1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/locking/mutex.c 4 * 5 * Mutexes: blocking mutual exclusion locks 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * 11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 12 * David Howells for suggestions and improvements. 13 * 14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 15 * from the -rt tree, where it was originally implemented for rtmutexes 16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 17 * and Sven Dietrich. 18 * 19 * Also see Documentation/locking/mutex-design.rst. 20 */ 21 #include <linux/mutex.h> 22 #include <linux/ww_mutex.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/wake_q.h> 26 #include <linux/sched/debug.h> 27 #include <linux/export.h> 28 #include <linux/spinlock.h> 29 #include <linux/interrupt.h> 30 #include <linux/debug_locks.h> 31 #include <linux/osq_lock.h> 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/lock.h> 35 36 #ifndef CONFIG_PREEMPT_RT 37 #include "mutex.h" 38 39 #ifdef CONFIG_DEBUG_MUTEXES 40 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond) 41 #else 42 # define MUTEX_WARN_ON(cond) 43 #endif 44 45 void 46 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 47 { 48 atomic_long_set(&lock->owner, 0); 49 raw_spin_lock_init(&lock->wait_lock); 50 INIT_LIST_HEAD(&lock->wait_list); 51 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 52 osq_lock_init(&lock->osq); 53 #endif 54 55 debug_mutex_init(lock, name, key); 56 } 57 EXPORT_SYMBOL(__mutex_init); 58 59 static inline struct task_struct *__owner_task(unsigned long owner) 60 { 61 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 62 } 63 64 bool mutex_is_locked(struct mutex *lock) 65 { 66 return __mutex_owner(lock) != NULL; 67 } 68 EXPORT_SYMBOL(mutex_is_locked); 69 70 static inline unsigned long __owner_flags(unsigned long owner) 71 { 72 return owner & MUTEX_FLAGS; 73 } 74 75 /* Do not use the return value as a pointer directly. */ 76 unsigned long mutex_get_owner(struct mutex *lock) 77 { 78 unsigned long owner = atomic_long_read(&lock->owner); 79 80 return (unsigned long)__owner_task(owner); 81 } 82 83 /* 84 * Returns: __mutex_owner(lock) on failure or NULL on success. 85 */ 86 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff) 87 { 88 unsigned long owner, curr = (unsigned long)current; 89 90 owner = atomic_long_read(&lock->owner); 91 for (;;) { /* must loop, can race against a flag */ 92 unsigned long flags = __owner_flags(owner); 93 unsigned long task = owner & ~MUTEX_FLAGS; 94 95 if (task) { 96 if (flags & MUTEX_FLAG_PICKUP) { 97 if (task != curr) 98 break; 99 flags &= ~MUTEX_FLAG_PICKUP; 100 } else if (handoff) { 101 if (flags & MUTEX_FLAG_HANDOFF) 102 break; 103 flags |= MUTEX_FLAG_HANDOFF; 104 } else { 105 break; 106 } 107 } else { 108 MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP)); 109 task = curr; 110 } 111 112 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) { 113 if (task == curr) 114 return NULL; 115 break; 116 } 117 } 118 119 return __owner_task(owner); 120 } 121 122 /* 123 * Trylock or set HANDOFF 124 */ 125 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff) 126 { 127 return !__mutex_trylock_common(lock, handoff); 128 } 129 130 /* 131 * Actual trylock that will work on any unlocked state. 132 */ 133 static inline bool __mutex_trylock(struct mutex *lock) 134 { 135 return !__mutex_trylock_common(lock, false); 136 } 137 138 #ifndef CONFIG_DEBUG_LOCK_ALLOC 139 /* 140 * Lockdep annotations are contained to the slow paths for simplicity. 141 * There is nothing that would stop spreading the lockdep annotations outwards 142 * except more code. 143 */ 144 145 /* 146 * Optimistic trylock that only works in the uncontended case. Make sure to 147 * follow with a __mutex_trylock() before failing. 148 */ 149 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 150 { 151 unsigned long curr = (unsigned long)current; 152 unsigned long zero = 0UL; 153 154 MUTEX_WARN_ON(lock->magic != lock); 155 156 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) 157 return true; 158 159 return false; 160 } 161 162 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 163 { 164 unsigned long curr = (unsigned long)current; 165 166 return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL); 167 } 168 #endif 169 170 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 171 { 172 atomic_long_or(flag, &lock->owner); 173 } 174 175 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 176 { 177 atomic_long_andnot(flag, &lock->owner); 178 } 179 180 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 181 { 182 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 183 } 184 185 /* 186 * Add @waiter to a given location in the lock wait_list and set the 187 * FLAG_WAITERS flag if it's the first waiter. 188 */ 189 static void 190 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, 191 struct list_head *list) 192 { 193 #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER 194 WRITE_ONCE(current->blocker_mutex, lock); 195 #endif 196 debug_mutex_add_waiter(lock, waiter, current); 197 198 list_add_tail(&waiter->list, list); 199 if (__mutex_waiter_is_first(lock, waiter)) 200 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 201 } 202 203 static void 204 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter) 205 { 206 list_del(&waiter->list); 207 if (likely(list_empty(&lock->wait_list))) 208 __mutex_clear_flag(lock, MUTEX_FLAGS); 209 210 debug_mutex_remove_waiter(lock, waiter, current); 211 #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER 212 WRITE_ONCE(current->blocker_mutex, NULL); 213 #endif 214 } 215 216 /* 217 * Give up ownership to a specific task, when @task = NULL, this is equivalent 218 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves 219 * WAITERS. Provides RELEASE semantics like a regular unlock, the 220 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 221 */ 222 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 223 { 224 unsigned long owner = atomic_long_read(&lock->owner); 225 226 for (;;) { 227 unsigned long new; 228 229 MUTEX_WARN_ON(__owner_task(owner) != current); 230 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 231 232 new = (owner & MUTEX_FLAG_WAITERS); 233 new |= (unsigned long)task; 234 if (task) 235 new |= MUTEX_FLAG_PICKUP; 236 237 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new)) 238 break; 239 } 240 } 241 242 #ifndef CONFIG_DEBUG_LOCK_ALLOC 243 /* 244 * We split the mutex lock/unlock logic into separate fastpath and 245 * slowpath functions, to reduce the register pressure on the fastpath. 246 * We also put the fastpath first in the kernel image, to make sure the 247 * branch is predicted by the CPU as default-untaken. 248 */ 249 static void __sched __mutex_lock_slowpath(struct mutex *lock); 250 251 /** 252 * mutex_lock - acquire the mutex 253 * @lock: the mutex to be acquired 254 * 255 * Lock the mutex exclusively for this task. If the mutex is not 256 * available right now, it will sleep until it can get it. 257 * 258 * The mutex must later on be released by the same task that 259 * acquired it. Recursive locking is not allowed. The task 260 * may not exit without first unlocking the mutex. Also, kernel 261 * memory where the mutex resides must not be freed with 262 * the mutex still locked. The mutex must first be initialized 263 * (or statically defined) before it can be locked. memset()-ing 264 * the mutex to 0 is not allowed. 265 * 266 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging 267 * checks that will enforce the restrictions and will also do 268 * deadlock debugging) 269 * 270 * This function is similar to (but not equivalent to) down(). 271 */ 272 void __sched mutex_lock(struct mutex *lock) 273 { 274 might_sleep(); 275 276 if (!__mutex_trylock_fast(lock)) 277 __mutex_lock_slowpath(lock); 278 } 279 EXPORT_SYMBOL(mutex_lock); 280 #endif 281 282 #include "ww_mutex.h" 283 284 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 285 286 /* 287 * Trylock variant that returns the owning task on failure. 288 */ 289 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 290 { 291 return __mutex_trylock_common(lock, false); 292 } 293 294 static inline 295 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 296 struct mutex_waiter *waiter) 297 { 298 struct ww_mutex *ww; 299 300 ww = container_of(lock, struct ww_mutex, base); 301 302 /* 303 * If ww->ctx is set the contents are undefined, only 304 * by acquiring wait_lock there is a guarantee that 305 * they are not invalid when reading. 306 * 307 * As such, when deadlock detection needs to be 308 * performed the optimistic spinning cannot be done. 309 * 310 * Check this in every inner iteration because we may 311 * be racing against another thread's ww_mutex_lock. 312 */ 313 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 314 return false; 315 316 /* 317 * If we aren't on the wait list yet, cancel the spin 318 * if there are waiters. We want to avoid stealing the 319 * lock from a waiter with an earlier stamp, since the 320 * other thread may already own a lock that we also 321 * need. 322 */ 323 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 324 return false; 325 326 /* 327 * Similarly, stop spinning if we are no longer the 328 * first waiter. 329 */ 330 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 331 return false; 332 333 return true; 334 } 335 336 /* 337 * Look out! "owner" is an entirely speculative pointer access and not 338 * reliable. 339 * 340 * "noinline" so that this function shows up on perf profiles. 341 */ 342 static noinline 343 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 344 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 345 { 346 bool ret = true; 347 348 lockdep_assert_preemption_disabled(); 349 350 while (__mutex_owner(lock) == owner) { 351 /* 352 * Ensure we emit the owner->on_cpu, dereference _after_ 353 * checking lock->owner still matches owner. And we already 354 * disabled preemption which is equal to the RCU read-side 355 * crital section in optimistic spinning code. Thus the 356 * task_strcut structure won't go away during the spinning 357 * period 358 */ 359 barrier(); 360 361 /* 362 * Use vcpu_is_preempted to detect lock holder preemption issue. 363 */ 364 if (!owner_on_cpu(owner) || need_resched()) { 365 ret = false; 366 break; 367 } 368 369 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 370 ret = false; 371 break; 372 } 373 374 cpu_relax(); 375 } 376 377 return ret; 378 } 379 380 /* 381 * Initial check for entering the mutex spinning loop 382 */ 383 static inline int mutex_can_spin_on_owner(struct mutex *lock) 384 { 385 struct task_struct *owner; 386 int retval = 1; 387 388 lockdep_assert_preemption_disabled(); 389 390 if (need_resched()) 391 return 0; 392 393 /* 394 * We already disabled preemption which is equal to the RCU read-side 395 * crital section in optimistic spinning code. Thus the task_strcut 396 * structure won't go away during the spinning period. 397 */ 398 owner = __mutex_owner(lock); 399 if (owner) 400 retval = owner_on_cpu(owner); 401 402 /* 403 * If lock->owner is not set, the mutex has been released. Return true 404 * such that we'll trylock in the spin path, which is a faster option 405 * than the blocking slow path. 406 */ 407 return retval; 408 } 409 410 /* 411 * Optimistic spinning. 412 * 413 * We try to spin for acquisition when we find that the lock owner 414 * is currently running on a (different) CPU and while we don't 415 * need to reschedule. The rationale is that if the lock owner is 416 * running, it is likely to release the lock soon. 417 * 418 * The mutex spinners are queued up using MCS lock so that only one 419 * spinner can compete for the mutex. However, if mutex spinning isn't 420 * going to happen, there is no point in going through the lock/unlock 421 * overhead. 422 * 423 * Returns true when the lock was taken, otherwise false, indicating 424 * that we need to jump to the slowpath and sleep. 425 * 426 * The waiter flag is set to true if the spinner is a waiter in the wait 427 * queue. The waiter-spinner will spin on the lock directly and concurrently 428 * with the spinner at the head of the OSQ, if present, until the owner is 429 * changed to itself. 430 */ 431 static __always_inline bool 432 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 433 struct mutex_waiter *waiter) 434 { 435 if (!waiter) { 436 /* 437 * The purpose of the mutex_can_spin_on_owner() function is 438 * to eliminate the overhead of osq_lock() and osq_unlock() 439 * in case spinning isn't possible. As a waiter-spinner 440 * is not going to take OSQ lock anyway, there is no need 441 * to call mutex_can_spin_on_owner(). 442 */ 443 if (!mutex_can_spin_on_owner(lock)) 444 goto fail; 445 446 /* 447 * In order to avoid a stampede of mutex spinners trying to 448 * acquire the mutex all at once, the spinners need to take a 449 * MCS (queued) lock first before spinning on the owner field. 450 */ 451 if (!osq_lock(&lock->osq)) 452 goto fail; 453 } 454 455 for (;;) { 456 struct task_struct *owner; 457 458 /* Try to acquire the mutex... */ 459 owner = __mutex_trylock_or_owner(lock); 460 if (!owner) 461 break; 462 463 /* 464 * There's an owner, wait for it to either 465 * release the lock or go to sleep. 466 */ 467 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 468 goto fail_unlock; 469 470 /* 471 * The cpu_relax() call is a compiler barrier which forces 472 * everything in this loop to be re-loaded. We don't need 473 * memory barriers as we'll eventually observe the right 474 * values at the cost of a few extra spins. 475 */ 476 cpu_relax(); 477 } 478 479 if (!waiter) 480 osq_unlock(&lock->osq); 481 482 return true; 483 484 485 fail_unlock: 486 if (!waiter) 487 osq_unlock(&lock->osq); 488 489 fail: 490 /* 491 * If we fell out of the spin path because of need_resched(), 492 * reschedule now, before we try-lock the mutex. This avoids getting 493 * scheduled out right after we obtained the mutex. 494 */ 495 if (need_resched()) { 496 /* 497 * We _should_ have TASK_RUNNING here, but just in case 498 * we do not, make it so, otherwise we might get stuck. 499 */ 500 __set_current_state(TASK_RUNNING); 501 schedule_preempt_disabled(); 502 } 503 504 return false; 505 } 506 #else 507 static __always_inline bool 508 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 509 struct mutex_waiter *waiter) 510 { 511 return false; 512 } 513 #endif 514 515 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 516 517 /** 518 * mutex_unlock - release the mutex 519 * @lock: the mutex to be released 520 * 521 * Unlock a mutex that has been locked by this task previously. 522 * 523 * This function must not be used in interrupt context. Unlocking 524 * of a not locked mutex is not allowed. 525 * 526 * The caller must ensure that the mutex stays alive until this function has 527 * returned - mutex_unlock() can NOT directly be used to release an object such 528 * that another concurrent task can free it. 529 * Mutexes are different from spinlocks & refcounts in this aspect. 530 * 531 * This function is similar to (but not equivalent to) up(). 532 */ 533 void __sched mutex_unlock(struct mutex *lock) 534 { 535 #ifndef CONFIG_DEBUG_LOCK_ALLOC 536 if (__mutex_unlock_fast(lock)) 537 return; 538 #endif 539 __mutex_unlock_slowpath(lock, _RET_IP_); 540 } 541 EXPORT_SYMBOL(mutex_unlock); 542 543 /** 544 * ww_mutex_unlock - release the w/w mutex 545 * @lock: the mutex to be released 546 * 547 * Unlock a mutex that has been locked by this task previously with any of the 548 * ww_mutex_lock* functions (with or without an acquire context). It is 549 * forbidden to release the locks after releasing the acquire context. 550 * 551 * This function must not be used in interrupt context. Unlocking 552 * of a unlocked mutex is not allowed. 553 */ 554 void __sched ww_mutex_unlock(struct ww_mutex *lock) 555 { 556 __ww_mutex_unlock(lock); 557 mutex_unlock(&lock->base); 558 } 559 EXPORT_SYMBOL(ww_mutex_unlock); 560 561 /* 562 * Lock a mutex (possibly interruptible), slowpath: 563 */ 564 static __always_inline int __sched 565 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass, 566 struct lockdep_map *nest_lock, unsigned long ip, 567 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 568 { 569 DEFINE_WAKE_Q(wake_q); 570 struct mutex_waiter waiter; 571 struct ww_mutex *ww; 572 unsigned long flags; 573 int ret; 574 575 if (!use_ww_ctx) 576 ww_ctx = NULL; 577 578 might_sleep(); 579 580 MUTEX_WARN_ON(lock->magic != lock); 581 582 ww = container_of(lock, struct ww_mutex, base); 583 if (ww_ctx) { 584 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 585 return -EALREADY; 586 587 /* 588 * Reset the wounded flag after a kill. No other process can 589 * race and wound us here since they can't have a valid owner 590 * pointer if we don't have any locks held. 591 */ 592 if (ww_ctx->acquired == 0) 593 ww_ctx->wounded = 0; 594 595 #ifdef CONFIG_DEBUG_LOCK_ALLOC 596 nest_lock = &ww_ctx->dep_map; 597 #endif 598 } 599 600 preempt_disable(); 601 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 602 603 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); 604 if (__mutex_trylock(lock) || 605 mutex_optimistic_spin(lock, ww_ctx, NULL)) { 606 /* got the lock, yay! */ 607 lock_acquired(&lock->dep_map, ip); 608 if (ww_ctx) 609 ww_mutex_set_context_fastpath(ww, ww_ctx); 610 trace_contention_end(lock, 0); 611 preempt_enable(); 612 return 0; 613 } 614 615 raw_spin_lock_irqsave(&lock->wait_lock, flags); 616 /* 617 * After waiting to acquire the wait_lock, try again. 618 */ 619 if (__mutex_trylock(lock)) { 620 if (ww_ctx) 621 __ww_mutex_check_waiters(lock, ww_ctx, &wake_q); 622 623 goto skip_wait; 624 } 625 626 debug_mutex_lock_common(lock, &waiter); 627 waiter.task = current; 628 if (use_ww_ctx) 629 waiter.ww_ctx = ww_ctx; 630 631 lock_contended(&lock->dep_map, ip); 632 633 if (!use_ww_ctx) { 634 /* add waiting tasks to the end of the waitqueue (FIFO): */ 635 __mutex_add_waiter(lock, &waiter, &lock->wait_list); 636 } else { 637 /* 638 * Add in stamp order, waking up waiters that must kill 639 * themselves. 640 */ 641 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q); 642 if (ret) 643 goto err_early_kill; 644 } 645 646 set_current_state(state); 647 trace_contention_begin(lock, LCB_F_MUTEX); 648 for (;;) { 649 bool first; 650 651 /* 652 * Once we hold wait_lock, we're serialized against 653 * mutex_unlock() handing the lock off to us, do a trylock 654 * before testing the error conditions to make sure we pick up 655 * the handoff. 656 */ 657 if (__mutex_trylock(lock)) 658 goto acquired; 659 660 /* 661 * Check for signals and kill conditions while holding 662 * wait_lock. This ensures the lock cancellation is ordered 663 * against mutex_unlock() and wake-ups do not go missing. 664 */ 665 if (signal_pending_state(state, current)) { 666 ret = -EINTR; 667 goto err; 668 } 669 670 if (ww_ctx) { 671 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx); 672 if (ret) 673 goto err; 674 } 675 676 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 677 678 schedule_preempt_disabled(); 679 680 first = __mutex_waiter_is_first(lock, &waiter); 681 682 set_current_state(state); 683 /* 684 * Here we order against unlock; we must either see it change 685 * state back to RUNNING and fall through the next schedule(), 686 * or we must see its unlock and acquire. 687 */ 688 if (__mutex_trylock_or_handoff(lock, first)) 689 break; 690 691 if (first) { 692 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); 693 if (mutex_optimistic_spin(lock, ww_ctx, &waiter)) 694 break; 695 trace_contention_begin(lock, LCB_F_MUTEX); 696 } 697 698 raw_spin_lock_irqsave(&lock->wait_lock, flags); 699 } 700 raw_spin_lock_irqsave(&lock->wait_lock, flags); 701 acquired: 702 __set_current_state(TASK_RUNNING); 703 704 if (ww_ctx) { 705 /* 706 * Wound-Wait; we stole the lock (!first_waiter), check the 707 * waiters as anyone might want to wound us. 708 */ 709 if (!ww_ctx->is_wait_die && 710 !__mutex_waiter_is_first(lock, &waiter)) 711 __ww_mutex_check_waiters(lock, ww_ctx, &wake_q); 712 } 713 714 __mutex_remove_waiter(lock, &waiter); 715 716 debug_mutex_free_waiter(&waiter); 717 718 skip_wait: 719 /* got the lock - cleanup and rejoice! */ 720 lock_acquired(&lock->dep_map, ip); 721 trace_contention_end(lock, 0); 722 723 if (ww_ctx) 724 ww_mutex_lock_acquired(ww, ww_ctx); 725 726 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 727 preempt_enable(); 728 return 0; 729 730 err: 731 __set_current_state(TASK_RUNNING); 732 __mutex_remove_waiter(lock, &waiter); 733 err_early_kill: 734 trace_contention_end(lock, ret); 735 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 736 debug_mutex_free_waiter(&waiter); 737 mutex_release(&lock->dep_map, ip); 738 preempt_enable(); 739 return ret; 740 } 741 742 static int __sched 743 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 744 struct lockdep_map *nest_lock, unsigned long ip) 745 { 746 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 747 } 748 749 static int __sched 750 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 751 unsigned long ip, struct ww_acquire_ctx *ww_ctx) 752 { 753 return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true); 754 } 755 756 /** 757 * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context 758 * @ww: mutex to lock 759 * @ww_ctx: optional w/w acquire context 760 * 761 * Trylocks a mutex with the optional acquire context; no deadlock detection is 762 * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise. 763 * 764 * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is 765 * specified, -EALREADY handling may happen in calls to ww_mutex_trylock. 766 * 767 * A mutex acquired with this function must be released with ww_mutex_unlock. 768 */ 769 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) 770 { 771 if (!ww_ctx) 772 return mutex_trylock(&ww->base); 773 774 MUTEX_WARN_ON(ww->base.magic != &ww->base); 775 776 /* 777 * Reset the wounded flag after a kill. No other process can 778 * race and wound us here, since they can't have a valid owner 779 * pointer if we don't have any locks held. 780 */ 781 if (ww_ctx->acquired == 0) 782 ww_ctx->wounded = 0; 783 784 if (__mutex_trylock(&ww->base)) { 785 ww_mutex_set_context_fastpath(ww, ww_ctx); 786 mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_); 787 return 1; 788 } 789 790 return 0; 791 } 792 EXPORT_SYMBOL(ww_mutex_trylock); 793 794 #ifdef CONFIG_DEBUG_LOCK_ALLOC 795 void __sched 796 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 797 { 798 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 799 } 800 801 EXPORT_SYMBOL_GPL(mutex_lock_nested); 802 803 void __sched 804 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 805 { 806 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 807 } 808 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 809 810 int __sched 811 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 812 { 813 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 814 } 815 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 816 817 int __sched 818 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 819 { 820 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 821 } 822 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 823 824 void __sched 825 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 826 { 827 int token; 828 829 might_sleep(); 830 831 token = io_schedule_prepare(); 832 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 833 subclass, NULL, _RET_IP_, NULL, 0); 834 io_schedule_finish(token); 835 } 836 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 837 838 static inline int 839 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 840 { 841 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 842 unsigned tmp; 843 844 if (ctx->deadlock_inject_countdown-- == 0) { 845 tmp = ctx->deadlock_inject_interval; 846 if (tmp > UINT_MAX/4) 847 tmp = UINT_MAX; 848 else 849 tmp = tmp*2 + tmp + tmp/2; 850 851 ctx->deadlock_inject_interval = tmp; 852 ctx->deadlock_inject_countdown = tmp; 853 ctx->contending_lock = lock; 854 855 ww_mutex_unlock(lock); 856 857 return -EDEADLK; 858 } 859 #endif 860 861 return 0; 862 } 863 864 int __sched 865 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 866 { 867 int ret; 868 869 might_sleep(); 870 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 871 0, _RET_IP_, ctx); 872 if (!ret && ctx && ctx->acquired > 1) 873 return ww_mutex_deadlock_injection(lock, ctx); 874 875 return ret; 876 } 877 EXPORT_SYMBOL_GPL(ww_mutex_lock); 878 879 int __sched 880 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 881 { 882 int ret; 883 884 might_sleep(); 885 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 886 0, _RET_IP_, ctx); 887 888 if (!ret && ctx && ctx->acquired > 1) 889 return ww_mutex_deadlock_injection(lock, ctx); 890 891 return ret; 892 } 893 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 894 895 #endif 896 897 /* 898 * Release the lock, slowpath: 899 */ 900 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 901 { 902 struct task_struct *next = NULL; 903 DEFINE_WAKE_Q(wake_q); 904 unsigned long owner; 905 unsigned long flags; 906 907 mutex_release(&lock->dep_map, ip); 908 909 /* 910 * Release the lock before (potentially) taking the spinlock such that 911 * other contenders can get on with things ASAP. 912 * 913 * Except when HANDOFF, in that case we must not clear the owner field, 914 * but instead set it to the top waiter. 915 */ 916 owner = atomic_long_read(&lock->owner); 917 for (;;) { 918 MUTEX_WARN_ON(__owner_task(owner) != current); 919 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 920 921 if (owner & MUTEX_FLAG_HANDOFF) 922 break; 923 924 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) { 925 if (owner & MUTEX_FLAG_WAITERS) 926 break; 927 928 return; 929 } 930 } 931 932 raw_spin_lock_irqsave(&lock->wait_lock, flags); 933 debug_mutex_unlock(lock); 934 if (!list_empty(&lock->wait_list)) { 935 /* get the first entry from the wait-list: */ 936 struct mutex_waiter *waiter = 937 list_first_entry(&lock->wait_list, 938 struct mutex_waiter, list); 939 940 next = waiter->task; 941 942 debug_mutex_wake_waiter(lock, waiter); 943 wake_q_add(&wake_q, next); 944 } 945 946 if (owner & MUTEX_FLAG_HANDOFF) 947 __mutex_handoff(lock, next); 948 949 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 950 } 951 952 #ifndef CONFIG_DEBUG_LOCK_ALLOC 953 /* 954 * Here come the less common (and hence less performance-critical) APIs: 955 * mutex_lock_interruptible() and mutex_trylock(). 956 */ 957 static noinline int __sched 958 __mutex_lock_killable_slowpath(struct mutex *lock); 959 960 static noinline int __sched 961 __mutex_lock_interruptible_slowpath(struct mutex *lock); 962 963 /** 964 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. 965 * @lock: The mutex to be acquired. 966 * 967 * Lock the mutex like mutex_lock(). If a signal is delivered while the 968 * process is sleeping, this function will return without acquiring the 969 * mutex. 970 * 971 * Context: Process context. 972 * Return: 0 if the lock was successfully acquired or %-EINTR if a 973 * signal arrived. 974 */ 975 int __sched mutex_lock_interruptible(struct mutex *lock) 976 { 977 might_sleep(); 978 979 if (__mutex_trylock_fast(lock)) 980 return 0; 981 982 return __mutex_lock_interruptible_slowpath(lock); 983 } 984 985 EXPORT_SYMBOL(mutex_lock_interruptible); 986 987 /** 988 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. 989 * @lock: The mutex to be acquired. 990 * 991 * Lock the mutex like mutex_lock(). If a signal which will be fatal to 992 * the current process is delivered while the process is sleeping, this 993 * function will return without acquiring the mutex. 994 * 995 * Context: Process context. 996 * Return: 0 if the lock was successfully acquired or %-EINTR if a 997 * fatal signal arrived. 998 */ 999 int __sched mutex_lock_killable(struct mutex *lock) 1000 { 1001 might_sleep(); 1002 1003 if (__mutex_trylock_fast(lock)) 1004 return 0; 1005 1006 return __mutex_lock_killable_slowpath(lock); 1007 } 1008 EXPORT_SYMBOL(mutex_lock_killable); 1009 1010 /** 1011 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O 1012 * @lock: The mutex to be acquired. 1013 * 1014 * Lock the mutex like mutex_lock(). While the task is waiting for this 1015 * mutex, it will be accounted as being in the IO wait state by the 1016 * scheduler. 1017 * 1018 * Context: Process context. 1019 */ 1020 void __sched mutex_lock_io(struct mutex *lock) 1021 { 1022 int token; 1023 1024 token = io_schedule_prepare(); 1025 mutex_lock(lock); 1026 io_schedule_finish(token); 1027 } 1028 EXPORT_SYMBOL_GPL(mutex_lock_io); 1029 1030 static noinline void __sched 1031 __mutex_lock_slowpath(struct mutex *lock) 1032 { 1033 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 1034 } 1035 1036 static noinline int __sched 1037 __mutex_lock_killable_slowpath(struct mutex *lock) 1038 { 1039 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 1040 } 1041 1042 static noinline int __sched 1043 __mutex_lock_interruptible_slowpath(struct mutex *lock) 1044 { 1045 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 1046 } 1047 1048 static noinline int __sched 1049 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1050 { 1051 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, 1052 _RET_IP_, ctx); 1053 } 1054 1055 static noinline int __sched 1056 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1057 struct ww_acquire_ctx *ctx) 1058 { 1059 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, 1060 _RET_IP_, ctx); 1061 } 1062 1063 #endif 1064 1065 /** 1066 * mutex_trylock - try to acquire the mutex, without waiting 1067 * @lock: the mutex to be acquired 1068 * 1069 * Try to acquire the mutex atomically. Returns 1 if the mutex 1070 * has been acquired successfully, and 0 on contention. 1071 * 1072 * NOTE: this function follows the spin_trylock() convention, so 1073 * it is negated from the down_trylock() return values! Be careful 1074 * about this when converting semaphore users to mutexes. 1075 * 1076 * This function must not be used in interrupt context. The 1077 * mutex must be released by the same task that acquired it. 1078 */ 1079 int __sched mutex_trylock(struct mutex *lock) 1080 { 1081 bool locked; 1082 1083 MUTEX_WARN_ON(lock->magic != lock); 1084 1085 locked = __mutex_trylock(lock); 1086 if (locked) 1087 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1088 1089 return locked; 1090 } 1091 EXPORT_SYMBOL(mutex_trylock); 1092 1093 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1094 int __sched 1095 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1096 { 1097 might_sleep(); 1098 1099 if (__mutex_trylock_fast(&lock->base)) { 1100 if (ctx) 1101 ww_mutex_set_context_fastpath(lock, ctx); 1102 return 0; 1103 } 1104 1105 return __ww_mutex_lock_slowpath(lock, ctx); 1106 } 1107 EXPORT_SYMBOL(ww_mutex_lock); 1108 1109 int __sched 1110 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1111 { 1112 might_sleep(); 1113 1114 if (__mutex_trylock_fast(&lock->base)) { 1115 if (ctx) 1116 ww_mutex_set_context_fastpath(lock, ctx); 1117 return 0; 1118 } 1119 1120 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1121 } 1122 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1123 1124 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ 1125 #endif /* !CONFIG_PREEMPT_RT */ 1126 1127 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin); 1128 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end); 1129 1130 /** 1131 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1132 * @cnt: the atomic which we are to dec 1133 * @lock: the mutex to return holding if we dec to 0 1134 * 1135 * return true and hold lock if we dec to 0, return false otherwise 1136 */ 1137 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1138 { 1139 /* dec if we can't possibly hit 0 */ 1140 if (atomic_add_unless(cnt, -1, 1)) 1141 return 0; 1142 /* we might hit 0, so take the lock */ 1143 mutex_lock(lock); 1144 if (!atomic_dec_and_test(cnt)) { 1145 /* when we actually did the dec, we didn't hit 0 */ 1146 mutex_unlock(lock); 1147 return 0; 1148 } 1149 /* we hit 0, and we hold the lock */ 1150 return 1; 1151 } 1152 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1153