1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/locking/mutex.c 4 * 5 * Mutexes: blocking mutual exclusion locks 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * 11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 12 * David Howells for suggestions and improvements. 13 * 14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 15 * from the -rt tree, where it was originally implemented for rtmutexes 16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 17 * and Sven Dietrich. 18 * 19 * Also see Documentation/locking/mutex-design.rst. 20 */ 21 #include <linux/mutex.h> 22 #include <linux/ww_mutex.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/wake_q.h> 26 #include <linux/sched/debug.h> 27 #include <linux/export.h> 28 #include <linux/spinlock.h> 29 #include <linux/interrupt.h> 30 #include <linux/debug_locks.h> 31 #include <linux/osq_lock.h> 32 #include <linux/hung_task.h> 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/lock.h> 36 37 #ifndef CONFIG_PREEMPT_RT 38 #include "mutex.h" 39 40 #ifdef CONFIG_DEBUG_MUTEXES 41 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond) 42 #else 43 # define MUTEX_WARN_ON(cond) 44 #endif 45 46 void 47 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 48 { 49 atomic_long_set(&lock->owner, 0); 50 raw_spin_lock_init(&lock->wait_lock); 51 INIT_LIST_HEAD(&lock->wait_list); 52 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 53 osq_lock_init(&lock->osq); 54 #endif 55 56 debug_mutex_init(lock, name, key); 57 } 58 EXPORT_SYMBOL(__mutex_init); 59 60 static inline struct task_struct *__owner_task(unsigned long owner) 61 { 62 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 63 } 64 65 bool mutex_is_locked(struct mutex *lock) 66 { 67 return __mutex_owner(lock) != NULL; 68 } 69 EXPORT_SYMBOL(mutex_is_locked); 70 71 static inline unsigned long __owner_flags(unsigned long owner) 72 { 73 return owner & MUTEX_FLAGS; 74 } 75 76 /* Do not use the return value as a pointer directly. */ 77 unsigned long mutex_get_owner(struct mutex *lock) 78 { 79 unsigned long owner = atomic_long_read(&lock->owner); 80 81 return (unsigned long)__owner_task(owner); 82 } 83 84 /* 85 * Returns: __mutex_owner(lock) on failure or NULL on success. 86 */ 87 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff) 88 { 89 unsigned long owner, curr = (unsigned long)current; 90 91 owner = atomic_long_read(&lock->owner); 92 for (;;) { /* must loop, can race against a flag */ 93 unsigned long flags = __owner_flags(owner); 94 unsigned long task = owner & ~MUTEX_FLAGS; 95 96 if (task) { 97 if (flags & MUTEX_FLAG_PICKUP) { 98 if (task != curr) 99 break; 100 flags &= ~MUTEX_FLAG_PICKUP; 101 } else if (handoff) { 102 if (flags & MUTEX_FLAG_HANDOFF) 103 break; 104 flags |= MUTEX_FLAG_HANDOFF; 105 } else { 106 break; 107 } 108 } else { 109 MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP)); 110 task = curr; 111 } 112 113 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) { 114 if (task == curr) 115 return NULL; 116 break; 117 } 118 } 119 120 return __owner_task(owner); 121 } 122 123 /* 124 * Trylock or set HANDOFF 125 */ 126 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff) 127 { 128 return !__mutex_trylock_common(lock, handoff); 129 } 130 131 /* 132 * Actual trylock that will work on any unlocked state. 133 */ 134 static inline bool __mutex_trylock(struct mutex *lock) 135 { 136 return !__mutex_trylock_common(lock, false); 137 } 138 139 #ifndef CONFIG_DEBUG_LOCK_ALLOC 140 /* 141 * Lockdep annotations are contained to the slow paths for simplicity. 142 * There is nothing that would stop spreading the lockdep annotations outwards 143 * except more code. 144 */ 145 146 /* 147 * Optimistic trylock that only works in the uncontended case. Make sure to 148 * follow with a __mutex_trylock() before failing. 149 */ 150 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 151 { 152 unsigned long curr = (unsigned long)current; 153 unsigned long zero = 0UL; 154 155 MUTEX_WARN_ON(lock->magic != lock); 156 157 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) 158 return true; 159 160 return false; 161 } 162 163 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 164 { 165 unsigned long curr = (unsigned long)current; 166 167 return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL); 168 } 169 #endif 170 171 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 172 { 173 atomic_long_or(flag, &lock->owner); 174 } 175 176 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 177 { 178 atomic_long_andnot(flag, &lock->owner); 179 } 180 181 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 182 { 183 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 184 } 185 186 /* 187 * Add @waiter to a given location in the lock wait_list and set the 188 * FLAG_WAITERS flag if it's the first waiter. 189 */ 190 static void 191 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, 192 struct list_head *list) 193 { 194 #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER 195 hung_task_set_blocker(lock, BLOCKER_TYPE_MUTEX); 196 #endif 197 debug_mutex_add_waiter(lock, waiter, current); 198 199 list_add_tail(&waiter->list, list); 200 if (__mutex_waiter_is_first(lock, waiter)) 201 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 202 } 203 204 static void 205 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter) 206 { 207 list_del(&waiter->list); 208 if (likely(list_empty(&lock->wait_list))) 209 __mutex_clear_flag(lock, MUTEX_FLAGS); 210 211 debug_mutex_remove_waiter(lock, waiter, current); 212 #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER 213 hung_task_clear_blocker(); 214 #endif 215 } 216 217 /* 218 * Give up ownership to a specific task, when @task = NULL, this is equivalent 219 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves 220 * WAITERS. Provides RELEASE semantics like a regular unlock, the 221 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 222 */ 223 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 224 { 225 unsigned long owner = atomic_long_read(&lock->owner); 226 227 for (;;) { 228 unsigned long new; 229 230 MUTEX_WARN_ON(__owner_task(owner) != current); 231 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 232 233 new = (owner & MUTEX_FLAG_WAITERS); 234 new |= (unsigned long)task; 235 if (task) 236 new |= MUTEX_FLAG_PICKUP; 237 238 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new)) 239 break; 240 } 241 } 242 243 #ifndef CONFIG_DEBUG_LOCK_ALLOC 244 /* 245 * We split the mutex lock/unlock logic into separate fastpath and 246 * slowpath functions, to reduce the register pressure on the fastpath. 247 * We also put the fastpath first in the kernel image, to make sure the 248 * branch is predicted by the CPU as default-untaken. 249 */ 250 static void __sched __mutex_lock_slowpath(struct mutex *lock); 251 252 /** 253 * mutex_lock - acquire the mutex 254 * @lock: the mutex to be acquired 255 * 256 * Lock the mutex exclusively for this task. If the mutex is not 257 * available right now, it will sleep until it can get it. 258 * 259 * The mutex must later on be released by the same task that 260 * acquired it. Recursive locking is not allowed. The task 261 * may not exit without first unlocking the mutex. Also, kernel 262 * memory where the mutex resides must not be freed with 263 * the mutex still locked. The mutex must first be initialized 264 * (or statically defined) before it can be locked. memset()-ing 265 * the mutex to 0 is not allowed. 266 * 267 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging 268 * checks that will enforce the restrictions and will also do 269 * deadlock debugging) 270 * 271 * This function is similar to (but not equivalent to) down(). 272 */ 273 void __sched mutex_lock(struct mutex *lock) 274 { 275 might_sleep(); 276 277 if (!__mutex_trylock_fast(lock)) 278 __mutex_lock_slowpath(lock); 279 } 280 EXPORT_SYMBOL(mutex_lock); 281 #endif 282 283 #include "ww_mutex.h" 284 285 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 286 287 /* 288 * Trylock variant that returns the owning task on failure. 289 */ 290 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 291 { 292 return __mutex_trylock_common(lock, false); 293 } 294 295 static inline 296 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 297 struct mutex_waiter *waiter) 298 { 299 struct ww_mutex *ww; 300 301 ww = container_of(lock, struct ww_mutex, base); 302 303 /* 304 * If ww->ctx is set the contents are undefined, only 305 * by acquiring wait_lock there is a guarantee that 306 * they are not invalid when reading. 307 * 308 * As such, when deadlock detection needs to be 309 * performed the optimistic spinning cannot be done. 310 * 311 * Check this in every inner iteration because we may 312 * be racing against another thread's ww_mutex_lock. 313 */ 314 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 315 return false; 316 317 /* 318 * If we aren't on the wait list yet, cancel the spin 319 * if there are waiters. We want to avoid stealing the 320 * lock from a waiter with an earlier stamp, since the 321 * other thread may already own a lock that we also 322 * need. 323 */ 324 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 325 return false; 326 327 /* 328 * Similarly, stop spinning if we are no longer the 329 * first waiter. 330 */ 331 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 332 return false; 333 334 return true; 335 } 336 337 /* 338 * Look out! "owner" is an entirely speculative pointer access and not 339 * reliable. 340 * 341 * "noinline" so that this function shows up on perf profiles. 342 */ 343 static noinline 344 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 345 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 346 { 347 bool ret = true; 348 349 lockdep_assert_preemption_disabled(); 350 351 while (__mutex_owner(lock) == owner) { 352 /* 353 * Ensure we emit the owner->on_cpu, dereference _after_ 354 * checking lock->owner still matches owner. And we already 355 * disabled preemption which is equal to the RCU read-side 356 * crital section in optimistic spinning code. Thus the 357 * task_strcut structure won't go away during the spinning 358 * period 359 */ 360 barrier(); 361 362 /* 363 * Use vcpu_is_preempted to detect lock holder preemption issue. 364 */ 365 if (!owner_on_cpu(owner) || need_resched()) { 366 ret = false; 367 break; 368 } 369 370 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 371 ret = false; 372 break; 373 } 374 375 cpu_relax(); 376 } 377 378 return ret; 379 } 380 381 /* 382 * Initial check for entering the mutex spinning loop 383 */ 384 static inline int mutex_can_spin_on_owner(struct mutex *lock) 385 { 386 struct task_struct *owner; 387 int retval = 1; 388 389 lockdep_assert_preemption_disabled(); 390 391 if (need_resched()) 392 return 0; 393 394 /* 395 * We already disabled preemption which is equal to the RCU read-side 396 * crital section in optimistic spinning code. Thus the task_strcut 397 * structure won't go away during the spinning period. 398 */ 399 owner = __mutex_owner(lock); 400 if (owner) 401 retval = owner_on_cpu(owner); 402 403 /* 404 * If lock->owner is not set, the mutex has been released. Return true 405 * such that we'll trylock in the spin path, which is a faster option 406 * than the blocking slow path. 407 */ 408 return retval; 409 } 410 411 /* 412 * Optimistic spinning. 413 * 414 * We try to spin for acquisition when we find that the lock owner 415 * is currently running on a (different) CPU and while we don't 416 * need to reschedule. The rationale is that if the lock owner is 417 * running, it is likely to release the lock soon. 418 * 419 * The mutex spinners are queued up using MCS lock so that only one 420 * spinner can compete for the mutex. However, if mutex spinning isn't 421 * going to happen, there is no point in going through the lock/unlock 422 * overhead. 423 * 424 * Returns true when the lock was taken, otherwise false, indicating 425 * that we need to jump to the slowpath and sleep. 426 * 427 * The waiter flag is set to true if the spinner is a waiter in the wait 428 * queue. The waiter-spinner will spin on the lock directly and concurrently 429 * with the spinner at the head of the OSQ, if present, until the owner is 430 * changed to itself. 431 */ 432 static __always_inline bool 433 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 434 struct mutex_waiter *waiter) 435 { 436 if (!waiter) { 437 /* 438 * The purpose of the mutex_can_spin_on_owner() function is 439 * to eliminate the overhead of osq_lock() and osq_unlock() 440 * in case spinning isn't possible. As a waiter-spinner 441 * is not going to take OSQ lock anyway, there is no need 442 * to call mutex_can_spin_on_owner(). 443 */ 444 if (!mutex_can_spin_on_owner(lock)) 445 goto fail; 446 447 /* 448 * In order to avoid a stampede of mutex spinners trying to 449 * acquire the mutex all at once, the spinners need to take a 450 * MCS (queued) lock first before spinning on the owner field. 451 */ 452 if (!osq_lock(&lock->osq)) 453 goto fail; 454 } 455 456 for (;;) { 457 struct task_struct *owner; 458 459 /* Try to acquire the mutex... */ 460 owner = __mutex_trylock_or_owner(lock); 461 if (!owner) 462 break; 463 464 /* 465 * There's an owner, wait for it to either 466 * release the lock or go to sleep. 467 */ 468 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 469 goto fail_unlock; 470 471 /* 472 * The cpu_relax() call is a compiler barrier which forces 473 * everything in this loop to be re-loaded. We don't need 474 * memory barriers as we'll eventually observe the right 475 * values at the cost of a few extra spins. 476 */ 477 cpu_relax(); 478 } 479 480 if (!waiter) 481 osq_unlock(&lock->osq); 482 483 return true; 484 485 486 fail_unlock: 487 if (!waiter) 488 osq_unlock(&lock->osq); 489 490 fail: 491 /* 492 * If we fell out of the spin path because of need_resched(), 493 * reschedule now, before we try-lock the mutex. This avoids getting 494 * scheduled out right after we obtained the mutex. 495 */ 496 if (need_resched()) { 497 /* 498 * We _should_ have TASK_RUNNING here, but just in case 499 * we do not, make it so, otherwise we might get stuck. 500 */ 501 __set_current_state(TASK_RUNNING); 502 schedule_preempt_disabled(); 503 } 504 505 return false; 506 } 507 #else 508 static __always_inline bool 509 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 510 struct mutex_waiter *waiter) 511 { 512 return false; 513 } 514 #endif 515 516 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 517 518 /** 519 * mutex_unlock - release the mutex 520 * @lock: the mutex to be released 521 * 522 * Unlock a mutex that has been locked by this task previously. 523 * 524 * This function must not be used in interrupt context. Unlocking 525 * of a not locked mutex is not allowed. 526 * 527 * The caller must ensure that the mutex stays alive until this function has 528 * returned - mutex_unlock() can NOT directly be used to release an object such 529 * that another concurrent task can free it. 530 * Mutexes are different from spinlocks & refcounts in this aspect. 531 * 532 * This function is similar to (but not equivalent to) up(). 533 */ 534 void __sched mutex_unlock(struct mutex *lock) 535 { 536 #ifndef CONFIG_DEBUG_LOCK_ALLOC 537 if (__mutex_unlock_fast(lock)) 538 return; 539 #endif 540 __mutex_unlock_slowpath(lock, _RET_IP_); 541 } 542 EXPORT_SYMBOL(mutex_unlock); 543 544 /** 545 * ww_mutex_unlock - release the w/w mutex 546 * @lock: the mutex to be released 547 * 548 * Unlock a mutex that has been locked by this task previously with any of the 549 * ww_mutex_lock* functions (with or without an acquire context). It is 550 * forbidden to release the locks after releasing the acquire context. 551 * 552 * This function must not be used in interrupt context. Unlocking 553 * of a unlocked mutex is not allowed. 554 */ 555 void __sched ww_mutex_unlock(struct ww_mutex *lock) 556 { 557 __ww_mutex_unlock(lock); 558 mutex_unlock(&lock->base); 559 } 560 EXPORT_SYMBOL(ww_mutex_unlock); 561 562 /* 563 * Lock a mutex (possibly interruptible), slowpath: 564 */ 565 static __always_inline int __sched 566 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass, 567 struct lockdep_map *nest_lock, unsigned long ip, 568 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 569 { 570 DEFINE_WAKE_Q(wake_q); 571 struct mutex_waiter waiter; 572 struct ww_mutex *ww; 573 unsigned long flags; 574 int ret; 575 576 if (!use_ww_ctx) 577 ww_ctx = NULL; 578 579 might_sleep(); 580 581 MUTEX_WARN_ON(lock->magic != lock); 582 583 ww = container_of(lock, struct ww_mutex, base); 584 if (ww_ctx) { 585 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 586 return -EALREADY; 587 588 /* 589 * Reset the wounded flag after a kill. No other process can 590 * race and wound us here since they can't have a valid owner 591 * pointer if we don't have any locks held. 592 */ 593 if (ww_ctx->acquired == 0) 594 ww_ctx->wounded = 0; 595 596 #ifdef CONFIG_DEBUG_LOCK_ALLOC 597 nest_lock = &ww_ctx->dep_map; 598 #endif 599 } 600 601 preempt_disable(); 602 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 603 604 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); 605 if (__mutex_trylock(lock) || 606 mutex_optimistic_spin(lock, ww_ctx, NULL)) { 607 /* got the lock, yay! */ 608 lock_acquired(&lock->dep_map, ip); 609 if (ww_ctx) 610 ww_mutex_set_context_fastpath(ww, ww_ctx); 611 trace_contention_end(lock, 0); 612 preempt_enable(); 613 return 0; 614 } 615 616 raw_spin_lock_irqsave(&lock->wait_lock, flags); 617 /* 618 * After waiting to acquire the wait_lock, try again. 619 */ 620 if (__mutex_trylock(lock)) { 621 if (ww_ctx) 622 __ww_mutex_check_waiters(lock, ww_ctx, &wake_q); 623 624 goto skip_wait; 625 } 626 627 debug_mutex_lock_common(lock, &waiter); 628 waiter.task = current; 629 if (use_ww_ctx) 630 waiter.ww_ctx = ww_ctx; 631 632 lock_contended(&lock->dep_map, ip); 633 634 if (!use_ww_ctx) { 635 /* add waiting tasks to the end of the waitqueue (FIFO): */ 636 __mutex_add_waiter(lock, &waiter, &lock->wait_list); 637 } else { 638 /* 639 * Add in stamp order, waking up waiters that must kill 640 * themselves. 641 */ 642 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q); 643 if (ret) 644 goto err_early_kill; 645 } 646 647 set_current_state(state); 648 trace_contention_begin(lock, LCB_F_MUTEX); 649 for (;;) { 650 bool first; 651 652 /* 653 * Once we hold wait_lock, we're serialized against 654 * mutex_unlock() handing the lock off to us, do a trylock 655 * before testing the error conditions to make sure we pick up 656 * the handoff. 657 */ 658 if (__mutex_trylock(lock)) 659 goto acquired; 660 661 /* 662 * Check for signals and kill conditions while holding 663 * wait_lock. This ensures the lock cancellation is ordered 664 * against mutex_unlock() and wake-ups do not go missing. 665 */ 666 if (signal_pending_state(state, current)) { 667 ret = -EINTR; 668 goto err; 669 } 670 671 if (ww_ctx) { 672 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx); 673 if (ret) 674 goto err; 675 } 676 677 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 678 679 schedule_preempt_disabled(); 680 681 first = __mutex_waiter_is_first(lock, &waiter); 682 683 set_current_state(state); 684 /* 685 * Here we order against unlock; we must either see it change 686 * state back to RUNNING and fall through the next schedule(), 687 * or we must see its unlock and acquire. 688 */ 689 if (__mutex_trylock_or_handoff(lock, first)) 690 break; 691 692 if (first) { 693 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); 694 if (mutex_optimistic_spin(lock, ww_ctx, &waiter)) 695 break; 696 trace_contention_begin(lock, LCB_F_MUTEX); 697 } 698 699 raw_spin_lock_irqsave(&lock->wait_lock, flags); 700 } 701 raw_spin_lock_irqsave(&lock->wait_lock, flags); 702 acquired: 703 __set_current_state(TASK_RUNNING); 704 705 if (ww_ctx) { 706 /* 707 * Wound-Wait; we stole the lock (!first_waiter), check the 708 * waiters as anyone might want to wound us. 709 */ 710 if (!ww_ctx->is_wait_die && 711 !__mutex_waiter_is_first(lock, &waiter)) 712 __ww_mutex_check_waiters(lock, ww_ctx, &wake_q); 713 } 714 715 __mutex_remove_waiter(lock, &waiter); 716 717 debug_mutex_free_waiter(&waiter); 718 719 skip_wait: 720 /* got the lock - cleanup and rejoice! */ 721 lock_acquired(&lock->dep_map, ip); 722 trace_contention_end(lock, 0); 723 724 if (ww_ctx) 725 ww_mutex_lock_acquired(ww, ww_ctx); 726 727 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 728 preempt_enable(); 729 return 0; 730 731 err: 732 __set_current_state(TASK_RUNNING); 733 __mutex_remove_waiter(lock, &waiter); 734 err_early_kill: 735 trace_contention_end(lock, ret); 736 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 737 debug_mutex_free_waiter(&waiter); 738 mutex_release(&lock->dep_map, ip); 739 preempt_enable(); 740 return ret; 741 } 742 743 static int __sched 744 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 745 struct lockdep_map *nest_lock, unsigned long ip) 746 { 747 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 748 } 749 750 static int __sched 751 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 752 unsigned long ip, struct ww_acquire_ctx *ww_ctx) 753 { 754 return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true); 755 } 756 757 /** 758 * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context 759 * @ww: mutex to lock 760 * @ww_ctx: optional w/w acquire context 761 * 762 * Trylocks a mutex with the optional acquire context; no deadlock detection is 763 * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise. 764 * 765 * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is 766 * specified, -EALREADY handling may happen in calls to ww_mutex_trylock. 767 * 768 * A mutex acquired with this function must be released with ww_mutex_unlock. 769 */ 770 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) 771 { 772 if (!ww_ctx) 773 return mutex_trylock(&ww->base); 774 775 MUTEX_WARN_ON(ww->base.magic != &ww->base); 776 777 /* 778 * Reset the wounded flag after a kill. No other process can 779 * race and wound us here, since they can't have a valid owner 780 * pointer if we don't have any locks held. 781 */ 782 if (ww_ctx->acquired == 0) 783 ww_ctx->wounded = 0; 784 785 if (__mutex_trylock(&ww->base)) { 786 ww_mutex_set_context_fastpath(ww, ww_ctx); 787 mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_); 788 return 1; 789 } 790 791 return 0; 792 } 793 EXPORT_SYMBOL(ww_mutex_trylock); 794 795 #ifdef CONFIG_DEBUG_LOCK_ALLOC 796 void __sched 797 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 798 { 799 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 800 } 801 802 EXPORT_SYMBOL_GPL(mutex_lock_nested); 803 804 void __sched 805 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 806 { 807 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 808 } 809 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 810 811 int __sched 812 _mutex_lock_killable(struct mutex *lock, unsigned int subclass, 813 struct lockdep_map *nest) 814 { 815 return __mutex_lock(lock, TASK_KILLABLE, subclass, nest, _RET_IP_); 816 } 817 EXPORT_SYMBOL_GPL(_mutex_lock_killable); 818 819 int __sched 820 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 821 { 822 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 823 } 824 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 825 826 void __sched 827 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 828 { 829 int token; 830 831 might_sleep(); 832 833 token = io_schedule_prepare(); 834 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 835 subclass, NULL, _RET_IP_, NULL, 0); 836 io_schedule_finish(token); 837 } 838 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 839 840 static inline int 841 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 842 { 843 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 844 unsigned tmp; 845 846 if (ctx->deadlock_inject_countdown-- == 0) { 847 tmp = ctx->deadlock_inject_interval; 848 if (tmp > UINT_MAX/4) 849 tmp = UINT_MAX; 850 else 851 tmp = tmp*2 + tmp + tmp/2; 852 853 ctx->deadlock_inject_interval = tmp; 854 ctx->deadlock_inject_countdown = tmp; 855 ctx->contending_lock = lock; 856 857 ww_mutex_unlock(lock); 858 859 return -EDEADLK; 860 } 861 #endif 862 863 return 0; 864 } 865 866 int __sched 867 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 868 { 869 int ret; 870 871 might_sleep(); 872 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 873 0, _RET_IP_, ctx); 874 if (!ret && ctx && ctx->acquired > 1) 875 return ww_mutex_deadlock_injection(lock, ctx); 876 877 return ret; 878 } 879 EXPORT_SYMBOL_GPL(ww_mutex_lock); 880 881 int __sched 882 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 883 { 884 int ret; 885 886 might_sleep(); 887 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 888 0, _RET_IP_, ctx); 889 890 if (!ret && ctx && ctx->acquired > 1) 891 return ww_mutex_deadlock_injection(lock, ctx); 892 893 return ret; 894 } 895 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 896 897 #endif 898 899 /* 900 * Release the lock, slowpath: 901 */ 902 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 903 { 904 struct task_struct *next = NULL; 905 DEFINE_WAKE_Q(wake_q); 906 unsigned long owner; 907 unsigned long flags; 908 909 mutex_release(&lock->dep_map, ip); 910 911 /* 912 * Release the lock before (potentially) taking the spinlock such that 913 * other contenders can get on with things ASAP. 914 * 915 * Except when HANDOFF, in that case we must not clear the owner field, 916 * but instead set it to the top waiter. 917 */ 918 owner = atomic_long_read(&lock->owner); 919 for (;;) { 920 MUTEX_WARN_ON(__owner_task(owner) != current); 921 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 922 923 if (owner & MUTEX_FLAG_HANDOFF) 924 break; 925 926 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) { 927 if (owner & MUTEX_FLAG_WAITERS) 928 break; 929 930 return; 931 } 932 } 933 934 raw_spin_lock_irqsave(&lock->wait_lock, flags); 935 debug_mutex_unlock(lock); 936 if (!list_empty(&lock->wait_list)) { 937 /* get the first entry from the wait-list: */ 938 struct mutex_waiter *waiter = 939 list_first_entry(&lock->wait_list, 940 struct mutex_waiter, list); 941 942 next = waiter->task; 943 944 debug_mutex_wake_waiter(lock, waiter); 945 wake_q_add(&wake_q, next); 946 } 947 948 if (owner & MUTEX_FLAG_HANDOFF) 949 __mutex_handoff(lock, next); 950 951 raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); 952 } 953 954 #ifndef CONFIG_DEBUG_LOCK_ALLOC 955 /* 956 * Here come the less common (and hence less performance-critical) APIs: 957 * mutex_lock_interruptible() and mutex_trylock(). 958 */ 959 static noinline int __sched 960 __mutex_lock_killable_slowpath(struct mutex *lock); 961 962 static noinline int __sched 963 __mutex_lock_interruptible_slowpath(struct mutex *lock); 964 965 /** 966 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. 967 * @lock: The mutex to be acquired. 968 * 969 * Lock the mutex like mutex_lock(). If a signal is delivered while the 970 * process is sleeping, this function will return without acquiring the 971 * mutex. 972 * 973 * Context: Process context. 974 * Return: 0 if the lock was successfully acquired or %-EINTR if a 975 * signal arrived. 976 */ 977 int __sched mutex_lock_interruptible(struct mutex *lock) 978 { 979 might_sleep(); 980 981 if (__mutex_trylock_fast(lock)) 982 return 0; 983 984 return __mutex_lock_interruptible_slowpath(lock); 985 } 986 987 EXPORT_SYMBOL(mutex_lock_interruptible); 988 989 /** 990 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. 991 * @lock: The mutex to be acquired. 992 * 993 * Lock the mutex like mutex_lock(). If a signal which will be fatal to 994 * the current process is delivered while the process is sleeping, this 995 * function will return without acquiring the mutex. 996 * 997 * Context: Process context. 998 * Return: 0 if the lock was successfully acquired or %-EINTR if a 999 * fatal signal arrived. 1000 */ 1001 int __sched mutex_lock_killable(struct mutex *lock) 1002 { 1003 might_sleep(); 1004 1005 if (__mutex_trylock_fast(lock)) 1006 return 0; 1007 1008 return __mutex_lock_killable_slowpath(lock); 1009 } 1010 EXPORT_SYMBOL(mutex_lock_killable); 1011 1012 /** 1013 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O 1014 * @lock: The mutex to be acquired. 1015 * 1016 * Lock the mutex like mutex_lock(). While the task is waiting for this 1017 * mutex, it will be accounted as being in the IO wait state by the 1018 * scheduler. 1019 * 1020 * Context: Process context. 1021 */ 1022 void __sched mutex_lock_io(struct mutex *lock) 1023 { 1024 int token; 1025 1026 token = io_schedule_prepare(); 1027 mutex_lock(lock); 1028 io_schedule_finish(token); 1029 } 1030 EXPORT_SYMBOL_GPL(mutex_lock_io); 1031 1032 static noinline void __sched 1033 __mutex_lock_slowpath(struct mutex *lock) 1034 { 1035 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 1036 } 1037 1038 static noinline int __sched 1039 __mutex_lock_killable_slowpath(struct mutex *lock) 1040 { 1041 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 1042 } 1043 1044 static noinline int __sched 1045 __mutex_lock_interruptible_slowpath(struct mutex *lock) 1046 { 1047 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 1048 } 1049 1050 static noinline int __sched 1051 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1052 { 1053 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, 1054 _RET_IP_, ctx); 1055 } 1056 1057 static noinline int __sched 1058 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1059 struct ww_acquire_ctx *ctx) 1060 { 1061 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, 1062 _RET_IP_, ctx); 1063 } 1064 1065 #endif 1066 1067 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1068 /** 1069 * mutex_trylock - try to acquire the mutex, without waiting 1070 * @lock: the mutex to be acquired 1071 * 1072 * Try to acquire the mutex atomically. Returns 1 if the mutex 1073 * has been acquired successfully, and 0 on contention. 1074 * 1075 * NOTE: this function follows the spin_trylock() convention, so 1076 * it is negated from the down_trylock() return values! Be careful 1077 * about this when converting semaphore users to mutexes. 1078 * 1079 * This function must not be used in interrupt context. The 1080 * mutex must be released by the same task that acquired it. 1081 */ 1082 int __sched mutex_trylock(struct mutex *lock) 1083 { 1084 MUTEX_WARN_ON(lock->magic != lock); 1085 return __mutex_trylock(lock); 1086 } 1087 EXPORT_SYMBOL(mutex_trylock); 1088 #else 1089 int __sched _mutex_trylock_nest_lock(struct mutex *lock, struct lockdep_map *nest_lock) 1090 { 1091 bool locked; 1092 1093 MUTEX_WARN_ON(lock->magic != lock); 1094 locked = __mutex_trylock(lock); 1095 if (locked) 1096 mutex_acquire_nest(&lock->dep_map, 0, 1, nest_lock, _RET_IP_); 1097 1098 return locked; 1099 } 1100 EXPORT_SYMBOL(_mutex_trylock_nest_lock); 1101 #endif 1102 1103 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1104 int __sched 1105 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1106 { 1107 might_sleep(); 1108 1109 if (__mutex_trylock_fast(&lock->base)) { 1110 if (ctx) 1111 ww_mutex_set_context_fastpath(lock, ctx); 1112 return 0; 1113 } 1114 1115 return __ww_mutex_lock_slowpath(lock, ctx); 1116 } 1117 EXPORT_SYMBOL(ww_mutex_lock); 1118 1119 int __sched 1120 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1121 { 1122 might_sleep(); 1123 1124 if (__mutex_trylock_fast(&lock->base)) { 1125 if (ctx) 1126 ww_mutex_set_context_fastpath(lock, ctx); 1127 return 0; 1128 } 1129 1130 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1131 } 1132 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1133 1134 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ 1135 #endif /* !CONFIG_PREEMPT_RT */ 1136 1137 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin); 1138 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end); 1139 1140 /** 1141 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1142 * @cnt: the atomic which we are to dec 1143 * @lock: the mutex to return holding if we dec to 0 1144 * 1145 * return true and hold lock if we dec to 0, return false otherwise 1146 */ 1147 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1148 { 1149 /* dec if we can't possibly hit 0 */ 1150 if (atomic_add_unless(cnt, -1, 1)) 1151 return 0; 1152 /* we might hit 0, so take the lock */ 1153 mutex_lock(lock); 1154 if (!atomic_dec_and_test(cnt)) { 1155 /* when we actually did the dec, we didn't hit 0 */ 1156 mutex_unlock(lock); 1157 return 0; 1158 } 1159 /* we hit 0, and we hold the lock */ 1160 return 1; 1161 } 1162 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1163