1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * core.c - Kernel Live Patching Core
4  *
5  * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
6  * Copyright (C) 2014 SUSE
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/mutex.h>
14 #include <linux/slab.h>
15 #include <linux/list.h>
16 #include <linux/kallsyms.h>
17 #include <linux/livepatch.h>
18 #include <linux/elf.h>
19 #include <linux/moduleloader.h>
20 #include <linux/completion.h>
21 #include <linux/memory.h>
22 #include <linux/rcupdate.h>
23 #include <asm/cacheflush.h>
24 #include "core.h"
25 #include "patch.h"
26 #include "state.h"
27 #include "transition.h"
28 
29 /*
30  * klp_mutex is a coarse lock which serializes access to klp data.  All
31  * accesses to klp-related variables and structures must have mutex protection,
32  * except within the following functions which carefully avoid the need for it:
33  *
34  * - klp_ftrace_handler()
35  * - klp_update_patch_state()
36  * - __klp_sched_try_switch()
37  */
38 DEFINE_MUTEX(klp_mutex);
39 
40 /*
41  * Actively used patches: enabled or in transition. Note that replaced
42  * or disabled patches are not listed even though the related kernel
43  * module still can be loaded.
44  */
45 LIST_HEAD(klp_patches);
46 
47 static struct kobject *klp_root_kobj;
48 
49 static bool klp_is_module(struct klp_object *obj)
50 {
51 	return obj->name;
52 }
53 
54 /* sets obj->mod if object is not vmlinux and module is found */
55 static void klp_find_object_module(struct klp_object *obj)
56 {
57 	struct module *mod;
58 
59 	if (!klp_is_module(obj))
60 		return;
61 
62 	guard(rcu)();
63 	/*
64 	 * We do not want to block removal of patched modules and therefore
65 	 * we do not take a reference here. The patches are removed by
66 	 * klp_module_going() instead.
67 	 */
68 	mod = find_module(obj->name);
69 	/*
70 	 * Do not mess work of klp_module_coming() and klp_module_going().
71 	 * Note that the patch might still be needed before klp_module_going()
72 	 * is called. Module functions can be called even in the GOING state
73 	 * until mod->exit() finishes. This is especially important for
74 	 * patches that modify semantic of the functions.
75 	 */
76 	if (mod && mod->klp_alive)
77 		obj->mod = mod;
78 }
79 
80 static bool klp_initialized(void)
81 {
82 	return !!klp_root_kobj;
83 }
84 
85 static struct klp_func *klp_find_func(struct klp_object *obj,
86 				      struct klp_func *old_func)
87 {
88 	struct klp_func *func;
89 
90 	klp_for_each_func(obj, func) {
91 		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
92 		    (old_func->old_sympos == func->old_sympos)) {
93 			return func;
94 		}
95 	}
96 
97 	return NULL;
98 }
99 
100 static struct klp_object *klp_find_object(struct klp_patch *patch,
101 					  struct klp_object *old_obj)
102 {
103 	struct klp_object *obj;
104 
105 	klp_for_each_object(patch, obj) {
106 		if (klp_is_module(old_obj)) {
107 			if (klp_is_module(obj) &&
108 			    strcmp(old_obj->name, obj->name) == 0) {
109 				return obj;
110 			}
111 		} else if (!klp_is_module(obj)) {
112 			return obj;
113 		}
114 	}
115 
116 	return NULL;
117 }
118 
119 struct klp_find_arg {
120 	const char *name;
121 	unsigned long addr;
122 	unsigned long count;
123 	unsigned long pos;
124 };
125 
126 static int klp_match_callback(void *data, unsigned long addr)
127 {
128 	struct klp_find_arg *args = data;
129 
130 	args->addr = addr;
131 	args->count++;
132 
133 	/*
134 	 * Finish the search when the symbol is found for the desired position
135 	 * or the position is not defined for a non-unique symbol.
136 	 */
137 	if ((args->pos && (args->count == args->pos)) ||
138 	    (!args->pos && (args->count > 1)))
139 		return 1;
140 
141 	return 0;
142 }
143 
144 static int klp_find_callback(void *data, const char *name, unsigned long addr)
145 {
146 	struct klp_find_arg *args = data;
147 
148 	if (strcmp(args->name, name))
149 		return 0;
150 
151 	return klp_match_callback(data, addr);
152 }
153 
154 static int klp_find_object_symbol(const char *objname, const char *name,
155 				  unsigned long sympos, unsigned long *addr)
156 {
157 	struct klp_find_arg args = {
158 		.name = name,
159 		.addr = 0,
160 		.count = 0,
161 		.pos = sympos,
162 	};
163 
164 	if (objname)
165 		module_kallsyms_on_each_symbol(objname, klp_find_callback, &args);
166 	else
167 		kallsyms_on_each_match_symbol(klp_match_callback, name, &args);
168 
169 	/*
170 	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
171 	 * otherwise ensure the symbol position count matches sympos.
172 	 */
173 	if (args.addr == 0)
174 		pr_err("symbol '%s' not found in symbol table\n", name);
175 	else if (args.count > 1 && sympos == 0) {
176 		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
177 		       name, objname);
178 	} else if (sympos != args.count && sympos > 0) {
179 		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
180 		       sympos, name, objname ? objname : "vmlinux");
181 	} else {
182 		*addr = args.addr;
183 		return 0;
184 	}
185 
186 	*addr = 0;
187 	return -EINVAL;
188 }
189 
190 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
191 			       unsigned int symndx, Elf_Shdr *relasec,
192 			       const char *sec_objname)
193 {
194 	int i, cnt, ret;
195 	char sym_objname[MODULE_NAME_LEN];
196 	char sym_name[KSYM_NAME_LEN];
197 	Elf_Rela *relas;
198 	Elf_Sym *sym;
199 	unsigned long sympos, addr;
200 	bool sym_vmlinux;
201 	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
202 
203 	/*
204 	 * Since the field widths for sym_objname and sym_name in the sscanf()
205 	 * call are hard-coded and correspond to MODULE_NAME_LEN and
206 	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
207 	 * and KSYM_NAME_LEN have the values we expect them to have.
208 	 *
209 	 * Because the value of MODULE_NAME_LEN can differ among architectures,
210 	 * we use the smallest/strictest upper bound possible (56, based on
211 	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
212 	 */
213 	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
214 
215 	relas = (Elf_Rela *) relasec->sh_addr;
216 	/* For each rela in this klp relocation section */
217 	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
218 		sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
219 		if (sym->st_shndx != SHN_LIVEPATCH) {
220 			pr_err("symbol %s is not marked as a livepatch symbol\n",
221 			       strtab + sym->st_name);
222 			return -EINVAL;
223 		}
224 
225 		/* Format: .klp.sym.sym_objname.sym_name,sympos */
226 		cnt = sscanf(strtab + sym->st_name,
227 			     ".klp.sym.%55[^.].%511[^,],%lu",
228 			     sym_objname, sym_name, &sympos);
229 		if (cnt != 3) {
230 			pr_err("symbol %s has an incorrectly formatted name\n",
231 			       strtab + sym->st_name);
232 			return -EINVAL;
233 		}
234 
235 		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
236 
237 		/*
238 		 * Prevent module-specific KLP rela sections from referencing
239 		 * vmlinux symbols.  This helps prevent ordering issues with
240 		 * module special section initializations.  Presumably such
241 		 * symbols are exported and normal relas can be used instead.
242 		 */
243 		if (!sec_vmlinux && sym_vmlinux) {
244 			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section\n",
245 			       sym_name);
246 			return -EINVAL;
247 		}
248 
249 		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
250 		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
251 					     sym_name, sympos, &addr);
252 		if (ret)
253 			return ret;
254 
255 		sym->st_value = addr;
256 	}
257 
258 	return 0;
259 }
260 
261 void __weak clear_relocate_add(Elf_Shdr *sechdrs,
262 		   const char *strtab,
263 		   unsigned int symindex,
264 		   unsigned int relsec,
265 		   struct module *me)
266 {
267 }
268 
269 /*
270  * At a high-level, there are two types of klp relocation sections: those which
271  * reference symbols which live in vmlinux; and those which reference symbols
272  * which live in other modules.  This function is called for both types:
273  *
274  * 1) When a klp module itself loads, the module code calls this function to
275  *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
276  *    These relocations are written to the klp module text to allow the patched
277  *    code/data to reference unexported vmlinux symbols.  They're written as
278  *    early as possible to ensure that other module init code (.e.g.,
279  *    jump_label_apply_nops) can access any unexported vmlinux symbols which
280  *    might be referenced by the klp module's special sections.
281  *
282  * 2) When a to-be-patched module loads -- or is already loaded when a
283  *    corresponding klp module loads -- klp code calls this function to write
284  *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
285  *    are written to the klp module text to allow the patched code/data to
286  *    reference symbols which live in the to-be-patched module or one of its
287  *    module dependencies.  Exported symbols are supported, in addition to
288  *    unexported symbols, in order to enable late module patching, which allows
289  *    the to-be-patched module to be loaded and patched sometime *after* the
290  *    klp module is loaded.
291  */
292 static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
293 				    const char *shstrtab, const char *strtab,
294 				    unsigned int symndx, unsigned int secndx,
295 				    const char *objname, bool apply)
296 {
297 	int cnt, ret;
298 	char sec_objname[MODULE_NAME_LEN];
299 	Elf_Shdr *sec = sechdrs + secndx;
300 
301 	/*
302 	 * Format: .klp.rela.sec_objname.section_name
303 	 * See comment in klp_resolve_symbols() for an explanation
304 	 * of the selected field width value.
305 	 */
306 	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
307 		     sec_objname);
308 	if (cnt != 1) {
309 		pr_err("section %s has an incorrectly formatted name\n",
310 		       shstrtab + sec->sh_name);
311 		return -EINVAL;
312 	}
313 
314 	if (strcmp(objname ? objname : "vmlinux", sec_objname))
315 		return 0;
316 
317 	if (apply) {
318 		ret = klp_resolve_symbols(sechdrs, strtab, symndx,
319 					  sec, sec_objname);
320 		if (ret)
321 			return ret;
322 
323 		return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
324 	}
325 
326 	clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
327 	return 0;
328 }
329 
330 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
331 			     const char *shstrtab, const char *strtab,
332 			     unsigned int symndx, unsigned int secndx,
333 			     const char *objname)
334 {
335 	return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx,
336 					secndx, objname, true);
337 }
338 
339 /*
340  * Sysfs Interface
341  *
342  * /sys/kernel/livepatch
343  * /sys/kernel/livepatch/<patch>
344  * /sys/kernel/livepatch/<patch>/enabled
345  * /sys/kernel/livepatch/<patch>/transition
346  * /sys/kernel/livepatch/<patch>/force
347  * /sys/kernel/livepatch/<patch>/replace
348  * /sys/kernel/livepatch/<patch>/stack_order
349  * /sys/kernel/livepatch/<patch>/<object>
350  * /sys/kernel/livepatch/<patch>/<object>/patched
351  * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
352  */
353 static int __klp_disable_patch(struct klp_patch *patch);
354 
355 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
356 			     const char *buf, size_t count)
357 {
358 	struct klp_patch *patch;
359 	int ret;
360 	bool enabled;
361 
362 	ret = kstrtobool(buf, &enabled);
363 	if (ret)
364 		return ret;
365 
366 	patch = container_of(kobj, struct klp_patch, kobj);
367 
368 	mutex_lock(&klp_mutex);
369 
370 	if (patch->enabled == enabled) {
371 		/* already in requested state */
372 		ret = -EINVAL;
373 		goto out;
374 	}
375 
376 	/*
377 	 * Allow to reverse a pending transition in both ways. It might be
378 	 * necessary to complete the transition without forcing and breaking
379 	 * the system integrity.
380 	 *
381 	 * Do not allow to re-enable a disabled patch.
382 	 */
383 	if (patch == klp_transition_patch)
384 		klp_reverse_transition();
385 	else if (!enabled)
386 		ret = __klp_disable_patch(patch);
387 	else
388 		ret = -EINVAL;
389 
390 out:
391 	mutex_unlock(&klp_mutex);
392 
393 	if (ret)
394 		return ret;
395 	return count;
396 }
397 
398 static ssize_t enabled_show(struct kobject *kobj,
399 			    struct kobj_attribute *attr, char *buf)
400 {
401 	struct klp_patch *patch;
402 
403 	patch = container_of(kobj, struct klp_patch, kobj);
404 	return sysfs_emit(buf, "%d\n", patch->enabled);
405 }
406 
407 static ssize_t transition_show(struct kobject *kobj,
408 			       struct kobj_attribute *attr, char *buf)
409 {
410 	struct klp_patch *patch;
411 
412 	patch = container_of(kobj, struct klp_patch, kobj);
413 	return sysfs_emit(buf, "%d\n", patch == klp_transition_patch);
414 }
415 
416 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
417 			   const char *buf, size_t count)
418 {
419 	struct klp_patch *patch;
420 	int ret;
421 	bool val;
422 
423 	ret = kstrtobool(buf, &val);
424 	if (ret)
425 		return ret;
426 
427 	if (!val)
428 		return count;
429 
430 	mutex_lock(&klp_mutex);
431 
432 	patch = container_of(kobj, struct klp_patch, kobj);
433 	if (patch != klp_transition_patch) {
434 		mutex_unlock(&klp_mutex);
435 		return -EINVAL;
436 	}
437 
438 	klp_force_transition();
439 
440 	mutex_unlock(&klp_mutex);
441 
442 	return count;
443 }
444 
445 static ssize_t replace_show(struct kobject *kobj,
446 			    struct kobj_attribute *attr, char *buf)
447 {
448 	struct klp_patch *patch;
449 
450 	patch = container_of(kobj, struct klp_patch, kobj);
451 	return sysfs_emit(buf, "%d\n", patch->replace);
452 }
453 
454 static ssize_t stack_order_show(struct kobject *kobj,
455 				struct kobj_attribute *attr, char *buf)
456 {
457 	struct klp_patch *patch, *this_patch;
458 	int stack_order = 0;
459 
460 	this_patch = container_of(kobj, struct klp_patch, kobj);
461 
462 	mutex_lock(&klp_mutex);
463 
464 	klp_for_each_patch(patch) {
465 		stack_order++;
466 		if (patch == this_patch)
467 			break;
468 	}
469 
470 	mutex_unlock(&klp_mutex);
471 
472 	return sysfs_emit(buf, "%d\n", stack_order);
473 }
474 
475 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
476 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
477 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
478 static struct kobj_attribute replace_kobj_attr = __ATTR_RO(replace);
479 static struct kobj_attribute stack_order_kobj_attr = __ATTR_RO(stack_order);
480 static struct attribute *klp_patch_attrs[] = {
481 	&enabled_kobj_attr.attr,
482 	&transition_kobj_attr.attr,
483 	&force_kobj_attr.attr,
484 	&replace_kobj_attr.attr,
485 	&stack_order_kobj_attr.attr,
486 	NULL
487 };
488 ATTRIBUTE_GROUPS(klp_patch);
489 
490 static ssize_t patched_show(struct kobject *kobj,
491 			    struct kobj_attribute *attr, char *buf)
492 {
493 	struct klp_object *obj;
494 
495 	obj = container_of(kobj, struct klp_object, kobj);
496 	return sysfs_emit(buf, "%d\n", obj->patched);
497 }
498 
499 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched);
500 static struct attribute *klp_object_attrs[] = {
501 	&patched_kobj_attr.attr,
502 	NULL,
503 };
504 ATTRIBUTE_GROUPS(klp_object);
505 
506 static void klp_free_object_dynamic(struct klp_object *obj)
507 {
508 	kfree(obj->name);
509 	kfree(obj);
510 }
511 
512 static void klp_init_func_early(struct klp_object *obj,
513 				struct klp_func *func);
514 static void klp_init_object_early(struct klp_patch *patch,
515 				  struct klp_object *obj);
516 
517 static struct klp_object *klp_alloc_object_dynamic(const char *name,
518 						   struct klp_patch *patch)
519 {
520 	struct klp_object *obj;
521 
522 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
523 	if (!obj)
524 		return NULL;
525 
526 	if (name) {
527 		obj->name = kstrdup(name, GFP_KERNEL);
528 		if (!obj->name) {
529 			kfree(obj);
530 			return NULL;
531 		}
532 	}
533 
534 	klp_init_object_early(patch, obj);
535 	obj->dynamic = true;
536 
537 	return obj;
538 }
539 
540 static void klp_free_func_nop(struct klp_func *func)
541 {
542 	kfree(func->old_name);
543 	kfree(func);
544 }
545 
546 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
547 					   struct klp_object *obj)
548 {
549 	struct klp_func *func;
550 
551 	func = kzalloc(sizeof(*func), GFP_KERNEL);
552 	if (!func)
553 		return NULL;
554 
555 	if (old_func->old_name) {
556 		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
557 		if (!func->old_name) {
558 			kfree(func);
559 			return NULL;
560 		}
561 	}
562 
563 	klp_init_func_early(obj, func);
564 	/*
565 	 * func->new_func is same as func->old_func. These addresses are
566 	 * set when the object is loaded, see klp_init_object_loaded().
567 	 */
568 	func->old_sympos = old_func->old_sympos;
569 	func->nop = true;
570 
571 	return func;
572 }
573 
574 static int klp_add_object_nops(struct klp_patch *patch,
575 			       struct klp_object *old_obj)
576 {
577 	struct klp_object *obj;
578 	struct klp_func *func, *old_func;
579 
580 	obj = klp_find_object(patch, old_obj);
581 
582 	if (!obj) {
583 		obj = klp_alloc_object_dynamic(old_obj->name, patch);
584 		if (!obj)
585 			return -ENOMEM;
586 	}
587 
588 	klp_for_each_func(old_obj, old_func) {
589 		func = klp_find_func(obj, old_func);
590 		if (func)
591 			continue;
592 
593 		func = klp_alloc_func_nop(old_func, obj);
594 		if (!func)
595 			return -ENOMEM;
596 	}
597 
598 	return 0;
599 }
600 
601 /*
602  * Add 'nop' functions which simply return to the caller to run the
603  * original function.
604  *
605  * They are added only when the atomic replace mode is used and only for
606  * functions which are currently livepatched but are no longer included
607  * in the new livepatch.
608  */
609 static int klp_add_nops(struct klp_patch *patch)
610 {
611 	struct klp_patch *old_patch;
612 	struct klp_object *old_obj;
613 
614 	klp_for_each_patch(old_patch) {
615 		klp_for_each_object(old_patch, old_obj) {
616 			int err;
617 
618 			err = klp_add_object_nops(patch, old_obj);
619 			if (err)
620 				return err;
621 		}
622 	}
623 
624 	return 0;
625 }
626 
627 static void klp_kobj_release_patch(struct kobject *kobj)
628 {
629 	struct klp_patch *patch;
630 
631 	patch = container_of(kobj, struct klp_patch, kobj);
632 	complete(&patch->finish);
633 }
634 
635 static const struct kobj_type klp_ktype_patch = {
636 	.release = klp_kobj_release_patch,
637 	.sysfs_ops = &kobj_sysfs_ops,
638 	.default_groups = klp_patch_groups,
639 };
640 
641 static void klp_kobj_release_object(struct kobject *kobj)
642 {
643 	struct klp_object *obj;
644 
645 	obj = container_of(kobj, struct klp_object, kobj);
646 
647 	if (obj->dynamic)
648 		klp_free_object_dynamic(obj);
649 }
650 
651 static const struct kobj_type klp_ktype_object = {
652 	.release = klp_kobj_release_object,
653 	.sysfs_ops = &kobj_sysfs_ops,
654 	.default_groups = klp_object_groups,
655 };
656 
657 static void klp_kobj_release_func(struct kobject *kobj)
658 {
659 	struct klp_func *func;
660 
661 	func = container_of(kobj, struct klp_func, kobj);
662 
663 	if (func->nop)
664 		klp_free_func_nop(func);
665 }
666 
667 static const struct kobj_type klp_ktype_func = {
668 	.release = klp_kobj_release_func,
669 	.sysfs_ops = &kobj_sysfs_ops,
670 };
671 
672 static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
673 {
674 	struct klp_func *func, *tmp_func;
675 
676 	klp_for_each_func_safe(obj, func, tmp_func) {
677 		if (nops_only && !func->nop)
678 			continue;
679 
680 		list_del(&func->node);
681 		kobject_put(&func->kobj);
682 	}
683 }
684 
685 /* Clean up when a patched object is unloaded */
686 static void klp_free_object_loaded(struct klp_object *obj)
687 {
688 	struct klp_func *func;
689 
690 	obj->mod = NULL;
691 
692 	klp_for_each_func(obj, func) {
693 		func->old_func = NULL;
694 
695 		if (func->nop)
696 			func->new_func = NULL;
697 	}
698 }
699 
700 static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
701 {
702 	struct klp_object *obj, *tmp_obj;
703 
704 	klp_for_each_object_safe(patch, obj, tmp_obj) {
705 		__klp_free_funcs(obj, nops_only);
706 
707 		if (nops_only && !obj->dynamic)
708 			continue;
709 
710 		list_del(&obj->node);
711 		kobject_put(&obj->kobj);
712 	}
713 }
714 
715 static void klp_free_objects(struct klp_patch *patch)
716 {
717 	__klp_free_objects(patch, false);
718 }
719 
720 static void klp_free_objects_dynamic(struct klp_patch *patch)
721 {
722 	__klp_free_objects(patch, true);
723 }
724 
725 /*
726  * This function implements the free operations that can be called safely
727  * under klp_mutex.
728  *
729  * The operation must be completed by calling klp_free_patch_finish()
730  * outside klp_mutex.
731  */
732 static void klp_free_patch_start(struct klp_patch *patch)
733 {
734 	if (!list_empty(&patch->list))
735 		list_del(&patch->list);
736 
737 	klp_free_objects(patch);
738 }
739 
740 /*
741  * This function implements the free part that must be called outside
742  * klp_mutex.
743  *
744  * It must be called after klp_free_patch_start(). And it has to be
745  * the last function accessing the livepatch structures when the patch
746  * gets disabled.
747  */
748 static void klp_free_patch_finish(struct klp_patch *patch)
749 {
750 	/*
751 	 * Avoid deadlock with enabled_store() sysfs callback by
752 	 * calling this outside klp_mutex. It is safe because
753 	 * this is called when the patch gets disabled and it
754 	 * cannot get enabled again.
755 	 */
756 	kobject_put(&patch->kobj);
757 	wait_for_completion(&patch->finish);
758 
759 	/* Put the module after the last access to struct klp_patch. */
760 	if (!patch->forced)
761 		module_put(patch->mod);
762 }
763 
764 /*
765  * The livepatch might be freed from sysfs interface created by the patch.
766  * This work allows to wait until the interface is destroyed in a separate
767  * context.
768  */
769 static void klp_free_patch_work_fn(struct work_struct *work)
770 {
771 	struct klp_patch *patch =
772 		container_of(work, struct klp_patch, free_work);
773 
774 	klp_free_patch_finish(patch);
775 }
776 
777 void klp_free_patch_async(struct klp_patch *patch)
778 {
779 	klp_free_patch_start(patch);
780 	schedule_work(&patch->free_work);
781 }
782 
783 void klp_free_replaced_patches_async(struct klp_patch *new_patch)
784 {
785 	struct klp_patch *old_patch, *tmp_patch;
786 
787 	klp_for_each_patch_safe(old_patch, tmp_patch) {
788 		if (old_patch == new_patch)
789 			return;
790 		klp_free_patch_async(old_patch);
791 	}
792 }
793 
794 static int klp_init_func(struct klp_object *obj, struct klp_func *func)
795 {
796 	if (!func->old_name)
797 		return -EINVAL;
798 
799 	/*
800 	 * NOPs get the address later. The patched module must be loaded,
801 	 * see klp_init_object_loaded().
802 	 */
803 	if (!func->new_func && !func->nop)
804 		return -EINVAL;
805 
806 	if (strlen(func->old_name) >= KSYM_NAME_LEN)
807 		return -EINVAL;
808 
809 	INIT_LIST_HEAD(&func->stack_node);
810 	func->patched = false;
811 	func->transition = false;
812 
813 	/* The format for the sysfs directory is <function,sympos> where sympos
814 	 * is the nth occurrence of this symbol in kallsyms for the patched
815 	 * object. If the user selects 0 for old_sympos, then 1 will be used
816 	 * since a unique symbol will be the first occurrence.
817 	 */
818 	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
819 			   func->old_name,
820 			   func->old_sympos ? func->old_sympos : 1);
821 }
822 
823 static int klp_write_object_relocs(struct klp_patch *patch,
824 				   struct klp_object *obj,
825 				   bool apply)
826 {
827 	int i, ret;
828 	struct klp_modinfo *info = patch->mod->klp_info;
829 
830 	for (i = 1; i < info->hdr.e_shnum; i++) {
831 		Elf_Shdr *sec = info->sechdrs + i;
832 
833 		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
834 			continue;
835 
836 		ret = klp_write_section_relocs(patch->mod, info->sechdrs,
837 					       info->secstrings,
838 					       patch->mod->core_kallsyms.strtab,
839 					       info->symndx, i, obj->name, apply);
840 		if (ret)
841 			return ret;
842 	}
843 
844 	return 0;
845 }
846 
847 static int klp_apply_object_relocs(struct klp_patch *patch,
848 				   struct klp_object *obj)
849 {
850 	return klp_write_object_relocs(patch, obj, true);
851 }
852 
853 static void klp_clear_object_relocs(struct klp_patch *patch,
854 				    struct klp_object *obj)
855 {
856 	klp_write_object_relocs(patch, obj, false);
857 }
858 
859 /* parts of the initialization that is done only when the object is loaded */
860 static int klp_init_object_loaded(struct klp_patch *patch,
861 				  struct klp_object *obj)
862 {
863 	struct klp_func *func;
864 	int ret;
865 
866 	if (klp_is_module(obj)) {
867 		/*
868 		 * Only write module-specific relocations here
869 		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
870 		 * written earlier during the initialization of the klp module
871 		 * itself.
872 		 */
873 		ret = klp_apply_object_relocs(patch, obj);
874 		if (ret)
875 			return ret;
876 	}
877 
878 	klp_for_each_func(obj, func) {
879 		ret = klp_find_object_symbol(obj->name, func->old_name,
880 					     func->old_sympos,
881 					     (unsigned long *)&func->old_func);
882 		if (ret)
883 			return ret;
884 
885 		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
886 						  &func->old_size, NULL);
887 		if (!ret) {
888 			pr_err("kallsyms size lookup failed for '%s'\n",
889 			       func->old_name);
890 			return -ENOENT;
891 		}
892 
893 		if (func->nop)
894 			func->new_func = func->old_func;
895 
896 		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
897 						  &func->new_size, NULL);
898 		if (!ret) {
899 			pr_err("kallsyms size lookup failed for '%s' replacement\n",
900 			       func->old_name);
901 			return -ENOENT;
902 		}
903 	}
904 
905 	return 0;
906 }
907 
908 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
909 {
910 	struct klp_func *func;
911 	int ret;
912 	const char *name;
913 
914 	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
915 		return -EINVAL;
916 
917 	obj->patched = false;
918 	obj->mod = NULL;
919 
920 	klp_find_object_module(obj);
921 
922 	name = klp_is_module(obj) ? obj->name : "vmlinux";
923 	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
924 	if (ret)
925 		return ret;
926 
927 	klp_for_each_func(obj, func) {
928 		ret = klp_init_func(obj, func);
929 		if (ret)
930 			return ret;
931 	}
932 
933 	if (klp_is_object_loaded(obj))
934 		ret = klp_init_object_loaded(patch, obj);
935 
936 	return ret;
937 }
938 
939 static void klp_init_func_early(struct klp_object *obj,
940 				struct klp_func *func)
941 {
942 	kobject_init(&func->kobj, &klp_ktype_func);
943 	list_add_tail(&func->node, &obj->func_list);
944 }
945 
946 static void klp_init_object_early(struct klp_patch *patch,
947 				  struct klp_object *obj)
948 {
949 	INIT_LIST_HEAD(&obj->func_list);
950 	kobject_init(&obj->kobj, &klp_ktype_object);
951 	list_add_tail(&obj->node, &patch->obj_list);
952 }
953 
954 static void klp_init_patch_early(struct klp_patch *patch)
955 {
956 	struct klp_object *obj;
957 	struct klp_func *func;
958 
959 	INIT_LIST_HEAD(&patch->list);
960 	INIT_LIST_HEAD(&patch->obj_list);
961 	kobject_init(&patch->kobj, &klp_ktype_patch);
962 	patch->enabled = false;
963 	patch->forced = false;
964 	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
965 	init_completion(&patch->finish);
966 
967 	klp_for_each_object_static(patch, obj) {
968 		klp_init_object_early(patch, obj);
969 
970 		klp_for_each_func_static(obj, func) {
971 			klp_init_func_early(obj, func);
972 		}
973 	}
974 }
975 
976 static int klp_init_patch(struct klp_patch *patch)
977 {
978 	struct klp_object *obj;
979 	int ret;
980 
981 	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
982 	if (ret)
983 		return ret;
984 
985 	if (patch->replace) {
986 		ret = klp_add_nops(patch);
987 		if (ret)
988 			return ret;
989 	}
990 
991 	klp_for_each_object(patch, obj) {
992 		ret = klp_init_object(patch, obj);
993 		if (ret)
994 			return ret;
995 	}
996 
997 	list_add_tail(&patch->list, &klp_patches);
998 
999 	return 0;
1000 }
1001 
1002 static int __klp_disable_patch(struct klp_patch *patch)
1003 {
1004 	struct klp_object *obj;
1005 
1006 	if (WARN_ON(!patch->enabled))
1007 		return -EINVAL;
1008 
1009 	if (klp_transition_patch)
1010 		return -EBUSY;
1011 
1012 	klp_init_transition(patch, KLP_TRANSITION_UNPATCHED);
1013 
1014 	klp_for_each_object(patch, obj)
1015 		if (obj->patched)
1016 			klp_pre_unpatch_callback(obj);
1017 
1018 	/*
1019 	 * Enforce the order of the func->transition writes in
1020 	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
1021 	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
1022 	 * is called shortly after klp_update_patch_state() switches the task,
1023 	 * this ensures the handler sees that func->transition is set.
1024 	 */
1025 	smp_wmb();
1026 
1027 	klp_start_transition();
1028 	patch->enabled = false;
1029 	klp_try_complete_transition();
1030 
1031 	return 0;
1032 }
1033 
1034 static int __klp_enable_patch(struct klp_patch *patch)
1035 {
1036 	struct klp_object *obj;
1037 	int ret;
1038 
1039 	if (klp_transition_patch)
1040 		return -EBUSY;
1041 
1042 	if (WARN_ON(patch->enabled))
1043 		return -EINVAL;
1044 
1045 	pr_notice("enabling patch '%s'\n", patch->mod->name);
1046 
1047 	klp_init_transition(patch, KLP_TRANSITION_PATCHED);
1048 
1049 	/*
1050 	 * Enforce the order of the func->transition writes in
1051 	 * klp_init_transition() and the ops->func_stack writes in
1052 	 * klp_patch_object(), so that klp_ftrace_handler() will see the
1053 	 * func->transition updates before the handler is registered and the
1054 	 * new funcs become visible to the handler.
1055 	 */
1056 	smp_wmb();
1057 
1058 	klp_for_each_object(patch, obj) {
1059 		if (!klp_is_object_loaded(obj))
1060 			continue;
1061 
1062 		ret = klp_pre_patch_callback(obj);
1063 		if (ret) {
1064 			pr_warn("pre-patch callback failed for object '%s'\n",
1065 				klp_is_module(obj) ? obj->name : "vmlinux");
1066 			goto err;
1067 		}
1068 
1069 		ret = klp_patch_object(obj);
1070 		if (ret) {
1071 			pr_warn("failed to patch object '%s'\n",
1072 				klp_is_module(obj) ? obj->name : "vmlinux");
1073 			goto err;
1074 		}
1075 	}
1076 
1077 	klp_start_transition();
1078 	patch->enabled = true;
1079 	klp_try_complete_transition();
1080 
1081 	return 0;
1082 err:
1083 	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1084 
1085 	klp_cancel_transition();
1086 	return ret;
1087 }
1088 
1089 /**
1090  * klp_enable_patch() - enable the livepatch
1091  * @patch:	patch to be enabled
1092  *
1093  * Initializes the data structure associated with the patch, creates the sysfs
1094  * interface, performs the needed symbol lookups and code relocations,
1095  * registers the patched functions with ftrace.
1096  *
1097  * This function is supposed to be called from the livepatch module_init()
1098  * callback.
1099  *
1100  * Return: 0 on success, otherwise error
1101  */
1102 int klp_enable_patch(struct klp_patch *patch)
1103 {
1104 	int ret;
1105 	struct klp_object *obj;
1106 
1107 	if (!patch || !patch->mod || !patch->objs)
1108 		return -EINVAL;
1109 
1110 	klp_for_each_object_static(patch, obj) {
1111 		if (!obj->funcs)
1112 			return -EINVAL;
1113 	}
1114 
1115 
1116 	if (!is_livepatch_module(patch->mod)) {
1117 		pr_err("module %s is not marked as a livepatch module\n",
1118 		       patch->mod->name);
1119 		return -EINVAL;
1120 	}
1121 
1122 	if (!klp_initialized())
1123 		return -ENODEV;
1124 
1125 	if (!klp_have_reliable_stack()) {
1126 		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1127 		pr_warn("The livepatch transition may never complete.\n");
1128 	}
1129 
1130 	mutex_lock(&klp_mutex);
1131 
1132 	if (!klp_is_patch_compatible(patch)) {
1133 		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1134 			patch->mod->name);
1135 		mutex_unlock(&klp_mutex);
1136 		return -EINVAL;
1137 	}
1138 
1139 	if (!try_module_get(patch->mod)) {
1140 		mutex_unlock(&klp_mutex);
1141 		return -ENODEV;
1142 	}
1143 
1144 	klp_init_patch_early(patch);
1145 
1146 	ret = klp_init_patch(patch);
1147 	if (ret)
1148 		goto err;
1149 
1150 	ret = __klp_enable_patch(patch);
1151 	if (ret)
1152 		goto err;
1153 
1154 	mutex_unlock(&klp_mutex);
1155 
1156 	return 0;
1157 
1158 err:
1159 	klp_free_patch_start(patch);
1160 
1161 	mutex_unlock(&klp_mutex);
1162 
1163 	klp_free_patch_finish(patch);
1164 
1165 	return ret;
1166 }
1167 EXPORT_SYMBOL_GPL(klp_enable_patch);
1168 
1169 /*
1170  * This function unpatches objects from the replaced livepatches.
1171  *
1172  * We could be pretty aggressive here. It is called in the situation where
1173  * these structures are no longer accessed from the ftrace handler.
1174  * All functions are redirected by the klp_transition_patch. They
1175  * use either a new code or they are in the original code because
1176  * of the special nop function patches.
1177  *
1178  * The only exception is when the transition was forced. In this case,
1179  * klp_ftrace_handler() might still see the replaced patch on the stack.
1180  * Fortunately, it is carefully designed to work with removed functions
1181  * thanks to RCU. We only have to keep the patches on the system. Also
1182  * this is handled transparently by patch->module_put.
1183  */
1184 void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1185 {
1186 	struct klp_patch *old_patch;
1187 
1188 	klp_for_each_patch(old_patch) {
1189 		if (old_patch == new_patch)
1190 			return;
1191 
1192 		old_patch->enabled = false;
1193 		klp_unpatch_objects(old_patch);
1194 	}
1195 }
1196 
1197 /*
1198  * This function removes the dynamically allocated 'nop' functions.
1199  *
1200  * We could be pretty aggressive. NOPs do not change the existing
1201  * behavior except for adding unnecessary delay by the ftrace handler.
1202  *
1203  * It is safe even when the transition was forced. The ftrace handler
1204  * will see a valid ops->func_stack entry thanks to RCU.
1205  *
1206  * We could even free the NOPs structures. They must be the last entry
1207  * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1208  * It does the same as klp_synchronize_transition() to make sure that
1209  * nobody is inside the ftrace handler once the operation finishes.
1210  *
1211  * IMPORTANT: It must be called right after removing the replaced patches!
1212  */
1213 void klp_discard_nops(struct klp_patch *new_patch)
1214 {
1215 	klp_unpatch_objects_dynamic(klp_transition_patch);
1216 	klp_free_objects_dynamic(klp_transition_patch);
1217 }
1218 
1219 /*
1220  * Remove parts of patches that touch a given kernel module. The list of
1221  * patches processed might be limited. When limit is NULL, all patches
1222  * will be handled.
1223  */
1224 static void klp_cleanup_module_patches_limited(struct module *mod,
1225 					       struct klp_patch *limit)
1226 {
1227 	struct klp_patch *patch;
1228 	struct klp_object *obj;
1229 
1230 	klp_for_each_patch(patch) {
1231 		if (patch == limit)
1232 			break;
1233 
1234 		klp_for_each_object(patch, obj) {
1235 			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1236 				continue;
1237 
1238 			if (patch != klp_transition_patch)
1239 				klp_pre_unpatch_callback(obj);
1240 
1241 			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1242 				  patch->mod->name, obj->mod->name);
1243 			klp_unpatch_object(obj);
1244 
1245 			klp_post_unpatch_callback(obj);
1246 			klp_clear_object_relocs(patch, obj);
1247 			klp_free_object_loaded(obj);
1248 			break;
1249 		}
1250 	}
1251 }
1252 
1253 int klp_module_coming(struct module *mod)
1254 {
1255 	int ret;
1256 	struct klp_patch *patch;
1257 	struct klp_object *obj;
1258 
1259 	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1260 		return -EINVAL;
1261 
1262 	if (!strcmp(mod->name, "vmlinux")) {
1263 		pr_err("vmlinux.ko: invalid module name\n");
1264 		return -EINVAL;
1265 	}
1266 
1267 	mutex_lock(&klp_mutex);
1268 	/*
1269 	 * Each module has to know that klp_module_coming()
1270 	 * has been called. We never know what module will
1271 	 * get patched by a new patch.
1272 	 */
1273 	mod->klp_alive = true;
1274 
1275 	klp_for_each_patch(patch) {
1276 		klp_for_each_object(patch, obj) {
1277 			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1278 				continue;
1279 
1280 			obj->mod = mod;
1281 
1282 			ret = klp_init_object_loaded(patch, obj);
1283 			if (ret) {
1284 				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1285 					patch->mod->name, obj->mod->name, ret);
1286 				goto err;
1287 			}
1288 
1289 			pr_notice("applying patch '%s' to loading module '%s'\n",
1290 				  patch->mod->name, obj->mod->name);
1291 
1292 			ret = klp_pre_patch_callback(obj);
1293 			if (ret) {
1294 				pr_warn("pre-patch callback failed for object '%s'\n",
1295 					obj->name);
1296 				goto err;
1297 			}
1298 
1299 			ret = klp_patch_object(obj);
1300 			if (ret) {
1301 				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1302 					patch->mod->name, obj->mod->name, ret);
1303 
1304 				klp_post_unpatch_callback(obj);
1305 				goto err;
1306 			}
1307 
1308 			if (patch != klp_transition_patch)
1309 				klp_post_patch_callback(obj);
1310 
1311 			break;
1312 		}
1313 	}
1314 
1315 	mutex_unlock(&klp_mutex);
1316 
1317 	return 0;
1318 
1319 err:
1320 	/*
1321 	 * If a patch is unsuccessfully applied, return
1322 	 * error to the module loader.
1323 	 */
1324 	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1325 		patch->mod->name, obj->mod->name, obj->mod->name);
1326 	mod->klp_alive = false;
1327 	obj->mod = NULL;
1328 	klp_cleanup_module_patches_limited(mod, patch);
1329 	mutex_unlock(&klp_mutex);
1330 
1331 	return ret;
1332 }
1333 
1334 void klp_module_going(struct module *mod)
1335 {
1336 	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1337 		    mod->state != MODULE_STATE_COMING))
1338 		return;
1339 
1340 	mutex_lock(&klp_mutex);
1341 	/*
1342 	 * Each module has to know that klp_module_going()
1343 	 * has been called. We never know what module will
1344 	 * get patched by a new patch.
1345 	 */
1346 	mod->klp_alive = false;
1347 
1348 	klp_cleanup_module_patches_limited(mod, NULL);
1349 
1350 	mutex_unlock(&klp_mutex);
1351 }
1352 
1353 static int __init klp_init(void)
1354 {
1355 	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1356 	if (!klp_root_kobj)
1357 		return -ENOMEM;
1358 
1359 	return 0;
1360 }
1361 
1362 module_init(klp_init);
1363