1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/sched/cputime.h> 5 6 #include <linux/bpf.h> 7 #include <linux/btf.h> 8 #include <linux/btf_ids.h> 9 10 #include <trace/events/cgroup.h> 11 12 static DEFINE_SPINLOCK(rstat_base_lock); 13 static DEFINE_PER_CPU(raw_spinlock_t, rstat_base_cpu_lock); 14 15 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); 16 17 /* 18 * Determines whether a given css can participate in rstat. 19 * css's that are cgroup::self use rstat for base stats. 20 * Other css's associated with a subsystem use rstat only when 21 * they define the ss->css_rstat_flush callback. 22 */ 23 static inline bool css_uses_rstat(struct cgroup_subsys_state *css) 24 { 25 return css_is_self(css) || css->ss->css_rstat_flush != NULL; 26 } 27 28 static struct css_rstat_cpu *css_rstat_cpu( 29 struct cgroup_subsys_state *css, int cpu) 30 { 31 return per_cpu_ptr(css->rstat_cpu, cpu); 32 } 33 34 static struct cgroup_rstat_base_cpu *cgroup_rstat_base_cpu( 35 struct cgroup *cgrp, int cpu) 36 { 37 return per_cpu_ptr(cgrp->rstat_base_cpu, cpu); 38 } 39 40 static spinlock_t *ss_rstat_lock(struct cgroup_subsys *ss) 41 { 42 if (ss) 43 return &ss->rstat_ss_lock; 44 45 return &rstat_base_lock; 46 } 47 48 static raw_spinlock_t *ss_rstat_cpu_lock(struct cgroup_subsys *ss, int cpu) 49 { 50 if (ss) { 51 /* 52 * Depending on config, the subsystem per-cpu lock type may be an 53 * empty struct. In enviromnents where this is the case, allocation 54 * of this field is not performed in ss_rstat_init(). Avoid a 55 * cpu-based offset relative to NULL by returning early. When the 56 * lock type is zero in size, the corresponding lock functions are 57 * no-ops so passing them NULL is acceptable. 58 */ 59 if (sizeof(*ss->rstat_ss_cpu_lock) == 0) 60 return NULL; 61 62 return per_cpu_ptr(ss->rstat_ss_cpu_lock, cpu); 63 } 64 65 return per_cpu_ptr(&rstat_base_cpu_lock, cpu); 66 } 67 68 /* 69 * Helper functions for rstat per CPU locks. 70 * 71 * This makes it easier to diagnose locking issues and contention in 72 * production environments. The parameter @fast_path determine the 73 * tracepoints being added, allowing us to diagnose "flush" related 74 * operations without handling high-frequency fast-path "update" events. 75 */ 76 static __always_inline 77 unsigned long _css_rstat_cpu_lock(struct cgroup_subsys_state *css, int cpu, 78 const bool fast_path) 79 { 80 struct cgroup *cgrp = css->cgroup; 81 raw_spinlock_t *cpu_lock; 82 unsigned long flags; 83 bool contended; 84 85 /* 86 * The _irqsave() is needed because the locks used for flushing are 87 * spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring this lock 88 * with the _irq() suffix only disables interrupts on a non-PREEMPT_RT 89 * kernel. The raw_spinlock_t below disables interrupts on both 90 * configurations. The _irqsave() ensures that interrupts are always 91 * disabled and later restored. 92 */ 93 cpu_lock = ss_rstat_cpu_lock(css->ss, cpu); 94 contended = !raw_spin_trylock_irqsave(cpu_lock, flags); 95 if (contended) { 96 if (fast_path) 97 trace_cgroup_rstat_cpu_lock_contended_fastpath(cgrp, cpu, contended); 98 else 99 trace_cgroup_rstat_cpu_lock_contended(cgrp, cpu, contended); 100 101 raw_spin_lock_irqsave(cpu_lock, flags); 102 } 103 104 if (fast_path) 105 trace_cgroup_rstat_cpu_locked_fastpath(cgrp, cpu, contended); 106 else 107 trace_cgroup_rstat_cpu_locked(cgrp, cpu, contended); 108 109 return flags; 110 } 111 112 static __always_inline 113 void _css_rstat_cpu_unlock(struct cgroup_subsys_state *css, int cpu, 114 unsigned long flags, const bool fast_path) 115 { 116 struct cgroup *cgrp = css->cgroup; 117 raw_spinlock_t *cpu_lock; 118 119 if (fast_path) 120 trace_cgroup_rstat_cpu_unlock_fastpath(cgrp, cpu, false); 121 else 122 trace_cgroup_rstat_cpu_unlock(cgrp, cpu, false); 123 124 cpu_lock = ss_rstat_cpu_lock(css->ss, cpu); 125 raw_spin_unlock_irqrestore(cpu_lock, flags); 126 } 127 128 /** 129 * css_rstat_updated - keep track of updated rstat_cpu 130 * @css: target cgroup subsystem state 131 * @cpu: cpu on which rstat_cpu was updated 132 * 133 * @css's rstat_cpu on @cpu was updated. Put it on the parent's matching 134 * rstat_cpu->updated_children list. See the comment on top of 135 * css_rstat_cpu definition for details. 136 */ 137 __bpf_kfunc void css_rstat_updated(struct cgroup_subsys_state *css, int cpu) 138 { 139 unsigned long flags; 140 141 /* 142 * Since bpf programs can call this function, prevent access to 143 * uninitialized rstat pointers. 144 */ 145 if (!css_uses_rstat(css)) 146 return; 147 148 /* 149 * Speculative already-on-list test. This may race leading to 150 * temporary inaccuracies, which is fine. 151 * 152 * Because @parent's updated_children is terminated with @parent 153 * instead of NULL, we can tell whether @css is on the list by 154 * testing the next pointer for NULL. 155 */ 156 if (data_race(css_rstat_cpu(css, cpu)->updated_next)) 157 return; 158 159 flags = _css_rstat_cpu_lock(css, cpu, true); 160 161 /* put @css and all ancestors on the corresponding updated lists */ 162 while (true) { 163 struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu); 164 struct cgroup_subsys_state *parent = css->parent; 165 struct css_rstat_cpu *prstatc; 166 167 /* 168 * Both additions and removals are bottom-up. If a cgroup 169 * is already in the tree, all ancestors are. 170 */ 171 if (rstatc->updated_next) 172 break; 173 174 /* Root has no parent to link it to, but mark it busy */ 175 if (!parent) { 176 rstatc->updated_next = css; 177 break; 178 } 179 180 prstatc = css_rstat_cpu(parent, cpu); 181 rstatc->updated_next = prstatc->updated_children; 182 prstatc->updated_children = css; 183 184 css = parent; 185 } 186 187 _css_rstat_cpu_unlock(css, cpu, flags, true); 188 } 189 190 /** 191 * css_rstat_push_children - push children css's into the given list 192 * @head: current head of the list (= subtree root) 193 * @child: first child of the root 194 * @cpu: target cpu 195 * Return: A new singly linked list of css's to be flushed 196 * 197 * Iteratively traverse down the css_rstat_cpu updated tree level by 198 * level and push all the parents first before their next level children 199 * into a singly linked list via the rstat_flush_next pointer built from the 200 * tail backward like "pushing" css's into a stack. The root is pushed by 201 * the caller. 202 */ 203 static struct cgroup_subsys_state *css_rstat_push_children( 204 struct cgroup_subsys_state *head, 205 struct cgroup_subsys_state *child, int cpu) 206 { 207 struct cgroup_subsys_state *cnext = child; /* Next head of child css level */ 208 struct cgroup_subsys_state *ghead = NULL; /* Head of grandchild css level */ 209 struct cgroup_subsys_state *parent, *grandchild; 210 struct css_rstat_cpu *crstatc; 211 212 child->rstat_flush_next = NULL; 213 214 /* 215 * The subsystem rstat lock must be held for the whole duration from 216 * here as the rstat_flush_next list is being constructed to when 217 * it is consumed later in css_rstat_flush(). 218 */ 219 lockdep_assert_held(ss_rstat_lock(head->ss)); 220 221 /* 222 * Notation: -> updated_next pointer 223 * => rstat_flush_next pointer 224 * 225 * Assuming the following sample updated_children lists: 226 * P: C1 -> C2 -> P 227 * C1: G11 -> G12 -> C1 228 * C2: G21 -> G22 -> C2 229 * 230 * After 1st iteration: 231 * head => C2 => C1 => NULL 232 * ghead => G21 => G11 => NULL 233 * 234 * After 2nd iteration: 235 * head => G12 => G11 => G22 => G21 => C2 => C1 => NULL 236 */ 237 next_level: 238 while (cnext) { 239 child = cnext; 240 cnext = child->rstat_flush_next; 241 parent = child->parent; 242 243 /* updated_next is parent cgroup terminated if !NULL */ 244 while (child != parent) { 245 child->rstat_flush_next = head; 246 head = child; 247 crstatc = css_rstat_cpu(child, cpu); 248 grandchild = crstatc->updated_children; 249 if (grandchild != child) { 250 /* Push the grand child to the next level */ 251 crstatc->updated_children = child; 252 grandchild->rstat_flush_next = ghead; 253 ghead = grandchild; 254 } 255 child = crstatc->updated_next; 256 crstatc->updated_next = NULL; 257 } 258 } 259 260 if (ghead) { 261 cnext = ghead; 262 ghead = NULL; 263 goto next_level; 264 } 265 return head; 266 } 267 268 /** 269 * css_rstat_updated_list - build a list of updated css's to be flushed 270 * @root: root of the css subtree to traverse 271 * @cpu: target cpu 272 * Return: A singly linked list of css's to be flushed 273 * 274 * Walks the updated rstat_cpu tree on @cpu from @root. During traversal, 275 * each returned css is unlinked from the updated tree. 276 * 277 * The only ordering guarantee is that, for a parent and a child pair 278 * covered by a given traversal, the child is before its parent in 279 * the list. 280 * 281 * Note that updated_children is self terminated and points to a list of 282 * child css's if not empty. Whereas updated_next is like a sibling link 283 * within the children list and terminated by the parent css. An exception 284 * here is the css root whose updated_next can be self terminated. 285 */ 286 static struct cgroup_subsys_state *css_rstat_updated_list( 287 struct cgroup_subsys_state *root, int cpu) 288 { 289 struct css_rstat_cpu *rstatc = css_rstat_cpu(root, cpu); 290 struct cgroup_subsys_state *head = NULL, *parent, *child; 291 unsigned long flags; 292 293 flags = _css_rstat_cpu_lock(root, cpu, false); 294 295 /* Return NULL if this subtree is not on-list */ 296 if (!rstatc->updated_next) 297 goto unlock_ret; 298 299 /* 300 * Unlink @root from its parent. As the updated_children list is 301 * singly linked, we have to walk it to find the removal point. 302 */ 303 parent = root->parent; 304 if (parent) { 305 struct css_rstat_cpu *prstatc; 306 struct cgroup_subsys_state **nextp; 307 308 prstatc = css_rstat_cpu(parent, cpu); 309 nextp = &prstatc->updated_children; 310 while (*nextp != root) { 311 struct css_rstat_cpu *nrstatc; 312 313 nrstatc = css_rstat_cpu(*nextp, cpu); 314 WARN_ON_ONCE(*nextp == parent); 315 nextp = &nrstatc->updated_next; 316 } 317 *nextp = rstatc->updated_next; 318 } 319 320 rstatc->updated_next = NULL; 321 322 /* Push @root to the list first before pushing the children */ 323 head = root; 324 root->rstat_flush_next = NULL; 325 child = rstatc->updated_children; 326 rstatc->updated_children = root; 327 if (child != root) 328 head = css_rstat_push_children(head, child, cpu); 329 unlock_ret: 330 _css_rstat_cpu_unlock(root, cpu, flags, false); 331 return head; 332 } 333 334 /* 335 * A hook for bpf stat collectors to attach to and flush their stats. 336 * Together with providing bpf kfuncs for css_rstat_updated() and 337 * css_rstat_flush(), this enables a complete workflow where bpf progs that 338 * collect cgroup stats can integrate with rstat for efficient flushing. 339 * 340 * A static noinline declaration here could cause the compiler to optimize away 341 * the function. A global noinline declaration will keep the definition, but may 342 * optimize away the callsite. Therefore, __weak is needed to ensure that the 343 * call is still emitted, by telling the compiler that we don't know what the 344 * function might eventually be. 345 */ 346 347 __bpf_hook_start(); 348 349 __weak noinline void bpf_rstat_flush(struct cgroup *cgrp, 350 struct cgroup *parent, int cpu) 351 { 352 } 353 354 __bpf_hook_end(); 355 356 /* 357 * Helper functions for locking. 358 * 359 * This makes it easier to diagnose locking issues and contention in 360 * production environments. The parameter @cpu_in_loop indicate lock 361 * was released and re-taken when collection data from the CPUs. The 362 * value -1 is used when obtaining the main lock else this is the CPU 363 * number processed last. 364 */ 365 static inline void __css_rstat_lock(struct cgroup_subsys_state *css, 366 int cpu_in_loop) 367 __acquires(ss_rstat_lock(css->ss)) 368 { 369 struct cgroup *cgrp = css->cgroup; 370 spinlock_t *lock; 371 bool contended; 372 373 lock = ss_rstat_lock(css->ss); 374 contended = !spin_trylock_irq(lock); 375 if (contended) { 376 trace_cgroup_rstat_lock_contended(cgrp, cpu_in_loop, contended); 377 spin_lock_irq(lock); 378 } 379 trace_cgroup_rstat_locked(cgrp, cpu_in_loop, contended); 380 } 381 382 static inline void __css_rstat_unlock(struct cgroup_subsys_state *css, 383 int cpu_in_loop) 384 __releases(ss_rstat_lock(css->ss)) 385 { 386 struct cgroup *cgrp = css->cgroup; 387 spinlock_t *lock; 388 389 lock = ss_rstat_lock(css->ss); 390 trace_cgroup_rstat_unlock(cgrp, cpu_in_loop, false); 391 spin_unlock_irq(lock); 392 } 393 394 /** 395 * css_rstat_flush - flush stats in @css's rstat subtree 396 * @css: target cgroup subsystem state 397 * 398 * Collect all per-cpu stats in @css's subtree into the global counters 399 * and propagate them upwards. After this function returns, all rstat 400 * nodes in the subtree have up-to-date ->stat. 401 * 402 * This also gets all rstat nodes in the subtree including @css off the 403 * ->updated_children lists. 404 * 405 * This function may block. 406 */ 407 __bpf_kfunc void css_rstat_flush(struct cgroup_subsys_state *css) 408 { 409 int cpu; 410 bool is_self = css_is_self(css); 411 412 /* 413 * Since bpf programs can call this function, prevent access to 414 * uninitialized rstat pointers. 415 */ 416 if (!css_uses_rstat(css)) 417 return; 418 419 might_sleep(); 420 for_each_possible_cpu(cpu) { 421 struct cgroup_subsys_state *pos; 422 423 /* Reacquire for each CPU to avoid disabling IRQs too long */ 424 __css_rstat_lock(css, cpu); 425 pos = css_rstat_updated_list(css, cpu); 426 for (; pos; pos = pos->rstat_flush_next) { 427 if (is_self) { 428 cgroup_base_stat_flush(pos->cgroup, cpu); 429 bpf_rstat_flush(pos->cgroup, 430 cgroup_parent(pos->cgroup), cpu); 431 } else 432 pos->ss->css_rstat_flush(pos, cpu); 433 } 434 __css_rstat_unlock(css, cpu); 435 if (!cond_resched()) 436 cpu_relax(); 437 } 438 } 439 440 int css_rstat_init(struct cgroup_subsys_state *css) 441 { 442 struct cgroup *cgrp = css->cgroup; 443 int cpu; 444 bool is_self = css_is_self(css); 445 446 if (is_self) { 447 /* the root cgrp has rstat_base_cpu preallocated */ 448 if (!cgrp->rstat_base_cpu) { 449 cgrp->rstat_base_cpu = alloc_percpu(struct cgroup_rstat_base_cpu); 450 if (!cgrp->rstat_base_cpu) 451 return -ENOMEM; 452 } 453 } else if (css->ss->css_rstat_flush == NULL) 454 return 0; 455 456 /* the root cgrp's self css has rstat_cpu preallocated */ 457 if (!css->rstat_cpu) { 458 css->rstat_cpu = alloc_percpu(struct css_rstat_cpu); 459 if (!css->rstat_cpu) { 460 if (is_self) 461 free_percpu(cgrp->rstat_base_cpu); 462 463 return -ENOMEM; 464 } 465 } 466 467 /* ->updated_children list is self terminated */ 468 for_each_possible_cpu(cpu) { 469 struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu); 470 471 rstatc->updated_children = css; 472 473 if (is_self) { 474 struct cgroup_rstat_base_cpu *rstatbc; 475 476 rstatbc = cgroup_rstat_base_cpu(cgrp, cpu); 477 u64_stats_init(&rstatbc->bsync); 478 } 479 } 480 481 return 0; 482 } 483 484 void css_rstat_exit(struct cgroup_subsys_state *css) 485 { 486 int cpu; 487 488 if (!css_uses_rstat(css)) 489 return; 490 491 css_rstat_flush(css); 492 493 /* sanity check */ 494 for_each_possible_cpu(cpu) { 495 struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu); 496 497 if (WARN_ON_ONCE(rstatc->updated_children != css) || 498 WARN_ON_ONCE(rstatc->updated_next)) 499 return; 500 } 501 502 if (css_is_self(css)) { 503 struct cgroup *cgrp = css->cgroup; 504 505 free_percpu(cgrp->rstat_base_cpu); 506 cgrp->rstat_base_cpu = NULL; 507 } 508 509 free_percpu(css->rstat_cpu); 510 css->rstat_cpu = NULL; 511 } 512 513 /** 514 * ss_rstat_init - subsystem-specific rstat initialization 515 * @ss: target subsystem 516 * 517 * If @ss is NULL, the static locks associated with the base stats 518 * are initialized. If @ss is non-NULL, the subsystem-specific locks 519 * are initialized. 520 */ 521 int __init ss_rstat_init(struct cgroup_subsys *ss) 522 { 523 int cpu; 524 525 /* 526 * Depending on config, the subsystem per-cpu lock type may be an empty 527 * struct. Avoid allocating a size of zero in this case. 528 */ 529 if (ss && sizeof(*ss->rstat_ss_cpu_lock)) { 530 ss->rstat_ss_cpu_lock = alloc_percpu(raw_spinlock_t); 531 if (!ss->rstat_ss_cpu_lock) 532 return -ENOMEM; 533 } 534 535 spin_lock_init(ss_rstat_lock(ss)); 536 for_each_possible_cpu(cpu) 537 raw_spin_lock_init(ss_rstat_cpu_lock(ss, cpu)); 538 539 return 0; 540 } 541 542 /* 543 * Functions for cgroup basic resource statistics implemented on top of 544 * rstat. 545 */ 546 static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, 547 struct cgroup_base_stat *src_bstat) 548 { 549 dst_bstat->cputime.utime += src_bstat->cputime.utime; 550 dst_bstat->cputime.stime += src_bstat->cputime.stime; 551 dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; 552 #ifdef CONFIG_SCHED_CORE 553 dst_bstat->forceidle_sum += src_bstat->forceidle_sum; 554 #endif 555 dst_bstat->ntime += src_bstat->ntime; 556 } 557 558 static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, 559 struct cgroup_base_stat *src_bstat) 560 { 561 dst_bstat->cputime.utime -= src_bstat->cputime.utime; 562 dst_bstat->cputime.stime -= src_bstat->cputime.stime; 563 dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; 564 #ifdef CONFIG_SCHED_CORE 565 dst_bstat->forceidle_sum -= src_bstat->forceidle_sum; 566 #endif 567 dst_bstat->ntime -= src_bstat->ntime; 568 } 569 570 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) 571 { 572 struct cgroup_rstat_base_cpu *rstatbc = cgroup_rstat_base_cpu(cgrp, cpu); 573 struct cgroup *parent = cgroup_parent(cgrp); 574 struct cgroup_rstat_base_cpu *prstatbc; 575 struct cgroup_base_stat delta; 576 unsigned seq; 577 578 /* Root-level stats are sourced from system-wide CPU stats */ 579 if (!parent) 580 return; 581 582 /* fetch the current per-cpu values */ 583 do { 584 seq = __u64_stats_fetch_begin(&rstatbc->bsync); 585 delta = rstatbc->bstat; 586 } while (__u64_stats_fetch_retry(&rstatbc->bsync, seq)); 587 588 /* propagate per-cpu delta to cgroup and per-cpu global statistics */ 589 cgroup_base_stat_sub(&delta, &rstatbc->last_bstat); 590 cgroup_base_stat_add(&cgrp->bstat, &delta); 591 cgroup_base_stat_add(&rstatbc->last_bstat, &delta); 592 cgroup_base_stat_add(&rstatbc->subtree_bstat, &delta); 593 594 /* propagate cgroup and per-cpu global delta to parent (unless that's root) */ 595 if (cgroup_parent(parent)) { 596 delta = cgrp->bstat; 597 cgroup_base_stat_sub(&delta, &cgrp->last_bstat); 598 cgroup_base_stat_add(&parent->bstat, &delta); 599 cgroup_base_stat_add(&cgrp->last_bstat, &delta); 600 601 delta = rstatbc->subtree_bstat; 602 prstatbc = cgroup_rstat_base_cpu(parent, cpu); 603 cgroup_base_stat_sub(&delta, &rstatbc->last_subtree_bstat); 604 cgroup_base_stat_add(&prstatbc->subtree_bstat, &delta); 605 cgroup_base_stat_add(&rstatbc->last_subtree_bstat, &delta); 606 } 607 } 608 609 static struct cgroup_rstat_base_cpu * 610 cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags) 611 { 612 struct cgroup_rstat_base_cpu *rstatbc; 613 614 rstatbc = get_cpu_ptr(cgrp->rstat_base_cpu); 615 *flags = u64_stats_update_begin_irqsave(&rstatbc->bsync); 616 return rstatbc; 617 } 618 619 static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, 620 struct cgroup_rstat_base_cpu *rstatbc, 621 unsigned long flags) 622 { 623 u64_stats_update_end_irqrestore(&rstatbc->bsync, flags); 624 css_rstat_updated(&cgrp->self, smp_processor_id()); 625 put_cpu_ptr(rstatbc); 626 } 627 628 void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) 629 { 630 struct cgroup_rstat_base_cpu *rstatbc; 631 unsigned long flags; 632 633 rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 634 rstatbc->bstat.cputime.sum_exec_runtime += delta_exec; 635 cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags); 636 } 637 638 void __cgroup_account_cputime_field(struct cgroup *cgrp, 639 enum cpu_usage_stat index, u64 delta_exec) 640 { 641 struct cgroup_rstat_base_cpu *rstatbc; 642 unsigned long flags; 643 644 rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 645 646 switch (index) { 647 case CPUTIME_NICE: 648 rstatbc->bstat.ntime += delta_exec; 649 fallthrough; 650 case CPUTIME_USER: 651 rstatbc->bstat.cputime.utime += delta_exec; 652 break; 653 case CPUTIME_SYSTEM: 654 case CPUTIME_IRQ: 655 case CPUTIME_SOFTIRQ: 656 rstatbc->bstat.cputime.stime += delta_exec; 657 break; 658 #ifdef CONFIG_SCHED_CORE 659 case CPUTIME_FORCEIDLE: 660 rstatbc->bstat.forceidle_sum += delta_exec; 661 break; 662 #endif 663 default: 664 break; 665 } 666 667 cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags); 668 } 669 670 /* 671 * compute the cputime for the root cgroup by getting the per cpu data 672 * at a global level, then categorizing the fields in a manner consistent 673 * with how it is done by __cgroup_account_cputime_field for each bit of 674 * cpu time attributed to a cgroup. 675 */ 676 static void root_cgroup_cputime(struct cgroup_base_stat *bstat) 677 { 678 struct task_cputime *cputime = &bstat->cputime; 679 int i; 680 681 memset(bstat, 0, sizeof(*bstat)); 682 for_each_possible_cpu(i) { 683 struct kernel_cpustat kcpustat; 684 u64 *cpustat = kcpustat.cpustat; 685 u64 user = 0; 686 u64 sys = 0; 687 688 kcpustat_cpu_fetch(&kcpustat, i); 689 690 user += cpustat[CPUTIME_USER]; 691 user += cpustat[CPUTIME_NICE]; 692 cputime->utime += user; 693 694 sys += cpustat[CPUTIME_SYSTEM]; 695 sys += cpustat[CPUTIME_IRQ]; 696 sys += cpustat[CPUTIME_SOFTIRQ]; 697 cputime->stime += sys; 698 699 cputime->sum_exec_runtime += user; 700 cputime->sum_exec_runtime += sys; 701 702 #ifdef CONFIG_SCHED_CORE 703 bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE]; 704 #endif 705 bstat->ntime += cpustat[CPUTIME_NICE]; 706 } 707 } 708 709 710 static void cgroup_force_idle_show(struct seq_file *seq, struct cgroup_base_stat *bstat) 711 { 712 #ifdef CONFIG_SCHED_CORE 713 u64 forceidle_time = bstat->forceidle_sum; 714 715 do_div(forceidle_time, NSEC_PER_USEC); 716 seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time); 717 #endif 718 } 719 720 void cgroup_base_stat_cputime_show(struct seq_file *seq) 721 { 722 struct cgroup *cgrp = seq_css(seq)->cgroup; 723 struct cgroup_base_stat bstat; 724 725 if (cgroup_parent(cgrp)) { 726 css_rstat_flush(&cgrp->self); 727 __css_rstat_lock(&cgrp->self, -1); 728 bstat = cgrp->bstat; 729 cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, 730 &bstat.cputime.utime, &bstat.cputime.stime); 731 __css_rstat_unlock(&cgrp->self, -1); 732 } else { 733 root_cgroup_cputime(&bstat); 734 } 735 736 do_div(bstat.cputime.sum_exec_runtime, NSEC_PER_USEC); 737 do_div(bstat.cputime.utime, NSEC_PER_USEC); 738 do_div(bstat.cputime.stime, NSEC_PER_USEC); 739 do_div(bstat.ntime, NSEC_PER_USEC); 740 741 seq_printf(seq, "usage_usec %llu\n" 742 "user_usec %llu\n" 743 "system_usec %llu\n" 744 "nice_usec %llu\n", 745 bstat.cputime.sum_exec_runtime, 746 bstat.cputime.utime, 747 bstat.cputime.stime, 748 bstat.ntime); 749 750 cgroup_force_idle_show(seq, &bstat); 751 } 752 753 /* Add bpf kfuncs for css_rstat_updated() and css_rstat_flush() */ 754 BTF_KFUNCS_START(bpf_rstat_kfunc_ids) 755 BTF_ID_FLAGS(func, css_rstat_updated) 756 BTF_ID_FLAGS(func, css_rstat_flush, KF_SLEEPABLE) 757 BTF_KFUNCS_END(bpf_rstat_kfunc_ids) 758 759 static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = { 760 .owner = THIS_MODULE, 761 .set = &bpf_rstat_kfunc_ids, 762 }; 763 764 static int __init bpf_rstat_kfunc_init(void) 765 { 766 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 767 &bpf_rstat_kfunc_set); 768 } 769 late_initcall(bpf_rstat_kfunc_init); 770