1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 static_branch_enable(&force_irqthreads_key); 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static int __irq_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *state); 39 40 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 41 { 42 struct irq_data *irqd = irq_desc_get_irq_data(desc); 43 bool inprogress; 44 45 do { 46 unsigned long flags; 47 48 /* 49 * Wait until we're out of the critical section. This might 50 * give the wrong answer due to the lack of memory barriers. 51 */ 52 while (irqd_irq_inprogress(&desc->irq_data)) 53 cpu_relax(); 54 55 /* Ok, that indicated we're done: double-check carefully. */ 56 raw_spin_lock_irqsave(&desc->lock, flags); 57 inprogress = irqd_irq_inprogress(&desc->irq_data); 58 59 /* 60 * If requested and supported, check at the chip whether it 61 * is in flight at the hardware level, i.e. already pending 62 * in a CPU and waiting for service and acknowledge. 63 */ 64 if (!inprogress && sync_chip) { 65 /* 66 * Ignore the return code. inprogress is only updated 67 * when the chip supports it. 68 */ 69 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 70 &inprogress); 71 } 72 raw_spin_unlock_irqrestore(&desc->lock, flags); 73 74 /* Oops, that failed? */ 75 } while (inprogress); 76 } 77 78 /** 79 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 80 * @irq: interrupt number to wait for 81 * 82 * This function waits for any pending hard IRQ handlers for this 83 * interrupt to complete before returning. If you use this 84 * function while holding a resource the IRQ handler may need you 85 * will deadlock. It does not take associated threaded handlers 86 * into account. 87 * 88 * Do not use this for shutdown scenarios where you must be sure 89 * that all parts (hardirq and threaded handler) have completed. 90 * 91 * Returns: false if a threaded handler is active. 92 * 93 * This function may be called - with care - from IRQ context. 94 * 95 * It does not check whether there is an interrupt in flight at the 96 * hardware level, but not serviced yet, as this might deadlock when 97 * called with interrupts disabled and the target CPU of the interrupt 98 * is the current CPU. 99 */ 100 bool synchronize_hardirq(unsigned int irq) 101 { 102 struct irq_desc *desc = irq_to_desc(irq); 103 104 if (desc) { 105 __synchronize_hardirq(desc, false); 106 return !atomic_read(&desc->threads_active); 107 } 108 109 return true; 110 } 111 EXPORT_SYMBOL(synchronize_hardirq); 112 113 static void __synchronize_irq(struct irq_desc *desc) 114 { 115 __synchronize_hardirq(desc, true); 116 /* 117 * We made sure that no hardirq handler is running. Now verify that no 118 * threaded handlers are active. 119 */ 120 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active)); 121 } 122 123 /** 124 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 125 * @irq: interrupt number to wait for 126 * 127 * This function waits for any pending IRQ handlers for this interrupt 128 * to complete before returning. If you use this function while 129 * holding a resource the IRQ handler may need you will deadlock. 130 * 131 * Can only be called from preemptible code as it might sleep when 132 * an interrupt thread is associated to @irq. 133 * 134 * It optionally makes sure (when the irq chip supports that method) 135 * that the interrupt is not pending in any CPU and waiting for 136 * service. 137 */ 138 void synchronize_irq(unsigned int irq) 139 { 140 struct irq_desc *desc = irq_to_desc(irq); 141 142 if (desc) 143 __synchronize_irq(desc); 144 } 145 EXPORT_SYMBOL(synchronize_irq); 146 147 #ifdef CONFIG_SMP 148 cpumask_var_t irq_default_affinity; 149 150 static bool __irq_can_set_affinity(struct irq_desc *desc) 151 { 152 if (!desc || !irqd_can_balance(&desc->irq_data) || 153 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 154 return false; 155 return true; 156 } 157 158 /** 159 * irq_can_set_affinity - Check if the affinity of a given irq can be set 160 * @irq: Interrupt to check 161 * 162 */ 163 int irq_can_set_affinity(unsigned int irq) 164 { 165 return __irq_can_set_affinity(irq_to_desc(irq)); 166 } 167 168 /** 169 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 170 * @irq: Interrupt to check 171 * 172 * Like irq_can_set_affinity() above, but additionally checks for the 173 * AFFINITY_MANAGED flag. 174 */ 175 bool irq_can_set_affinity_usr(unsigned int irq) 176 { 177 struct irq_desc *desc = irq_to_desc(irq); 178 179 return __irq_can_set_affinity(desc) && 180 !irqd_affinity_is_managed(&desc->irq_data); 181 } 182 183 /** 184 * irq_set_thread_affinity - Notify irq threads to adjust affinity 185 * @desc: irq descriptor which has affinity changed 186 * 187 * We just set IRQTF_AFFINITY and delegate the affinity setting 188 * to the interrupt thread itself. We can not call 189 * set_cpus_allowed_ptr() here as we hold desc->lock and this 190 * code can be called from hard interrupt context. 191 */ 192 static void irq_set_thread_affinity(struct irq_desc *desc) 193 { 194 struct irqaction *action; 195 196 for_each_action_of_desc(desc, action) { 197 if (action->thread) { 198 set_bit(IRQTF_AFFINITY, &action->thread_flags); 199 wake_up_process(action->thread); 200 } 201 if (action->secondary && action->secondary->thread) { 202 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags); 203 wake_up_process(action->secondary->thread); 204 } 205 } 206 } 207 208 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 209 static void irq_validate_effective_affinity(struct irq_data *data) 210 { 211 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 212 struct irq_chip *chip = irq_data_get_irq_chip(data); 213 214 if (!cpumask_empty(m)) 215 return; 216 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 217 chip->name, data->irq); 218 } 219 #else 220 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 221 #endif 222 223 static DEFINE_PER_CPU(struct cpumask, __tmp_mask); 224 225 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 226 bool force) 227 { 228 struct cpumask *tmp_mask = this_cpu_ptr(&__tmp_mask); 229 struct irq_desc *desc = irq_data_to_desc(data); 230 struct irq_chip *chip = irq_data_get_irq_chip(data); 231 const struct cpumask *prog_mask; 232 int ret; 233 234 if (!chip || !chip->irq_set_affinity) 235 return -EINVAL; 236 237 /* 238 * If this is a managed interrupt and housekeeping is enabled on 239 * it check whether the requested affinity mask intersects with 240 * a housekeeping CPU. If so, then remove the isolated CPUs from 241 * the mask and just keep the housekeeping CPU(s). This prevents 242 * the affinity setter from routing the interrupt to an isolated 243 * CPU to avoid that I/O submitted from a housekeeping CPU causes 244 * interrupts on an isolated one. 245 * 246 * If the masks do not intersect or include online CPU(s) then 247 * keep the requested mask. The isolated target CPUs are only 248 * receiving interrupts when the I/O operation was submitted 249 * directly from them. 250 * 251 * If all housekeeping CPUs in the affinity mask are offline, the 252 * interrupt will be migrated by the CPU hotplug code once a 253 * housekeeping CPU which belongs to the affinity mask comes 254 * online. 255 */ 256 if (irqd_affinity_is_managed(data) && 257 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) { 258 const struct cpumask *hk_mask; 259 260 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ); 261 262 cpumask_and(tmp_mask, mask, hk_mask); 263 if (!cpumask_intersects(tmp_mask, cpu_online_mask)) 264 prog_mask = mask; 265 else 266 prog_mask = tmp_mask; 267 } else { 268 prog_mask = mask; 269 } 270 271 /* 272 * Make sure we only provide online CPUs to the irqchip, 273 * unless we are being asked to force the affinity (in which 274 * case we do as we are told). 275 */ 276 cpumask_and(tmp_mask, prog_mask, cpu_online_mask); 277 if (!force && !cpumask_empty(tmp_mask)) 278 ret = chip->irq_set_affinity(data, tmp_mask, force); 279 else if (force) 280 ret = chip->irq_set_affinity(data, mask, force); 281 else 282 ret = -EINVAL; 283 284 switch (ret) { 285 case IRQ_SET_MASK_OK: 286 case IRQ_SET_MASK_OK_DONE: 287 cpumask_copy(desc->irq_common_data.affinity, mask); 288 fallthrough; 289 case IRQ_SET_MASK_OK_NOCOPY: 290 irq_validate_effective_affinity(data); 291 irq_set_thread_affinity(desc); 292 ret = 0; 293 } 294 295 return ret; 296 } 297 298 #ifdef CONFIG_GENERIC_PENDING_IRQ 299 static inline int irq_set_affinity_pending(struct irq_data *data, 300 const struct cpumask *dest) 301 { 302 struct irq_desc *desc = irq_data_to_desc(data); 303 304 irqd_set_move_pending(data); 305 irq_copy_pending(desc, dest); 306 return 0; 307 } 308 #else 309 static inline int irq_set_affinity_pending(struct irq_data *data, 310 const struct cpumask *dest) 311 { 312 return -EBUSY; 313 } 314 #endif 315 316 static int irq_try_set_affinity(struct irq_data *data, 317 const struct cpumask *dest, bool force) 318 { 319 int ret = irq_do_set_affinity(data, dest, force); 320 321 /* 322 * In case that the underlying vector management is busy and the 323 * architecture supports the generic pending mechanism then utilize 324 * this to avoid returning an error to user space. 325 */ 326 if (ret == -EBUSY && !force) 327 ret = irq_set_affinity_pending(data, dest); 328 return ret; 329 } 330 331 static bool irq_set_affinity_deactivated(struct irq_data *data, 332 const struct cpumask *mask) 333 { 334 struct irq_desc *desc = irq_data_to_desc(data); 335 336 /* 337 * Handle irq chips which can handle affinity only in activated 338 * state correctly 339 * 340 * If the interrupt is not yet activated, just store the affinity 341 * mask and do not call the chip driver at all. On activation the 342 * driver has to make sure anyway that the interrupt is in a 343 * usable state so startup works. 344 */ 345 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 346 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 347 return false; 348 349 cpumask_copy(desc->irq_common_data.affinity, mask); 350 irq_data_update_effective_affinity(data, mask); 351 irqd_set(data, IRQD_AFFINITY_SET); 352 return true; 353 } 354 355 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 356 bool force) 357 { 358 struct irq_chip *chip = irq_data_get_irq_chip(data); 359 struct irq_desc *desc = irq_data_to_desc(data); 360 int ret = 0; 361 362 if (!chip || !chip->irq_set_affinity) 363 return -EINVAL; 364 365 if (irq_set_affinity_deactivated(data, mask)) 366 return 0; 367 368 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 369 ret = irq_try_set_affinity(data, mask, force); 370 } else { 371 irqd_set_move_pending(data); 372 irq_copy_pending(desc, mask); 373 } 374 375 if (desc->affinity_notify) { 376 kref_get(&desc->affinity_notify->kref); 377 if (!schedule_work(&desc->affinity_notify->work)) { 378 /* Work was already scheduled, drop our extra ref */ 379 kref_put(&desc->affinity_notify->kref, 380 desc->affinity_notify->release); 381 } 382 } 383 irqd_set(data, IRQD_AFFINITY_SET); 384 385 return ret; 386 } 387 388 /** 389 * irq_update_affinity_desc - Update affinity management for an interrupt 390 * @irq: The interrupt number to update 391 * @affinity: Pointer to the affinity descriptor 392 * 393 * This interface can be used to configure the affinity management of 394 * interrupts which have been allocated already. 395 * 396 * There are certain limitations on when it may be used - attempts to use it 397 * for when the kernel is configured for generic IRQ reservation mode (in 398 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 399 * managed/non-managed interrupt accounting. In addition, attempts to use it on 400 * an interrupt which is already started or which has already been configured 401 * as managed will also fail, as these mean invalid init state or double init. 402 */ 403 int irq_update_affinity_desc(unsigned int irq, 404 struct irq_affinity_desc *affinity) 405 { 406 struct irq_desc *desc; 407 unsigned long flags; 408 bool activated; 409 int ret = 0; 410 411 /* 412 * Supporting this with the reservation scheme used by x86 needs 413 * some more thought. Fail it for now. 414 */ 415 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 416 return -EOPNOTSUPP; 417 418 desc = irq_get_desc_buslock(irq, &flags, 0); 419 if (!desc) 420 return -EINVAL; 421 422 /* Requires the interrupt to be shut down */ 423 if (irqd_is_started(&desc->irq_data)) { 424 ret = -EBUSY; 425 goto out_unlock; 426 } 427 428 /* Interrupts which are already managed cannot be modified */ 429 if (irqd_affinity_is_managed(&desc->irq_data)) { 430 ret = -EBUSY; 431 goto out_unlock; 432 } 433 434 /* 435 * Deactivate the interrupt. That's required to undo 436 * anything an earlier activation has established. 437 */ 438 activated = irqd_is_activated(&desc->irq_data); 439 if (activated) 440 irq_domain_deactivate_irq(&desc->irq_data); 441 442 if (affinity->is_managed) { 443 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 444 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 445 } 446 447 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 448 449 /* Restore the activation state */ 450 if (activated) 451 irq_domain_activate_irq(&desc->irq_data, false); 452 453 out_unlock: 454 irq_put_desc_busunlock(desc, flags); 455 return ret; 456 } 457 458 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, 459 bool force) 460 { 461 struct irq_desc *desc = irq_to_desc(irq); 462 unsigned long flags; 463 int ret; 464 465 if (!desc) 466 return -EINVAL; 467 468 raw_spin_lock_irqsave(&desc->lock, flags); 469 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 470 raw_spin_unlock_irqrestore(&desc->lock, flags); 471 return ret; 472 } 473 474 /** 475 * irq_set_affinity - Set the irq affinity of a given irq 476 * @irq: Interrupt to set affinity 477 * @cpumask: cpumask 478 * 479 * Fails if cpumask does not contain an online CPU 480 */ 481 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) 482 { 483 return __irq_set_affinity(irq, cpumask, false); 484 } 485 EXPORT_SYMBOL_GPL(irq_set_affinity); 486 487 /** 488 * irq_force_affinity - Force the irq affinity of a given irq 489 * @irq: Interrupt to set affinity 490 * @cpumask: cpumask 491 * 492 * Same as irq_set_affinity, but without checking the mask against 493 * online cpus. 494 * 495 * Solely for low level cpu hotplug code, where we need to make per 496 * cpu interrupts affine before the cpu becomes online. 497 */ 498 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) 499 { 500 return __irq_set_affinity(irq, cpumask, true); 501 } 502 EXPORT_SYMBOL_GPL(irq_force_affinity); 503 504 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, 505 bool setaffinity) 506 { 507 unsigned long flags; 508 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 509 510 if (!desc) 511 return -EINVAL; 512 desc->affinity_hint = m; 513 irq_put_desc_unlock(desc, flags); 514 if (m && setaffinity) 515 __irq_set_affinity(irq, m, false); 516 return 0; 517 } 518 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint); 519 520 static void irq_affinity_notify(struct work_struct *work) 521 { 522 struct irq_affinity_notify *notify = 523 container_of(work, struct irq_affinity_notify, work); 524 struct irq_desc *desc = irq_to_desc(notify->irq); 525 cpumask_var_t cpumask; 526 unsigned long flags; 527 528 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 529 goto out; 530 531 raw_spin_lock_irqsave(&desc->lock, flags); 532 if (irq_move_pending(&desc->irq_data)) 533 irq_get_pending(cpumask, desc); 534 else 535 cpumask_copy(cpumask, desc->irq_common_data.affinity); 536 raw_spin_unlock_irqrestore(&desc->lock, flags); 537 538 notify->notify(notify, cpumask); 539 540 free_cpumask_var(cpumask); 541 out: 542 kref_put(¬ify->kref, notify->release); 543 } 544 545 /** 546 * irq_set_affinity_notifier - control notification of IRQ affinity changes 547 * @irq: Interrupt for which to enable/disable notification 548 * @notify: Context for notification, or %NULL to disable 549 * notification. Function pointers must be initialised; 550 * the other fields will be initialised by this function. 551 * 552 * Must be called in process context. Notification may only be enabled 553 * after the IRQ is allocated and must be disabled before the IRQ is 554 * freed using free_irq(). 555 */ 556 int 557 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 558 { 559 struct irq_desc *desc = irq_to_desc(irq); 560 struct irq_affinity_notify *old_notify; 561 unsigned long flags; 562 563 /* The release function is promised process context */ 564 might_sleep(); 565 566 if (!desc || irq_is_nmi(desc)) 567 return -EINVAL; 568 569 /* Complete initialisation of *notify */ 570 if (notify) { 571 notify->irq = irq; 572 kref_init(¬ify->kref); 573 INIT_WORK(¬ify->work, irq_affinity_notify); 574 } 575 576 raw_spin_lock_irqsave(&desc->lock, flags); 577 old_notify = desc->affinity_notify; 578 desc->affinity_notify = notify; 579 raw_spin_unlock_irqrestore(&desc->lock, flags); 580 581 if (old_notify) { 582 if (cancel_work_sync(&old_notify->work)) { 583 /* Pending work had a ref, put that one too */ 584 kref_put(&old_notify->kref, old_notify->release); 585 } 586 kref_put(&old_notify->kref, old_notify->release); 587 } 588 589 return 0; 590 } 591 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 592 593 #ifndef CONFIG_AUTO_IRQ_AFFINITY 594 /* 595 * Generic version of the affinity autoselector. 596 */ 597 int irq_setup_affinity(struct irq_desc *desc) 598 { 599 struct cpumask *set = irq_default_affinity; 600 int ret, node = irq_desc_get_node(desc); 601 static DEFINE_RAW_SPINLOCK(mask_lock); 602 static struct cpumask mask; 603 604 /* Excludes PER_CPU and NO_BALANCE interrupts */ 605 if (!__irq_can_set_affinity(desc)) 606 return 0; 607 608 raw_spin_lock(&mask_lock); 609 /* 610 * Preserve the managed affinity setting and a userspace affinity 611 * setup, but make sure that one of the targets is online. 612 */ 613 if (irqd_affinity_is_managed(&desc->irq_data) || 614 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 615 if (cpumask_intersects(desc->irq_common_data.affinity, 616 cpu_online_mask)) 617 set = desc->irq_common_data.affinity; 618 else 619 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 620 } 621 622 cpumask_and(&mask, cpu_online_mask, set); 623 if (cpumask_empty(&mask)) 624 cpumask_copy(&mask, cpu_online_mask); 625 626 if (node != NUMA_NO_NODE) { 627 const struct cpumask *nodemask = cpumask_of_node(node); 628 629 /* make sure at least one of the cpus in nodemask is online */ 630 if (cpumask_intersects(&mask, nodemask)) 631 cpumask_and(&mask, &mask, nodemask); 632 } 633 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 634 raw_spin_unlock(&mask_lock); 635 return ret; 636 } 637 #else 638 /* Wrapper for ALPHA specific affinity selector magic */ 639 int irq_setup_affinity(struct irq_desc *desc) 640 { 641 return irq_select_affinity(irq_desc_get_irq(desc)); 642 } 643 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 644 #endif /* CONFIG_SMP */ 645 646 647 /** 648 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 649 * @irq: interrupt number to set affinity 650 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 651 * specific data for percpu_devid interrupts 652 * 653 * This function uses the vCPU specific data to set the vCPU 654 * affinity for an irq. The vCPU specific data is passed from 655 * outside, such as KVM. One example code path is as below: 656 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 657 */ 658 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 659 { 660 unsigned long flags; 661 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 662 struct irq_data *data; 663 struct irq_chip *chip; 664 int ret = -ENOSYS; 665 666 if (!desc) 667 return -EINVAL; 668 669 data = irq_desc_get_irq_data(desc); 670 do { 671 chip = irq_data_get_irq_chip(data); 672 if (chip && chip->irq_set_vcpu_affinity) 673 break; 674 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 675 data = data->parent_data; 676 #else 677 data = NULL; 678 #endif 679 } while (data); 680 681 if (data) 682 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 683 irq_put_desc_unlock(desc, flags); 684 685 return ret; 686 } 687 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 688 689 void __disable_irq(struct irq_desc *desc) 690 { 691 if (!desc->depth++) 692 irq_disable(desc); 693 } 694 695 static int __disable_irq_nosync(unsigned int irq) 696 { 697 unsigned long flags; 698 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 699 700 if (!desc) 701 return -EINVAL; 702 __disable_irq(desc); 703 irq_put_desc_busunlock(desc, flags); 704 return 0; 705 } 706 707 /** 708 * disable_irq_nosync - disable an irq without waiting 709 * @irq: Interrupt to disable 710 * 711 * Disable the selected interrupt line. Disables and Enables are 712 * nested. 713 * Unlike disable_irq(), this function does not ensure existing 714 * instances of the IRQ handler have completed before returning. 715 * 716 * This function may be called from IRQ context. 717 */ 718 void disable_irq_nosync(unsigned int irq) 719 { 720 __disable_irq_nosync(irq); 721 } 722 EXPORT_SYMBOL(disable_irq_nosync); 723 724 /** 725 * disable_irq - disable an irq and wait for completion 726 * @irq: Interrupt to disable 727 * 728 * Disable the selected interrupt line. Enables and Disables are 729 * nested. 730 * This function waits for any pending IRQ handlers for this interrupt 731 * to complete before returning. If you use this function while 732 * holding a resource the IRQ handler may need you will deadlock. 733 * 734 * Can only be called from preemptible code as it might sleep when 735 * an interrupt thread is associated to @irq. 736 * 737 */ 738 void disable_irq(unsigned int irq) 739 { 740 might_sleep(); 741 if (!__disable_irq_nosync(irq)) 742 synchronize_irq(irq); 743 } 744 EXPORT_SYMBOL(disable_irq); 745 746 /** 747 * disable_hardirq - disables an irq and waits for hardirq completion 748 * @irq: Interrupt to disable 749 * 750 * Disable the selected interrupt line. Enables and Disables are 751 * nested. 752 * This function waits for any pending hard IRQ handlers for this 753 * interrupt to complete before returning. If you use this function while 754 * holding a resource the hard IRQ handler may need you will deadlock. 755 * 756 * When used to optimistically disable an interrupt from atomic context 757 * the return value must be checked. 758 * 759 * Returns: false if a threaded handler is active. 760 * 761 * This function may be called - with care - from IRQ context. 762 */ 763 bool disable_hardirq(unsigned int irq) 764 { 765 if (!__disable_irq_nosync(irq)) 766 return synchronize_hardirq(irq); 767 768 return false; 769 } 770 EXPORT_SYMBOL_GPL(disable_hardirq); 771 772 /** 773 * disable_nmi_nosync - disable an nmi without waiting 774 * @irq: Interrupt to disable 775 * 776 * Disable the selected interrupt line. Disables and enables are 777 * nested. 778 * The interrupt to disable must have been requested through request_nmi. 779 * Unlike disable_nmi(), this function does not ensure existing 780 * instances of the IRQ handler have completed before returning. 781 */ 782 void disable_nmi_nosync(unsigned int irq) 783 { 784 disable_irq_nosync(irq); 785 } 786 787 void __enable_irq(struct irq_desc *desc) 788 { 789 switch (desc->depth) { 790 case 0: 791 err_out: 792 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 793 irq_desc_get_irq(desc)); 794 break; 795 case 1: { 796 if (desc->istate & IRQS_SUSPENDED) 797 goto err_out; 798 /* Prevent probing on this irq: */ 799 irq_settings_set_noprobe(desc); 800 /* 801 * Call irq_startup() not irq_enable() here because the 802 * interrupt might be marked NOAUTOEN so irq_startup() 803 * needs to be invoked when it gets enabled the first time. 804 * This is also required when __enable_irq() is invoked for 805 * a managed and shutdown interrupt from the S3 resume 806 * path. 807 * 808 * If it was already started up, then irq_startup() will 809 * invoke irq_enable() under the hood. 810 */ 811 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 812 break; 813 } 814 default: 815 desc->depth--; 816 } 817 } 818 819 /** 820 * enable_irq - enable handling of an irq 821 * @irq: Interrupt to enable 822 * 823 * Undoes the effect of one call to disable_irq(). If this 824 * matches the last disable, processing of interrupts on this 825 * IRQ line is re-enabled. 826 * 827 * This function may be called from IRQ context only when 828 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 829 */ 830 void enable_irq(unsigned int irq) 831 { 832 unsigned long flags; 833 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 834 835 if (!desc) 836 return; 837 if (WARN(!desc->irq_data.chip, 838 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 839 goto out; 840 841 __enable_irq(desc); 842 out: 843 irq_put_desc_busunlock(desc, flags); 844 } 845 EXPORT_SYMBOL(enable_irq); 846 847 /** 848 * enable_nmi - enable handling of an nmi 849 * @irq: Interrupt to enable 850 * 851 * The interrupt to enable must have been requested through request_nmi. 852 * Undoes the effect of one call to disable_nmi(). If this 853 * matches the last disable, processing of interrupts on this 854 * IRQ line is re-enabled. 855 */ 856 void enable_nmi(unsigned int irq) 857 { 858 enable_irq(irq); 859 } 860 861 static int set_irq_wake_real(unsigned int irq, unsigned int on) 862 { 863 struct irq_desc *desc = irq_to_desc(irq); 864 int ret = -ENXIO; 865 866 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 867 return 0; 868 869 if (desc->irq_data.chip->irq_set_wake) 870 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 871 872 return ret; 873 } 874 875 /** 876 * irq_set_irq_wake - control irq power management wakeup 877 * @irq: interrupt to control 878 * @on: enable/disable power management wakeup 879 * 880 * Enable/disable power management wakeup mode, which is 881 * disabled by default. Enables and disables must match, 882 * just as they match for non-wakeup mode support. 883 * 884 * Wakeup mode lets this IRQ wake the system from sleep 885 * states like "suspend to RAM". 886 * 887 * Note: irq enable/disable state is completely orthogonal 888 * to the enable/disable state of irq wake. An irq can be 889 * disabled with disable_irq() and still wake the system as 890 * long as the irq has wake enabled. If this does not hold, 891 * then the underlying irq chip and the related driver need 892 * to be investigated. 893 */ 894 int irq_set_irq_wake(unsigned int irq, unsigned int on) 895 { 896 unsigned long flags; 897 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 898 int ret = 0; 899 900 if (!desc) 901 return -EINVAL; 902 903 /* Don't use NMIs as wake up interrupts please */ 904 if (irq_is_nmi(desc)) { 905 ret = -EINVAL; 906 goto out_unlock; 907 } 908 909 /* wakeup-capable irqs can be shared between drivers that 910 * don't need to have the same sleep mode behaviors. 911 */ 912 if (on) { 913 if (desc->wake_depth++ == 0) { 914 ret = set_irq_wake_real(irq, on); 915 if (ret) 916 desc->wake_depth = 0; 917 else 918 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 919 } 920 } else { 921 if (desc->wake_depth == 0) { 922 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 923 } else if (--desc->wake_depth == 0) { 924 ret = set_irq_wake_real(irq, on); 925 if (ret) 926 desc->wake_depth = 1; 927 else 928 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 929 } 930 } 931 932 out_unlock: 933 irq_put_desc_busunlock(desc, flags); 934 return ret; 935 } 936 EXPORT_SYMBOL(irq_set_irq_wake); 937 938 /* 939 * Internal function that tells the architecture code whether a 940 * particular irq has been exclusively allocated or is available 941 * for driver use. 942 */ 943 int can_request_irq(unsigned int irq, unsigned long irqflags) 944 { 945 unsigned long flags; 946 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 947 int canrequest = 0; 948 949 if (!desc) 950 return 0; 951 952 if (irq_settings_can_request(desc)) { 953 if (!desc->action || 954 irqflags & desc->action->flags & IRQF_SHARED) 955 canrequest = 1; 956 } 957 irq_put_desc_unlock(desc, flags); 958 return canrequest; 959 } 960 961 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 962 { 963 struct irq_chip *chip = desc->irq_data.chip; 964 int ret, unmask = 0; 965 966 if (!chip || !chip->irq_set_type) { 967 /* 968 * IRQF_TRIGGER_* but the PIC does not support multiple 969 * flow-types? 970 */ 971 pr_debug("No set_type function for IRQ %d (%s)\n", 972 irq_desc_get_irq(desc), 973 chip ? (chip->name ? : "unknown") : "unknown"); 974 return 0; 975 } 976 977 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 978 if (!irqd_irq_masked(&desc->irq_data)) 979 mask_irq(desc); 980 if (!irqd_irq_disabled(&desc->irq_data)) 981 unmask = 1; 982 } 983 984 /* Mask all flags except trigger mode */ 985 flags &= IRQ_TYPE_SENSE_MASK; 986 ret = chip->irq_set_type(&desc->irq_data, flags); 987 988 switch (ret) { 989 case IRQ_SET_MASK_OK: 990 case IRQ_SET_MASK_OK_DONE: 991 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 992 irqd_set(&desc->irq_data, flags); 993 fallthrough; 994 995 case IRQ_SET_MASK_OK_NOCOPY: 996 flags = irqd_get_trigger_type(&desc->irq_data); 997 irq_settings_set_trigger_mask(desc, flags); 998 irqd_clear(&desc->irq_data, IRQD_LEVEL); 999 irq_settings_clr_level(desc); 1000 if (flags & IRQ_TYPE_LEVEL_MASK) { 1001 irq_settings_set_level(desc); 1002 irqd_set(&desc->irq_data, IRQD_LEVEL); 1003 } 1004 1005 ret = 0; 1006 break; 1007 default: 1008 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 1009 flags, irq_desc_get_irq(desc), chip->irq_set_type); 1010 } 1011 if (unmask) 1012 unmask_irq(desc); 1013 return ret; 1014 } 1015 1016 #ifdef CONFIG_HARDIRQS_SW_RESEND 1017 int irq_set_parent(int irq, int parent_irq) 1018 { 1019 unsigned long flags; 1020 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 1021 1022 if (!desc) 1023 return -EINVAL; 1024 1025 desc->parent_irq = parent_irq; 1026 1027 irq_put_desc_unlock(desc, flags); 1028 return 0; 1029 } 1030 EXPORT_SYMBOL_GPL(irq_set_parent); 1031 #endif 1032 1033 /* 1034 * Default primary interrupt handler for threaded interrupts. Is 1035 * assigned as primary handler when request_threaded_irq is called 1036 * with handler == NULL. Useful for oneshot interrupts. 1037 */ 1038 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 1039 { 1040 return IRQ_WAKE_THREAD; 1041 } 1042 1043 /* 1044 * Primary handler for nested threaded interrupts. Should never be 1045 * called. 1046 */ 1047 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 1048 { 1049 WARN(1, "Primary handler called for nested irq %d\n", irq); 1050 return IRQ_NONE; 1051 } 1052 1053 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 1054 { 1055 WARN(1, "Secondary action handler called for irq %d\n", irq); 1056 return IRQ_NONE; 1057 } 1058 1059 #ifdef CONFIG_SMP 1060 /* 1061 * Check whether we need to change the affinity of the interrupt thread. 1062 */ 1063 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1064 { 1065 cpumask_var_t mask; 1066 bool valid = false; 1067 1068 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1069 return; 1070 1071 __set_current_state(TASK_RUNNING); 1072 1073 /* 1074 * In case we are out of memory we set IRQTF_AFFINITY again and 1075 * try again next time 1076 */ 1077 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1078 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1079 return; 1080 } 1081 1082 raw_spin_lock_irq(&desc->lock); 1083 /* 1084 * This code is triggered unconditionally. Check the affinity 1085 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1086 */ 1087 if (cpumask_available(desc->irq_common_data.affinity)) { 1088 const struct cpumask *m; 1089 1090 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1091 cpumask_copy(mask, m); 1092 valid = true; 1093 } 1094 raw_spin_unlock_irq(&desc->lock); 1095 1096 if (valid) 1097 set_cpus_allowed_ptr(current, mask); 1098 free_cpumask_var(mask); 1099 } 1100 #else 1101 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1102 #endif 1103 1104 static int irq_wait_for_interrupt(struct irq_desc *desc, 1105 struct irqaction *action) 1106 { 1107 for (;;) { 1108 set_current_state(TASK_INTERRUPTIBLE); 1109 irq_thread_check_affinity(desc, action); 1110 1111 if (kthread_should_stop()) { 1112 /* may need to run one last time */ 1113 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1114 &action->thread_flags)) { 1115 __set_current_state(TASK_RUNNING); 1116 return 0; 1117 } 1118 __set_current_state(TASK_RUNNING); 1119 return -1; 1120 } 1121 1122 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1123 &action->thread_flags)) { 1124 __set_current_state(TASK_RUNNING); 1125 return 0; 1126 } 1127 schedule(); 1128 } 1129 } 1130 1131 /* 1132 * Oneshot interrupts keep the irq line masked until the threaded 1133 * handler finished. unmask if the interrupt has not been disabled and 1134 * is marked MASKED. 1135 */ 1136 static void irq_finalize_oneshot(struct irq_desc *desc, 1137 struct irqaction *action) 1138 { 1139 if (!(desc->istate & IRQS_ONESHOT) || 1140 action->handler == irq_forced_secondary_handler) 1141 return; 1142 again: 1143 chip_bus_lock(desc); 1144 raw_spin_lock_irq(&desc->lock); 1145 1146 /* 1147 * Implausible though it may be we need to protect us against 1148 * the following scenario: 1149 * 1150 * The thread is faster done than the hard interrupt handler 1151 * on the other CPU. If we unmask the irq line then the 1152 * interrupt can come in again and masks the line, leaves due 1153 * to IRQS_INPROGRESS and the irq line is masked forever. 1154 * 1155 * This also serializes the state of shared oneshot handlers 1156 * versus "desc->threads_oneshot |= action->thread_mask;" in 1157 * irq_wake_thread(). See the comment there which explains the 1158 * serialization. 1159 */ 1160 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1161 raw_spin_unlock_irq(&desc->lock); 1162 chip_bus_sync_unlock(desc); 1163 cpu_relax(); 1164 goto again; 1165 } 1166 1167 /* 1168 * Now check again, whether the thread should run. Otherwise 1169 * we would clear the threads_oneshot bit of this thread which 1170 * was just set. 1171 */ 1172 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1173 goto out_unlock; 1174 1175 desc->threads_oneshot &= ~action->thread_mask; 1176 1177 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1178 irqd_irq_masked(&desc->irq_data)) 1179 unmask_threaded_irq(desc); 1180 1181 out_unlock: 1182 raw_spin_unlock_irq(&desc->lock); 1183 chip_bus_sync_unlock(desc); 1184 } 1185 1186 /* 1187 * Interrupts explicitly requested as threaded interrupts want to be 1188 * preemptible - many of them need to sleep and wait for slow busses to 1189 * complete. 1190 */ 1191 static irqreturn_t irq_thread_fn(struct irq_desc *desc, struct irqaction *action) 1192 { 1193 irqreturn_t ret = action->thread_fn(action->irq, action->dev_id); 1194 1195 if (ret == IRQ_HANDLED) 1196 atomic_inc(&desc->threads_handled); 1197 1198 irq_finalize_oneshot(desc, action); 1199 return ret; 1200 } 1201 1202 /* 1203 * Interrupts which are not explicitly requested as threaded 1204 * interrupts rely on the implicit bh/preempt disable of the hard irq 1205 * context. So we need to disable bh here to avoid deadlocks and other 1206 * side effects. 1207 */ 1208 static irqreturn_t irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1209 { 1210 irqreturn_t ret; 1211 1212 local_bh_disable(); 1213 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1214 local_irq_disable(); 1215 ret = irq_thread_fn(desc, action); 1216 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1217 local_irq_enable(); 1218 local_bh_enable(); 1219 return ret; 1220 } 1221 1222 void wake_threads_waitq(struct irq_desc *desc) 1223 { 1224 if (atomic_dec_and_test(&desc->threads_active)) 1225 wake_up(&desc->wait_for_threads); 1226 } 1227 1228 static void irq_thread_dtor(struct callback_head *unused) 1229 { 1230 struct task_struct *tsk = current; 1231 struct irq_desc *desc; 1232 struct irqaction *action; 1233 1234 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1235 return; 1236 1237 action = kthread_data(tsk); 1238 1239 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1240 tsk->comm, tsk->pid, action->irq); 1241 1242 1243 desc = irq_to_desc(action->irq); 1244 /* 1245 * If IRQTF_RUNTHREAD is set, we need to decrement 1246 * desc->threads_active and wake possible waiters. 1247 */ 1248 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1249 wake_threads_waitq(desc); 1250 1251 /* Prevent a stale desc->threads_oneshot */ 1252 irq_finalize_oneshot(desc, action); 1253 } 1254 1255 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1256 { 1257 struct irqaction *secondary = action->secondary; 1258 1259 if (WARN_ON_ONCE(!secondary)) 1260 return; 1261 1262 raw_spin_lock_irq(&desc->lock); 1263 __irq_wake_thread(desc, secondary); 1264 raw_spin_unlock_irq(&desc->lock); 1265 } 1266 1267 /* 1268 * Internal function to notify that a interrupt thread is ready. 1269 */ 1270 static void irq_thread_set_ready(struct irq_desc *desc, 1271 struct irqaction *action) 1272 { 1273 set_bit(IRQTF_READY, &action->thread_flags); 1274 wake_up(&desc->wait_for_threads); 1275 } 1276 1277 /* 1278 * Internal function to wake up a interrupt thread and wait until it is 1279 * ready. 1280 */ 1281 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc, 1282 struct irqaction *action) 1283 { 1284 if (!action || !action->thread) 1285 return; 1286 1287 wake_up_process(action->thread); 1288 wait_event(desc->wait_for_threads, 1289 test_bit(IRQTF_READY, &action->thread_flags)); 1290 } 1291 1292 /* 1293 * Interrupt handler thread 1294 */ 1295 static int irq_thread(void *data) 1296 { 1297 struct callback_head on_exit_work; 1298 struct irqaction *action = data; 1299 struct irq_desc *desc = irq_to_desc(action->irq); 1300 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1301 struct irqaction *action); 1302 1303 irq_thread_set_ready(desc, action); 1304 1305 sched_set_fifo(current); 1306 1307 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD, 1308 &action->thread_flags)) 1309 handler_fn = irq_forced_thread_fn; 1310 else 1311 handler_fn = irq_thread_fn; 1312 1313 init_task_work(&on_exit_work, irq_thread_dtor); 1314 task_work_add(current, &on_exit_work, TWA_NONE); 1315 1316 while (!irq_wait_for_interrupt(desc, action)) { 1317 irqreturn_t action_ret; 1318 1319 action_ret = handler_fn(desc, action); 1320 if (action_ret == IRQ_WAKE_THREAD) 1321 irq_wake_secondary(desc, action); 1322 1323 wake_threads_waitq(desc); 1324 } 1325 1326 /* 1327 * This is the regular exit path. __free_irq() is stopping the 1328 * thread via kthread_stop() after calling 1329 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1330 * oneshot mask bit can be set. 1331 */ 1332 task_work_cancel_func(current, irq_thread_dtor); 1333 return 0; 1334 } 1335 1336 /** 1337 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1338 * @irq: Interrupt line 1339 * @dev_id: Device identity for which the thread should be woken 1340 * 1341 */ 1342 void irq_wake_thread(unsigned int irq, void *dev_id) 1343 { 1344 struct irq_desc *desc = irq_to_desc(irq); 1345 struct irqaction *action; 1346 unsigned long flags; 1347 1348 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1349 return; 1350 1351 raw_spin_lock_irqsave(&desc->lock, flags); 1352 for_each_action_of_desc(desc, action) { 1353 if (action->dev_id == dev_id) { 1354 if (action->thread) 1355 __irq_wake_thread(desc, action); 1356 break; 1357 } 1358 } 1359 raw_spin_unlock_irqrestore(&desc->lock, flags); 1360 } 1361 EXPORT_SYMBOL_GPL(irq_wake_thread); 1362 1363 static int irq_setup_forced_threading(struct irqaction *new) 1364 { 1365 if (!force_irqthreads()) 1366 return 0; 1367 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1368 return 0; 1369 1370 /* 1371 * No further action required for interrupts which are requested as 1372 * threaded interrupts already 1373 */ 1374 if (new->handler == irq_default_primary_handler) 1375 return 0; 1376 1377 new->flags |= IRQF_ONESHOT; 1378 1379 /* 1380 * Handle the case where we have a real primary handler and a 1381 * thread handler. We force thread them as well by creating a 1382 * secondary action. 1383 */ 1384 if (new->handler && new->thread_fn) { 1385 /* Allocate the secondary action */ 1386 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1387 if (!new->secondary) 1388 return -ENOMEM; 1389 new->secondary->handler = irq_forced_secondary_handler; 1390 new->secondary->thread_fn = new->thread_fn; 1391 new->secondary->dev_id = new->dev_id; 1392 new->secondary->irq = new->irq; 1393 new->secondary->name = new->name; 1394 } 1395 /* Deal with the primary handler */ 1396 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1397 new->thread_fn = new->handler; 1398 new->handler = irq_default_primary_handler; 1399 return 0; 1400 } 1401 1402 static int irq_request_resources(struct irq_desc *desc) 1403 { 1404 struct irq_data *d = &desc->irq_data; 1405 struct irq_chip *c = d->chip; 1406 1407 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1408 } 1409 1410 static void irq_release_resources(struct irq_desc *desc) 1411 { 1412 struct irq_data *d = &desc->irq_data; 1413 struct irq_chip *c = d->chip; 1414 1415 if (c->irq_release_resources) 1416 c->irq_release_resources(d); 1417 } 1418 1419 static bool irq_supports_nmi(struct irq_desc *desc) 1420 { 1421 struct irq_data *d = irq_desc_get_irq_data(desc); 1422 1423 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1424 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1425 if (d->parent_data) 1426 return false; 1427 #endif 1428 /* Don't support NMIs for chips behind a slow bus */ 1429 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1430 return false; 1431 1432 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1433 } 1434 1435 static int irq_nmi_setup(struct irq_desc *desc) 1436 { 1437 struct irq_data *d = irq_desc_get_irq_data(desc); 1438 struct irq_chip *c = d->chip; 1439 1440 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1441 } 1442 1443 static void irq_nmi_teardown(struct irq_desc *desc) 1444 { 1445 struct irq_data *d = irq_desc_get_irq_data(desc); 1446 struct irq_chip *c = d->chip; 1447 1448 if (c->irq_nmi_teardown) 1449 c->irq_nmi_teardown(d); 1450 } 1451 1452 static int 1453 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1454 { 1455 struct task_struct *t; 1456 1457 if (!secondary) { 1458 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1459 new->name); 1460 } else { 1461 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1462 new->name); 1463 } 1464 1465 if (IS_ERR(t)) 1466 return PTR_ERR(t); 1467 1468 /* 1469 * We keep the reference to the task struct even if 1470 * the thread dies to avoid that the interrupt code 1471 * references an already freed task_struct. 1472 */ 1473 new->thread = get_task_struct(t); 1474 /* 1475 * Tell the thread to set its affinity. This is 1476 * important for shared interrupt handlers as we do 1477 * not invoke setup_affinity() for the secondary 1478 * handlers as everything is already set up. Even for 1479 * interrupts marked with IRQF_NO_BALANCE this is 1480 * correct as we want the thread to move to the cpu(s) 1481 * on which the requesting code placed the interrupt. 1482 */ 1483 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1484 return 0; 1485 } 1486 1487 /* 1488 * Internal function to register an irqaction - typically used to 1489 * allocate special interrupts that are part of the architecture. 1490 * 1491 * Locking rules: 1492 * 1493 * desc->request_mutex Provides serialization against a concurrent free_irq() 1494 * chip_bus_lock Provides serialization for slow bus operations 1495 * desc->lock Provides serialization against hard interrupts 1496 * 1497 * chip_bus_lock and desc->lock are sufficient for all other management and 1498 * interrupt related functions. desc->request_mutex solely serializes 1499 * request/free_irq(). 1500 */ 1501 static int 1502 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1503 { 1504 struct irqaction *old, **old_ptr; 1505 unsigned long flags, thread_mask = 0; 1506 int ret, nested, shared = 0; 1507 1508 if (!desc) 1509 return -EINVAL; 1510 1511 if (desc->irq_data.chip == &no_irq_chip) 1512 return -ENOSYS; 1513 if (!try_module_get(desc->owner)) 1514 return -ENODEV; 1515 1516 new->irq = irq; 1517 1518 /* 1519 * If the trigger type is not specified by the caller, 1520 * then use the default for this interrupt. 1521 */ 1522 if (!(new->flags & IRQF_TRIGGER_MASK)) 1523 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1524 1525 /* 1526 * Check whether the interrupt nests into another interrupt 1527 * thread. 1528 */ 1529 nested = irq_settings_is_nested_thread(desc); 1530 if (nested) { 1531 if (!new->thread_fn) { 1532 ret = -EINVAL; 1533 goto out_mput; 1534 } 1535 /* 1536 * Replace the primary handler which was provided from 1537 * the driver for non nested interrupt handling by the 1538 * dummy function which warns when called. 1539 */ 1540 new->handler = irq_nested_primary_handler; 1541 } else { 1542 if (irq_settings_can_thread(desc)) { 1543 ret = irq_setup_forced_threading(new); 1544 if (ret) 1545 goto out_mput; 1546 } 1547 } 1548 1549 /* 1550 * Create a handler thread when a thread function is supplied 1551 * and the interrupt does not nest into another interrupt 1552 * thread. 1553 */ 1554 if (new->thread_fn && !nested) { 1555 ret = setup_irq_thread(new, irq, false); 1556 if (ret) 1557 goto out_mput; 1558 if (new->secondary) { 1559 ret = setup_irq_thread(new->secondary, irq, true); 1560 if (ret) 1561 goto out_thread; 1562 } 1563 } 1564 1565 /* 1566 * Drivers are often written to work w/o knowledge about the 1567 * underlying irq chip implementation, so a request for a 1568 * threaded irq without a primary hard irq context handler 1569 * requires the ONESHOT flag to be set. Some irq chips like 1570 * MSI based interrupts are per se one shot safe. Check the 1571 * chip flags, so we can avoid the unmask dance at the end of 1572 * the threaded handler for those. 1573 */ 1574 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1575 new->flags &= ~IRQF_ONESHOT; 1576 1577 /* 1578 * Protects against a concurrent __free_irq() call which might wait 1579 * for synchronize_hardirq() to complete without holding the optional 1580 * chip bus lock and desc->lock. Also protects against handing out 1581 * a recycled oneshot thread_mask bit while it's still in use by 1582 * its previous owner. 1583 */ 1584 mutex_lock(&desc->request_mutex); 1585 1586 /* 1587 * Acquire bus lock as the irq_request_resources() callback below 1588 * might rely on the serialization or the magic power management 1589 * functions which are abusing the irq_bus_lock() callback, 1590 */ 1591 chip_bus_lock(desc); 1592 1593 /* First installed action requests resources. */ 1594 if (!desc->action) { 1595 ret = irq_request_resources(desc); 1596 if (ret) { 1597 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1598 new->name, irq, desc->irq_data.chip->name); 1599 goto out_bus_unlock; 1600 } 1601 } 1602 1603 /* 1604 * The following block of code has to be executed atomically 1605 * protected against a concurrent interrupt and any of the other 1606 * management calls which are not serialized via 1607 * desc->request_mutex or the optional bus lock. 1608 */ 1609 raw_spin_lock_irqsave(&desc->lock, flags); 1610 old_ptr = &desc->action; 1611 old = *old_ptr; 1612 if (old) { 1613 /* 1614 * Can't share interrupts unless both agree to and are 1615 * the same type (level, edge, polarity). So both flag 1616 * fields must have IRQF_SHARED set and the bits which 1617 * set the trigger type must match. Also all must 1618 * agree on ONESHOT. 1619 * Interrupt lines used for NMIs cannot be shared. 1620 */ 1621 unsigned int oldtype; 1622 1623 if (irq_is_nmi(desc)) { 1624 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1625 new->name, irq, desc->irq_data.chip->name); 1626 ret = -EINVAL; 1627 goto out_unlock; 1628 } 1629 1630 /* 1631 * If nobody did set the configuration before, inherit 1632 * the one provided by the requester. 1633 */ 1634 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1635 oldtype = irqd_get_trigger_type(&desc->irq_data); 1636 } else { 1637 oldtype = new->flags & IRQF_TRIGGER_MASK; 1638 irqd_set_trigger_type(&desc->irq_data, oldtype); 1639 } 1640 1641 if (!((old->flags & new->flags) & IRQF_SHARED) || 1642 (oldtype != (new->flags & IRQF_TRIGGER_MASK))) 1643 goto mismatch; 1644 1645 if ((old->flags & IRQF_ONESHOT) && 1646 (new->flags & IRQF_COND_ONESHOT)) 1647 new->flags |= IRQF_ONESHOT; 1648 else if ((old->flags ^ new->flags) & IRQF_ONESHOT) 1649 goto mismatch; 1650 1651 /* All handlers must agree on per-cpuness */ 1652 if ((old->flags & IRQF_PERCPU) != 1653 (new->flags & IRQF_PERCPU)) 1654 goto mismatch; 1655 1656 /* add new interrupt at end of irq queue */ 1657 do { 1658 /* 1659 * Or all existing action->thread_mask bits, 1660 * so we can find the next zero bit for this 1661 * new action. 1662 */ 1663 thread_mask |= old->thread_mask; 1664 old_ptr = &old->next; 1665 old = *old_ptr; 1666 } while (old); 1667 shared = 1; 1668 } 1669 1670 /* 1671 * Setup the thread mask for this irqaction for ONESHOT. For 1672 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1673 * conditional in irq_wake_thread(). 1674 */ 1675 if (new->flags & IRQF_ONESHOT) { 1676 /* 1677 * Unlikely to have 32 resp 64 irqs sharing one line, 1678 * but who knows. 1679 */ 1680 if (thread_mask == ~0UL) { 1681 ret = -EBUSY; 1682 goto out_unlock; 1683 } 1684 /* 1685 * The thread_mask for the action is or'ed to 1686 * desc->thread_active to indicate that the 1687 * IRQF_ONESHOT thread handler has been woken, but not 1688 * yet finished. The bit is cleared when a thread 1689 * completes. When all threads of a shared interrupt 1690 * line have completed desc->threads_active becomes 1691 * zero and the interrupt line is unmasked. See 1692 * handle.c:irq_wake_thread() for further information. 1693 * 1694 * If no thread is woken by primary (hard irq context) 1695 * interrupt handlers, then desc->threads_active is 1696 * also checked for zero to unmask the irq line in the 1697 * affected hard irq flow handlers 1698 * (handle_[fasteoi|level]_irq). 1699 * 1700 * The new action gets the first zero bit of 1701 * thread_mask assigned. See the loop above which or's 1702 * all existing action->thread_mask bits. 1703 */ 1704 new->thread_mask = 1UL << ffz(thread_mask); 1705 1706 } else if (new->handler == irq_default_primary_handler && 1707 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1708 /* 1709 * The interrupt was requested with handler = NULL, so 1710 * we use the default primary handler for it. But it 1711 * does not have the oneshot flag set. In combination 1712 * with level interrupts this is deadly, because the 1713 * default primary handler just wakes the thread, then 1714 * the irq lines is reenabled, but the device still 1715 * has the level irq asserted. Rinse and repeat.... 1716 * 1717 * While this works for edge type interrupts, we play 1718 * it safe and reject unconditionally because we can't 1719 * say for sure which type this interrupt really 1720 * has. The type flags are unreliable as the 1721 * underlying chip implementation can override them. 1722 */ 1723 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1724 new->name, irq); 1725 ret = -EINVAL; 1726 goto out_unlock; 1727 } 1728 1729 if (!shared) { 1730 /* Setup the type (level, edge polarity) if configured: */ 1731 if (new->flags & IRQF_TRIGGER_MASK) { 1732 ret = __irq_set_trigger(desc, 1733 new->flags & IRQF_TRIGGER_MASK); 1734 1735 if (ret) 1736 goto out_unlock; 1737 } 1738 1739 /* 1740 * Activate the interrupt. That activation must happen 1741 * independently of IRQ_NOAUTOEN. request_irq() can fail 1742 * and the callers are supposed to handle 1743 * that. enable_irq() of an interrupt requested with 1744 * IRQ_NOAUTOEN is not supposed to fail. The activation 1745 * keeps it in shutdown mode, it merily associates 1746 * resources if necessary and if that's not possible it 1747 * fails. Interrupts which are in managed shutdown mode 1748 * will simply ignore that activation request. 1749 */ 1750 ret = irq_activate(desc); 1751 if (ret) 1752 goto out_unlock; 1753 1754 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1755 IRQS_ONESHOT | IRQS_WAITING); 1756 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1757 1758 if (new->flags & IRQF_PERCPU) { 1759 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1760 irq_settings_set_per_cpu(desc); 1761 if (new->flags & IRQF_NO_DEBUG) 1762 irq_settings_set_no_debug(desc); 1763 } 1764 1765 if (noirqdebug) 1766 irq_settings_set_no_debug(desc); 1767 1768 if (new->flags & IRQF_ONESHOT) 1769 desc->istate |= IRQS_ONESHOT; 1770 1771 /* Exclude IRQ from balancing if requested */ 1772 if (new->flags & IRQF_NOBALANCING) { 1773 irq_settings_set_no_balancing(desc); 1774 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1775 } 1776 1777 if (!(new->flags & IRQF_NO_AUTOEN) && 1778 irq_settings_can_autoenable(desc)) { 1779 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1780 } else { 1781 /* 1782 * Shared interrupts do not go well with disabling 1783 * auto enable. The sharing interrupt might request 1784 * it while it's still disabled and then wait for 1785 * interrupts forever. 1786 */ 1787 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1788 /* Undo nested disables: */ 1789 desc->depth = 1; 1790 } 1791 1792 } else if (new->flags & IRQF_TRIGGER_MASK) { 1793 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1794 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1795 1796 if (nmsk != omsk) 1797 /* hope the handler works with current trigger mode */ 1798 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1799 irq, omsk, nmsk); 1800 } 1801 1802 *old_ptr = new; 1803 1804 irq_pm_install_action(desc, new); 1805 1806 /* Reset broken irq detection when installing new handler */ 1807 desc->irq_count = 0; 1808 desc->irqs_unhandled = 0; 1809 1810 /* 1811 * Check whether we disabled the irq via the spurious handler 1812 * before. Reenable it and give it another chance. 1813 */ 1814 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1815 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1816 __enable_irq(desc); 1817 } 1818 1819 raw_spin_unlock_irqrestore(&desc->lock, flags); 1820 chip_bus_sync_unlock(desc); 1821 mutex_unlock(&desc->request_mutex); 1822 1823 irq_setup_timings(desc, new); 1824 1825 wake_up_and_wait_for_irq_thread_ready(desc, new); 1826 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary); 1827 1828 register_irq_proc(irq, desc); 1829 new->dir = NULL; 1830 register_handler_proc(irq, new); 1831 return 0; 1832 1833 mismatch: 1834 if (!(new->flags & IRQF_PROBE_SHARED)) { 1835 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1836 irq, new->flags, new->name, old->flags, old->name); 1837 #ifdef CONFIG_DEBUG_SHIRQ 1838 dump_stack(); 1839 #endif 1840 } 1841 ret = -EBUSY; 1842 1843 out_unlock: 1844 raw_spin_unlock_irqrestore(&desc->lock, flags); 1845 1846 if (!desc->action) 1847 irq_release_resources(desc); 1848 out_bus_unlock: 1849 chip_bus_sync_unlock(desc); 1850 mutex_unlock(&desc->request_mutex); 1851 1852 out_thread: 1853 if (new->thread) { 1854 struct task_struct *t = new->thread; 1855 1856 new->thread = NULL; 1857 kthread_stop_put(t); 1858 } 1859 if (new->secondary && new->secondary->thread) { 1860 struct task_struct *t = new->secondary->thread; 1861 1862 new->secondary->thread = NULL; 1863 kthread_stop_put(t); 1864 } 1865 out_mput: 1866 module_put(desc->owner); 1867 return ret; 1868 } 1869 1870 /* 1871 * Internal function to unregister an irqaction - used to free 1872 * regular and special interrupts that are part of the architecture. 1873 */ 1874 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1875 { 1876 unsigned irq = desc->irq_data.irq; 1877 struct irqaction *action, **action_ptr; 1878 unsigned long flags; 1879 1880 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1881 1882 mutex_lock(&desc->request_mutex); 1883 chip_bus_lock(desc); 1884 raw_spin_lock_irqsave(&desc->lock, flags); 1885 1886 /* 1887 * There can be multiple actions per IRQ descriptor, find the right 1888 * one based on the dev_id: 1889 */ 1890 action_ptr = &desc->action; 1891 for (;;) { 1892 action = *action_ptr; 1893 1894 if (!action) { 1895 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1896 raw_spin_unlock_irqrestore(&desc->lock, flags); 1897 chip_bus_sync_unlock(desc); 1898 mutex_unlock(&desc->request_mutex); 1899 return NULL; 1900 } 1901 1902 if (action->dev_id == dev_id) 1903 break; 1904 action_ptr = &action->next; 1905 } 1906 1907 /* Found it - now remove it from the list of entries: */ 1908 *action_ptr = action->next; 1909 1910 irq_pm_remove_action(desc, action); 1911 1912 /* If this was the last handler, shut down the IRQ line: */ 1913 if (!desc->action) { 1914 irq_settings_clr_disable_unlazy(desc); 1915 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1916 irq_shutdown(desc); 1917 } 1918 1919 #ifdef CONFIG_SMP 1920 /* make sure affinity_hint is cleaned up */ 1921 if (WARN_ON_ONCE(desc->affinity_hint)) 1922 desc->affinity_hint = NULL; 1923 #endif 1924 1925 raw_spin_unlock_irqrestore(&desc->lock, flags); 1926 /* 1927 * Drop bus_lock here so the changes which were done in the chip 1928 * callbacks above are synced out to the irq chips which hang 1929 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1930 * 1931 * Aside of that the bus_lock can also be taken from the threaded 1932 * handler in irq_finalize_oneshot() which results in a deadlock 1933 * because kthread_stop() would wait forever for the thread to 1934 * complete, which is blocked on the bus lock. 1935 * 1936 * The still held desc->request_mutex() protects against a 1937 * concurrent request_irq() of this irq so the release of resources 1938 * and timing data is properly serialized. 1939 */ 1940 chip_bus_sync_unlock(desc); 1941 1942 unregister_handler_proc(irq, action); 1943 1944 /* 1945 * Make sure it's not being used on another CPU and if the chip 1946 * supports it also make sure that there is no (not yet serviced) 1947 * interrupt in flight at the hardware level. 1948 */ 1949 __synchronize_irq(desc); 1950 1951 #ifdef CONFIG_DEBUG_SHIRQ 1952 /* 1953 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1954 * event to happen even now it's being freed, so let's make sure that 1955 * is so by doing an extra call to the handler .... 1956 * 1957 * ( We do this after actually deregistering it, to make sure that a 1958 * 'real' IRQ doesn't run in parallel with our fake. ) 1959 */ 1960 if (action->flags & IRQF_SHARED) { 1961 local_irq_save(flags); 1962 action->handler(irq, dev_id); 1963 local_irq_restore(flags); 1964 } 1965 #endif 1966 1967 /* 1968 * The action has already been removed above, but the thread writes 1969 * its oneshot mask bit when it completes. Though request_mutex is 1970 * held across this which prevents __setup_irq() from handing out 1971 * the same bit to a newly requested action. 1972 */ 1973 if (action->thread) { 1974 kthread_stop_put(action->thread); 1975 if (action->secondary && action->secondary->thread) 1976 kthread_stop_put(action->secondary->thread); 1977 } 1978 1979 /* Last action releases resources */ 1980 if (!desc->action) { 1981 /* 1982 * Reacquire bus lock as irq_release_resources() might 1983 * require it to deallocate resources over the slow bus. 1984 */ 1985 chip_bus_lock(desc); 1986 /* 1987 * There is no interrupt on the fly anymore. Deactivate it 1988 * completely. 1989 */ 1990 raw_spin_lock_irqsave(&desc->lock, flags); 1991 irq_domain_deactivate_irq(&desc->irq_data); 1992 raw_spin_unlock_irqrestore(&desc->lock, flags); 1993 1994 irq_release_resources(desc); 1995 chip_bus_sync_unlock(desc); 1996 irq_remove_timings(desc); 1997 } 1998 1999 mutex_unlock(&desc->request_mutex); 2000 2001 irq_chip_pm_put(&desc->irq_data); 2002 module_put(desc->owner); 2003 kfree(action->secondary); 2004 return action; 2005 } 2006 2007 /** 2008 * free_irq - free an interrupt allocated with request_irq 2009 * @irq: Interrupt line to free 2010 * @dev_id: Device identity to free 2011 * 2012 * Remove an interrupt handler. The handler is removed and if the 2013 * interrupt line is no longer in use by any driver it is disabled. 2014 * On a shared IRQ the caller must ensure the interrupt is disabled 2015 * on the card it drives before calling this function. The function 2016 * does not return until any executing interrupts for this IRQ 2017 * have completed. 2018 * 2019 * This function must not be called from interrupt context. 2020 * 2021 * Returns the devname argument passed to request_irq. 2022 */ 2023 const void *free_irq(unsigned int irq, void *dev_id) 2024 { 2025 struct irq_desc *desc = irq_to_desc(irq); 2026 struct irqaction *action; 2027 const char *devname; 2028 2029 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2030 return NULL; 2031 2032 #ifdef CONFIG_SMP 2033 if (WARN_ON(desc->affinity_notify)) 2034 desc->affinity_notify = NULL; 2035 #endif 2036 2037 action = __free_irq(desc, dev_id); 2038 2039 if (!action) 2040 return NULL; 2041 2042 devname = action->name; 2043 kfree(action); 2044 return devname; 2045 } 2046 EXPORT_SYMBOL(free_irq); 2047 2048 /* This function must be called with desc->lock held */ 2049 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 2050 { 2051 const char *devname = NULL; 2052 2053 desc->istate &= ~IRQS_NMI; 2054 2055 if (!WARN_ON(desc->action == NULL)) { 2056 irq_pm_remove_action(desc, desc->action); 2057 devname = desc->action->name; 2058 unregister_handler_proc(irq, desc->action); 2059 2060 kfree(desc->action); 2061 desc->action = NULL; 2062 } 2063 2064 irq_settings_clr_disable_unlazy(desc); 2065 irq_shutdown_and_deactivate(desc); 2066 2067 irq_release_resources(desc); 2068 2069 irq_chip_pm_put(&desc->irq_data); 2070 module_put(desc->owner); 2071 2072 return devname; 2073 } 2074 2075 const void *free_nmi(unsigned int irq, void *dev_id) 2076 { 2077 struct irq_desc *desc = irq_to_desc(irq); 2078 unsigned long flags; 2079 const void *devname; 2080 2081 if (!desc || WARN_ON(!irq_is_nmi(desc))) 2082 return NULL; 2083 2084 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2085 return NULL; 2086 2087 /* NMI still enabled */ 2088 if (WARN_ON(desc->depth == 0)) 2089 disable_nmi_nosync(irq); 2090 2091 raw_spin_lock_irqsave(&desc->lock, flags); 2092 2093 irq_nmi_teardown(desc); 2094 devname = __cleanup_nmi(irq, desc); 2095 2096 raw_spin_unlock_irqrestore(&desc->lock, flags); 2097 2098 return devname; 2099 } 2100 2101 /** 2102 * request_threaded_irq - allocate an interrupt line 2103 * @irq: Interrupt line to allocate 2104 * @handler: Function to be called when the IRQ occurs. 2105 * Primary handler for threaded interrupts. 2106 * If handler is NULL and thread_fn != NULL 2107 * the default primary handler is installed. 2108 * @thread_fn: Function called from the irq handler thread 2109 * If NULL, no irq thread is created 2110 * @irqflags: Interrupt type flags 2111 * @devname: An ascii name for the claiming device 2112 * @dev_id: A cookie passed back to the handler function 2113 * 2114 * This call allocates interrupt resources and enables the 2115 * interrupt line and IRQ handling. From the point this 2116 * call is made your handler function may be invoked. Since 2117 * your handler function must clear any interrupt the board 2118 * raises, you must take care both to initialise your hardware 2119 * and to set up the interrupt handler in the right order. 2120 * 2121 * If you want to set up a threaded irq handler for your device 2122 * then you need to supply @handler and @thread_fn. @handler is 2123 * still called in hard interrupt context and has to check 2124 * whether the interrupt originates from the device. If yes it 2125 * needs to disable the interrupt on the device and return 2126 * IRQ_WAKE_THREAD which will wake up the handler thread and run 2127 * @thread_fn. This split handler design is necessary to support 2128 * shared interrupts. 2129 * 2130 * Dev_id must be globally unique. Normally the address of the 2131 * device data structure is used as the cookie. Since the handler 2132 * receives this value it makes sense to use it. 2133 * 2134 * If your interrupt is shared you must pass a non NULL dev_id 2135 * as this is required when freeing the interrupt. 2136 * 2137 * Flags: 2138 * 2139 * IRQF_SHARED Interrupt is shared 2140 * IRQF_TRIGGER_* Specify active edge(s) or level 2141 * IRQF_ONESHOT Run thread_fn with interrupt line masked 2142 */ 2143 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2144 irq_handler_t thread_fn, unsigned long irqflags, 2145 const char *devname, void *dev_id) 2146 { 2147 struct irqaction *action; 2148 struct irq_desc *desc; 2149 int retval; 2150 2151 if (irq == IRQ_NOTCONNECTED) 2152 return -ENOTCONN; 2153 2154 /* 2155 * Sanity-check: shared interrupts must pass in a real dev-ID, 2156 * otherwise we'll have trouble later trying to figure out 2157 * which interrupt is which (messes up the interrupt freeing 2158 * logic etc). 2159 * 2160 * Also shared interrupts do not go well with disabling auto enable. 2161 * The sharing interrupt might request it while it's still disabled 2162 * and then wait for interrupts forever. 2163 * 2164 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2165 * it cannot be set along with IRQF_NO_SUSPEND. 2166 */ 2167 if (((irqflags & IRQF_SHARED) && !dev_id) || 2168 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2169 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2170 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2171 return -EINVAL; 2172 2173 desc = irq_to_desc(irq); 2174 if (!desc) 2175 return -EINVAL; 2176 2177 if (!irq_settings_can_request(desc) || 2178 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2179 return -EINVAL; 2180 2181 if (!handler) { 2182 if (!thread_fn) 2183 return -EINVAL; 2184 handler = irq_default_primary_handler; 2185 } 2186 2187 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2188 if (!action) 2189 return -ENOMEM; 2190 2191 action->handler = handler; 2192 action->thread_fn = thread_fn; 2193 action->flags = irqflags; 2194 action->name = devname; 2195 action->dev_id = dev_id; 2196 2197 retval = irq_chip_pm_get(&desc->irq_data); 2198 if (retval < 0) { 2199 kfree(action); 2200 return retval; 2201 } 2202 2203 retval = __setup_irq(irq, desc, action); 2204 2205 if (retval) { 2206 irq_chip_pm_put(&desc->irq_data); 2207 kfree(action->secondary); 2208 kfree(action); 2209 } 2210 2211 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2212 if (!retval && (irqflags & IRQF_SHARED)) { 2213 /* 2214 * It's a shared IRQ -- the driver ought to be prepared for it 2215 * to happen immediately, so let's make sure.... 2216 * We disable the irq to make sure that a 'real' IRQ doesn't 2217 * run in parallel with our fake. 2218 */ 2219 unsigned long flags; 2220 2221 disable_irq(irq); 2222 local_irq_save(flags); 2223 2224 handler(irq, dev_id); 2225 2226 local_irq_restore(flags); 2227 enable_irq(irq); 2228 } 2229 #endif 2230 return retval; 2231 } 2232 EXPORT_SYMBOL(request_threaded_irq); 2233 2234 /** 2235 * request_any_context_irq - allocate an interrupt line 2236 * @irq: Interrupt line to allocate 2237 * @handler: Function to be called when the IRQ occurs. 2238 * Threaded handler for threaded interrupts. 2239 * @flags: Interrupt type flags 2240 * @name: An ascii name for the claiming device 2241 * @dev_id: A cookie passed back to the handler function 2242 * 2243 * This call allocates interrupt resources and enables the 2244 * interrupt line and IRQ handling. It selects either a 2245 * hardirq or threaded handling method depending on the 2246 * context. 2247 * 2248 * On failure, it returns a negative value. On success, 2249 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2250 */ 2251 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2252 unsigned long flags, const char *name, void *dev_id) 2253 { 2254 struct irq_desc *desc; 2255 int ret; 2256 2257 if (irq == IRQ_NOTCONNECTED) 2258 return -ENOTCONN; 2259 2260 desc = irq_to_desc(irq); 2261 if (!desc) 2262 return -EINVAL; 2263 2264 if (irq_settings_is_nested_thread(desc)) { 2265 ret = request_threaded_irq(irq, NULL, handler, 2266 flags, name, dev_id); 2267 return !ret ? IRQC_IS_NESTED : ret; 2268 } 2269 2270 ret = request_irq(irq, handler, flags, name, dev_id); 2271 return !ret ? IRQC_IS_HARDIRQ : ret; 2272 } 2273 EXPORT_SYMBOL_GPL(request_any_context_irq); 2274 2275 /** 2276 * request_nmi - allocate an interrupt line for NMI delivery 2277 * @irq: Interrupt line to allocate 2278 * @handler: Function to be called when the IRQ occurs. 2279 * Threaded handler for threaded interrupts. 2280 * @irqflags: Interrupt type flags 2281 * @name: An ascii name for the claiming device 2282 * @dev_id: A cookie passed back to the handler function 2283 * 2284 * This call allocates interrupt resources and enables the 2285 * interrupt line and IRQ handling. It sets up the IRQ line 2286 * to be handled as an NMI. 2287 * 2288 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2289 * cannot be threaded. 2290 * 2291 * Interrupt lines requested for NMI delivering must produce per cpu 2292 * interrupts and have auto enabling setting disabled. 2293 * 2294 * Dev_id must be globally unique. Normally the address of the 2295 * device data structure is used as the cookie. Since the handler 2296 * receives this value it makes sense to use it. 2297 * 2298 * If the interrupt line cannot be used to deliver NMIs, function 2299 * will fail and return a negative value. 2300 */ 2301 int request_nmi(unsigned int irq, irq_handler_t handler, 2302 unsigned long irqflags, const char *name, void *dev_id) 2303 { 2304 struct irqaction *action; 2305 struct irq_desc *desc; 2306 unsigned long flags; 2307 int retval; 2308 2309 if (irq == IRQ_NOTCONNECTED) 2310 return -ENOTCONN; 2311 2312 /* NMI cannot be shared, used for Polling */ 2313 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2314 return -EINVAL; 2315 2316 if (!(irqflags & IRQF_PERCPU)) 2317 return -EINVAL; 2318 2319 if (!handler) 2320 return -EINVAL; 2321 2322 desc = irq_to_desc(irq); 2323 2324 if (!desc || (irq_settings_can_autoenable(desc) && 2325 !(irqflags & IRQF_NO_AUTOEN)) || 2326 !irq_settings_can_request(desc) || 2327 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2328 !irq_supports_nmi(desc)) 2329 return -EINVAL; 2330 2331 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2332 if (!action) 2333 return -ENOMEM; 2334 2335 action->handler = handler; 2336 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2337 action->name = name; 2338 action->dev_id = dev_id; 2339 2340 retval = irq_chip_pm_get(&desc->irq_data); 2341 if (retval < 0) 2342 goto err_out; 2343 2344 retval = __setup_irq(irq, desc, action); 2345 if (retval) 2346 goto err_irq_setup; 2347 2348 raw_spin_lock_irqsave(&desc->lock, flags); 2349 2350 /* Setup NMI state */ 2351 desc->istate |= IRQS_NMI; 2352 retval = irq_nmi_setup(desc); 2353 if (retval) { 2354 __cleanup_nmi(irq, desc); 2355 raw_spin_unlock_irqrestore(&desc->lock, flags); 2356 return -EINVAL; 2357 } 2358 2359 raw_spin_unlock_irqrestore(&desc->lock, flags); 2360 2361 return 0; 2362 2363 err_irq_setup: 2364 irq_chip_pm_put(&desc->irq_data); 2365 err_out: 2366 kfree(action); 2367 2368 return retval; 2369 } 2370 2371 void enable_percpu_irq(unsigned int irq, unsigned int type) 2372 { 2373 unsigned int cpu = smp_processor_id(); 2374 unsigned long flags; 2375 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2376 2377 if (!desc) 2378 return; 2379 2380 /* 2381 * If the trigger type is not specified by the caller, then 2382 * use the default for this interrupt. 2383 */ 2384 type &= IRQ_TYPE_SENSE_MASK; 2385 if (type == IRQ_TYPE_NONE) 2386 type = irqd_get_trigger_type(&desc->irq_data); 2387 2388 if (type != IRQ_TYPE_NONE) { 2389 int ret; 2390 2391 ret = __irq_set_trigger(desc, type); 2392 2393 if (ret) { 2394 WARN(1, "failed to set type for IRQ%d\n", irq); 2395 goto out; 2396 } 2397 } 2398 2399 irq_percpu_enable(desc, cpu); 2400 out: 2401 irq_put_desc_unlock(desc, flags); 2402 } 2403 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2404 2405 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2406 { 2407 enable_percpu_irq(irq, type); 2408 } 2409 2410 /** 2411 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2412 * @irq: Linux irq number to check for 2413 * 2414 * Must be called from a non migratable context. Returns the enable 2415 * state of a per cpu interrupt on the current cpu. 2416 */ 2417 bool irq_percpu_is_enabled(unsigned int irq) 2418 { 2419 unsigned int cpu = smp_processor_id(); 2420 struct irq_desc *desc; 2421 unsigned long flags; 2422 bool is_enabled; 2423 2424 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2425 if (!desc) 2426 return false; 2427 2428 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2429 irq_put_desc_unlock(desc, flags); 2430 2431 return is_enabled; 2432 } 2433 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2434 2435 void disable_percpu_irq(unsigned int irq) 2436 { 2437 unsigned int cpu = smp_processor_id(); 2438 unsigned long flags; 2439 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2440 2441 if (!desc) 2442 return; 2443 2444 irq_percpu_disable(desc, cpu); 2445 irq_put_desc_unlock(desc, flags); 2446 } 2447 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2448 2449 void disable_percpu_nmi(unsigned int irq) 2450 { 2451 disable_percpu_irq(irq); 2452 } 2453 2454 /* 2455 * Internal function to unregister a percpu irqaction. 2456 */ 2457 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2458 { 2459 struct irq_desc *desc = irq_to_desc(irq); 2460 struct irqaction *action; 2461 unsigned long flags; 2462 2463 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2464 2465 if (!desc) 2466 return NULL; 2467 2468 raw_spin_lock_irqsave(&desc->lock, flags); 2469 2470 action = desc->action; 2471 if (!action || action->percpu_dev_id != dev_id) { 2472 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2473 goto bad; 2474 } 2475 2476 if (!cpumask_empty(desc->percpu_enabled)) { 2477 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2478 irq, cpumask_first(desc->percpu_enabled)); 2479 goto bad; 2480 } 2481 2482 /* Found it - now remove it from the list of entries: */ 2483 desc->action = NULL; 2484 2485 desc->istate &= ~IRQS_NMI; 2486 2487 raw_spin_unlock_irqrestore(&desc->lock, flags); 2488 2489 unregister_handler_proc(irq, action); 2490 2491 irq_chip_pm_put(&desc->irq_data); 2492 module_put(desc->owner); 2493 return action; 2494 2495 bad: 2496 raw_spin_unlock_irqrestore(&desc->lock, flags); 2497 return NULL; 2498 } 2499 2500 /** 2501 * remove_percpu_irq - free a per-cpu interrupt 2502 * @irq: Interrupt line to free 2503 * @act: irqaction for the interrupt 2504 * 2505 * Used to remove interrupts statically setup by the early boot process. 2506 */ 2507 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2508 { 2509 struct irq_desc *desc = irq_to_desc(irq); 2510 2511 if (desc && irq_settings_is_per_cpu_devid(desc)) 2512 __free_percpu_irq(irq, act->percpu_dev_id); 2513 } 2514 2515 /** 2516 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2517 * @irq: Interrupt line to free 2518 * @dev_id: Device identity to free 2519 * 2520 * Remove a percpu interrupt handler. The handler is removed, but 2521 * the interrupt line is not disabled. This must be done on each 2522 * CPU before calling this function. The function does not return 2523 * until any executing interrupts for this IRQ have completed. 2524 * 2525 * This function must not be called from interrupt context. 2526 */ 2527 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2528 { 2529 struct irq_desc *desc = irq_to_desc(irq); 2530 2531 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2532 return; 2533 2534 chip_bus_lock(desc); 2535 kfree(__free_percpu_irq(irq, dev_id)); 2536 chip_bus_sync_unlock(desc); 2537 } 2538 EXPORT_SYMBOL_GPL(free_percpu_irq); 2539 2540 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2541 { 2542 struct irq_desc *desc = irq_to_desc(irq); 2543 2544 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2545 return; 2546 2547 if (WARN_ON(!irq_is_nmi(desc))) 2548 return; 2549 2550 kfree(__free_percpu_irq(irq, dev_id)); 2551 } 2552 2553 /** 2554 * setup_percpu_irq - setup a per-cpu interrupt 2555 * @irq: Interrupt line to setup 2556 * @act: irqaction for the interrupt 2557 * 2558 * Used to statically setup per-cpu interrupts in the early boot process. 2559 */ 2560 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2561 { 2562 struct irq_desc *desc = irq_to_desc(irq); 2563 int retval; 2564 2565 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2566 return -EINVAL; 2567 2568 retval = irq_chip_pm_get(&desc->irq_data); 2569 if (retval < 0) 2570 return retval; 2571 2572 retval = __setup_irq(irq, desc, act); 2573 2574 if (retval) 2575 irq_chip_pm_put(&desc->irq_data); 2576 2577 return retval; 2578 } 2579 2580 /** 2581 * __request_percpu_irq - allocate a percpu interrupt line 2582 * @irq: Interrupt line to allocate 2583 * @handler: Function to be called when the IRQ occurs. 2584 * @flags: Interrupt type flags (IRQF_TIMER only) 2585 * @devname: An ascii name for the claiming device 2586 * @dev_id: A percpu cookie passed back to the handler function 2587 * 2588 * This call allocates interrupt resources and enables the 2589 * interrupt on the local CPU. If the interrupt is supposed to be 2590 * enabled on other CPUs, it has to be done on each CPU using 2591 * enable_percpu_irq(). 2592 * 2593 * Dev_id must be globally unique. It is a per-cpu variable, and 2594 * the handler gets called with the interrupted CPU's instance of 2595 * that variable. 2596 */ 2597 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2598 unsigned long flags, const char *devname, 2599 void __percpu *dev_id) 2600 { 2601 struct irqaction *action; 2602 struct irq_desc *desc; 2603 int retval; 2604 2605 if (!dev_id) 2606 return -EINVAL; 2607 2608 desc = irq_to_desc(irq); 2609 if (!desc || !irq_settings_can_request(desc) || 2610 !irq_settings_is_per_cpu_devid(desc)) 2611 return -EINVAL; 2612 2613 if (flags && flags != IRQF_TIMER) 2614 return -EINVAL; 2615 2616 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2617 if (!action) 2618 return -ENOMEM; 2619 2620 action->handler = handler; 2621 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2622 action->name = devname; 2623 action->percpu_dev_id = dev_id; 2624 2625 retval = irq_chip_pm_get(&desc->irq_data); 2626 if (retval < 0) { 2627 kfree(action); 2628 return retval; 2629 } 2630 2631 retval = __setup_irq(irq, desc, action); 2632 2633 if (retval) { 2634 irq_chip_pm_put(&desc->irq_data); 2635 kfree(action); 2636 } 2637 2638 return retval; 2639 } 2640 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2641 2642 /** 2643 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2644 * @irq: Interrupt line to allocate 2645 * @handler: Function to be called when the IRQ occurs. 2646 * @name: An ascii name for the claiming device 2647 * @dev_id: A percpu cookie passed back to the handler function 2648 * 2649 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2650 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2651 * being enabled on the same CPU by using enable_percpu_nmi(). 2652 * 2653 * Dev_id must be globally unique. It is a per-cpu variable, and 2654 * the handler gets called with the interrupted CPU's instance of 2655 * that variable. 2656 * 2657 * Interrupt lines requested for NMI delivering should have auto enabling 2658 * setting disabled. 2659 * 2660 * If the interrupt line cannot be used to deliver NMIs, function 2661 * will fail returning a negative value. 2662 */ 2663 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2664 const char *name, void __percpu *dev_id) 2665 { 2666 struct irqaction *action; 2667 struct irq_desc *desc; 2668 unsigned long flags; 2669 int retval; 2670 2671 if (!handler) 2672 return -EINVAL; 2673 2674 desc = irq_to_desc(irq); 2675 2676 if (!desc || !irq_settings_can_request(desc) || 2677 !irq_settings_is_per_cpu_devid(desc) || 2678 irq_settings_can_autoenable(desc) || 2679 !irq_supports_nmi(desc)) 2680 return -EINVAL; 2681 2682 /* The line cannot already be NMI */ 2683 if (irq_is_nmi(desc)) 2684 return -EINVAL; 2685 2686 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2687 if (!action) 2688 return -ENOMEM; 2689 2690 action->handler = handler; 2691 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2692 | IRQF_NOBALANCING; 2693 action->name = name; 2694 action->percpu_dev_id = dev_id; 2695 2696 retval = irq_chip_pm_get(&desc->irq_data); 2697 if (retval < 0) 2698 goto err_out; 2699 2700 retval = __setup_irq(irq, desc, action); 2701 if (retval) 2702 goto err_irq_setup; 2703 2704 raw_spin_lock_irqsave(&desc->lock, flags); 2705 desc->istate |= IRQS_NMI; 2706 raw_spin_unlock_irqrestore(&desc->lock, flags); 2707 2708 return 0; 2709 2710 err_irq_setup: 2711 irq_chip_pm_put(&desc->irq_data); 2712 err_out: 2713 kfree(action); 2714 2715 return retval; 2716 } 2717 2718 /** 2719 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2720 * @irq: Interrupt line to prepare for NMI delivery 2721 * 2722 * This call prepares an interrupt line to deliver NMI on the current CPU, 2723 * before that interrupt line gets enabled with enable_percpu_nmi(). 2724 * 2725 * As a CPU local operation, this should be called from non-preemptible 2726 * context. 2727 * 2728 * If the interrupt line cannot be used to deliver NMIs, function 2729 * will fail returning a negative value. 2730 */ 2731 int prepare_percpu_nmi(unsigned int irq) 2732 { 2733 unsigned long flags; 2734 struct irq_desc *desc; 2735 int ret = 0; 2736 2737 WARN_ON(preemptible()); 2738 2739 desc = irq_get_desc_lock(irq, &flags, 2740 IRQ_GET_DESC_CHECK_PERCPU); 2741 if (!desc) 2742 return -EINVAL; 2743 2744 if (WARN(!irq_is_nmi(desc), 2745 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2746 irq)) { 2747 ret = -EINVAL; 2748 goto out; 2749 } 2750 2751 ret = irq_nmi_setup(desc); 2752 if (ret) { 2753 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2754 goto out; 2755 } 2756 2757 out: 2758 irq_put_desc_unlock(desc, flags); 2759 return ret; 2760 } 2761 2762 /** 2763 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2764 * @irq: Interrupt line from which CPU local NMI configuration should be 2765 * removed 2766 * 2767 * This call undoes the setup done by prepare_percpu_nmi(). 2768 * 2769 * IRQ line should not be enabled for the current CPU. 2770 * 2771 * As a CPU local operation, this should be called from non-preemptible 2772 * context. 2773 */ 2774 void teardown_percpu_nmi(unsigned int irq) 2775 { 2776 unsigned long flags; 2777 struct irq_desc *desc; 2778 2779 WARN_ON(preemptible()); 2780 2781 desc = irq_get_desc_lock(irq, &flags, 2782 IRQ_GET_DESC_CHECK_PERCPU); 2783 if (!desc) 2784 return; 2785 2786 if (WARN_ON(!irq_is_nmi(desc))) 2787 goto out; 2788 2789 irq_nmi_teardown(desc); 2790 out: 2791 irq_put_desc_unlock(desc, flags); 2792 } 2793 2794 static int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, bool *state) 2795 { 2796 struct irq_chip *chip; 2797 int err = -EINVAL; 2798 2799 do { 2800 chip = irq_data_get_irq_chip(data); 2801 if (WARN_ON_ONCE(!chip)) 2802 return -ENODEV; 2803 if (chip->irq_get_irqchip_state) 2804 break; 2805 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2806 data = data->parent_data; 2807 #else 2808 data = NULL; 2809 #endif 2810 } while (data); 2811 2812 if (data) 2813 err = chip->irq_get_irqchip_state(data, which, state); 2814 return err; 2815 } 2816 2817 /** 2818 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2819 * @irq: Interrupt line that is forwarded to a VM 2820 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2821 * @state: a pointer to a boolean where the state is to be stored 2822 * 2823 * This call snapshots the internal irqchip state of an 2824 * interrupt, returning into @state the bit corresponding to 2825 * stage @which 2826 * 2827 * This function should be called with preemption disabled if the 2828 * interrupt controller has per-cpu registers. 2829 */ 2830 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2831 bool *state) 2832 { 2833 struct irq_desc *desc; 2834 struct irq_data *data; 2835 unsigned long flags; 2836 int err = -EINVAL; 2837 2838 desc = irq_get_desc_buslock(irq, &flags, 0); 2839 if (!desc) 2840 return err; 2841 2842 data = irq_desc_get_irq_data(desc); 2843 2844 err = __irq_get_irqchip_state(data, which, state); 2845 2846 irq_put_desc_busunlock(desc, flags); 2847 return err; 2848 } 2849 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2850 2851 /** 2852 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2853 * @irq: Interrupt line that is forwarded to a VM 2854 * @which: State to be restored (one of IRQCHIP_STATE_*) 2855 * @val: Value corresponding to @which 2856 * 2857 * This call sets the internal irqchip state of an interrupt, 2858 * depending on the value of @which. 2859 * 2860 * This function should be called with migration disabled if the 2861 * interrupt controller has per-cpu registers. 2862 */ 2863 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2864 bool val) 2865 { 2866 struct irq_desc *desc; 2867 struct irq_data *data; 2868 struct irq_chip *chip; 2869 unsigned long flags; 2870 int err = -EINVAL; 2871 2872 desc = irq_get_desc_buslock(irq, &flags, 0); 2873 if (!desc) 2874 return err; 2875 2876 data = irq_desc_get_irq_data(desc); 2877 2878 do { 2879 chip = irq_data_get_irq_chip(data); 2880 if (WARN_ON_ONCE(!chip)) { 2881 err = -ENODEV; 2882 goto out_unlock; 2883 } 2884 if (chip->irq_set_irqchip_state) 2885 break; 2886 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2887 data = data->parent_data; 2888 #else 2889 data = NULL; 2890 #endif 2891 } while (data); 2892 2893 if (data) 2894 err = chip->irq_set_irqchip_state(data, which, val); 2895 2896 out_unlock: 2897 irq_put_desc_busunlock(desc, flags); 2898 return err; 2899 } 2900 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2901 2902 /** 2903 * irq_has_action - Check whether an interrupt is requested 2904 * @irq: The linux irq number 2905 * 2906 * Returns: A snapshot of the current state 2907 */ 2908 bool irq_has_action(unsigned int irq) 2909 { 2910 bool res; 2911 2912 rcu_read_lock(); 2913 res = irq_desc_has_action(irq_to_desc(irq)); 2914 rcu_read_unlock(); 2915 return res; 2916 } 2917 EXPORT_SYMBOL_GPL(irq_has_action); 2918 2919 /** 2920 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2921 * @irq: The linux irq number 2922 * @bitmask: The bitmask to evaluate 2923 * 2924 * Returns: True if one of the bits in @bitmask is set 2925 */ 2926 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2927 { 2928 struct irq_desc *desc; 2929 bool res = false; 2930 2931 rcu_read_lock(); 2932 desc = irq_to_desc(irq); 2933 if (desc) 2934 res = !!(desc->status_use_accessors & bitmask); 2935 rcu_read_unlock(); 2936 return res; 2937 } 2938 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2939