1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59 #include <linux/console.h>
60 #include <linux/kasan.h>
61 
62 #include <asm/sections.h>
63 
64 #include "lockdep_internals.h"
65 #include "lock_events.h"
66 
67 #include <trace/events/lock.h>
68 
69 #ifdef CONFIG_PROVE_LOCKING
70 static int prove_locking = 1;
71 module_param(prove_locking, int, 0644);
72 #else
73 #define prove_locking 0
74 #endif
75 
76 #ifdef CONFIG_LOCK_STAT
77 static int lock_stat = 1;
78 module_param(lock_stat, int, 0644);
79 #else
80 #define lock_stat 0
81 #endif
82 
83 #ifdef CONFIG_SYSCTL
84 static const struct ctl_table kern_lockdep_table[] = {
85 #ifdef CONFIG_PROVE_LOCKING
86 	{
87 		.procname       = "prove_locking",
88 		.data           = &prove_locking,
89 		.maxlen         = sizeof(int),
90 		.mode           = 0644,
91 		.proc_handler   = proc_dointvec,
92 	},
93 #endif /* CONFIG_PROVE_LOCKING */
94 #ifdef CONFIG_LOCK_STAT
95 	{
96 		.procname       = "lock_stat",
97 		.data           = &lock_stat,
98 		.maxlen         = sizeof(int),
99 		.mode           = 0644,
100 		.proc_handler   = proc_dointvec,
101 	},
102 #endif /* CONFIG_LOCK_STAT */
103 };
104 
105 static __init int kernel_lockdep_sysctls_init(void)
106 {
107 	register_sysctl_init("kernel", kern_lockdep_table);
108 	return 0;
109 }
110 late_initcall(kernel_lockdep_sysctls_init);
111 #endif /* CONFIG_SYSCTL */
112 
113 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
114 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
115 
116 static __always_inline bool lockdep_enabled(void)
117 {
118 	if (!debug_locks)
119 		return false;
120 
121 	if (this_cpu_read(lockdep_recursion))
122 		return false;
123 
124 	if (current->lockdep_recursion)
125 		return false;
126 
127 	return true;
128 }
129 
130 /*
131  * lockdep_lock: protects the lockdep graph, the hashes and the
132  *               class/list/hash allocators.
133  *
134  * This is one of the rare exceptions where it's justified
135  * to use a raw spinlock - we really dont want the spinlock
136  * code to recurse back into the lockdep code...
137  */
138 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
139 static struct task_struct *__owner;
140 
141 static inline void lockdep_lock(void)
142 {
143 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
144 
145 	__this_cpu_inc(lockdep_recursion);
146 	arch_spin_lock(&__lock);
147 	__owner = current;
148 }
149 
150 static inline void lockdep_unlock(void)
151 {
152 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
153 
154 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
155 		return;
156 
157 	__owner = NULL;
158 	arch_spin_unlock(&__lock);
159 	__this_cpu_dec(lockdep_recursion);
160 }
161 
162 #ifdef CONFIG_PROVE_LOCKING
163 static inline bool lockdep_assert_locked(void)
164 {
165 	return DEBUG_LOCKS_WARN_ON(__owner != current);
166 }
167 #endif
168 
169 static struct task_struct *lockdep_selftest_task_struct;
170 
171 
172 static int graph_lock(void)
173 {
174 	lockdep_lock();
175 	lockevent_inc(lockdep_lock);
176 	/*
177 	 * Make sure that if another CPU detected a bug while
178 	 * walking the graph we dont change it (while the other
179 	 * CPU is busy printing out stuff with the graph lock
180 	 * dropped already)
181 	 */
182 	if (!debug_locks) {
183 		lockdep_unlock();
184 		return 0;
185 	}
186 	return 1;
187 }
188 
189 static inline void graph_unlock(void)
190 {
191 	lockdep_unlock();
192 }
193 
194 /*
195  * Turn lock debugging off and return with 0 if it was off already,
196  * and also release the graph lock:
197  */
198 static inline int debug_locks_off_graph_unlock(void)
199 {
200 	int ret = debug_locks_off();
201 
202 	lockdep_unlock();
203 
204 	return ret;
205 }
206 
207 unsigned long nr_list_entries;
208 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
209 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
210 
211 /*
212  * All data structures here are protected by the global debug_lock.
213  *
214  * nr_lock_classes is the number of elements of lock_classes[] that is
215  * in use.
216  */
217 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
218 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
219 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
220 unsigned long nr_lock_classes;
221 unsigned long nr_zapped_classes;
222 unsigned long nr_dynamic_keys;
223 unsigned long max_lock_class_idx;
224 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
225 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
226 
227 static inline struct lock_class *hlock_class(struct held_lock *hlock)
228 {
229 	unsigned int class_idx = hlock->class_idx;
230 
231 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
232 	barrier();
233 
234 	if (!test_bit(class_idx, lock_classes_in_use)) {
235 		/*
236 		 * Someone passed in garbage, we give up.
237 		 */
238 		DEBUG_LOCKS_WARN_ON(1);
239 		return NULL;
240 	}
241 
242 	/*
243 	 * At this point, if the passed hlock->class_idx is still garbage,
244 	 * we just have to live with it
245 	 */
246 	return lock_classes + class_idx;
247 }
248 
249 #ifdef CONFIG_LOCK_STAT
250 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
251 
252 static inline u64 lockstat_clock(void)
253 {
254 	return local_clock();
255 }
256 
257 static int lock_point(unsigned long points[], unsigned long ip)
258 {
259 	int i;
260 
261 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
262 		if (points[i] == 0) {
263 			points[i] = ip;
264 			break;
265 		}
266 		if (points[i] == ip)
267 			break;
268 	}
269 
270 	return i;
271 }
272 
273 static void lock_time_inc(struct lock_time *lt, u64 time)
274 {
275 	if (time > lt->max)
276 		lt->max = time;
277 
278 	if (time < lt->min || !lt->nr)
279 		lt->min = time;
280 
281 	lt->total += time;
282 	lt->nr++;
283 }
284 
285 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
286 {
287 	if (!src->nr)
288 		return;
289 
290 	if (src->max > dst->max)
291 		dst->max = src->max;
292 
293 	if (src->min < dst->min || !dst->nr)
294 		dst->min = src->min;
295 
296 	dst->total += src->total;
297 	dst->nr += src->nr;
298 }
299 
300 struct lock_class_stats lock_stats(struct lock_class *class)
301 {
302 	struct lock_class_stats stats;
303 	int cpu, i;
304 
305 	memset(&stats, 0, sizeof(struct lock_class_stats));
306 	for_each_possible_cpu(cpu) {
307 		struct lock_class_stats *pcs =
308 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
309 
310 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
311 			stats.contention_point[i] += pcs->contention_point[i];
312 
313 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
314 			stats.contending_point[i] += pcs->contending_point[i];
315 
316 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
317 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
318 
319 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
320 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
321 
322 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
323 			stats.bounces[i] += pcs->bounces[i];
324 	}
325 
326 	return stats;
327 }
328 
329 void clear_lock_stats(struct lock_class *class)
330 {
331 	int cpu;
332 
333 	for_each_possible_cpu(cpu) {
334 		struct lock_class_stats *cpu_stats =
335 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
336 
337 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
338 	}
339 	memset(class->contention_point, 0, sizeof(class->contention_point));
340 	memset(class->contending_point, 0, sizeof(class->contending_point));
341 }
342 
343 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
344 {
345 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
346 }
347 
348 static void lock_release_holdtime(struct held_lock *hlock)
349 {
350 	struct lock_class_stats *stats;
351 	u64 holdtime;
352 
353 	if (!lock_stat)
354 		return;
355 
356 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
357 
358 	stats = get_lock_stats(hlock_class(hlock));
359 	if (hlock->read)
360 		lock_time_inc(&stats->read_holdtime, holdtime);
361 	else
362 		lock_time_inc(&stats->write_holdtime, holdtime);
363 }
364 #else
365 static inline void lock_release_holdtime(struct held_lock *hlock)
366 {
367 }
368 #endif
369 
370 /*
371  * We keep a global list of all lock classes. The list is only accessed with
372  * the lockdep spinlock lock held. free_lock_classes is a list with free
373  * elements. These elements are linked together by the lock_entry member in
374  * struct lock_class.
375  */
376 static LIST_HEAD(all_lock_classes);
377 static LIST_HEAD(free_lock_classes);
378 
379 /**
380  * struct pending_free - information about data structures about to be freed
381  * @zapped: Head of a list with struct lock_class elements.
382  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
383  *	are about to be freed.
384  */
385 struct pending_free {
386 	struct list_head zapped;
387 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
388 };
389 
390 /**
391  * struct delayed_free - data structures used for delayed freeing
392  *
393  * A data structure for delayed freeing of data structures that may be
394  * accessed by RCU readers at the time these were freed.
395  *
396  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
397  * @index:     Index of @pf to which freed data structures are added.
398  * @scheduled: Whether or not an RCU callback has been scheduled.
399  * @pf:        Array with information about data structures about to be freed.
400  */
401 static struct delayed_free {
402 	struct rcu_head		rcu_head;
403 	int			index;
404 	int			scheduled;
405 	struct pending_free	pf[2];
406 } delayed_free;
407 
408 /*
409  * The lockdep classes are in a hash-table as well, for fast lookup:
410  */
411 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
412 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
413 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
414 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
415 
416 static struct hlist_head classhash_table[CLASSHASH_SIZE];
417 
418 /*
419  * We put the lock dependency chains into a hash-table as well, to cache
420  * their existence:
421  */
422 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
423 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
424 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
425 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
426 
427 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
428 
429 /*
430  * the id of held_lock
431  */
432 static inline u16 hlock_id(struct held_lock *hlock)
433 {
434 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
435 
436 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
437 }
438 
439 static inline __maybe_unused unsigned int chain_hlock_class_idx(u16 hlock_id)
440 {
441 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
442 }
443 
444 /*
445  * The hash key of the lock dependency chains is a hash itself too:
446  * it's a hash of all locks taken up to that lock, including that lock.
447  * It's a 64-bit hash, because it's important for the keys to be
448  * unique.
449  */
450 static inline u64 iterate_chain_key(u64 key, u32 idx)
451 {
452 	u32 k0 = key, k1 = key >> 32;
453 
454 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
455 
456 	return k0 | (u64)k1 << 32;
457 }
458 
459 void lockdep_init_task(struct task_struct *task)
460 {
461 	task->lockdep_depth = 0; /* no locks held yet */
462 	task->curr_chain_key = INITIAL_CHAIN_KEY;
463 	task->lockdep_recursion = 0;
464 }
465 
466 static __always_inline void lockdep_recursion_inc(void)
467 {
468 	__this_cpu_inc(lockdep_recursion);
469 }
470 
471 static __always_inline void lockdep_recursion_finish(void)
472 {
473 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
474 		__this_cpu_write(lockdep_recursion, 0);
475 }
476 
477 void lockdep_set_selftest_task(struct task_struct *task)
478 {
479 	lockdep_selftest_task_struct = task;
480 }
481 
482 /*
483  * Debugging switches:
484  */
485 
486 #define VERBOSE			0
487 #define VERY_VERBOSE		0
488 
489 #if VERBOSE
490 # define HARDIRQ_VERBOSE	1
491 # define SOFTIRQ_VERBOSE	1
492 #else
493 # define HARDIRQ_VERBOSE	0
494 # define SOFTIRQ_VERBOSE	0
495 #endif
496 
497 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
498 /*
499  * Quick filtering for interesting events:
500  */
501 static int class_filter(struct lock_class *class)
502 {
503 #if 0
504 	/* Example */
505 	if (class->name_version == 1 &&
506 			!strcmp(class->name, "lockname"))
507 		return 1;
508 	if (class->name_version == 1 &&
509 			!strcmp(class->name, "&struct->lockfield"))
510 		return 1;
511 #endif
512 	/* Filter everything else. 1 would be to allow everything else */
513 	return 0;
514 }
515 #endif
516 
517 static int verbose(struct lock_class *class)
518 {
519 #if VERBOSE
520 	return class_filter(class);
521 #endif
522 	return 0;
523 }
524 
525 static void print_lockdep_off(const char *bug_msg)
526 {
527 	printk(KERN_DEBUG "%s\n", bug_msg);
528 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
529 #ifdef CONFIG_LOCK_STAT
530 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
531 #endif
532 }
533 
534 unsigned long nr_stack_trace_entries;
535 
536 #ifdef CONFIG_PROVE_LOCKING
537 /**
538  * struct lock_trace - single stack backtrace
539  * @hash_entry:	Entry in a stack_trace_hash[] list.
540  * @hash:	jhash() of @entries.
541  * @nr_entries:	Number of entries in @entries.
542  * @entries:	Actual stack backtrace.
543  */
544 struct lock_trace {
545 	struct hlist_node	hash_entry;
546 	u32			hash;
547 	u32			nr_entries;
548 	unsigned long		entries[] __aligned(sizeof(unsigned long));
549 };
550 #define LOCK_TRACE_SIZE_IN_LONGS				\
551 	(sizeof(struct lock_trace) / sizeof(unsigned long))
552 /*
553  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
554  */
555 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
556 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
557 
558 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
559 {
560 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
561 		memcmp(t1->entries, t2->entries,
562 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
563 }
564 
565 static struct lock_trace *save_trace(void)
566 {
567 	struct lock_trace *trace, *t2;
568 	struct hlist_head *hash_head;
569 	u32 hash;
570 	int max_entries;
571 
572 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
573 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
574 
575 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
576 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
577 		LOCK_TRACE_SIZE_IN_LONGS;
578 
579 	if (max_entries <= 0) {
580 		if (!debug_locks_off_graph_unlock())
581 			return NULL;
582 
583 		nbcon_cpu_emergency_enter();
584 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
585 		dump_stack();
586 		nbcon_cpu_emergency_exit();
587 
588 		return NULL;
589 	}
590 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
591 
592 	hash = jhash(trace->entries, trace->nr_entries *
593 		     sizeof(trace->entries[0]), 0);
594 	trace->hash = hash;
595 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
596 	hlist_for_each_entry(t2, hash_head, hash_entry) {
597 		if (traces_identical(trace, t2))
598 			return t2;
599 	}
600 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
601 	hlist_add_head(&trace->hash_entry, hash_head);
602 
603 	return trace;
604 }
605 
606 /* Return the number of stack traces in the stack_trace[] array. */
607 u64 lockdep_stack_trace_count(void)
608 {
609 	struct lock_trace *trace;
610 	u64 c = 0;
611 	int i;
612 
613 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
614 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
615 			c++;
616 		}
617 	}
618 
619 	return c;
620 }
621 
622 /* Return the number of stack hash chains that have at least one stack trace. */
623 u64 lockdep_stack_hash_count(void)
624 {
625 	u64 c = 0;
626 	int i;
627 
628 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
629 		if (!hlist_empty(&stack_trace_hash[i]))
630 			c++;
631 
632 	return c;
633 }
634 #endif
635 
636 unsigned int nr_hardirq_chains;
637 unsigned int nr_softirq_chains;
638 unsigned int nr_process_chains;
639 unsigned int max_lockdep_depth;
640 
641 #ifdef CONFIG_DEBUG_LOCKDEP
642 /*
643  * Various lockdep statistics:
644  */
645 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
646 #endif
647 
648 #ifdef CONFIG_PROVE_LOCKING
649 /*
650  * Locking printouts:
651  */
652 
653 #define __USAGE(__STATE)						\
654 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
655 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
656 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
657 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
658 
659 static const char *usage_str[] =
660 {
661 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
662 #include "lockdep_states.h"
663 #undef LOCKDEP_STATE
664 	[LOCK_USED] = "INITIAL USE",
665 	[LOCK_USED_READ] = "INITIAL READ USE",
666 	/* abused as string storage for verify_lock_unused() */
667 	[LOCK_USAGE_STATES] = "IN-NMI",
668 };
669 #endif
670 
671 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
672 {
673 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
674 }
675 
676 static inline unsigned long lock_flag(enum lock_usage_bit bit)
677 {
678 	return 1UL << bit;
679 }
680 
681 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
682 {
683 	/*
684 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
685 	 * irq context), which is the safest usage category.
686 	 */
687 	char c = '.';
688 
689 	/*
690 	 * The order of the following usage checks matters, which will
691 	 * result in the outcome character as follows:
692 	 *
693 	 * - '+': irq is enabled and not in irq context
694 	 * - '-': in irq context and irq is disabled
695 	 * - '?': in irq context and irq is enabled
696 	 */
697 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
698 		c = '+';
699 		if (class->usage_mask & lock_flag(bit))
700 			c = '?';
701 	} else if (class->usage_mask & lock_flag(bit))
702 		c = '-';
703 
704 	return c;
705 }
706 
707 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
708 {
709 	int i = 0;
710 
711 #define LOCKDEP_STATE(__STATE) 						\
712 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
713 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
714 #include "lockdep_states.h"
715 #undef LOCKDEP_STATE
716 
717 	usage[i] = '\0';
718 }
719 
720 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
721 {
722 	char str[KSYM_NAME_LEN];
723 	const char *name;
724 
725 	name = class->name;
726 	if (!name) {
727 		name = __get_key_name(class->key, str);
728 		printk(KERN_CONT "%s", name);
729 	} else {
730 		printk(KERN_CONT "%s", name);
731 		if (class->name_version > 1)
732 			printk(KERN_CONT "#%d", class->name_version);
733 		if (class->subclass)
734 			printk(KERN_CONT "/%d", class->subclass);
735 		if (hlock && class->print_fn)
736 			class->print_fn(hlock->instance);
737 	}
738 }
739 
740 static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
741 {
742 	char usage[LOCK_USAGE_CHARS];
743 
744 	get_usage_chars(class, usage);
745 
746 	printk(KERN_CONT " (");
747 	__print_lock_name(hlock, class);
748 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
749 			class->wait_type_outer ?: class->wait_type_inner,
750 			class->wait_type_inner);
751 }
752 
753 static void print_lockdep_cache(struct lockdep_map *lock)
754 {
755 	const char *name;
756 	char str[KSYM_NAME_LEN];
757 
758 	name = lock->name;
759 	if (!name)
760 		name = __get_key_name(lock->key->subkeys, str);
761 
762 	printk(KERN_CONT "%s", name);
763 }
764 
765 static void print_lock(struct held_lock *hlock)
766 {
767 	/*
768 	 * We can be called locklessly through debug_show_all_locks() so be
769 	 * extra careful, the hlock might have been released and cleared.
770 	 *
771 	 * If this indeed happens, lets pretend it does not hurt to continue
772 	 * to print the lock unless the hlock class_idx does not point to a
773 	 * registered class. The rationale here is: since we don't attempt
774 	 * to distinguish whether we are in this situation, if it just
775 	 * happened we can't count on class_idx to tell either.
776 	 */
777 	struct lock_class *lock = hlock_class(hlock);
778 
779 	if (!lock) {
780 		printk(KERN_CONT "<RELEASED>\n");
781 		return;
782 	}
783 
784 	printk(KERN_CONT "%px", hlock->instance);
785 	print_lock_name(hlock, lock);
786 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
787 }
788 
789 static void lockdep_print_held_locks(struct task_struct *p)
790 {
791 	int i, depth = READ_ONCE(p->lockdep_depth);
792 
793 	if (!depth)
794 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
795 	else
796 		printk("%d lock%s held by %s/%d:\n", depth,
797 		       str_plural(depth), p->comm, task_pid_nr(p));
798 	/*
799 	 * It's not reliable to print a task's held locks if it's not sleeping
800 	 * and it's not the current task.
801 	 */
802 	if (p != current && task_is_running(p))
803 		return;
804 	for (i = 0; i < depth; i++) {
805 		printk(" #%d: ", i);
806 		print_lock(p->held_locks + i);
807 	}
808 }
809 
810 static void print_kernel_ident(void)
811 {
812 	printk("%s %.*s %s\n", init_utsname()->release,
813 		(int)strcspn(init_utsname()->version, " "),
814 		init_utsname()->version,
815 		print_tainted());
816 }
817 
818 static int very_verbose(struct lock_class *class)
819 {
820 #if VERY_VERBOSE
821 	return class_filter(class);
822 #endif
823 	return 0;
824 }
825 
826 /*
827  * Is this the address of a static object:
828  */
829 #ifdef __KERNEL__
830 static int static_obj(const void *obj)
831 {
832 	unsigned long addr = (unsigned long) obj;
833 
834 	if (is_kernel_core_data(addr))
835 		return 1;
836 
837 	/*
838 	 * keys are allowed in the __ro_after_init section.
839 	 */
840 	if (is_kernel_rodata(addr))
841 		return 1;
842 
843 	/*
844 	 * in initdata section and used during bootup only?
845 	 * NOTE: On some platforms the initdata section is
846 	 * outside of the _stext ... _end range.
847 	 */
848 	if (system_state < SYSTEM_FREEING_INITMEM &&
849 		init_section_contains((void *)addr, 1))
850 		return 1;
851 
852 	/*
853 	 * in-kernel percpu var?
854 	 */
855 	if (is_kernel_percpu_address(addr))
856 		return 1;
857 
858 	/*
859 	 * module static or percpu var?
860 	 */
861 	return is_module_address(addr) || is_module_percpu_address(addr);
862 }
863 #endif
864 
865 /*
866  * To make lock name printouts unique, we calculate a unique
867  * class->name_version generation counter. The caller must hold the graph
868  * lock.
869  */
870 static int count_matching_names(struct lock_class *new_class)
871 {
872 	struct lock_class *class;
873 	int count = 0;
874 
875 	if (!new_class->name)
876 		return 0;
877 
878 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
879 		if (new_class->key - new_class->subclass == class->key)
880 			return class->name_version;
881 		if (class->name && !strcmp(class->name, new_class->name))
882 			count = max(count, class->name_version);
883 	}
884 
885 	return count + 1;
886 }
887 
888 /* used from NMI context -- must be lockless */
889 static noinstr struct lock_class *
890 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
891 {
892 	struct lockdep_subclass_key *key;
893 	struct hlist_head *hash_head;
894 	struct lock_class *class;
895 
896 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
897 		instrumentation_begin();
898 		debug_locks_off();
899 		nbcon_cpu_emergency_enter();
900 		printk(KERN_ERR
901 			"BUG: looking up invalid subclass: %u\n", subclass);
902 		printk(KERN_ERR
903 			"turning off the locking correctness validator.\n");
904 		dump_stack();
905 		nbcon_cpu_emergency_exit();
906 		instrumentation_end();
907 		return NULL;
908 	}
909 
910 	/*
911 	 * If it is not initialised then it has never been locked,
912 	 * so it won't be present in the hash table.
913 	 */
914 	if (unlikely(!lock->key))
915 		return NULL;
916 
917 	/*
918 	 * NOTE: the class-key must be unique. For dynamic locks, a static
919 	 * lock_class_key variable is passed in through the mutex_init()
920 	 * (or spin_lock_init()) call - which acts as the key. For static
921 	 * locks we use the lock object itself as the key.
922 	 */
923 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
924 			sizeof(struct lockdep_map));
925 
926 	key = lock->key->subkeys + subclass;
927 
928 	hash_head = classhashentry(key);
929 
930 	/*
931 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
932 	 */
933 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
934 		return NULL;
935 
936 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
937 		if (class->key == key) {
938 			/*
939 			 * Huh! same key, different name? Did someone trample
940 			 * on some memory? We're most confused.
941 			 */
942 			WARN_ONCE(class->name != lock->name &&
943 				  lock->key != &__lockdep_no_validate__,
944 				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
945 				  lock->name, lock->key, class->name);
946 			return class;
947 		}
948 	}
949 
950 	return NULL;
951 }
952 
953 /*
954  * Static locks do not have their class-keys yet - for them the key is
955  * the lock object itself. If the lock is in the per cpu area, the
956  * canonical address of the lock (per cpu offset removed) is used.
957  */
958 static bool assign_lock_key(struct lockdep_map *lock)
959 {
960 	unsigned long can_addr, addr = (unsigned long)lock;
961 
962 #ifdef __KERNEL__
963 	/*
964 	 * lockdep_free_key_range() assumes that struct lock_class_key
965 	 * objects do not overlap. Since we use the address of lock
966 	 * objects as class key for static objects, check whether the
967 	 * size of lock_class_key objects does not exceed the size of
968 	 * the smallest lock object.
969 	 */
970 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
971 #endif
972 
973 	if (__is_kernel_percpu_address(addr, &can_addr))
974 		lock->key = (void *)can_addr;
975 	else if (__is_module_percpu_address(addr, &can_addr))
976 		lock->key = (void *)can_addr;
977 	else if (static_obj(lock))
978 		lock->key = (void *)lock;
979 	else {
980 		/* Debug-check: all keys must be persistent! */
981 		debug_locks_off();
982 		nbcon_cpu_emergency_enter();
983 		pr_err("INFO: trying to register non-static key.\n");
984 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
985 		pr_err("you didn't initialize this object before use?\n");
986 		pr_err("turning off the locking correctness validator.\n");
987 		dump_stack();
988 		nbcon_cpu_emergency_exit();
989 		return false;
990 	}
991 
992 	return true;
993 }
994 
995 #ifdef CONFIG_DEBUG_LOCKDEP
996 
997 /* Check whether element @e occurs in list @h */
998 static bool in_list(struct list_head *e, struct list_head *h)
999 {
1000 	struct list_head *f;
1001 
1002 	list_for_each(f, h) {
1003 		if (e == f)
1004 			return true;
1005 	}
1006 
1007 	return false;
1008 }
1009 
1010 /*
1011  * Check whether entry @e occurs in any of the locks_after or locks_before
1012  * lists.
1013  */
1014 static bool in_any_class_list(struct list_head *e)
1015 {
1016 	struct lock_class *class;
1017 	int i;
1018 
1019 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1020 		class = &lock_classes[i];
1021 		if (in_list(e, &class->locks_after) ||
1022 		    in_list(e, &class->locks_before))
1023 			return true;
1024 	}
1025 	return false;
1026 }
1027 
1028 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1029 {
1030 	struct lock_list *e;
1031 
1032 	list_for_each_entry(e, h, entry) {
1033 		if (e->links_to != c) {
1034 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1035 			       c->name ? : "(?)",
1036 			       (unsigned long)(e - list_entries),
1037 			       e->links_to && e->links_to->name ?
1038 			       e->links_to->name : "(?)",
1039 			       e->class && e->class->name ? e->class->name :
1040 			       "(?)");
1041 			return false;
1042 		}
1043 	}
1044 	return true;
1045 }
1046 
1047 #ifdef CONFIG_PROVE_LOCKING
1048 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1049 #endif
1050 
1051 static bool check_lock_chain_key(struct lock_chain *chain)
1052 {
1053 #ifdef CONFIG_PROVE_LOCKING
1054 	u64 chain_key = INITIAL_CHAIN_KEY;
1055 	int i;
1056 
1057 	for (i = chain->base; i < chain->base + chain->depth; i++)
1058 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1059 	/*
1060 	 * The 'unsigned long long' casts avoid that a compiler warning
1061 	 * is reported when building tools/lib/lockdep.
1062 	 */
1063 	if (chain->chain_key != chain_key) {
1064 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1065 		       (unsigned long long)(chain - lock_chains),
1066 		       (unsigned long long)chain->chain_key,
1067 		       (unsigned long long)chain_key);
1068 		return false;
1069 	}
1070 #endif
1071 	return true;
1072 }
1073 
1074 static bool in_any_zapped_class_list(struct lock_class *class)
1075 {
1076 	struct pending_free *pf;
1077 	int i;
1078 
1079 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1080 		if (in_list(&class->lock_entry, &pf->zapped))
1081 			return true;
1082 	}
1083 
1084 	return false;
1085 }
1086 
1087 static bool __check_data_structures(void)
1088 {
1089 	struct lock_class *class;
1090 	struct lock_chain *chain;
1091 	struct hlist_head *head;
1092 	struct lock_list *e;
1093 	int i;
1094 
1095 	/* Check whether all classes occur in a lock list. */
1096 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1097 		class = &lock_classes[i];
1098 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1099 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1100 		    !in_any_zapped_class_list(class)) {
1101 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1102 			       class, class->name ? : "(?)");
1103 			return false;
1104 		}
1105 	}
1106 
1107 	/* Check whether all classes have valid lock lists. */
1108 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1109 		class = &lock_classes[i];
1110 		if (!class_lock_list_valid(class, &class->locks_before))
1111 			return false;
1112 		if (!class_lock_list_valid(class, &class->locks_after))
1113 			return false;
1114 	}
1115 
1116 	/* Check the chain_key of all lock chains. */
1117 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1118 		head = chainhash_table + i;
1119 		hlist_for_each_entry_rcu(chain, head, entry) {
1120 			if (!check_lock_chain_key(chain))
1121 				return false;
1122 		}
1123 	}
1124 
1125 	/*
1126 	 * Check whether all list entries that are in use occur in a class
1127 	 * lock list.
1128 	 */
1129 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1130 		e = list_entries + i;
1131 		if (!in_any_class_list(&e->entry)) {
1132 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1133 			       (unsigned int)(e - list_entries),
1134 			       e->class->name ? : "(?)",
1135 			       e->links_to->name ? : "(?)");
1136 			return false;
1137 		}
1138 	}
1139 
1140 	/*
1141 	 * Check whether all list entries that are not in use do not occur in
1142 	 * a class lock list.
1143 	 */
1144 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1145 		e = list_entries + i;
1146 		if (in_any_class_list(&e->entry)) {
1147 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1148 			       (unsigned int)(e - list_entries),
1149 			       e->class && e->class->name ? e->class->name :
1150 			       "(?)",
1151 			       e->links_to && e->links_to->name ?
1152 			       e->links_to->name : "(?)");
1153 			return false;
1154 		}
1155 	}
1156 
1157 	return true;
1158 }
1159 
1160 int check_consistency = 0;
1161 module_param(check_consistency, int, 0644);
1162 
1163 static void check_data_structures(void)
1164 {
1165 	static bool once = false;
1166 
1167 	if (check_consistency && !once) {
1168 		if (!__check_data_structures()) {
1169 			once = true;
1170 			WARN_ON(once);
1171 		}
1172 	}
1173 }
1174 
1175 #else /* CONFIG_DEBUG_LOCKDEP */
1176 
1177 static inline void check_data_structures(void) { }
1178 
1179 #endif /* CONFIG_DEBUG_LOCKDEP */
1180 
1181 static void init_chain_block_buckets(void);
1182 
1183 /*
1184  * Initialize the lock_classes[] array elements, the free_lock_classes list
1185  * and also the delayed_free structure.
1186  */
1187 static void init_data_structures_once(void)
1188 {
1189 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1190 	int i;
1191 
1192 	if (likely(rcu_head_initialized))
1193 		return;
1194 
1195 	if (system_state >= SYSTEM_SCHEDULING) {
1196 		init_rcu_head(&delayed_free.rcu_head);
1197 		rcu_head_initialized = true;
1198 	}
1199 
1200 	if (ds_initialized)
1201 		return;
1202 
1203 	ds_initialized = true;
1204 
1205 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1206 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1207 
1208 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1209 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1210 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1211 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1212 	}
1213 	init_chain_block_buckets();
1214 }
1215 
1216 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1217 {
1218 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1219 
1220 	return lock_keys_hash + hash;
1221 }
1222 
1223 /* Register a dynamically allocated key. */
1224 void lockdep_register_key(struct lock_class_key *key)
1225 {
1226 	struct hlist_head *hash_head;
1227 	struct lock_class_key *k;
1228 	unsigned long flags;
1229 
1230 	if (WARN_ON_ONCE(static_obj(key)))
1231 		return;
1232 	hash_head = keyhashentry(key);
1233 
1234 	raw_local_irq_save(flags);
1235 	if (!graph_lock())
1236 		goto restore_irqs;
1237 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1238 		if (WARN_ON_ONCE(k == key))
1239 			goto out_unlock;
1240 	}
1241 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1242 	nr_dynamic_keys++;
1243 out_unlock:
1244 	graph_unlock();
1245 restore_irqs:
1246 	raw_local_irq_restore(flags);
1247 }
1248 EXPORT_SYMBOL_GPL(lockdep_register_key);
1249 
1250 /* Check whether a key has been registered as a dynamic key. */
1251 static bool is_dynamic_key(const struct lock_class_key *key)
1252 {
1253 	struct hlist_head *hash_head;
1254 	struct lock_class_key *k;
1255 	bool found = false;
1256 
1257 	if (WARN_ON_ONCE(static_obj(key)))
1258 		return false;
1259 
1260 	/*
1261 	 * If lock debugging is disabled lock_keys_hash[] may contain
1262 	 * pointers to memory that has already been freed. Avoid triggering
1263 	 * a use-after-free in that case by returning early.
1264 	 */
1265 	if (!debug_locks)
1266 		return true;
1267 
1268 	hash_head = keyhashentry(key);
1269 
1270 	rcu_read_lock();
1271 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1272 		if (k == key) {
1273 			found = true;
1274 			break;
1275 		}
1276 	}
1277 	rcu_read_unlock();
1278 
1279 	return found;
1280 }
1281 
1282 /*
1283  * Register a lock's class in the hash-table, if the class is not present
1284  * yet. Otherwise we look it up. We cache the result in the lock object
1285  * itself, so actual lookup of the hash should be once per lock object.
1286  */
1287 static struct lock_class *
1288 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1289 {
1290 	struct lockdep_subclass_key *key;
1291 	struct hlist_head *hash_head;
1292 	struct lock_class *class;
1293 	int idx;
1294 
1295 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1296 
1297 	class = look_up_lock_class(lock, subclass);
1298 	if (likely(class))
1299 		goto out_set_class_cache;
1300 
1301 	if (!lock->key) {
1302 		if (!assign_lock_key(lock))
1303 			return NULL;
1304 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1305 		return NULL;
1306 	}
1307 
1308 	key = lock->key->subkeys + subclass;
1309 	hash_head = classhashentry(key);
1310 
1311 	if (!graph_lock()) {
1312 		return NULL;
1313 	}
1314 	/*
1315 	 * We have to do the hash-walk again, to avoid races
1316 	 * with another CPU:
1317 	 */
1318 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1319 		if (class->key == key)
1320 			goto out_unlock_set;
1321 	}
1322 
1323 	init_data_structures_once();
1324 
1325 	/* Allocate a new lock class and add it to the hash. */
1326 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1327 					 lock_entry);
1328 	if (!class) {
1329 		if (!debug_locks_off_graph_unlock()) {
1330 			return NULL;
1331 		}
1332 
1333 		nbcon_cpu_emergency_enter();
1334 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1335 		dump_stack();
1336 		nbcon_cpu_emergency_exit();
1337 		return NULL;
1338 	}
1339 	nr_lock_classes++;
1340 	__set_bit(class - lock_classes, lock_classes_in_use);
1341 	debug_atomic_inc(nr_unused_locks);
1342 	class->key = key;
1343 	class->name = lock->name;
1344 	class->subclass = subclass;
1345 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1346 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1347 	class->name_version = count_matching_names(class);
1348 	class->wait_type_inner = lock->wait_type_inner;
1349 	class->wait_type_outer = lock->wait_type_outer;
1350 	class->lock_type = lock->lock_type;
1351 	/*
1352 	 * We use RCU's safe list-add method to make
1353 	 * parallel walking of the hash-list safe:
1354 	 */
1355 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1356 	/*
1357 	 * Remove the class from the free list and add it to the global list
1358 	 * of classes.
1359 	 */
1360 	list_move_tail(&class->lock_entry, &all_lock_classes);
1361 	idx = class - lock_classes;
1362 	if (idx > max_lock_class_idx)
1363 		max_lock_class_idx = idx;
1364 
1365 	if (verbose(class)) {
1366 		graph_unlock();
1367 
1368 		nbcon_cpu_emergency_enter();
1369 		printk("\nnew class %px: %s", class->key, class->name);
1370 		if (class->name_version > 1)
1371 			printk(KERN_CONT "#%d", class->name_version);
1372 		printk(KERN_CONT "\n");
1373 		dump_stack();
1374 		nbcon_cpu_emergency_exit();
1375 
1376 		if (!graph_lock()) {
1377 			return NULL;
1378 		}
1379 	}
1380 out_unlock_set:
1381 	graph_unlock();
1382 
1383 out_set_class_cache:
1384 	if (!subclass || force)
1385 		lock->class_cache[0] = class;
1386 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1387 		lock->class_cache[subclass] = class;
1388 
1389 	/*
1390 	 * Hash collision, did we smoke some? We found a class with a matching
1391 	 * hash but the subclass -- which is hashed in -- didn't match.
1392 	 */
1393 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1394 		return NULL;
1395 
1396 	return class;
1397 }
1398 
1399 #ifdef CONFIG_PROVE_LOCKING
1400 /*
1401  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1402  * with NULL on failure)
1403  */
1404 static struct lock_list *alloc_list_entry(void)
1405 {
1406 	int idx = find_first_zero_bit(list_entries_in_use,
1407 				      ARRAY_SIZE(list_entries));
1408 
1409 	if (idx >= ARRAY_SIZE(list_entries)) {
1410 		if (!debug_locks_off_graph_unlock())
1411 			return NULL;
1412 
1413 		nbcon_cpu_emergency_enter();
1414 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1415 		dump_stack();
1416 		nbcon_cpu_emergency_exit();
1417 		return NULL;
1418 	}
1419 	nr_list_entries++;
1420 	__set_bit(idx, list_entries_in_use);
1421 	return list_entries + idx;
1422 }
1423 
1424 /*
1425  * Add a new dependency to the head of the list:
1426  */
1427 static int add_lock_to_list(struct lock_class *this,
1428 			    struct lock_class *links_to, struct list_head *head,
1429 			    u16 distance, u8 dep,
1430 			    const struct lock_trace *trace)
1431 {
1432 	struct lock_list *entry;
1433 	/*
1434 	 * Lock not present yet - get a new dependency struct and
1435 	 * add it to the list:
1436 	 */
1437 	entry = alloc_list_entry();
1438 	if (!entry)
1439 		return 0;
1440 
1441 	entry->class = this;
1442 	entry->links_to = links_to;
1443 	entry->dep = dep;
1444 	entry->distance = distance;
1445 	entry->trace = trace;
1446 	/*
1447 	 * Both allocation and removal are done under the graph lock; but
1448 	 * iteration is under RCU-sched; see look_up_lock_class() and
1449 	 * lockdep_free_key_range().
1450 	 */
1451 	list_add_tail_rcu(&entry->entry, head);
1452 
1453 	return 1;
1454 }
1455 
1456 /*
1457  * For good efficiency of modular, we use power of 2
1458  */
1459 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1460 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1461 
1462 /*
1463  * The circular_queue and helpers are used to implement graph
1464  * breadth-first search (BFS) algorithm, by which we can determine
1465  * whether there is a path from a lock to another. In deadlock checks,
1466  * a path from the next lock to be acquired to a previous held lock
1467  * indicates that adding the <prev> -> <next> lock dependency will
1468  * produce a circle in the graph. Breadth-first search instead of
1469  * depth-first search is used in order to find the shortest (circular)
1470  * path.
1471  */
1472 struct circular_queue {
1473 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1474 	unsigned int  front, rear;
1475 };
1476 
1477 static struct circular_queue lock_cq;
1478 
1479 unsigned int max_bfs_queue_depth;
1480 
1481 static unsigned int lockdep_dependency_gen_id;
1482 
1483 static inline void __cq_init(struct circular_queue *cq)
1484 {
1485 	cq->front = cq->rear = 0;
1486 	lockdep_dependency_gen_id++;
1487 }
1488 
1489 static inline int __cq_empty(struct circular_queue *cq)
1490 {
1491 	return (cq->front == cq->rear);
1492 }
1493 
1494 static inline int __cq_full(struct circular_queue *cq)
1495 {
1496 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1497 }
1498 
1499 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1500 {
1501 	if (__cq_full(cq))
1502 		return -1;
1503 
1504 	cq->element[cq->rear] = elem;
1505 	cq->rear = (cq->rear + 1) & CQ_MASK;
1506 	return 0;
1507 }
1508 
1509 /*
1510  * Dequeue an element from the circular_queue, return a lock_list if
1511  * the queue is not empty, or NULL if otherwise.
1512  */
1513 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1514 {
1515 	struct lock_list * lock;
1516 
1517 	if (__cq_empty(cq))
1518 		return NULL;
1519 
1520 	lock = cq->element[cq->front];
1521 	cq->front = (cq->front + 1) & CQ_MASK;
1522 
1523 	return lock;
1524 }
1525 
1526 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1527 {
1528 	return (cq->rear - cq->front) & CQ_MASK;
1529 }
1530 
1531 static inline void mark_lock_accessed(struct lock_list *lock)
1532 {
1533 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1534 }
1535 
1536 static inline void visit_lock_entry(struct lock_list *lock,
1537 				    struct lock_list *parent)
1538 {
1539 	lock->parent = parent;
1540 }
1541 
1542 static inline unsigned long lock_accessed(struct lock_list *lock)
1543 {
1544 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1545 }
1546 
1547 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1548 {
1549 	return child->parent;
1550 }
1551 
1552 static inline int get_lock_depth(struct lock_list *child)
1553 {
1554 	int depth = 0;
1555 	struct lock_list *parent;
1556 
1557 	while ((parent = get_lock_parent(child))) {
1558 		child = parent;
1559 		depth++;
1560 	}
1561 	return depth;
1562 }
1563 
1564 /*
1565  * Return the forward or backward dependency list.
1566  *
1567  * @lock:   the lock_list to get its class's dependency list
1568  * @offset: the offset to struct lock_class to determine whether it is
1569  *          locks_after or locks_before
1570  */
1571 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1572 {
1573 	void *lock_class = lock->class;
1574 
1575 	return lock_class + offset;
1576 }
1577 /*
1578  * Return values of a bfs search:
1579  *
1580  * BFS_E* indicates an error
1581  * BFS_R* indicates a result (match or not)
1582  *
1583  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1584  *
1585  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1586  *
1587  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1588  *             *@target_entry.
1589  *
1590  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1591  *               _unchanged_.
1592  */
1593 enum bfs_result {
1594 	BFS_EINVALIDNODE = -2,
1595 	BFS_EQUEUEFULL = -1,
1596 	BFS_RMATCH = 0,
1597 	BFS_RNOMATCH = 1,
1598 };
1599 
1600 /*
1601  * bfs_result < 0 means error
1602  */
1603 static inline bool bfs_error(enum bfs_result res)
1604 {
1605 	return res < 0;
1606 }
1607 
1608 /*
1609  * DEP_*_BIT in lock_list::dep
1610  *
1611  * For dependency @prev -> @next:
1612  *
1613  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1614  *       (->read == 2)
1615  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1616  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1617  *   EN: @prev is exclusive locker and @next is non-recursive locker
1618  *
1619  * Note that we define the value of DEP_*_BITs so that:
1620  *   bit0 is prev->read == 0
1621  *   bit1 is next->read != 2
1622  */
1623 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1624 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1625 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1626 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1627 
1628 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1629 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1630 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1631 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1632 
1633 static inline unsigned int
1634 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1635 {
1636 	return (prev->read == 0) + ((next->read != 2) << 1);
1637 }
1638 
1639 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1640 {
1641 	return 1U << __calc_dep_bit(prev, next);
1642 }
1643 
1644 /*
1645  * calculate the dep_bit for backwards edges. We care about whether @prev is
1646  * shared and whether @next is recursive.
1647  */
1648 static inline unsigned int
1649 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1650 {
1651 	return (next->read != 2) + ((prev->read == 0) << 1);
1652 }
1653 
1654 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1655 {
1656 	return 1U << __calc_dep_bitb(prev, next);
1657 }
1658 
1659 /*
1660  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1661  * search.
1662  */
1663 static inline void __bfs_init_root(struct lock_list *lock,
1664 				   struct lock_class *class)
1665 {
1666 	lock->class = class;
1667 	lock->parent = NULL;
1668 	lock->only_xr = 0;
1669 }
1670 
1671 /*
1672  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1673  * root for a BFS search.
1674  *
1675  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1676  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1677  * and -(S*)->.
1678  */
1679 static inline void bfs_init_root(struct lock_list *lock,
1680 				 struct held_lock *hlock)
1681 {
1682 	__bfs_init_root(lock, hlock_class(hlock));
1683 	lock->only_xr = (hlock->read == 2);
1684 }
1685 
1686 /*
1687  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1688  *
1689  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1690  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1691  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1692  */
1693 static inline void bfs_init_rootb(struct lock_list *lock,
1694 				  struct held_lock *hlock)
1695 {
1696 	__bfs_init_root(lock, hlock_class(hlock));
1697 	lock->only_xr = (hlock->read != 0);
1698 }
1699 
1700 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1701 {
1702 	if (!lock || !lock->parent)
1703 		return NULL;
1704 
1705 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1706 				     &lock->entry, struct lock_list, entry);
1707 }
1708 
1709 /*
1710  * Breadth-First Search to find a strong path in the dependency graph.
1711  *
1712  * @source_entry: the source of the path we are searching for.
1713  * @data: data used for the second parameter of @match function
1714  * @match: match function for the search
1715  * @target_entry: pointer to the target of a matched path
1716  * @offset: the offset to struct lock_class to determine whether it is
1717  *          locks_after or locks_before
1718  *
1719  * We may have multiple edges (considering different kinds of dependencies,
1720  * e.g. ER and SN) between two nodes in the dependency graph. But
1721  * only the strong dependency path in the graph is relevant to deadlocks. A
1722  * strong dependency path is a dependency path that doesn't have two adjacent
1723  * dependencies as -(*R)-> -(S*)->, please see:
1724  *
1725  *         Documentation/locking/lockdep-design.rst
1726  *
1727  * for more explanation of the definition of strong dependency paths
1728  *
1729  * In __bfs(), we only traverse in the strong dependency path:
1730  *
1731  *     In lock_list::only_xr, we record whether the previous dependency only
1732  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1733  *     filter out any -(S*)-> in the current dependency and after that, the
1734  *     ->only_xr is set according to whether we only have -(*R)-> left.
1735  */
1736 static enum bfs_result __bfs(struct lock_list *source_entry,
1737 			     void *data,
1738 			     bool (*match)(struct lock_list *entry, void *data),
1739 			     bool (*skip)(struct lock_list *entry, void *data),
1740 			     struct lock_list **target_entry,
1741 			     int offset)
1742 {
1743 	struct circular_queue *cq = &lock_cq;
1744 	struct lock_list *lock = NULL;
1745 	struct lock_list *entry;
1746 	struct list_head *head;
1747 	unsigned int cq_depth;
1748 	bool first;
1749 
1750 	lockdep_assert_locked();
1751 
1752 	__cq_init(cq);
1753 	__cq_enqueue(cq, source_entry);
1754 
1755 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1756 		if (!lock->class)
1757 			return BFS_EINVALIDNODE;
1758 
1759 		/*
1760 		 * Step 1: check whether we already finish on this one.
1761 		 *
1762 		 * If we have visited all the dependencies from this @lock to
1763 		 * others (iow, if we have visited all lock_list entries in
1764 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1765 		 * and visit all the dependencies in the list and mark this
1766 		 * list accessed.
1767 		 */
1768 		if (lock_accessed(lock))
1769 			continue;
1770 		else
1771 			mark_lock_accessed(lock);
1772 
1773 		/*
1774 		 * Step 2: check whether prev dependency and this form a strong
1775 		 *         dependency path.
1776 		 */
1777 		if (lock->parent) { /* Parent exists, check prev dependency */
1778 			u8 dep = lock->dep;
1779 			bool prev_only_xr = lock->parent->only_xr;
1780 
1781 			/*
1782 			 * Mask out all -(S*)-> if we only have *R in previous
1783 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1784 			 * dependency.
1785 			 */
1786 			if (prev_only_xr)
1787 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1788 
1789 			/* If nothing left, we skip */
1790 			if (!dep)
1791 				continue;
1792 
1793 			/* If there are only -(*R)-> left, set that for the next step */
1794 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1795 		}
1796 
1797 		/*
1798 		 * Step 3: we haven't visited this and there is a strong
1799 		 *         dependency path to this, so check with @match.
1800 		 *         If @skip is provide and returns true, we skip this
1801 		 *         lock (and any path this lock is in).
1802 		 */
1803 		if (skip && skip(lock, data))
1804 			continue;
1805 
1806 		if (match(lock, data)) {
1807 			*target_entry = lock;
1808 			return BFS_RMATCH;
1809 		}
1810 
1811 		/*
1812 		 * Step 4: if not match, expand the path by adding the
1813 		 *         forward or backwards dependencies in the search
1814 		 *
1815 		 */
1816 		first = true;
1817 		head = get_dep_list(lock, offset);
1818 		list_for_each_entry_rcu(entry, head, entry) {
1819 			visit_lock_entry(entry, lock);
1820 
1821 			/*
1822 			 * Note we only enqueue the first of the list into the
1823 			 * queue, because we can always find a sibling
1824 			 * dependency from one (see __bfs_next()), as a result
1825 			 * the space of queue is saved.
1826 			 */
1827 			if (!first)
1828 				continue;
1829 
1830 			first = false;
1831 
1832 			if (__cq_enqueue(cq, entry))
1833 				return BFS_EQUEUEFULL;
1834 
1835 			cq_depth = __cq_get_elem_count(cq);
1836 			if (max_bfs_queue_depth < cq_depth)
1837 				max_bfs_queue_depth = cq_depth;
1838 		}
1839 	}
1840 
1841 	return BFS_RNOMATCH;
1842 }
1843 
1844 static inline enum bfs_result
1845 __bfs_forwards(struct lock_list *src_entry,
1846 	       void *data,
1847 	       bool (*match)(struct lock_list *entry, void *data),
1848 	       bool (*skip)(struct lock_list *entry, void *data),
1849 	       struct lock_list **target_entry)
1850 {
1851 	return __bfs(src_entry, data, match, skip, target_entry,
1852 		     offsetof(struct lock_class, locks_after));
1853 
1854 }
1855 
1856 static inline enum bfs_result
1857 __bfs_backwards(struct lock_list *src_entry,
1858 		void *data,
1859 		bool (*match)(struct lock_list *entry, void *data),
1860 	       bool (*skip)(struct lock_list *entry, void *data),
1861 		struct lock_list **target_entry)
1862 {
1863 	return __bfs(src_entry, data, match, skip, target_entry,
1864 		     offsetof(struct lock_class, locks_before));
1865 
1866 }
1867 
1868 static void print_lock_trace(const struct lock_trace *trace,
1869 			     unsigned int spaces)
1870 {
1871 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1872 }
1873 
1874 /*
1875  * Print a dependency chain entry (this is only done when a deadlock
1876  * has been detected):
1877  */
1878 static noinline void
1879 print_circular_bug_entry(struct lock_list *target, int depth)
1880 {
1881 	if (debug_locks_silent)
1882 		return;
1883 	printk("\n-> #%u", depth);
1884 	print_lock_name(NULL, target->class);
1885 	printk(KERN_CONT ":\n");
1886 	print_lock_trace(target->trace, 6);
1887 }
1888 
1889 static void
1890 print_circular_lock_scenario(struct held_lock *src,
1891 			     struct held_lock *tgt,
1892 			     struct lock_list *prt)
1893 {
1894 	struct lock_class *source = hlock_class(src);
1895 	struct lock_class *target = hlock_class(tgt);
1896 	struct lock_class *parent = prt->class;
1897 	int src_read = src->read;
1898 	int tgt_read = tgt->read;
1899 
1900 	/*
1901 	 * A direct locking problem where unsafe_class lock is taken
1902 	 * directly by safe_class lock, then all we need to show
1903 	 * is the deadlock scenario, as it is obvious that the
1904 	 * unsafe lock is taken under the safe lock.
1905 	 *
1906 	 * But if there is a chain instead, where the safe lock takes
1907 	 * an intermediate lock (middle_class) where this lock is
1908 	 * not the same as the safe lock, then the lock chain is
1909 	 * used to describe the problem. Otherwise we would need
1910 	 * to show a different CPU case for each link in the chain
1911 	 * from the safe_class lock to the unsafe_class lock.
1912 	 */
1913 	if (parent != source) {
1914 		printk("Chain exists of:\n  ");
1915 		__print_lock_name(src, source);
1916 		printk(KERN_CONT " --> ");
1917 		__print_lock_name(NULL, parent);
1918 		printk(KERN_CONT " --> ");
1919 		__print_lock_name(tgt, target);
1920 		printk(KERN_CONT "\n\n");
1921 	}
1922 
1923 	printk(" Possible unsafe locking scenario:\n\n");
1924 	printk("       CPU0                    CPU1\n");
1925 	printk("       ----                    ----\n");
1926 	if (tgt_read != 0)
1927 		printk("  rlock(");
1928 	else
1929 		printk("  lock(");
1930 	__print_lock_name(tgt, target);
1931 	printk(KERN_CONT ");\n");
1932 	printk("                               lock(");
1933 	__print_lock_name(NULL, parent);
1934 	printk(KERN_CONT ");\n");
1935 	printk("                               lock(");
1936 	__print_lock_name(tgt, target);
1937 	printk(KERN_CONT ");\n");
1938 	if (src_read != 0)
1939 		printk("  rlock(");
1940 	else if (src->sync)
1941 		printk("  sync(");
1942 	else
1943 		printk("  lock(");
1944 	__print_lock_name(src, source);
1945 	printk(KERN_CONT ");\n");
1946 	printk("\n *** DEADLOCK ***\n\n");
1947 }
1948 
1949 /*
1950  * When a circular dependency is detected, print the
1951  * header first:
1952  */
1953 static noinline void
1954 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1955 			struct held_lock *check_src,
1956 			struct held_lock *check_tgt)
1957 {
1958 	struct task_struct *curr = current;
1959 
1960 	if (debug_locks_silent)
1961 		return;
1962 
1963 	pr_warn("\n");
1964 	pr_warn("======================================================\n");
1965 	pr_warn("WARNING: possible circular locking dependency detected\n");
1966 	print_kernel_ident();
1967 	pr_warn("------------------------------------------------------\n");
1968 	pr_warn("%s/%d is trying to acquire lock:\n",
1969 		curr->comm, task_pid_nr(curr));
1970 	print_lock(check_src);
1971 
1972 	pr_warn("\nbut task is already holding lock:\n");
1973 
1974 	print_lock(check_tgt);
1975 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1976 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1977 
1978 	print_circular_bug_entry(entry, depth);
1979 }
1980 
1981 /*
1982  * We are about to add B -> A into the dependency graph, and in __bfs() a
1983  * strong dependency path A -> .. -> B is found: hlock_class equals
1984  * entry->class.
1985  *
1986  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1987  * dependency cycle, that means:
1988  *
1989  * Either
1990  *
1991  *     a) B -> A is -(E*)->
1992  *
1993  * or
1994  *
1995  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1996  *
1997  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1998  */
1999 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2000 {
2001 	struct held_lock *hlock = (struct held_lock *)data;
2002 
2003 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2004 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
2005 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2006 }
2007 
2008 static noinline void print_circular_bug(struct lock_list *this,
2009 				struct lock_list *target,
2010 				struct held_lock *check_src,
2011 				struct held_lock *check_tgt)
2012 {
2013 	struct task_struct *curr = current;
2014 	struct lock_list *parent;
2015 	struct lock_list *first_parent;
2016 	int depth;
2017 
2018 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2019 		return;
2020 
2021 	this->trace = save_trace();
2022 	if (!this->trace)
2023 		return;
2024 
2025 	depth = get_lock_depth(target);
2026 
2027 	nbcon_cpu_emergency_enter();
2028 
2029 	print_circular_bug_header(target, depth, check_src, check_tgt);
2030 
2031 	parent = get_lock_parent(target);
2032 	first_parent = parent;
2033 
2034 	while (parent) {
2035 		print_circular_bug_entry(parent, --depth);
2036 		parent = get_lock_parent(parent);
2037 	}
2038 
2039 	printk("\nother info that might help us debug this:\n\n");
2040 	print_circular_lock_scenario(check_src, check_tgt,
2041 				     first_parent);
2042 
2043 	lockdep_print_held_locks(curr);
2044 
2045 	printk("\nstack backtrace:\n");
2046 	dump_stack();
2047 
2048 	nbcon_cpu_emergency_exit();
2049 }
2050 
2051 static noinline void print_bfs_bug(int ret)
2052 {
2053 	if (!debug_locks_off_graph_unlock())
2054 		return;
2055 
2056 	/*
2057 	 * Breadth-first-search failed, graph got corrupted?
2058 	 */
2059 	if (ret == BFS_EQUEUEFULL)
2060 		pr_warn("Increase LOCKDEP_CIRCULAR_QUEUE_BITS to avoid this warning:\n");
2061 
2062 	WARN(1, "lockdep bfs error:%d\n", ret);
2063 }
2064 
2065 static bool noop_count(struct lock_list *entry, void *data)
2066 {
2067 	(*(unsigned long *)data)++;
2068 	return false;
2069 }
2070 
2071 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2072 {
2073 	unsigned long  count = 0;
2074 	struct lock_list *target_entry;
2075 
2076 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2077 
2078 	return count;
2079 }
2080 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2081 {
2082 	unsigned long ret, flags;
2083 	struct lock_list this;
2084 
2085 	__bfs_init_root(&this, class);
2086 
2087 	raw_local_irq_save(flags);
2088 	lockdep_lock();
2089 	ret = __lockdep_count_forward_deps(&this);
2090 	lockdep_unlock();
2091 	raw_local_irq_restore(flags);
2092 
2093 	return ret;
2094 }
2095 
2096 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2097 {
2098 	unsigned long  count = 0;
2099 	struct lock_list *target_entry;
2100 
2101 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2102 
2103 	return count;
2104 }
2105 
2106 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2107 {
2108 	unsigned long ret, flags;
2109 	struct lock_list this;
2110 
2111 	__bfs_init_root(&this, class);
2112 
2113 	raw_local_irq_save(flags);
2114 	lockdep_lock();
2115 	ret = __lockdep_count_backward_deps(&this);
2116 	lockdep_unlock();
2117 	raw_local_irq_restore(flags);
2118 
2119 	return ret;
2120 }
2121 
2122 /*
2123  * Check that the dependency graph starting at <src> can lead to
2124  * <target> or not.
2125  */
2126 static noinline enum bfs_result
2127 check_path(struct held_lock *target, struct lock_list *src_entry,
2128 	   bool (*match)(struct lock_list *entry, void *data),
2129 	   bool (*skip)(struct lock_list *entry, void *data),
2130 	   struct lock_list **target_entry)
2131 {
2132 	enum bfs_result ret;
2133 
2134 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2135 
2136 	if (unlikely(bfs_error(ret)))
2137 		print_bfs_bug(ret);
2138 
2139 	return ret;
2140 }
2141 
2142 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2143 
2144 /*
2145  * Prove that the dependency graph starting at <src> can not
2146  * lead to <target>. If it can, there is a circle when adding
2147  * <target> -> <src> dependency.
2148  *
2149  * Print an error and return BFS_RMATCH if it does.
2150  */
2151 static noinline enum bfs_result
2152 check_noncircular(struct held_lock *src, struct held_lock *target,
2153 		  struct lock_trace **const trace)
2154 {
2155 	enum bfs_result ret;
2156 	struct lock_list *target_entry;
2157 	struct lock_list src_entry;
2158 
2159 	bfs_init_root(&src_entry, src);
2160 
2161 	debug_atomic_inc(nr_cyclic_checks);
2162 
2163 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2164 
2165 	if (unlikely(ret == BFS_RMATCH)) {
2166 		if (!*trace) {
2167 			/*
2168 			 * If save_trace fails here, the printing might
2169 			 * trigger a WARN but because of the !nr_entries it
2170 			 * should not do bad things.
2171 			 */
2172 			*trace = save_trace();
2173 		}
2174 
2175 		if (src->class_idx == target->class_idx)
2176 			print_deadlock_bug(current, src, target);
2177 		else
2178 			print_circular_bug(&src_entry, target_entry, src, target);
2179 	}
2180 
2181 	return ret;
2182 }
2183 
2184 #ifdef CONFIG_TRACE_IRQFLAGS
2185 
2186 /*
2187  * Forwards and backwards subgraph searching, for the purposes of
2188  * proving that two subgraphs can be connected by a new dependency
2189  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2190  *
2191  * A irq safe->unsafe deadlock happens with the following conditions:
2192  *
2193  * 1) We have a strong dependency path A -> ... -> B
2194  *
2195  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2196  *    irq can create a new dependency B -> A (consider the case that a holder
2197  *    of B gets interrupted by an irq whose handler will try to acquire A).
2198  *
2199  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2200  *    strong circle:
2201  *
2202  *      For the usage bits of B:
2203  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2204  *           ENABLED_IRQ usage suffices.
2205  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2206  *           ENABLED_IRQ_*_READ usage suffices.
2207  *
2208  *      For the usage bits of A:
2209  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2210  *           USED_IN_IRQ usage suffices.
2211  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2212  *           USED_IN_IRQ_*_READ usage suffices.
2213  */
2214 
2215 /*
2216  * There is a strong dependency path in the dependency graph: A -> B, and now
2217  * we need to decide which usage bit of A should be accumulated to detect
2218  * safe->unsafe bugs.
2219  *
2220  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2221  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2222  *
2223  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2224  * path, any usage of A should be considered. Otherwise, we should only
2225  * consider _READ usage.
2226  */
2227 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2228 {
2229 	if (!entry->only_xr)
2230 		*(unsigned long *)mask |= entry->class->usage_mask;
2231 	else /* Mask out _READ usage bits */
2232 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2233 
2234 	return false;
2235 }
2236 
2237 /*
2238  * There is a strong dependency path in the dependency graph: A -> B, and now
2239  * we need to decide which usage bit of B conflicts with the usage bits of A,
2240  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2241  *
2242  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2243  * path, any usage of B should be considered. Otherwise, we should only
2244  * consider _READ usage.
2245  */
2246 static inline bool usage_match(struct lock_list *entry, void *mask)
2247 {
2248 	if (!entry->only_xr)
2249 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2250 	else /* Mask out _READ usage bits */
2251 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2252 }
2253 
2254 static inline bool usage_skip(struct lock_list *entry, void *mask)
2255 {
2256 	if (entry->class->lock_type == LD_LOCK_NORMAL)
2257 		return false;
2258 
2259 	/*
2260 	 * Skip local_lock() for irq inversion detection.
2261 	 *
2262 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2263 	 * dependency.
2264 	 *
2265 	 * For RT, an irq inversion happens when we have lock A and B, and on
2266 	 * some CPU we can have:
2267 	 *
2268 	 *	lock(A);
2269 	 *	<interrupted>
2270 	 *	  lock(B);
2271 	 *
2272 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2273 	 *
2274 	 * Now we prove local_lock() cannot exist in that dependency. First we
2275 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2276 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2277 	 * wait context check will complain. And since B is not a sleep lock,
2278 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2279 	 * local_lock() is 3, which is greater than 2, therefore there is no
2280 	 * way the local_lock() exists in the dependency B -> ... -> A.
2281 	 *
2282 	 * As a result, we will skip local_lock(), when we search for irq
2283 	 * inversion bugs.
2284 	 */
2285 	if (entry->class->lock_type == LD_LOCK_PERCPU &&
2286 	    DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2287 		return false;
2288 
2289 	/*
2290 	 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2291 	 * a lock and only used to override the wait_type.
2292 	 */
2293 
2294 	return true;
2295 }
2296 
2297 /*
2298  * Find a node in the forwards-direction dependency sub-graph starting
2299  * at @root->class that matches @bit.
2300  *
2301  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2302  * into *@target_entry.
2303  */
2304 static enum bfs_result
2305 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2306 			struct lock_list **target_entry)
2307 {
2308 	enum bfs_result result;
2309 
2310 	debug_atomic_inc(nr_find_usage_forwards_checks);
2311 
2312 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2313 
2314 	return result;
2315 }
2316 
2317 /*
2318  * Find a node in the backwards-direction dependency sub-graph starting
2319  * at @root->class that matches @bit.
2320  */
2321 static enum bfs_result
2322 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2323 			struct lock_list **target_entry)
2324 {
2325 	enum bfs_result result;
2326 
2327 	debug_atomic_inc(nr_find_usage_backwards_checks);
2328 
2329 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2330 
2331 	return result;
2332 }
2333 
2334 static void print_lock_class_header(struct lock_class *class, int depth)
2335 {
2336 	int bit;
2337 
2338 	printk("%*s->", depth, "");
2339 	print_lock_name(NULL, class);
2340 #ifdef CONFIG_DEBUG_LOCKDEP
2341 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2342 #endif
2343 	printk(KERN_CONT " {\n");
2344 
2345 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2346 		if (class->usage_mask & (1 << bit)) {
2347 			int len = depth;
2348 
2349 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2350 			len += printk(KERN_CONT " at:\n");
2351 			print_lock_trace(class->usage_traces[bit], len);
2352 		}
2353 	}
2354 	printk("%*s }\n", depth, "");
2355 
2356 	printk("%*s ... key      at: [<%px>] %pS\n",
2357 		depth, "", class->key, class->key);
2358 }
2359 
2360 /*
2361  * Dependency path printing:
2362  *
2363  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2364  * printing out each lock in the dependency path will help on understanding how
2365  * the deadlock could happen. Here are some details about dependency path
2366  * printing:
2367  *
2368  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2369  * 	for a lock dependency A -> B, there are two lock_lists:
2370  *
2371  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2372  * 		->links_to is A. In this case, we can say the lock_list is
2373  * 		"A -> B" (forwards case).
2374  *
2375  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2376  * 		and ->links_to is B. In this case, we can say the lock_list is
2377  * 		"B <- A" (bacwards case).
2378  *
2379  * 	The ->trace of both a) and b) point to the call trace where B was
2380  * 	acquired with A held.
2381  *
2382  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2383  * 	represent a certain lock dependency, it only provides an initial entry
2384  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2385  * 	->class is A, as a result BFS will search all dependencies starting with
2386  * 	A, e.g. A -> B or A -> C.
2387  *
2388  * 	The notation of a forwards helper lock_list is like "-> A", which means
2389  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2390  * 	or A -> C.
2391  *
2392  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2393  * 	we should search the backwards dependencies ending with "B", e.g.
2394  * 	B <- A or B <- C.
2395  */
2396 
2397 /*
2398  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2399  *
2400  * We have a lock dependency path as follow:
2401  *
2402  *    @root                                                                 @leaf
2403  *      |                                                                     |
2404  *      V                                                                     V
2405  *	          ->parent                                   ->parent
2406  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2407  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2408  *
2409  * , so it's natural that we start from @leaf and print every ->class and
2410  * ->trace until we reach the @root.
2411  */
2412 static void __used
2413 print_shortest_lock_dependencies(struct lock_list *leaf,
2414 				 struct lock_list *root)
2415 {
2416 	struct lock_list *entry = leaf;
2417 	int depth;
2418 
2419 	/*compute depth from generated tree by BFS*/
2420 	depth = get_lock_depth(leaf);
2421 
2422 	do {
2423 		print_lock_class_header(entry->class, depth);
2424 		printk("%*s ... acquired at:\n", depth, "");
2425 		print_lock_trace(entry->trace, 2);
2426 		printk("\n");
2427 
2428 		if (depth == 0 && (entry != root)) {
2429 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2430 			break;
2431 		}
2432 
2433 		entry = get_lock_parent(entry);
2434 		depth--;
2435 	} while (entry && (depth >= 0));
2436 }
2437 
2438 /*
2439  * printk the shortest lock dependencies from @leaf to @root.
2440  *
2441  * We have a lock dependency path (from a backwards search) as follow:
2442  *
2443  *    @leaf                                                                 @root
2444  *      |                                                                     |
2445  *      V                                                                     V
2446  *	          ->parent                                   ->parent
2447  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2448  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2449  *
2450  * , so when we iterate from @leaf to @root, we actually print the lock
2451  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2452  *
2453  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2454  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2455  * trace of L1 in the dependency path, which is alright, because most of the
2456  * time we can figure out where L1 is held from the call trace of L2.
2457  */
2458 static void __used
2459 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2460 					   struct lock_list *root)
2461 {
2462 	struct lock_list *entry = leaf;
2463 	const struct lock_trace *trace = NULL;
2464 	int depth;
2465 
2466 	/*compute depth from generated tree by BFS*/
2467 	depth = get_lock_depth(leaf);
2468 
2469 	do {
2470 		print_lock_class_header(entry->class, depth);
2471 		if (trace) {
2472 			printk("%*s ... acquired at:\n", depth, "");
2473 			print_lock_trace(trace, 2);
2474 			printk("\n");
2475 		}
2476 
2477 		/*
2478 		 * Record the pointer to the trace for the next lock_list
2479 		 * entry, see the comments for the function.
2480 		 */
2481 		trace = entry->trace;
2482 
2483 		if (depth == 0 && (entry != root)) {
2484 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2485 			break;
2486 		}
2487 
2488 		entry = get_lock_parent(entry);
2489 		depth--;
2490 	} while (entry && (depth >= 0));
2491 }
2492 
2493 static void
2494 print_irq_lock_scenario(struct lock_list *safe_entry,
2495 			struct lock_list *unsafe_entry,
2496 			struct lock_class *prev_class,
2497 			struct lock_class *next_class)
2498 {
2499 	struct lock_class *safe_class = safe_entry->class;
2500 	struct lock_class *unsafe_class = unsafe_entry->class;
2501 	struct lock_class *middle_class = prev_class;
2502 
2503 	if (middle_class == safe_class)
2504 		middle_class = next_class;
2505 
2506 	/*
2507 	 * A direct locking problem where unsafe_class lock is taken
2508 	 * directly by safe_class lock, then all we need to show
2509 	 * is the deadlock scenario, as it is obvious that the
2510 	 * unsafe lock is taken under the safe lock.
2511 	 *
2512 	 * But if there is a chain instead, where the safe lock takes
2513 	 * an intermediate lock (middle_class) where this lock is
2514 	 * not the same as the safe lock, then the lock chain is
2515 	 * used to describe the problem. Otherwise we would need
2516 	 * to show a different CPU case for each link in the chain
2517 	 * from the safe_class lock to the unsafe_class lock.
2518 	 */
2519 	if (middle_class != unsafe_class) {
2520 		printk("Chain exists of:\n  ");
2521 		__print_lock_name(NULL, safe_class);
2522 		printk(KERN_CONT " --> ");
2523 		__print_lock_name(NULL, middle_class);
2524 		printk(KERN_CONT " --> ");
2525 		__print_lock_name(NULL, unsafe_class);
2526 		printk(KERN_CONT "\n\n");
2527 	}
2528 
2529 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2530 	printk("       CPU0                    CPU1\n");
2531 	printk("       ----                    ----\n");
2532 	printk("  lock(");
2533 	__print_lock_name(NULL, unsafe_class);
2534 	printk(KERN_CONT ");\n");
2535 	printk("                               local_irq_disable();\n");
2536 	printk("                               lock(");
2537 	__print_lock_name(NULL, safe_class);
2538 	printk(KERN_CONT ");\n");
2539 	printk("                               lock(");
2540 	__print_lock_name(NULL, middle_class);
2541 	printk(KERN_CONT ");\n");
2542 	printk("  <Interrupt>\n");
2543 	printk("    lock(");
2544 	__print_lock_name(NULL, safe_class);
2545 	printk(KERN_CONT ");\n");
2546 	printk("\n *** DEADLOCK ***\n\n");
2547 }
2548 
2549 static void
2550 print_bad_irq_dependency(struct task_struct *curr,
2551 			 struct lock_list *prev_root,
2552 			 struct lock_list *next_root,
2553 			 struct lock_list *backwards_entry,
2554 			 struct lock_list *forwards_entry,
2555 			 struct held_lock *prev,
2556 			 struct held_lock *next,
2557 			 enum lock_usage_bit bit1,
2558 			 enum lock_usage_bit bit2,
2559 			 const char *irqclass)
2560 {
2561 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2562 		return;
2563 
2564 	nbcon_cpu_emergency_enter();
2565 
2566 	pr_warn("\n");
2567 	pr_warn("=====================================================\n");
2568 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2569 		irqclass, irqclass);
2570 	print_kernel_ident();
2571 	pr_warn("-----------------------------------------------------\n");
2572 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2573 		curr->comm, task_pid_nr(curr),
2574 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2575 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2576 		lockdep_hardirqs_enabled(),
2577 		curr->softirqs_enabled);
2578 	print_lock(next);
2579 
2580 	pr_warn("\nand this task is already holding:\n");
2581 	print_lock(prev);
2582 	pr_warn("which would create a new lock dependency:\n");
2583 	print_lock_name(prev, hlock_class(prev));
2584 	pr_cont(" ->");
2585 	print_lock_name(next, hlock_class(next));
2586 	pr_cont("\n");
2587 
2588 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2589 		irqclass);
2590 	print_lock_name(NULL, backwards_entry->class);
2591 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2592 
2593 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2594 
2595 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2596 	print_lock_name(NULL, forwards_entry->class);
2597 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2598 	pr_warn("...");
2599 
2600 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2601 
2602 	pr_warn("\nother info that might help us debug this:\n\n");
2603 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2604 				hlock_class(prev), hlock_class(next));
2605 
2606 	lockdep_print_held_locks(curr);
2607 
2608 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2609 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2610 
2611 	pr_warn("\nthe dependencies between the lock to be acquired");
2612 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2613 	next_root->trace = save_trace();
2614 	if (!next_root->trace)
2615 		goto out;
2616 	print_shortest_lock_dependencies(forwards_entry, next_root);
2617 
2618 	pr_warn("\nstack backtrace:\n");
2619 	dump_stack();
2620 out:
2621 	nbcon_cpu_emergency_exit();
2622 }
2623 
2624 static const char *state_names[] = {
2625 #define LOCKDEP_STATE(__STATE) \
2626 	__stringify(__STATE),
2627 #include "lockdep_states.h"
2628 #undef LOCKDEP_STATE
2629 };
2630 
2631 static const char *state_rnames[] = {
2632 #define LOCKDEP_STATE(__STATE) \
2633 	__stringify(__STATE)"-READ",
2634 #include "lockdep_states.h"
2635 #undef LOCKDEP_STATE
2636 };
2637 
2638 static inline const char *state_name(enum lock_usage_bit bit)
2639 {
2640 	if (bit & LOCK_USAGE_READ_MASK)
2641 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2642 	else
2643 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2644 }
2645 
2646 /*
2647  * The bit number is encoded like:
2648  *
2649  *  bit0: 0 exclusive, 1 read lock
2650  *  bit1: 0 used in irq, 1 irq enabled
2651  *  bit2-n: state
2652  */
2653 static int exclusive_bit(int new_bit)
2654 {
2655 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2656 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2657 
2658 	/*
2659 	 * keep state, bit flip the direction and strip read.
2660 	 */
2661 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2662 }
2663 
2664 /*
2665  * Observe that when given a bitmask where each bitnr is encoded as above, a
2666  * right shift of the mask transforms the individual bitnrs as -1 and
2667  * conversely, a left shift transforms into +1 for the individual bitnrs.
2668  *
2669  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2670  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2671  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2672  *
2673  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2674  *
2675  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2676  * all bits set) and recompose with bitnr1 flipped.
2677  */
2678 static unsigned long invert_dir_mask(unsigned long mask)
2679 {
2680 	unsigned long excl = 0;
2681 
2682 	/* Invert dir */
2683 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2684 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2685 
2686 	return excl;
2687 }
2688 
2689 /*
2690  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2691  * usage may cause deadlock too, for example:
2692  *
2693  * P1				P2
2694  * <irq disabled>
2695  * write_lock(l1);		<irq enabled>
2696  *				read_lock(l2);
2697  * write_lock(l2);
2698  * 				<in irq>
2699  * 				read_lock(l1);
2700  *
2701  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2702  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2703  * deadlock.
2704  *
2705  * In fact, all of the following cases may cause deadlocks:
2706  *
2707  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2708  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2709  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2710  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2711  *
2712  * As a result, to calculate the "exclusive mask", first we invert the
2713  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2714  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2715  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2716  */
2717 static unsigned long exclusive_mask(unsigned long mask)
2718 {
2719 	unsigned long excl = invert_dir_mask(mask);
2720 
2721 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2722 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2723 
2724 	return excl;
2725 }
2726 
2727 /*
2728  * Retrieve the _possible_ original mask to which @mask is
2729  * exclusive. Ie: this is the opposite of exclusive_mask().
2730  * Note that 2 possible original bits can match an exclusive
2731  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2732  * cleared. So both are returned for each exclusive bit.
2733  */
2734 static unsigned long original_mask(unsigned long mask)
2735 {
2736 	unsigned long excl = invert_dir_mask(mask);
2737 
2738 	/* Include read in existing usages */
2739 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2740 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2741 
2742 	return excl;
2743 }
2744 
2745 /*
2746  * Find the first pair of bit match between an original
2747  * usage mask and an exclusive usage mask.
2748  */
2749 static int find_exclusive_match(unsigned long mask,
2750 				unsigned long excl_mask,
2751 				enum lock_usage_bit *bitp,
2752 				enum lock_usage_bit *excl_bitp)
2753 {
2754 	int bit, excl, excl_read;
2755 
2756 	for_each_set_bit(bit, &mask, LOCK_USED) {
2757 		/*
2758 		 * exclusive_bit() strips the read bit, however,
2759 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2760 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2761 		 */
2762 		excl = exclusive_bit(bit);
2763 		excl_read = excl | LOCK_USAGE_READ_MASK;
2764 		if (excl_mask & lock_flag(excl)) {
2765 			*bitp = bit;
2766 			*excl_bitp = excl;
2767 			return 0;
2768 		} else if (excl_mask & lock_flag(excl_read)) {
2769 			*bitp = bit;
2770 			*excl_bitp = excl_read;
2771 			return 0;
2772 		}
2773 	}
2774 	return -1;
2775 }
2776 
2777 /*
2778  * Prove that the new dependency does not connect a hardirq-safe(-read)
2779  * lock with a hardirq-unsafe lock - to achieve this we search
2780  * the backwards-subgraph starting at <prev>, and the
2781  * forwards-subgraph starting at <next>:
2782  */
2783 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2784 			   struct held_lock *next)
2785 {
2786 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2787 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2788 	struct lock_list *target_entry1;
2789 	struct lock_list *target_entry;
2790 	struct lock_list this, that;
2791 	enum bfs_result ret;
2792 
2793 	/*
2794 	 * Step 1: gather all hard/soft IRQs usages backward in an
2795 	 * accumulated usage mask.
2796 	 */
2797 	bfs_init_rootb(&this, prev);
2798 
2799 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2800 	if (bfs_error(ret)) {
2801 		print_bfs_bug(ret);
2802 		return 0;
2803 	}
2804 
2805 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2806 	if (!usage_mask)
2807 		return 1;
2808 
2809 	/*
2810 	 * Step 2: find exclusive uses forward that match the previous
2811 	 * backward accumulated mask.
2812 	 */
2813 	forward_mask = exclusive_mask(usage_mask);
2814 
2815 	bfs_init_root(&that, next);
2816 
2817 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2818 	if (bfs_error(ret)) {
2819 		print_bfs_bug(ret);
2820 		return 0;
2821 	}
2822 	if (ret == BFS_RNOMATCH)
2823 		return 1;
2824 
2825 	/*
2826 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2827 	 * list whose usage mask matches the exclusive usage mask from the
2828 	 * lock found on the forward list.
2829 	 *
2830 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2831 	 * the follow case:
2832 	 *
2833 	 * When trying to add A -> B to the graph, we find that there is a
2834 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2835 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2836 	 * invert bits of M's usage_mask, we will find another lock N that is
2837 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2838 	 * cause a inversion deadlock.
2839 	 */
2840 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2841 
2842 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2843 	if (bfs_error(ret)) {
2844 		print_bfs_bug(ret);
2845 		return 0;
2846 	}
2847 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2848 		return 1;
2849 
2850 	/*
2851 	 * Step 4: narrow down to a pair of incompatible usage bits
2852 	 * and report it.
2853 	 */
2854 	ret = find_exclusive_match(target_entry->class->usage_mask,
2855 				   target_entry1->class->usage_mask,
2856 				   &backward_bit, &forward_bit);
2857 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2858 		return 1;
2859 
2860 	print_bad_irq_dependency(curr, &this, &that,
2861 				 target_entry, target_entry1,
2862 				 prev, next,
2863 				 backward_bit, forward_bit,
2864 				 state_name(backward_bit));
2865 
2866 	return 0;
2867 }
2868 
2869 #else
2870 
2871 static inline int check_irq_usage(struct task_struct *curr,
2872 				  struct held_lock *prev, struct held_lock *next)
2873 {
2874 	return 1;
2875 }
2876 
2877 static inline bool usage_skip(struct lock_list *entry, void *mask)
2878 {
2879 	return false;
2880 }
2881 
2882 #endif /* CONFIG_TRACE_IRQFLAGS */
2883 
2884 #ifdef CONFIG_LOCKDEP_SMALL
2885 /*
2886  * We are about to add A -> B into the dependency graph, and in __bfs() a
2887  * strong dependency path A -> .. -> B is found: hlock_class equals
2888  * entry->class.
2889  *
2890  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
2891  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
2892  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
2893  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
2894  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
2895  * having dependency A -> B, we could already get a equivalent path ..-> A ->
2896  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
2897  *
2898  * We need to make sure both the start and the end of A -> .. -> B is not
2899  * weaker than A -> B. For the start part, please see the comment in
2900  * check_redundant(). For the end part, we need:
2901  *
2902  * Either
2903  *
2904  *     a) A -> B is -(*R)-> (everything is not weaker than that)
2905  *
2906  * or
2907  *
2908  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
2909  *
2910  */
2911 static inline bool hlock_equal(struct lock_list *entry, void *data)
2912 {
2913 	struct held_lock *hlock = (struct held_lock *)data;
2914 
2915 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2916 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
2917 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2918 }
2919 
2920 /*
2921  * Check that the dependency graph starting at <src> can lead to
2922  * <target> or not. If it can, <src> -> <target> dependency is already
2923  * in the graph.
2924  *
2925  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2926  * any error appears in the bfs search.
2927  */
2928 static noinline enum bfs_result
2929 check_redundant(struct held_lock *src, struct held_lock *target)
2930 {
2931 	enum bfs_result ret;
2932 	struct lock_list *target_entry;
2933 	struct lock_list src_entry;
2934 
2935 	bfs_init_root(&src_entry, src);
2936 	/*
2937 	 * Special setup for check_redundant().
2938 	 *
2939 	 * To report redundant, we need to find a strong dependency path that
2940 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2941 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2942 	 * we achieve this by setting the initial node's ->only_xr to true in
2943 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2944 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2945 	 */
2946 	src_entry.only_xr = src->read == 0;
2947 
2948 	debug_atomic_inc(nr_redundant_checks);
2949 
2950 	/*
2951 	 * Note: we skip local_lock() for redundant check, because as the
2952 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2953 	 * the same.
2954 	 */
2955 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2956 
2957 	if (ret == BFS_RMATCH)
2958 		debug_atomic_inc(nr_redundant);
2959 
2960 	return ret;
2961 }
2962 
2963 #else
2964 
2965 static inline enum bfs_result
2966 check_redundant(struct held_lock *src, struct held_lock *target)
2967 {
2968 	return BFS_RNOMATCH;
2969 }
2970 
2971 #endif
2972 
2973 static void inc_chains(int irq_context)
2974 {
2975 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2976 		nr_hardirq_chains++;
2977 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2978 		nr_softirq_chains++;
2979 	else
2980 		nr_process_chains++;
2981 }
2982 
2983 static void dec_chains(int irq_context)
2984 {
2985 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2986 		nr_hardirq_chains--;
2987 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2988 		nr_softirq_chains--;
2989 	else
2990 		nr_process_chains--;
2991 }
2992 
2993 static void
2994 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2995 {
2996 	struct lock_class *next = hlock_class(nxt);
2997 	struct lock_class *prev = hlock_class(prv);
2998 
2999 	printk(" Possible unsafe locking scenario:\n\n");
3000 	printk("       CPU0\n");
3001 	printk("       ----\n");
3002 	printk("  lock(");
3003 	__print_lock_name(prv, prev);
3004 	printk(KERN_CONT ");\n");
3005 	printk("  lock(");
3006 	__print_lock_name(nxt, next);
3007 	printk(KERN_CONT ");\n");
3008 	printk("\n *** DEADLOCK ***\n\n");
3009 	printk(" May be due to missing lock nesting notation\n\n");
3010 }
3011 
3012 static void
3013 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
3014 		   struct held_lock *next)
3015 {
3016 	struct lock_class *class = hlock_class(prev);
3017 
3018 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3019 		return;
3020 
3021 	nbcon_cpu_emergency_enter();
3022 
3023 	pr_warn("\n");
3024 	pr_warn("============================================\n");
3025 	pr_warn("WARNING: possible recursive locking detected\n");
3026 	print_kernel_ident();
3027 	pr_warn("--------------------------------------------\n");
3028 	pr_warn("%s/%d is trying to acquire lock:\n",
3029 		curr->comm, task_pid_nr(curr));
3030 	print_lock(next);
3031 	pr_warn("\nbut task is already holding lock:\n");
3032 	print_lock(prev);
3033 
3034 	if (class->cmp_fn) {
3035 		pr_warn("and the lock comparison function returns %i:\n",
3036 			class->cmp_fn(prev->instance, next->instance));
3037 	}
3038 
3039 	pr_warn("\nother info that might help us debug this:\n");
3040 	print_deadlock_scenario(next, prev);
3041 	lockdep_print_held_locks(curr);
3042 
3043 	pr_warn("\nstack backtrace:\n");
3044 	dump_stack();
3045 
3046 	nbcon_cpu_emergency_exit();
3047 }
3048 
3049 /*
3050  * Check whether we are holding such a class already.
3051  *
3052  * (Note that this has to be done separately, because the graph cannot
3053  * detect such classes of deadlocks.)
3054  *
3055  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3056  * lock class is held but nest_lock is also held, i.e. we rely on the
3057  * nest_lock to avoid the deadlock.
3058  */
3059 static int
3060 check_deadlock(struct task_struct *curr, struct held_lock *next)
3061 {
3062 	struct lock_class *class;
3063 	struct held_lock *prev;
3064 	struct held_lock *nest = NULL;
3065 	int i;
3066 
3067 	for (i = 0; i < curr->lockdep_depth; i++) {
3068 		prev = curr->held_locks + i;
3069 
3070 		if (prev->instance == next->nest_lock)
3071 			nest = prev;
3072 
3073 		if (hlock_class(prev) != hlock_class(next))
3074 			continue;
3075 
3076 		/*
3077 		 * Allow read-after-read recursion of the same
3078 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3079 		 */
3080 		if ((next->read == 2) && prev->read)
3081 			continue;
3082 
3083 		class = hlock_class(prev);
3084 
3085 		if (class->cmp_fn &&
3086 		    class->cmp_fn(prev->instance, next->instance) < 0)
3087 			continue;
3088 
3089 		/*
3090 		 * We're holding the nest_lock, which serializes this lock's
3091 		 * nesting behaviour.
3092 		 */
3093 		if (nest)
3094 			return 2;
3095 
3096 		print_deadlock_bug(curr, prev, next);
3097 		return 0;
3098 	}
3099 	return 1;
3100 }
3101 
3102 /*
3103  * There was a chain-cache miss, and we are about to add a new dependency
3104  * to a previous lock. We validate the following rules:
3105  *
3106  *  - would the adding of the <prev> -> <next> dependency create a
3107  *    circular dependency in the graph? [== circular deadlock]
3108  *
3109  *  - does the new prev->next dependency connect any hardirq-safe lock
3110  *    (in the full backwards-subgraph starting at <prev>) with any
3111  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3112  *    <next>)? [== illegal lock inversion with hardirq contexts]
3113  *
3114  *  - does the new prev->next dependency connect any softirq-safe lock
3115  *    (in the full backwards-subgraph starting at <prev>) with any
3116  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3117  *    <next>)? [== illegal lock inversion with softirq contexts]
3118  *
3119  * any of these scenarios could lead to a deadlock.
3120  *
3121  * Then if all the validations pass, we add the forwards and backwards
3122  * dependency.
3123  */
3124 static int
3125 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3126 	       struct held_lock *next, u16 distance,
3127 	       struct lock_trace **const trace)
3128 {
3129 	struct lock_list *entry;
3130 	enum bfs_result ret;
3131 
3132 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3133 		/*
3134 		 * The warning statements below may trigger a use-after-free
3135 		 * of the class name. It is better to trigger a use-after free
3136 		 * and to have the class name most of the time instead of not
3137 		 * having the class name available.
3138 		 */
3139 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3140 			  "Detected use-after-free of lock class %px/%s\n",
3141 			  hlock_class(prev),
3142 			  hlock_class(prev)->name);
3143 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3144 			  "Detected use-after-free of lock class %px/%s\n",
3145 			  hlock_class(next),
3146 			  hlock_class(next)->name);
3147 		return 2;
3148 	}
3149 
3150 	if (prev->class_idx == next->class_idx) {
3151 		struct lock_class *class = hlock_class(prev);
3152 
3153 		if (class->cmp_fn &&
3154 		    class->cmp_fn(prev->instance, next->instance) < 0)
3155 			return 2;
3156 	}
3157 
3158 	/*
3159 	 * Prove that the new <prev> -> <next> dependency would not
3160 	 * create a circular dependency in the graph. (We do this by
3161 	 * a breadth-first search into the graph starting at <next>,
3162 	 * and check whether we can reach <prev>.)
3163 	 *
3164 	 * The search is limited by the size of the circular queue (i.e.,
3165 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3166 	 * in the graph whose neighbours are to be checked.
3167 	 */
3168 	ret = check_noncircular(next, prev, trace);
3169 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3170 		return 0;
3171 
3172 	if (!check_irq_usage(curr, prev, next))
3173 		return 0;
3174 
3175 	/*
3176 	 * Is the <prev> -> <next> dependency already present?
3177 	 *
3178 	 * (this may occur even though this is a new chain: consider
3179 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3180 	 *  chains - the second one will be new, but L1 already has
3181 	 *  L2 added to its dependency list, due to the first chain.)
3182 	 */
3183 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3184 		if (entry->class == hlock_class(next)) {
3185 			if (distance == 1)
3186 				entry->distance = 1;
3187 			entry->dep |= calc_dep(prev, next);
3188 
3189 			/*
3190 			 * Also, update the reverse dependency in @next's
3191 			 * ->locks_before list.
3192 			 *
3193 			 *  Here we reuse @entry as the cursor, which is fine
3194 			 *  because we won't go to the next iteration of the
3195 			 *  outer loop:
3196 			 *
3197 			 *  For normal cases, we return in the inner loop.
3198 			 *
3199 			 *  If we fail to return, we have inconsistency, i.e.
3200 			 *  <prev>::locks_after contains <next> while
3201 			 *  <next>::locks_before doesn't contain <prev>. In
3202 			 *  that case, we return after the inner and indicate
3203 			 *  something is wrong.
3204 			 */
3205 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3206 				if (entry->class == hlock_class(prev)) {
3207 					if (distance == 1)
3208 						entry->distance = 1;
3209 					entry->dep |= calc_depb(prev, next);
3210 					return 1;
3211 				}
3212 			}
3213 
3214 			/* <prev> is not found in <next>::locks_before */
3215 			return 0;
3216 		}
3217 	}
3218 
3219 	/*
3220 	 * Is the <prev> -> <next> link redundant?
3221 	 */
3222 	ret = check_redundant(prev, next);
3223 	if (bfs_error(ret))
3224 		return 0;
3225 	else if (ret == BFS_RMATCH)
3226 		return 2;
3227 
3228 	if (!*trace) {
3229 		*trace = save_trace();
3230 		if (!*trace)
3231 			return 0;
3232 	}
3233 
3234 	/*
3235 	 * Ok, all validations passed, add the new lock
3236 	 * to the previous lock's dependency list:
3237 	 */
3238 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3239 			       &hlock_class(prev)->locks_after, distance,
3240 			       calc_dep(prev, next), *trace);
3241 
3242 	if (!ret)
3243 		return 0;
3244 
3245 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3246 			       &hlock_class(next)->locks_before, distance,
3247 			       calc_depb(prev, next), *trace);
3248 	if (!ret)
3249 		return 0;
3250 
3251 	return 2;
3252 }
3253 
3254 /*
3255  * Add the dependency to all directly-previous locks that are 'relevant'.
3256  * The ones that are relevant are (in increasing distance from curr):
3257  * all consecutive trylock entries and the final non-trylock entry - or
3258  * the end of this context's lock-chain - whichever comes first.
3259  */
3260 static int
3261 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3262 {
3263 	struct lock_trace *trace = NULL;
3264 	int depth = curr->lockdep_depth;
3265 	struct held_lock *hlock;
3266 
3267 	/*
3268 	 * Debugging checks.
3269 	 *
3270 	 * Depth must not be zero for a non-head lock:
3271 	 */
3272 	if (!depth)
3273 		goto out_bug;
3274 	/*
3275 	 * At least two relevant locks must exist for this
3276 	 * to be a head:
3277 	 */
3278 	if (curr->held_locks[depth].irq_context !=
3279 			curr->held_locks[depth-1].irq_context)
3280 		goto out_bug;
3281 
3282 	for (;;) {
3283 		u16 distance = curr->lockdep_depth - depth + 1;
3284 		hlock = curr->held_locks + depth - 1;
3285 
3286 		if (hlock->check) {
3287 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3288 			if (!ret)
3289 				return 0;
3290 
3291 			/*
3292 			 * Stop after the first non-trylock entry,
3293 			 * as non-trylock entries have added their
3294 			 * own direct dependencies already, so this
3295 			 * lock is connected to them indirectly:
3296 			 */
3297 			if (!hlock->trylock)
3298 				break;
3299 		}
3300 
3301 		depth--;
3302 		/*
3303 		 * End of lock-stack?
3304 		 */
3305 		if (!depth)
3306 			break;
3307 		/*
3308 		 * Stop the search if we cross into another context:
3309 		 */
3310 		if (curr->held_locks[depth].irq_context !=
3311 				curr->held_locks[depth-1].irq_context)
3312 			break;
3313 	}
3314 	return 1;
3315 out_bug:
3316 	if (!debug_locks_off_graph_unlock())
3317 		return 0;
3318 
3319 	/*
3320 	 * Clearly we all shouldn't be here, but since we made it we
3321 	 * can reliable say we messed up our state. See the above two
3322 	 * gotos for reasons why we could possibly end up here.
3323 	 */
3324 	WARN_ON(1);
3325 
3326 	return 0;
3327 }
3328 
3329 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3330 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3331 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3332 unsigned long nr_zapped_lock_chains;
3333 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3334 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3335 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3336 
3337 /*
3338  * The first 2 chain_hlocks entries in the chain block in the bucket
3339  * list contains the following meta data:
3340  *
3341  *   entry[0]:
3342  *     Bit    15 - always set to 1 (it is not a class index)
3343  *     Bits 0-14 - upper 15 bits of the next block index
3344  *   entry[1]    - lower 16 bits of next block index
3345  *
3346  * A next block index of all 1 bits means it is the end of the list.
3347  *
3348  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3349  * the chain block size:
3350  *
3351  *   entry[2] - upper 16 bits of the chain block size
3352  *   entry[3] - lower 16 bits of the chain block size
3353  */
3354 #define MAX_CHAIN_BUCKETS	16
3355 #define CHAIN_BLK_FLAG		(1U << 15)
3356 #define CHAIN_BLK_LIST_END	0xFFFFU
3357 
3358 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3359 
3360 static inline int size_to_bucket(int size)
3361 {
3362 	if (size > MAX_CHAIN_BUCKETS)
3363 		return 0;
3364 
3365 	return size - 1;
3366 }
3367 
3368 /*
3369  * Iterate all the chain blocks in a bucket.
3370  */
3371 #define for_each_chain_block(bucket, prev, curr)		\
3372 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3373 	     (curr) >= 0;					\
3374 	     (prev) = (curr), (curr) = chain_block_next(curr))
3375 
3376 /*
3377  * next block or -1
3378  */
3379 static inline int chain_block_next(int offset)
3380 {
3381 	int next = chain_hlocks[offset];
3382 
3383 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3384 
3385 	if (next == CHAIN_BLK_LIST_END)
3386 		return -1;
3387 
3388 	next &= ~CHAIN_BLK_FLAG;
3389 	next <<= 16;
3390 	next |= chain_hlocks[offset + 1];
3391 
3392 	return next;
3393 }
3394 
3395 /*
3396  * bucket-0 only
3397  */
3398 static inline int chain_block_size(int offset)
3399 {
3400 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3401 }
3402 
3403 static inline void init_chain_block(int offset, int next, int bucket, int size)
3404 {
3405 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3406 	chain_hlocks[offset + 1] = (u16)next;
3407 
3408 	if (size && !bucket) {
3409 		chain_hlocks[offset + 2] = size >> 16;
3410 		chain_hlocks[offset + 3] = (u16)size;
3411 	}
3412 }
3413 
3414 static inline void add_chain_block(int offset, int size)
3415 {
3416 	int bucket = size_to_bucket(size);
3417 	int next = chain_block_buckets[bucket];
3418 	int prev, curr;
3419 
3420 	if (unlikely(size < 2)) {
3421 		/*
3422 		 * We can't store single entries on the freelist. Leak them.
3423 		 *
3424 		 * One possible way out would be to uniquely mark them, other
3425 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3426 		 * the block before it is re-added.
3427 		 */
3428 		if (size)
3429 			nr_lost_chain_hlocks++;
3430 		return;
3431 	}
3432 
3433 	nr_free_chain_hlocks += size;
3434 	if (!bucket) {
3435 		nr_large_chain_blocks++;
3436 
3437 		/*
3438 		 * Variable sized, sort large to small.
3439 		 */
3440 		for_each_chain_block(0, prev, curr) {
3441 			if (size >= chain_block_size(curr))
3442 				break;
3443 		}
3444 		init_chain_block(offset, curr, 0, size);
3445 		if (prev < 0)
3446 			chain_block_buckets[0] = offset;
3447 		else
3448 			init_chain_block(prev, offset, 0, 0);
3449 		return;
3450 	}
3451 	/*
3452 	 * Fixed size, add to head.
3453 	 */
3454 	init_chain_block(offset, next, bucket, size);
3455 	chain_block_buckets[bucket] = offset;
3456 }
3457 
3458 /*
3459  * Only the first block in the list can be deleted.
3460  *
3461  * For the variable size bucket[0], the first block (the largest one) is
3462  * returned, broken up and put back into the pool. So if a chain block of
3463  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3464  * queued up after the primordial chain block and never be used until the
3465  * hlock entries in the primordial chain block is almost used up. That
3466  * causes fragmentation and reduce allocation efficiency. That can be
3467  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3468  */
3469 static inline void del_chain_block(int bucket, int size, int next)
3470 {
3471 	nr_free_chain_hlocks -= size;
3472 	chain_block_buckets[bucket] = next;
3473 
3474 	if (!bucket)
3475 		nr_large_chain_blocks--;
3476 }
3477 
3478 static void init_chain_block_buckets(void)
3479 {
3480 	int i;
3481 
3482 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3483 		chain_block_buckets[i] = -1;
3484 
3485 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3486 }
3487 
3488 /*
3489  * Return offset of a chain block of the right size or -1 if not found.
3490  *
3491  * Fairly simple worst-fit allocator with the addition of a number of size
3492  * specific free lists.
3493  */
3494 static int alloc_chain_hlocks(int req)
3495 {
3496 	int bucket, curr, size;
3497 
3498 	/*
3499 	 * We rely on the MSB to act as an escape bit to denote freelist
3500 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3501 	 */
3502 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3503 
3504 	init_data_structures_once();
3505 
3506 	if (nr_free_chain_hlocks < req)
3507 		return -1;
3508 
3509 	/*
3510 	 * We require a minimum of 2 (u16) entries to encode a freelist
3511 	 * 'pointer'.
3512 	 */
3513 	req = max(req, 2);
3514 	bucket = size_to_bucket(req);
3515 	curr = chain_block_buckets[bucket];
3516 
3517 	if (bucket) {
3518 		if (curr >= 0) {
3519 			del_chain_block(bucket, req, chain_block_next(curr));
3520 			return curr;
3521 		}
3522 		/* Try bucket 0 */
3523 		curr = chain_block_buckets[0];
3524 	}
3525 
3526 	/*
3527 	 * The variable sized freelist is sorted by size; the first entry is
3528 	 * the largest. Use it if it fits.
3529 	 */
3530 	if (curr >= 0) {
3531 		size = chain_block_size(curr);
3532 		if (likely(size >= req)) {
3533 			del_chain_block(0, size, chain_block_next(curr));
3534 			if (size > req)
3535 				add_chain_block(curr + req, size - req);
3536 			return curr;
3537 		}
3538 	}
3539 
3540 	/*
3541 	 * Last resort, split a block in a larger sized bucket.
3542 	 */
3543 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3544 		bucket = size_to_bucket(size);
3545 		curr = chain_block_buckets[bucket];
3546 		if (curr < 0)
3547 			continue;
3548 
3549 		del_chain_block(bucket, size, chain_block_next(curr));
3550 		add_chain_block(curr + req, size - req);
3551 		return curr;
3552 	}
3553 
3554 	return -1;
3555 }
3556 
3557 static inline void free_chain_hlocks(int base, int size)
3558 {
3559 	add_chain_block(base, max(size, 2));
3560 }
3561 
3562 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3563 {
3564 	u16 chain_hlock = chain_hlocks[chain->base + i];
3565 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3566 
3567 	return lock_classes + class_idx;
3568 }
3569 
3570 /*
3571  * Returns the index of the first held_lock of the current chain
3572  */
3573 static inline int get_first_held_lock(struct task_struct *curr,
3574 					struct held_lock *hlock)
3575 {
3576 	int i;
3577 	struct held_lock *hlock_curr;
3578 
3579 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3580 		hlock_curr = curr->held_locks + i;
3581 		if (hlock_curr->irq_context != hlock->irq_context)
3582 			break;
3583 
3584 	}
3585 
3586 	return ++i;
3587 }
3588 
3589 #ifdef CONFIG_DEBUG_LOCKDEP
3590 /*
3591  * Returns the next chain_key iteration
3592  */
3593 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3594 {
3595 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3596 
3597 	printk(" hlock_id:%d -> chain_key:%016Lx",
3598 		(unsigned int)hlock_id,
3599 		(unsigned long long)new_chain_key);
3600 	return new_chain_key;
3601 }
3602 
3603 static void
3604 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3605 {
3606 	struct held_lock *hlock;
3607 	u64 chain_key = INITIAL_CHAIN_KEY;
3608 	int depth = curr->lockdep_depth;
3609 	int i = get_first_held_lock(curr, hlock_next);
3610 
3611 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3612 		hlock_next->irq_context);
3613 	for (; i < depth; i++) {
3614 		hlock = curr->held_locks + i;
3615 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3616 
3617 		print_lock(hlock);
3618 	}
3619 
3620 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3621 	print_lock(hlock_next);
3622 }
3623 
3624 static void print_chain_keys_chain(struct lock_chain *chain)
3625 {
3626 	int i;
3627 	u64 chain_key = INITIAL_CHAIN_KEY;
3628 	u16 hlock_id;
3629 
3630 	printk("depth: %u\n", chain->depth);
3631 	for (i = 0; i < chain->depth; i++) {
3632 		hlock_id = chain_hlocks[chain->base + i];
3633 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3634 
3635 		print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3636 		printk("\n");
3637 	}
3638 }
3639 
3640 static void print_collision(struct task_struct *curr,
3641 			struct held_lock *hlock_next,
3642 			struct lock_chain *chain)
3643 {
3644 	nbcon_cpu_emergency_enter();
3645 
3646 	pr_warn("\n");
3647 	pr_warn("============================\n");
3648 	pr_warn("WARNING: chain_key collision\n");
3649 	print_kernel_ident();
3650 	pr_warn("----------------------------\n");
3651 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3652 	pr_warn("Hash chain already cached but the contents don't match!\n");
3653 
3654 	pr_warn("Held locks:");
3655 	print_chain_keys_held_locks(curr, hlock_next);
3656 
3657 	pr_warn("Locks in cached chain:");
3658 	print_chain_keys_chain(chain);
3659 
3660 	pr_warn("\nstack backtrace:\n");
3661 	dump_stack();
3662 
3663 	nbcon_cpu_emergency_exit();
3664 }
3665 #endif
3666 
3667 /*
3668  * Checks whether the chain and the current held locks are consistent
3669  * in depth and also in content. If they are not it most likely means
3670  * that there was a collision during the calculation of the chain_key.
3671  * Returns: 0 not passed, 1 passed
3672  */
3673 static int check_no_collision(struct task_struct *curr,
3674 			struct held_lock *hlock,
3675 			struct lock_chain *chain)
3676 {
3677 #ifdef CONFIG_DEBUG_LOCKDEP
3678 	int i, j, id;
3679 
3680 	i = get_first_held_lock(curr, hlock);
3681 
3682 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3683 		print_collision(curr, hlock, chain);
3684 		return 0;
3685 	}
3686 
3687 	for (j = 0; j < chain->depth - 1; j++, i++) {
3688 		id = hlock_id(&curr->held_locks[i]);
3689 
3690 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3691 			print_collision(curr, hlock, chain);
3692 			return 0;
3693 		}
3694 	}
3695 #endif
3696 	return 1;
3697 }
3698 
3699 /*
3700  * Given an index that is >= -1, return the index of the next lock chain.
3701  * Return -2 if there is no next lock chain.
3702  */
3703 long lockdep_next_lockchain(long i)
3704 {
3705 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3706 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3707 }
3708 
3709 unsigned long lock_chain_count(void)
3710 {
3711 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3712 }
3713 
3714 /* Must be called with the graph lock held. */
3715 static struct lock_chain *alloc_lock_chain(void)
3716 {
3717 	int idx = find_first_zero_bit(lock_chains_in_use,
3718 				      ARRAY_SIZE(lock_chains));
3719 
3720 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3721 		return NULL;
3722 	__set_bit(idx, lock_chains_in_use);
3723 	return lock_chains + idx;
3724 }
3725 
3726 /*
3727  * Adds a dependency chain into chain hashtable. And must be called with
3728  * graph_lock held.
3729  *
3730  * Return 0 if fail, and graph_lock is released.
3731  * Return 1 if succeed, with graph_lock held.
3732  */
3733 static inline int add_chain_cache(struct task_struct *curr,
3734 				  struct held_lock *hlock,
3735 				  u64 chain_key)
3736 {
3737 	struct hlist_head *hash_head = chainhashentry(chain_key);
3738 	struct lock_chain *chain;
3739 	int i, j;
3740 
3741 	/*
3742 	 * The caller must hold the graph lock, ensure we've got IRQs
3743 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3744 	 * lockdep won't complain about its own locking errors.
3745 	 */
3746 	if (lockdep_assert_locked())
3747 		return 0;
3748 
3749 	chain = alloc_lock_chain();
3750 	if (!chain) {
3751 		if (!debug_locks_off_graph_unlock())
3752 			return 0;
3753 
3754 		nbcon_cpu_emergency_enter();
3755 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3756 		dump_stack();
3757 		nbcon_cpu_emergency_exit();
3758 		return 0;
3759 	}
3760 	chain->chain_key = chain_key;
3761 	chain->irq_context = hlock->irq_context;
3762 	i = get_first_held_lock(curr, hlock);
3763 	chain->depth = curr->lockdep_depth + 1 - i;
3764 
3765 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3766 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3767 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3768 
3769 	j = alloc_chain_hlocks(chain->depth);
3770 	if (j < 0) {
3771 		if (!debug_locks_off_graph_unlock())
3772 			return 0;
3773 
3774 		nbcon_cpu_emergency_enter();
3775 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3776 		dump_stack();
3777 		nbcon_cpu_emergency_exit();
3778 		return 0;
3779 	}
3780 
3781 	chain->base = j;
3782 	for (j = 0; j < chain->depth - 1; j++, i++) {
3783 		int lock_id = hlock_id(curr->held_locks + i);
3784 
3785 		chain_hlocks[chain->base + j] = lock_id;
3786 	}
3787 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3788 	hlist_add_head_rcu(&chain->entry, hash_head);
3789 	debug_atomic_inc(chain_lookup_misses);
3790 	inc_chains(chain->irq_context);
3791 
3792 	return 1;
3793 }
3794 
3795 /*
3796  * Look up a dependency chain. Must be called with either the graph lock or
3797  * the RCU read lock held.
3798  */
3799 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3800 {
3801 	struct hlist_head *hash_head = chainhashentry(chain_key);
3802 	struct lock_chain *chain;
3803 
3804 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3805 		if (READ_ONCE(chain->chain_key) == chain_key) {
3806 			debug_atomic_inc(chain_lookup_hits);
3807 			return chain;
3808 		}
3809 	}
3810 	return NULL;
3811 }
3812 
3813 /*
3814  * If the key is not present yet in dependency chain cache then
3815  * add it and return 1 - in this case the new dependency chain is
3816  * validated. If the key is already hashed, return 0.
3817  * (On return with 1 graph_lock is held.)
3818  */
3819 static inline int lookup_chain_cache_add(struct task_struct *curr,
3820 					 struct held_lock *hlock,
3821 					 u64 chain_key)
3822 {
3823 	struct lock_class *class = hlock_class(hlock);
3824 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3825 
3826 	if (chain) {
3827 cache_hit:
3828 		if (!check_no_collision(curr, hlock, chain))
3829 			return 0;
3830 
3831 		if (very_verbose(class)) {
3832 			printk("\nhash chain already cached, key: "
3833 					"%016Lx tail class: [%px] %s\n",
3834 					(unsigned long long)chain_key,
3835 					class->key, class->name);
3836 		}
3837 
3838 		return 0;
3839 	}
3840 
3841 	if (very_verbose(class)) {
3842 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3843 			(unsigned long long)chain_key, class->key, class->name);
3844 	}
3845 
3846 	if (!graph_lock())
3847 		return 0;
3848 
3849 	/*
3850 	 * We have to walk the chain again locked - to avoid duplicates:
3851 	 */
3852 	chain = lookup_chain_cache(chain_key);
3853 	if (chain) {
3854 		graph_unlock();
3855 		goto cache_hit;
3856 	}
3857 
3858 	if (!add_chain_cache(curr, hlock, chain_key))
3859 		return 0;
3860 
3861 	return 1;
3862 }
3863 
3864 static int validate_chain(struct task_struct *curr,
3865 			  struct held_lock *hlock,
3866 			  int chain_head, u64 chain_key)
3867 {
3868 	/*
3869 	 * Trylock needs to maintain the stack of held locks, but it
3870 	 * does not add new dependencies, because trylock can be done
3871 	 * in any order.
3872 	 *
3873 	 * We look up the chain_key and do the O(N^2) check and update of
3874 	 * the dependencies only if this is a new dependency chain.
3875 	 * (If lookup_chain_cache_add() return with 1 it acquires
3876 	 * graph_lock for us)
3877 	 */
3878 	if (!hlock->trylock && hlock->check &&
3879 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3880 		/*
3881 		 * Check whether last held lock:
3882 		 *
3883 		 * - is irq-safe, if this lock is irq-unsafe
3884 		 * - is softirq-safe, if this lock is hardirq-unsafe
3885 		 *
3886 		 * And check whether the new lock's dependency graph
3887 		 * could lead back to the previous lock:
3888 		 *
3889 		 * - within the current held-lock stack
3890 		 * - across our accumulated lock dependency records
3891 		 *
3892 		 * any of these scenarios could lead to a deadlock.
3893 		 */
3894 		/*
3895 		 * The simple case: does the current hold the same lock
3896 		 * already?
3897 		 */
3898 		int ret = check_deadlock(curr, hlock);
3899 
3900 		if (!ret)
3901 			return 0;
3902 		/*
3903 		 * Add dependency only if this lock is not the head
3904 		 * of the chain, and if the new lock introduces no more
3905 		 * lock dependency (because we already hold a lock with the
3906 		 * same lock class) nor deadlock (because the nest_lock
3907 		 * serializes nesting locks), see the comments for
3908 		 * check_deadlock().
3909 		 */
3910 		if (!chain_head && ret != 2) {
3911 			if (!check_prevs_add(curr, hlock))
3912 				return 0;
3913 		}
3914 
3915 		graph_unlock();
3916 	} else {
3917 		/* after lookup_chain_cache_add(): */
3918 		if (unlikely(!debug_locks))
3919 			return 0;
3920 	}
3921 
3922 	return 1;
3923 }
3924 #else
3925 static inline int validate_chain(struct task_struct *curr,
3926 				 struct held_lock *hlock,
3927 				 int chain_head, u64 chain_key)
3928 {
3929 	return 1;
3930 }
3931 
3932 static void init_chain_block_buckets(void)	{ }
3933 #endif /* CONFIG_PROVE_LOCKING */
3934 
3935 /*
3936  * We are building curr_chain_key incrementally, so double-check
3937  * it from scratch, to make sure that it's done correctly:
3938  */
3939 static void check_chain_key(struct task_struct *curr)
3940 {
3941 #ifdef CONFIG_DEBUG_LOCKDEP
3942 	struct held_lock *hlock, *prev_hlock = NULL;
3943 	unsigned int i;
3944 	u64 chain_key = INITIAL_CHAIN_KEY;
3945 
3946 	for (i = 0; i < curr->lockdep_depth; i++) {
3947 		hlock = curr->held_locks + i;
3948 		if (chain_key != hlock->prev_chain_key) {
3949 			debug_locks_off();
3950 			/*
3951 			 * We got mighty confused, our chain keys don't match
3952 			 * with what we expect, someone trample on our task state?
3953 			 */
3954 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3955 				curr->lockdep_depth, i,
3956 				(unsigned long long)chain_key,
3957 				(unsigned long long)hlock->prev_chain_key);
3958 			return;
3959 		}
3960 
3961 		/*
3962 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3963 		 * it registered lock class index?
3964 		 */
3965 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3966 			return;
3967 
3968 		if (prev_hlock && (prev_hlock->irq_context !=
3969 							hlock->irq_context))
3970 			chain_key = INITIAL_CHAIN_KEY;
3971 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3972 		prev_hlock = hlock;
3973 	}
3974 	if (chain_key != curr->curr_chain_key) {
3975 		debug_locks_off();
3976 		/*
3977 		 * More smoking hash instead of calculating it, damn see these
3978 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3979 		 */
3980 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3981 			curr->lockdep_depth, i,
3982 			(unsigned long long)chain_key,
3983 			(unsigned long long)curr->curr_chain_key);
3984 	}
3985 #endif
3986 }
3987 
3988 #ifdef CONFIG_PROVE_LOCKING
3989 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3990 		     enum lock_usage_bit new_bit);
3991 
3992 static void print_usage_bug_scenario(struct held_lock *lock)
3993 {
3994 	struct lock_class *class = hlock_class(lock);
3995 
3996 	printk(" Possible unsafe locking scenario:\n\n");
3997 	printk("       CPU0\n");
3998 	printk("       ----\n");
3999 	printk("  lock(");
4000 	__print_lock_name(lock, class);
4001 	printk(KERN_CONT ");\n");
4002 	printk("  <Interrupt>\n");
4003 	printk("    lock(");
4004 	__print_lock_name(lock, class);
4005 	printk(KERN_CONT ");\n");
4006 	printk("\n *** DEADLOCK ***\n\n");
4007 }
4008 
4009 static void
4010 print_usage_bug(struct task_struct *curr, struct held_lock *this,
4011 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
4012 {
4013 	if (!debug_locks_off() || debug_locks_silent)
4014 		return;
4015 
4016 	nbcon_cpu_emergency_enter();
4017 
4018 	pr_warn("\n");
4019 	pr_warn("================================\n");
4020 	pr_warn("WARNING: inconsistent lock state\n");
4021 	print_kernel_ident();
4022 	pr_warn("--------------------------------\n");
4023 
4024 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
4025 		usage_str[prev_bit], usage_str[new_bit]);
4026 
4027 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
4028 		curr->comm, task_pid_nr(curr),
4029 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
4030 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
4031 		lockdep_hardirqs_enabled(),
4032 		lockdep_softirqs_enabled(curr));
4033 	print_lock(this);
4034 
4035 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
4036 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
4037 
4038 	print_irqtrace_events(curr);
4039 	pr_warn("\nother info that might help us debug this:\n");
4040 	print_usage_bug_scenario(this);
4041 
4042 	lockdep_print_held_locks(curr);
4043 
4044 	pr_warn("\nstack backtrace:\n");
4045 	dump_stack();
4046 
4047 	nbcon_cpu_emergency_exit();
4048 }
4049 
4050 /*
4051  * Print out an error if an invalid bit is set:
4052  */
4053 static inline int
4054 valid_state(struct task_struct *curr, struct held_lock *this,
4055 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4056 {
4057 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4058 		graph_unlock();
4059 		print_usage_bug(curr, this, bad_bit, new_bit);
4060 		return 0;
4061 	}
4062 	return 1;
4063 }
4064 
4065 
4066 /*
4067  * print irq inversion bug:
4068  */
4069 static void
4070 print_irq_inversion_bug(struct task_struct *curr,
4071 			struct lock_list *root, struct lock_list *other,
4072 			struct held_lock *this, int forwards,
4073 			const char *irqclass)
4074 {
4075 	struct lock_list *entry = other;
4076 	struct lock_list *middle = NULL;
4077 	int depth;
4078 
4079 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4080 		return;
4081 
4082 	nbcon_cpu_emergency_enter();
4083 
4084 	pr_warn("\n");
4085 	pr_warn("========================================================\n");
4086 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4087 	print_kernel_ident();
4088 	pr_warn("--------------------------------------------------------\n");
4089 	pr_warn("%s/%d just changed the state of lock:\n",
4090 		curr->comm, task_pid_nr(curr));
4091 	print_lock(this);
4092 	if (forwards)
4093 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4094 	else
4095 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4096 	print_lock_name(NULL, other->class);
4097 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4098 
4099 	pr_warn("\nother info that might help us debug this:\n");
4100 
4101 	/* Find a middle lock (if one exists) */
4102 	depth = get_lock_depth(other);
4103 	do {
4104 		if (depth == 0 && (entry != root)) {
4105 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4106 			break;
4107 		}
4108 		middle = entry;
4109 		entry = get_lock_parent(entry);
4110 		depth--;
4111 	} while (entry && entry != root && (depth >= 0));
4112 	if (forwards)
4113 		print_irq_lock_scenario(root, other,
4114 			middle ? middle->class : root->class, other->class);
4115 	else
4116 		print_irq_lock_scenario(other, root,
4117 			middle ? middle->class : other->class, root->class);
4118 
4119 	lockdep_print_held_locks(curr);
4120 
4121 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4122 	root->trace = save_trace();
4123 	if (!root->trace)
4124 		goto out;
4125 	print_shortest_lock_dependencies(other, root);
4126 
4127 	pr_warn("\nstack backtrace:\n");
4128 	dump_stack();
4129 out:
4130 	nbcon_cpu_emergency_exit();
4131 }
4132 
4133 /*
4134  * Prove that in the forwards-direction subgraph starting at <this>
4135  * there is no lock matching <mask>:
4136  */
4137 static int
4138 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4139 		     enum lock_usage_bit bit)
4140 {
4141 	enum bfs_result ret;
4142 	struct lock_list root;
4143 	struct lock_list *target_entry;
4144 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4145 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4146 
4147 	bfs_init_root(&root, this);
4148 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4149 	if (bfs_error(ret)) {
4150 		print_bfs_bug(ret);
4151 		return 0;
4152 	}
4153 	if (ret == BFS_RNOMATCH)
4154 		return 1;
4155 
4156 	/* Check whether write or read usage is the match */
4157 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4158 		print_irq_inversion_bug(curr, &root, target_entry,
4159 					this, 1, state_name(bit));
4160 	} else {
4161 		print_irq_inversion_bug(curr, &root, target_entry,
4162 					this, 1, state_name(read_bit));
4163 	}
4164 
4165 	return 0;
4166 }
4167 
4168 /*
4169  * Prove that in the backwards-direction subgraph starting at <this>
4170  * there is no lock matching <mask>:
4171  */
4172 static int
4173 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4174 		      enum lock_usage_bit bit)
4175 {
4176 	enum bfs_result ret;
4177 	struct lock_list root;
4178 	struct lock_list *target_entry;
4179 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4180 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4181 
4182 	bfs_init_rootb(&root, this);
4183 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4184 	if (bfs_error(ret)) {
4185 		print_bfs_bug(ret);
4186 		return 0;
4187 	}
4188 	if (ret == BFS_RNOMATCH)
4189 		return 1;
4190 
4191 	/* Check whether write or read usage is the match */
4192 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4193 		print_irq_inversion_bug(curr, &root, target_entry,
4194 					this, 0, state_name(bit));
4195 	} else {
4196 		print_irq_inversion_bug(curr, &root, target_entry,
4197 					this, 0, state_name(read_bit));
4198 	}
4199 
4200 	return 0;
4201 }
4202 
4203 void print_irqtrace_events(struct task_struct *curr)
4204 {
4205 	const struct irqtrace_events *trace = &curr->irqtrace;
4206 
4207 	nbcon_cpu_emergency_enter();
4208 
4209 	printk("irq event stamp: %u\n", trace->irq_events);
4210 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4211 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4212 		(void *)trace->hardirq_enable_ip);
4213 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4214 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4215 		(void *)trace->hardirq_disable_ip);
4216 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4217 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4218 		(void *)trace->softirq_enable_ip);
4219 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4220 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4221 		(void *)trace->softirq_disable_ip);
4222 
4223 	nbcon_cpu_emergency_exit();
4224 }
4225 
4226 static int HARDIRQ_verbose(struct lock_class *class)
4227 {
4228 #if HARDIRQ_VERBOSE
4229 	return class_filter(class);
4230 #endif
4231 	return 0;
4232 }
4233 
4234 static int SOFTIRQ_verbose(struct lock_class *class)
4235 {
4236 #if SOFTIRQ_VERBOSE
4237 	return class_filter(class);
4238 #endif
4239 	return 0;
4240 }
4241 
4242 static int (*state_verbose_f[])(struct lock_class *class) = {
4243 #define LOCKDEP_STATE(__STATE) \
4244 	__STATE##_verbose,
4245 #include "lockdep_states.h"
4246 #undef LOCKDEP_STATE
4247 };
4248 
4249 static inline int state_verbose(enum lock_usage_bit bit,
4250 				struct lock_class *class)
4251 {
4252 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4253 }
4254 
4255 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4256 			     enum lock_usage_bit bit, const char *name);
4257 
4258 static int
4259 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4260 		enum lock_usage_bit new_bit)
4261 {
4262 	int excl_bit = exclusive_bit(new_bit);
4263 	int read = new_bit & LOCK_USAGE_READ_MASK;
4264 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4265 
4266 	/*
4267 	 * Validate that this particular lock does not have conflicting
4268 	 * usage states.
4269 	 */
4270 	if (!valid_state(curr, this, new_bit, excl_bit))
4271 		return 0;
4272 
4273 	/*
4274 	 * Check for read in write conflicts
4275 	 */
4276 	if (!read && !valid_state(curr, this, new_bit,
4277 				  excl_bit + LOCK_USAGE_READ_MASK))
4278 		return 0;
4279 
4280 
4281 	/*
4282 	 * Validate that the lock dependencies don't have conflicting usage
4283 	 * states.
4284 	 */
4285 	if (dir) {
4286 		/*
4287 		 * mark ENABLED has to look backwards -- to ensure no dependee
4288 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4289 		 */
4290 		if (!check_usage_backwards(curr, this, excl_bit))
4291 			return 0;
4292 	} else {
4293 		/*
4294 		 * mark USED_IN has to look forwards -- to ensure no dependency
4295 		 * has ENABLED state, which would allow recursion deadlocks.
4296 		 */
4297 		if (!check_usage_forwards(curr, this, excl_bit))
4298 			return 0;
4299 	}
4300 
4301 	if (state_verbose(new_bit, hlock_class(this)))
4302 		return 2;
4303 
4304 	return 1;
4305 }
4306 
4307 /*
4308  * Mark all held locks with a usage bit:
4309  */
4310 static int
4311 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4312 {
4313 	struct held_lock *hlock;
4314 	int i;
4315 
4316 	for (i = 0; i < curr->lockdep_depth; i++) {
4317 		enum lock_usage_bit hlock_bit = base_bit;
4318 		hlock = curr->held_locks + i;
4319 
4320 		if (hlock->read)
4321 			hlock_bit += LOCK_USAGE_READ_MASK;
4322 
4323 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4324 
4325 		if (!hlock->check)
4326 			continue;
4327 
4328 		if (!mark_lock(curr, hlock, hlock_bit))
4329 			return 0;
4330 	}
4331 
4332 	return 1;
4333 }
4334 
4335 /*
4336  * Hardirqs will be enabled:
4337  */
4338 static void __trace_hardirqs_on_caller(void)
4339 {
4340 	struct task_struct *curr = current;
4341 
4342 	/*
4343 	 * We are going to turn hardirqs on, so set the
4344 	 * usage bit for all held locks:
4345 	 */
4346 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4347 		return;
4348 	/*
4349 	 * If we have softirqs enabled, then set the usage
4350 	 * bit for all held locks. (disabled hardirqs prevented
4351 	 * this bit from being set before)
4352 	 */
4353 	if (curr->softirqs_enabled)
4354 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4355 }
4356 
4357 /**
4358  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4359  *
4360  * Invoked before a possible transition to RCU idle from exit to user or
4361  * guest mode. This ensures that all RCU operations are done before RCU
4362  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4363  * invoked to set the final state.
4364  */
4365 void lockdep_hardirqs_on_prepare(void)
4366 {
4367 	if (unlikely(!debug_locks))
4368 		return;
4369 
4370 	/*
4371 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4372 	 */
4373 	if (unlikely(in_nmi()))
4374 		return;
4375 
4376 	if (unlikely(this_cpu_read(lockdep_recursion)))
4377 		return;
4378 
4379 	if (unlikely(lockdep_hardirqs_enabled())) {
4380 		/*
4381 		 * Neither irq nor preemption are disabled here
4382 		 * so this is racy by nature but losing one hit
4383 		 * in a stat is not a big deal.
4384 		 */
4385 		__debug_atomic_inc(redundant_hardirqs_on);
4386 		return;
4387 	}
4388 
4389 	/*
4390 	 * We're enabling irqs and according to our state above irqs weren't
4391 	 * already enabled, yet we find the hardware thinks they are in fact
4392 	 * enabled.. someone messed up their IRQ state tracing.
4393 	 */
4394 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4395 		return;
4396 
4397 	/*
4398 	 * See the fine text that goes along with this variable definition.
4399 	 */
4400 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4401 		return;
4402 
4403 	/*
4404 	 * Can't allow enabling interrupts while in an interrupt handler,
4405 	 * that's general bad form and such. Recursion, limited stack etc..
4406 	 */
4407 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4408 		return;
4409 
4410 	current->hardirq_chain_key = current->curr_chain_key;
4411 
4412 	lockdep_recursion_inc();
4413 	__trace_hardirqs_on_caller();
4414 	lockdep_recursion_finish();
4415 }
4416 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4417 
4418 void noinstr lockdep_hardirqs_on(unsigned long ip)
4419 {
4420 	struct irqtrace_events *trace = &current->irqtrace;
4421 
4422 	if (unlikely(!debug_locks))
4423 		return;
4424 
4425 	/*
4426 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4427 	 * tracking state and hardware state are out of sync.
4428 	 *
4429 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4430 	 * and not rely on hardware state like normal interrupts.
4431 	 */
4432 	if (unlikely(in_nmi())) {
4433 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4434 			return;
4435 
4436 		/*
4437 		 * Skip:
4438 		 *  - recursion check, because NMI can hit lockdep;
4439 		 *  - hardware state check, because above;
4440 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4441 		 */
4442 		goto skip_checks;
4443 	}
4444 
4445 	if (unlikely(this_cpu_read(lockdep_recursion)))
4446 		return;
4447 
4448 	if (lockdep_hardirqs_enabled()) {
4449 		/*
4450 		 * Neither irq nor preemption are disabled here
4451 		 * so this is racy by nature but losing one hit
4452 		 * in a stat is not a big deal.
4453 		 */
4454 		__debug_atomic_inc(redundant_hardirqs_on);
4455 		return;
4456 	}
4457 
4458 	/*
4459 	 * We're enabling irqs and according to our state above irqs weren't
4460 	 * already enabled, yet we find the hardware thinks they are in fact
4461 	 * enabled.. someone messed up their IRQ state tracing.
4462 	 */
4463 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4464 		return;
4465 
4466 	/*
4467 	 * Ensure the lock stack remained unchanged between
4468 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4469 	 */
4470 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4471 			    current->curr_chain_key);
4472 
4473 skip_checks:
4474 	/* we'll do an OFF -> ON transition: */
4475 	__this_cpu_write(hardirqs_enabled, 1);
4476 	trace->hardirq_enable_ip = ip;
4477 	trace->hardirq_enable_event = ++trace->irq_events;
4478 	debug_atomic_inc(hardirqs_on_events);
4479 }
4480 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4481 
4482 /*
4483  * Hardirqs were disabled:
4484  */
4485 void noinstr lockdep_hardirqs_off(unsigned long ip)
4486 {
4487 	if (unlikely(!debug_locks))
4488 		return;
4489 
4490 	/*
4491 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4492 	 * they will restore the software state. This ensures the software
4493 	 * state is consistent inside NMIs as well.
4494 	 */
4495 	if (in_nmi()) {
4496 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4497 			return;
4498 	} else if (__this_cpu_read(lockdep_recursion))
4499 		return;
4500 
4501 	/*
4502 	 * So we're supposed to get called after you mask local IRQs, but for
4503 	 * some reason the hardware doesn't quite think you did a proper job.
4504 	 */
4505 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4506 		return;
4507 
4508 	if (lockdep_hardirqs_enabled()) {
4509 		struct irqtrace_events *trace = &current->irqtrace;
4510 
4511 		/*
4512 		 * We have done an ON -> OFF transition:
4513 		 */
4514 		__this_cpu_write(hardirqs_enabled, 0);
4515 		trace->hardirq_disable_ip = ip;
4516 		trace->hardirq_disable_event = ++trace->irq_events;
4517 		debug_atomic_inc(hardirqs_off_events);
4518 	} else {
4519 		debug_atomic_inc(redundant_hardirqs_off);
4520 	}
4521 }
4522 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4523 
4524 /*
4525  * Softirqs will be enabled:
4526  */
4527 void lockdep_softirqs_on(unsigned long ip)
4528 {
4529 	struct irqtrace_events *trace = &current->irqtrace;
4530 
4531 	if (unlikely(!lockdep_enabled()))
4532 		return;
4533 
4534 	/*
4535 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4536 	 * funny state and nesting things.
4537 	 */
4538 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4539 		return;
4540 
4541 	if (current->softirqs_enabled) {
4542 		debug_atomic_inc(redundant_softirqs_on);
4543 		return;
4544 	}
4545 
4546 	lockdep_recursion_inc();
4547 	/*
4548 	 * We'll do an OFF -> ON transition:
4549 	 */
4550 	current->softirqs_enabled = 1;
4551 	trace->softirq_enable_ip = ip;
4552 	trace->softirq_enable_event = ++trace->irq_events;
4553 	debug_atomic_inc(softirqs_on_events);
4554 	/*
4555 	 * We are going to turn softirqs on, so set the
4556 	 * usage bit for all held locks, if hardirqs are
4557 	 * enabled too:
4558 	 */
4559 	if (lockdep_hardirqs_enabled())
4560 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4561 	lockdep_recursion_finish();
4562 }
4563 
4564 /*
4565  * Softirqs were disabled:
4566  */
4567 void lockdep_softirqs_off(unsigned long ip)
4568 {
4569 	if (unlikely(!lockdep_enabled()))
4570 		return;
4571 
4572 	/*
4573 	 * We fancy IRQs being disabled here, see softirq.c
4574 	 */
4575 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4576 		return;
4577 
4578 	if (current->softirqs_enabled) {
4579 		struct irqtrace_events *trace = &current->irqtrace;
4580 
4581 		/*
4582 		 * We have done an ON -> OFF transition:
4583 		 */
4584 		current->softirqs_enabled = 0;
4585 		trace->softirq_disable_ip = ip;
4586 		trace->softirq_disable_event = ++trace->irq_events;
4587 		debug_atomic_inc(softirqs_off_events);
4588 		/*
4589 		 * Whoops, we wanted softirqs off, so why aren't they?
4590 		 */
4591 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4592 	} else
4593 		debug_atomic_inc(redundant_softirqs_off);
4594 }
4595 
4596 /**
4597  * lockdep_cleanup_dead_cpu - Ensure CPU lockdep state is cleanly stopped
4598  *
4599  * @cpu: index of offlined CPU
4600  * @idle: task pointer for offlined CPU's idle thread
4601  *
4602  * Invoked after the CPU is dead. Ensures that the tracing infrastructure
4603  * is left in a suitable state for the CPU to be subsequently brought
4604  * online again.
4605  */
4606 void lockdep_cleanup_dead_cpu(unsigned int cpu, struct task_struct *idle)
4607 {
4608 	if (unlikely(!debug_locks))
4609 		return;
4610 
4611 	if (unlikely(per_cpu(hardirqs_enabled, cpu))) {
4612 		pr_warn("CPU %u left hardirqs enabled!", cpu);
4613 		if (idle)
4614 			print_irqtrace_events(idle);
4615 		/* Clean it up for when the CPU comes online again. */
4616 		per_cpu(hardirqs_enabled, cpu) = 0;
4617 	}
4618 }
4619 
4620 static int
4621 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4622 {
4623 	if (!check)
4624 		goto lock_used;
4625 
4626 	/*
4627 	 * If non-trylock use in a hardirq or softirq context, then
4628 	 * mark the lock as used in these contexts:
4629 	 */
4630 	if (!hlock->trylock) {
4631 		if (hlock->read) {
4632 			if (lockdep_hardirq_context())
4633 				if (!mark_lock(curr, hlock,
4634 						LOCK_USED_IN_HARDIRQ_READ))
4635 					return 0;
4636 			if (curr->softirq_context)
4637 				if (!mark_lock(curr, hlock,
4638 						LOCK_USED_IN_SOFTIRQ_READ))
4639 					return 0;
4640 		} else {
4641 			if (lockdep_hardirq_context())
4642 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4643 					return 0;
4644 			if (curr->softirq_context)
4645 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4646 					return 0;
4647 		}
4648 	}
4649 
4650 	/*
4651 	 * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4652 	 * creates no critical section and no extra dependency can be introduced
4653 	 * by interrupts
4654 	 */
4655 	if (!hlock->hardirqs_off && !hlock->sync) {
4656 		if (hlock->read) {
4657 			if (!mark_lock(curr, hlock,
4658 					LOCK_ENABLED_HARDIRQ_READ))
4659 				return 0;
4660 			if (curr->softirqs_enabled)
4661 				if (!mark_lock(curr, hlock,
4662 						LOCK_ENABLED_SOFTIRQ_READ))
4663 					return 0;
4664 		} else {
4665 			if (!mark_lock(curr, hlock,
4666 					LOCK_ENABLED_HARDIRQ))
4667 				return 0;
4668 			if (curr->softirqs_enabled)
4669 				if (!mark_lock(curr, hlock,
4670 						LOCK_ENABLED_SOFTIRQ))
4671 					return 0;
4672 		}
4673 	}
4674 
4675 lock_used:
4676 	/* mark it as used: */
4677 	if (!mark_lock(curr, hlock, LOCK_USED))
4678 		return 0;
4679 
4680 	return 1;
4681 }
4682 
4683 static inline unsigned int task_irq_context(struct task_struct *task)
4684 {
4685 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4686 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4687 }
4688 
4689 static int separate_irq_context(struct task_struct *curr,
4690 		struct held_lock *hlock)
4691 {
4692 	unsigned int depth = curr->lockdep_depth;
4693 
4694 	/*
4695 	 * Keep track of points where we cross into an interrupt context:
4696 	 */
4697 	if (depth) {
4698 		struct held_lock *prev_hlock;
4699 
4700 		prev_hlock = curr->held_locks + depth-1;
4701 		/*
4702 		 * If we cross into another context, reset the
4703 		 * hash key (this also prevents the checking and the
4704 		 * adding of the dependency to 'prev'):
4705 		 */
4706 		if (prev_hlock->irq_context != hlock->irq_context)
4707 			return 1;
4708 	}
4709 	return 0;
4710 }
4711 
4712 /*
4713  * Mark a lock with a usage bit, and validate the state transition:
4714  */
4715 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4716 			     enum lock_usage_bit new_bit)
4717 {
4718 	unsigned int new_mask, ret = 1;
4719 
4720 	if (new_bit >= LOCK_USAGE_STATES) {
4721 		DEBUG_LOCKS_WARN_ON(1);
4722 		return 0;
4723 	}
4724 
4725 	if (new_bit == LOCK_USED && this->read)
4726 		new_bit = LOCK_USED_READ;
4727 
4728 	new_mask = 1 << new_bit;
4729 
4730 	/*
4731 	 * If already set then do not dirty the cacheline,
4732 	 * nor do any checks:
4733 	 */
4734 	if (likely(hlock_class(this)->usage_mask & new_mask))
4735 		return 1;
4736 
4737 	if (!graph_lock())
4738 		return 0;
4739 	/*
4740 	 * Make sure we didn't race:
4741 	 */
4742 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4743 		goto unlock;
4744 
4745 	if (!hlock_class(this)->usage_mask)
4746 		debug_atomic_dec(nr_unused_locks);
4747 
4748 	hlock_class(this)->usage_mask |= new_mask;
4749 
4750 	if (new_bit < LOCK_TRACE_STATES) {
4751 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4752 			return 0;
4753 	}
4754 
4755 	if (new_bit < LOCK_USED) {
4756 		ret = mark_lock_irq(curr, this, new_bit);
4757 		if (!ret)
4758 			return 0;
4759 	}
4760 
4761 unlock:
4762 	graph_unlock();
4763 
4764 	/*
4765 	 * We must printk outside of the graph_lock:
4766 	 */
4767 	if (ret == 2) {
4768 		nbcon_cpu_emergency_enter();
4769 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4770 		print_lock(this);
4771 		print_irqtrace_events(curr);
4772 		dump_stack();
4773 		nbcon_cpu_emergency_exit();
4774 	}
4775 
4776 	return ret;
4777 }
4778 
4779 static inline short task_wait_context(struct task_struct *curr)
4780 {
4781 	/*
4782 	 * Set appropriate wait type for the context; for IRQs we have to take
4783 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4784 	 */
4785 	if (lockdep_hardirq_context()) {
4786 		/*
4787 		 * Check if force_irqthreads will run us threaded.
4788 		 */
4789 		if (curr->hardirq_threaded || curr->irq_config)
4790 			return LD_WAIT_CONFIG;
4791 
4792 		return LD_WAIT_SPIN;
4793 	} else if (curr->softirq_context) {
4794 		/*
4795 		 * Softirqs are always threaded.
4796 		 */
4797 		return LD_WAIT_CONFIG;
4798 	}
4799 
4800 	return LD_WAIT_MAX;
4801 }
4802 
4803 static int
4804 print_lock_invalid_wait_context(struct task_struct *curr,
4805 				struct held_lock *hlock)
4806 {
4807 	short curr_inner;
4808 
4809 	if (!debug_locks_off())
4810 		return 0;
4811 	if (debug_locks_silent)
4812 		return 0;
4813 
4814 	nbcon_cpu_emergency_enter();
4815 
4816 	pr_warn("\n");
4817 	pr_warn("=============================\n");
4818 	pr_warn("[ BUG: Invalid wait context ]\n");
4819 	print_kernel_ident();
4820 	pr_warn("-----------------------------\n");
4821 
4822 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4823 	print_lock(hlock);
4824 
4825 	pr_warn("other info that might help us debug this:\n");
4826 
4827 	curr_inner = task_wait_context(curr);
4828 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4829 
4830 	lockdep_print_held_locks(curr);
4831 
4832 	pr_warn("stack backtrace:\n");
4833 	dump_stack();
4834 
4835 	nbcon_cpu_emergency_exit();
4836 
4837 	return 0;
4838 }
4839 
4840 /*
4841  * Verify the wait_type context.
4842  *
4843  * This check validates we take locks in the right wait-type order; that is it
4844  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4845  * acquire spinlocks inside raw_spinlocks and the sort.
4846  *
4847  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4848  * can be taken from (pretty much) any context but also has constraints.
4849  * However when taken in a stricter environment the RCU lock does not loosen
4850  * the constraints.
4851  *
4852  * Therefore we must look for the strictest environment in the lock stack and
4853  * compare that to the lock we're trying to acquire.
4854  */
4855 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4856 {
4857 	u8 next_inner = hlock_class(next)->wait_type_inner;
4858 	u8 next_outer = hlock_class(next)->wait_type_outer;
4859 	u8 curr_inner;
4860 	int depth;
4861 
4862 	if (!next_inner || next->trylock)
4863 		return 0;
4864 
4865 	if (!next_outer)
4866 		next_outer = next_inner;
4867 
4868 	/*
4869 	 * Find start of current irq_context..
4870 	 */
4871 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4872 		struct held_lock *prev = curr->held_locks + depth;
4873 		if (prev->irq_context != next->irq_context)
4874 			break;
4875 	}
4876 	depth++;
4877 
4878 	curr_inner = task_wait_context(curr);
4879 
4880 	for (; depth < curr->lockdep_depth; depth++) {
4881 		struct held_lock *prev = curr->held_locks + depth;
4882 		struct lock_class *class = hlock_class(prev);
4883 		u8 prev_inner = class->wait_type_inner;
4884 
4885 		if (prev_inner) {
4886 			/*
4887 			 * We can have a bigger inner than a previous one
4888 			 * when outer is smaller than inner, as with RCU.
4889 			 *
4890 			 * Also due to trylocks.
4891 			 */
4892 			curr_inner = min(curr_inner, prev_inner);
4893 
4894 			/*
4895 			 * Allow override for annotations -- this is typically
4896 			 * only valid/needed for code that only exists when
4897 			 * CONFIG_PREEMPT_RT=n.
4898 			 */
4899 			if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4900 				curr_inner = prev_inner;
4901 		}
4902 	}
4903 
4904 	if (next_outer > curr_inner)
4905 		return print_lock_invalid_wait_context(curr, next);
4906 
4907 	return 0;
4908 }
4909 
4910 #else /* CONFIG_PROVE_LOCKING */
4911 
4912 static inline int
4913 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4914 {
4915 	return 1;
4916 }
4917 
4918 static inline unsigned int task_irq_context(struct task_struct *task)
4919 {
4920 	return 0;
4921 }
4922 
4923 static inline int separate_irq_context(struct task_struct *curr,
4924 		struct held_lock *hlock)
4925 {
4926 	return 0;
4927 }
4928 
4929 static inline int check_wait_context(struct task_struct *curr,
4930 				     struct held_lock *next)
4931 {
4932 	return 0;
4933 }
4934 
4935 #endif /* CONFIG_PROVE_LOCKING */
4936 
4937 /*
4938  * Initialize a lock instance's lock-class mapping info:
4939  */
4940 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4941 			    struct lock_class_key *key, int subclass,
4942 			    u8 inner, u8 outer, u8 lock_type)
4943 {
4944 	int i;
4945 
4946 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4947 		lock->class_cache[i] = NULL;
4948 
4949 #ifdef CONFIG_LOCK_STAT
4950 	lock->cpu = raw_smp_processor_id();
4951 #endif
4952 
4953 	/*
4954 	 * Can't be having no nameless bastards around this place!
4955 	 */
4956 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4957 		lock->name = "NULL";
4958 		return;
4959 	}
4960 
4961 	lock->name = name;
4962 
4963 	lock->wait_type_outer = outer;
4964 	lock->wait_type_inner = inner;
4965 	lock->lock_type = lock_type;
4966 
4967 	/*
4968 	 * No key, no joy, we need to hash something.
4969 	 */
4970 	if (DEBUG_LOCKS_WARN_ON(!key))
4971 		return;
4972 	/*
4973 	 * Sanity check, the lock-class key must either have been allocated
4974 	 * statically or must have been registered as a dynamic key.
4975 	 */
4976 	if (!static_obj(key) && !is_dynamic_key(key)) {
4977 		if (debug_locks)
4978 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4979 		DEBUG_LOCKS_WARN_ON(1);
4980 		return;
4981 	}
4982 	lock->key = key;
4983 
4984 	if (unlikely(!debug_locks))
4985 		return;
4986 
4987 	if (subclass) {
4988 		unsigned long flags;
4989 
4990 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4991 			return;
4992 
4993 		raw_local_irq_save(flags);
4994 		lockdep_recursion_inc();
4995 		register_lock_class(lock, subclass, 1);
4996 		lockdep_recursion_finish();
4997 		raw_local_irq_restore(flags);
4998 	}
4999 }
5000 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
5001 
5002 struct lock_class_key __lockdep_no_validate__;
5003 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
5004 
5005 struct lock_class_key __lockdep_no_track__;
5006 EXPORT_SYMBOL_GPL(__lockdep_no_track__);
5007 
5008 #ifdef CONFIG_PROVE_LOCKING
5009 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
5010 			     lock_print_fn print_fn)
5011 {
5012 	struct lock_class *class = lock->class_cache[0];
5013 	unsigned long flags;
5014 
5015 	raw_local_irq_save(flags);
5016 	lockdep_recursion_inc();
5017 
5018 	if (!class)
5019 		class = register_lock_class(lock, 0, 0);
5020 
5021 	if (class) {
5022 		WARN_ON(class->cmp_fn	&& class->cmp_fn != cmp_fn);
5023 		WARN_ON(class->print_fn && class->print_fn != print_fn);
5024 
5025 		class->cmp_fn	= cmp_fn;
5026 		class->print_fn = print_fn;
5027 	}
5028 
5029 	lockdep_recursion_finish();
5030 	raw_local_irq_restore(flags);
5031 }
5032 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
5033 #endif
5034 
5035 static void
5036 print_lock_nested_lock_not_held(struct task_struct *curr,
5037 				struct held_lock *hlock)
5038 {
5039 	if (!debug_locks_off())
5040 		return;
5041 	if (debug_locks_silent)
5042 		return;
5043 
5044 	nbcon_cpu_emergency_enter();
5045 
5046 	pr_warn("\n");
5047 	pr_warn("==================================\n");
5048 	pr_warn("WARNING: Nested lock was not taken\n");
5049 	print_kernel_ident();
5050 	pr_warn("----------------------------------\n");
5051 
5052 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
5053 	print_lock(hlock);
5054 
5055 	pr_warn("\nbut this task is not holding:\n");
5056 	pr_warn("%s\n", hlock->nest_lock->name);
5057 
5058 	pr_warn("\nstack backtrace:\n");
5059 	dump_stack();
5060 
5061 	pr_warn("\nother info that might help us debug this:\n");
5062 	lockdep_print_held_locks(curr);
5063 
5064 	pr_warn("\nstack backtrace:\n");
5065 	dump_stack();
5066 
5067 	nbcon_cpu_emergency_exit();
5068 }
5069 
5070 static int __lock_is_held(const struct lockdep_map *lock, int read);
5071 
5072 /*
5073  * This gets called for every mutex_lock*()/spin_lock*() operation.
5074  * We maintain the dependency maps and validate the locking attempt:
5075  *
5076  * The callers must make sure that IRQs are disabled before calling it,
5077  * otherwise we could get an interrupt which would want to take locks,
5078  * which would end up in lockdep again.
5079  */
5080 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5081 			  int trylock, int read, int check, int hardirqs_off,
5082 			  struct lockdep_map *nest_lock, unsigned long ip,
5083 			  int references, int pin_count, int sync)
5084 {
5085 	struct task_struct *curr = current;
5086 	struct lock_class *class = NULL;
5087 	struct held_lock *hlock;
5088 	unsigned int depth;
5089 	int chain_head = 0;
5090 	int class_idx;
5091 	u64 chain_key;
5092 
5093 	if (unlikely(!debug_locks))
5094 		return 0;
5095 
5096 	if (unlikely(lock->key == &__lockdep_no_track__))
5097 		return 0;
5098 
5099 	lockevent_inc(lockdep_acquire);
5100 
5101 	if (!prove_locking || lock->key == &__lockdep_no_validate__) {
5102 		check = 0;
5103 		lockevent_inc(lockdep_nocheck);
5104 	}
5105 
5106 	if (DEBUG_LOCKS_WARN_ON(subclass >= MAX_LOCKDEP_SUBCLASSES))
5107 		return 0;
5108 
5109 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5110 		class = lock->class_cache[subclass];
5111 	/*
5112 	 * Not cached?
5113 	 */
5114 	if (unlikely(!class)) {
5115 		class = register_lock_class(lock, subclass, 0);
5116 		if (!class)
5117 			return 0;
5118 	}
5119 
5120 	debug_class_ops_inc(class);
5121 
5122 	if (very_verbose(class)) {
5123 		nbcon_cpu_emergency_enter();
5124 		printk("\nacquire class [%px] %s", class->key, class->name);
5125 		if (class->name_version > 1)
5126 			printk(KERN_CONT "#%d", class->name_version);
5127 		printk(KERN_CONT "\n");
5128 		dump_stack();
5129 		nbcon_cpu_emergency_exit();
5130 	}
5131 
5132 	/*
5133 	 * Add the lock to the list of currently held locks.
5134 	 * (we dont increase the depth just yet, up until the
5135 	 * dependency checks are done)
5136 	 */
5137 	depth = curr->lockdep_depth;
5138 	/*
5139 	 * Ran out of static storage for our per-task lock stack again have we?
5140 	 */
5141 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5142 		return 0;
5143 
5144 	class_idx = class - lock_classes;
5145 
5146 	if (depth && !sync) {
5147 		/* we're holding locks and the new held lock is not a sync */
5148 		hlock = curr->held_locks + depth - 1;
5149 		if (hlock->class_idx == class_idx && nest_lock) {
5150 			if (!references)
5151 				references++;
5152 
5153 			if (!hlock->references)
5154 				hlock->references++;
5155 
5156 			hlock->references += references;
5157 
5158 			/* Overflow */
5159 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5160 				return 0;
5161 
5162 			return 2;
5163 		}
5164 	}
5165 
5166 	hlock = curr->held_locks + depth;
5167 	/*
5168 	 * Plain impossible, we just registered it and checked it weren't no
5169 	 * NULL like.. I bet this mushroom I ate was good!
5170 	 */
5171 	if (DEBUG_LOCKS_WARN_ON(!class))
5172 		return 0;
5173 	hlock->class_idx = class_idx;
5174 	hlock->acquire_ip = ip;
5175 	hlock->instance = lock;
5176 	hlock->nest_lock = nest_lock;
5177 	hlock->irq_context = task_irq_context(curr);
5178 	hlock->trylock = trylock;
5179 	hlock->read = read;
5180 	hlock->check = check;
5181 	hlock->sync = !!sync;
5182 	hlock->hardirqs_off = !!hardirqs_off;
5183 	hlock->references = references;
5184 #ifdef CONFIG_LOCK_STAT
5185 	hlock->waittime_stamp = 0;
5186 	hlock->holdtime_stamp = lockstat_clock();
5187 #endif
5188 	hlock->pin_count = pin_count;
5189 
5190 	if (check_wait_context(curr, hlock))
5191 		return 0;
5192 
5193 	/* Initialize the lock usage bit */
5194 	if (!mark_usage(curr, hlock, check))
5195 		return 0;
5196 
5197 	/*
5198 	 * Calculate the chain hash: it's the combined hash of all the
5199 	 * lock keys along the dependency chain. We save the hash value
5200 	 * at every step so that we can get the current hash easily
5201 	 * after unlock. The chain hash is then used to cache dependency
5202 	 * results.
5203 	 *
5204 	 * The 'key ID' is what is the most compact key value to drive
5205 	 * the hash, not class->key.
5206 	 */
5207 	/*
5208 	 * Whoops, we did it again.. class_idx is invalid.
5209 	 */
5210 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5211 		return 0;
5212 
5213 	chain_key = curr->curr_chain_key;
5214 	if (!depth) {
5215 		/*
5216 		 * How can we have a chain hash when we ain't got no keys?!
5217 		 */
5218 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5219 			return 0;
5220 		chain_head = 1;
5221 	}
5222 
5223 	hlock->prev_chain_key = chain_key;
5224 	if (separate_irq_context(curr, hlock)) {
5225 		chain_key = INITIAL_CHAIN_KEY;
5226 		chain_head = 1;
5227 	}
5228 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5229 
5230 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5231 		print_lock_nested_lock_not_held(curr, hlock);
5232 		return 0;
5233 	}
5234 
5235 	if (!debug_locks_silent) {
5236 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5237 		WARN_ON_ONCE(!hlock_class(hlock)->key);
5238 	}
5239 
5240 	if (!validate_chain(curr, hlock, chain_head, chain_key))
5241 		return 0;
5242 
5243 	/* For lock_sync(), we are done here since no actual critical section */
5244 	if (hlock->sync)
5245 		return 1;
5246 
5247 	curr->curr_chain_key = chain_key;
5248 	curr->lockdep_depth++;
5249 	check_chain_key(curr);
5250 #ifdef CONFIG_DEBUG_LOCKDEP
5251 	if (unlikely(!debug_locks))
5252 		return 0;
5253 #endif
5254 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5255 		debug_locks_off();
5256 		nbcon_cpu_emergency_enter();
5257 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5258 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5259 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5260 
5261 		lockdep_print_held_locks(current);
5262 		debug_show_all_locks();
5263 		dump_stack();
5264 		nbcon_cpu_emergency_exit();
5265 
5266 		return 0;
5267 	}
5268 
5269 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5270 		max_lockdep_depth = curr->lockdep_depth;
5271 
5272 	return 1;
5273 }
5274 
5275 static void print_unlock_imbalance_bug(struct task_struct *curr,
5276 				       struct lockdep_map *lock,
5277 				       unsigned long ip)
5278 {
5279 	if (!debug_locks_off())
5280 		return;
5281 	if (debug_locks_silent)
5282 		return;
5283 
5284 	nbcon_cpu_emergency_enter();
5285 
5286 	pr_warn("\n");
5287 	pr_warn("=====================================\n");
5288 	pr_warn("WARNING: bad unlock balance detected!\n");
5289 	print_kernel_ident();
5290 	pr_warn("-------------------------------------\n");
5291 	pr_warn("%s/%d is trying to release lock (",
5292 		curr->comm, task_pid_nr(curr));
5293 	print_lockdep_cache(lock);
5294 	pr_cont(") at:\n");
5295 	print_ip_sym(KERN_WARNING, ip);
5296 	pr_warn("but there are no more locks to release!\n");
5297 	pr_warn("\nother info that might help us debug this:\n");
5298 	lockdep_print_held_locks(curr);
5299 
5300 	pr_warn("\nstack backtrace:\n");
5301 	dump_stack();
5302 
5303 	nbcon_cpu_emergency_exit();
5304 }
5305 
5306 static noinstr int match_held_lock(const struct held_lock *hlock,
5307 				   const struct lockdep_map *lock)
5308 {
5309 	if (hlock->instance == lock)
5310 		return 1;
5311 
5312 	if (hlock->references) {
5313 		const struct lock_class *class = lock->class_cache[0];
5314 
5315 		if (!class)
5316 			class = look_up_lock_class(lock, 0);
5317 
5318 		/*
5319 		 * If look_up_lock_class() failed to find a class, we're trying
5320 		 * to test if we hold a lock that has never yet been acquired.
5321 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5322 		 * holding it either, so report failure.
5323 		 */
5324 		if (!class)
5325 			return 0;
5326 
5327 		/*
5328 		 * References, but not a lock we're actually ref-counting?
5329 		 * State got messed up, follow the sites that change ->references
5330 		 * and try to make sense of it.
5331 		 */
5332 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5333 			return 0;
5334 
5335 		if (hlock->class_idx == class - lock_classes)
5336 			return 1;
5337 	}
5338 
5339 	return 0;
5340 }
5341 
5342 /* @depth must not be zero */
5343 static struct held_lock *find_held_lock(struct task_struct *curr,
5344 					struct lockdep_map *lock,
5345 					unsigned int depth, int *idx)
5346 {
5347 	struct held_lock *ret, *hlock, *prev_hlock;
5348 	int i;
5349 
5350 	i = depth - 1;
5351 	hlock = curr->held_locks + i;
5352 	ret = hlock;
5353 	if (match_held_lock(hlock, lock))
5354 		goto out;
5355 
5356 	ret = NULL;
5357 	for (i--, prev_hlock = hlock--;
5358 	     i >= 0;
5359 	     i--, prev_hlock = hlock--) {
5360 		/*
5361 		 * We must not cross into another context:
5362 		 */
5363 		if (prev_hlock->irq_context != hlock->irq_context) {
5364 			ret = NULL;
5365 			break;
5366 		}
5367 		if (match_held_lock(hlock, lock)) {
5368 			ret = hlock;
5369 			break;
5370 		}
5371 	}
5372 
5373 out:
5374 	*idx = i;
5375 	return ret;
5376 }
5377 
5378 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5379 				int idx, unsigned int *merged)
5380 {
5381 	struct held_lock *hlock;
5382 	int first_idx = idx;
5383 
5384 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5385 		return 0;
5386 
5387 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5388 		switch (__lock_acquire(hlock->instance,
5389 				    hlock_class(hlock)->subclass,
5390 				    hlock->trylock,
5391 				    hlock->read, hlock->check,
5392 				    hlock->hardirqs_off,
5393 				    hlock->nest_lock, hlock->acquire_ip,
5394 				    hlock->references, hlock->pin_count, 0)) {
5395 		case 0:
5396 			return 1;
5397 		case 1:
5398 			break;
5399 		case 2:
5400 			*merged += (idx == first_idx);
5401 			break;
5402 		default:
5403 			WARN_ON(1);
5404 			return 0;
5405 		}
5406 	}
5407 	return 0;
5408 }
5409 
5410 static int
5411 __lock_set_class(struct lockdep_map *lock, const char *name,
5412 		 struct lock_class_key *key, unsigned int subclass,
5413 		 unsigned long ip)
5414 {
5415 	struct task_struct *curr = current;
5416 	unsigned int depth, merged = 0;
5417 	struct held_lock *hlock;
5418 	struct lock_class *class;
5419 	int i;
5420 
5421 	if (unlikely(!debug_locks))
5422 		return 0;
5423 
5424 	depth = curr->lockdep_depth;
5425 	/*
5426 	 * This function is about (re)setting the class of a held lock,
5427 	 * yet we're not actually holding any locks. Naughty user!
5428 	 */
5429 	if (DEBUG_LOCKS_WARN_ON(!depth))
5430 		return 0;
5431 
5432 	hlock = find_held_lock(curr, lock, depth, &i);
5433 	if (!hlock) {
5434 		print_unlock_imbalance_bug(curr, lock, ip);
5435 		return 0;
5436 	}
5437 
5438 	lockdep_init_map_type(lock, name, key, 0,
5439 			      lock->wait_type_inner,
5440 			      lock->wait_type_outer,
5441 			      lock->lock_type);
5442 	class = register_lock_class(lock, subclass, 0);
5443 	hlock->class_idx = class - lock_classes;
5444 
5445 	curr->lockdep_depth = i;
5446 	curr->curr_chain_key = hlock->prev_chain_key;
5447 
5448 	if (reacquire_held_locks(curr, depth, i, &merged))
5449 		return 0;
5450 
5451 	/*
5452 	 * I took it apart and put it back together again, except now I have
5453 	 * these 'spare' parts.. where shall I put them.
5454 	 */
5455 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5456 		return 0;
5457 	return 1;
5458 }
5459 
5460 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5461 {
5462 	struct task_struct *curr = current;
5463 	unsigned int depth, merged = 0;
5464 	struct held_lock *hlock;
5465 	int i;
5466 
5467 	if (unlikely(!debug_locks))
5468 		return 0;
5469 
5470 	depth = curr->lockdep_depth;
5471 	/*
5472 	 * This function is about (re)setting the class of a held lock,
5473 	 * yet we're not actually holding any locks. Naughty user!
5474 	 */
5475 	if (DEBUG_LOCKS_WARN_ON(!depth))
5476 		return 0;
5477 
5478 	hlock = find_held_lock(curr, lock, depth, &i);
5479 	if (!hlock) {
5480 		print_unlock_imbalance_bug(curr, lock, ip);
5481 		return 0;
5482 	}
5483 
5484 	curr->lockdep_depth = i;
5485 	curr->curr_chain_key = hlock->prev_chain_key;
5486 
5487 	WARN(hlock->read, "downgrading a read lock");
5488 	hlock->read = 1;
5489 	hlock->acquire_ip = ip;
5490 
5491 	if (reacquire_held_locks(curr, depth, i, &merged))
5492 		return 0;
5493 
5494 	/* Merging can't happen with unchanged classes.. */
5495 	if (DEBUG_LOCKS_WARN_ON(merged))
5496 		return 0;
5497 
5498 	/*
5499 	 * I took it apart and put it back together again, except now I have
5500 	 * these 'spare' parts.. where shall I put them.
5501 	 */
5502 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5503 		return 0;
5504 
5505 	return 1;
5506 }
5507 
5508 /*
5509  * Remove the lock from the list of currently held locks - this gets
5510  * called on mutex_unlock()/spin_unlock*() (or on a failed
5511  * mutex_lock_interruptible()).
5512  */
5513 static int
5514 __lock_release(struct lockdep_map *lock, unsigned long ip)
5515 {
5516 	struct task_struct *curr = current;
5517 	unsigned int depth, merged = 1;
5518 	struct held_lock *hlock;
5519 	int i;
5520 
5521 	if (unlikely(!debug_locks))
5522 		return 0;
5523 
5524 	depth = curr->lockdep_depth;
5525 	/*
5526 	 * So we're all set to release this lock.. wait what lock? We don't
5527 	 * own any locks, you've been drinking again?
5528 	 */
5529 	if (depth <= 0) {
5530 		print_unlock_imbalance_bug(curr, lock, ip);
5531 		return 0;
5532 	}
5533 
5534 	/*
5535 	 * Check whether the lock exists in the current stack
5536 	 * of held locks:
5537 	 */
5538 	hlock = find_held_lock(curr, lock, depth, &i);
5539 	if (!hlock) {
5540 		print_unlock_imbalance_bug(curr, lock, ip);
5541 		return 0;
5542 	}
5543 
5544 	if (hlock->instance == lock)
5545 		lock_release_holdtime(hlock);
5546 
5547 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5548 
5549 	if (hlock->references) {
5550 		hlock->references--;
5551 		if (hlock->references) {
5552 			/*
5553 			 * We had, and after removing one, still have
5554 			 * references, the current lock stack is still
5555 			 * valid. We're done!
5556 			 */
5557 			return 1;
5558 		}
5559 	}
5560 
5561 	/*
5562 	 * We have the right lock to unlock, 'hlock' points to it.
5563 	 * Now we remove it from the stack, and add back the other
5564 	 * entries (if any), recalculating the hash along the way:
5565 	 */
5566 
5567 	curr->lockdep_depth = i;
5568 	curr->curr_chain_key = hlock->prev_chain_key;
5569 
5570 	/*
5571 	 * The most likely case is when the unlock is on the innermost
5572 	 * lock. In this case, we are done!
5573 	 */
5574 	if (i == depth-1)
5575 		return 1;
5576 
5577 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5578 		return 0;
5579 
5580 	/*
5581 	 * We had N bottles of beer on the wall, we drank one, but now
5582 	 * there's not N-1 bottles of beer left on the wall...
5583 	 * Pouring two of the bottles together is acceptable.
5584 	 */
5585 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5586 
5587 	/*
5588 	 * Since reacquire_held_locks() would have called check_chain_key()
5589 	 * indirectly via __lock_acquire(), we don't need to do it again
5590 	 * on return.
5591 	 */
5592 	return 0;
5593 }
5594 
5595 static __always_inline
5596 int __lock_is_held(const struct lockdep_map *lock, int read)
5597 {
5598 	struct task_struct *curr = current;
5599 	int i;
5600 
5601 	for (i = 0; i < curr->lockdep_depth; i++) {
5602 		struct held_lock *hlock = curr->held_locks + i;
5603 
5604 		if (match_held_lock(hlock, lock)) {
5605 			if (read == -1 || !!hlock->read == read)
5606 				return LOCK_STATE_HELD;
5607 
5608 			return LOCK_STATE_NOT_HELD;
5609 		}
5610 	}
5611 
5612 	return LOCK_STATE_NOT_HELD;
5613 }
5614 
5615 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5616 {
5617 	struct pin_cookie cookie = NIL_COOKIE;
5618 	struct task_struct *curr = current;
5619 	int i;
5620 
5621 	if (unlikely(!debug_locks))
5622 		return cookie;
5623 
5624 	for (i = 0; i < curr->lockdep_depth; i++) {
5625 		struct held_lock *hlock = curr->held_locks + i;
5626 
5627 		if (match_held_lock(hlock, lock)) {
5628 			/*
5629 			 * Grab 16bits of randomness; this is sufficient to not
5630 			 * be guessable and still allows some pin nesting in
5631 			 * our u32 pin_count.
5632 			 */
5633 			cookie.val = 1 + (sched_clock() & 0xffff);
5634 			hlock->pin_count += cookie.val;
5635 			return cookie;
5636 		}
5637 	}
5638 
5639 	WARN(1, "pinning an unheld lock\n");
5640 	return cookie;
5641 }
5642 
5643 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5644 {
5645 	struct task_struct *curr = current;
5646 	int i;
5647 
5648 	if (unlikely(!debug_locks))
5649 		return;
5650 
5651 	for (i = 0; i < curr->lockdep_depth; i++) {
5652 		struct held_lock *hlock = curr->held_locks + i;
5653 
5654 		if (match_held_lock(hlock, lock)) {
5655 			hlock->pin_count += cookie.val;
5656 			return;
5657 		}
5658 	}
5659 
5660 	WARN(1, "pinning an unheld lock\n");
5661 }
5662 
5663 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5664 {
5665 	struct task_struct *curr = current;
5666 	int i;
5667 
5668 	if (unlikely(!debug_locks))
5669 		return;
5670 
5671 	for (i = 0; i < curr->lockdep_depth; i++) {
5672 		struct held_lock *hlock = curr->held_locks + i;
5673 
5674 		if (match_held_lock(hlock, lock)) {
5675 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5676 				return;
5677 
5678 			hlock->pin_count -= cookie.val;
5679 
5680 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5681 				hlock->pin_count = 0;
5682 
5683 			return;
5684 		}
5685 	}
5686 
5687 	WARN(1, "unpinning an unheld lock\n");
5688 }
5689 
5690 /*
5691  * Check whether we follow the irq-flags state precisely:
5692  */
5693 static noinstr void check_flags(unsigned long flags)
5694 {
5695 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5696 	if (!debug_locks)
5697 		return;
5698 
5699 	/* Get the warning out..  */
5700 	instrumentation_begin();
5701 
5702 	if (irqs_disabled_flags(flags)) {
5703 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5704 			printk("possible reason: unannotated irqs-off.\n");
5705 		}
5706 	} else {
5707 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5708 			printk("possible reason: unannotated irqs-on.\n");
5709 		}
5710 	}
5711 
5712 #ifndef CONFIG_PREEMPT_RT
5713 	/*
5714 	 * We dont accurately track softirq state in e.g.
5715 	 * hardirq contexts (such as on 4KSTACKS), so only
5716 	 * check if not in hardirq contexts:
5717 	 */
5718 	if (!hardirq_count()) {
5719 		if (softirq_count()) {
5720 			/* like the above, but with softirqs */
5721 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5722 		} else {
5723 			/* lick the above, does it taste good? */
5724 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5725 		}
5726 	}
5727 #endif
5728 
5729 	if (!debug_locks)
5730 		print_irqtrace_events(current);
5731 
5732 	instrumentation_end();
5733 #endif
5734 }
5735 
5736 void lock_set_class(struct lockdep_map *lock, const char *name,
5737 		    struct lock_class_key *key, unsigned int subclass,
5738 		    unsigned long ip)
5739 {
5740 	unsigned long flags;
5741 
5742 	if (unlikely(!lockdep_enabled()))
5743 		return;
5744 
5745 	raw_local_irq_save(flags);
5746 	lockdep_recursion_inc();
5747 	check_flags(flags);
5748 	if (__lock_set_class(lock, name, key, subclass, ip))
5749 		check_chain_key(current);
5750 	lockdep_recursion_finish();
5751 	raw_local_irq_restore(flags);
5752 }
5753 EXPORT_SYMBOL_GPL(lock_set_class);
5754 
5755 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5756 {
5757 	unsigned long flags;
5758 
5759 	if (unlikely(!lockdep_enabled()))
5760 		return;
5761 
5762 	raw_local_irq_save(flags);
5763 	lockdep_recursion_inc();
5764 	check_flags(flags);
5765 	if (__lock_downgrade(lock, ip))
5766 		check_chain_key(current);
5767 	lockdep_recursion_finish();
5768 	raw_local_irq_restore(flags);
5769 }
5770 EXPORT_SYMBOL_GPL(lock_downgrade);
5771 
5772 /* NMI context !!! */
5773 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5774 {
5775 #ifdef CONFIG_PROVE_LOCKING
5776 	struct lock_class *class = look_up_lock_class(lock, subclass);
5777 	unsigned long mask = LOCKF_USED;
5778 
5779 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5780 	if (!class)
5781 		return;
5782 
5783 	/*
5784 	 * READ locks only conflict with USED, such that if we only ever use
5785 	 * READ locks, there is no deadlock possible -- RCU.
5786 	 */
5787 	if (!hlock->read)
5788 		mask |= LOCKF_USED_READ;
5789 
5790 	if (!(class->usage_mask & mask))
5791 		return;
5792 
5793 	hlock->class_idx = class - lock_classes;
5794 
5795 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5796 #endif
5797 }
5798 
5799 static bool lockdep_nmi(void)
5800 {
5801 	if (raw_cpu_read(lockdep_recursion))
5802 		return false;
5803 
5804 	if (!in_nmi())
5805 		return false;
5806 
5807 	return true;
5808 }
5809 
5810 /*
5811  * read_lock() is recursive if:
5812  * 1. We force lockdep think this way in selftests or
5813  * 2. The implementation is not queued read/write lock or
5814  * 3. The locker is at an in_interrupt() context.
5815  */
5816 bool read_lock_is_recursive(void)
5817 {
5818 	return force_read_lock_recursive ||
5819 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5820 	       in_interrupt();
5821 }
5822 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5823 
5824 /*
5825  * We are not always called with irqs disabled - do that here,
5826  * and also avoid lockdep recursion:
5827  */
5828 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5829 			  int trylock, int read, int check,
5830 			  struct lockdep_map *nest_lock, unsigned long ip)
5831 {
5832 	unsigned long flags;
5833 
5834 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5835 
5836 	if (!debug_locks)
5837 		return;
5838 
5839 	/*
5840 	 * As KASAN instrumentation is disabled and lock_acquire() is usually
5841 	 * the first lockdep call when a task tries to acquire a lock, add
5842 	 * kasan_check_byte() here to check for use-after-free and other
5843 	 * memory errors.
5844 	 */
5845 	kasan_check_byte(lock);
5846 
5847 	if (unlikely(!lockdep_enabled())) {
5848 		/* XXX allow trylock from NMI ?!? */
5849 		if (lockdep_nmi() && !trylock) {
5850 			struct held_lock hlock;
5851 
5852 			hlock.acquire_ip = ip;
5853 			hlock.instance = lock;
5854 			hlock.nest_lock = nest_lock;
5855 			hlock.irq_context = 2; // XXX
5856 			hlock.trylock = trylock;
5857 			hlock.read = read;
5858 			hlock.check = check;
5859 			hlock.hardirqs_off = true;
5860 			hlock.references = 0;
5861 
5862 			verify_lock_unused(lock, &hlock, subclass);
5863 		}
5864 		return;
5865 	}
5866 
5867 	raw_local_irq_save(flags);
5868 	check_flags(flags);
5869 
5870 	lockdep_recursion_inc();
5871 	__lock_acquire(lock, subclass, trylock, read, check,
5872 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5873 	lockdep_recursion_finish();
5874 	raw_local_irq_restore(flags);
5875 }
5876 EXPORT_SYMBOL_GPL(lock_acquire);
5877 
5878 void lock_release(struct lockdep_map *lock, unsigned long ip)
5879 {
5880 	unsigned long flags;
5881 
5882 	trace_lock_release(lock, ip);
5883 
5884 	if (unlikely(!lockdep_enabled() ||
5885 		     lock->key == &__lockdep_no_track__))
5886 		return;
5887 
5888 	raw_local_irq_save(flags);
5889 	check_flags(flags);
5890 
5891 	lockdep_recursion_inc();
5892 	if (__lock_release(lock, ip))
5893 		check_chain_key(current);
5894 	lockdep_recursion_finish();
5895 	raw_local_irq_restore(flags);
5896 }
5897 EXPORT_SYMBOL_GPL(lock_release);
5898 
5899 /*
5900  * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5901  *
5902  * No actual critical section is created by the APIs annotated with this: these
5903  * APIs are used to wait for one or multiple critical sections (on other CPUs
5904  * or threads), and it means that calling these APIs inside these critical
5905  * sections is potential deadlock.
5906  */
5907 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5908 	       int check, struct lockdep_map *nest_lock, unsigned long ip)
5909 {
5910 	unsigned long flags;
5911 
5912 	if (unlikely(!lockdep_enabled()))
5913 		return;
5914 
5915 	raw_local_irq_save(flags);
5916 	check_flags(flags);
5917 
5918 	lockdep_recursion_inc();
5919 	__lock_acquire(lock, subclass, 0, read, check,
5920 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5921 	check_chain_key(current);
5922 	lockdep_recursion_finish();
5923 	raw_local_irq_restore(flags);
5924 }
5925 EXPORT_SYMBOL_GPL(lock_sync);
5926 
5927 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5928 {
5929 	unsigned long flags;
5930 	int ret = LOCK_STATE_NOT_HELD;
5931 
5932 	/*
5933 	 * Avoid false negative lockdep_assert_held() and
5934 	 * lockdep_assert_not_held().
5935 	 */
5936 	if (unlikely(!lockdep_enabled()))
5937 		return LOCK_STATE_UNKNOWN;
5938 
5939 	raw_local_irq_save(flags);
5940 	check_flags(flags);
5941 
5942 	lockdep_recursion_inc();
5943 	ret = __lock_is_held(lock, read);
5944 	lockdep_recursion_finish();
5945 	raw_local_irq_restore(flags);
5946 
5947 	return ret;
5948 }
5949 EXPORT_SYMBOL_GPL(lock_is_held_type);
5950 NOKPROBE_SYMBOL(lock_is_held_type);
5951 
5952 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5953 {
5954 	struct pin_cookie cookie = NIL_COOKIE;
5955 	unsigned long flags;
5956 
5957 	if (unlikely(!lockdep_enabled()))
5958 		return cookie;
5959 
5960 	raw_local_irq_save(flags);
5961 	check_flags(flags);
5962 
5963 	lockdep_recursion_inc();
5964 	cookie = __lock_pin_lock(lock);
5965 	lockdep_recursion_finish();
5966 	raw_local_irq_restore(flags);
5967 
5968 	return cookie;
5969 }
5970 EXPORT_SYMBOL_GPL(lock_pin_lock);
5971 
5972 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5973 {
5974 	unsigned long flags;
5975 
5976 	if (unlikely(!lockdep_enabled()))
5977 		return;
5978 
5979 	raw_local_irq_save(flags);
5980 	check_flags(flags);
5981 
5982 	lockdep_recursion_inc();
5983 	__lock_repin_lock(lock, cookie);
5984 	lockdep_recursion_finish();
5985 	raw_local_irq_restore(flags);
5986 }
5987 EXPORT_SYMBOL_GPL(lock_repin_lock);
5988 
5989 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5990 {
5991 	unsigned long flags;
5992 
5993 	if (unlikely(!lockdep_enabled()))
5994 		return;
5995 
5996 	raw_local_irq_save(flags);
5997 	check_flags(flags);
5998 
5999 	lockdep_recursion_inc();
6000 	__lock_unpin_lock(lock, cookie);
6001 	lockdep_recursion_finish();
6002 	raw_local_irq_restore(flags);
6003 }
6004 EXPORT_SYMBOL_GPL(lock_unpin_lock);
6005 
6006 #ifdef CONFIG_LOCK_STAT
6007 static void print_lock_contention_bug(struct task_struct *curr,
6008 				      struct lockdep_map *lock,
6009 				      unsigned long ip)
6010 {
6011 	if (!debug_locks_off())
6012 		return;
6013 	if (debug_locks_silent)
6014 		return;
6015 
6016 	nbcon_cpu_emergency_enter();
6017 
6018 	pr_warn("\n");
6019 	pr_warn("=================================\n");
6020 	pr_warn("WARNING: bad contention detected!\n");
6021 	print_kernel_ident();
6022 	pr_warn("---------------------------------\n");
6023 	pr_warn("%s/%d is trying to contend lock (",
6024 		curr->comm, task_pid_nr(curr));
6025 	print_lockdep_cache(lock);
6026 	pr_cont(") at:\n");
6027 	print_ip_sym(KERN_WARNING, ip);
6028 	pr_warn("but there are no locks held!\n");
6029 	pr_warn("\nother info that might help us debug this:\n");
6030 	lockdep_print_held_locks(curr);
6031 
6032 	pr_warn("\nstack backtrace:\n");
6033 	dump_stack();
6034 
6035 	nbcon_cpu_emergency_exit();
6036 }
6037 
6038 static void
6039 __lock_contended(struct lockdep_map *lock, unsigned long ip)
6040 {
6041 	struct task_struct *curr = current;
6042 	struct held_lock *hlock;
6043 	struct lock_class_stats *stats;
6044 	unsigned int depth;
6045 	int i, contention_point, contending_point;
6046 
6047 	depth = curr->lockdep_depth;
6048 	/*
6049 	 * Whee, we contended on this lock, except it seems we're not
6050 	 * actually trying to acquire anything much at all..
6051 	 */
6052 	if (DEBUG_LOCKS_WARN_ON(!depth))
6053 		return;
6054 
6055 	if (unlikely(lock->key == &__lockdep_no_track__))
6056 		return;
6057 
6058 	hlock = find_held_lock(curr, lock, depth, &i);
6059 	if (!hlock) {
6060 		print_lock_contention_bug(curr, lock, ip);
6061 		return;
6062 	}
6063 
6064 	if (hlock->instance != lock)
6065 		return;
6066 
6067 	hlock->waittime_stamp = lockstat_clock();
6068 
6069 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
6070 	contending_point = lock_point(hlock_class(hlock)->contending_point,
6071 				      lock->ip);
6072 
6073 	stats = get_lock_stats(hlock_class(hlock));
6074 	if (contention_point < LOCKSTAT_POINTS)
6075 		stats->contention_point[contention_point]++;
6076 	if (contending_point < LOCKSTAT_POINTS)
6077 		stats->contending_point[contending_point]++;
6078 	if (lock->cpu != smp_processor_id())
6079 		stats->bounces[bounce_contended + !!hlock->read]++;
6080 }
6081 
6082 static void
6083 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
6084 {
6085 	struct task_struct *curr = current;
6086 	struct held_lock *hlock;
6087 	struct lock_class_stats *stats;
6088 	unsigned int depth;
6089 	u64 now, waittime = 0;
6090 	int i, cpu;
6091 
6092 	depth = curr->lockdep_depth;
6093 	/*
6094 	 * Yay, we acquired ownership of this lock we didn't try to
6095 	 * acquire, how the heck did that happen?
6096 	 */
6097 	if (DEBUG_LOCKS_WARN_ON(!depth))
6098 		return;
6099 
6100 	if (unlikely(lock->key == &__lockdep_no_track__))
6101 		return;
6102 
6103 	hlock = find_held_lock(curr, lock, depth, &i);
6104 	if (!hlock) {
6105 		print_lock_contention_bug(curr, lock, _RET_IP_);
6106 		return;
6107 	}
6108 
6109 	if (hlock->instance != lock)
6110 		return;
6111 
6112 	cpu = smp_processor_id();
6113 	if (hlock->waittime_stamp) {
6114 		now = lockstat_clock();
6115 		waittime = now - hlock->waittime_stamp;
6116 		hlock->holdtime_stamp = now;
6117 	}
6118 
6119 	stats = get_lock_stats(hlock_class(hlock));
6120 	if (waittime) {
6121 		if (hlock->read)
6122 			lock_time_inc(&stats->read_waittime, waittime);
6123 		else
6124 			lock_time_inc(&stats->write_waittime, waittime);
6125 	}
6126 	if (lock->cpu != cpu)
6127 		stats->bounces[bounce_acquired + !!hlock->read]++;
6128 
6129 	lock->cpu = cpu;
6130 	lock->ip = ip;
6131 }
6132 
6133 void lock_contended(struct lockdep_map *lock, unsigned long ip)
6134 {
6135 	unsigned long flags;
6136 
6137 	trace_lock_contended(lock, ip);
6138 
6139 	if (unlikely(!lock_stat || !lockdep_enabled()))
6140 		return;
6141 
6142 	raw_local_irq_save(flags);
6143 	check_flags(flags);
6144 	lockdep_recursion_inc();
6145 	__lock_contended(lock, ip);
6146 	lockdep_recursion_finish();
6147 	raw_local_irq_restore(flags);
6148 }
6149 EXPORT_SYMBOL_GPL(lock_contended);
6150 
6151 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6152 {
6153 	unsigned long flags;
6154 
6155 	trace_lock_acquired(lock, ip);
6156 
6157 	if (unlikely(!lock_stat || !lockdep_enabled()))
6158 		return;
6159 
6160 	raw_local_irq_save(flags);
6161 	check_flags(flags);
6162 	lockdep_recursion_inc();
6163 	__lock_acquired(lock, ip);
6164 	lockdep_recursion_finish();
6165 	raw_local_irq_restore(flags);
6166 }
6167 EXPORT_SYMBOL_GPL(lock_acquired);
6168 #endif
6169 
6170 /*
6171  * Used by the testsuite, sanitize the validator state
6172  * after a simulated failure:
6173  */
6174 
6175 void lockdep_reset(void)
6176 {
6177 	unsigned long flags;
6178 	int i;
6179 
6180 	raw_local_irq_save(flags);
6181 	lockdep_init_task(current);
6182 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6183 	nr_hardirq_chains = 0;
6184 	nr_softirq_chains = 0;
6185 	nr_process_chains = 0;
6186 	debug_locks = 1;
6187 	for (i = 0; i < CHAINHASH_SIZE; i++)
6188 		INIT_HLIST_HEAD(chainhash_table + i);
6189 	raw_local_irq_restore(flags);
6190 }
6191 
6192 /* Remove a class from a lock chain. Must be called with the graph lock held. */
6193 static void remove_class_from_lock_chain(struct pending_free *pf,
6194 					 struct lock_chain *chain,
6195 					 struct lock_class *class)
6196 {
6197 #ifdef CONFIG_PROVE_LOCKING
6198 	int i;
6199 
6200 	for (i = chain->base; i < chain->base + chain->depth; i++) {
6201 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6202 			continue;
6203 		/*
6204 		 * Each lock class occurs at most once in a lock chain so once
6205 		 * we found a match we can break out of this loop.
6206 		 */
6207 		goto free_lock_chain;
6208 	}
6209 	/* Since the chain has not been modified, return. */
6210 	return;
6211 
6212 free_lock_chain:
6213 	free_chain_hlocks(chain->base, chain->depth);
6214 	/* Overwrite the chain key for concurrent RCU readers. */
6215 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6216 	dec_chains(chain->irq_context);
6217 
6218 	/*
6219 	 * Note: calling hlist_del_rcu() from inside a
6220 	 * hlist_for_each_entry_rcu() loop is safe.
6221 	 */
6222 	hlist_del_rcu(&chain->entry);
6223 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6224 	nr_zapped_lock_chains++;
6225 #endif
6226 }
6227 
6228 /* Must be called with the graph lock held. */
6229 static void remove_class_from_lock_chains(struct pending_free *pf,
6230 					  struct lock_class *class)
6231 {
6232 	struct lock_chain *chain;
6233 	struct hlist_head *head;
6234 	int i;
6235 
6236 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6237 		head = chainhash_table + i;
6238 		hlist_for_each_entry_rcu(chain, head, entry) {
6239 			remove_class_from_lock_chain(pf, chain, class);
6240 		}
6241 	}
6242 }
6243 
6244 /*
6245  * Remove all references to a lock class. The caller must hold the graph lock.
6246  */
6247 static void zap_class(struct pending_free *pf, struct lock_class *class)
6248 {
6249 	struct lock_list *entry;
6250 	int i;
6251 
6252 	WARN_ON_ONCE(!class->key);
6253 
6254 	/*
6255 	 * Remove all dependencies this lock is
6256 	 * involved in:
6257 	 */
6258 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6259 		entry = list_entries + i;
6260 		if (entry->class != class && entry->links_to != class)
6261 			continue;
6262 		__clear_bit(i, list_entries_in_use);
6263 		nr_list_entries--;
6264 		list_del_rcu(&entry->entry);
6265 	}
6266 	if (list_empty(&class->locks_after) &&
6267 	    list_empty(&class->locks_before)) {
6268 		list_move_tail(&class->lock_entry, &pf->zapped);
6269 		hlist_del_rcu(&class->hash_entry);
6270 		WRITE_ONCE(class->key, NULL);
6271 		WRITE_ONCE(class->name, NULL);
6272 		/* Class allocated but not used, -1 in nr_unused_locks */
6273 		if (class->usage_mask == 0)
6274 			debug_atomic_dec(nr_unused_locks);
6275 		nr_lock_classes--;
6276 		__clear_bit(class - lock_classes, lock_classes_in_use);
6277 		if (class - lock_classes == max_lock_class_idx)
6278 			max_lock_class_idx--;
6279 	} else {
6280 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6281 			  class->name);
6282 	}
6283 
6284 	remove_class_from_lock_chains(pf, class);
6285 	nr_zapped_classes++;
6286 }
6287 
6288 static void reinit_class(struct lock_class *class)
6289 {
6290 	WARN_ON_ONCE(!class->lock_entry.next);
6291 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6292 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6293 	memset_startat(class, 0, key);
6294 	WARN_ON_ONCE(!class->lock_entry.next);
6295 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6296 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6297 }
6298 
6299 static inline int within(const void *addr, void *start, unsigned long size)
6300 {
6301 	return addr >= start && addr < start + size;
6302 }
6303 
6304 static bool inside_selftest(void)
6305 {
6306 	return current == lockdep_selftest_task_struct;
6307 }
6308 
6309 /* The caller must hold the graph lock. */
6310 static struct pending_free *get_pending_free(void)
6311 {
6312 	return delayed_free.pf + delayed_free.index;
6313 }
6314 
6315 static void free_zapped_rcu(struct rcu_head *cb);
6316 
6317 /*
6318 * See if we need to queue an RCU callback, must called with
6319 * the lockdep lock held, returns false if either we don't have
6320 * any pending free or the callback is already scheduled.
6321 * Otherwise, a call_rcu() must follow this function call.
6322 */
6323 static bool prepare_call_rcu_zapped(struct pending_free *pf)
6324 {
6325 	WARN_ON_ONCE(inside_selftest());
6326 
6327 	if (list_empty(&pf->zapped))
6328 		return false;
6329 
6330 	if (delayed_free.scheduled)
6331 		return false;
6332 
6333 	delayed_free.scheduled = true;
6334 
6335 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6336 	delayed_free.index ^= 1;
6337 
6338 	return true;
6339 }
6340 
6341 /* The caller must hold the graph lock. May be called from RCU context. */
6342 static void __free_zapped_classes(struct pending_free *pf)
6343 {
6344 	struct lock_class *class;
6345 
6346 	check_data_structures();
6347 
6348 	list_for_each_entry(class, &pf->zapped, lock_entry)
6349 		reinit_class(class);
6350 
6351 	list_splice_init(&pf->zapped, &free_lock_classes);
6352 
6353 #ifdef CONFIG_PROVE_LOCKING
6354 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6355 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6356 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6357 #endif
6358 }
6359 
6360 static void free_zapped_rcu(struct rcu_head *ch)
6361 {
6362 	struct pending_free *pf;
6363 	unsigned long flags;
6364 	bool need_callback;
6365 
6366 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6367 		return;
6368 
6369 	raw_local_irq_save(flags);
6370 	lockdep_lock();
6371 
6372 	/* closed head */
6373 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6374 	__free_zapped_classes(pf);
6375 	delayed_free.scheduled = false;
6376 	need_callback =
6377 		prepare_call_rcu_zapped(delayed_free.pf + delayed_free.index);
6378 	lockdep_unlock();
6379 	raw_local_irq_restore(flags);
6380 
6381 	/*
6382 	* If there's pending free and its callback has not been scheduled,
6383 	* queue an RCU callback.
6384 	*/
6385 	if (need_callback)
6386 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6387 
6388 }
6389 
6390 /*
6391  * Remove all lock classes from the class hash table and from the
6392  * all_lock_classes list whose key or name is in the address range [start,
6393  * start + size). Move these lock classes to the zapped_classes list. Must
6394  * be called with the graph lock held.
6395  */
6396 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6397 				     unsigned long size)
6398 {
6399 	struct lock_class *class;
6400 	struct hlist_head *head;
6401 	int i;
6402 
6403 	/* Unhash all classes that were created by a module. */
6404 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6405 		head = classhash_table + i;
6406 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6407 			if (!within(class->key, start, size) &&
6408 			    !within(class->name, start, size))
6409 				continue;
6410 			zap_class(pf, class);
6411 		}
6412 	}
6413 }
6414 
6415 /*
6416  * Used in module.c to remove lock classes from memory that is going to be
6417  * freed; and possibly re-used by other modules.
6418  *
6419  * We will have had one synchronize_rcu() before getting here, so we're
6420  * guaranteed nobody will look up these exact classes -- they're properly dead
6421  * but still allocated.
6422  */
6423 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6424 {
6425 	struct pending_free *pf;
6426 	unsigned long flags;
6427 	bool need_callback;
6428 
6429 	init_data_structures_once();
6430 
6431 	raw_local_irq_save(flags);
6432 	lockdep_lock();
6433 	pf = get_pending_free();
6434 	__lockdep_free_key_range(pf, start, size);
6435 	need_callback = prepare_call_rcu_zapped(pf);
6436 	lockdep_unlock();
6437 	raw_local_irq_restore(flags);
6438 	if (need_callback)
6439 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6440 	/*
6441 	 * Wait for any possible iterators from look_up_lock_class() to pass
6442 	 * before continuing to free the memory they refer to.
6443 	 */
6444 	synchronize_rcu();
6445 }
6446 
6447 /*
6448  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6449  * Ignores debug_locks. Must only be used by the lockdep selftests.
6450  */
6451 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6452 {
6453 	struct pending_free *pf = delayed_free.pf;
6454 	unsigned long flags;
6455 
6456 	init_data_structures_once();
6457 
6458 	raw_local_irq_save(flags);
6459 	lockdep_lock();
6460 	__lockdep_free_key_range(pf, start, size);
6461 	__free_zapped_classes(pf);
6462 	lockdep_unlock();
6463 	raw_local_irq_restore(flags);
6464 }
6465 
6466 void lockdep_free_key_range(void *start, unsigned long size)
6467 {
6468 	init_data_structures_once();
6469 
6470 	if (inside_selftest())
6471 		lockdep_free_key_range_imm(start, size);
6472 	else
6473 		lockdep_free_key_range_reg(start, size);
6474 }
6475 
6476 /*
6477  * Check whether any element of the @lock->class_cache[] array refers to a
6478  * registered lock class. The caller must hold either the graph lock or the
6479  * RCU read lock.
6480  */
6481 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6482 {
6483 	struct lock_class *class;
6484 	struct hlist_head *head;
6485 	int i, j;
6486 
6487 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6488 		head = classhash_table + i;
6489 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6490 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6491 				if (lock->class_cache[j] == class)
6492 					return true;
6493 		}
6494 	}
6495 	return false;
6496 }
6497 
6498 /* The caller must hold the graph lock. Does not sleep. */
6499 static void __lockdep_reset_lock(struct pending_free *pf,
6500 				 struct lockdep_map *lock)
6501 {
6502 	struct lock_class *class;
6503 	int j;
6504 
6505 	/*
6506 	 * Remove all classes this lock might have:
6507 	 */
6508 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6509 		/*
6510 		 * If the class exists we look it up and zap it:
6511 		 */
6512 		class = look_up_lock_class(lock, j);
6513 		if (class)
6514 			zap_class(pf, class);
6515 	}
6516 	/*
6517 	 * Debug check: in the end all mapped classes should
6518 	 * be gone.
6519 	 */
6520 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6521 		debug_locks_off();
6522 }
6523 
6524 /*
6525  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6526  * released data structures from RCU context.
6527  */
6528 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6529 {
6530 	struct pending_free *pf;
6531 	unsigned long flags;
6532 	int locked;
6533 	bool need_callback = false;
6534 
6535 	raw_local_irq_save(flags);
6536 	locked = graph_lock();
6537 	if (!locked)
6538 		goto out_irq;
6539 
6540 	pf = get_pending_free();
6541 	__lockdep_reset_lock(pf, lock);
6542 	need_callback = prepare_call_rcu_zapped(pf);
6543 
6544 	graph_unlock();
6545 out_irq:
6546 	raw_local_irq_restore(flags);
6547 	if (need_callback)
6548 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6549 }
6550 
6551 /*
6552  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6553  * lockdep selftests.
6554  */
6555 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6556 {
6557 	struct pending_free *pf = delayed_free.pf;
6558 	unsigned long flags;
6559 
6560 	raw_local_irq_save(flags);
6561 	lockdep_lock();
6562 	__lockdep_reset_lock(pf, lock);
6563 	__free_zapped_classes(pf);
6564 	lockdep_unlock();
6565 	raw_local_irq_restore(flags);
6566 }
6567 
6568 void lockdep_reset_lock(struct lockdep_map *lock)
6569 {
6570 	init_data_structures_once();
6571 
6572 	if (inside_selftest())
6573 		lockdep_reset_lock_imm(lock);
6574 	else
6575 		lockdep_reset_lock_reg(lock);
6576 }
6577 
6578 /*
6579  * Unregister a dynamically allocated key.
6580  *
6581  * Unlike lockdep_register_key(), a search is always done to find a matching
6582  * key irrespective of debug_locks to avoid potential invalid access to freed
6583  * memory in lock_class entry.
6584  */
6585 void lockdep_unregister_key(struct lock_class_key *key)
6586 {
6587 	struct hlist_head *hash_head = keyhashentry(key);
6588 	struct lock_class_key *k;
6589 	struct pending_free *pf;
6590 	unsigned long flags;
6591 	bool found = false;
6592 	bool need_callback = false;
6593 
6594 	might_sleep();
6595 
6596 	if (WARN_ON_ONCE(static_obj(key)))
6597 		return;
6598 
6599 	raw_local_irq_save(flags);
6600 	lockdep_lock();
6601 
6602 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6603 		if (k == key) {
6604 			hlist_del_rcu(&k->hash_entry);
6605 			found = true;
6606 			break;
6607 		}
6608 	}
6609 	WARN_ON_ONCE(!found && debug_locks);
6610 	if (found) {
6611 		pf = get_pending_free();
6612 		__lockdep_free_key_range(pf, key, 1);
6613 		need_callback = prepare_call_rcu_zapped(pf);
6614 		nr_dynamic_keys--;
6615 	}
6616 	lockdep_unlock();
6617 	raw_local_irq_restore(flags);
6618 
6619 	if (need_callback)
6620 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6621 
6622 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6623 	synchronize_rcu();
6624 }
6625 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6626 
6627 void __init lockdep_init(void)
6628 {
6629 	pr_info("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6630 
6631 	pr_info("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6632 	pr_info("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6633 	pr_info("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6634 	pr_info("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6635 	pr_info("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6636 	pr_info("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6637 	pr_info("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6638 
6639 	pr_info(" memory used by lock dependency info: %zu kB\n",
6640 	       (sizeof(lock_classes) +
6641 		sizeof(lock_classes_in_use) +
6642 		sizeof(classhash_table) +
6643 		sizeof(list_entries) +
6644 		sizeof(list_entries_in_use) +
6645 		sizeof(chainhash_table) +
6646 		sizeof(delayed_free)
6647 #ifdef CONFIG_PROVE_LOCKING
6648 		+ sizeof(lock_cq)
6649 		+ sizeof(lock_chains)
6650 		+ sizeof(lock_chains_in_use)
6651 		+ sizeof(chain_hlocks)
6652 #endif
6653 		) / 1024
6654 		);
6655 
6656 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6657 	pr_info(" memory used for stack traces: %zu kB\n",
6658 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6659 	       );
6660 #endif
6661 
6662 	pr_info(" per task-struct memory footprint: %zu bytes\n",
6663 	       sizeof(((struct task_struct *)NULL)->held_locks));
6664 }
6665 
6666 static void
6667 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6668 		     const void *mem_to, struct held_lock *hlock)
6669 {
6670 	if (!debug_locks_off())
6671 		return;
6672 	if (debug_locks_silent)
6673 		return;
6674 
6675 	nbcon_cpu_emergency_enter();
6676 
6677 	pr_warn("\n");
6678 	pr_warn("=========================\n");
6679 	pr_warn("WARNING: held lock freed!\n");
6680 	print_kernel_ident();
6681 	pr_warn("-------------------------\n");
6682 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6683 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6684 	print_lock(hlock);
6685 	lockdep_print_held_locks(curr);
6686 
6687 	pr_warn("\nstack backtrace:\n");
6688 	dump_stack();
6689 
6690 	nbcon_cpu_emergency_exit();
6691 }
6692 
6693 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6694 				const void* lock_from, unsigned long lock_len)
6695 {
6696 	return lock_from + lock_len <= mem_from ||
6697 		mem_from + mem_len <= lock_from;
6698 }
6699 
6700 /*
6701  * Called when kernel memory is freed (or unmapped), or if a lock
6702  * is destroyed or reinitialized - this code checks whether there is
6703  * any held lock in the memory range of <from> to <to>:
6704  */
6705 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6706 {
6707 	struct task_struct *curr = current;
6708 	struct held_lock *hlock;
6709 	unsigned long flags;
6710 	int i;
6711 
6712 	if (unlikely(!debug_locks))
6713 		return;
6714 
6715 	raw_local_irq_save(flags);
6716 	for (i = 0; i < curr->lockdep_depth; i++) {
6717 		hlock = curr->held_locks + i;
6718 
6719 		if (not_in_range(mem_from, mem_len, hlock->instance,
6720 					sizeof(*hlock->instance)))
6721 			continue;
6722 
6723 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6724 		break;
6725 	}
6726 	raw_local_irq_restore(flags);
6727 }
6728 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6729 
6730 static void print_held_locks_bug(void)
6731 {
6732 	if (!debug_locks_off())
6733 		return;
6734 	if (debug_locks_silent)
6735 		return;
6736 
6737 	nbcon_cpu_emergency_enter();
6738 
6739 	pr_warn("\n");
6740 	pr_warn("====================================\n");
6741 	pr_warn("WARNING: %s/%d still has locks held!\n",
6742 	       current->comm, task_pid_nr(current));
6743 	print_kernel_ident();
6744 	pr_warn("------------------------------------\n");
6745 	lockdep_print_held_locks(current);
6746 	pr_warn("\nstack backtrace:\n");
6747 	dump_stack();
6748 
6749 	nbcon_cpu_emergency_exit();
6750 }
6751 
6752 void debug_check_no_locks_held(void)
6753 {
6754 	if (unlikely(current->lockdep_depth > 0))
6755 		print_held_locks_bug();
6756 }
6757 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6758 
6759 #ifdef __KERNEL__
6760 void debug_show_all_locks(void)
6761 {
6762 	struct task_struct *g, *p;
6763 
6764 	if (unlikely(!debug_locks)) {
6765 		pr_warn("INFO: lockdep is turned off.\n");
6766 		return;
6767 	}
6768 	pr_warn("\nShowing all locks held in the system:\n");
6769 
6770 	rcu_read_lock();
6771 	for_each_process_thread(g, p) {
6772 		if (!p->lockdep_depth)
6773 			continue;
6774 		lockdep_print_held_locks(p);
6775 		touch_nmi_watchdog();
6776 		touch_all_softlockup_watchdogs();
6777 	}
6778 	rcu_read_unlock();
6779 
6780 	pr_warn("\n");
6781 	pr_warn("=============================================\n\n");
6782 }
6783 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6784 #endif
6785 
6786 /*
6787  * Careful: only use this function if you are sure that
6788  * the task cannot run in parallel!
6789  */
6790 void debug_show_held_locks(struct task_struct *task)
6791 {
6792 	if (unlikely(!debug_locks)) {
6793 		printk("INFO: lockdep is turned off.\n");
6794 		return;
6795 	}
6796 	lockdep_print_held_locks(task);
6797 }
6798 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6799 
6800 asmlinkage __visible void lockdep_sys_exit(void)
6801 {
6802 	struct task_struct *curr = current;
6803 
6804 	if (unlikely(curr->lockdep_depth)) {
6805 		if (!debug_locks_off())
6806 			return;
6807 		nbcon_cpu_emergency_enter();
6808 		pr_warn("\n");
6809 		pr_warn("================================================\n");
6810 		pr_warn("WARNING: lock held when returning to user space!\n");
6811 		print_kernel_ident();
6812 		pr_warn("------------------------------------------------\n");
6813 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6814 				curr->comm, curr->pid);
6815 		lockdep_print_held_locks(curr);
6816 		nbcon_cpu_emergency_exit();
6817 	}
6818 
6819 	/*
6820 	 * The lock history for each syscall should be independent. So wipe the
6821 	 * slate clean on return to userspace.
6822 	 */
6823 	lockdep_invariant_state(false);
6824 }
6825 
6826 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6827 {
6828 	struct task_struct *curr = current;
6829 	int dl = READ_ONCE(debug_locks);
6830 	bool rcu = warn_rcu_enter();
6831 
6832 	/* Note: the following can be executed concurrently, so be careful. */
6833 	nbcon_cpu_emergency_enter();
6834 	pr_warn("\n");
6835 	pr_warn("=============================\n");
6836 	pr_warn("WARNING: suspicious RCU usage\n");
6837 	print_kernel_ident();
6838 	pr_warn("-----------------------------\n");
6839 	pr_warn("%s:%d %s!\n", file, line, s);
6840 	pr_warn("\nother info that might help us debug this:\n\n");
6841 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6842 	       !rcu_lockdep_current_cpu_online()
6843 			? "RCU used illegally from offline CPU!\n"
6844 			: "",
6845 	       rcu_scheduler_active, dl,
6846 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6847 
6848 	/*
6849 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6850 	 * between ct_idle_enter() and ct_idle_exit(), then RCU
6851 	 * considers that CPU to be in an "extended quiescent state",
6852 	 * which means that RCU will be completely ignoring that CPU.
6853 	 * Therefore, rcu_read_lock() and friends have absolutely no
6854 	 * effect on a CPU running in that state. In other words, even if
6855 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6856 	 * delete data structures out from under it.  RCU really has no
6857 	 * choice here: we need to keep an RCU-free window in idle where
6858 	 * the CPU may possibly enter into low power mode. This way we can
6859 	 * notice an extended quiescent state to other CPUs that started a grace
6860 	 * period. Otherwise we would delay any grace period as long as we run
6861 	 * in the idle task.
6862 	 *
6863 	 * So complain bitterly if someone does call rcu_read_lock(),
6864 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6865 	 */
6866 	if (!rcu_is_watching())
6867 		pr_warn("RCU used illegally from extended quiescent state!\n");
6868 
6869 	lockdep_print_held_locks(curr);
6870 	pr_warn("\nstack backtrace:\n");
6871 	dump_stack();
6872 	nbcon_cpu_emergency_exit();
6873 	warn_rcu_exit(rcu);
6874 }
6875 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6876