1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018-2020 Christoph Hellwig. 4 * 5 * DMA operations that map physical memory directly without using an IOMMU. 6 */ 7 #include <linux/memblock.h> /* for max_pfn */ 8 #include <linux/export.h> 9 #include <linux/mm.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/scatterlist.h> 12 #include <linux/pfn.h> 13 #include <linux/vmalloc.h> 14 #include <linux/set_memory.h> 15 #include <linux/slab.h> 16 #include <linux/pci-p2pdma.h> 17 #include "direct.h" 18 19 /* 20 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use 21 * it for entirely different regions. In that case the arch code needs to 22 * override the variable below for dma-direct to work properly. 23 */ 24 u64 zone_dma_limit __ro_after_init = DMA_BIT_MASK(24); 25 26 static inline dma_addr_t phys_to_dma_direct(struct device *dev, 27 phys_addr_t phys) 28 { 29 if (force_dma_unencrypted(dev)) 30 return phys_to_dma_unencrypted(dev, phys); 31 return phys_to_dma(dev, phys); 32 } 33 34 static inline struct page *dma_direct_to_page(struct device *dev, 35 dma_addr_t dma_addr) 36 { 37 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); 38 } 39 40 u64 dma_direct_get_required_mask(struct device *dev) 41 { 42 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; 43 u64 max_dma = phys_to_dma_direct(dev, phys); 44 45 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; 46 } 47 48 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit) 49 { 50 u64 dma_limit = min_not_zero( 51 dev->coherent_dma_mask, 52 dev->bus_dma_limit); 53 54 /* 55 * Optimistically try the zone that the physical address mask falls 56 * into first. If that returns memory that isn't actually addressable 57 * we will fallback to the next lower zone and try again. 58 * 59 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding 60 * zones. 61 */ 62 *phys_limit = dma_to_phys(dev, dma_limit); 63 if (*phys_limit <= zone_dma_limit) 64 return GFP_DMA; 65 if (*phys_limit <= DMA_BIT_MASK(32)) 66 return GFP_DMA32; 67 return 0; 68 } 69 70 bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) 71 { 72 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); 73 74 if (dma_addr == DMA_MAPPING_ERROR) 75 return false; 76 return dma_addr + size - 1 <= 77 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); 78 } 79 80 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size) 81 { 82 if (!force_dma_unencrypted(dev)) 83 return 0; 84 return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size)); 85 } 86 87 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size) 88 { 89 int ret; 90 91 if (!force_dma_unencrypted(dev)) 92 return 0; 93 ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size)); 94 if (ret) 95 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n"); 96 return ret; 97 } 98 99 static void __dma_direct_free_pages(struct device *dev, struct page *page, 100 size_t size) 101 { 102 if (swiotlb_free(dev, page, size)) 103 return; 104 dma_free_contiguous(dev, page, size); 105 } 106 107 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size) 108 { 109 struct page *page = swiotlb_alloc(dev, size); 110 111 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 112 swiotlb_free(dev, page, size); 113 return NULL; 114 } 115 116 return page; 117 } 118 119 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, 120 gfp_t gfp, bool allow_highmem) 121 { 122 int node = dev_to_node(dev); 123 struct page *page = NULL; 124 u64 phys_limit; 125 126 WARN_ON_ONCE(!PAGE_ALIGNED(size)); 127 128 if (is_swiotlb_for_alloc(dev)) 129 return dma_direct_alloc_swiotlb(dev, size); 130 131 gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit); 132 page = dma_alloc_contiguous(dev, size, gfp); 133 if (page) { 134 if (!dma_coherent_ok(dev, page_to_phys(page), size) || 135 (!allow_highmem && PageHighMem(page))) { 136 dma_free_contiguous(dev, page, size); 137 page = NULL; 138 } 139 } 140 again: 141 if (!page) 142 page = alloc_pages_node(node, gfp, get_order(size)); 143 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 144 __free_pages(page, get_order(size)); 145 page = NULL; 146 147 if (IS_ENABLED(CONFIG_ZONE_DMA32) && 148 phys_limit < DMA_BIT_MASK(64) && 149 !(gfp & (GFP_DMA32 | GFP_DMA))) { 150 gfp |= GFP_DMA32; 151 goto again; 152 } 153 154 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { 155 gfp = (gfp & ~GFP_DMA32) | GFP_DMA; 156 goto again; 157 } 158 } 159 160 return page; 161 } 162 163 /* 164 * Check if a potentially blocking operations needs to dip into the atomic 165 * pools for the given device/gfp. 166 */ 167 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp) 168 { 169 return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev); 170 } 171 172 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, 173 dma_addr_t *dma_handle, gfp_t gfp) 174 { 175 struct page *page; 176 u64 phys_limit; 177 void *ret; 178 179 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))) 180 return NULL; 181 182 gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit); 183 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); 184 if (!page) 185 return NULL; 186 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 187 return ret; 188 } 189 190 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size, 191 dma_addr_t *dma_handle, gfp_t gfp) 192 { 193 struct page *page; 194 195 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); 196 if (!page) 197 return NULL; 198 199 /* remove any dirty cache lines on the kernel alias */ 200 if (!PageHighMem(page)) 201 arch_dma_prep_coherent(page, size); 202 203 /* return the page pointer as the opaque cookie */ 204 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 205 return page; 206 } 207 208 void *dma_direct_alloc(struct device *dev, size_t size, 209 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 210 { 211 bool remap = false, set_uncached = false; 212 struct page *page; 213 void *ret; 214 215 size = PAGE_ALIGN(size); 216 if (attrs & DMA_ATTR_NO_WARN) 217 gfp |= __GFP_NOWARN; 218 219 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 220 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) 221 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp); 222 223 if (!dev_is_dma_coherent(dev)) { 224 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) && 225 !is_swiotlb_for_alloc(dev)) 226 return arch_dma_alloc(dev, size, dma_handle, gfp, 227 attrs); 228 229 /* 230 * If there is a global pool, always allocate from it for 231 * non-coherent devices. 232 */ 233 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL)) 234 return dma_alloc_from_global_coherent(dev, size, 235 dma_handle); 236 237 /* 238 * Otherwise we require the architecture to either be able to 239 * mark arbitrary parts of the kernel direct mapping uncached, 240 * or remapped it uncached. 241 */ 242 set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED); 243 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP); 244 if (!set_uncached && !remap) { 245 pr_warn_once("coherent DMA allocations not supported on this platform.\n"); 246 return NULL; 247 } 248 } 249 250 /* 251 * Remapping or decrypting memory may block, allocate the memory from 252 * the atomic pools instead if we aren't allowed block. 253 */ 254 if ((remap || force_dma_unencrypted(dev)) && 255 dma_direct_use_pool(dev, gfp)) 256 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); 257 258 /* we always manually zero the memory once we are done */ 259 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); 260 if (!page) 261 return NULL; 262 263 /* 264 * dma_alloc_contiguous can return highmem pages depending on a 265 * combination the cma= arguments and per-arch setup. These need to be 266 * remapped to return a kernel virtual address. 267 */ 268 if (PageHighMem(page)) { 269 remap = true; 270 set_uncached = false; 271 } 272 273 if (remap) { 274 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 275 276 if (force_dma_unencrypted(dev)) 277 prot = pgprot_decrypted(prot); 278 279 /* remove any dirty cache lines on the kernel alias */ 280 arch_dma_prep_coherent(page, size); 281 282 /* create a coherent mapping */ 283 ret = dma_common_contiguous_remap(page, size, prot, 284 __builtin_return_address(0)); 285 if (!ret) 286 goto out_free_pages; 287 } else { 288 ret = page_address(page); 289 if (dma_set_decrypted(dev, ret, size)) 290 goto out_leak_pages; 291 } 292 293 memset(ret, 0, size); 294 295 if (set_uncached) { 296 arch_dma_prep_coherent(page, size); 297 ret = arch_dma_set_uncached(ret, size); 298 if (IS_ERR(ret)) 299 goto out_encrypt_pages; 300 } 301 302 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 303 return ret; 304 305 out_encrypt_pages: 306 if (dma_set_encrypted(dev, page_address(page), size)) 307 return NULL; 308 out_free_pages: 309 __dma_direct_free_pages(dev, page, size); 310 return NULL; 311 out_leak_pages: 312 return NULL; 313 } 314 315 void dma_direct_free(struct device *dev, size_t size, 316 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) 317 { 318 unsigned int page_order = get_order(size); 319 320 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 321 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) { 322 /* cpu_addr is a struct page cookie, not a kernel address */ 323 dma_free_contiguous(dev, cpu_addr, size); 324 return; 325 } 326 327 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) && 328 !dev_is_dma_coherent(dev) && 329 !is_swiotlb_for_alloc(dev)) { 330 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); 331 return; 332 } 333 334 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && 335 !dev_is_dma_coherent(dev)) { 336 if (!dma_release_from_global_coherent(page_order, cpu_addr)) 337 WARN_ON_ONCE(1); 338 return; 339 } 340 341 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ 342 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 343 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) 344 return; 345 346 if (is_vmalloc_addr(cpu_addr)) { 347 vunmap(cpu_addr); 348 } else { 349 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) 350 arch_dma_clear_uncached(cpu_addr, size); 351 if (dma_set_encrypted(dev, cpu_addr, size)) 352 return; 353 } 354 355 __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size); 356 } 357 358 struct page *dma_direct_alloc_pages(struct device *dev, size_t size, 359 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 360 { 361 struct page *page; 362 void *ret; 363 364 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) 365 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); 366 367 page = __dma_direct_alloc_pages(dev, size, gfp, false); 368 if (!page) 369 return NULL; 370 371 ret = page_address(page); 372 if (dma_set_decrypted(dev, ret, size)) 373 goto out_leak_pages; 374 memset(ret, 0, size); 375 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 376 return page; 377 out_leak_pages: 378 return NULL; 379 } 380 381 void dma_direct_free_pages(struct device *dev, size_t size, 382 struct page *page, dma_addr_t dma_addr, 383 enum dma_data_direction dir) 384 { 385 void *vaddr = page_address(page); 386 387 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ 388 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 389 dma_free_from_pool(dev, vaddr, size)) 390 return; 391 392 if (dma_set_encrypted(dev, vaddr, size)) 393 return; 394 __dma_direct_free_pages(dev, page, size); 395 } 396 397 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 398 defined(CONFIG_SWIOTLB) 399 void dma_direct_sync_sg_for_device(struct device *dev, 400 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 401 { 402 struct scatterlist *sg; 403 int i; 404 405 for_each_sg(sgl, sg, nents, i) { 406 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 407 408 swiotlb_sync_single_for_device(dev, paddr, sg->length, dir); 409 410 if (!dev_is_dma_coherent(dev)) 411 arch_sync_dma_for_device(paddr, sg->length, 412 dir); 413 } 414 } 415 #endif 416 417 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 418 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ 419 defined(CONFIG_SWIOTLB) 420 void dma_direct_sync_sg_for_cpu(struct device *dev, 421 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 422 { 423 struct scatterlist *sg; 424 int i; 425 426 for_each_sg(sgl, sg, nents, i) { 427 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 428 429 if (!dev_is_dma_coherent(dev)) 430 arch_sync_dma_for_cpu(paddr, sg->length, dir); 431 432 swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir); 433 434 if (dir == DMA_FROM_DEVICE) 435 arch_dma_mark_clean(paddr, sg->length); 436 } 437 438 if (!dev_is_dma_coherent(dev)) 439 arch_sync_dma_for_cpu_all(); 440 } 441 442 /* 443 * Unmaps segments, except for ones marked as pci_p2pdma which do not 444 * require any further action as they contain a bus address. 445 */ 446 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, 447 int nents, enum dma_data_direction dir, unsigned long attrs) 448 { 449 struct scatterlist *sg; 450 int i; 451 452 for_each_sg(sgl, sg, nents, i) { 453 if (sg_dma_is_bus_address(sg)) 454 sg_dma_unmark_bus_address(sg); 455 else 456 dma_direct_unmap_page(dev, sg->dma_address, 457 sg_dma_len(sg), dir, attrs); 458 } 459 } 460 #endif 461 462 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, 463 enum dma_data_direction dir, unsigned long attrs) 464 { 465 struct pci_p2pdma_map_state p2pdma_state = {}; 466 struct scatterlist *sg; 467 int i, ret; 468 469 for_each_sg(sgl, sg, nents, i) { 470 switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(sg))) { 471 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 472 /* 473 * Any P2P mapping that traverses the PCI host bridge 474 * must be mapped with CPU physical address and not PCI 475 * bus addresses. 476 */ 477 break; 478 case PCI_P2PDMA_MAP_NONE: 479 sg->dma_address = dma_direct_map_page(dev, sg_page(sg), 480 sg->offset, sg->length, dir, attrs); 481 if (sg->dma_address == DMA_MAPPING_ERROR) { 482 ret = -EIO; 483 goto out_unmap; 484 } 485 break; 486 case PCI_P2PDMA_MAP_BUS_ADDR: 487 sg->dma_address = pci_p2pdma_bus_addr_map(&p2pdma_state, 488 sg_phys(sg)); 489 sg_dma_mark_bus_address(sg); 490 continue; 491 default: 492 ret = -EREMOTEIO; 493 goto out_unmap; 494 } 495 sg_dma_len(sg) = sg->length; 496 } 497 498 return nents; 499 500 out_unmap: 501 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 502 return ret; 503 } 504 505 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, 506 size_t size, enum dma_data_direction dir, unsigned long attrs) 507 { 508 dma_addr_t dma_addr = paddr; 509 510 if (unlikely(!dma_capable(dev, dma_addr, size, false))) { 511 dev_err_once(dev, 512 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 513 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 514 WARN_ON_ONCE(1); 515 return DMA_MAPPING_ERROR; 516 } 517 518 return dma_addr; 519 } 520 521 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, 522 void *cpu_addr, dma_addr_t dma_addr, size_t size, 523 unsigned long attrs) 524 { 525 struct page *page = dma_direct_to_page(dev, dma_addr); 526 int ret; 527 528 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 529 if (!ret) 530 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 531 return ret; 532 } 533 534 bool dma_direct_can_mmap(struct device *dev) 535 { 536 return dev_is_dma_coherent(dev) || 537 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); 538 } 539 540 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, 541 void *cpu_addr, dma_addr_t dma_addr, size_t size, 542 unsigned long attrs) 543 { 544 unsigned long user_count = vma_pages(vma); 545 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 546 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); 547 int ret = -ENXIO; 548 549 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 550 if (force_dma_unencrypted(dev)) 551 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot); 552 553 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 554 return ret; 555 if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret)) 556 return ret; 557 558 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) 559 return -ENXIO; 560 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, 561 user_count << PAGE_SHIFT, vma->vm_page_prot); 562 } 563 564 int dma_direct_supported(struct device *dev, u64 mask) 565 { 566 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; 567 568 /* 569 * Because 32-bit DMA masks are so common we expect every architecture 570 * to be able to satisfy them - either by not supporting more physical 571 * memory, or by providing a ZONE_DMA32. If neither is the case, the 572 * architecture needs to use an IOMMU instead of the direct mapping. 573 */ 574 if (mask >= DMA_BIT_MASK(32)) 575 return 1; 576 577 /* 578 * This check needs to be against the actual bit mask value, so use 579 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't 580 * part of the check. 581 */ 582 if (IS_ENABLED(CONFIG_ZONE_DMA)) 583 min_mask = min_t(u64, min_mask, zone_dma_limit); 584 return mask >= phys_to_dma_unencrypted(dev, min_mask); 585 } 586 587 static const struct bus_dma_region *dma_find_range(struct device *dev, 588 unsigned long start_pfn) 589 { 590 const struct bus_dma_region *m; 591 592 for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) { 593 unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start); 594 595 if (start_pfn >= cpu_start_pfn && 596 start_pfn - cpu_start_pfn < PFN_DOWN(m->size)) 597 return m; 598 } 599 600 return NULL; 601 } 602 603 /* 604 * To check whether all ram resource ranges are covered by dma range map 605 * Returns 0 when further check is needed 606 * Returns 1 if there is some RAM range can't be covered by dma_range_map 607 */ 608 static int check_ram_in_range_map(unsigned long start_pfn, 609 unsigned long nr_pages, void *data) 610 { 611 unsigned long end_pfn = start_pfn + nr_pages; 612 struct device *dev = data; 613 614 while (start_pfn < end_pfn) { 615 const struct bus_dma_region *bdr; 616 617 bdr = dma_find_range(dev, start_pfn); 618 if (!bdr) 619 return 1; 620 621 start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size); 622 } 623 624 return 0; 625 } 626 627 bool dma_direct_all_ram_mapped(struct device *dev) 628 { 629 if (!dev->dma_range_map) 630 return true; 631 return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev, 632 check_ram_in_range_map); 633 } 634 635 size_t dma_direct_max_mapping_size(struct device *dev) 636 { 637 /* If SWIOTLB is active, use its maximum mapping size */ 638 if (is_swiotlb_active(dev) && 639 (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev))) 640 return swiotlb_max_mapping_size(dev); 641 return SIZE_MAX; 642 } 643 644 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) 645 { 646 return !dev_is_dma_coherent(dev) || 647 swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr)); 648 } 649 650 /** 651 * dma_direct_set_offset - Assign scalar offset for a single DMA range. 652 * @dev: device pointer; needed to "own" the alloced memory. 653 * @cpu_start: beginning of memory region covered by this offset. 654 * @dma_start: beginning of DMA/PCI region covered by this offset. 655 * @size: size of the region. 656 * 657 * This is for the simple case of a uniform offset which cannot 658 * be discovered by "dma-ranges". 659 * 660 * It returns -ENOMEM if out of memory, -EINVAL if a map 661 * already exists, 0 otherwise. 662 * 663 * Note: any call to this from a driver is a bug. The mapping needs 664 * to be described by the device tree or other firmware interfaces. 665 */ 666 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, 667 dma_addr_t dma_start, u64 size) 668 { 669 struct bus_dma_region *map; 670 u64 offset = (u64)cpu_start - (u64)dma_start; 671 672 if (dev->dma_range_map) { 673 dev_err(dev, "attempt to add DMA range to existing map\n"); 674 return -EINVAL; 675 } 676 677 if (!offset) 678 return 0; 679 680 map = kcalloc(2, sizeof(*map), GFP_KERNEL); 681 if (!map) 682 return -ENOMEM; 683 map[0].cpu_start = cpu_start; 684 map[0].dma_start = dma_start; 685 map[0].size = size; 686 dev->dma_range_map = map; 687 return 0; 688 } 689