1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4  *
5  * started by Ingo Molnar and Thomas Gleixner.
6  *
7  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10  *  Copyright (C) 2006 Esben Nielsen
11  * Adaptive Spinlocks:
12  *  Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
13  *				     and Peter Morreale,
14  * Adaptive Spinlocks simplification:
15  *  Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
16  *
17  *  See Documentation/locking/rt-mutex-design.rst for details.
18  */
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/deadline.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/ww_mutex.h>
26 
27 #include <trace/events/lock.h>
28 
29 #include "rtmutex_common.h"
30 #include "lock_events.h"
31 
32 #ifndef WW_RT
33 # define build_ww_mutex()	(false)
34 # define ww_container_of(rtm)	NULL
35 
36 static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
37 					struct rt_mutex *lock,
38 					struct ww_acquire_ctx *ww_ctx,
39 					struct wake_q_head *wake_q)
40 {
41 	return 0;
42 }
43 
44 static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
45 					    struct ww_acquire_ctx *ww_ctx,
46 					    struct wake_q_head *wake_q)
47 {
48 }
49 
50 static inline void ww_mutex_lock_acquired(struct ww_mutex *lock,
51 					  struct ww_acquire_ctx *ww_ctx)
52 {
53 }
54 
55 static inline int __ww_mutex_check_kill(struct rt_mutex *lock,
56 					struct rt_mutex_waiter *waiter,
57 					struct ww_acquire_ctx *ww_ctx)
58 {
59 	return 0;
60 }
61 
62 #else
63 # define build_ww_mutex()	(true)
64 # define ww_container_of(rtm)	container_of(rtm, struct ww_mutex, base)
65 # include "ww_mutex.h"
66 #endif
67 
68 /*
69  * lock->owner state tracking:
70  *
71  * lock->owner holds the task_struct pointer of the owner. Bit 0
72  * is used to keep track of the "lock has waiters" state.
73  *
74  * owner	bit0
75  * NULL		0	lock is free (fast acquire possible)
76  * NULL		1	lock is free and has waiters and the top waiter
77  *				is going to take the lock*
78  * taskpointer	0	lock is held (fast release possible)
79  * taskpointer	1	lock is held and has waiters**
80  *
81  * The fast atomic compare exchange based acquire and release is only
82  * possible when bit 0 of lock->owner is 0.
83  *
84  * (*) It also can be a transitional state when grabbing the lock
85  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
86  * we need to set the bit0 before looking at the lock, and the owner may be
87  * NULL in this small time, hence this can be a transitional state.
88  *
89  * (**) There is a small time when bit 0 is set but there are no
90  * waiters. This can happen when grabbing the lock in the slow path.
91  * To prevent a cmpxchg of the owner releasing the lock, we need to
92  * set this bit before looking at the lock.
93  */
94 
95 static __always_inline struct task_struct *
96 rt_mutex_owner_encode(struct rt_mutex_base *lock, struct task_struct *owner)
97 {
98 	unsigned long val = (unsigned long)owner;
99 
100 	if (rt_mutex_has_waiters(lock))
101 		val |= RT_MUTEX_HAS_WAITERS;
102 
103 	return (struct task_struct *)val;
104 }
105 
106 static __always_inline void
107 rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner)
108 {
109 	/*
110 	 * lock->wait_lock is held but explicit acquire semantics are needed
111 	 * for a new lock owner so WRITE_ONCE is insufficient.
112 	 */
113 	xchg_acquire(&lock->owner, rt_mutex_owner_encode(lock, owner));
114 }
115 
116 static __always_inline void rt_mutex_clear_owner(struct rt_mutex_base *lock)
117 {
118 	/* lock->wait_lock is held so the unlock provides release semantics. */
119 	WRITE_ONCE(lock->owner, rt_mutex_owner_encode(lock, NULL));
120 }
121 
122 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock)
123 {
124 	lock->owner = (struct task_struct *)
125 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
126 }
127 
128 static __always_inline void
129 fixup_rt_mutex_waiters(struct rt_mutex_base *lock, bool acquire_lock)
130 {
131 	unsigned long owner, *p = (unsigned long *) &lock->owner;
132 
133 	if (rt_mutex_has_waiters(lock))
134 		return;
135 
136 	/*
137 	 * The rbtree has no waiters enqueued, now make sure that the
138 	 * lock->owner still has the waiters bit set, otherwise the
139 	 * following can happen:
140 	 *
141 	 * CPU 0	CPU 1		CPU2
142 	 * l->owner=T1
143 	 *		rt_mutex_lock(l)
144 	 *		lock(l->lock)
145 	 *		l->owner = T1 | HAS_WAITERS;
146 	 *		enqueue(T2)
147 	 *		boost()
148 	 *		  unlock(l->lock)
149 	 *		block()
150 	 *
151 	 *				rt_mutex_lock(l)
152 	 *				lock(l->lock)
153 	 *				l->owner = T1 | HAS_WAITERS;
154 	 *				enqueue(T3)
155 	 *				boost()
156 	 *				  unlock(l->lock)
157 	 *				block()
158 	 *		signal(->T2)	signal(->T3)
159 	 *		lock(l->lock)
160 	 *		dequeue(T2)
161 	 *		deboost()
162 	 *		  unlock(l->lock)
163 	 *				lock(l->lock)
164 	 *				dequeue(T3)
165 	 *				 ==> wait list is empty
166 	 *				deboost()
167 	 *				 unlock(l->lock)
168 	 *		lock(l->lock)
169 	 *		fixup_rt_mutex_waiters()
170 	 *		  if (wait_list_empty(l) {
171 	 *		    l->owner = owner
172 	 *		    owner = l->owner & ~HAS_WAITERS;
173 	 *		      ==> l->owner = T1
174 	 *		  }
175 	 *				lock(l->lock)
176 	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
177 	 *				  if (wait_list_empty(l) {
178 	 *				    owner = l->owner & ~HAS_WAITERS;
179 	 * cmpxchg(l->owner, T1, NULL)
180 	 *  ===> Success (l->owner = NULL)
181 	 *
182 	 *				    l->owner = owner
183 	 *				      ==> l->owner = T1
184 	 *				  }
185 	 *
186 	 * With the check for the waiter bit in place T3 on CPU2 will not
187 	 * overwrite. All tasks fiddling with the waiters bit are
188 	 * serialized by l->lock, so nothing else can modify the waiters
189 	 * bit. If the bit is set then nothing can change l->owner either
190 	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
191 	 * happens in the middle of the RMW because the waiters bit is
192 	 * still set.
193 	 */
194 	owner = READ_ONCE(*p);
195 	if (owner & RT_MUTEX_HAS_WAITERS) {
196 		/*
197 		 * See rt_mutex_set_owner() and rt_mutex_clear_owner() on
198 		 * why xchg_acquire() is used for updating owner for
199 		 * locking and WRITE_ONCE() for unlocking.
200 		 *
201 		 * WRITE_ONCE() would work for the acquire case too, but
202 		 * in case that the lock acquisition failed it might
203 		 * force other lockers into the slow path unnecessarily.
204 		 */
205 		if (acquire_lock)
206 			xchg_acquire(p, owner & ~RT_MUTEX_HAS_WAITERS);
207 		else
208 			WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
209 	}
210 }
211 
212 /*
213  * We can speed up the acquire/release, if there's no debugging state to be
214  * set up.
215  */
216 #ifndef CONFIG_DEBUG_RT_MUTEXES
217 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
218 						     struct task_struct *old,
219 						     struct task_struct *new)
220 {
221 	return try_cmpxchg_acquire(&lock->owner, &old, new);
222 }
223 
224 static __always_inline bool rt_mutex_try_acquire(struct rt_mutex_base *lock)
225 {
226 	return rt_mutex_cmpxchg_acquire(lock, NULL, current);
227 }
228 
229 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
230 						     struct task_struct *old,
231 						     struct task_struct *new)
232 {
233 	return try_cmpxchg_release(&lock->owner, &old, new);
234 }
235 
236 /*
237  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
238  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
239  * relaxed semantics suffice.
240  */
241 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
242 {
243 	unsigned long *p = (unsigned long *) &lock->owner;
244 	unsigned long owner, new;
245 
246 	owner = READ_ONCE(*p);
247 	do {
248 		new = owner | RT_MUTEX_HAS_WAITERS;
249 	} while (!try_cmpxchg_relaxed(p, &owner, new));
250 
251 	/*
252 	 * The cmpxchg loop above is relaxed to avoid back-to-back ACQUIRE
253 	 * operations in the event of contention. Ensure the successful
254 	 * cmpxchg is visible.
255 	 */
256 	smp_mb__after_atomic();
257 }
258 
259 /*
260  * Safe fastpath aware unlock:
261  * 1) Clear the waiters bit
262  * 2) Drop lock->wait_lock
263  * 3) Try to unlock the lock with cmpxchg
264  */
265 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
266 						 unsigned long flags)
267 	__releases(lock->wait_lock)
268 {
269 	struct task_struct *owner = rt_mutex_owner(lock);
270 
271 	clear_rt_mutex_waiters(lock);
272 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
273 	/*
274 	 * If a new waiter comes in between the unlock and the cmpxchg
275 	 * we have two situations:
276 	 *
277 	 * unlock(wait_lock);
278 	 *					lock(wait_lock);
279 	 * cmpxchg(p, owner, 0) == owner
280 	 *					mark_rt_mutex_waiters(lock);
281 	 *					acquire(lock);
282 	 * or:
283 	 *
284 	 * unlock(wait_lock);
285 	 *					lock(wait_lock);
286 	 *					mark_rt_mutex_waiters(lock);
287 	 *
288 	 * cmpxchg(p, owner, 0) != owner
289 	 *					enqueue_waiter();
290 	 *					unlock(wait_lock);
291 	 * lock(wait_lock);
292 	 * wake waiter();
293 	 * unlock(wait_lock);
294 	 *					lock(wait_lock);
295 	 *					acquire(lock);
296 	 */
297 	return rt_mutex_cmpxchg_release(lock, owner, NULL);
298 }
299 
300 #else
301 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
302 						     struct task_struct *old,
303 						     struct task_struct *new)
304 {
305 	return false;
306 
307 }
308 
309 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock);
310 
311 static __always_inline bool rt_mutex_try_acquire(struct rt_mutex_base *lock)
312 {
313 	/*
314 	 * With debug enabled rt_mutex_cmpxchg trylock() will always fail.
315 	 *
316 	 * Avoid unconditionally taking the slow path by using
317 	 * rt_mutex_slow_trylock() which is covered by the debug code and can
318 	 * acquire a non-contended rtmutex.
319 	 */
320 	return rt_mutex_slowtrylock(lock);
321 }
322 
323 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
324 						     struct task_struct *old,
325 						     struct task_struct *new)
326 {
327 	return false;
328 }
329 
330 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
331 {
332 	lock->owner = (struct task_struct *)
333 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
334 }
335 
336 /*
337  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
338  */
339 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
340 						 unsigned long flags)
341 	__releases(lock->wait_lock)
342 {
343 	lock->owner = NULL;
344 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
345 	return true;
346 }
347 #endif
348 
349 static __always_inline int __waiter_prio(struct task_struct *task)
350 {
351 	int prio = task->prio;
352 
353 	if (!rt_or_dl_prio(prio))
354 		return DEFAULT_PRIO;
355 
356 	return prio;
357 }
358 
359 /*
360  * Update the waiter->tree copy of the sort keys.
361  */
362 static __always_inline void
363 waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
364 {
365 	lockdep_assert_held(&waiter->lock->wait_lock);
366 	lockdep_assert(RB_EMPTY_NODE(&waiter->tree.entry));
367 
368 	waiter->tree.prio = __waiter_prio(task);
369 	waiter->tree.deadline = task->dl.deadline;
370 }
371 
372 /*
373  * Update the waiter->pi_tree copy of the sort keys (from the tree copy).
374  */
375 static __always_inline void
376 waiter_clone_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
377 {
378 	lockdep_assert_held(&waiter->lock->wait_lock);
379 	lockdep_assert_held(&task->pi_lock);
380 	lockdep_assert(RB_EMPTY_NODE(&waiter->pi_tree.entry));
381 
382 	waiter->pi_tree.prio = waiter->tree.prio;
383 	waiter->pi_tree.deadline = waiter->tree.deadline;
384 }
385 
386 /*
387  * Only use with rt_waiter_node_{less,equal}()
388  */
389 #define task_to_waiter_node(p)	\
390 	&(struct rt_waiter_node){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
391 #define task_to_waiter(p)	\
392 	&(struct rt_mutex_waiter){ .tree = *task_to_waiter_node(p) }
393 
394 static __always_inline int rt_waiter_node_less(struct rt_waiter_node *left,
395 					       struct rt_waiter_node *right)
396 {
397 	if (left->prio < right->prio)
398 		return 1;
399 
400 	/*
401 	 * If both waiters have dl_prio(), we check the deadlines of the
402 	 * associated tasks.
403 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
404 	 * then right waiter has a dl_prio() too.
405 	 */
406 	if (dl_prio(left->prio))
407 		return dl_time_before(left->deadline, right->deadline);
408 
409 	return 0;
410 }
411 
412 static __always_inline int rt_waiter_node_equal(struct rt_waiter_node *left,
413 						 struct rt_waiter_node *right)
414 {
415 	if (left->prio != right->prio)
416 		return 0;
417 
418 	/*
419 	 * If both waiters have dl_prio(), we check the deadlines of the
420 	 * associated tasks.
421 	 * If left waiter has a dl_prio(), and we didn't return 0 above,
422 	 * then right waiter has a dl_prio() too.
423 	 */
424 	if (dl_prio(left->prio))
425 		return left->deadline == right->deadline;
426 
427 	return 1;
428 }
429 
430 static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
431 				  struct rt_mutex_waiter *top_waiter)
432 {
433 	if (rt_waiter_node_less(&waiter->tree, &top_waiter->tree))
434 		return true;
435 
436 #ifdef RT_MUTEX_BUILD_SPINLOCKS
437 	/*
438 	 * Note that RT tasks are excluded from same priority (lateral)
439 	 * steals to prevent the introduction of an unbounded latency.
440 	 */
441 	if (rt_or_dl_prio(waiter->tree.prio))
442 		return false;
443 
444 	return rt_waiter_node_equal(&waiter->tree, &top_waiter->tree);
445 #else
446 	return false;
447 #endif
448 }
449 
450 #define __node_2_waiter(node) \
451 	rb_entry((node), struct rt_mutex_waiter, tree.entry)
452 
453 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
454 {
455 	struct rt_mutex_waiter *aw = __node_2_waiter(a);
456 	struct rt_mutex_waiter *bw = __node_2_waiter(b);
457 
458 	if (rt_waiter_node_less(&aw->tree, &bw->tree))
459 		return 1;
460 
461 	if (!build_ww_mutex())
462 		return 0;
463 
464 	if (rt_waiter_node_less(&bw->tree, &aw->tree))
465 		return 0;
466 
467 	/* NOTE: relies on waiter->ww_ctx being set before insertion */
468 	if (aw->ww_ctx) {
469 		if (!bw->ww_ctx)
470 			return 1;
471 
472 		return (signed long)(aw->ww_ctx->stamp -
473 				     bw->ww_ctx->stamp) < 0;
474 	}
475 
476 	return 0;
477 }
478 
479 static __always_inline void
480 rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
481 {
482 	lockdep_assert_held(&lock->wait_lock);
483 
484 	rb_add_cached(&waiter->tree.entry, &lock->waiters, __waiter_less);
485 }
486 
487 static __always_inline void
488 rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
489 {
490 	lockdep_assert_held(&lock->wait_lock);
491 
492 	if (RB_EMPTY_NODE(&waiter->tree.entry))
493 		return;
494 
495 	rb_erase_cached(&waiter->tree.entry, &lock->waiters);
496 	RB_CLEAR_NODE(&waiter->tree.entry);
497 }
498 
499 #define __node_2_rt_node(node) \
500 	rb_entry((node), struct rt_waiter_node, entry)
501 
502 static __always_inline bool __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
503 {
504 	return rt_waiter_node_less(__node_2_rt_node(a), __node_2_rt_node(b));
505 }
506 
507 static __always_inline void
508 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
509 {
510 	lockdep_assert_held(&task->pi_lock);
511 
512 	rb_add_cached(&waiter->pi_tree.entry, &task->pi_waiters, __pi_waiter_less);
513 }
514 
515 static __always_inline void
516 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
517 {
518 	lockdep_assert_held(&task->pi_lock);
519 
520 	if (RB_EMPTY_NODE(&waiter->pi_tree.entry))
521 		return;
522 
523 	rb_erase_cached(&waiter->pi_tree.entry, &task->pi_waiters);
524 	RB_CLEAR_NODE(&waiter->pi_tree.entry);
525 }
526 
527 static __always_inline void rt_mutex_adjust_prio(struct rt_mutex_base *lock,
528 						 struct task_struct *p)
529 {
530 	struct task_struct *pi_task = NULL;
531 
532 	lockdep_assert_held(&lock->wait_lock);
533 	lockdep_assert(rt_mutex_owner(lock) == p);
534 	lockdep_assert_held(&p->pi_lock);
535 
536 	if (task_has_pi_waiters(p))
537 		pi_task = task_top_pi_waiter(p)->task;
538 
539 	rt_mutex_setprio(p, pi_task);
540 }
541 
542 /* RT mutex specific wake_q wrappers */
543 static __always_inline void rt_mutex_wake_q_add_task(struct rt_wake_q_head *wqh,
544 						     struct task_struct *task,
545 						     unsigned int wake_state)
546 {
547 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && wake_state == TASK_RTLOCK_WAIT) {
548 		if (IS_ENABLED(CONFIG_PROVE_LOCKING))
549 			WARN_ON_ONCE(wqh->rtlock_task);
550 		get_task_struct(task);
551 		wqh->rtlock_task = task;
552 	} else {
553 		wake_q_add(&wqh->head, task);
554 	}
555 }
556 
557 static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh,
558 						struct rt_mutex_waiter *w)
559 {
560 	rt_mutex_wake_q_add_task(wqh, w->task, w->wake_state);
561 }
562 
563 static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh)
564 {
565 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) {
566 		wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT);
567 		put_task_struct(wqh->rtlock_task);
568 		wqh->rtlock_task = NULL;
569 	}
570 
571 	if (!wake_q_empty(&wqh->head))
572 		wake_up_q(&wqh->head);
573 
574 	/* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
575 	preempt_enable();
576 }
577 
578 /*
579  * Deadlock detection is conditional:
580  *
581  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
582  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
583  *
584  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
585  * conducted independent of the detect argument.
586  *
587  * If the waiter argument is NULL this indicates the deboost path and
588  * deadlock detection is disabled independent of the detect argument
589  * and the config settings.
590  */
591 static __always_inline bool
592 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
593 			      enum rtmutex_chainwalk chwalk)
594 {
595 	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
596 		return waiter != NULL;
597 	return chwalk == RT_MUTEX_FULL_CHAINWALK;
598 }
599 
600 static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p)
601 {
602 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
603 }
604 
605 /*
606  * Adjust the priority chain. Also used for deadlock detection.
607  * Decreases task's usage by one - may thus free the task.
608  *
609  * @task:	the task owning the mutex (owner) for which a chain walk is
610  *		probably needed
611  * @chwalk:	do we have to carry out deadlock detection?
612  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
613  *		things for a task that has just got its priority adjusted, and
614  *		is waiting on a mutex)
615  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
616  *		we dropped its pi_lock. Is never dereferenced, only used for
617  *		comparison to detect lock chain changes.
618  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
619  *		its priority to the mutex owner (can be NULL in the case
620  *		depicted above or if the top waiter is gone away and we are
621  *		actually deboosting the owner)
622  * @top_task:	the current top waiter
623  *
624  * Returns 0 or -EDEADLK.
625  *
626  * Chain walk basics and protection scope
627  *
628  * [R] refcount on task
629  * [Pn] task->pi_lock held
630  * [L] rtmutex->wait_lock held
631  *
632  * Normal locking order:
633  *
634  *   rtmutex->wait_lock
635  *     task->pi_lock
636  *
637  * Step	Description				Protected by
638  *	function arguments:
639  *	@task					[R]
640  *	@orig_lock if != NULL			@top_task is blocked on it
641  *	@next_lock				Unprotected. Cannot be
642  *						dereferenced. Only used for
643  *						comparison.
644  *	@orig_waiter if != NULL			@top_task is blocked on it
645  *	@top_task				current, or in case of proxy
646  *						locking protected by calling
647  *						code
648  *	again:
649  *	  loop_sanity_check();
650  *	retry:
651  * [1]	  lock(task->pi_lock);			[R] acquire [P1]
652  * [2]	  waiter = task->pi_blocked_on;		[P1]
653  * [3]	  check_exit_conditions_1();		[P1]
654  * [4]	  lock = waiter->lock;			[P1]
655  * [5]	  if (!try_lock(lock->wait_lock)) {	[P1] try to acquire [L]
656  *	    unlock(task->pi_lock);		release [P1]
657  *	    goto retry;
658  *	  }
659  * [6]	  check_exit_conditions_2();		[P1] + [L]
660  * [7]	  requeue_lock_waiter(lock, waiter);	[P1] + [L]
661  * [8]	  unlock(task->pi_lock);		release [P1]
662  *	  put_task_struct(task);		release [R]
663  * [9]	  check_exit_conditions_3();		[L]
664  * [10]	  task = owner(lock);			[L]
665  *	  get_task_struct(task);		[L] acquire [R]
666  *	  lock(task->pi_lock);			[L] acquire [P2]
667  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P2] + [L]
668  * [12]	  check_exit_conditions_4();		[P2] + [L]
669  * [13]	  unlock(task->pi_lock);		release [P2]
670  *	  unlock(lock->wait_lock);		release [L]
671  *	  goto again;
672  *
673  * Where P1 is the blocking task and P2 is the lock owner; going up one step
674  * the owner becomes the next blocked task etc..
675  *
676 *
677  */
678 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
679 					      enum rtmutex_chainwalk chwalk,
680 					      struct rt_mutex_base *orig_lock,
681 					      struct rt_mutex_base *next_lock,
682 					      struct rt_mutex_waiter *orig_waiter,
683 					      struct task_struct *top_task)
684 {
685 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
686 	struct rt_mutex_waiter *prerequeue_top_waiter;
687 	int ret = 0, depth = 0;
688 	struct rt_mutex_base *lock;
689 	bool detect_deadlock;
690 	bool requeue = true;
691 
692 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
693 
694 	/*
695 	 * The (de)boosting is a step by step approach with a lot of
696 	 * pitfalls. We want this to be preemptible and we want hold a
697 	 * maximum of two locks per step. So we have to check
698 	 * carefully whether things change under us.
699 	 */
700  again:
701 	/*
702 	 * We limit the lock chain length for each invocation.
703 	 */
704 	if (++depth > max_lock_depth) {
705 		static int prev_max;
706 
707 		/*
708 		 * Print this only once. If the admin changes the limit,
709 		 * print a new message when reaching the limit again.
710 		 */
711 		if (prev_max != max_lock_depth) {
712 			prev_max = max_lock_depth;
713 			printk(KERN_WARNING "Maximum lock depth %d reached "
714 			       "task: %s (%d)\n", max_lock_depth,
715 			       top_task->comm, task_pid_nr(top_task));
716 		}
717 		put_task_struct(task);
718 
719 		return -EDEADLK;
720 	}
721 
722 	/*
723 	 * We are fully preemptible here and only hold the refcount on
724 	 * @task. So everything can have changed under us since the
725 	 * caller or our own code below (goto retry/again) dropped all
726 	 * locks.
727 	 */
728  retry:
729 	/*
730 	 * [1] Task cannot go away as we did a get_task() before !
731 	 */
732 	raw_spin_lock_irq(&task->pi_lock);
733 
734 	/*
735 	 * [2] Get the waiter on which @task is blocked on.
736 	 */
737 	waiter = task->pi_blocked_on;
738 
739 	/*
740 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
741 	 */
742 
743 	/*
744 	 * Check whether the end of the boosting chain has been
745 	 * reached or the state of the chain has changed while we
746 	 * dropped the locks.
747 	 */
748 	if (!waiter)
749 		goto out_unlock_pi;
750 
751 	/*
752 	 * Check the orig_waiter state. After we dropped the locks,
753 	 * the previous owner of the lock might have released the lock.
754 	 */
755 	if (orig_waiter && !rt_mutex_owner(orig_lock))
756 		goto out_unlock_pi;
757 
758 	/*
759 	 * We dropped all locks after taking a refcount on @task, so
760 	 * the task might have moved on in the lock chain or even left
761 	 * the chain completely and blocks now on an unrelated lock or
762 	 * on @orig_lock.
763 	 *
764 	 * We stored the lock on which @task was blocked in @next_lock,
765 	 * so we can detect the chain change.
766 	 */
767 	if (next_lock != waiter->lock)
768 		goto out_unlock_pi;
769 
770 	/*
771 	 * There could be 'spurious' loops in the lock graph due to ww_mutex,
772 	 * consider:
773 	 *
774 	 *   P1: A, ww_A, ww_B
775 	 *   P2: ww_B, ww_A
776 	 *   P3: A
777 	 *
778 	 * P3 should not return -EDEADLK because it gets trapped in the cycle
779 	 * created by P1 and P2 (which will resolve -- and runs into
780 	 * max_lock_depth above). Therefore disable detect_deadlock such that
781 	 * the below termination condition can trigger once all relevant tasks
782 	 * are boosted.
783 	 *
784 	 * Even when we start with ww_mutex we can disable deadlock detection,
785 	 * since we would supress a ww_mutex induced deadlock at [6] anyway.
786 	 * Supressing it here however is not sufficient since we might still
787 	 * hit [6] due to adjustment driven iteration.
788 	 *
789 	 * NOTE: if someone were to create a deadlock between 2 ww_classes we'd
790 	 * utterly fail to report it; lockdep should.
791 	 */
792 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock)
793 		detect_deadlock = false;
794 
795 	/*
796 	 * Drop out, when the task has no waiters. Note,
797 	 * top_waiter can be NULL, when we are in the deboosting
798 	 * mode!
799 	 */
800 	if (top_waiter) {
801 		if (!task_has_pi_waiters(task))
802 			goto out_unlock_pi;
803 		/*
804 		 * If deadlock detection is off, we stop here if we
805 		 * are not the top pi waiter of the task. If deadlock
806 		 * detection is enabled we continue, but stop the
807 		 * requeueing in the chain walk.
808 		 */
809 		if (top_waiter != task_top_pi_waiter(task)) {
810 			if (!detect_deadlock)
811 				goto out_unlock_pi;
812 			else
813 				requeue = false;
814 		}
815 	}
816 
817 	/*
818 	 * If the waiter priority is the same as the task priority
819 	 * then there is no further priority adjustment necessary.  If
820 	 * deadlock detection is off, we stop the chain walk. If its
821 	 * enabled we continue, but stop the requeueing in the chain
822 	 * walk.
823 	 */
824 	if (rt_waiter_node_equal(&waiter->tree, task_to_waiter_node(task))) {
825 		if (!detect_deadlock)
826 			goto out_unlock_pi;
827 		else
828 			requeue = false;
829 	}
830 
831 	/*
832 	 * [4] Get the next lock; per holding task->pi_lock we can't unblock
833 	 * and guarantee @lock's existence.
834 	 */
835 	lock = waiter->lock;
836 	/*
837 	 * [5] We need to trylock here as we are holding task->pi_lock,
838 	 * which is the reverse lock order versus the other rtmutex
839 	 * operations.
840 	 *
841 	 * Per the above, holding task->pi_lock guarantees lock exists, so
842 	 * inverting this lock order is infeasible from a life-time
843 	 * perspective.
844 	 */
845 	if (!raw_spin_trylock(&lock->wait_lock)) {
846 		raw_spin_unlock_irq(&task->pi_lock);
847 		cpu_relax();
848 		goto retry;
849 	}
850 
851 	/*
852 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
853 	 * lock->wait_lock.
854 	 *
855 	 * Deadlock detection. If the lock is the same as the original
856 	 * lock which caused us to walk the lock chain or if the
857 	 * current lock is owned by the task which initiated the chain
858 	 * walk, we detected a deadlock.
859 	 */
860 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
861 		ret = -EDEADLK;
862 
863 		/*
864 		 * When the deadlock is due to ww_mutex; also see above. Don't
865 		 * report the deadlock and instead let the ww_mutex wound/die
866 		 * logic pick which of the contending threads gets -EDEADLK.
867 		 *
868 		 * NOTE: assumes the cycle only contains a single ww_class; any
869 		 * other configuration and we fail to report; also, see
870 		 * lockdep.
871 		 */
872 		if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx)
873 			ret = 0;
874 
875 		raw_spin_unlock(&lock->wait_lock);
876 		goto out_unlock_pi;
877 	}
878 
879 	/*
880 	 * If we just follow the lock chain for deadlock detection, no
881 	 * need to do all the requeue operations. To avoid a truckload
882 	 * of conditionals around the various places below, just do the
883 	 * minimum chain walk checks.
884 	 */
885 	if (!requeue) {
886 		/*
887 		 * No requeue[7] here. Just release @task [8]
888 		 */
889 		raw_spin_unlock(&task->pi_lock);
890 		put_task_struct(task);
891 
892 		/*
893 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
894 		 * If there is no owner of the lock, end of chain.
895 		 */
896 		if (!rt_mutex_owner(lock)) {
897 			raw_spin_unlock_irq(&lock->wait_lock);
898 			return 0;
899 		}
900 
901 		/* [10] Grab the next task, i.e. owner of @lock */
902 		task = get_task_struct(rt_mutex_owner(lock));
903 		raw_spin_lock(&task->pi_lock);
904 
905 		/*
906 		 * No requeue [11] here. We just do deadlock detection.
907 		 *
908 		 * [12] Store whether owner is blocked
909 		 * itself. Decision is made after dropping the locks
910 		 */
911 		next_lock = task_blocked_on_lock(task);
912 		/*
913 		 * Get the top waiter for the next iteration
914 		 */
915 		top_waiter = rt_mutex_top_waiter(lock);
916 
917 		/* [13] Drop locks */
918 		raw_spin_unlock(&task->pi_lock);
919 		raw_spin_unlock_irq(&lock->wait_lock);
920 
921 		/* If owner is not blocked, end of chain. */
922 		if (!next_lock)
923 			goto out_put_task;
924 		goto again;
925 	}
926 
927 	/*
928 	 * Store the current top waiter before doing the requeue
929 	 * operation on @lock. We need it for the boost/deboost
930 	 * decision below.
931 	 */
932 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
933 
934 	/* [7] Requeue the waiter in the lock waiter tree. */
935 	rt_mutex_dequeue(lock, waiter);
936 
937 	/*
938 	 * Update the waiter prio fields now that we're dequeued.
939 	 *
940 	 * These values can have changed through either:
941 	 *
942 	 *   sys_sched_set_scheduler() / sys_sched_setattr()
943 	 *
944 	 * or
945 	 *
946 	 *   DL CBS enforcement advancing the effective deadline.
947 	 */
948 	waiter_update_prio(waiter, task);
949 
950 	rt_mutex_enqueue(lock, waiter);
951 
952 	/*
953 	 * [8] Release the (blocking) task in preparation for
954 	 * taking the owner task in [10].
955 	 *
956 	 * Since we hold lock->waiter_lock, task cannot unblock, even if we
957 	 * release task->pi_lock.
958 	 */
959 	raw_spin_unlock(&task->pi_lock);
960 	put_task_struct(task);
961 
962 	/*
963 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
964 	 *
965 	 * We must abort the chain walk if there is no lock owner even
966 	 * in the dead lock detection case, as we have nothing to
967 	 * follow here. This is the end of the chain we are walking.
968 	 */
969 	if (!rt_mutex_owner(lock)) {
970 		/*
971 		 * If the requeue [7] above changed the top waiter,
972 		 * then we need to wake the new top waiter up to try
973 		 * to get the lock.
974 		 */
975 		top_waiter = rt_mutex_top_waiter(lock);
976 		if (prerequeue_top_waiter != top_waiter)
977 			wake_up_state(top_waiter->task, top_waiter->wake_state);
978 		raw_spin_unlock_irq(&lock->wait_lock);
979 		return 0;
980 	}
981 
982 	/*
983 	 * [10] Grab the next task, i.e. the owner of @lock
984 	 *
985 	 * Per holding lock->wait_lock and checking for !owner above, there
986 	 * must be an owner and it cannot go away.
987 	 */
988 	task = get_task_struct(rt_mutex_owner(lock));
989 	raw_spin_lock(&task->pi_lock);
990 
991 	/* [11] requeue the pi waiters if necessary */
992 	if (waiter == rt_mutex_top_waiter(lock)) {
993 		/*
994 		 * The waiter became the new top (highest priority)
995 		 * waiter on the lock. Replace the previous top waiter
996 		 * in the owner tasks pi waiters tree with this waiter
997 		 * and adjust the priority of the owner.
998 		 */
999 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
1000 		waiter_clone_prio(waiter, task);
1001 		rt_mutex_enqueue_pi(task, waiter);
1002 		rt_mutex_adjust_prio(lock, task);
1003 
1004 	} else if (prerequeue_top_waiter == waiter) {
1005 		/*
1006 		 * The waiter was the top waiter on the lock, but is
1007 		 * no longer the top priority waiter. Replace waiter in
1008 		 * the owner tasks pi waiters tree with the new top
1009 		 * (highest priority) waiter and adjust the priority
1010 		 * of the owner.
1011 		 * The new top waiter is stored in @waiter so that
1012 		 * @waiter == @top_waiter evaluates to true below and
1013 		 * we continue to deboost the rest of the chain.
1014 		 */
1015 		rt_mutex_dequeue_pi(task, waiter);
1016 		waiter = rt_mutex_top_waiter(lock);
1017 		waiter_clone_prio(waiter, task);
1018 		rt_mutex_enqueue_pi(task, waiter);
1019 		rt_mutex_adjust_prio(lock, task);
1020 	} else {
1021 		/*
1022 		 * Nothing changed. No need to do any priority
1023 		 * adjustment.
1024 		 */
1025 	}
1026 
1027 	/*
1028 	 * [12] check_exit_conditions_4() protected by task->pi_lock
1029 	 * and lock->wait_lock. The actual decisions are made after we
1030 	 * dropped the locks.
1031 	 *
1032 	 * Check whether the task which owns the current lock is pi
1033 	 * blocked itself. If yes we store a pointer to the lock for
1034 	 * the lock chain change detection above. After we dropped
1035 	 * task->pi_lock next_lock cannot be dereferenced anymore.
1036 	 */
1037 	next_lock = task_blocked_on_lock(task);
1038 	/*
1039 	 * Store the top waiter of @lock for the end of chain walk
1040 	 * decision below.
1041 	 */
1042 	top_waiter = rt_mutex_top_waiter(lock);
1043 
1044 	/* [13] Drop the locks */
1045 	raw_spin_unlock(&task->pi_lock);
1046 	raw_spin_unlock_irq(&lock->wait_lock);
1047 
1048 	/*
1049 	 * Make the actual exit decisions [12], based on the stored
1050 	 * values.
1051 	 *
1052 	 * We reached the end of the lock chain. Stop right here. No
1053 	 * point to go back just to figure that out.
1054 	 */
1055 	if (!next_lock)
1056 		goto out_put_task;
1057 
1058 	/*
1059 	 * If the current waiter is not the top waiter on the lock,
1060 	 * then we can stop the chain walk here if we are not in full
1061 	 * deadlock detection mode.
1062 	 */
1063 	if (!detect_deadlock && waiter != top_waiter)
1064 		goto out_put_task;
1065 
1066 	goto again;
1067 
1068  out_unlock_pi:
1069 	raw_spin_unlock_irq(&task->pi_lock);
1070  out_put_task:
1071 	put_task_struct(task);
1072 
1073 	return ret;
1074 }
1075 
1076 /*
1077  * Try to take an rt-mutex
1078  *
1079  * Must be called with lock->wait_lock held and interrupts disabled
1080  *
1081  * @lock:   The lock to be acquired.
1082  * @task:   The task which wants to acquire the lock
1083  * @waiter: The waiter that is queued to the lock's wait tree if the
1084  *	    callsite called task_blocked_on_lock(), otherwise NULL
1085  */
1086 static int __sched
1087 try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task,
1088 		     struct rt_mutex_waiter *waiter)
1089 {
1090 	lockdep_assert_held(&lock->wait_lock);
1091 
1092 	/*
1093 	 * Before testing whether we can acquire @lock, we set the
1094 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
1095 	 * other tasks which try to modify @lock into the slow path
1096 	 * and they serialize on @lock->wait_lock.
1097 	 *
1098 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
1099 	 * as explained at the top of this file if and only if:
1100 	 *
1101 	 * - There is a lock owner. The caller must fixup the
1102 	 *   transient state if it does a trylock or leaves the lock
1103 	 *   function due to a signal or timeout.
1104 	 *
1105 	 * - @task acquires the lock and there are no other
1106 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
1107 	 *   the end of this function.
1108 	 */
1109 	mark_rt_mutex_waiters(lock);
1110 
1111 	/*
1112 	 * If @lock has an owner, give up.
1113 	 */
1114 	if (rt_mutex_owner(lock))
1115 		return 0;
1116 
1117 	/*
1118 	 * If @waiter != NULL, @task has already enqueued the waiter
1119 	 * into @lock waiter tree. If @waiter == NULL then this is a
1120 	 * trylock attempt.
1121 	 */
1122 	if (waiter) {
1123 		struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock);
1124 
1125 		/*
1126 		 * If waiter is the highest priority waiter of @lock,
1127 		 * or allowed to steal it, take it over.
1128 		 */
1129 		if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) {
1130 			/*
1131 			 * We can acquire the lock. Remove the waiter from the
1132 			 * lock waiters tree.
1133 			 */
1134 			rt_mutex_dequeue(lock, waiter);
1135 		} else {
1136 			return 0;
1137 		}
1138 	} else {
1139 		/*
1140 		 * If the lock has waiters already we check whether @task is
1141 		 * eligible to take over the lock.
1142 		 *
1143 		 * If there are no other waiters, @task can acquire
1144 		 * the lock.  @task->pi_blocked_on is NULL, so it does
1145 		 * not need to be dequeued.
1146 		 */
1147 		if (rt_mutex_has_waiters(lock)) {
1148 			/* Check whether the trylock can steal it. */
1149 			if (!rt_mutex_steal(task_to_waiter(task),
1150 					    rt_mutex_top_waiter(lock)))
1151 				return 0;
1152 
1153 			/*
1154 			 * The current top waiter stays enqueued. We
1155 			 * don't have to change anything in the lock
1156 			 * waiters order.
1157 			 */
1158 		} else {
1159 			/*
1160 			 * No waiters. Take the lock without the
1161 			 * pi_lock dance.@task->pi_blocked_on is NULL
1162 			 * and we have no waiters to enqueue in @task
1163 			 * pi waiters tree.
1164 			 */
1165 			goto takeit;
1166 		}
1167 	}
1168 
1169 	/*
1170 	 * Clear @task->pi_blocked_on. Requires protection by
1171 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
1172 	 * case, but conditionals are more expensive than a redundant
1173 	 * store.
1174 	 */
1175 	raw_spin_lock(&task->pi_lock);
1176 	task->pi_blocked_on = NULL;
1177 	/*
1178 	 * Finish the lock acquisition. @task is the new owner. If
1179 	 * other waiters exist we have to insert the highest priority
1180 	 * waiter into @task->pi_waiters tree.
1181 	 */
1182 	if (rt_mutex_has_waiters(lock))
1183 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
1184 	raw_spin_unlock(&task->pi_lock);
1185 
1186 takeit:
1187 	/*
1188 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
1189 	 * are still waiters or clears it.
1190 	 */
1191 	rt_mutex_set_owner(lock, task);
1192 
1193 	return 1;
1194 }
1195 
1196 /*
1197  * Task blocks on lock.
1198  *
1199  * Prepare waiter and propagate pi chain
1200  *
1201  * This must be called with lock->wait_lock held and interrupts disabled
1202  */
1203 static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
1204 					   struct rt_mutex_waiter *waiter,
1205 					   struct task_struct *task,
1206 					   struct ww_acquire_ctx *ww_ctx,
1207 					   enum rtmutex_chainwalk chwalk,
1208 					   struct wake_q_head *wake_q)
1209 {
1210 	struct task_struct *owner = rt_mutex_owner(lock);
1211 	struct rt_mutex_waiter *top_waiter = waiter;
1212 	struct rt_mutex_base *next_lock;
1213 	int chain_walk = 0, res;
1214 
1215 	lockdep_assert_held(&lock->wait_lock);
1216 
1217 	/*
1218 	 * Early deadlock detection. We really don't want the task to
1219 	 * enqueue on itself just to untangle the mess later. It's not
1220 	 * only an optimization. We drop the locks, so another waiter
1221 	 * can come in before the chain walk detects the deadlock. So
1222 	 * the other will detect the deadlock and return -EDEADLOCK,
1223 	 * which is wrong, as the other waiter is not in a deadlock
1224 	 * situation.
1225 	 *
1226 	 * Except for ww_mutex, in that case the chain walk must already deal
1227 	 * with spurious cycles, see the comments at [3] and [6].
1228 	 */
1229 	if (owner == task && !(build_ww_mutex() && ww_ctx))
1230 		return -EDEADLK;
1231 
1232 	raw_spin_lock(&task->pi_lock);
1233 	waiter->task = task;
1234 	waiter->lock = lock;
1235 	waiter_update_prio(waiter, task);
1236 	waiter_clone_prio(waiter, task);
1237 
1238 	/* Get the top priority waiter on the lock */
1239 	if (rt_mutex_has_waiters(lock))
1240 		top_waiter = rt_mutex_top_waiter(lock);
1241 	rt_mutex_enqueue(lock, waiter);
1242 
1243 	task->pi_blocked_on = waiter;
1244 
1245 	raw_spin_unlock(&task->pi_lock);
1246 
1247 	if (build_ww_mutex() && ww_ctx) {
1248 		struct rt_mutex *rtm;
1249 
1250 		/* Check whether the waiter should back out immediately */
1251 		rtm = container_of(lock, struct rt_mutex, rtmutex);
1252 		res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx, wake_q);
1253 		if (res) {
1254 			raw_spin_lock(&task->pi_lock);
1255 			rt_mutex_dequeue(lock, waiter);
1256 			task->pi_blocked_on = NULL;
1257 			raw_spin_unlock(&task->pi_lock);
1258 			return res;
1259 		}
1260 	}
1261 
1262 	if (!owner)
1263 		return 0;
1264 
1265 	raw_spin_lock(&owner->pi_lock);
1266 	if (waiter == rt_mutex_top_waiter(lock)) {
1267 		rt_mutex_dequeue_pi(owner, top_waiter);
1268 		rt_mutex_enqueue_pi(owner, waiter);
1269 
1270 		rt_mutex_adjust_prio(lock, owner);
1271 		if (owner->pi_blocked_on)
1272 			chain_walk = 1;
1273 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1274 		chain_walk = 1;
1275 	}
1276 
1277 	/* Store the lock on which owner is blocked or NULL */
1278 	next_lock = task_blocked_on_lock(owner);
1279 
1280 	raw_spin_unlock(&owner->pi_lock);
1281 	/*
1282 	 * Even if full deadlock detection is on, if the owner is not
1283 	 * blocked itself, we can avoid finding this out in the chain
1284 	 * walk.
1285 	 */
1286 	if (!chain_walk || !next_lock)
1287 		return 0;
1288 
1289 	/*
1290 	 * The owner can't disappear while holding a lock,
1291 	 * so the owner struct is protected by wait_lock.
1292 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
1293 	 */
1294 	get_task_struct(owner);
1295 
1296 	raw_spin_unlock_irq_wake(&lock->wait_lock, wake_q);
1297 
1298 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1299 					 next_lock, waiter, task);
1300 
1301 	raw_spin_lock_irq(&lock->wait_lock);
1302 
1303 	return res;
1304 }
1305 
1306 /*
1307  * Remove the top waiter from the current tasks pi waiter tree and
1308  * queue it up.
1309  *
1310  * Called with lock->wait_lock held and interrupts disabled.
1311  */
1312 static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
1313 					    struct rt_mutex_base *lock)
1314 {
1315 	struct rt_mutex_waiter *waiter;
1316 
1317 	lockdep_assert_held(&lock->wait_lock);
1318 
1319 	raw_spin_lock(&current->pi_lock);
1320 
1321 	waiter = rt_mutex_top_waiter(lock);
1322 
1323 	/*
1324 	 * Remove it from current->pi_waiters and deboost.
1325 	 *
1326 	 * We must in fact deboost here in order to ensure we call
1327 	 * rt_mutex_setprio() to update p->pi_top_task before the
1328 	 * task unblocks.
1329 	 */
1330 	rt_mutex_dequeue_pi(current, waiter);
1331 	rt_mutex_adjust_prio(lock, current);
1332 
1333 	/*
1334 	 * As we are waking up the top waiter, and the waiter stays
1335 	 * queued on the lock until it gets the lock, this lock
1336 	 * obviously has waiters. Just set the bit here and this has
1337 	 * the added benefit of forcing all new tasks into the
1338 	 * slow path making sure no task of lower priority than
1339 	 * the top waiter can steal this lock.
1340 	 */
1341 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1342 
1343 	/*
1344 	 * We deboosted before waking the top waiter task such that we don't
1345 	 * run two tasks with the 'same' priority (and ensure the
1346 	 * p->pi_top_task pointer points to a blocked task). This however can
1347 	 * lead to priority inversion if we would get preempted after the
1348 	 * deboost but before waking our donor task, hence the preempt_disable()
1349 	 * before unlock.
1350 	 *
1351 	 * Pairs with preempt_enable() in rt_mutex_wake_up_q();
1352 	 */
1353 	preempt_disable();
1354 	rt_mutex_wake_q_add(wqh, waiter);
1355 	raw_spin_unlock(&current->pi_lock);
1356 }
1357 
1358 static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1359 {
1360 	int ret = try_to_take_rt_mutex(lock, current, NULL);
1361 
1362 	/*
1363 	 * try_to_take_rt_mutex() sets the lock waiters bit
1364 	 * unconditionally. Clean this up.
1365 	 */
1366 	fixup_rt_mutex_waiters(lock, true);
1367 
1368 	return ret;
1369 }
1370 
1371 /*
1372  * Slow path try-lock function:
1373  */
1374 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1375 {
1376 	unsigned long flags;
1377 	int ret;
1378 
1379 	/*
1380 	 * If the lock already has an owner we fail to get the lock.
1381 	 * This can be done without taking the @lock->wait_lock as
1382 	 * it is only being read, and this is a trylock anyway.
1383 	 */
1384 	if (rt_mutex_owner(lock))
1385 		return 0;
1386 
1387 	/*
1388 	 * The mutex has currently no owner. Lock the wait lock and try to
1389 	 * acquire the lock. We use irqsave here to support early boot calls.
1390 	 */
1391 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1392 
1393 	ret = __rt_mutex_slowtrylock(lock);
1394 
1395 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1396 
1397 	return ret;
1398 }
1399 
1400 static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock)
1401 {
1402 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1403 		return 1;
1404 
1405 	return rt_mutex_slowtrylock(lock);
1406 }
1407 
1408 /*
1409  * Slow path to release a rt-mutex.
1410  */
1411 static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock)
1412 {
1413 	DEFINE_RT_WAKE_Q(wqh);
1414 	unsigned long flags;
1415 
1416 	/* irqsave required to support early boot calls */
1417 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1418 
1419 	debug_rt_mutex_unlock(lock);
1420 
1421 	/*
1422 	 * We must be careful here if the fast path is enabled. If we
1423 	 * have no waiters queued we cannot set owner to NULL here
1424 	 * because of:
1425 	 *
1426 	 * foo->lock->owner = NULL;
1427 	 *			rtmutex_lock(foo->lock);   <- fast path
1428 	 *			free = atomic_dec_and_test(foo->refcnt);
1429 	 *			rtmutex_unlock(foo->lock); <- fast path
1430 	 *			if (free)
1431 	 *				kfree(foo);
1432 	 * raw_spin_unlock(foo->lock->wait_lock);
1433 	 *
1434 	 * So for the fastpath enabled kernel:
1435 	 *
1436 	 * Nothing can set the waiters bit as long as we hold
1437 	 * lock->wait_lock. So we do the following sequence:
1438 	 *
1439 	 *	owner = rt_mutex_owner(lock);
1440 	 *	clear_rt_mutex_waiters(lock);
1441 	 *	raw_spin_unlock(&lock->wait_lock);
1442 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1443 	 *		return;
1444 	 *	goto retry;
1445 	 *
1446 	 * The fastpath disabled variant is simple as all access to
1447 	 * lock->owner is serialized by lock->wait_lock:
1448 	 *
1449 	 *	lock->owner = NULL;
1450 	 *	raw_spin_unlock(&lock->wait_lock);
1451 	 */
1452 	while (!rt_mutex_has_waiters(lock)) {
1453 		/* Drops lock->wait_lock ! */
1454 		if (unlock_rt_mutex_safe(lock, flags) == true)
1455 			return;
1456 		/* Relock the rtmutex and try again */
1457 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
1458 	}
1459 
1460 	/*
1461 	 * The wakeup next waiter path does not suffer from the above
1462 	 * race. See the comments there.
1463 	 *
1464 	 * Queue the next waiter for wakeup once we release the wait_lock.
1465 	 */
1466 	mark_wakeup_next_waiter(&wqh, lock);
1467 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1468 
1469 	rt_mutex_wake_up_q(&wqh);
1470 }
1471 
1472 static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock)
1473 {
1474 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1475 		return;
1476 
1477 	rt_mutex_slowunlock(lock);
1478 }
1479 
1480 #ifdef CONFIG_SMP
1481 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1482 				  struct rt_mutex_waiter *waiter,
1483 				  struct task_struct *owner)
1484 {
1485 	bool res = true;
1486 
1487 	rcu_read_lock();
1488 	for (;;) {
1489 		/* If owner changed, trylock again. */
1490 		if (owner != rt_mutex_owner(lock))
1491 			break;
1492 		/*
1493 		 * Ensure that @owner is dereferenced after checking that
1494 		 * the lock owner still matches @owner. If that fails,
1495 		 * @owner might point to freed memory. If it still matches,
1496 		 * the rcu_read_lock() ensures the memory stays valid.
1497 		 */
1498 		barrier();
1499 		/*
1500 		 * Stop spinning when:
1501 		 *  - the lock owner has been scheduled out
1502 		 *  - current is not longer the top waiter
1503 		 *  - current is requested to reschedule (redundant
1504 		 *    for CONFIG_PREEMPT_RCU=y)
1505 		 *  - the VCPU on which owner runs is preempted
1506 		 */
1507 		if (!owner_on_cpu(owner) || need_resched() ||
1508 		    !rt_mutex_waiter_is_top_waiter(lock, waiter)) {
1509 			res = false;
1510 			break;
1511 		}
1512 		cpu_relax();
1513 	}
1514 	rcu_read_unlock();
1515 	return res;
1516 }
1517 #else
1518 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1519 				  struct rt_mutex_waiter *waiter,
1520 				  struct task_struct *owner)
1521 {
1522 	return false;
1523 }
1524 #endif
1525 
1526 #ifdef RT_MUTEX_BUILD_MUTEX
1527 /*
1528  * Functions required for:
1529  *	- rtmutex, futex on all kernels
1530  *	- mutex and rwsem substitutions on RT kernels
1531  */
1532 
1533 /*
1534  * Remove a waiter from a lock and give up
1535  *
1536  * Must be called with lock->wait_lock held and interrupts disabled. It must
1537  * have just failed to try_to_take_rt_mutex().
1538  */
1539 static void __sched remove_waiter(struct rt_mutex_base *lock,
1540 				  struct rt_mutex_waiter *waiter)
1541 {
1542 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1543 	struct task_struct *owner = rt_mutex_owner(lock);
1544 	struct rt_mutex_base *next_lock;
1545 
1546 	lockdep_assert_held(&lock->wait_lock);
1547 
1548 	raw_spin_lock(&current->pi_lock);
1549 	rt_mutex_dequeue(lock, waiter);
1550 	current->pi_blocked_on = NULL;
1551 	raw_spin_unlock(&current->pi_lock);
1552 
1553 	/*
1554 	 * Only update priority if the waiter was the highest priority
1555 	 * waiter of the lock and there is an owner to update.
1556 	 */
1557 	if (!owner || !is_top_waiter)
1558 		return;
1559 
1560 	raw_spin_lock(&owner->pi_lock);
1561 
1562 	rt_mutex_dequeue_pi(owner, waiter);
1563 
1564 	if (rt_mutex_has_waiters(lock))
1565 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1566 
1567 	rt_mutex_adjust_prio(lock, owner);
1568 
1569 	/* Store the lock on which owner is blocked or NULL */
1570 	next_lock = task_blocked_on_lock(owner);
1571 
1572 	raw_spin_unlock(&owner->pi_lock);
1573 
1574 	/*
1575 	 * Don't walk the chain, if the owner task is not blocked
1576 	 * itself.
1577 	 */
1578 	if (!next_lock)
1579 		return;
1580 
1581 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1582 	get_task_struct(owner);
1583 
1584 	raw_spin_unlock_irq(&lock->wait_lock);
1585 
1586 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1587 				   next_lock, NULL, current);
1588 
1589 	raw_spin_lock_irq(&lock->wait_lock);
1590 }
1591 
1592 /**
1593  * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop
1594  * @lock:		 the rt_mutex to take
1595  * @ww_ctx:		 WW mutex context pointer
1596  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1597  *			 or TASK_UNINTERRUPTIBLE)
1598  * @timeout:		 the pre-initialized and started timer, or NULL for none
1599  * @waiter:		 the pre-initialized rt_mutex_waiter
1600  * @wake_q:		 wake_q of tasks to wake when we drop the lock->wait_lock
1601  *
1602  * Must be called with lock->wait_lock held and interrupts disabled
1603  */
1604 static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
1605 					   struct ww_acquire_ctx *ww_ctx,
1606 					   unsigned int state,
1607 					   struct hrtimer_sleeper *timeout,
1608 					   struct rt_mutex_waiter *waiter,
1609 					   struct wake_q_head *wake_q)
1610 	__releases(&lock->wait_lock) __acquires(&lock->wait_lock)
1611 {
1612 	struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1613 	struct task_struct *owner;
1614 	int ret = 0;
1615 
1616 	lockevent_inc(rtmutex_slow_block);
1617 	for (;;) {
1618 		/* Try to acquire the lock: */
1619 		if (try_to_take_rt_mutex(lock, current, waiter)) {
1620 			lockevent_inc(rtmutex_slow_acq3);
1621 			break;
1622 		}
1623 
1624 		if (timeout && !timeout->task) {
1625 			ret = -ETIMEDOUT;
1626 			break;
1627 		}
1628 		if (signal_pending_state(state, current)) {
1629 			ret = -EINTR;
1630 			break;
1631 		}
1632 
1633 		if (build_ww_mutex() && ww_ctx) {
1634 			ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx);
1635 			if (ret)
1636 				break;
1637 		}
1638 
1639 		if (waiter == rt_mutex_top_waiter(lock))
1640 			owner = rt_mutex_owner(lock);
1641 		else
1642 			owner = NULL;
1643 		raw_spin_unlock_irq_wake(&lock->wait_lock, wake_q);
1644 
1645 		if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner)) {
1646 			lockevent_inc(rtmutex_slow_sleep);
1647 			rt_mutex_schedule();
1648 		}
1649 
1650 		raw_spin_lock_irq(&lock->wait_lock);
1651 		set_current_state(state);
1652 	}
1653 
1654 	__set_current_state(TASK_RUNNING);
1655 	return ret;
1656 }
1657 
1658 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1659 					     struct rt_mutex_base *lock,
1660 					     struct rt_mutex_waiter *w)
1661 {
1662 	/*
1663 	 * If the result is not -EDEADLOCK or the caller requested
1664 	 * deadlock detection, nothing to do here.
1665 	 */
1666 	if (res != -EDEADLOCK || detect_deadlock)
1667 		return;
1668 
1669 	if (build_ww_mutex() && w->ww_ctx)
1670 		return;
1671 
1672 	raw_spin_unlock_irq(&lock->wait_lock);
1673 
1674 	WARN(1, "rtmutex deadlock detected\n");
1675 
1676 	while (1) {
1677 		set_current_state(TASK_INTERRUPTIBLE);
1678 		rt_mutex_schedule();
1679 	}
1680 }
1681 
1682 /**
1683  * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held
1684  * @lock:	The rtmutex to block lock
1685  * @ww_ctx:	WW mutex context pointer
1686  * @state:	The task state for sleeping
1687  * @chwalk:	Indicator whether full or partial chainwalk is requested
1688  * @waiter:	Initializer waiter for blocking
1689  * @wake_q:	The wake_q to wake tasks after we release the wait_lock
1690  */
1691 static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
1692 				       struct ww_acquire_ctx *ww_ctx,
1693 				       unsigned int state,
1694 				       enum rtmutex_chainwalk chwalk,
1695 				       struct rt_mutex_waiter *waiter,
1696 				       struct wake_q_head *wake_q)
1697 {
1698 	struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1699 	struct ww_mutex *ww = ww_container_of(rtm);
1700 	int ret;
1701 
1702 	lockdep_assert_held(&lock->wait_lock);
1703 	lockevent_inc(rtmutex_slowlock);
1704 
1705 	/* Try to acquire the lock again: */
1706 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1707 		if (build_ww_mutex() && ww_ctx) {
1708 			__ww_mutex_check_waiters(rtm, ww_ctx, wake_q);
1709 			ww_mutex_lock_acquired(ww, ww_ctx);
1710 		}
1711 		lockevent_inc(rtmutex_slow_acq1);
1712 		return 0;
1713 	}
1714 
1715 	set_current_state(state);
1716 
1717 	trace_contention_begin(lock, LCB_F_RT);
1718 
1719 	ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk, wake_q);
1720 	if (likely(!ret))
1721 		ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter, wake_q);
1722 
1723 	if (likely(!ret)) {
1724 		/* acquired the lock */
1725 		if (build_ww_mutex() && ww_ctx) {
1726 			if (!ww_ctx->is_wait_die)
1727 				__ww_mutex_check_waiters(rtm, ww_ctx, wake_q);
1728 			ww_mutex_lock_acquired(ww, ww_ctx);
1729 		}
1730 		lockevent_inc(rtmutex_slow_acq2);
1731 	} else {
1732 		__set_current_state(TASK_RUNNING);
1733 		remove_waiter(lock, waiter);
1734 		rt_mutex_handle_deadlock(ret, chwalk, lock, waiter);
1735 		lockevent_inc(rtmutex_deadlock);
1736 	}
1737 
1738 	/*
1739 	 * try_to_take_rt_mutex() sets the waiter bit
1740 	 * unconditionally. We might have to fix that up.
1741 	 */
1742 	fixup_rt_mutex_waiters(lock, true);
1743 
1744 	trace_contention_end(lock, ret);
1745 
1746 	return ret;
1747 }
1748 
1749 static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
1750 					     struct ww_acquire_ctx *ww_ctx,
1751 					     unsigned int state,
1752 					     struct wake_q_head *wake_q)
1753 {
1754 	struct rt_mutex_waiter waiter;
1755 	int ret;
1756 
1757 	rt_mutex_init_waiter(&waiter);
1758 	waiter.ww_ctx = ww_ctx;
1759 
1760 	ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
1761 				  &waiter, wake_q);
1762 
1763 	debug_rt_mutex_free_waiter(&waiter);
1764 	lockevent_cond_inc(rtmutex_slow_wake, !wake_q_empty(wake_q));
1765 	return ret;
1766 }
1767 
1768 /*
1769  * rt_mutex_slowlock - Locking slowpath invoked when fast path fails
1770  * @lock:	The rtmutex to block lock
1771  * @ww_ctx:	WW mutex context pointer
1772  * @state:	The task state for sleeping
1773  */
1774 static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
1775 				     struct ww_acquire_ctx *ww_ctx,
1776 				     unsigned int state)
1777 {
1778 	DEFINE_WAKE_Q(wake_q);
1779 	unsigned long flags;
1780 	int ret;
1781 
1782 	/*
1783 	 * Do all pre-schedule work here, before we queue a waiter and invoke
1784 	 * PI -- any such work that trips on rtlock (PREEMPT_RT spinlock) would
1785 	 * otherwise recurse back into task_blocks_on_rt_mutex() through
1786 	 * rtlock_slowlock() and will then enqueue a second waiter for this
1787 	 * same task and things get really confusing real fast.
1788 	 */
1789 	rt_mutex_pre_schedule();
1790 
1791 	/*
1792 	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1793 	 * be called in early boot if the cmpxchg() fast path is disabled
1794 	 * (debug, no architecture support). In this case we will acquire the
1795 	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1796 	 * enable interrupts in that early boot case. So we need to use the
1797 	 * irqsave/restore variants.
1798 	 */
1799 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1800 	ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state, &wake_q);
1801 	raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
1802 	rt_mutex_post_schedule();
1803 
1804 	return ret;
1805 }
1806 
1807 static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
1808 					   unsigned int state)
1809 {
1810 	lockdep_assert(!current->pi_blocked_on);
1811 
1812 	if (likely(rt_mutex_try_acquire(lock)))
1813 		return 0;
1814 
1815 	return rt_mutex_slowlock(lock, NULL, state);
1816 }
1817 #endif /* RT_MUTEX_BUILD_MUTEX */
1818 
1819 #ifdef RT_MUTEX_BUILD_SPINLOCKS
1820 /*
1821  * Functions required for spin/rw_lock substitution on RT kernels
1822  */
1823 
1824 /**
1825  * rtlock_slowlock_locked - Slow path lock acquisition for RT locks
1826  * @lock:	The underlying RT mutex
1827  * @wake_q:	The wake_q to wake tasks after we release the wait_lock
1828  */
1829 static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock,
1830 					   struct wake_q_head *wake_q)
1831 	__releases(&lock->wait_lock) __acquires(&lock->wait_lock)
1832 {
1833 	struct rt_mutex_waiter waiter;
1834 	struct task_struct *owner;
1835 
1836 	lockdep_assert_held(&lock->wait_lock);
1837 	lockevent_inc(rtlock_slowlock);
1838 
1839 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1840 		lockevent_inc(rtlock_slow_acq1);
1841 		return;
1842 	}
1843 
1844 	rt_mutex_init_rtlock_waiter(&waiter);
1845 
1846 	/* Save current state and set state to TASK_RTLOCK_WAIT */
1847 	current_save_and_set_rtlock_wait_state();
1848 
1849 	trace_contention_begin(lock, LCB_F_RT);
1850 
1851 	task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK, wake_q);
1852 
1853 	for (;;) {
1854 		/* Try to acquire the lock again */
1855 		if (try_to_take_rt_mutex(lock, current, &waiter)) {
1856 			lockevent_inc(rtlock_slow_acq2);
1857 			break;
1858 		}
1859 
1860 		if (&waiter == rt_mutex_top_waiter(lock))
1861 			owner = rt_mutex_owner(lock);
1862 		else
1863 			owner = NULL;
1864 		raw_spin_unlock_irq_wake(&lock->wait_lock, wake_q);
1865 
1866 		if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner)) {
1867 			lockevent_inc(rtlock_slow_sleep);
1868 			schedule_rtlock();
1869 		}
1870 
1871 		raw_spin_lock_irq(&lock->wait_lock);
1872 		set_current_state(TASK_RTLOCK_WAIT);
1873 	}
1874 
1875 	/* Restore the task state */
1876 	current_restore_rtlock_saved_state();
1877 
1878 	/*
1879 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally.
1880 	 * We might have to fix that up:
1881 	 */
1882 	fixup_rt_mutex_waiters(lock, true);
1883 	debug_rt_mutex_free_waiter(&waiter);
1884 
1885 	trace_contention_end(lock, 0);
1886 	lockevent_cond_inc(rtlock_slow_wake, !wake_q_empty(wake_q));
1887 }
1888 
1889 static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
1890 {
1891 	unsigned long flags;
1892 	DEFINE_WAKE_Q(wake_q);
1893 
1894 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1895 	rtlock_slowlock_locked(lock, &wake_q);
1896 	raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
1897 }
1898 
1899 #endif /* RT_MUTEX_BUILD_SPINLOCKS */
1900