(); 1404 if (try_add_tainted_module(mod)) 1405 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1406 mod->name); 1407 mutex_unlock(&module_mutex); 1408 1409 /* This may be empty, but that's OK */ 1410 module_arch_freeing_init(mod); 1411 kfree(mod->args); 1412 percpu_modfree(mod); 1413 1414 free_mod_mem(mod); 1415 } 1416 1417 void *__symbol_get(const char *symbol) 1418 { 1419 struct find_symbol_arg fsa = { 1420 .name = symbol, 1421 .gplok = true, 1422 .warn = true, 1423 }; 1424 1425 scoped_guard(rcu) { 1426 if (!find_symbol(&fsa)) 1427 return NULL; 1428 if (fsa.license != GPL_ONLY) { 1429 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n", 1430 symbol); 1431 return NULL; 1432 } 1433 if (strong_try_module_get(fsa.owner)) 1434 return NULL; 1435 } 1436 return (void *)kernel_symbol_value(fsa.sym); 1437 } 1438 EXPORT_SYMBOL_GPL(__symbol_get); 1439 1440 /* 1441 * Ensure that an exported symbol [global namespace] does not already exist 1442 * in the kernel or in some other module's exported symbol table. 1443 * 1444 * You must hold the module_mutex. 1445 */ 1446 static int verify_exported_symbols(struct module *mod) 1447 { 1448 unsigned int i; 1449 const struct kernel_symbol *s; 1450 struct { 1451 const struct kernel_symbol *sym; 1452 unsigned int num; 1453 } arr[] = { 1454 { mod->syms, mod->num_syms }, 1455 { mod->gpl_syms, mod->num_gpl_syms }, 1456 }; 1457 1458 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1459 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1460 struct find_symbol_arg fsa = { 1461 .name = kernel_symbol_name(s), 1462 .gplok = true, 1463 }; 1464 if (find_symbol(&fsa)) { 1465 pr_err("%s: exports duplicate symbol %s" 1466 " (owned by %s)\n", 1467 mod->name, kernel_symbol_name(s), 1468 module_name(fsa.owner)); 1469 return -ENOEXEC; 1470 } 1471 } 1472 } 1473 return 0; 1474 } 1475 1476 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1477 { 1478 /* 1479 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1480 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1481 * i386 has a similar problem but may not deserve a fix. 1482 * 1483 * If we ever have to ignore many symbols, consider refactoring the code to 1484 * only warn if referenced by a relocation. 1485 */ 1486 if (emachine == EM_386 || emachine == EM_X86_64) 1487 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1488 return false; 1489 } 1490 1491 /* Change all symbols so that st_value encodes the pointer directly. */ 1492 static int simplify_symbols(struct module *mod, const struct load_info *info) 1493 { 1494 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1495 Elf_Sym *sym = (void *)symsec->sh_addr; 1496 unsigned long secbase; 1497 unsigned int i; 1498 int ret = 0; 1499 const struct kernel_symbol *ksym; 1500 1501 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1502 const char *name = info->strtab + sym[i].st_name; 1503 1504 switch (sym[i].st_shndx) { 1505 case SHN_COMMON: 1506 /* Ignore common symbols */ 1507 if (!strncmp(name, "__gnu_lto", 9)) 1508 break; 1509 1510 /* 1511 * We compiled with -fno-common. These are not 1512 * supposed to happen. 1513 */ 1514 pr_debug("Common symbol: %s\n", name); 1515 pr_warn("%s: please compile with -fno-common\n", 1516 mod->name); 1517 ret = -ENOEXEC; 1518 break; 1519 1520 case SHN_ABS: 1521 /* Don't need to do anything */ 1522 pr_debug("Absolute symbol: 0x%08lx %s\n", 1523 (long)sym[i].st_value, name); 1524 break; 1525 1526 case SHN_LIVEPATCH: 1527 /* Livepatch symbols are resolved by livepatch */ 1528 break; 1529 1530 case SHN_UNDEF: 1531 ksym = resolve_symbol_wait(mod, info, name); 1532 /* Ok if resolved. */ 1533 if (ksym && !IS_ERR(ksym)) { 1534 sym[i].st_value = kernel_symbol_value(ksym); 1535 break; 1536 } 1537 1538 /* Ok if weak or ignored. */ 1539 if (!ksym && 1540 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1541 ignore_undef_symbol(info->hdr->e_machine, name))) 1542 break; 1543 1544 ret = PTR_ERR(ksym) ?: -ENOENT; 1545 pr_warn("%s: Unknown symbol %s (err %d)\n", 1546 mod->name, name, ret); 1547 break; 1548 1549 default: 1550 /* Divert to percpu allocation if a percpu var. */ 1551 if (sym[i].st_shndx == info->index.pcpu) 1552 secbase = (unsigned long)mod_percpu(mod); 1553 else 1554 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1555 sym[i].st_value += secbase; 1556 break; 1557 } 1558 } 1559 1560 return ret; 1561 } 1562 1563 static int apply_relocations(struct module *mod, const struct load_info *info) 1564 { 1565 unsigned int i; 1566 int err = 0; 1567 1568 /* Now do relocations. */ 1569 for (i = 1; i < info->hdr->e_shnum; i++) { 1570 unsigned int infosec = info->sechdrs[i].sh_info; 1571 1572 /* Not a valid relocation section? */ 1573 if (infosec >= info->hdr->e_shnum) 1574 continue; 1575 1576 /* Don't bother with non-allocated sections */ 1577 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1578 continue; 1579 1580 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1581 err = klp_apply_section_relocs(mod, info->sechdrs, 1582 info->secstrings, 1583 info->strtab, 1584 info->index.sym, i, 1585 NULL); 1586 else if (info->sechdrs[i].sh_type == SHT_REL) 1587 err = apply_relocate(info->sechdrs, info->strtab, 1588 info->index.sym, i, mod); 1589 else if (info->sechdrs[i].sh_type == SHT_RELA) 1590 err = apply_relocate_add(info->sechdrs, info->strtab, 1591 info->index.sym, i, mod); 1592 if (err < 0) 1593 break; 1594 } 1595 return err; 1596 } 1597 1598 /* Additional bytes needed by arch in front of individual sections */ 1599 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1600 unsigned int section) 1601 { 1602 /* default implementation just returns zero */ 1603 return 0; 1604 } 1605 1606 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type, 1607 Elf_Shdr *sechdr, unsigned int section) 1608 { 1609 long offset; 1610 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT; 1611 1612 mod->mem[type].size += arch_mod_section_prepend(mod, section); 1613 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1); 1614 mod->mem[type].size = offset + sechdr->sh_size; 1615 1616 WARN_ON_ONCE(offset & mask); 1617 return offset | mask; 1618 } 1619 1620 bool module_init_layout_section(const char *sname) 1621 { 1622 #ifndef CONFIG_MODULE_UNLOAD 1623 if (module_exit_section(sname)) 1624 return true; 1625 #endif 1626 return module_init_section(sname); 1627 } 1628 1629 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init) 1630 { 1631 unsigned int m, i; 1632 1633 /* 1634 * { Mask of required section header flags, 1635 * Mask of excluded section header flags } 1636 */ 1637 static const unsigned long masks[][2] = { 1638 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1639 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1640 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1641 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1642 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1643 }; 1644 static const int core_m_to_mem_type[] = { 1645 MOD_TEXT, 1646 MOD_RODATA, 1647 MOD_RO_AFTER_INIT, 1648 MOD_DATA, 1649 MOD_DATA, 1650 }; 1651 static const int init_m_to_mem_type[] = { 1652 MOD_INIT_TEXT, 1653 MOD_INIT_RODATA, 1654 MOD_INVALID, 1655 MOD_INIT_DATA, 1656 MOD_INIT_DATA, 1657 }; 1658 1659 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1660 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m]; 1661 1662 for (i = 0; i < info->hdr->e_shnum; ++i) { 1663 Elf_Shdr *s = &info->sechdrs[i]; 1664 const char *sname = info->secstrings + s->sh_name; 1665 1666 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1667 || (s->sh_flags & masks[m][1]) 1668 || s->sh_entsize != ~0UL 1669 || is_init != module_init_layout_section(sname)) 1670 continue; 1671 1672 if (WARN_ON_ONCE(type == MOD_INVALID)) 1673 continue; 1674 1675 /* 1676 * Do not allocate codetag memory as we load it into 1677 * preallocated contiguous memory. 1678 */ 1679 if (codetag_needs_module_section(mod, sname, s->sh_size)) { 1680 /* 1681 * s->sh_entsize won't be used but populate the 1682 * type field to avoid confusion. 1683 */ 1684 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) 1685 << SH_ENTSIZE_TYPE_SHIFT; 1686 continue; 1687 } 1688 1689 s->sh_entsize = module_get_offset_and_type(mod, type, s, i); 1690 pr_debug("\t%s\n", sname); 1691 } 1692 } 1693 } 1694 1695 /* 1696 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1697 * might -- code, read-only data, read-write data, small data. Tally 1698 * sizes, and place the offsets into sh_entsize fields: high bit means it 1699 * belongs in init. 1700 */ 1701 static void layout_sections(struct module *mod, struct load_info *info) 1702 { 1703 unsigned int i; 1704 1705 for (i = 0; i < info->hdr->e_shnum; i++) 1706 info->sechdrs[i].sh_entsize = ~0UL; 1707 1708 pr_debug("Core section allocation order for %s:\n", mod->name); 1709 __layout_sections(mod, info, false); 1710 1711 pr_debug("Init section allocation order for %s:\n", mod->name); 1712 __layout_sections(mod, info, true); 1713 } 1714 1715 static void module_license_taint_check(struct module *mod, const char *license) 1716 { 1717 if (!license) 1718 license = "unspecified"; 1719 1720 if (!license_is_gpl_compatible(license)) { 1721 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1722 pr_warn("%s: module license '%s' taints kernel.\n", 1723 mod->name, license); 1724 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1725 LOCKDEP_NOW_UNRELIABLE); 1726 } 1727 } 1728 1729 static int setup_modinfo(struct module *mod, struct load_info *info) 1730 { 1731 const struct module_attribute *attr; 1732 char *imported_namespace; 1733 int i; 1734 1735 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1736 if (attr->setup) 1737 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1738 } 1739 1740 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1741 /* 1742 * 'module:' prefixed namespaces are implicit, disallow 1743 * explicit imports. 1744 */ 1745 if (strstarts(imported_namespace, "module:")) { 1746 pr_err("%s: module tries to import module namespace: %s\n", 1747 mod->name, imported_namespace); 1748 return -EPERM; 1749 } 1750 } 1751 1752 return 0; 1753 } 1754 1755 static void free_modinfo(struct module *mod) 1756 { 1757 const struct module_attribute *attr; 1758 int i; 1759 1760 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1761 if (attr->free) 1762 attr->free(mod); 1763 } 1764 } 1765 1766 bool __weak module_init_section(const char *name) 1767 { 1768 return strstarts(name, ".init"); 1769 } 1770 1771 bool __weak module_exit_section(const char *name) 1772 { 1773 return strstarts(name, ".exit"); 1774 } 1775 1776 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr) 1777 { 1778 #if defined(CONFIG_64BIT) 1779 unsigned long long secend; 1780 #else 1781 unsigned long secend; 1782 #endif 1783 1784 /* 1785 * Check for both overflow and offset/size being 1786 * too large. 1787 */ 1788 secend = shdr->sh_offset + shdr->sh_size; 1789 if (secend < shdr->sh_offset || secend > info->len) 1790 return -ENOEXEC; 1791 1792 return 0; 1793 } 1794 1795 /** 1796 * elf_validity_ehdr() - Checks an ELF header for module validity 1797 * @info: Load info containing the ELF header to check 1798 * 1799 * Checks whether an ELF header could belong to a valid module. Checks: 1800 * 1801 * * ELF header is within the data the user provided 1802 * * ELF magic is present 1803 * * It is relocatable (not final linked, not core file, etc.) 1804 * * The header's machine type matches what the architecture expects. 1805 * * Optional arch-specific hook for other properties 1806 * - module_elf_check_arch() is currently only used by PPC to check 1807 * ELF ABI version, but may be used by others in the future. 1808 * 1809 * Return: %0 if valid, %-ENOEXEC on failure. 1810 */ 1811 static int elf_validity_ehdr(const struct load_info *info) 1812 { 1813 if (info->len < sizeof(*(info->hdr))) { 1814 pr_err("Invalid ELF header len %lu\n", info->len); 1815 return -ENOEXEC; 1816 } 1817 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1818 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1819 return -ENOEXEC; 1820 } 1821 if (info->hdr->e_type != ET_REL) { 1822 pr_err("Invalid ELF header type: %u != %u\n", 1823 info->hdr->e_type, ET_REL); 1824 return -ENOEXEC; 1825 } 1826 if (!elf_check_arch(info->hdr)) { 1827 pr_err("Invalid architecture in ELF header: %u\n", 1828 info->hdr->e_machine); 1829 return -ENOEXEC; 1830 } 1831 if (!module_elf_check_arch(info->hdr)) { 1832 pr_err("Invalid module architecture in ELF header: %u\n", 1833 info->hdr->e_machine); 1834 return -ENOEXEC; 1835 } 1836 return 0; 1837 } 1838 1839 /** 1840 * elf_validity_cache_sechdrs() - Cache section headers if valid 1841 * @info: Load info to compute section headers from 1842 * 1843 * Checks: 1844 * 1845 * * ELF header is valid (see elf_validity_ehdr()) 1846 * * Section headers are the size we expect 1847 * * Section array fits in the user provided data 1848 * * Section index 0 is NULL 1849 * * Section contents are inbounds 1850 * 1851 * Then updates @info with a &load_info->sechdrs pointer if valid. 1852 * 1853 * Return: %0 if valid, negative error code if validation failed. 1854 */ 1855 static int elf_validity_cache_sechdrs(struct load_info *info) 1856 { 1857 Elf_Shdr *sechdrs; 1858 Elf_Shdr *shdr; 1859 int i; 1860 int err; 1861 1862 err = elf_validity_ehdr(info); 1863 if (err < 0) 1864 return err; 1865 1866 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1867 pr_err("Invalid ELF section header size\n"); 1868 return -ENOEXEC; 1869 } 1870 1871 /* 1872 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1873 * known and small. So e_shnum * sizeof(Elf_Shdr) 1874 * will not overflow unsigned long on any platform. 1875 */ 1876 if (info->hdr->e_shoff >= info->len 1877 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1878 info->len - info->hdr->e_shoff)) { 1879 pr_err("Invalid ELF section header overflow\n"); 1880 return -ENOEXEC; 1881 } 1882 1883 sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1884 1885 /* 1886 * The code assumes that section 0 has a length of zero and 1887 * an addr of zero, so check for it. 1888 */ 1889 if (sechdrs[0].sh_type != SHT_NULL 1890 || sechdrs[0].sh_size != 0 1891 || sechdrs[0].sh_addr != 0) { 1892 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1893 sechdrs[0].sh_type); 1894 return -ENOEXEC; 1895 } 1896 1897 /* Validate contents are inbounds */ 1898 for (i = 1; i < info->hdr->e_shnum; i++) { 1899 shdr = &sechdrs[i]; 1900 switch (shdr->sh_type) { 1901 case SHT_NULL: 1902 case SHT_NOBITS: 1903 /* No contents, offset/size don't mean anything */ 1904 continue; 1905 default: 1906 err = validate_section_offset(info, shdr); 1907 if (err < 0) { 1908 pr_err("Invalid ELF section in module (section %u type %u)\n", 1909 i, shdr->sh_type); 1910 return err; 1911 } 1912 } 1913 } 1914 1915 info->sechdrs = sechdrs; 1916 1917 return 0; 1918 } 1919 1920 /** 1921 * elf_validity_cache_secstrings() - Caches section names if valid 1922 * @info: Load info to cache section names from. Must have valid sechdrs. 1923 * 1924 * Specifically checks: 1925 * 1926 * * Section name table index is inbounds of section headers 1927 * * Section name table is not empty 1928 * * Section name table is NUL terminated 1929 * * All section name offsets are inbounds of the section 1930 * 1931 * Then updates @info with a &load_info->secstrings pointer if valid. 1932 * 1933 * Return: %0 if valid, negative error code if validation failed. 1934 */ 1935 static int elf_validity_cache_secstrings(struct load_info *info) 1936 { 1937 Elf_Shdr *strhdr, *shdr; 1938 char *secstrings; 1939 int i; 1940 1941 /* 1942 * Verify if the section name table index is valid. 1943 */ 1944 if (info->hdr->e_shstrndx == SHN_UNDEF 1945 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1946 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1947 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1948 info->hdr->e_shnum); 1949 return -ENOEXEC; 1950 } 1951 1952 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1953 1954 /* 1955 * The section name table must be NUL-terminated, as required 1956 * by the spec. This makes strcmp and pr_* calls that access 1957 * strings in the section safe. 1958 */ 1959 secstrings = (void *)info->hdr + strhdr->sh_offset; 1960 if (strhdr->sh_size == 0) { 1961 pr_err("empty section name table\n"); 1962 return -ENOEXEC; 1963 } 1964 if (secstrings[strhdr->sh_size - 1] != '\0') { 1965 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1966 return -ENOEXEC; 1967 } 1968 1969 for (i = 0; i < info->hdr->e_shnum; i++) { 1970 shdr = &info->sechdrs[i]; 1971 /* SHT_NULL means sh_name has an undefined value */ 1972 if (shdr->sh_type == SHT_NULL) 1973 continue; 1974 if (shdr->sh_name >= strhdr->sh_size) { 1975 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1976 i, shdr->sh_type); 1977 return -ENOEXEC; 1978 } 1979 } 1980 1981 info->secstrings = secstrings; 1982 return 0; 1983 } 1984 1985 /** 1986 * elf_validity_cache_index_info() - Validate and cache modinfo section 1987 * @info: Load info to populate the modinfo index on. 1988 * Must have &load_info->sechdrs and &load_info->secstrings populated 1989 * 1990 * Checks that if there is a .modinfo section, it is unique. 1991 * Then, it caches its index in &load_info->index.info. 1992 * Finally, it tries to populate the name to improve error messages. 1993 * 1994 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found. 1995 */ 1996 static int elf_validity_cache_index_info(struct load_info *info) 1997 { 1998 int info_idx; 1999 2000 info_idx = find_any_unique_sec(info, ".modinfo"); 2001 2002 if (info_idx == 0) 2003 /* Early return, no .modinfo */ 2004 return 0; 2005 2006 if (info_idx < 0) { 2007 pr_err("Only one .modinfo section must exist.\n"); 2008 return -ENOEXEC; 2009 } 2010 2011 info->index.info = info_idx; 2012 /* Try to find a name early so we can log errors with a module name */ 2013 info->name = get_modinfo(info, "name"); 2014 2015 return 0; 2016 } 2017 2018 /** 2019 * elf_validity_cache_index_mod() - Validates and caches this_module section 2020 * @info: Load info to cache this_module on. 2021 * Must have &load_info->sechdrs and &load_info->secstrings populated 2022 * 2023 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost 2024 * uses to refer to __this_module and let's use rely on THIS_MODULE to point 2025 * to &__this_module properly. The kernel's modpost declares it on each 2026 * modules's *.mod.c file. If the struct module of the kernel changes a full 2027 * kernel rebuild is required. 2028 * 2029 * We have a few expectations for this special section, this function 2030 * validates all this for us: 2031 * 2032 * * The section has contents 2033 * * The section is unique 2034 * * We expect the kernel to always have to allocate it: SHF_ALLOC 2035 * * The section size must match the kernel's run time's struct module 2036 * size 2037 * 2038 * If all checks pass, the index will be cached in &load_info->index.mod 2039 * 2040 * Return: %0 on validation success, %-ENOEXEC on failure 2041 */ 2042 static int elf_validity_cache_index_mod(struct load_info *info) 2043 { 2044 Elf_Shdr *shdr; 2045 int mod_idx; 2046 2047 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module"); 2048 if (mod_idx <= 0) { 2049 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n", 2050 info->name ?: "(missing .modinfo section or name field)"); 2051 return -ENOEXEC; 2052 } 2053 2054 shdr = &info->sechdrs[mod_idx]; 2055 2056 if (shdr->sh_type == SHT_NOBITS) { 2057 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n", 2058 info->name ?: "(missing .modinfo section or name field)"); 2059 return -ENOEXEC; 2060 } 2061 2062 if (!(shdr->sh_flags & SHF_ALLOC)) { 2063 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n", 2064 info->name ?: "(missing .modinfo section or name field)"); 2065 return -ENOEXEC; 2066 } 2067 2068 if (shdr->sh_size != sizeof(struct module)) { 2069 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n", 2070 info->name ?: "(missing .modinfo section or name field)"); 2071 return -ENOEXEC; 2072 } 2073 2074 info->index.mod = mod_idx; 2075 2076 return 0; 2077 } 2078 2079 /** 2080 * elf_validity_cache_index_sym() - Validate and cache symtab index 2081 * @info: Load info to cache symtab index in. 2082 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2083 * 2084 * Checks that there is exactly one symbol table, then caches its index in 2085 * &load_info->index.sym. 2086 * 2087 * Return: %0 if valid, %-ENOEXEC on failure. 2088 */ 2089 static int elf_validity_cache_index_sym(struct load_info *info) 2090 { 2091 unsigned int sym_idx; 2092 unsigned int num_sym_secs = 0; 2093 int i; 2094 2095 for (i = 1; i < info->hdr->e_shnum; i++) { 2096 if (info->sechdrs[i].sh_type == SHT_SYMTAB) { 2097 num_sym_secs++; 2098 sym_idx = i; 2099 } 2100 } 2101 2102 if (num_sym_secs != 1) { 2103 pr_warn("%s: module has no symbols (stripped?)\n", 2104 info->name ?: "(missing .modinfo section or name field)"); 2105 return -ENOEXEC; 2106 } 2107 2108 info->index.sym = sym_idx; 2109 2110 return 0; 2111 } 2112 2113 /** 2114 * elf_validity_cache_index_str() - Validate and cache strtab index 2115 * @info: Load info to cache strtab index in. 2116 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2117 * Must have &load_info->index.sym populated. 2118 * 2119 * Looks at the symbol table's associated string table, makes sure it is 2120 * in-bounds, and caches it. 2121 * 2122 * Return: %0 if valid, %-ENOEXEC on failure. 2123 */ 2124 static int elf_validity_cache_index_str(struct load_info *info) 2125 { 2126 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link; 2127 2128 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) { 2129 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 2130 str_idx, str_idx, info->hdr->e_shnum); 2131 return -ENOEXEC; 2132 } 2133 2134 info->index.str = str_idx; 2135 return 0; 2136 } 2137 2138 /** 2139 * elf_validity_cache_index_versions() - Validate and cache version indices 2140 * @info: Load info to cache version indices in. 2141 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2142 * @flags: Load flags, relevant to suppress version loading, see 2143 * uapi/linux/module.h 2144 * 2145 * If we're ignoring modversions based on @flags, zero all version indices 2146 * and return validity. Othewrise check: 2147 * 2148 * * If "__version_ext_crcs" is present, "__version_ext_names" is present 2149 * * There is a name present for every crc 2150 * 2151 * Then populate: 2152 * 2153 * * &load_info->index.vers 2154 * * &load_info->index.vers_ext_crc 2155 * * &load_info->index.vers_ext_names 2156 * 2157 * if present. 2158 * 2159 * Return: %0 if valid, %-ENOEXEC on failure. 2160 */ 2161 static int elf_validity_cache_index_versions(struct load_info *info, int flags) 2162 { 2163 unsigned int vers_ext_crc; 2164 unsigned int vers_ext_name; 2165 size_t crc_count; 2166 size_t remaining_len; 2167 size_t name_size; 2168 char *name; 2169 2170 /* If modversions were suppressed, pretend we didn't find any */ 2171 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) { 2172 info->index.vers = 0; 2173 info->index.vers_ext_crc = 0; 2174 info->index.vers_ext_name = 0; 2175 return 0; 2176 } 2177 2178 vers_ext_crc = find_sec(info, "__version_ext_crcs"); 2179 vers_ext_name = find_sec(info, "__version_ext_names"); 2180 2181 /* If we have one field, we must have the other */ 2182 if (!!vers_ext_crc != !!vers_ext_name) { 2183 pr_err("extended version crc+name presence does not match"); 2184 return -ENOEXEC; 2185 } 2186 2187 /* 2188 * If we have extended version information, we should have the same 2189 * number of entries in every section. 2190 */ 2191 if (vers_ext_crc) { 2192 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32); 2193 name = (void *)info->hdr + 2194 info->sechdrs[vers_ext_name].sh_offset; 2195 remaining_len = info->sechdrs[vers_ext_name].sh_size; 2196 2197 while (crc_count--) { 2198 name_size = strnlen(name, remaining_len) + 1; 2199 if (name_size > remaining_len) { 2200 pr_err("more extended version crcs than names"); 2201 return -ENOEXEC; 2202 } 2203 remaining_len -= name_size; 2204 name += name_size; 2205 } 2206 } 2207 2208 info->index.vers = find_sec(info, "__versions"); 2209 info->index.vers_ext_crc = vers_ext_crc; 2210 info->index.vers_ext_name = vers_ext_name; 2211 return 0; 2212 } 2213 2214 /** 2215 * elf_validity_cache_index() - Resolve, validate, cache section indices 2216 * @info: Load info to read from and update. 2217 * &load_info->sechdrs and &load_info->secstrings must be populated. 2218 * @flags: Load flags, relevant to suppress version loading, see 2219 * uapi/linux/module.h 2220 * 2221 * Populates &load_info->index, validating as it goes. 2222 * See child functions for per-field validation: 2223 * 2224 * * elf_validity_cache_index_info() 2225 * * elf_validity_cache_index_mod() 2226 * * elf_validity_cache_index_sym() 2227 * * elf_validity_cache_index_str() 2228 * * elf_validity_cache_index_versions() 2229 * 2230 * If CONFIG_SMP is enabled, load the percpu section by name with no 2231 * validation. 2232 * 2233 * Return: 0 on success, negative error code if an index failed validation. 2234 */ 2235 static int elf_validity_cache_index(struct load_info *info, int flags) 2236 { 2237 int err; 2238 2239 err = elf_validity_cache_index_info(info); 2240 if (err < 0) 2241 return err; 2242 err = elf_validity_cache_index_mod(info); 2243 if (err < 0) 2244 return err; 2245 err = elf_validity_cache_index_sym(info); 2246 if (err < 0) 2247 return err; 2248 err = elf_validity_cache_index_str(info); 2249 if (err < 0) 2250 return err; 2251 err = elf_validity_cache_index_versions(info, flags); 2252 if (err < 0) 2253 return err; 2254 2255 info->index.pcpu = find_pcpusec(info); 2256 2257 return 0; 2258 } 2259 2260 /** 2261 * elf_validity_cache_strtab() - Validate and cache symbol string table 2262 * @info: Load info to read from and update. 2263 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2264 * Must have &load_info->index populated. 2265 * 2266 * Checks: 2267 * 2268 * * The string table is not empty. 2269 * * The string table starts and ends with NUL (required by ELF spec). 2270 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the 2271 * string table. 2272 * 2273 * And caches the pointer as &load_info->strtab in @info. 2274 * 2275 * Return: 0 on success, negative error code if a check failed. 2276 */ 2277 static int elf_validity_cache_strtab(struct load_info *info) 2278 { 2279 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str]; 2280 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym]; 2281 char *strtab = (char *)info->hdr + str_shdr->sh_offset; 2282 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset; 2283 int i; 2284 2285 if (str_shdr->sh_size == 0) { 2286 pr_err("empty symbol string table\n"); 2287 return -ENOEXEC; 2288 } 2289 if (strtab[0] != '\0') { 2290 pr_err("symbol string table missing leading NUL\n"); 2291 return -ENOEXEC; 2292 } 2293 if (strtab[str_shdr->sh_size - 1] != '\0') { 2294 pr_err("symbol string table isn't NUL terminated\n"); 2295 return -ENOEXEC; 2296 } 2297 2298 /* 2299 * Now that we know strtab is correctly structured, check symbol 2300 * starts are inbounds before they're used later. 2301 */ 2302 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) { 2303 if (syms[i].st_name >= str_shdr->sh_size) { 2304 pr_err("symbol name out of bounds in string table"); 2305 return -ENOEXEC; 2306 } 2307 } 2308 2309 info->strtab = strtab; 2310 return 0; 2311 } 2312 2313 /* 2314 * Check userspace passed ELF module against our expectations, and cache 2315 * useful variables for further processing as we go. 2316 * 2317 * This does basic validity checks against section offsets and sizes, the 2318 * section name string table, and the indices used for it (sh_name). 2319 * 2320 * As a last step, since we're already checking the ELF sections we cache 2321 * useful variables which will be used later for our convenience: 2322 * 2323 * o pointers to section headers 2324 * o cache the modinfo symbol section 2325 * o cache the string symbol section 2326 * o cache the module section 2327 * 2328 * As a last step we set info->mod to the temporary copy of the module in 2329 * info->hdr. The final one will be allocated in move_module(). Any 2330 * modifications we make to our copy of the module will be carried over 2331 * to the final minted module. 2332 */ 2333 static int elf_validity_cache_copy(struct load_info *info, int flags) 2334 { 2335 int err; 2336 2337 err = elf_validity_cache_sechdrs(info); 2338 if (err < 0) 2339 return err; 2340 err = elf_validity_cache_secstrings(info); 2341 if (err < 0) 2342 return err; 2343 err = elf_validity_cache_index(info, flags); 2344 if (err < 0) 2345 return err; 2346 err = elf_validity_cache_strtab(info); 2347 if (err < 0) 2348 return err; 2349 2350 /* This is temporary: point mod into copy of data. */ 2351 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset; 2352 2353 /* 2354 * If we didn't load the .modinfo 'name' field earlier, fall back to 2355 * on-disk struct mod 'name' field. 2356 */ 2357 if (!info->name) 2358 info->name = info->mod->name; 2359 2360 return 0; 2361 } 2362 2363 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 2364 2365 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 2366 { 2367 do { 2368 unsigned long n = min(len, COPY_CHUNK_SIZE); 2369 2370 if (copy_from_user(dst, usrc, n) != 0) 2371 return -EFAULT; 2372 cond_resched(); 2373 dst += n; 2374 usrc += n; 2375 len -= n; 2376 } while (len); 2377 return 0; 2378 } 2379 2380 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 2381 { 2382 if (!get_modinfo(info, "livepatch")) 2383 /* Nothing more to do */ 2384 return 0; 2385 2386 if (set_livepatch_module(mod)) 2387 return 0; 2388 2389 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 2390 mod->name); 2391 return -ENOEXEC; 2392 } 2393 2394 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 2395 { 2396 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 2397 return; 2398 2399 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 2400 mod->name); 2401 } 2402 2403 /* Sets info->hdr and info->len. */ 2404 static int copy_module_from_user(const void __user *umod, unsigned long len, 2405 struct load_info *info) 2406 { 2407 int err; 2408 2409 info->len = len; 2410 if (info->len < sizeof(*(info->hdr))) 2411 return -ENOEXEC; 2412 2413 err = security_kernel_load_data(LOADING_MODULE, true); 2414 if (err) 2415 return err; 2416 2417 /* Suck in entire file: we'll want most of it. */ 2418 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 2419 if (!info->hdr) 2420 return -ENOMEM; 2421 2422 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 2423 err = -EFAULT; 2424 goto out; 2425 } 2426 2427 err = security_kernel_post_load_data((char *)info->hdr, info->len, 2428 LOADING_MODULE, "init_module"); 2429 out: 2430 if (err) 2431 vfree(info->hdr); 2432 2433 return err; 2434 } 2435 2436 static void free_copy(struct load_info *info, int flags) 2437 { 2438 if (flags & MODULE_INIT_COMPRESSED_FILE) 2439 module_decompress_cleanup(info); 2440 else 2441 vfree(info->hdr); 2442 } 2443 2444 static int rewrite_section_headers(struct load_info *info, int flags) 2445 { 2446 unsigned int i; 2447 2448 /* This should always be true, but let's be sure. */ 2449 info->sechdrs[0].sh_addr = 0; 2450 2451 for (i = 1; i < info->hdr->e_shnum; i++) { 2452 Elf_Shdr *shdr = &info->sechdrs[i]; 2453 2454 /* 2455 * Mark all sections sh_addr with their address in the 2456 * temporary image. 2457 */ 2458 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 2459 2460 } 2461 2462 /* Track but don't keep modinfo and version sections. */ 2463 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 2464 info->sechdrs[info->index.vers_ext_crc].sh_flags &= 2465 ~(unsigned long)SHF_ALLOC; 2466 info->sechdrs[info->index.vers_ext_name].sh_flags &= 2467 ~(unsigned long)SHF_ALLOC; 2468 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 2469 2470 return 0; 2471 } 2472 2473 static const char *const module_license_offenders[] = { 2474 /* driverloader was caught wrongly pretending to be under GPL */ 2475 "driverloader", 2476 2477 /* lve claims to be GPL but upstream won't provide source */ 2478 "lve", 2479 }; 2480 2481 /* 2482 * These calls taint the kernel depending certain module circumstances */ 2483 static void module_augment_kernel_taints(struct module *mod, struct load_info *info) 2484 { 2485 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2486 size_t i; 2487 2488 if (!get_modinfo(info, "intree")) { 2489 if (!test_taint(TAINT_OOT_MODULE)) 2490 pr_warn("%s: loading out-of-tree module taints kernel.\n", 2491 mod->name); 2492 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 2493 } 2494 2495 check_modinfo_retpoline(mod, info); 2496 2497 if (get_modinfo(info, "staging")) { 2498 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 2499 pr_warn("%s: module is from the staging directory, the quality " 2500 "is unknown, you have been warned.\n", mod->name); 2501 } 2502 2503 if (is_livepatch_module(mod)) { 2504 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 2505 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 2506 mod->name); 2507 } 2508 2509 module_license_taint_check(mod, get_modinfo(info, "license")); 2510 2511 if (get_modinfo(info, "test")) { 2512 if (!test_taint(TAINT_TEST)) 2513 pr_warn("%s: loading test module taints kernel.\n", 2514 mod->name); 2515 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 2516 } 2517 #ifdef CONFIG_MODULE_SIG 2518 mod->sig_ok = info->sig_ok; 2519 if (!mod->sig_ok) { 2520 pr_notice_once("%s: module verification failed: signature " 2521 "and/or required key missing - tainting " 2522 "kernel\n", mod->name); 2523 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2524 } 2525 #endif 2526 2527 /* 2528 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2529 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2530 * using GPL-only symbols it needs. 2531 */ 2532 if (strcmp(mod->name, "ndiswrapper") == 0) 2533 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2534 2535 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) { 2536 if (strcmp(mod->name, module_license_offenders[i]) == 0) 2537 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2538 LOCKDEP_NOW_UNRELIABLE); 2539 } 2540 2541 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2542 pr_warn("%s: module license taints kernel.\n", mod->name); 2543 2544 } 2545 2546 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 2547 { 2548 const char *modmagic = get_modinfo(info, "vermagic"); 2549 int err; 2550 2551 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 2552 modmagic = NULL; 2553 2554 /* This is allowed: modprobe --force will invalidate it. */ 2555 if (!modmagic) { 2556 err = try_to_force_load(mod, "bad vermagic"); 2557 if (err) 2558 return err; 2559 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 2560 pr_err("%s: version magic '%s' should be '%s'\n", 2561 info->name, modmagic, vermagic); 2562 return -ENOEXEC; 2563 } 2564 2565 err = check_modinfo_livepatch(mod, info); 2566 if (err) 2567 return err; 2568 2569 return 0; 2570 } 2571 2572 static int find_module_sections(struct module *mod, struct load_info *info) 2573 { 2574 mod->kp = section_objs(info, "__param", 2575 sizeof(*mod->kp), &mod->num_kp); 2576 mod->syms = section_objs(info, "__ksymtab", 2577 sizeof(*mod->syms), &mod->num_syms); 2578 mod->crcs = section_addr(info, "__kcrctab"); 2579 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2580 sizeof(*mod->gpl_syms), 2581 &mod->num_gpl_syms); 2582 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2583 2584 #ifdef CONFIG_CONSTRUCTORS 2585 mod->ctors = section_objs(info, ".ctors", 2586 sizeof(*mod->ctors), &mod->num_ctors); 2587 if (!mod->ctors) 2588 mod->ctors = section_objs(info, ".init_array", 2589 sizeof(*mod->ctors), &mod->num_ctors); 2590 else if (find_sec(info, ".init_array")) { 2591 /* 2592 * This shouldn't happen with same compiler and binutils 2593 * building all parts of the module. 2594 */ 2595 pr_warn("%s: has both .ctors and .init_array.\n", 2596 mod->name); 2597 return -EINVAL; 2598 } 2599 #endif 2600 2601 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2602 &mod->noinstr_text_size); 2603 2604 #ifdef CONFIG_TRACEPOINTS 2605 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2606 sizeof(*mod->tracepoints_ptrs), 2607 &mod->num_tracepoints); 2608 #endif 2609 #ifdef CONFIG_TREE_SRCU 2610 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2611 sizeof(*mod->srcu_struct_ptrs), 2612 &mod->num_srcu_structs); 2613 #endif 2614 #ifdef CONFIG_BPF_EVENTS 2615 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2616 sizeof(*mod->bpf_raw_events), 2617 &mod->num_bpf_raw_events); 2618 #endif 2619 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2620 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2621 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1, 2622 &mod->btf_base_data_size); 2623 #endif 2624 #ifdef CONFIG_JUMP_LABEL 2625 mod->jump_entries = section_objs(info, "__jump_table", 2626 sizeof(*mod->jump_entries), 2627 &mod->num_jump_entries); 2628 #endif 2629 #ifdef CONFIG_EVENT_TRACING 2630 mod->trace_events = section_objs(info, "_ftrace_events", 2631 sizeof(*mod->trace_events), 2632 &mod->num_trace_events); 2633 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2634 sizeof(*mod->trace_evals), 2635 &mod->num_trace_evals); 2636 #endif 2637 #ifdef CONFIG_TRACING 2638 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2639 sizeof(*mod->trace_bprintk_fmt_start), 2640 &mod->num_trace_bprintk_fmt); 2641 #endif 2642 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2643 /* sechdrs[0].sh_size is always zero */ 2644 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2645 sizeof(*mod->ftrace_callsites), 2646 &mod->num_ftrace_callsites); 2647 #endif 2648 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2649 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2650 sizeof(*mod->ei_funcs), 2651 &mod->num_ei_funcs); 2652 #endif 2653 #ifdef CONFIG_KPROBES 2654 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2655 &mod->kprobes_text_size); 2656 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2657 sizeof(unsigned long), 2658 &mod->num_kprobe_blacklist); 2659 #endif 2660 #ifdef CONFIG_PRINTK_INDEX 2661 mod->printk_index_start = section_objs(info, ".printk_index", 2662 sizeof(*mod->printk_index_start), 2663 &mod->printk_index_size); 2664 #endif 2665 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2666 mod->static_call_sites = section_objs(info, ".static_call_sites", 2667 sizeof(*mod->static_call_sites), 2668 &mod->num_static_call_sites); 2669 #endif 2670 #if IS_ENABLED(CONFIG_KUNIT) 2671 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2672 sizeof(*mod->kunit_suites), 2673 &mod->num_kunit_suites); 2674 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites", 2675 sizeof(*mod->kunit_init_suites), 2676 &mod->num_kunit_init_suites); 2677 #endif 2678 2679 mod->extable = section_objs(info, "__ex_table", 2680 sizeof(*mod->extable), &mod->num_exentries); 2681 2682 if (section_addr(info, "__obsparm")) 2683 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2684 2685 #ifdef CONFIG_DYNAMIC_DEBUG_CORE 2686 mod->dyndbg_info.descs = section_objs(info, "__dyndbg", 2687 sizeof(*mod->dyndbg_info.descs), 2688 &mod->dyndbg_info.num_descs); 2689 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes", 2690 sizeof(*mod->dyndbg_info.classes), 2691 &mod->dyndbg_info.num_classes); 2692 #endif 2693 2694 return 0; 2695 } 2696 2697 static int move_module(struct module *mod, struct load_info *info) 2698 { 2699 int i; 2700 enum mod_mem_type t = 0; 2701 int ret = -ENOMEM; 2702 bool codetag_section_found = false; 2703 2704 for_each_mod_mem_type(type) { 2705 if (!mod->mem[type].size) { 2706 mod->mem[type].base = NULL; 2707 continue; 2708 } 2709 2710 ret = module_memory_alloc(mod, type); 2711 if (ret) { 2712 t = type; 2713 goto out_err; 2714 } 2715 } 2716 2717 /* Transfer each section which specifies SHF_ALLOC */ 2718 pr_debug("Final section addresses for %s:\n", mod->name); 2719 for (i = 0; i < info->hdr->e_shnum; i++) { 2720 void *dest; 2721 Elf_Shdr *shdr = &info->sechdrs[i]; 2722 const char *sname; 2723 2724 if (!(shdr->sh_flags & SHF_ALLOC)) 2725 continue; 2726 2727 sname = info->secstrings + shdr->sh_name; 2728 /* 2729 * Load codetag sections separately as they might still be used 2730 * after module unload. 2731 */ 2732 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) { 2733 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size, 2734 arch_mod_section_prepend(mod, i), shdr->sh_addralign); 2735 if (WARN_ON(!dest)) { 2736 ret = -EINVAL; 2737 goto out_err; 2738 } 2739 if (IS_ERR(dest)) { 2740 ret = PTR_ERR(dest); 2741 goto out_err; 2742 } 2743 codetag_section_found = true; 2744 } else { 2745 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT; 2746 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK; 2747 2748 dest = mod->mem[type].base + offset; 2749 } 2750 2751 if (shdr->sh_type != SHT_NOBITS) { 2752 /* 2753 * Our ELF checker already validated this, but let's 2754 * be pedantic and make the goal clearer. We actually 2755 * end up copying over all modifications made to the 2756 * userspace copy of the entire struct module. 2757 */ 2758 if (i == info->index.mod && 2759 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) { 2760 ret = -ENOEXEC; 2761 goto out_err; 2762 } 2763 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2764 } 2765 /* 2766 * Update the userspace copy's ELF section address to point to 2767 * our newly allocated memory as a pure convenience so that 2768 * users of info can keep taking advantage and using the newly 2769 * minted official memory area. 2770 */ 2771 shdr->sh_addr = (unsigned long)dest; 2772 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr, 2773 (long)shdr->sh_size, info->secstrings + shdr->sh_name); 2774 } 2775 2776 return 0; 2777 out_err: 2778 module_memory_restore_rox(mod); 2779 for (t--; t >= 0; t--) 2780 module_memory_free(mod, t); 2781 if (codetag_section_found) 2782 codetag_free_module_sections(mod); 2783 2784 return ret; 2785 } 2786 2787 static int check_export_symbol_versions(struct module *mod) 2788 { 2789 #ifdef CONFIG_MODVERSIONS 2790 if ((mod->num_syms && !mod->crcs) || 2791 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2792 return try_to_force_load(mod, 2793 "no versions for exported symbols"); 2794 } 2795 #endif 2796 return 0; 2797 } 2798 2799 static void flush_module_icache(const struct module *mod) 2800 { 2801 /* 2802 * Flush the instruction cache, since we've played with text. 2803 * Do it before processing of module parameters, so the module 2804 * can provide parameter accessor functions of its own. 2805 */ 2806 for_each_mod_mem_type(type) { 2807 const struct module_memory *mod_mem = &mod->mem[type]; 2808 2809 if (mod_mem->size) { 2810 flush_icache_range((unsigned long)mod_mem->base, 2811 (unsigned long)mod_mem->base + mod_mem->size); 2812 } 2813 } 2814 } 2815 2816 bool __weak module_elf_check_arch(Elf_Ehdr *hdr) 2817 { 2818 return true; 2819 } 2820 2821 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2822 Elf_Shdr *sechdrs, 2823 char *secstrings, 2824 struct module *mod) 2825 { 2826 return 0; 2827 } 2828 2829 /* module_blacklist is a comma-separated list of module names */ 2830 static char *module_blacklist; 2831 static bool blacklisted(const char *module_name) 2832 { 2833 const char *p; 2834 size_t len; 2835 2836 if (!module_blacklist) 2837 return false; 2838 2839 for (p = module_blacklist; *p; p += len) { 2840 len = strcspn(p, ","); 2841 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2842 return true; 2843 if (p[len] == ',') 2844 len++; 2845 } 2846 return false; 2847 } 2848 core_param(module_blacklist, module_blacklist, charp, 0400); 2849 2850 static struct module *layout_and_allocate(struct load_info *info, int flags) 2851 { 2852 struct module *mod; 2853 int err; 2854 2855 /* Allow arches to frob section contents and sizes. */ 2856 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2857 info->secstrings, info->mod); 2858 if (err < 0) 2859 return ERR_PTR(err); 2860 2861 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2862 info->secstrings, info->mod); 2863 if (err < 0) 2864 return ERR_PTR(err); 2865 2866 /* We will do a special allocation for per-cpu sections later. */ 2867 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2868 2869 /* 2870 * Mark relevant sections as SHF_RO_AFTER_INIT so layout_sections() can 2871 * put them in the right place. 2872 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2873 */ 2874 module_mark_ro_after_init(info->hdr, info->sechdrs, info->secstrings); 2875 2876 /* 2877 * Determine total sizes, and put offsets in sh_entsize. For now 2878 * this is done generically; there doesn't appear to be any 2879 * special cases for the architectures. 2880 */ 2881 layout_sections(info->mod, info); 2882 layout_symtab(info->mod, info); 2883 2884 /* Allocate and move to the final place */ 2885 err = move_module(info->mod, info); 2886 if (err) 2887 return ERR_PTR(err); 2888 2889 /* Module has been copied to its final place now: return it. */ 2890 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2891 kmemleak_load_module(mod, info); 2892 codetag_module_replaced(info->mod, mod); 2893 2894 return mod; 2895 } 2896 2897 /* mod is no longer valid after this! */ 2898 static void module_deallocate(struct module *mod, struct load_info *info) 2899 { 2900 percpu_modfree(mod); 2901 module_arch_freeing_init(mod); 2902 codetag_free_module_sections(mod); 2903 2904 free_mod_mem(mod); 2905 } 2906 2907 int __weak module_finalize(const Elf_Ehdr *hdr, 2908 const Elf_Shdr *sechdrs, 2909 struct module *me) 2910 { 2911 return 0; 2912 } 2913 2914 static int post_relocation(struct module *mod, const struct load_info *info) 2915 { 2916 /* Sort exception table now relocations are done. */ 2917 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2918 2919 /* Copy relocated percpu area over. */ 2920 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2921 info->sechdrs[info->index.pcpu].sh_size); 2922 2923 /* Setup kallsyms-specific fields. */ 2924 add_kallsyms(mod, info); 2925 2926 /* Arch-specific module finalizing. */ 2927 return module_finalize(info->hdr, info->sechdrs, mod); 2928 } 2929 2930 /* Call module constructors. */ 2931 static void do_mod_ctors(struct module *mod) 2932 { 2933 #ifdef CONFIG_CONSTRUCTORS 2934 unsigned long i; 2935 2936 for (i = 0; i < mod->num_ctors; i++) 2937 mod->ctors[i](); 2938 #endif 2939 } 2940 2941 /* For freeing module_init on success, in case kallsyms traversing */ 2942 struct mod_initfree { 2943 struct llist_node node; 2944 void *init_text; 2945 void *init_data; 2946 void *init_rodata; 2947 }; 2948 2949 static void do_free_init(struct work_struct *w) 2950 { 2951 struct llist_node *pos, *n, *list; 2952 struct mod_initfree *initfree; 2953 2954 list = llist_del_all(&init_free_list); 2955 2956 synchronize_rcu(); 2957 2958 llist_for_each_safe(pos, n, list) { 2959 initfree = container_of(pos, struct mod_initfree, node); 2960 execmem_free(initfree->init_text); 2961 execmem_free(initfree->init_data); 2962 execmem_free(initfree->init_rodata); 2963 kfree(initfree); 2964 } 2965 } 2966 2967 void flush_module_init_free_work(void) 2968 { 2969 flush_work(&init_free_wq); 2970 } 2971 2972 #undef MODULE_PARAM_PREFIX 2973 #define MODULE_PARAM_PREFIX "module." 2974 /* Default value for module->async_probe_requested */ 2975 static bool async_probe; 2976 module_param(async_probe, bool, 0644); 2977 2978 /* 2979 * This is where the real work happens. 2980 * 2981 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2982 * helper command 'lx-symbols'. 2983 */ 2984 static noinline int do_init_module(struct module *mod) 2985 { 2986 int ret = 0; 2987 struct mod_initfree *freeinit; 2988 #if defined(CONFIG_MODULE_STATS) 2989 unsigned int text_size = 0, total_size = 0; 2990 2991 for_each_mod_mem_type(type) { 2992 const struct module_memory *mod_mem = &mod->mem[type]; 2993 if (mod_mem->size) { 2994 total_size += mod_mem->size; 2995 if (type == MOD_TEXT || type == MOD_INIT_TEXT) 2996 text_size += mod_mem->size; 2997 } 2998 } 2999 #endif 3000 3001 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 3002 if (!freeinit) { 3003 ret = -ENOMEM; 3004 goto fail; 3005 } 3006 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base; 3007 freeinit->init_data = mod->mem[MOD_INIT_DATA].base; 3008 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base; 3009 3010 do_mod_ctors(mod); 3011 /* Start the module */ 3012 if (mod->init != NULL) 3013 ret = do_one_initcall(mod->init); 3014 if (ret < 0) { 3015 goto fail_free_freeinit; 3016 } 3017 if (ret > 0) { 3018 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 3019 "follow 0/-E convention\n" 3020 "%s: loading module anyway...\n", 3021 __func__, mod->name, ret, __func__); 3022 dump_stack(); 3023 } 3024 3025 /* Now it's a first class citizen! */ 3026 mod->state = MODULE_STATE_LIVE; 3027 blocking_notifier_call_chain(&module_notify_list, 3028 MODULE_STATE_LIVE, mod); 3029 3030 /* Delay uevent until module has finished its init routine */ 3031 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 3032 3033 /* 3034 * We need to finish all async code before the module init sequence 3035 * is done. This has potential to deadlock if synchronous module 3036 * loading is requested from async (which is not allowed!). 3037 * 3038 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 3039 * request_module() from async workers") for more details. 3040 */ 3041 if (!mod->async_probe_requested) 3042 async_synchronize_full(); 3043 3044 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base, 3045 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size); 3046 mutex_lock(&module_mutex); 3047 /* Drop initial reference. */ 3048 module_put(mod); 3049 trim_init_extable(mod); 3050 #ifdef CONFIG_KALLSYMS 3051 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 3052 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 3053 #endif 3054 ret = module_enable_rodata_ro_after_init(mod); 3055 if (ret) 3056 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, " 3057 "ro_after_init data might still be writable\n", 3058 mod->name, ret); 3059 3060 mod_tree_remove_init(mod); 3061 module_arch_freeing_init(mod); 3062 for_class_mod_mem_type(type, init) { 3063 mod->mem[type].base = NULL; 3064 mod->mem[type].size = 0; 3065 } 3066 3067 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 3068 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */ 3069 mod->btf_data = NULL; 3070 mod->btf_base_data = NULL; 3071 #endif 3072 /* 3073 * We want to free module_init, but be aware that kallsyms may be 3074 * walking this within an RCU read section. In all the failure paths, we 3075 * call synchronize_rcu(), but we don't want to slow down the success 3076 * path. execmem_free() cannot be called in an interrupt, so do the 3077 * work and call synchronize_rcu() in a work queue. 3078 * 3079 * Note that execmem_alloc() on most architectures creates W+X page 3080 * mappings which won't be cleaned up until do_free_init() runs. Any 3081 * code such as mark_rodata_ro() which depends on those mappings to 3082 * be cleaned up needs to sync with the queued work by invoking 3083 * flush_module_init_free_work(). 3084 */ 3085 if (llist_add(&freeinit->node, &init_free_list)) 3086 schedule_work(&init_free_wq); 3087 3088 mutex_unlock(&module_mutex); 3089 wake_up_all(&module_wq); 3090 3091 mod_stat_add_long(text_size, &total_text_size); 3092 mod_stat_add_long(total_size, &total_mod_size); 3093 3094 mod_stat_inc(&modcount); 3095 3096 return 0; 3097 3098 fail_free_freeinit: 3099 kfree(freeinit); 3100 fail: 3101 /* Try to protect us from buggy refcounters. */ 3102 mod->state = MODULE_STATE_GOING; 3103 synchronize_rcu(); 3104 module_put(mod); 3105 blocking_notifier_call_chain(&module_notify_list, 3106 MODULE_STATE_GOING, mod); 3107 klp_module_going(mod); 3108 ftrace_release_mod(mod); 3109 free_module(mod); 3110 wake_up_all(&module_wq); 3111 3112 return ret; 3113 } 3114 3115 static int may_init_module(void) 3116 { 3117 if (!capable(CAP_SYS_MODULE) || modules_disabled) 3118 return -EPERM; 3119 3120 return 0; 3121 } 3122 3123 /* Is this module of this name done loading? No locks held. */ 3124 static bool finished_loading(const char *name) 3125 { 3126 struct module *mod; 3127 bool ret; 3128 3129 /* 3130 * The module_mutex should not be a heavily contended lock; 3131 * if we get the occasional sleep here, we'll go an extra iteration 3132 * in the wait_event_interruptible(), which is harmless. 3133 */ 3134 sched_annotate_sleep(); 3135 mutex_lock(&module_mutex); 3136 mod = find_module_all(name, strlen(name), true); 3137 ret = !mod || mod->state == MODULE_STATE_LIVE 3138 || mod->state == MODULE_STATE_GOING; 3139 mutex_unlock(&module_mutex); 3140 3141 return ret; 3142 } 3143 3144 /* Must be called with module_mutex held */ 3145 static int module_patient_check_exists(const char *name, 3146 enum fail_dup_mod_reason reason) 3147 { 3148 struct module *old; 3149 int err = 0; 3150 3151 old = find_module_all(name, strlen(name), true); 3152 if (old == NULL) 3153 return 0; 3154 3155 if (old->state == MODULE_STATE_COMING || 3156 old->state == MODULE_STATE_UNFORMED) { 3157 /* Wait in case it fails to load. */ 3158 mutex_unlock(&module_mutex); 3159 err = wait_event_interruptible(module_wq, 3160 finished_loading(name)); 3161 mutex_lock(&module_mutex); 3162 if (err) 3163 return err; 3164 3165 /* The module might have gone in the meantime. */ 3166 old = find_module_all(name, strlen(name), true); 3167 } 3168 3169 if (try_add_failed_module(name, reason)) 3170 pr_warn("Could not add fail-tracking for module: %s\n", name); 3171 3172 /* 3173 * We are here only when the same module was being loaded. Do 3174 * not try to load it again right now. It prevents long delays 3175 * caused by serialized module load failures. It might happen 3176 * when more devices of the same type trigger load of 3177 * a particular module. 3178 */ 3179 if (old && old->state == MODULE_STATE_LIVE) 3180 return -EEXIST; 3181 return -EBUSY; 3182 } 3183 3184 /* 3185 * We try to place it in the list now to make sure it's unique before 3186 * we dedicate too many resources. In particular, temporary percpu 3187 * memory exhaustion. 3188 */ 3189 static int add_unformed_module(struct module *mod) 3190 { 3191 int err; 3192 3193 mod->state = MODULE_STATE_UNFORMED; 3194 3195 mutex_lock(&module_mutex); 3196 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD); 3197 if (err) 3198 goto out; 3199 3200 mod_update_bounds(mod); 3201 list_add_rcu(&mod->list, &modules); 3202 mod_tree_insert(mod); 3203 err = 0; 3204 3205 out: 3206 mutex_unlock(&module_mutex); 3207 return err; 3208 } 3209 3210 static int complete_formation(struct module *mod, struct load_info *info) 3211 { 3212 int err; 3213 3214 mutex_lock(&module_mutex); 3215 3216 /* Find duplicate symbols (must be called under lock). */ 3217 err = verify_exported_symbols(mod); 3218 if (err < 0) 3219 goto out; 3220 3221 /* These rely on module_mutex for list integrity. */ 3222 module_bug_finalize(info->hdr, info->sechdrs, mod); 3223 module_cfi_finalize(info->hdr, info->sechdrs, mod); 3224 3225 err = module_enable_rodata_ro(mod); 3226 if (err) 3227 goto out_strict_rwx; 3228 err = module_enable_data_nx(mod); 3229 if (err) 3230 goto out_strict_rwx; 3231 err = module_enable_text_rox(mod); 3232 if (err) 3233 goto out_strict_rwx; 3234 3235 /* 3236 * Mark state as coming so strong_try_module_get() ignores us, 3237 * but kallsyms etc. can see us. 3238 */ 3239 mod->state = MODULE_STATE_COMING; 3240 mutex_unlock(&module_mutex); 3241 3242 return 0; 3243 3244 out_strict_rwx: 3245 module_bug_cleanup(mod); 3246 out: 3247 mutex_unlock(&module_mutex); 3248 return err; 3249 } 3250 3251 static int prepare_coming_module(struct module *mod) 3252 { 3253 int err; 3254 3255 ftrace_module_enable(mod); 3256 err = klp_module_coming(mod); 3257 if (err) 3258 return err; 3259 3260 err = blocking_notifier_call_chain_robust(&module_notify_list, 3261 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 3262 err = notifier_to_errno(err); 3263 if (err) 3264 klp_module_going(mod); 3265 3266 return err; 3267 } 3268 3269 static int unknown_module_param_cb(char *param, char *val, const char *modname, 3270 void *arg) 3271 { 3272 struct module *mod = arg; 3273 int ret; 3274 3275 if (strcmp(param, "async_probe") == 0) { 3276 if (kstrtobool(val, &mod->async_probe_requested)) 3277 mod->async_probe_requested = true; 3278 return 0; 3279 } 3280 3281 /* Check for magic 'dyndbg' arg */ 3282 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 3283 if (ret != 0) 3284 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 3285 return 0; 3286 } 3287 3288 /* Module within temporary copy, this doesn't do any allocation */ 3289 static int early_mod_check(struct load_info *info, int flags) 3290 { 3291 int err; 3292 3293 /* 3294 * Now that we know we have the correct module name, check 3295 * if it's blacklisted. 3296 */ 3297 if (blacklisted(info->name)) { 3298 pr_err("Module %s is blacklisted\n", info->name); 3299 return -EPERM; 3300 } 3301 3302 err = rewrite_section_headers(info, flags); 3303 if (err) 3304 return err; 3305 3306 /* Check module struct version now, before we try to use module. */ 3307 if (!check_modstruct_version(info, info->mod)) 3308 return -ENOEXEC; 3309 3310 err = check_modinfo(info->mod, info, flags); 3311 if (err) 3312 return err; 3313 3314 mutex_lock(&module_mutex); 3315 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING); 3316 mutex_unlock(&module_mutex); 3317 3318 return err; 3319 } 3320 3321 /* 3322 * Allocate and load the module: note that size of section 0 is always 3323 * zero, and we rely on this for optional sections. 3324 */ 3325 static int load_module(struct load_info *info, const char __user *uargs, 3326 int flags) 3327 { 3328 struct module *mod; 3329 bool module_allocated = false; 3330 long err = 0; 3331 char *after_dashes; 3332 3333 /* 3334 * Do the signature check (if any) first. All that 3335 * the signature check needs is info->len, it does 3336 * not need any of the section info. That can be 3337 * set up later. This will minimize the chances 3338 * of a corrupt module causing problems before 3339 * we even get to the signature check. 3340 * 3341 * The check will also adjust info->len by stripping 3342 * off the sig length at the end of the module, making 3343 * checks against info->len more correct. 3344 */ 3345 err = module_sig_check(info, flags); 3346 if (err) 3347 goto free_copy; 3348 3349 /* 3350 * Do basic sanity checks against the ELF header and 3351 * sections. Cache useful sections and set the 3352 * info->mod to the userspace passed struct module. 3353 */ 3354 err = elf_validity_cache_copy(info, flags); 3355 if (err) 3356 goto free_copy; 3357 3358 err = early_mod_check(info, flags); 3359 if (err) 3360 goto free_copy; 3361 3362 /* Figure out module layout, and allocate all the memory. */ 3363 mod = layout_and_allocate(info, flags); 3364 if (IS_ERR(mod)) { 3365 err = PTR_ERR(mod); 3366 goto free_copy; 3367 } 3368 3369 module_allocated = true; 3370 3371 audit_log_kern_module(mod->name); 3372 3373 /* Reserve our place in the list. */ 3374 err = add_unformed_module(mod); 3375 if (err) 3376 goto free_module; 3377 3378 /* 3379 * We are tainting your kernel if your module gets into 3380 * the modules linked list somehow. 3381 */ 3382 module_augment_kernel_taints(mod, info); 3383 3384 /* To avoid stressing percpu allocator, do this once we're unique. */ 3385 err = percpu_modalloc(mod, info); 3386 if (err) 3387 goto unlink_mod; 3388 3389 /* Now module is in final location, initialize linked lists, etc. */ 3390 err = module_unload_init(mod); 3391 if (err) 3392 goto unlink_mod; 3393 3394 init_param_lock(mod); 3395 3396 /* 3397 * Now we've got everything in the final locations, we can 3398 * find optional sections. 3399 */ 3400 err = find_module_sections(mod, info); 3401 if (err) 3402 goto free_unload; 3403 3404 err = check_export_symbol_versions(mod); 3405 if (err) 3406 goto free_unload; 3407 3408 /* Set up MODINFO_ATTR fields */ 3409 err = setup_modinfo(mod, info); 3410 if (err) 3411 goto free_modinfo; 3412 3413 /* Fix up syms, so that st_value is a pointer to location. */ 3414 err = simplify_symbols(mod, info); 3415 if (err < 0) 3416 goto free_modinfo; 3417 3418 err = apply_relocations(mod, info); 3419 if (err < 0) 3420 goto free_modinfo; 3421 3422 err = post_relocation(mod, info); 3423 if (err < 0) 3424 goto free_modinfo; 3425 3426 flush_module_icache(mod); 3427 3428 /* Now copy in args */ 3429 mod->args = strndup_user(uargs, ~0UL >> 1); 3430 if (IS_ERR(mod->args)) { 3431 err = PTR_ERR(mod->args); 3432 goto free_arch_cleanup; 3433 } 3434 3435 init_build_id(mod, info); 3436 3437 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 3438 ftrace_module_init(mod); 3439 3440 /* Finally it's fully formed, ready to start executing. */ 3441 err = complete_formation(mod, info); 3442 if (err) 3443 goto ddebug_cleanup; 3444 3445 err = prepare_coming_module(mod); 3446 if (err) 3447 goto bug_cleanup; 3448 3449 mod->async_probe_requested = async_probe; 3450 3451 /* Module is ready to execute: parsing args may do that. */ 3452 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 3453 -32768, 32767, mod, 3454 unknown_module_param_cb); 3455 if (IS_ERR(after_dashes)) { 3456 err = PTR_ERR(after_dashes); 3457 goto coming_cleanup; 3458 } else if (after_dashes) { 3459 pr_warn("%s: parameters '%s' after `--' ignored\n", 3460 mod->name, after_dashes); 3461 } 3462 3463 /* Link in to sysfs. */ 3464 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 3465 if (err < 0) 3466 goto coming_cleanup; 3467 3468 if (is_livepatch_module(mod)) { 3469 err = copy_module_elf(mod, info); 3470 if (err < 0) 3471 goto sysfs_cleanup; 3472 } 3473 3474 if (codetag_load_module(mod)) 3475 goto sysfs_cleanup; 3476 3477 /* Get rid of temporary copy. */ 3478 free_copy(info, flags); 3479 3480 /* Done! */ 3481 trace_module_load(mod); 3482 3483 return do_init_module(mod); 3484 3485 sysfs_cleanup: 3486 mod_sysfs_teardown(mod); 3487 coming_cleanup: 3488 mod->state = MODULE_STATE_GOING; 3489 destroy_params(mod->kp, mod->num_kp); 3490 blocking_notifier_call_chain(&module_notify_list, 3491 MODULE_STATE_GOING, mod); 3492 klp_module_going(mod); 3493 bug_cleanup: 3494 mod->state = MODULE_STATE_GOING; 3495 /* module_bug_cleanup needs module_mutex protection */ 3496 mutex_lock(&module_mutex); 3497 module_bug_cleanup(mod); 3498 mutex_unlock(&module_mutex); 3499 3500 ddebug_cleanup: 3501 ftrace_release_mod(mod); 3502 synchronize_rcu(); 3503 kfree(mod->args); 3504 free_arch_cleanup: 3505 module_arch_cleanup(mod); 3506 free_modinfo: 3507 free_modinfo(mod); 3508 free_unload: 3509 module_unload_free(mod); 3510 unlink_mod: 3511 mutex_lock(&module_mutex); 3512 /* Unlink carefully: kallsyms could be walking list. */ 3513 list_del_rcu(&mod->list); 3514 mod_tree_remove(mod); 3515 wake_up_all(&module_wq); 3516 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 3517 synchronize_rcu(); 3518 mutex_unlock(&module_mutex); 3519 free_module: 3520 mod_stat_bump_invalid(info, flags); 3521 /* Free lock-classes; relies on the preceding sync_rcu() */ 3522 for_class_mod_mem_type(type, core_data) { 3523 lockdep_free_key_range(mod->mem[type].base, 3524 mod->mem[type].size); 3525 } 3526 3527 module_memory_restore_rox(mod); 3528 module_deallocate(mod, info); 3529 free_copy: 3530 /* 3531 * The info->len is always set. We distinguish between 3532 * failures once the proper module was allocated and 3533 * before that. 3534 */ 3535 if (!module_allocated) 3536 mod_stat_bump_becoming(info, flags); 3537 free_copy(info, flags); 3538 return err; 3539 } 3540 3541 SYSCALL_DEFINE3(init_module, void __user *, umod, 3542 unsigned long, len, const char __user *, uargs) 3543 { 3544 int err; 3545 struct load_info info = { }; 3546 3547 err = may_init_module(); 3548 if (err) 3549 return err; 3550 3551 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 3552 umod, len, uargs); 3553 3554 err = copy_module_from_user(umod, len, &info); 3555 if (err) { 3556 mod_stat_inc(&failed_kreads); 3557 mod_stat_add_long(len, &invalid_kread_bytes); 3558 return err; 3559 } 3560 3561 return load_module(&info, uargs, 0); 3562 } 3563 3564 struct idempotent { 3565 const void *cookie; 3566 struct hlist_node entry; 3567 struct completion complete; 3568 int ret; 3569 }; 3570 3571 #define IDEM_HASH_BITS 8 3572 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS]; 3573 static DEFINE_SPINLOCK(idem_lock); 3574 3575 static bool idempotent(struct idempotent *u, const void *cookie) 3576 { 3577 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3578 struct hlist_head *head = idem_hash + hash; 3579 struct idempotent *existing; 3580 bool first; 3581 3582 u->ret = -EINTR; 3583 u->cookie = cookie; 3584 init_completion(&u->complete); 3585 3586 spin_lock(&idem_lock); 3587 first = true; 3588 hlist_for_each_entry(existing, head, entry) { 3589 if (existing->cookie != cookie) 3590 continue; 3591 first = false; 3592 break; 3593 } 3594 hlist_add_head(&u->entry, idem_hash + hash); 3595 spin_unlock(&idem_lock); 3596 3597 return !first; 3598 } 3599 3600 /* 3601 * We were the first one with 'cookie' on the list, and we ended 3602 * up completing the operation. We now need to walk the list, 3603 * remove everybody - which includes ourselves - fill in the return 3604 * value, and then complete the operation. 3605 */ 3606 static int idempotent_complete(struct idempotent *u, int ret) 3607 { 3608 const void *cookie = u->cookie; 3609 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3610 struct hlist_head *head = idem_hash + hash; 3611 struct hlist_node *next; 3612 struct idempotent *pos; 3613 3614 spin_lock(&idem_lock); 3615 hlist_for_each_entry_safe(pos, next, head, entry) { 3616 if (pos->cookie != cookie) 3617 continue; 3618 hlist_del_init(&pos->entry); 3619 pos->ret = ret; 3620 complete(&pos->complete); 3621 } 3622 spin_unlock(&idem_lock); 3623 return ret; 3624 } 3625 3626 /* 3627 * Wait for the idempotent worker. 3628 * 3629 * If we get interrupted, we need to remove ourselves from the 3630 * the idempotent list, and the completion may still come in. 3631 * 3632 * The 'idem_lock' protects against the race, and 'idem.ret' was 3633 * initialized to -EINTR and is thus always the right return 3634 * value even if the idempotent work then completes between 3635 * the wait_for_completion and the cleanup. 3636 */ 3637 static int idempotent_wait_for_completion(struct idempotent *u) 3638 { 3639 if (wait_for_completion_interruptible(&u->complete)) { 3640 spin_lock(&idem_lock); 3641 if (!hlist_unhashed(&u->entry)) 3642 hlist_del(&u->entry); 3643 spin_unlock(&idem_lock); 3644 } 3645 return u->ret; 3646 } 3647 3648 static int init_module_from_file(struct file *f, const char __user * uargs, int flags) 3649 { 3650 struct load_info info = { }; 3651 void *buf = NULL; 3652 int len; 3653 3654 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE); 3655 if (len < 0) { 3656 mod_stat_inc(&failed_kreads); 3657 return len; 3658 } 3659 3660 if (flags & MODULE_INIT_COMPRESSED_FILE) { 3661 int err = module_decompress(&info, buf, len); 3662 vfree(buf); /* compressed data is no longer needed */ 3663 if (err) { 3664 mod_stat_inc(&failed_decompress); 3665 mod_stat_add_long(len, &invalid_decompress_bytes); 3666 return err; 3667 } 3668 } else { 3669 info.hdr = buf; 3670 info.len = len; 3671 } 3672 3673 return load_module(&info, uargs, flags); 3674 } 3675 3676 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags) 3677 { 3678 struct idempotent idem; 3679 3680 if (!(f->f_mode & FMODE_READ)) 3681 return -EBADF; 3682 3683 /* Are we the winners of the race and get to do this? */ 3684 if (!idempotent(&idem, file_inode(f))) { 3685 int ret = init_module_from_file(f, uargs, flags); 3686 return idempotent_complete(&idem, ret); 3687 } 3688 3689 /* 3690 * Somebody else won the race and is loading the module. 3691 */ 3692 return idempotent_wait_for_completion(&idem); 3693 } 3694 3695 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 3696 { 3697 int err = may_init_module(); 3698 if (err) 3699 return err; 3700 3701 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 3702 3703 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 3704 |MODULE_INIT_IGNORE_VERMAGIC 3705 |MODULE_INIT_COMPRESSED_FILE)) 3706 return -EINVAL; 3707 3708 CLASS(fd, f)(fd); 3709 if (fd_empty(f)) 3710 return -EBADF; 3711 return idempotent_init_module(fd_file(f), uargs, flags); 3712 } 3713 3714 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 3715 char *module_flags(struct module *mod, char *buf, bool show_state) 3716 { 3717 int bx = 0; 3718 3719 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 3720 if (!mod->taints && !show_state) 3721 goto out; 3722 if (mod->taints || 3723 mod->state == MODULE_STATE_GOING || 3724 mod->state == MODULE_STATE_COMING) { 3725 buf[bx++] = '('; 3726 bx += module_flags_taint(mod->taints, buf + bx); 3727 /* Show a - for module-is-being-unloaded */ 3728 if (mod->state == MODULE_STATE_GOING && show_state) 3729 buf[bx++] = '-'; 3730 /* Show a + for module-is-being-loaded */ 3731 if (mod->state == MODULE_STATE_COMING && show_state) 3732 buf[bx++] = '+'; 3733 buf[bx++] = ')'; 3734 } 3735 out: 3736 buf[bx] = '\0'; 3737 3738 return buf; 3739 } 3740 3741 /* Given an address, look for it in the module exception tables. */ 3742 const struct exception_table_entry *search_module_extables(unsigned long addr) 3743 { 3744 struct module *mod; 3745 3746 guard(rcu)(); 3747 mod = __module_address(addr); 3748 if (!mod) 3749 return NULL; 3750 3751 if (!mod->num_exentries) 3752 return NULL; 3753 /* 3754 * The address passed here belongs to a module that is currently 3755 * invoked (we are running inside it). Therefore its module::refcnt 3756 * needs already be >0 to ensure that it is not removed at this stage. 3757 * All other user need to invoke this function within a RCU read 3758 * section. 3759 */ 3760 return search_extable(mod->extable, mod->num_exentries, addr); 3761 } 3762 3763 /** 3764 * is_module_address() - is this address inside a module? 3765 * @addr: the address to check. 3766 * 3767 * See is_module_text_address() if you simply want to see if the address 3768 * is code (not data). 3769 */ 3770 bool is_module_address(unsigned long addr) 3771 { 3772 guard(rcu)(); 3773 return __module_address(addr) != NULL; 3774 } 3775 3776 /** 3777 * __module_address() - get the module which contains an address. 3778 * @addr: the address. 3779 * 3780 * Must be called within RCU read section or module mutex held so that 3781 * module doesn't get freed during this. 3782 */ 3783 struct module *__module_address(unsigned long addr) 3784 { 3785 struct module *mod; 3786 3787 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3788 goto lookup; 3789 3790 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3791 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max) 3792 goto lookup; 3793 #endif 3794 3795 return NULL; 3796 3797 lookup: 3798 mod = mod_find(addr, &mod_tree); 3799 if (mod) { 3800 BUG_ON(!within_module(addr, mod)); 3801 if (mod->state == MODULE_STATE_UNFORMED) 3802 mod = NULL; 3803 } 3804 return mod; 3805 } 3806 3807 /** 3808 * is_module_text_address() - is this address inside module code? 3809 * @addr: the address to check. 3810 * 3811 * See is_module_address() if you simply want to see if the address is 3812 * anywhere in a module. See kernel_text_address() for testing if an 3813 * address corresponds to kernel or module code. 3814 */ 3815 bool is_module_text_address(unsigned long addr) 3816 { 3817 guard(rcu)(); 3818 return __module_text_address(addr) != NULL; 3819 } 3820 3821 void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data) 3822 { 3823 struct module *mod; 3824 3825 guard(rcu)(); 3826 list_for_each_entry_rcu(mod, &modules, list) { 3827 if (mod->state == MODULE_STATE_UNFORMED) 3828 continue; 3829 if (func(mod, data)) 3830 break; 3831 } 3832 } 3833 3834 /** 3835 * __module_text_address() - get the module whose code contains an address. 3836 * @addr: the address. 3837 * 3838 * Must be called within RCU read section or module mutex held so that 3839 * module doesn't get freed during this. 3840 */ 3841 struct module *__module_text_address(unsigned long addr) 3842 { 3843 struct module *mod = __module_address(addr); 3844 if (mod) { 3845 /* Make sure it's within the text section. */ 3846 if (!within_module_mem_type(addr, mod, MOD_TEXT) && 3847 !within_module_mem_type(addr, mod, MOD_INIT_TEXT)) 3848 mod = NULL; 3849 } 3850 return mod; 3851 } 3852 3853 /* Don't grab lock, we're oopsing. */ 3854 void print_modules(void) 3855 { 3856 struct module *mod; 3857 char buf[MODULE_FLAGS_BUF_SIZE]; 3858 3859 printk(KERN_DEFAULT "Modules linked in:"); 3860 /* Most callers should already have preempt disabled, but make sure */ 3861 guard(rcu)(); 3862 list_for_each_entry_rcu(mod, &modules, list) { 3863 if (mod->state == MODULE_STATE_UNFORMED) 3864 continue; 3865 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3866 } 3867 3868 print_unloaded_tainted_modules(); 3869 if (last_unloaded_module.name[0]) 3870 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3871 last_unloaded_module.taints); 3872 pr_cont("\n"); 3873 } 3874 3875 #ifdef CONFIG_MODULE_DEBUGFS 3876 struct dentry *mod_debugfs_root; 3877 3878 static int module_debugfs_init(void) 3879 { 3880 mod_debugfs_root = debugfs_create_dir("modules", NULL); 3881 return 0; 3882 } 3883 module_init(module_debugfs_init); 3884 #endif 3885