1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 static_branch_enable(&force_irqthreads_key); 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static int __irq_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *state); 39 40 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 41 { 42 struct irq_data *irqd = irq_desc_get_irq_data(desc); 43 bool inprogress; 44 45 do { 46 /* 47 * Wait until we're out of the critical section. This might 48 * give the wrong answer due to the lack of memory barriers. 49 */ 50 while (irqd_irq_inprogress(&desc->irq_data)) 51 cpu_relax(); 52 53 /* Ok, that indicated we're done: double-check carefully. */ 54 guard(raw_spinlock_irqsave)(&desc->lock); 55 inprogress = irqd_irq_inprogress(&desc->irq_data); 56 57 /* 58 * If requested and supported, check at the chip whether it 59 * is in flight at the hardware level, i.e. already pending 60 * in a CPU and waiting for service and acknowledge. 61 */ 62 if (!inprogress && sync_chip) { 63 /* 64 * Ignore the return code. inprogress is only updated 65 * when the chip supports it. 66 */ 67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 68 &inprogress); 69 } 70 /* Oops, that failed? */ 71 } while (inprogress); 72 } 73 74 /** 75 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 76 * @irq: interrupt number to wait for 77 * 78 * This function waits for any pending hard IRQ handlers for this interrupt 79 * to complete before returning. If you use this function while holding a 80 * resource the IRQ handler may need you will deadlock. It does not take 81 * associated threaded handlers into account. 82 * 83 * Do not use this for shutdown scenarios where you must be sure that all 84 * parts (hardirq and threaded handler) have completed. 85 * 86 * Returns: false if a threaded handler is active. 87 * 88 * This function may be called - with care - from IRQ context. 89 * 90 * It does not check whether there is an interrupt in flight at the 91 * hardware level, but not serviced yet, as this might deadlock when called 92 * with interrupts disabled and the target CPU of the interrupt is the 93 * current CPU. 94 */ 95 bool synchronize_hardirq(unsigned int irq) 96 { 97 struct irq_desc *desc = irq_to_desc(irq); 98 99 if (desc) { 100 __synchronize_hardirq(desc, false); 101 return !atomic_read(&desc->threads_active); 102 } 103 104 return true; 105 } 106 EXPORT_SYMBOL(synchronize_hardirq); 107 108 static void __synchronize_irq(struct irq_desc *desc) 109 { 110 __synchronize_hardirq(desc, true); 111 /* 112 * We made sure that no hardirq handler is running. Now verify that no 113 * threaded handlers are active. 114 */ 115 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active)); 116 } 117 118 /** 119 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 120 * @irq: interrupt number to wait for 121 * 122 * This function waits for any pending IRQ handlers for this interrupt to 123 * complete before returning. If you use this function while holding a 124 * resource the IRQ handler may need you will deadlock. 125 * 126 * Can only be called from preemptible code as it might sleep when 127 * an interrupt thread is associated to @irq. 128 * 129 * It optionally makes sure (when the irq chip supports that method) 130 * that the interrupt is not pending in any CPU and waiting for 131 * service. 132 */ 133 void synchronize_irq(unsigned int irq) 134 { 135 struct irq_desc *desc = irq_to_desc(irq); 136 137 if (desc) 138 __synchronize_irq(desc); 139 } 140 EXPORT_SYMBOL(synchronize_irq); 141 142 #ifdef CONFIG_SMP 143 cpumask_var_t irq_default_affinity; 144 145 static bool __irq_can_set_affinity(struct irq_desc *desc) 146 { 147 if (!desc || !irqd_can_balance(&desc->irq_data) || 148 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 149 return false; 150 return true; 151 } 152 153 /** 154 * irq_can_set_affinity - Check if the affinity of a given irq can be set 155 * @irq: Interrupt to check 156 * 157 */ 158 int irq_can_set_affinity(unsigned int irq) 159 { 160 return __irq_can_set_affinity(irq_to_desc(irq)); 161 } 162 163 /** 164 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 165 * @irq: Interrupt to check 166 * 167 * Like irq_can_set_affinity() above, but additionally checks for the 168 * AFFINITY_MANAGED flag. 169 */ 170 bool irq_can_set_affinity_usr(unsigned int irq) 171 { 172 struct irq_desc *desc = irq_to_desc(irq); 173 174 return __irq_can_set_affinity(desc) && 175 !irqd_affinity_is_managed(&desc->irq_data); 176 } 177 178 /** 179 * irq_set_thread_affinity - Notify irq threads to adjust affinity 180 * @desc: irq descriptor which has affinity changed 181 * 182 * Just set IRQTF_AFFINITY and delegate the affinity setting to the 183 * interrupt thread itself. We can not call set_cpus_allowed_ptr() here as 184 * we hold desc->lock and this code can be called from hard interrupt 185 * context. 186 */ 187 static void irq_set_thread_affinity(struct irq_desc *desc) 188 { 189 struct irqaction *action; 190 191 for_each_action_of_desc(desc, action) { 192 if (action->thread) { 193 set_bit(IRQTF_AFFINITY, &action->thread_flags); 194 wake_up_process(action->thread); 195 } 196 if (action->secondary && action->secondary->thread) { 197 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags); 198 wake_up_process(action->secondary->thread); 199 } 200 } 201 } 202 203 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 204 static void irq_validate_effective_affinity(struct irq_data *data) 205 { 206 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 207 struct irq_chip *chip = irq_data_get_irq_chip(data); 208 209 if (!cpumask_empty(m)) 210 return; 211 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 212 chip->name, data->irq); 213 } 214 #else 215 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 216 #endif 217 218 static DEFINE_PER_CPU(struct cpumask, __tmp_mask); 219 220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 221 bool force) 222 { 223 struct cpumask *tmp_mask = this_cpu_ptr(&__tmp_mask); 224 struct irq_desc *desc = irq_data_to_desc(data); 225 struct irq_chip *chip = irq_data_get_irq_chip(data); 226 const struct cpumask *prog_mask; 227 int ret; 228 229 if (!chip || !chip->irq_set_affinity) 230 return -EINVAL; 231 232 /* 233 * If this is a managed interrupt and housekeeping is enabled on 234 * it check whether the requested affinity mask intersects with 235 * a housekeeping CPU. If so, then remove the isolated CPUs from 236 * the mask and just keep the housekeeping CPU(s). This prevents 237 * the affinity setter from routing the interrupt to an isolated 238 * CPU to avoid that I/O submitted from a housekeeping CPU causes 239 * interrupts on an isolated one. 240 * 241 * If the masks do not intersect or include online CPU(s) then 242 * keep the requested mask. The isolated target CPUs are only 243 * receiving interrupts when the I/O operation was submitted 244 * directly from them. 245 * 246 * If all housekeeping CPUs in the affinity mask are offline, the 247 * interrupt will be migrated by the CPU hotplug code once a 248 * housekeeping CPU which belongs to the affinity mask comes 249 * online. 250 */ 251 if (irqd_affinity_is_managed(data) && 252 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) { 253 const struct cpumask *hk_mask; 254 255 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ); 256 257 cpumask_and(tmp_mask, mask, hk_mask); 258 if (!cpumask_intersects(tmp_mask, cpu_online_mask)) 259 prog_mask = mask; 260 else 261 prog_mask = tmp_mask; 262 } else { 263 prog_mask = mask; 264 } 265 266 /* 267 * Make sure we only provide online CPUs to the irqchip, 268 * unless we are being asked to force the affinity (in which 269 * case we do as we are told). 270 */ 271 cpumask_and(tmp_mask, prog_mask, cpu_online_mask); 272 if (!force && !cpumask_empty(tmp_mask)) 273 ret = chip->irq_set_affinity(data, tmp_mask, force); 274 else if (force) 275 ret = chip->irq_set_affinity(data, mask, force); 276 else 277 ret = -EINVAL; 278 279 switch (ret) { 280 case IRQ_SET_MASK_OK: 281 case IRQ_SET_MASK_OK_DONE: 282 cpumask_copy(desc->irq_common_data.affinity, mask); 283 fallthrough; 284 case IRQ_SET_MASK_OK_NOCOPY: 285 irq_validate_effective_affinity(data); 286 irq_set_thread_affinity(desc); 287 ret = 0; 288 } 289 290 return ret; 291 } 292 293 #ifdef CONFIG_GENERIC_PENDING_IRQ 294 static inline int irq_set_affinity_pending(struct irq_data *data, 295 const struct cpumask *dest) 296 { 297 struct irq_desc *desc = irq_data_to_desc(data); 298 299 irqd_set_move_pending(data); 300 irq_copy_pending(desc, dest); 301 return 0; 302 } 303 #else 304 static inline int irq_set_affinity_pending(struct irq_data *data, 305 const struct cpumask *dest) 306 { 307 return -EBUSY; 308 } 309 #endif 310 311 static int irq_try_set_affinity(struct irq_data *data, 312 const struct cpumask *dest, bool force) 313 { 314 int ret = irq_do_set_affinity(data, dest, force); 315 316 /* 317 * In case that the underlying vector management is busy and the 318 * architecture supports the generic pending mechanism then utilize 319 * this to avoid returning an error to user space. 320 */ 321 if (ret == -EBUSY && !force) 322 ret = irq_set_affinity_pending(data, dest); 323 return ret; 324 } 325 326 static bool irq_set_affinity_deactivated(struct irq_data *data, 327 const struct cpumask *mask) 328 { 329 struct irq_desc *desc = irq_data_to_desc(data); 330 331 /* 332 * Handle irq chips which can handle affinity only in activated 333 * state correctly 334 * 335 * If the interrupt is not yet activated, just store the affinity 336 * mask and do not call the chip driver at all. On activation the 337 * driver has to make sure anyway that the interrupt is in a 338 * usable state so startup works. 339 */ 340 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 341 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 342 return false; 343 344 cpumask_copy(desc->irq_common_data.affinity, mask); 345 irq_data_update_effective_affinity(data, mask); 346 irqd_set(data, IRQD_AFFINITY_SET); 347 return true; 348 } 349 350 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 351 bool force) 352 { 353 struct irq_chip *chip = irq_data_get_irq_chip(data); 354 struct irq_desc *desc = irq_data_to_desc(data); 355 int ret = 0; 356 357 if (!chip || !chip->irq_set_affinity) 358 return -EINVAL; 359 360 if (irq_set_affinity_deactivated(data, mask)) 361 return 0; 362 363 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 364 ret = irq_try_set_affinity(data, mask, force); 365 } else { 366 irqd_set_move_pending(data); 367 irq_copy_pending(desc, mask); 368 } 369 370 if (desc->affinity_notify) { 371 kref_get(&desc->affinity_notify->kref); 372 if (!schedule_work(&desc->affinity_notify->work)) { 373 /* Work was already scheduled, drop our extra ref */ 374 kref_put(&desc->affinity_notify->kref, 375 desc->affinity_notify->release); 376 } 377 } 378 irqd_set(data, IRQD_AFFINITY_SET); 379 380 return ret; 381 } 382 383 /** 384 * irq_update_affinity_desc - Update affinity management for an interrupt 385 * @irq: The interrupt number to update 386 * @affinity: Pointer to the affinity descriptor 387 * 388 * This interface can be used to configure the affinity management of 389 * interrupts which have been allocated already. 390 * 391 * There are certain limitations on when it may be used - attempts to use it 392 * for when the kernel is configured for generic IRQ reservation mode (in 393 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 394 * managed/non-managed interrupt accounting. In addition, attempts to use it on 395 * an interrupt which is already started or which has already been configured 396 * as managed will also fail, as these mean invalid init state or double init. 397 */ 398 int irq_update_affinity_desc(unsigned int irq, struct irq_affinity_desc *affinity) 399 { 400 /* 401 * Supporting this with the reservation scheme used by x86 needs 402 * some more thought. Fail it for now. 403 */ 404 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 405 return -EOPNOTSUPP; 406 407 scoped_irqdesc_get_and_buslock(irq, 0) { 408 struct irq_desc *desc = scoped_irqdesc; 409 bool activated; 410 411 /* Requires the interrupt to be shut down */ 412 if (irqd_is_started(&desc->irq_data)) 413 return -EBUSY; 414 415 /* Interrupts which are already managed cannot be modified */ 416 if (irqd_affinity_is_managed(&desc->irq_data)) 417 return -EBUSY; 418 /* 419 * Deactivate the interrupt. That's required to undo 420 * anything an earlier activation has established. 421 */ 422 activated = irqd_is_activated(&desc->irq_data); 423 if (activated) 424 irq_domain_deactivate_irq(&desc->irq_data); 425 426 if (affinity->is_managed) { 427 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 428 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 429 } 430 431 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 432 433 /* Restore the activation state */ 434 if (activated) 435 irq_domain_activate_irq(&desc->irq_data, false); 436 return 0; 437 } 438 return -EINVAL; 439 } 440 441 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, 442 bool force) 443 { 444 struct irq_desc *desc = irq_to_desc(irq); 445 446 if (!desc) 447 return -EINVAL; 448 449 guard(raw_spinlock_irqsave)(&desc->lock); 450 return irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 451 } 452 453 /** 454 * irq_set_affinity - Set the irq affinity of a given irq 455 * @irq: Interrupt to set affinity 456 * @cpumask: cpumask 457 * 458 * Fails if cpumask does not contain an online CPU 459 */ 460 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) 461 { 462 return __irq_set_affinity(irq, cpumask, false); 463 } 464 EXPORT_SYMBOL_GPL(irq_set_affinity); 465 466 /** 467 * irq_force_affinity - Force the irq affinity of a given irq 468 * @irq: Interrupt to set affinity 469 * @cpumask: cpumask 470 * 471 * Same as irq_set_affinity, but without checking the mask against 472 * online cpus. 473 * 474 * Solely for low level cpu hotplug code, where we need to make per 475 * cpu interrupts affine before the cpu becomes online. 476 */ 477 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) 478 { 479 return __irq_set_affinity(irq, cpumask, true); 480 } 481 EXPORT_SYMBOL_GPL(irq_force_affinity); 482 483 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, bool setaffinity) 484 { 485 int ret = -EINVAL; 486 487 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) { 488 scoped_irqdesc->affinity_hint = m; 489 ret = 0; 490 } 491 492 if (!ret && m && setaffinity) 493 __irq_set_affinity(irq, m, false); 494 return ret; 495 } 496 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint); 497 498 static void irq_affinity_notify(struct work_struct *work) 499 { 500 struct irq_affinity_notify *notify = container_of(work, struct irq_affinity_notify, work); 501 struct irq_desc *desc = irq_to_desc(notify->irq); 502 cpumask_var_t cpumask; 503 504 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 505 goto out; 506 507 scoped_guard(raw_spinlock_irqsave, &desc->lock) { 508 if (irq_move_pending(&desc->irq_data)) 509 irq_get_pending(cpumask, desc); 510 else 511 cpumask_copy(cpumask, desc->irq_common_data.affinity); 512 } 513 514 notify->notify(notify, cpumask); 515 516 free_cpumask_var(cpumask); 517 out: 518 kref_put(¬ify->kref, notify->release); 519 } 520 521 /** 522 * irq_set_affinity_notifier - control notification of IRQ affinity changes 523 * @irq: Interrupt for which to enable/disable notification 524 * @notify: Context for notification, or %NULL to disable 525 * notification. Function pointers must be initialised; 526 * the other fields will be initialised by this function. 527 * 528 * Must be called in process context. Notification may only be enabled 529 * after the IRQ is allocated and must be disabled before the IRQ is freed 530 * using free_irq(). 531 */ 532 int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 533 { 534 struct irq_desc *desc = irq_to_desc(irq); 535 struct irq_affinity_notify *old_notify; 536 537 /* The release function is promised process context */ 538 might_sleep(); 539 540 if (!desc || irq_is_nmi(desc)) 541 return -EINVAL; 542 543 /* Complete initialisation of *notify */ 544 if (notify) { 545 notify->irq = irq; 546 kref_init(¬ify->kref); 547 INIT_WORK(¬ify->work, irq_affinity_notify); 548 } 549 550 scoped_guard(raw_spinlock_irqsave, &desc->lock) { 551 old_notify = desc->affinity_notify; 552 desc->affinity_notify = notify; 553 } 554 555 if (old_notify) { 556 if (cancel_work_sync(&old_notify->work)) { 557 /* Pending work had a ref, put that one too */ 558 kref_put(&old_notify->kref, old_notify->release); 559 } 560 kref_put(&old_notify->kref, old_notify->release); 561 } 562 563 return 0; 564 } 565 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 566 567 #ifndef CONFIG_AUTO_IRQ_AFFINITY 568 /* 569 * Generic version of the affinity autoselector. 570 */ 571 int irq_setup_affinity(struct irq_desc *desc) 572 { 573 struct cpumask *set = irq_default_affinity; 574 int node = irq_desc_get_node(desc); 575 576 static DEFINE_RAW_SPINLOCK(mask_lock); 577 static struct cpumask mask; 578 579 /* Excludes PER_CPU and NO_BALANCE interrupts */ 580 if (!__irq_can_set_affinity(desc)) 581 return 0; 582 583 guard(raw_spinlock)(&mask_lock); 584 /* 585 * Preserve the managed affinity setting and a userspace affinity 586 * setup, but make sure that one of the targets is online. 587 */ 588 if (irqd_affinity_is_managed(&desc->irq_data) || 589 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 590 if (cpumask_intersects(desc->irq_common_data.affinity, 591 cpu_online_mask)) 592 set = desc->irq_common_data.affinity; 593 else 594 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 595 } 596 597 cpumask_and(&mask, cpu_online_mask, set); 598 if (cpumask_empty(&mask)) 599 cpumask_copy(&mask, cpu_online_mask); 600 601 if (node != NUMA_NO_NODE) { 602 const struct cpumask *nodemask = cpumask_of_node(node); 603 604 /* make sure at least one of the cpus in nodemask is online */ 605 if (cpumask_intersects(&mask, nodemask)) 606 cpumask_and(&mask, &mask, nodemask); 607 } 608 return irq_do_set_affinity(&desc->irq_data, &mask, false); 609 } 610 #else 611 /* Wrapper for ALPHA specific affinity selector magic */ 612 int irq_setup_affinity(struct irq_desc *desc) 613 { 614 return irq_select_affinity(irq_desc_get_irq(desc)); 615 } 616 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 617 #endif /* CONFIG_SMP */ 618 619 620 /** 621 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 622 * @irq: interrupt number to set affinity 623 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 624 * specific data for percpu_devid interrupts 625 * 626 * This function uses the vCPU specific data to set the vCPU affinity for 627 * an irq. The vCPU specific data is passed from outside, such as KVM. One 628 * example code path is as below: KVM -> IOMMU -> irq_set_vcpu_affinity(). 629 */ 630 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 631 { 632 scoped_irqdesc_get_and_lock(irq, 0) { 633 struct irq_desc *desc = scoped_irqdesc; 634 struct irq_data *data; 635 struct irq_chip *chip; 636 637 data = irq_desc_get_irq_data(desc); 638 do { 639 chip = irq_data_get_irq_chip(data); 640 if (chip && chip->irq_set_vcpu_affinity) 641 break; 642 643 data = irqd_get_parent_data(data); 644 } while (data); 645 646 if (!data) 647 return -ENOSYS; 648 return chip->irq_set_vcpu_affinity(data, vcpu_info); 649 } 650 return -EINVAL; 651 } 652 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 653 654 void __disable_irq(struct irq_desc *desc) 655 { 656 if (!desc->depth++) 657 irq_disable(desc); 658 } 659 660 static int __disable_irq_nosync(unsigned int irq) 661 { 662 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) { 663 __disable_irq(scoped_irqdesc); 664 return 0; 665 } 666 return -EINVAL; 667 } 668 669 /** 670 * disable_irq_nosync - disable an irq without waiting 671 * @irq: Interrupt to disable 672 * 673 * Disable the selected interrupt line. Disables and Enables are 674 * nested. 675 * Unlike disable_irq(), this function does not ensure existing 676 * instances of the IRQ handler have completed before returning. 677 * 678 * This function may be called from IRQ context. 679 */ 680 void disable_irq_nosync(unsigned int irq) 681 { 682 __disable_irq_nosync(irq); 683 } 684 EXPORT_SYMBOL(disable_irq_nosync); 685 686 /** 687 * disable_irq - disable an irq and wait for completion 688 * @irq: Interrupt to disable 689 * 690 * Disable the selected interrupt line. Enables and Disables are nested. 691 * 692 * This function waits for any pending IRQ handlers for this interrupt to 693 * complete before returning. If you use this function while holding a 694 * resource the IRQ handler may need you will deadlock. 695 * 696 * Can only be called from preemptible code as it might sleep when an 697 * interrupt thread is associated to @irq. 698 * 699 */ 700 void disable_irq(unsigned int irq) 701 { 702 might_sleep(); 703 if (!__disable_irq_nosync(irq)) 704 synchronize_irq(irq); 705 } 706 EXPORT_SYMBOL(disable_irq); 707 708 /** 709 * disable_hardirq - disables an irq and waits for hardirq completion 710 * @irq: Interrupt to disable 711 * 712 * Disable the selected interrupt line. Enables and Disables are nested. 713 * 714 * This function waits for any pending hard IRQ handlers for this interrupt 715 * to complete before returning. If you use this function while holding a 716 * resource the hard IRQ handler may need you will deadlock. 717 * 718 * When used to optimistically disable an interrupt from atomic context the 719 * return value must be checked. 720 * 721 * Returns: false if a threaded handler is active. 722 * 723 * This function may be called - with care - from IRQ context. 724 */ 725 bool disable_hardirq(unsigned int irq) 726 { 727 if (!__disable_irq_nosync(irq)) 728 return synchronize_hardirq(irq); 729 return false; 730 } 731 EXPORT_SYMBOL_GPL(disable_hardirq); 732 733 /** 734 * disable_nmi_nosync - disable an nmi without waiting 735 * @irq: Interrupt to disable 736 * 737 * Disable the selected interrupt line. Disables and enables are nested. 738 * 739 * The interrupt to disable must have been requested through request_nmi. 740 * Unlike disable_nmi(), this function does not ensure existing 741 * instances of the IRQ handler have completed before returning. 742 */ 743 void disable_nmi_nosync(unsigned int irq) 744 { 745 disable_irq_nosync(irq); 746 } 747 748 void __enable_irq(struct irq_desc *desc) 749 { 750 switch (desc->depth) { 751 case 0: 752 err_out: 753 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 754 irq_desc_get_irq(desc)); 755 break; 756 case 1: { 757 if (desc->istate & IRQS_SUSPENDED) 758 goto err_out; 759 /* Prevent probing on this irq: */ 760 irq_settings_set_noprobe(desc); 761 /* 762 * Call irq_startup() not irq_enable() here because the 763 * interrupt might be marked NOAUTOEN so irq_startup() 764 * needs to be invoked when it gets enabled the first time. 765 * This is also required when __enable_irq() is invoked for 766 * a managed and shutdown interrupt from the S3 resume 767 * path. 768 * 769 * If it was already started up, then irq_startup() will 770 * invoke irq_enable() under the hood. 771 */ 772 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 773 break; 774 } 775 default: 776 desc->depth--; 777 } 778 } 779 780 /** 781 * enable_irq - enable handling of an irq 782 * @irq: Interrupt to enable 783 * 784 * Undoes the effect of one call to disable_irq(). If this matches the 785 * last disable, processing of interrupts on this IRQ line is re-enabled. 786 * 787 * This function may be called from IRQ context only when 788 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 789 */ 790 void enable_irq(unsigned int irq) 791 { 792 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) { 793 struct irq_desc *desc = scoped_irqdesc; 794 795 if (WARN(!desc->irq_data.chip, "enable_irq before setup/request_irq: irq %u\n", irq)) 796 return; 797 __enable_irq(desc); 798 } 799 } 800 EXPORT_SYMBOL(enable_irq); 801 802 /** 803 * enable_nmi - enable handling of an nmi 804 * @irq: Interrupt to enable 805 * 806 * The interrupt to enable must have been requested through request_nmi. 807 * Undoes the effect of one call to disable_nmi(). If this matches the last 808 * disable, processing of interrupts on this IRQ line is re-enabled. 809 */ 810 void enable_nmi(unsigned int irq) 811 { 812 enable_irq(irq); 813 } 814 815 static int set_irq_wake_real(unsigned int irq, unsigned int on) 816 { 817 struct irq_desc *desc = irq_to_desc(irq); 818 int ret = -ENXIO; 819 820 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 821 return 0; 822 823 if (desc->irq_data.chip->irq_set_wake) 824 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 825 826 return ret; 827 } 828 829 /** 830 * irq_set_irq_wake - control irq power management wakeup 831 * @irq: interrupt to control 832 * @on: enable/disable power management wakeup 833 * 834 * Enable/disable power management wakeup mode, which is disabled by 835 * default. Enables and disables must match, just as they match for 836 * non-wakeup mode support. 837 * 838 * Wakeup mode lets this IRQ wake the system from sleep states like 839 * "suspend to RAM". 840 * 841 * Note: irq enable/disable state is completely orthogonal to the 842 * enable/disable state of irq wake. An irq can be disabled with 843 * disable_irq() and still wake the system as long as the irq has wake 844 * enabled. If this does not hold, then the underlying irq chip and the 845 * related driver need to be investigated. 846 */ 847 int irq_set_irq_wake(unsigned int irq, unsigned int on) 848 { 849 scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL) { 850 struct irq_desc *desc = scoped_irqdesc; 851 int ret = 0; 852 853 /* Don't use NMIs as wake up interrupts please */ 854 if (irq_is_nmi(desc)) 855 return -EINVAL; 856 857 /* 858 * wakeup-capable irqs can be shared between drivers that 859 * don't need to have the same sleep mode behaviors. 860 */ 861 if (on) { 862 if (desc->wake_depth++ == 0) { 863 ret = set_irq_wake_real(irq, on); 864 if (ret) 865 desc->wake_depth = 0; 866 else 867 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 868 } 869 } else { 870 if (desc->wake_depth == 0) { 871 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 872 } else if (--desc->wake_depth == 0) { 873 ret = set_irq_wake_real(irq, on); 874 if (ret) 875 desc->wake_depth = 1; 876 else 877 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 878 } 879 } 880 return ret; 881 } 882 return -EINVAL; 883 } 884 EXPORT_SYMBOL(irq_set_irq_wake); 885 886 /* 887 * Internal function that tells the architecture code whether a 888 * particular irq has been exclusively allocated or is available 889 * for driver use. 890 */ 891 bool can_request_irq(unsigned int irq, unsigned long irqflags) 892 { 893 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) { 894 struct irq_desc *desc = scoped_irqdesc; 895 896 if (irq_settings_can_request(desc)) { 897 if (!desc->action || irqflags & desc->action->flags & IRQF_SHARED) 898 return true; 899 } 900 } 901 return false; 902 } 903 904 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 905 { 906 struct irq_chip *chip = desc->irq_data.chip; 907 int ret, unmask = 0; 908 909 if (!chip || !chip->irq_set_type) { 910 /* 911 * IRQF_TRIGGER_* but the PIC does not support multiple 912 * flow-types? 913 */ 914 pr_debug("No set_type function for IRQ %d (%s)\n", 915 irq_desc_get_irq(desc), 916 chip ? (chip->name ? : "unknown") : "unknown"); 917 return 0; 918 } 919 920 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 921 if (!irqd_irq_masked(&desc->irq_data)) 922 mask_irq(desc); 923 if (!irqd_irq_disabled(&desc->irq_data)) 924 unmask = 1; 925 } 926 927 /* Mask all flags except trigger mode */ 928 flags &= IRQ_TYPE_SENSE_MASK; 929 ret = chip->irq_set_type(&desc->irq_data, flags); 930 931 switch (ret) { 932 case IRQ_SET_MASK_OK: 933 case IRQ_SET_MASK_OK_DONE: 934 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 935 irqd_set(&desc->irq_data, flags); 936 fallthrough; 937 938 case IRQ_SET_MASK_OK_NOCOPY: 939 flags = irqd_get_trigger_type(&desc->irq_data); 940 irq_settings_set_trigger_mask(desc, flags); 941 irqd_clear(&desc->irq_data, IRQD_LEVEL); 942 irq_settings_clr_level(desc); 943 if (flags & IRQ_TYPE_LEVEL_MASK) { 944 irq_settings_set_level(desc); 945 irqd_set(&desc->irq_data, IRQD_LEVEL); 946 } 947 948 ret = 0; 949 break; 950 default: 951 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 952 flags, irq_desc_get_irq(desc), chip->irq_set_type); 953 } 954 if (unmask) 955 unmask_irq(desc); 956 return ret; 957 } 958 959 #ifdef CONFIG_HARDIRQS_SW_RESEND 960 int irq_set_parent(int irq, int parent_irq) 961 { 962 scoped_irqdesc_get_and_lock(irq, 0) { 963 scoped_irqdesc->parent_irq = parent_irq; 964 return 0; 965 } 966 return -EINVAL; 967 } 968 EXPORT_SYMBOL_GPL(irq_set_parent); 969 #endif 970 971 /* 972 * Default primary interrupt handler for threaded interrupts. Is 973 * assigned as primary handler when request_threaded_irq is called 974 * with handler == NULL. Useful for oneshot interrupts. 975 */ 976 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 977 { 978 return IRQ_WAKE_THREAD; 979 } 980 981 /* 982 * Primary handler for nested threaded interrupts. Should never be 983 * called. 984 */ 985 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 986 { 987 WARN(1, "Primary handler called for nested irq %d\n", irq); 988 return IRQ_NONE; 989 } 990 991 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 992 { 993 WARN(1, "Secondary action handler called for irq %d\n", irq); 994 return IRQ_NONE; 995 } 996 997 #ifdef CONFIG_SMP 998 /* 999 * Check whether we need to change the affinity of the interrupt thread. 1000 */ 1001 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1002 { 1003 cpumask_var_t mask; 1004 bool valid = false; 1005 1006 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1007 return; 1008 1009 __set_current_state(TASK_RUNNING); 1010 1011 /* 1012 * In case we are out of memory we set IRQTF_AFFINITY again and 1013 * try again next time 1014 */ 1015 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1016 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1017 return; 1018 } 1019 1020 scoped_guard(raw_spinlock_irq, &desc->lock) { 1021 /* 1022 * This code is triggered unconditionally. Check the affinity 1023 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1024 */ 1025 if (cpumask_available(desc->irq_common_data.affinity)) { 1026 const struct cpumask *m; 1027 1028 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1029 cpumask_copy(mask, m); 1030 valid = true; 1031 } 1032 } 1033 1034 if (valid) 1035 set_cpus_allowed_ptr(current, mask); 1036 free_cpumask_var(mask); 1037 } 1038 #else 1039 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1040 #endif 1041 1042 static int irq_wait_for_interrupt(struct irq_desc *desc, 1043 struct irqaction *action) 1044 { 1045 for (;;) { 1046 set_current_state(TASK_INTERRUPTIBLE); 1047 irq_thread_check_affinity(desc, action); 1048 1049 if (kthread_should_stop()) { 1050 /* may need to run one last time */ 1051 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1052 &action->thread_flags)) { 1053 __set_current_state(TASK_RUNNING); 1054 return 0; 1055 } 1056 __set_current_state(TASK_RUNNING); 1057 return -1; 1058 } 1059 1060 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1061 &action->thread_flags)) { 1062 __set_current_state(TASK_RUNNING); 1063 return 0; 1064 } 1065 schedule(); 1066 } 1067 } 1068 1069 /* 1070 * Oneshot interrupts keep the irq line masked until the threaded 1071 * handler finished. unmask if the interrupt has not been disabled and 1072 * is marked MASKED. 1073 */ 1074 static void irq_finalize_oneshot(struct irq_desc *desc, 1075 struct irqaction *action) 1076 { 1077 if (!(desc->istate & IRQS_ONESHOT) || 1078 action->handler == irq_forced_secondary_handler) 1079 return; 1080 again: 1081 chip_bus_lock(desc); 1082 raw_spin_lock_irq(&desc->lock); 1083 1084 /* 1085 * Implausible though it may be we need to protect us against 1086 * the following scenario: 1087 * 1088 * The thread is faster done than the hard interrupt handler 1089 * on the other CPU. If we unmask the irq line then the 1090 * interrupt can come in again and masks the line, leaves due 1091 * to IRQS_INPROGRESS and the irq line is masked forever. 1092 * 1093 * This also serializes the state of shared oneshot handlers 1094 * versus "desc->threads_oneshot |= action->thread_mask;" in 1095 * irq_wake_thread(). See the comment there which explains the 1096 * serialization. 1097 */ 1098 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1099 raw_spin_unlock_irq(&desc->lock); 1100 chip_bus_sync_unlock(desc); 1101 cpu_relax(); 1102 goto again; 1103 } 1104 1105 /* 1106 * Now check again, whether the thread should run. Otherwise 1107 * we would clear the threads_oneshot bit of this thread which 1108 * was just set. 1109 */ 1110 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1111 goto out_unlock; 1112 1113 desc->threads_oneshot &= ~action->thread_mask; 1114 1115 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1116 irqd_irq_masked(&desc->irq_data)) 1117 unmask_threaded_irq(desc); 1118 1119 out_unlock: 1120 raw_spin_unlock_irq(&desc->lock); 1121 chip_bus_sync_unlock(desc); 1122 } 1123 1124 /* 1125 * Interrupts explicitly requested as threaded interrupts want to be 1126 * preemptible - many of them need to sleep and wait for slow busses to 1127 * complete. 1128 */ 1129 static irqreturn_t irq_thread_fn(struct irq_desc *desc, struct irqaction *action) 1130 { 1131 irqreturn_t ret = action->thread_fn(action->irq, action->dev_id); 1132 1133 if (ret == IRQ_HANDLED) 1134 atomic_inc(&desc->threads_handled); 1135 1136 irq_finalize_oneshot(desc, action); 1137 return ret; 1138 } 1139 1140 /* 1141 * Interrupts which are not explicitly requested as threaded 1142 * interrupts rely on the implicit bh/preempt disable of the hard irq 1143 * context. So we need to disable bh here to avoid deadlocks and other 1144 * side effects. 1145 */ 1146 static irqreturn_t irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1147 { 1148 irqreturn_t ret; 1149 1150 local_bh_disable(); 1151 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1152 local_irq_disable(); 1153 ret = irq_thread_fn(desc, action); 1154 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1155 local_irq_enable(); 1156 local_bh_enable(); 1157 return ret; 1158 } 1159 1160 void wake_threads_waitq(struct irq_desc *desc) 1161 { 1162 if (atomic_dec_and_test(&desc->threads_active)) 1163 wake_up(&desc->wait_for_threads); 1164 } 1165 1166 static void irq_thread_dtor(struct callback_head *unused) 1167 { 1168 struct task_struct *tsk = current; 1169 struct irq_desc *desc; 1170 struct irqaction *action; 1171 1172 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1173 return; 1174 1175 action = kthread_data(tsk); 1176 1177 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1178 tsk->comm, tsk->pid, action->irq); 1179 1180 1181 desc = irq_to_desc(action->irq); 1182 /* 1183 * If IRQTF_RUNTHREAD is set, we need to decrement 1184 * desc->threads_active and wake possible waiters. 1185 */ 1186 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1187 wake_threads_waitq(desc); 1188 1189 /* Prevent a stale desc->threads_oneshot */ 1190 irq_finalize_oneshot(desc, action); 1191 } 1192 1193 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1194 { 1195 struct irqaction *secondary = action->secondary; 1196 1197 if (WARN_ON_ONCE(!secondary)) 1198 return; 1199 1200 guard(raw_spinlock_irq)(&desc->lock); 1201 __irq_wake_thread(desc, secondary); 1202 } 1203 1204 /* 1205 * Internal function to notify that a interrupt thread is ready. 1206 */ 1207 static void irq_thread_set_ready(struct irq_desc *desc, 1208 struct irqaction *action) 1209 { 1210 set_bit(IRQTF_READY, &action->thread_flags); 1211 wake_up(&desc->wait_for_threads); 1212 } 1213 1214 /* 1215 * Internal function to wake up a interrupt thread and wait until it is 1216 * ready. 1217 */ 1218 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc, 1219 struct irqaction *action) 1220 { 1221 if (!action || !action->thread) 1222 return; 1223 1224 wake_up_process(action->thread); 1225 wait_event(desc->wait_for_threads, 1226 test_bit(IRQTF_READY, &action->thread_flags)); 1227 } 1228 1229 /* 1230 * Interrupt handler thread 1231 */ 1232 static int irq_thread(void *data) 1233 { 1234 struct callback_head on_exit_work; 1235 struct irqaction *action = data; 1236 struct irq_desc *desc = irq_to_desc(action->irq); 1237 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1238 struct irqaction *action); 1239 1240 irq_thread_set_ready(desc, action); 1241 1242 sched_set_fifo(current); 1243 1244 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD, 1245 &action->thread_flags)) 1246 handler_fn = irq_forced_thread_fn; 1247 else 1248 handler_fn = irq_thread_fn; 1249 1250 init_task_work(&on_exit_work, irq_thread_dtor); 1251 task_work_add(current, &on_exit_work, TWA_NONE); 1252 1253 while (!irq_wait_for_interrupt(desc, action)) { 1254 irqreturn_t action_ret; 1255 1256 action_ret = handler_fn(desc, action); 1257 if (action_ret == IRQ_WAKE_THREAD) 1258 irq_wake_secondary(desc, action); 1259 1260 wake_threads_waitq(desc); 1261 } 1262 1263 /* 1264 * This is the regular exit path. __free_irq() is stopping the 1265 * thread via kthread_stop() after calling 1266 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1267 * oneshot mask bit can be set. 1268 */ 1269 task_work_cancel_func(current, irq_thread_dtor); 1270 return 0; 1271 } 1272 1273 /** 1274 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1275 * @irq: Interrupt line 1276 * @dev_id: Device identity for which the thread should be woken 1277 */ 1278 void irq_wake_thread(unsigned int irq, void *dev_id) 1279 { 1280 struct irq_desc *desc = irq_to_desc(irq); 1281 struct irqaction *action; 1282 1283 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1284 return; 1285 1286 guard(raw_spinlock_irqsave)(&desc->lock); 1287 for_each_action_of_desc(desc, action) { 1288 if (action->dev_id == dev_id) { 1289 if (action->thread) 1290 __irq_wake_thread(desc, action); 1291 break; 1292 } 1293 } 1294 } 1295 EXPORT_SYMBOL_GPL(irq_wake_thread); 1296 1297 static int irq_setup_forced_threading(struct irqaction *new) 1298 { 1299 if (!force_irqthreads()) 1300 return 0; 1301 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1302 return 0; 1303 1304 /* 1305 * No further action required for interrupts which are requested as 1306 * threaded interrupts already 1307 */ 1308 if (new->handler == irq_default_primary_handler) 1309 return 0; 1310 1311 new->flags |= IRQF_ONESHOT; 1312 1313 /* 1314 * Handle the case where we have a real primary handler and a 1315 * thread handler. We force thread them as well by creating a 1316 * secondary action. 1317 */ 1318 if (new->handler && new->thread_fn) { 1319 /* Allocate the secondary action */ 1320 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1321 if (!new->secondary) 1322 return -ENOMEM; 1323 new->secondary->handler = irq_forced_secondary_handler; 1324 new->secondary->thread_fn = new->thread_fn; 1325 new->secondary->dev_id = new->dev_id; 1326 new->secondary->irq = new->irq; 1327 new->secondary->name = new->name; 1328 } 1329 /* Deal with the primary handler */ 1330 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1331 new->thread_fn = new->handler; 1332 new->handler = irq_default_primary_handler; 1333 return 0; 1334 } 1335 1336 static int irq_request_resources(struct irq_desc *desc) 1337 { 1338 struct irq_data *d = &desc->irq_data; 1339 struct irq_chip *c = d->chip; 1340 1341 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1342 } 1343 1344 static void irq_release_resources(struct irq_desc *desc) 1345 { 1346 struct irq_data *d = &desc->irq_data; 1347 struct irq_chip *c = d->chip; 1348 1349 if (c->irq_release_resources) 1350 c->irq_release_resources(d); 1351 } 1352 1353 static bool irq_supports_nmi(struct irq_desc *desc) 1354 { 1355 struct irq_data *d = irq_desc_get_irq_data(desc); 1356 1357 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1358 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1359 if (d->parent_data) 1360 return false; 1361 #endif 1362 /* Don't support NMIs for chips behind a slow bus */ 1363 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1364 return false; 1365 1366 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1367 } 1368 1369 static int irq_nmi_setup(struct irq_desc *desc) 1370 { 1371 struct irq_data *d = irq_desc_get_irq_data(desc); 1372 struct irq_chip *c = d->chip; 1373 1374 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1375 } 1376 1377 static void irq_nmi_teardown(struct irq_desc *desc) 1378 { 1379 struct irq_data *d = irq_desc_get_irq_data(desc); 1380 struct irq_chip *c = d->chip; 1381 1382 if (c->irq_nmi_teardown) 1383 c->irq_nmi_teardown(d); 1384 } 1385 1386 static int 1387 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1388 { 1389 struct task_struct *t; 1390 1391 if (!secondary) { 1392 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1393 new->name); 1394 } else { 1395 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1396 new->name); 1397 } 1398 1399 if (IS_ERR(t)) 1400 return PTR_ERR(t); 1401 1402 /* 1403 * We keep the reference to the task struct even if 1404 * the thread dies to avoid that the interrupt code 1405 * references an already freed task_struct. 1406 */ 1407 new->thread = get_task_struct(t); 1408 /* 1409 * Tell the thread to set its affinity. This is 1410 * important for shared interrupt handlers as we do 1411 * not invoke setup_affinity() for the secondary 1412 * handlers as everything is already set up. Even for 1413 * interrupts marked with IRQF_NO_BALANCE this is 1414 * correct as we want the thread to move to the cpu(s) 1415 * on which the requesting code placed the interrupt. 1416 */ 1417 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1418 return 0; 1419 } 1420 1421 /* 1422 * Internal function to register an irqaction - typically used to 1423 * allocate special interrupts that are part of the architecture. 1424 * 1425 * Locking rules: 1426 * 1427 * desc->request_mutex Provides serialization against a concurrent free_irq() 1428 * chip_bus_lock Provides serialization for slow bus operations 1429 * desc->lock Provides serialization against hard interrupts 1430 * 1431 * chip_bus_lock and desc->lock are sufficient for all other management and 1432 * interrupt related functions. desc->request_mutex solely serializes 1433 * request/free_irq(). 1434 */ 1435 static int 1436 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1437 { 1438 struct irqaction *old, **old_ptr; 1439 unsigned long flags, thread_mask = 0; 1440 int ret, nested, shared = 0; 1441 1442 if (!desc) 1443 return -EINVAL; 1444 1445 if (desc->irq_data.chip == &no_irq_chip) 1446 return -ENOSYS; 1447 if (!try_module_get(desc->owner)) 1448 return -ENODEV; 1449 1450 new->irq = irq; 1451 1452 /* 1453 * If the trigger type is not specified by the caller, 1454 * then use the default for this interrupt. 1455 */ 1456 if (!(new->flags & IRQF_TRIGGER_MASK)) 1457 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1458 1459 /* 1460 * Check whether the interrupt nests into another interrupt 1461 * thread. 1462 */ 1463 nested = irq_settings_is_nested_thread(desc); 1464 if (nested) { 1465 if (!new->thread_fn) { 1466 ret = -EINVAL; 1467 goto out_mput; 1468 } 1469 /* 1470 * Replace the primary handler which was provided from 1471 * the driver for non nested interrupt handling by the 1472 * dummy function which warns when called. 1473 */ 1474 new->handler = irq_nested_primary_handler; 1475 } else { 1476 if (irq_settings_can_thread(desc)) { 1477 ret = irq_setup_forced_threading(new); 1478 if (ret) 1479 goto out_mput; 1480 } 1481 } 1482 1483 /* 1484 * Create a handler thread when a thread function is supplied 1485 * and the interrupt does not nest into another interrupt 1486 * thread. 1487 */ 1488 if (new->thread_fn && !nested) { 1489 ret = setup_irq_thread(new, irq, false); 1490 if (ret) 1491 goto out_mput; 1492 if (new->secondary) { 1493 ret = setup_irq_thread(new->secondary, irq, true); 1494 if (ret) 1495 goto out_thread; 1496 } 1497 } 1498 1499 /* 1500 * Drivers are often written to work w/o knowledge about the 1501 * underlying irq chip implementation, so a request for a 1502 * threaded irq without a primary hard irq context handler 1503 * requires the ONESHOT flag to be set. Some irq chips like 1504 * MSI based interrupts are per se one shot safe. Check the 1505 * chip flags, so we can avoid the unmask dance at the end of 1506 * the threaded handler for those. 1507 */ 1508 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1509 new->flags &= ~IRQF_ONESHOT; 1510 1511 /* 1512 * Protects against a concurrent __free_irq() call which might wait 1513 * for synchronize_hardirq() to complete without holding the optional 1514 * chip bus lock and desc->lock. Also protects against handing out 1515 * a recycled oneshot thread_mask bit while it's still in use by 1516 * its previous owner. 1517 */ 1518 mutex_lock(&desc->request_mutex); 1519 1520 /* 1521 * Acquire bus lock as the irq_request_resources() callback below 1522 * might rely on the serialization or the magic power management 1523 * functions which are abusing the irq_bus_lock() callback, 1524 */ 1525 chip_bus_lock(desc); 1526 1527 /* First installed action requests resources. */ 1528 if (!desc->action) { 1529 ret = irq_request_resources(desc); 1530 if (ret) { 1531 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1532 new->name, irq, desc->irq_data.chip->name); 1533 goto out_bus_unlock; 1534 } 1535 } 1536 1537 /* 1538 * The following block of code has to be executed atomically 1539 * protected against a concurrent interrupt and any of the other 1540 * management calls which are not serialized via 1541 * desc->request_mutex or the optional bus lock. 1542 */ 1543 raw_spin_lock_irqsave(&desc->lock, flags); 1544 old_ptr = &desc->action; 1545 old = *old_ptr; 1546 if (old) { 1547 /* 1548 * Can't share interrupts unless both agree to and are 1549 * the same type (level, edge, polarity). So both flag 1550 * fields must have IRQF_SHARED set and the bits which 1551 * set the trigger type must match. Also all must 1552 * agree on ONESHOT. 1553 * Interrupt lines used for NMIs cannot be shared. 1554 */ 1555 unsigned int oldtype; 1556 1557 if (irq_is_nmi(desc)) { 1558 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1559 new->name, irq, desc->irq_data.chip->name); 1560 ret = -EINVAL; 1561 goto out_unlock; 1562 } 1563 1564 /* 1565 * If nobody did set the configuration before, inherit 1566 * the one provided by the requester. 1567 */ 1568 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1569 oldtype = irqd_get_trigger_type(&desc->irq_data); 1570 } else { 1571 oldtype = new->flags & IRQF_TRIGGER_MASK; 1572 irqd_set_trigger_type(&desc->irq_data, oldtype); 1573 } 1574 1575 if (!((old->flags & new->flags) & IRQF_SHARED) || 1576 (oldtype != (new->flags & IRQF_TRIGGER_MASK))) 1577 goto mismatch; 1578 1579 if ((old->flags & IRQF_ONESHOT) && 1580 (new->flags & IRQF_COND_ONESHOT)) 1581 new->flags |= IRQF_ONESHOT; 1582 else if ((old->flags ^ new->flags) & IRQF_ONESHOT) 1583 goto mismatch; 1584 1585 /* All handlers must agree on per-cpuness */ 1586 if ((old->flags & IRQF_PERCPU) != 1587 (new->flags & IRQF_PERCPU)) 1588 goto mismatch; 1589 1590 /* add new interrupt at end of irq queue */ 1591 do { 1592 /* 1593 * Or all existing action->thread_mask bits, 1594 * so we can find the next zero bit for this 1595 * new action. 1596 */ 1597 thread_mask |= old->thread_mask; 1598 old_ptr = &old->next; 1599 old = *old_ptr; 1600 } while (old); 1601 shared = 1; 1602 } 1603 1604 /* 1605 * Setup the thread mask for this irqaction for ONESHOT. For 1606 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1607 * conditional in irq_wake_thread(). 1608 */ 1609 if (new->flags & IRQF_ONESHOT) { 1610 /* 1611 * Unlikely to have 32 resp 64 irqs sharing one line, 1612 * but who knows. 1613 */ 1614 if (thread_mask == ~0UL) { 1615 ret = -EBUSY; 1616 goto out_unlock; 1617 } 1618 /* 1619 * The thread_mask for the action is or'ed to 1620 * desc->thread_active to indicate that the 1621 * IRQF_ONESHOT thread handler has been woken, but not 1622 * yet finished. The bit is cleared when a thread 1623 * completes. When all threads of a shared interrupt 1624 * line have completed desc->threads_active becomes 1625 * zero and the interrupt line is unmasked. See 1626 * handle.c:irq_wake_thread() for further information. 1627 * 1628 * If no thread is woken by primary (hard irq context) 1629 * interrupt handlers, then desc->threads_active is 1630 * also checked for zero to unmask the irq line in the 1631 * affected hard irq flow handlers 1632 * (handle_[fasteoi|level]_irq). 1633 * 1634 * The new action gets the first zero bit of 1635 * thread_mask assigned. See the loop above which or's 1636 * all existing action->thread_mask bits. 1637 */ 1638 new->thread_mask = 1UL << ffz(thread_mask); 1639 1640 } else if (new->handler == irq_default_primary_handler && 1641 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1642 /* 1643 * The interrupt was requested with handler = NULL, so 1644 * we use the default primary handler for it. But it 1645 * does not have the oneshot flag set. In combination 1646 * with level interrupts this is deadly, because the 1647 * default primary handler just wakes the thread, then 1648 * the irq lines is reenabled, but the device still 1649 * has the level irq asserted. Rinse and repeat.... 1650 * 1651 * While this works for edge type interrupts, we play 1652 * it safe and reject unconditionally because we can't 1653 * say for sure which type this interrupt really 1654 * has. The type flags are unreliable as the 1655 * underlying chip implementation can override them. 1656 */ 1657 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1658 new->name, irq); 1659 ret = -EINVAL; 1660 goto out_unlock; 1661 } 1662 1663 if (!shared) { 1664 /* Setup the type (level, edge polarity) if configured: */ 1665 if (new->flags & IRQF_TRIGGER_MASK) { 1666 ret = __irq_set_trigger(desc, 1667 new->flags & IRQF_TRIGGER_MASK); 1668 1669 if (ret) 1670 goto out_unlock; 1671 } 1672 1673 /* 1674 * Activate the interrupt. That activation must happen 1675 * independently of IRQ_NOAUTOEN. request_irq() can fail 1676 * and the callers are supposed to handle 1677 * that. enable_irq() of an interrupt requested with 1678 * IRQ_NOAUTOEN is not supposed to fail. The activation 1679 * keeps it in shutdown mode, it merily associates 1680 * resources if necessary and if that's not possible it 1681 * fails. Interrupts which are in managed shutdown mode 1682 * will simply ignore that activation request. 1683 */ 1684 ret = irq_activate(desc); 1685 if (ret) 1686 goto out_unlock; 1687 1688 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1689 IRQS_ONESHOT | IRQS_WAITING); 1690 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1691 1692 if (new->flags & IRQF_PERCPU) { 1693 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1694 irq_settings_set_per_cpu(desc); 1695 if (new->flags & IRQF_NO_DEBUG) 1696 irq_settings_set_no_debug(desc); 1697 } 1698 1699 if (noirqdebug) 1700 irq_settings_set_no_debug(desc); 1701 1702 if (new->flags & IRQF_ONESHOT) 1703 desc->istate |= IRQS_ONESHOT; 1704 1705 /* Exclude IRQ from balancing if requested */ 1706 if (new->flags & IRQF_NOBALANCING) { 1707 irq_settings_set_no_balancing(desc); 1708 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1709 } 1710 1711 if (!(new->flags & IRQF_NO_AUTOEN) && 1712 irq_settings_can_autoenable(desc)) { 1713 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1714 } else { 1715 /* 1716 * Shared interrupts do not go well with disabling 1717 * auto enable. The sharing interrupt might request 1718 * it while it's still disabled and then wait for 1719 * interrupts forever. 1720 */ 1721 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1722 /* Undo nested disables: */ 1723 desc->depth = 1; 1724 } 1725 1726 } else if (new->flags & IRQF_TRIGGER_MASK) { 1727 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1728 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1729 1730 if (nmsk != omsk) 1731 /* hope the handler works with current trigger mode */ 1732 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1733 irq, omsk, nmsk); 1734 } 1735 1736 *old_ptr = new; 1737 1738 irq_pm_install_action(desc, new); 1739 1740 /* Reset broken irq detection when installing new handler */ 1741 desc->irq_count = 0; 1742 desc->irqs_unhandled = 0; 1743 1744 /* 1745 * Check whether we disabled the irq via the spurious handler 1746 * before. Reenable it and give it another chance. 1747 */ 1748 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1749 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1750 __enable_irq(desc); 1751 } 1752 1753 raw_spin_unlock_irqrestore(&desc->lock, flags); 1754 chip_bus_sync_unlock(desc); 1755 mutex_unlock(&desc->request_mutex); 1756 1757 irq_setup_timings(desc, new); 1758 1759 wake_up_and_wait_for_irq_thread_ready(desc, new); 1760 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary); 1761 1762 register_irq_proc(irq, desc); 1763 new->dir = NULL; 1764 register_handler_proc(irq, new); 1765 return 0; 1766 1767 mismatch: 1768 if (!(new->flags & IRQF_PROBE_SHARED)) { 1769 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1770 irq, new->flags, new->name, old->flags, old->name); 1771 #ifdef CONFIG_DEBUG_SHIRQ 1772 dump_stack(); 1773 #endif 1774 } 1775 ret = -EBUSY; 1776 1777 out_unlock: 1778 raw_spin_unlock_irqrestore(&desc->lock, flags); 1779 1780 if (!desc->action) 1781 irq_release_resources(desc); 1782 out_bus_unlock: 1783 chip_bus_sync_unlock(desc); 1784 mutex_unlock(&desc->request_mutex); 1785 1786 out_thread: 1787 if (new->thread) { 1788 struct task_struct *t = new->thread; 1789 1790 new->thread = NULL; 1791 kthread_stop_put(t); 1792 } 1793 if (new->secondary && new->secondary->thread) { 1794 struct task_struct *t = new->secondary->thread; 1795 1796 new->secondary->thread = NULL; 1797 kthread_stop_put(t); 1798 } 1799 out_mput: 1800 module_put(desc->owner); 1801 return ret; 1802 } 1803 1804 /* 1805 * Internal function to unregister an irqaction - used to free 1806 * regular and special interrupts that are part of the architecture. 1807 */ 1808 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1809 { 1810 unsigned irq = desc->irq_data.irq; 1811 struct irqaction *action, **action_ptr; 1812 unsigned long flags; 1813 1814 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1815 1816 mutex_lock(&desc->request_mutex); 1817 chip_bus_lock(desc); 1818 raw_spin_lock_irqsave(&desc->lock, flags); 1819 1820 /* 1821 * There can be multiple actions per IRQ descriptor, find the right 1822 * one based on the dev_id: 1823 */ 1824 action_ptr = &desc->action; 1825 for (;;) { 1826 action = *action_ptr; 1827 1828 if (!action) { 1829 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1830 raw_spin_unlock_irqrestore(&desc->lock, flags); 1831 chip_bus_sync_unlock(desc); 1832 mutex_unlock(&desc->request_mutex); 1833 return NULL; 1834 } 1835 1836 if (action->dev_id == dev_id) 1837 break; 1838 action_ptr = &action->next; 1839 } 1840 1841 /* Found it - now remove it from the list of entries: */ 1842 *action_ptr = action->next; 1843 1844 irq_pm_remove_action(desc, action); 1845 1846 /* If this was the last handler, shut down the IRQ line: */ 1847 if (!desc->action) { 1848 irq_settings_clr_disable_unlazy(desc); 1849 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1850 irq_shutdown(desc); 1851 } 1852 1853 #ifdef CONFIG_SMP 1854 /* make sure affinity_hint is cleaned up */ 1855 if (WARN_ON_ONCE(desc->affinity_hint)) 1856 desc->affinity_hint = NULL; 1857 #endif 1858 1859 raw_spin_unlock_irqrestore(&desc->lock, flags); 1860 /* 1861 * Drop bus_lock here so the changes which were done in the chip 1862 * callbacks above are synced out to the irq chips which hang 1863 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1864 * 1865 * Aside of that the bus_lock can also be taken from the threaded 1866 * handler in irq_finalize_oneshot() which results in a deadlock 1867 * because kthread_stop() would wait forever for the thread to 1868 * complete, which is blocked on the bus lock. 1869 * 1870 * The still held desc->request_mutex() protects against a 1871 * concurrent request_irq() of this irq so the release of resources 1872 * and timing data is properly serialized. 1873 */ 1874 chip_bus_sync_unlock(desc); 1875 1876 unregister_handler_proc(irq, action); 1877 1878 /* 1879 * Make sure it's not being used on another CPU and if the chip 1880 * supports it also make sure that there is no (not yet serviced) 1881 * interrupt in flight at the hardware level. 1882 */ 1883 __synchronize_irq(desc); 1884 1885 #ifdef CONFIG_DEBUG_SHIRQ 1886 /* 1887 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1888 * event to happen even now it's being freed, so let's make sure that 1889 * is so by doing an extra call to the handler .... 1890 * 1891 * ( We do this after actually deregistering it, to make sure that a 1892 * 'real' IRQ doesn't run in parallel with our fake. ) 1893 */ 1894 if (action->flags & IRQF_SHARED) { 1895 local_irq_save(flags); 1896 action->handler(irq, dev_id); 1897 local_irq_restore(flags); 1898 } 1899 #endif 1900 1901 /* 1902 * The action has already been removed above, but the thread writes 1903 * its oneshot mask bit when it completes. Though request_mutex is 1904 * held across this which prevents __setup_irq() from handing out 1905 * the same bit to a newly requested action. 1906 */ 1907 if (action->thread) { 1908 kthread_stop_put(action->thread); 1909 if (action->secondary && action->secondary->thread) 1910 kthread_stop_put(action->secondary->thread); 1911 } 1912 1913 /* Last action releases resources */ 1914 if (!desc->action) { 1915 /* 1916 * Reacquire bus lock as irq_release_resources() might 1917 * require it to deallocate resources over the slow bus. 1918 */ 1919 chip_bus_lock(desc); 1920 /* 1921 * There is no interrupt on the fly anymore. Deactivate it 1922 * completely. 1923 */ 1924 scoped_guard(raw_spinlock_irqsave, &desc->lock) 1925 irq_domain_deactivate_irq(&desc->irq_data); 1926 1927 irq_release_resources(desc); 1928 chip_bus_sync_unlock(desc); 1929 irq_remove_timings(desc); 1930 } 1931 1932 mutex_unlock(&desc->request_mutex); 1933 1934 irq_chip_pm_put(&desc->irq_data); 1935 module_put(desc->owner); 1936 kfree(action->secondary); 1937 return action; 1938 } 1939 1940 /** 1941 * free_irq - free an interrupt allocated with request_irq 1942 * @irq: Interrupt line to free 1943 * @dev_id: Device identity to free 1944 * 1945 * Remove an interrupt handler. The handler is removed and if the interrupt 1946 * line is no longer in use by any driver it is disabled. On a shared IRQ 1947 * the caller must ensure the interrupt is disabled on the card it drives 1948 * before calling this function. The function does not return until any 1949 * executing interrupts for this IRQ have completed. 1950 * 1951 * This function must not be called from interrupt context. 1952 * 1953 * Returns the devname argument passed to request_irq. 1954 */ 1955 const void *free_irq(unsigned int irq, void *dev_id) 1956 { 1957 struct irq_desc *desc = irq_to_desc(irq); 1958 struct irqaction *action; 1959 const char *devname; 1960 1961 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1962 return NULL; 1963 1964 #ifdef CONFIG_SMP 1965 if (WARN_ON(desc->affinity_notify)) 1966 desc->affinity_notify = NULL; 1967 #endif 1968 1969 action = __free_irq(desc, dev_id); 1970 1971 if (!action) 1972 return NULL; 1973 1974 devname = action->name; 1975 kfree(action); 1976 return devname; 1977 } 1978 EXPORT_SYMBOL(free_irq); 1979 1980 /* This function must be called with desc->lock held */ 1981 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 1982 { 1983 const char *devname = NULL; 1984 1985 desc->istate &= ~IRQS_NMI; 1986 1987 if (!WARN_ON(desc->action == NULL)) { 1988 irq_pm_remove_action(desc, desc->action); 1989 devname = desc->action->name; 1990 unregister_handler_proc(irq, desc->action); 1991 1992 kfree(desc->action); 1993 desc->action = NULL; 1994 } 1995 1996 irq_settings_clr_disable_unlazy(desc); 1997 irq_shutdown_and_deactivate(desc); 1998 1999 irq_release_resources(desc); 2000 2001 irq_chip_pm_put(&desc->irq_data); 2002 module_put(desc->owner); 2003 2004 return devname; 2005 } 2006 2007 const void *free_nmi(unsigned int irq, void *dev_id) 2008 { 2009 struct irq_desc *desc = irq_to_desc(irq); 2010 2011 if (!desc || WARN_ON(!irq_is_nmi(desc))) 2012 return NULL; 2013 2014 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2015 return NULL; 2016 2017 /* NMI still enabled */ 2018 if (WARN_ON(desc->depth == 0)) 2019 disable_nmi_nosync(irq); 2020 2021 guard(raw_spinlock_irqsave)(&desc->lock); 2022 irq_nmi_teardown(desc); 2023 return __cleanup_nmi(irq, desc); 2024 } 2025 2026 /** 2027 * request_threaded_irq - allocate an interrupt line 2028 * @irq: Interrupt line to allocate 2029 * @handler: Function to be called when the IRQ occurs. 2030 * Primary handler for threaded interrupts. 2031 * If handler is NULL and thread_fn != NULL 2032 * the default primary handler is installed. 2033 * @thread_fn: Function called from the irq handler thread 2034 * If NULL, no irq thread is created 2035 * @irqflags: Interrupt type flags 2036 * @devname: An ascii name for the claiming device 2037 * @dev_id: A cookie passed back to the handler function 2038 * 2039 * This call allocates interrupt resources and enables the interrupt line 2040 * and IRQ handling. From the point this call is made your handler function 2041 * may be invoked. Since your handler function must clear any interrupt the 2042 * board raises, you must take care both to initialise your hardware and to 2043 * set up the interrupt handler in the right order. 2044 * 2045 * If you want to set up a threaded irq handler for your device then you 2046 * need to supply @handler and @thread_fn. @handler is still called in hard 2047 * interrupt context and has to check whether the interrupt originates from 2048 * the device. If yes it needs to disable the interrupt on the device and 2049 * return IRQ_WAKE_THREAD which will wake up the handler thread and run 2050 * @thread_fn. This split handler design is necessary to support shared 2051 * interrupts. 2052 * 2053 * @dev_id must be globally unique. Normally the address of the device data 2054 * structure is used as the cookie. Since the handler receives this value 2055 * it makes sense to use it. 2056 * 2057 * If your interrupt is shared you must pass a non NULL dev_id as this is 2058 * required when freeing the interrupt. 2059 * 2060 * Flags: 2061 * 2062 * IRQF_SHARED Interrupt is shared 2063 * IRQF_TRIGGER_* Specify active edge(s) or level 2064 * IRQF_ONESHOT Run thread_fn with interrupt line masked 2065 */ 2066 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2067 irq_handler_t thread_fn, unsigned long irqflags, 2068 const char *devname, void *dev_id) 2069 { 2070 struct irqaction *action; 2071 struct irq_desc *desc; 2072 int retval; 2073 2074 if (irq == IRQ_NOTCONNECTED) 2075 return -ENOTCONN; 2076 2077 /* 2078 * Sanity-check: shared interrupts must pass in a real dev-ID, 2079 * otherwise we'll have trouble later trying to figure out 2080 * which interrupt is which (messes up the interrupt freeing 2081 * logic etc). 2082 * 2083 * Also shared interrupts do not go well with disabling auto enable. 2084 * The sharing interrupt might request it while it's still disabled 2085 * and then wait for interrupts forever. 2086 * 2087 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2088 * it cannot be set along with IRQF_NO_SUSPEND. 2089 */ 2090 if (((irqflags & IRQF_SHARED) && !dev_id) || 2091 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2092 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2093 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2094 return -EINVAL; 2095 2096 desc = irq_to_desc(irq); 2097 if (!desc) 2098 return -EINVAL; 2099 2100 if (!irq_settings_can_request(desc) || 2101 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2102 return -EINVAL; 2103 2104 if (!handler) { 2105 if (!thread_fn) 2106 return -EINVAL; 2107 handler = irq_default_primary_handler; 2108 } 2109 2110 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2111 if (!action) 2112 return -ENOMEM; 2113 2114 action->handler = handler; 2115 action->thread_fn = thread_fn; 2116 action->flags = irqflags; 2117 action->name = devname; 2118 action->dev_id = dev_id; 2119 2120 retval = irq_chip_pm_get(&desc->irq_data); 2121 if (retval < 0) { 2122 kfree(action); 2123 return retval; 2124 } 2125 2126 retval = __setup_irq(irq, desc, action); 2127 2128 if (retval) { 2129 irq_chip_pm_put(&desc->irq_data); 2130 kfree(action->secondary); 2131 kfree(action); 2132 } 2133 2134 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2135 if (!retval && (irqflags & IRQF_SHARED)) { 2136 /* 2137 * It's a shared IRQ -- the driver ought to be prepared for it 2138 * to happen immediately, so let's make sure.... 2139 * We disable the irq to make sure that a 'real' IRQ doesn't 2140 * run in parallel with our fake. 2141 */ 2142 unsigned long flags; 2143 2144 disable_irq(irq); 2145 local_irq_save(flags); 2146 2147 handler(irq, dev_id); 2148 2149 local_irq_restore(flags); 2150 enable_irq(irq); 2151 } 2152 #endif 2153 return retval; 2154 } 2155 EXPORT_SYMBOL(request_threaded_irq); 2156 2157 /** 2158 * request_any_context_irq - allocate an interrupt line 2159 * @irq: Interrupt line to allocate 2160 * @handler: Function to be called when the IRQ occurs. 2161 * Threaded handler for threaded interrupts. 2162 * @flags: Interrupt type flags 2163 * @name: An ascii name for the claiming device 2164 * @dev_id: A cookie passed back to the handler function 2165 * 2166 * This call allocates interrupt resources and enables the interrupt line 2167 * and IRQ handling. It selects either a hardirq or threaded handling 2168 * method depending on the context. 2169 * 2170 * Returns: On failure, it returns a negative value. On success, it returns either 2171 * IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2172 */ 2173 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2174 unsigned long flags, const char *name, void *dev_id) 2175 { 2176 struct irq_desc *desc; 2177 int ret; 2178 2179 if (irq == IRQ_NOTCONNECTED) 2180 return -ENOTCONN; 2181 2182 desc = irq_to_desc(irq); 2183 if (!desc) 2184 return -EINVAL; 2185 2186 if (irq_settings_is_nested_thread(desc)) { 2187 ret = request_threaded_irq(irq, NULL, handler, 2188 flags, name, dev_id); 2189 return !ret ? IRQC_IS_NESTED : ret; 2190 } 2191 2192 ret = request_irq(irq, handler, flags, name, dev_id); 2193 return !ret ? IRQC_IS_HARDIRQ : ret; 2194 } 2195 EXPORT_SYMBOL_GPL(request_any_context_irq); 2196 2197 /** 2198 * request_nmi - allocate an interrupt line for NMI delivery 2199 * @irq: Interrupt line to allocate 2200 * @handler: Function to be called when the IRQ occurs. 2201 * Threaded handler for threaded interrupts. 2202 * @irqflags: Interrupt type flags 2203 * @name: An ascii name for the claiming device 2204 * @dev_id: A cookie passed back to the handler function 2205 * 2206 * This call allocates interrupt resources and enables the interrupt line 2207 * and IRQ handling. It sets up the IRQ line to be handled as an NMI. 2208 * 2209 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2210 * cannot be threaded. 2211 * 2212 * Interrupt lines requested for NMI delivering must produce per cpu 2213 * interrupts and have auto enabling setting disabled. 2214 * 2215 * @dev_id must be globally unique. Normally the address of the device data 2216 * structure is used as the cookie. Since the handler receives this value 2217 * it makes sense to use it. 2218 * 2219 * If the interrupt line cannot be used to deliver NMIs, function will fail 2220 * and return a negative value. 2221 */ 2222 int request_nmi(unsigned int irq, irq_handler_t handler, 2223 unsigned long irqflags, const char *name, void *dev_id) 2224 { 2225 struct irqaction *action; 2226 struct irq_desc *desc; 2227 int retval; 2228 2229 if (irq == IRQ_NOTCONNECTED) 2230 return -ENOTCONN; 2231 2232 /* NMI cannot be shared, used for Polling */ 2233 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2234 return -EINVAL; 2235 2236 if (!(irqflags & IRQF_PERCPU)) 2237 return -EINVAL; 2238 2239 if (!handler) 2240 return -EINVAL; 2241 2242 desc = irq_to_desc(irq); 2243 2244 if (!desc || (irq_settings_can_autoenable(desc) && 2245 !(irqflags & IRQF_NO_AUTOEN)) || 2246 !irq_settings_can_request(desc) || 2247 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2248 !irq_supports_nmi(desc)) 2249 return -EINVAL; 2250 2251 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2252 if (!action) 2253 return -ENOMEM; 2254 2255 action->handler = handler; 2256 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2257 action->name = name; 2258 action->dev_id = dev_id; 2259 2260 retval = irq_chip_pm_get(&desc->irq_data); 2261 if (retval < 0) 2262 goto err_out; 2263 2264 retval = __setup_irq(irq, desc, action); 2265 if (retval) 2266 goto err_irq_setup; 2267 2268 scoped_guard(raw_spinlock_irqsave, &desc->lock) { 2269 /* Setup NMI state */ 2270 desc->istate |= IRQS_NMI; 2271 retval = irq_nmi_setup(desc); 2272 if (retval) { 2273 __cleanup_nmi(irq, desc); 2274 return -EINVAL; 2275 } 2276 return 0; 2277 } 2278 2279 err_irq_setup: 2280 irq_chip_pm_put(&desc->irq_data); 2281 err_out: 2282 kfree(action); 2283 2284 return retval; 2285 } 2286 2287 void enable_percpu_irq(unsigned int irq, unsigned int type) 2288 { 2289 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) { 2290 struct irq_desc *desc = scoped_irqdesc; 2291 2292 /* 2293 * If the trigger type is not specified by the caller, then 2294 * use the default for this interrupt. 2295 */ 2296 type &= IRQ_TYPE_SENSE_MASK; 2297 if (type == IRQ_TYPE_NONE) 2298 type = irqd_get_trigger_type(&desc->irq_data); 2299 2300 if (type != IRQ_TYPE_NONE) { 2301 if (__irq_set_trigger(desc, type)) { 2302 WARN(1, "failed to set type for IRQ%d\n", irq); 2303 return; 2304 } 2305 } 2306 irq_percpu_enable(desc, smp_processor_id()); 2307 } 2308 } 2309 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2310 2311 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2312 { 2313 enable_percpu_irq(irq, type); 2314 } 2315 2316 /** 2317 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2318 * @irq: Linux irq number to check for 2319 * 2320 * Must be called from a non migratable context. Returns the enable 2321 * state of a per cpu interrupt on the current cpu. 2322 */ 2323 bool irq_percpu_is_enabled(unsigned int irq) 2324 { 2325 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) 2326 return cpumask_test_cpu(smp_processor_id(), scoped_irqdesc->percpu_enabled); 2327 return false; 2328 } 2329 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2330 2331 void disable_percpu_irq(unsigned int irq) 2332 { 2333 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) 2334 irq_percpu_disable(scoped_irqdesc, smp_processor_id()); 2335 } 2336 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2337 2338 void disable_percpu_nmi(unsigned int irq) 2339 { 2340 disable_percpu_irq(irq); 2341 } 2342 2343 /* 2344 * Internal function to unregister a percpu irqaction. 2345 */ 2346 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2347 { 2348 struct irq_desc *desc = irq_to_desc(irq); 2349 struct irqaction *action; 2350 2351 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2352 2353 if (!desc) 2354 return NULL; 2355 2356 scoped_guard(raw_spinlock_irqsave, &desc->lock) { 2357 action = desc->action; 2358 if (!action || action->percpu_dev_id != dev_id) { 2359 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2360 return NULL; 2361 } 2362 2363 if (!cpumask_empty(desc->percpu_enabled)) { 2364 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2365 irq, cpumask_first(desc->percpu_enabled)); 2366 return NULL; 2367 } 2368 2369 /* Found it - now remove it from the list of entries: */ 2370 desc->action = NULL; 2371 desc->istate &= ~IRQS_NMI; 2372 } 2373 2374 unregister_handler_proc(irq, action); 2375 irq_chip_pm_put(&desc->irq_data); 2376 module_put(desc->owner); 2377 return action; 2378 } 2379 2380 /** 2381 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2382 * @irq: Interrupt line to free 2383 * @dev_id: Device identity to free 2384 * 2385 * Remove a percpu interrupt handler. The handler is removed, but the 2386 * interrupt line is not disabled. This must be done on each CPU before 2387 * calling this function. The function does not return until any executing 2388 * interrupts for this IRQ have completed. 2389 * 2390 * This function must not be called from interrupt context. 2391 */ 2392 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2393 { 2394 struct irq_desc *desc = irq_to_desc(irq); 2395 2396 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2397 return; 2398 2399 chip_bus_lock(desc); 2400 kfree(__free_percpu_irq(irq, dev_id)); 2401 chip_bus_sync_unlock(desc); 2402 } 2403 EXPORT_SYMBOL_GPL(free_percpu_irq); 2404 2405 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2406 { 2407 struct irq_desc *desc = irq_to_desc(irq); 2408 2409 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2410 return; 2411 2412 if (WARN_ON(!irq_is_nmi(desc))) 2413 return; 2414 2415 kfree(__free_percpu_irq(irq, dev_id)); 2416 } 2417 2418 /** 2419 * setup_percpu_irq - setup a per-cpu interrupt 2420 * @irq: Interrupt line to setup 2421 * @act: irqaction for the interrupt 2422 * 2423 * Used to statically setup per-cpu interrupts in the early boot process. 2424 */ 2425 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2426 { 2427 struct irq_desc *desc = irq_to_desc(irq); 2428 int retval; 2429 2430 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2431 return -EINVAL; 2432 2433 retval = irq_chip_pm_get(&desc->irq_data); 2434 if (retval < 0) 2435 return retval; 2436 2437 retval = __setup_irq(irq, desc, act); 2438 2439 if (retval) 2440 irq_chip_pm_put(&desc->irq_data); 2441 2442 return retval; 2443 } 2444 2445 /** 2446 * __request_percpu_irq - allocate a percpu interrupt line 2447 * @irq: Interrupt line to allocate 2448 * @handler: Function to be called when the IRQ occurs. 2449 * @flags: Interrupt type flags (IRQF_TIMER only) 2450 * @devname: An ascii name for the claiming device 2451 * @dev_id: A percpu cookie passed back to the handler function 2452 * 2453 * This call allocates interrupt resources and enables the interrupt on the 2454 * local CPU. If the interrupt is supposed to be enabled on other CPUs, it 2455 * has to be done on each CPU using enable_percpu_irq(). 2456 * 2457 * @dev_id must be globally unique. It is a per-cpu variable, and 2458 * the handler gets called with the interrupted CPU's instance of 2459 * that variable. 2460 */ 2461 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2462 unsigned long flags, const char *devname, 2463 void __percpu *dev_id) 2464 { 2465 struct irqaction *action; 2466 struct irq_desc *desc; 2467 int retval; 2468 2469 if (!dev_id) 2470 return -EINVAL; 2471 2472 desc = irq_to_desc(irq); 2473 if (!desc || !irq_settings_can_request(desc) || 2474 !irq_settings_is_per_cpu_devid(desc)) 2475 return -EINVAL; 2476 2477 if (flags && flags != IRQF_TIMER) 2478 return -EINVAL; 2479 2480 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2481 if (!action) 2482 return -ENOMEM; 2483 2484 action->handler = handler; 2485 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2486 action->name = devname; 2487 action->percpu_dev_id = dev_id; 2488 2489 retval = irq_chip_pm_get(&desc->irq_data); 2490 if (retval < 0) { 2491 kfree(action); 2492 return retval; 2493 } 2494 2495 retval = __setup_irq(irq, desc, action); 2496 2497 if (retval) { 2498 irq_chip_pm_put(&desc->irq_data); 2499 kfree(action); 2500 } 2501 2502 return retval; 2503 } 2504 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2505 2506 /** 2507 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2508 * @irq: Interrupt line to allocate 2509 * @handler: Function to be called when the IRQ occurs. 2510 * @name: An ascii name for the claiming device 2511 * @dev_id: A percpu cookie passed back to the handler function 2512 * 2513 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2514 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2515 * being enabled on the same CPU by using enable_percpu_nmi(). 2516 * 2517 * @dev_id must be globally unique. It is a per-cpu variable, and the 2518 * handler gets called with the interrupted CPU's instance of that 2519 * variable. 2520 * 2521 * Interrupt lines requested for NMI delivering should have auto enabling 2522 * setting disabled. 2523 * 2524 * If the interrupt line cannot be used to deliver NMIs, function 2525 * will fail returning a negative value. 2526 */ 2527 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2528 const char *name, void __percpu *dev_id) 2529 { 2530 struct irqaction *action; 2531 struct irq_desc *desc; 2532 int retval; 2533 2534 if (!handler) 2535 return -EINVAL; 2536 2537 desc = irq_to_desc(irq); 2538 2539 if (!desc || !irq_settings_can_request(desc) || 2540 !irq_settings_is_per_cpu_devid(desc) || 2541 irq_settings_can_autoenable(desc) || 2542 !irq_supports_nmi(desc)) 2543 return -EINVAL; 2544 2545 /* The line cannot already be NMI */ 2546 if (irq_is_nmi(desc)) 2547 return -EINVAL; 2548 2549 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2550 if (!action) 2551 return -ENOMEM; 2552 2553 action->handler = handler; 2554 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2555 | IRQF_NOBALANCING; 2556 action->name = name; 2557 action->percpu_dev_id = dev_id; 2558 2559 retval = irq_chip_pm_get(&desc->irq_data); 2560 if (retval < 0) 2561 goto err_out; 2562 2563 retval = __setup_irq(irq, desc, action); 2564 if (retval) 2565 goto err_irq_setup; 2566 2567 scoped_guard(raw_spinlock_irqsave, &desc->lock) 2568 desc->istate |= IRQS_NMI; 2569 return 0; 2570 2571 err_irq_setup: 2572 irq_chip_pm_put(&desc->irq_data); 2573 err_out: 2574 kfree(action); 2575 2576 return retval; 2577 } 2578 2579 /** 2580 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2581 * @irq: Interrupt line to prepare for NMI delivery 2582 * 2583 * This call prepares an interrupt line to deliver NMI on the current CPU, 2584 * before that interrupt line gets enabled with enable_percpu_nmi(). 2585 * 2586 * As a CPU local operation, this should be called from non-preemptible 2587 * context. 2588 * 2589 * If the interrupt line cannot be used to deliver NMIs, function will fail 2590 * returning a negative value. 2591 */ 2592 int prepare_percpu_nmi(unsigned int irq) 2593 { 2594 int ret = -EINVAL; 2595 2596 WARN_ON(preemptible()); 2597 2598 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) { 2599 if (WARN(!irq_is_nmi(scoped_irqdesc), 2600 "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", irq)) 2601 return -EINVAL; 2602 2603 ret = irq_nmi_setup(scoped_irqdesc); 2604 if (ret) 2605 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2606 } 2607 return ret; 2608 } 2609 2610 /** 2611 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2612 * @irq: Interrupt line from which CPU local NMI configuration should be removed 2613 * 2614 * This call undoes the setup done by prepare_percpu_nmi(). 2615 * 2616 * IRQ line should not be enabled for the current CPU. 2617 * As a CPU local operation, this should be called from non-preemptible 2618 * context. 2619 */ 2620 void teardown_percpu_nmi(unsigned int irq) 2621 { 2622 WARN_ON(preemptible()); 2623 2624 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) { 2625 if (WARN_ON(!irq_is_nmi(scoped_irqdesc))) 2626 return; 2627 irq_nmi_teardown(scoped_irqdesc); 2628 } 2629 } 2630 2631 static int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, bool *state) 2632 { 2633 struct irq_chip *chip; 2634 int err = -EINVAL; 2635 2636 do { 2637 chip = irq_data_get_irq_chip(data); 2638 if (WARN_ON_ONCE(!chip)) 2639 return -ENODEV; 2640 if (chip->irq_get_irqchip_state) 2641 break; 2642 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2643 data = data->parent_data; 2644 #else 2645 data = NULL; 2646 #endif 2647 } while (data); 2648 2649 if (data) 2650 err = chip->irq_get_irqchip_state(data, which, state); 2651 return err; 2652 } 2653 2654 /** 2655 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2656 * @irq: Interrupt line that is forwarded to a VM 2657 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2658 * @state: a pointer to a boolean where the state is to be stored 2659 * 2660 * This call snapshots the internal irqchip state of an interrupt, 2661 * returning into @state the bit corresponding to stage @which 2662 * 2663 * This function should be called with preemption disabled if the interrupt 2664 * controller has per-cpu registers. 2665 */ 2666 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool *state) 2667 { 2668 scoped_irqdesc_get_and_buslock(irq, 0) { 2669 struct irq_data *data = irq_desc_get_irq_data(scoped_irqdesc); 2670 2671 return __irq_get_irqchip_state(data, which, state); 2672 } 2673 return -EINVAL; 2674 } 2675 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2676 2677 /** 2678 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2679 * @irq: Interrupt line that is forwarded to a VM 2680 * @which: State to be restored (one of IRQCHIP_STATE_*) 2681 * @val: Value corresponding to @which 2682 * 2683 * This call sets the internal irqchip state of an interrupt, depending on 2684 * the value of @which. 2685 * 2686 * This function should be called with migration disabled if the interrupt 2687 * controller has per-cpu registers. 2688 */ 2689 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool val) 2690 { 2691 scoped_irqdesc_get_and_buslock(irq, 0) { 2692 struct irq_data *data = irq_desc_get_irq_data(scoped_irqdesc); 2693 struct irq_chip *chip; 2694 2695 do { 2696 chip = irq_data_get_irq_chip(data); 2697 2698 if (WARN_ON_ONCE(!chip)) 2699 return -ENODEV; 2700 2701 if (chip->irq_set_irqchip_state) 2702 break; 2703 2704 data = irqd_get_parent_data(data); 2705 } while (data); 2706 2707 if (data) 2708 return chip->irq_set_irqchip_state(data, which, val); 2709 } 2710 return -EINVAL; 2711 } 2712 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2713 2714 /** 2715 * irq_has_action - Check whether an interrupt is requested 2716 * @irq: The linux irq number 2717 * 2718 * Returns: A snapshot of the current state 2719 */ 2720 bool irq_has_action(unsigned int irq) 2721 { 2722 bool res; 2723 2724 rcu_read_lock(); 2725 res = irq_desc_has_action(irq_to_desc(irq)); 2726 rcu_read_unlock(); 2727 return res; 2728 } 2729 EXPORT_SYMBOL_GPL(irq_has_action); 2730 2731 /** 2732 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2733 * @irq: The linux irq number 2734 * @bitmask: The bitmask to evaluate 2735 * 2736 * Returns: True if one of the bits in @bitmask is set 2737 */ 2738 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2739 { 2740 struct irq_desc *desc; 2741 bool res = false; 2742 2743 rcu_read_lock(); 2744 desc = irq_to_desc(irq); 2745 if (desc) 2746 res = !!(desc->status_use_accessors & bitmask); 2747 rcu_read_unlock(); 2748 return res; 2749 } 2750 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2751