1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/cgroup.h> 8 #include <linux/rcupdate.h> 9 #include <linux/random.h> 10 #include <linux/smp.h> 11 #include <linux/topology.h> 12 #include <linux/ktime.h> 13 #include <linux/sched.h> 14 #include <linux/uidgid.h> 15 #include <linux/filter.h> 16 #include <linux/ctype.h> 17 #include <linux/jiffies.h> 18 #include <linux/pid_namespace.h> 19 #include <linux/poison.h> 20 #include <linux/proc_ns.h> 21 #include <linux/sched/task.h> 22 #include <linux/security.h> 23 #include <linux/btf_ids.h> 24 #include <linux/bpf_mem_alloc.h> 25 #include <linux/kasan.h> 26 #include <linux/bpf_verifier.h> 27 28 #include "../../lib/kstrtox.h" 29 30 /* If kernel subsystem is allowing eBPF programs to call this function, 31 * inside its own verifier_ops->get_func_proto() callback it should return 32 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 33 * 34 * Different map implementations will rely on rcu in map methods 35 * lookup/update/delete, therefore eBPF programs must run under rcu lock 36 * if program is allowed to access maps, so check rcu_read_lock_held() or 37 * rcu_read_lock_trace_held() in all three functions. 38 */ 39 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 40 { 41 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 42 !rcu_read_lock_bh_held()); 43 return (unsigned long) map->ops->map_lookup_elem(map, key); 44 } 45 46 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 47 .func = bpf_map_lookup_elem, 48 .gpl_only = false, 49 .pkt_access = true, 50 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 51 .arg1_type = ARG_CONST_MAP_PTR, 52 .arg2_type = ARG_PTR_TO_MAP_KEY, 53 }; 54 55 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 56 void *, value, u64, flags) 57 { 58 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 59 !rcu_read_lock_bh_held()); 60 return map->ops->map_update_elem(map, key, value, flags); 61 } 62 63 const struct bpf_func_proto bpf_map_update_elem_proto = { 64 .func = bpf_map_update_elem, 65 .gpl_only = false, 66 .pkt_access = true, 67 .ret_type = RET_INTEGER, 68 .arg1_type = ARG_CONST_MAP_PTR, 69 .arg2_type = ARG_PTR_TO_MAP_KEY, 70 .arg3_type = ARG_PTR_TO_MAP_VALUE, 71 .arg4_type = ARG_ANYTHING, 72 }; 73 74 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 75 { 76 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 77 !rcu_read_lock_bh_held()); 78 return map->ops->map_delete_elem(map, key); 79 } 80 81 const struct bpf_func_proto bpf_map_delete_elem_proto = { 82 .func = bpf_map_delete_elem, 83 .gpl_only = false, 84 .pkt_access = true, 85 .ret_type = RET_INTEGER, 86 .arg1_type = ARG_CONST_MAP_PTR, 87 .arg2_type = ARG_PTR_TO_MAP_KEY, 88 }; 89 90 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 91 { 92 return map->ops->map_push_elem(map, value, flags); 93 } 94 95 const struct bpf_func_proto bpf_map_push_elem_proto = { 96 .func = bpf_map_push_elem, 97 .gpl_only = false, 98 .pkt_access = true, 99 .ret_type = RET_INTEGER, 100 .arg1_type = ARG_CONST_MAP_PTR, 101 .arg2_type = ARG_PTR_TO_MAP_VALUE, 102 .arg3_type = ARG_ANYTHING, 103 }; 104 105 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 106 { 107 return map->ops->map_pop_elem(map, value); 108 } 109 110 const struct bpf_func_proto bpf_map_pop_elem_proto = { 111 .func = bpf_map_pop_elem, 112 .gpl_only = false, 113 .ret_type = RET_INTEGER, 114 .arg1_type = ARG_CONST_MAP_PTR, 115 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE, 116 }; 117 118 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 119 { 120 return map->ops->map_peek_elem(map, value); 121 } 122 123 const struct bpf_func_proto bpf_map_peek_elem_proto = { 124 .func = bpf_map_peek_elem, 125 .gpl_only = false, 126 .ret_type = RET_INTEGER, 127 .arg1_type = ARG_CONST_MAP_PTR, 128 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE, 129 }; 130 131 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 132 { 133 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 134 !rcu_read_lock_bh_held()); 135 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 136 } 137 138 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 139 .func = bpf_map_lookup_percpu_elem, 140 .gpl_only = false, 141 .pkt_access = true, 142 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 143 .arg1_type = ARG_CONST_MAP_PTR, 144 .arg2_type = ARG_PTR_TO_MAP_KEY, 145 .arg3_type = ARG_ANYTHING, 146 }; 147 148 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 149 .func = bpf_user_rnd_u32, 150 .gpl_only = false, 151 .ret_type = RET_INTEGER, 152 }; 153 154 BPF_CALL_0(bpf_get_smp_processor_id) 155 { 156 return smp_processor_id(); 157 } 158 159 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 160 .func = bpf_get_smp_processor_id, 161 .gpl_only = false, 162 .ret_type = RET_INTEGER, 163 .allow_fastcall = true, 164 }; 165 166 BPF_CALL_0(bpf_get_numa_node_id) 167 { 168 return numa_node_id(); 169 } 170 171 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 172 .func = bpf_get_numa_node_id, 173 .gpl_only = false, 174 .ret_type = RET_INTEGER, 175 }; 176 177 BPF_CALL_0(bpf_ktime_get_ns) 178 { 179 /* NMI safe access to clock monotonic */ 180 return ktime_get_mono_fast_ns(); 181 } 182 183 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 184 .func = bpf_ktime_get_ns, 185 .gpl_only = false, 186 .ret_type = RET_INTEGER, 187 }; 188 189 BPF_CALL_0(bpf_ktime_get_boot_ns) 190 { 191 /* NMI safe access to clock boottime */ 192 return ktime_get_boot_fast_ns(); 193 } 194 195 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 196 .func = bpf_ktime_get_boot_ns, 197 .gpl_only = false, 198 .ret_type = RET_INTEGER, 199 }; 200 201 BPF_CALL_0(bpf_ktime_get_coarse_ns) 202 { 203 return ktime_get_coarse_ns(); 204 } 205 206 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 207 .func = bpf_ktime_get_coarse_ns, 208 .gpl_only = false, 209 .ret_type = RET_INTEGER, 210 }; 211 212 BPF_CALL_0(bpf_ktime_get_tai_ns) 213 { 214 /* NMI safe access to clock tai */ 215 return ktime_get_tai_fast_ns(); 216 } 217 218 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { 219 .func = bpf_ktime_get_tai_ns, 220 .gpl_only = false, 221 .ret_type = RET_INTEGER, 222 }; 223 224 BPF_CALL_0(bpf_get_current_pid_tgid) 225 { 226 struct task_struct *task = current; 227 228 if (unlikely(!task)) 229 return -EINVAL; 230 231 return (u64) task->tgid << 32 | task->pid; 232 } 233 234 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 235 .func = bpf_get_current_pid_tgid, 236 .gpl_only = false, 237 .ret_type = RET_INTEGER, 238 }; 239 240 BPF_CALL_0(bpf_get_current_uid_gid) 241 { 242 struct task_struct *task = current; 243 kuid_t uid; 244 kgid_t gid; 245 246 if (unlikely(!task)) 247 return -EINVAL; 248 249 current_uid_gid(&uid, &gid); 250 return (u64) from_kgid(&init_user_ns, gid) << 32 | 251 from_kuid(&init_user_ns, uid); 252 } 253 254 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 255 .func = bpf_get_current_uid_gid, 256 .gpl_only = false, 257 .ret_type = RET_INTEGER, 258 }; 259 260 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 261 { 262 struct task_struct *task = current; 263 264 if (unlikely(!task)) 265 goto err_clear; 266 267 /* Verifier guarantees that size > 0 */ 268 strscpy_pad(buf, task->comm, size); 269 return 0; 270 err_clear: 271 memset(buf, 0, size); 272 return -EINVAL; 273 } 274 275 const struct bpf_func_proto bpf_get_current_comm_proto = { 276 .func = bpf_get_current_comm, 277 .gpl_only = false, 278 .ret_type = RET_INTEGER, 279 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 280 .arg2_type = ARG_CONST_SIZE, 281 }; 282 283 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 284 285 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 286 { 287 arch_spinlock_t *l = (void *)lock; 288 union { 289 __u32 val; 290 arch_spinlock_t lock; 291 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 292 293 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 294 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 295 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 296 preempt_disable(); 297 arch_spin_lock(l); 298 } 299 300 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 301 { 302 arch_spinlock_t *l = (void *)lock; 303 304 arch_spin_unlock(l); 305 preempt_enable(); 306 } 307 308 #else 309 310 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 311 { 312 atomic_t *l = (void *)lock; 313 314 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 315 do { 316 atomic_cond_read_relaxed(l, !VAL); 317 } while (atomic_xchg(l, 1)); 318 } 319 320 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 321 { 322 atomic_t *l = (void *)lock; 323 324 atomic_set_release(l, 0); 325 } 326 327 #endif 328 329 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 330 331 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 332 { 333 unsigned long flags; 334 335 local_irq_save(flags); 336 __bpf_spin_lock(lock); 337 __this_cpu_write(irqsave_flags, flags); 338 } 339 340 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 341 { 342 __bpf_spin_lock_irqsave(lock); 343 return 0; 344 } 345 346 const struct bpf_func_proto bpf_spin_lock_proto = { 347 .func = bpf_spin_lock, 348 .gpl_only = false, 349 .ret_type = RET_VOID, 350 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 351 .arg1_btf_id = BPF_PTR_POISON, 352 }; 353 354 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 355 { 356 unsigned long flags; 357 358 flags = __this_cpu_read(irqsave_flags); 359 __bpf_spin_unlock(lock); 360 local_irq_restore(flags); 361 } 362 363 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 364 { 365 __bpf_spin_unlock_irqrestore(lock); 366 return 0; 367 } 368 369 const struct bpf_func_proto bpf_spin_unlock_proto = { 370 .func = bpf_spin_unlock, 371 .gpl_only = false, 372 .ret_type = RET_VOID, 373 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 374 .arg1_btf_id = BPF_PTR_POISON, 375 }; 376 377 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 378 bool lock_src) 379 { 380 struct bpf_spin_lock *lock; 381 382 if (lock_src) 383 lock = src + map->record->spin_lock_off; 384 else 385 lock = dst + map->record->spin_lock_off; 386 preempt_disable(); 387 __bpf_spin_lock_irqsave(lock); 388 copy_map_value(map, dst, src); 389 __bpf_spin_unlock_irqrestore(lock); 390 preempt_enable(); 391 } 392 393 BPF_CALL_0(bpf_jiffies64) 394 { 395 return get_jiffies_64(); 396 } 397 398 const struct bpf_func_proto bpf_jiffies64_proto = { 399 .func = bpf_jiffies64, 400 .gpl_only = false, 401 .ret_type = RET_INTEGER, 402 }; 403 404 #ifdef CONFIG_CGROUPS 405 BPF_CALL_0(bpf_get_current_cgroup_id) 406 { 407 struct cgroup *cgrp; 408 u64 cgrp_id; 409 410 rcu_read_lock(); 411 cgrp = task_dfl_cgroup(current); 412 cgrp_id = cgroup_id(cgrp); 413 rcu_read_unlock(); 414 415 return cgrp_id; 416 } 417 418 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 419 .func = bpf_get_current_cgroup_id, 420 .gpl_only = false, 421 .ret_type = RET_INTEGER, 422 }; 423 424 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 425 { 426 struct cgroup *cgrp; 427 struct cgroup *ancestor; 428 u64 cgrp_id; 429 430 rcu_read_lock(); 431 cgrp = task_dfl_cgroup(current); 432 ancestor = cgroup_ancestor(cgrp, ancestor_level); 433 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 434 rcu_read_unlock(); 435 436 return cgrp_id; 437 } 438 439 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 440 .func = bpf_get_current_ancestor_cgroup_id, 441 .gpl_only = false, 442 .ret_type = RET_INTEGER, 443 .arg1_type = ARG_ANYTHING, 444 }; 445 #endif /* CONFIG_CGROUPS */ 446 447 #define BPF_STRTOX_BASE_MASK 0x1F 448 449 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 450 unsigned long long *res, bool *is_negative) 451 { 452 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 453 const char *cur_buf = buf; 454 size_t cur_len = buf_len; 455 unsigned int consumed; 456 size_t val_len; 457 char str[64]; 458 459 if (!buf || !buf_len || !res || !is_negative) 460 return -EINVAL; 461 462 if (base != 0 && base != 8 && base != 10 && base != 16) 463 return -EINVAL; 464 465 if (flags & ~BPF_STRTOX_BASE_MASK) 466 return -EINVAL; 467 468 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 469 ++cur_buf; 470 471 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 472 if (*is_negative) 473 ++cur_buf; 474 475 consumed = cur_buf - buf; 476 cur_len -= consumed; 477 if (!cur_len) 478 return -EINVAL; 479 480 cur_len = min(cur_len, sizeof(str) - 1); 481 memcpy(str, cur_buf, cur_len); 482 str[cur_len] = '\0'; 483 cur_buf = str; 484 485 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 486 val_len = _parse_integer(cur_buf, base, res); 487 488 if (val_len & KSTRTOX_OVERFLOW) 489 return -ERANGE; 490 491 if (val_len == 0) 492 return -EINVAL; 493 494 cur_buf += val_len; 495 consumed += cur_buf - str; 496 497 return consumed; 498 } 499 500 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 501 long long *res) 502 { 503 unsigned long long _res; 504 bool is_negative; 505 int err; 506 507 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 508 if (err < 0) 509 return err; 510 if (is_negative) { 511 if ((long long)-_res > 0) 512 return -ERANGE; 513 *res = -_res; 514 } else { 515 if ((long long)_res < 0) 516 return -ERANGE; 517 *res = _res; 518 } 519 return err; 520 } 521 522 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 523 s64 *, res) 524 { 525 long long _res; 526 int err; 527 528 *res = 0; 529 err = __bpf_strtoll(buf, buf_len, flags, &_res); 530 if (err < 0) 531 return err; 532 *res = _res; 533 return err; 534 } 535 536 const struct bpf_func_proto bpf_strtol_proto = { 537 .func = bpf_strtol, 538 .gpl_only = false, 539 .ret_type = RET_INTEGER, 540 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 541 .arg2_type = ARG_CONST_SIZE, 542 .arg3_type = ARG_ANYTHING, 543 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, 544 .arg4_size = sizeof(s64), 545 }; 546 547 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 548 u64 *, res) 549 { 550 unsigned long long _res; 551 bool is_negative; 552 int err; 553 554 *res = 0; 555 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 556 if (err < 0) 557 return err; 558 if (is_negative) 559 return -EINVAL; 560 *res = _res; 561 return err; 562 } 563 564 const struct bpf_func_proto bpf_strtoul_proto = { 565 .func = bpf_strtoul, 566 .gpl_only = false, 567 .ret_type = RET_INTEGER, 568 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 569 .arg2_type = ARG_CONST_SIZE, 570 .arg3_type = ARG_ANYTHING, 571 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, 572 .arg4_size = sizeof(u64), 573 }; 574 575 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 576 { 577 return strncmp(s1, s2, s1_sz); 578 } 579 580 static const struct bpf_func_proto bpf_strncmp_proto = { 581 .func = bpf_strncmp, 582 .gpl_only = false, 583 .ret_type = RET_INTEGER, 584 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 585 .arg2_type = ARG_CONST_SIZE, 586 .arg3_type = ARG_PTR_TO_CONST_STR, 587 }; 588 589 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 590 struct bpf_pidns_info *, nsdata, u32, size) 591 { 592 struct task_struct *task = current; 593 struct pid_namespace *pidns; 594 int err = -EINVAL; 595 596 if (unlikely(size != sizeof(struct bpf_pidns_info))) 597 goto clear; 598 599 if (unlikely((u64)(dev_t)dev != dev)) 600 goto clear; 601 602 if (unlikely(!task)) 603 goto clear; 604 605 pidns = task_active_pid_ns(task); 606 if (unlikely(!pidns)) { 607 err = -ENOENT; 608 goto clear; 609 } 610 611 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 612 goto clear; 613 614 nsdata->pid = task_pid_nr_ns(task, pidns); 615 nsdata->tgid = task_tgid_nr_ns(task, pidns); 616 return 0; 617 clear: 618 memset((void *)nsdata, 0, (size_t) size); 619 return err; 620 } 621 622 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 623 .func = bpf_get_ns_current_pid_tgid, 624 .gpl_only = false, 625 .ret_type = RET_INTEGER, 626 .arg1_type = ARG_ANYTHING, 627 .arg2_type = ARG_ANYTHING, 628 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 629 .arg4_type = ARG_CONST_SIZE, 630 }; 631 632 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 633 .func = bpf_get_raw_cpu_id, 634 .gpl_only = false, 635 .ret_type = RET_INTEGER, 636 }; 637 638 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 639 u64, flags, void *, data, u64, size) 640 { 641 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 642 return -EINVAL; 643 644 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 645 } 646 647 const struct bpf_func_proto bpf_event_output_data_proto = { 648 .func = bpf_event_output_data, 649 .gpl_only = true, 650 .ret_type = RET_INTEGER, 651 .arg1_type = ARG_PTR_TO_CTX, 652 .arg2_type = ARG_CONST_MAP_PTR, 653 .arg3_type = ARG_ANYTHING, 654 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 655 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 656 }; 657 658 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 659 const void __user *, user_ptr) 660 { 661 int ret = copy_from_user(dst, user_ptr, size); 662 663 if (unlikely(ret)) { 664 memset(dst, 0, size); 665 ret = -EFAULT; 666 } 667 668 return ret; 669 } 670 671 const struct bpf_func_proto bpf_copy_from_user_proto = { 672 .func = bpf_copy_from_user, 673 .gpl_only = false, 674 .might_sleep = true, 675 .ret_type = RET_INTEGER, 676 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 677 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 678 .arg3_type = ARG_ANYTHING, 679 }; 680 681 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 682 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 683 { 684 int ret; 685 686 /* flags is not used yet */ 687 if (unlikely(flags)) 688 return -EINVAL; 689 690 if (unlikely(!size)) 691 return 0; 692 693 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 694 if (ret == size) 695 return 0; 696 697 memset(dst, 0, size); 698 /* Return -EFAULT for partial read */ 699 return ret < 0 ? ret : -EFAULT; 700 } 701 702 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 703 .func = bpf_copy_from_user_task, 704 .gpl_only = true, 705 .might_sleep = true, 706 .ret_type = RET_INTEGER, 707 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 708 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 709 .arg3_type = ARG_ANYTHING, 710 .arg4_type = ARG_PTR_TO_BTF_ID, 711 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 712 .arg5_type = ARG_ANYTHING 713 }; 714 715 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 716 { 717 if (cpu >= nr_cpu_ids) 718 return (unsigned long)NULL; 719 720 return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu); 721 } 722 723 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 724 .func = bpf_per_cpu_ptr, 725 .gpl_only = false, 726 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 727 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 728 .arg2_type = ARG_ANYTHING, 729 }; 730 731 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 732 { 733 return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr); 734 } 735 736 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 737 .func = bpf_this_cpu_ptr, 738 .gpl_only = false, 739 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 740 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 741 }; 742 743 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 744 size_t bufsz) 745 { 746 void __user *user_ptr = (__force void __user *)unsafe_ptr; 747 748 buf[0] = 0; 749 750 switch (fmt_ptype) { 751 case 's': 752 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 753 if ((unsigned long)unsafe_ptr < TASK_SIZE) 754 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 755 fallthrough; 756 #endif 757 case 'k': 758 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 759 case 'u': 760 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 761 } 762 763 return -EINVAL; 764 } 765 766 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 767 * arguments representation. 768 */ 769 #define MAX_BPRINTF_BIN_ARGS 512 770 771 /* Support executing three nested bprintf helper calls on a given CPU */ 772 #define MAX_BPRINTF_NEST_LEVEL 3 773 struct bpf_bprintf_buffers { 774 char bin_args[MAX_BPRINTF_BIN_ARGS]; 775 char buf[MAX_BPRINTF_BUF]; 776 }; 777 778 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); 779 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 780 781 static int try_get_buffers(struct bpf_bprintf_buffers **bufs) 782 { 783 int nest_level; 784 785 preempt_disable(); 786 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 787 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 788 this_cpu_dec(bpf_bprintf_nest_level); 789 preempt_enable(); 790 return -EBUSY; 791 } 792 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); 793 794 return 0; 795 } 796 797 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) 798 { 799 if (!data->bin_args && !data->buf) 800 return; 801 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) 802 return; 803 this_cpu_dec(bpf_bprintf_nest_level); 804 preempt_enable(); 805 } 806 807 /* 808 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 809 * 810 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 811 * 812 * This can be used in two ways: 813 * - Format string verification only: when data->get_bin_args is false 814 * - Arguments preparation: in addition to the above verification, it writes in 815 * data->bin_args a binary representation of arguments usable by bstr_printf 816 * where pointers from BPF have been sanitized. 817 * 818 * In argument preparation mode, if 0 is returned, safe temporary buffers are 819 * allocated and bpf_bprintf_cleanup should be called to free them after use. 820 */ 821 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 822 u32 num_args, struct bpf_bprintf_data *data) 823 { 824 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; 825 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 826 struct bpf_bprintf_buffers *buffers = NULL; 827 size_t sizeof_cur_arg, sizeof_cur_ip; 828 int err, i, num_spec = 0; 829 u64 cur_arg; 830 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 831 832 fmt_end = strnchr(fmt, fmt_size, 0); 833 if (!fmt_end) 834 return -EINVAL; 835 fmt_size = fmt_end - fmt; 836 837 if (get_buffers && try_get_buffers(&buffers)) 838 return -EBUSY; 839 840 if (data->get_bin_args) { 841 if (num_args) 842 tmp_buf = buffers->bin_args; 843 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; 844 data->bin_args = (u32 *)tmp_buf; 845 } 846 847 if (data->get_buf) 848 data->buf = buffers->buf; 849 850 for (i = 0; i < fmt_size; i++) { 851 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 852 err = -EINVAL; 853 goto out; 854 } 855 856 if (fmt[i] != '%') 857 continue; 858 859 if (fmt[i + 1] == '%') { 860 i++; 861 continue; 862 } 863 864 if (num_spec >= num_args) { 865 err = -EINVAL; 866 goto out; 867 } 868 869 /* The string is zero-terminated so if fmt[i] != 0, we can 870 * always access fmt[i + 1], in the worst case it will be a 0 871 */ 872 i++; 873 874 /* skip optional "[0 +-][num]" width formatting field */ 875 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 876 fmt[i] == ' ') 877 i++; 878 if (fmt[i] >= '1' && fmt[i] <= '9') { 879 i++; 880 while (fmt[i] >= '0' && fmt[i] <= '9') 881 i++; 882 } 883 884 if (fmt[i] == 'p') { 885 sizeof_cur_arg = sizeof(long); 886 887 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 888 fmt[i + 2] == 's') { 889 fmt_ptype = fmt[i + 1]; 890 i += 2; 891 goto fmt_str; 892 } 893 894 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 895 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 896 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 897 fmt[i + 1] == 'S') { 898 /* just kernel pointers */ 899 if (tmp_buf) 900 cur_arg = raw_args[num_spec]; 901 i++; 902 goto nocopy_fmt; 903 } 904 905 if (fmt[i + 1] == 'B') { 906 if (tmp_buf) { 907 err = snprintf(tmp_buf, 908 (tmp_buf_end - tmp_buf), 909 "%pB", 910 (void *)(long)raw_args[num_spec]); 911 tmp_buf += (err + 1); 912 } 913 914 i++; 915 num_spec++; 916 continue; 917 } 918 919 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 920 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 921 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 922 err = -EINVAL; 923 goto out; 924 } 925 926 i += 2; 927 if (!tmp_buf) 928 goto nocopy_fmt; 929 930 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 931 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 932 err = -ENOSPC; 933 goto out; 934 } 935 936 unsafe_ptr = (char *)(long)raw_args[num_spec]; 937 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 938 sizeof_cur_ip); 939 if (err < 0) 940 memset(cur_ip, 0, sizeof_cur_ip); 941 942 /* hack: bstr_printf expects IP addresses to be 943 * pre-formatted as strings, ironically, the easiest way 944 * to do that is to call snprintf. 945 */ 946 ip_spec[2] = fmt[i - 1]; 947 ip_spec[3] = fmt[i]; 948 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 949 ip_spec, &cur_ip); 950 951 tmp_buf += err + 1; 952 num_spec++; 953 954 continue; 955 } else if (fmt[i] == 's') { 956 fmt_ptype = fmt[i]; 957 fmt_str: 958 if (fmt[i + 1] != 0 && 959 !isspace(fmt[i + 1]) && 960 !ispunct(fmt[i + 1])) { 961 err = -EINVAL; 962 goto out; 963 } 964 965 if (!tmp_buf) 966 goto nocopy_fmt; 967 968 if (tmp_buf_end == tmp_buf) { 969 err = -ENOSPC; 970 goto out; 971 } 972 973 unsafe_ptr = (char *)(long)raw_args[num_spec]; 974 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 975 fmt_ptype, 976 tmp_buf_end - tmp_buf); 977 if (err < 0) { 978 tmp_buf[0] = '\0'; 979 err = 1; 980 } 981 982 tmp_buf += err; 983 num_spec++; 984 985 continue; 986 } else if (fmt[i] == 'c') { 987 if (!tmp_buf) 988 goto nocopy_fmt; 989 990 if (tmp_buf_end == tmp_buf) { 991 err = -ENOSPC; 992 goto out; 993 } 994 995 *tmp_buf = raw_args[num_spec]; 996 tmp_buf++; 997 num_spec++; 998 999 continue; 1000 } 1001 1002 sizeof_cur_arg = sizeof(int); 1003 1004 if (fmt[i] == 'l') { 1005 sizeof_cur_arg = sizeof(long); 1006 i++; 1007 } 1008 if (fmt[i] == 'l') { 1009 sizeof_cur_arg = sizeof(long long); 1010 i++; 1011 } 1012 1013 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 1014 fmt[i] != 'x' && fmt[i] != 'X') { 1015 err = -EINVAL; 1016 goto out; 1017 } 1018 1019 if (tmp_buf) 1020 cur_arg = raw_args[num_spec]; 1021 nocopy_fmt: 1022 if (tmp_buf) { 1023 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 1024 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1025 err = -ENOSPC; 1026 goto out; 1027 } 1028 1029 if (sizeof_cur_arg == 8) { 1030 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1031 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1032 } else { 1033 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1034 } 1035 tmp_buf += sizeof_cur_arg; 1036 } 1037 num_spec++; 1038 } 1039 1040 err = 0; 1041 out: 1042 if (err) 1043 bpf_bprintf_cleanup(data); 1044 return err; 1045 } 1046 1047 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1048 const void *, args, u32, data_len) 1049 { 1050 struct bpf_bprintf_data data = { 1051 .get_bin_args = true, 1052 }; 1053 int err, num_args; 1054 1055 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1056 (data_len && !args)) 1057 return -EINVAL; 1058 num_args = data_len / 8; 1059 1060 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1061 * can safely give an unbounded size. 1062 */ 1063 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); 1064 if (err < 0) 1065 return err; 1066 1067 err = bstr_printf(str, str_size, fmt, data.bin_args); 1068 1069 bpf_bprintf_cleanup(&data); 1070 1071 return err + 1; 1072 } 1073 1074 const struct bpf_func_proto bpf_snprintf_proto = { 1075 .func = bpf_snprintf, 1076 .gpl_only = true, 1077 .ret_type = RET_INTEGER, 1078 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1079 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1080 .arg3_type = ARG_PTR_TO_CONST_STR, 1081 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1082 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1083 }; 1084 1085 struct bpf_async_cb { 1086 struct bpf_map *map; 1087 struct bpf_prog *prog; 1088 void __rcu *callback_fn; 1089 void *value; 1090 union { 1091 struct rcu_head rcu; 1092 struct work_struct delete_work; 1093 }; 1094 u64 flags; 1095 }; 1096 1097 /* BPF map elements can contain 'struct bpf_timer'. 1098 * Such map owns all of its BPF timers. 1099 * 'struct bpf_timer' is allocated as part of map element allocation 1100 * and it's zero initialized. 1101 * That space is used to keep 'struct bpf_async_kern'. 1102 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1103 * remembers 'struct bpf_map *' pointer it's part of. 1104 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1105 * bpf_timer_start() arms the timer. 1106 * If user space reference to a map goes to zero at this point 1107 * ops->map_release_uref callback is responsible for cancelling the timers, 1108 * freeing their memory, and decrementing prog's refcnts. 1109 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1110 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1111 * freeing the timers when inner map is replaced or deleted by user space. 1112 */ 1113 struct bpf_hrtimer { 1114 struct bpf_async_cb cb; 1115 struct hrtimer timer; 1116 atomic_t cancelling; 1117 }; 1118 1119 struct bpf_work { 1120 struct bpf_async_cb cb; 1121 struct work_struct work; 1122 struct work_struct delete_work; 1123 }; 1124 1125 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */ 1126 struct bpf_async_kern { 1127 union { 1128 struct bpf_async_cb *cb; 1129 struct bpf_hrtimer *timer; 1130 struct bpf_work *work; 1131 }; 1132 /* bpf_spin_lock is used here instead of spinlock_t to make 1133 * sure that it always fits into space reserved by struct bpf_timer 1134 * regardless of LOCKDEP and spinlock debug flags. 1135 */ 1136 struct bpf_spin_lock lock; 1137 } __attribute__((aligned(8))); 1138 1139 enum bpf_async_type { 1140 BPF_ASYNC_TYPE_TIMER = 0, 1141 BPF_ASYNC_TYPE_WQ, 1142 }; 1143 1144 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1145 1146 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1147 { 1148 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1149 struct bpf_map *map = t->cb.map; 1150 void *value = t->cb.value; 1151 bpf_callback_t callback_fn; 1152 void *key; 1153 u32 idx; 1154 1155 BTF_TYPE_EMIT(struct bpf_timer); 1156 callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held()); 1157 if (!callback_fn) 1158 goto out; 1159 1160 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1161 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1162 * Remember the timer this callback is servicing to prevent 1163 * deadlock if callback_fn() calls bpf_timer_cancel() or 1164 * bpf_map_delete_elem() on the same timer. 1165 */ 1166 this_cpu_write(hrtimer_running, t); 1167 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1168 struct bpf_array *array = container_of(map, struct bpf_array, map); 1169 1170 /* compute the key */ 1171 idx = ((char *)value - array->value) / array->elem_size; 1172 key = &idx; 1173 } else { /* hash or lru */ 1174 key = value - round_up(map->key_size, 8); 1175 } 1176 1177 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1178 /* The verifier checked that return value is zero. */ 1179 1180 this_cpu_write(hrtimer_running, NULL); 1181 out: 1182 return HRTIMER_NORESTART; 1183 } 1184 1185 static void bpf_wq_work(struct work_struct *work) 1186 { 1187 struct bpf_work *w = container_of(work, struct bpf_work, work); 1188 struct bpf_async_cb *cb = &w->cb; 1189 struct bpf_map *map = cb->map; 1190 bpf_callback_t callback_fn; 1191 void *value = cb->value; 1192 void *key; 1193 u32 idx; 1194 1195 BTF_TYPE_EMIT(struct bpf_wq); 1196 1197 callback_fn = READ_ONCE(cb->callback_fn); 1198 if (!callback_fn) 1199 return; 1200 1201 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1202 struct bpf_array *array = container_of(map, struct bpf_array, map); 1203 1204 /* compute the key */ 1205 idx = ((char *)value - array->value) / array->elem_size; 1206 key = &idx; 1207 } else { /* hash or lru */ 1208 key = value - round_up(map->key_size, 8); 1209 } 1210 1211 rcu_read_lock_trace(); 1212 migrate_disable(); 1213 1214 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1215 1216 migrate_enable(); 1217 rcu_read_unlock_trace(); 1218 } 1219 1220 static void bpf_wq_delete_work(struct work_struct *work) 1221 { 1222 struct bpf_work *w = container_of(work, struct bpf_work, delete_work); 1223 1224 cancel_work_sync(&w->work); 1225 1226 kfree_rcu(w, cb.rcu); 1227 } 1228 1229 static void bpf_timer_delete_work(struct work_struct *work) 1230 { 1231 struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work); 1232 1233 /* Cancel the timer and wait for callback to complete if it was running. 1234 * If hrtimer_cancel() can be safely called it's safe to call 1235 * kfree_rcu(t) right after for both preallocated and non-preallocated 1236 * maps. The async->cb = NULL was already done and no code path can see 1237 * address 't' anymore. Timer if armed for existing bpf_hrtimer before 1238 * bpf_timer_cancel_and_free will have been cancelled. 1239 */ 1240 hrtimer_cancel(&t->timer); 1241 kfree_rcu(t, cb.rcu); 1242 } 1243 1244 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags, 1245 enum bpf_async_type type) 1246 { 1247 struct bpf_async_cb *cb; 1248 struct bpf_hrtimer *t; 1249 struct bpf_work *w; 1250 clockid_t clockid; 1251 size_t size; 1252 int ret = 0; 1253 1254 if (in_nmi()) 1255 return -EOPNOTSUPP; 1256 1257 switch (type) { 1258 case BPF_ASYNC_TYPE_TIMER: 1259 size = sizeof(struct bpf_hrtimer); 1260 break; 1261 case BPF_ASYNC_TYPE_WQ: 1262 size = sizeof(struct bpf_work); 1263 break; 1264 default: 1265 return -EINVAL; 1266 } 1267 1268 __bpf_spin_lock_irqsave(&async->lock); 1269 t = async->timer; 1270 if (t) { 1271 ret = -EBUSY; 1272 goto out; 1273 } 1274 1275 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1276 cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node); 1277 if (!cb) { 1278 ret = -ENOMEM; 1279 goto out; 1280 } 1281 1282 switch (type) { 1283 case BPF_ASYNC_TYPE_TIMER: 1284 clockid = flags & (MAX_CLOCKS - 1); 1285 t = (struct bpf_hrtimer *)cb; 1286 1287 atomic_set(&t->cancelling, 0); 1288 INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work); 1289 hrtimer_setup(&t->timer, bpf_timer_cb, clockid, HRTIMER_MODE_REL_SOFT); 1290 cb->value = (void *)async - map->record->timer_off; 1291 break; 1292 case BPF_ASYNC_TYPE_WQ: 1293 w = (struct bpf_work *)cb; 1294 1295 INIT_WORK(&w->work, bpf_wq_work); 1296 INIT_WORK(&w->delete_work, bpf_wq_delete_work); 1297 cb->value = (void *)async - map->record->wq_off; 1298 break; 1299 } 1300 cb->map = map; 1301 cb->prog = NULL; 1302 cb->flags = flags; 1303 rcu_assign_pointer(cb->callback_fn, NULL); 1304 1305 WRITE_ONCE(async->cb, cb); 1306 /* Guarantee the order between async->cb and map->usercnt. So 1307 * when there are concurrent uref release and bpf timer init, either 1308 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL 1309 * timer or atomic64_read() below returns a zero usercnt. 1310 */ 1311 smp_mb(); 1312 if (!atomic64_read(&map->usercnt)) { 1313 /* maps with timers must be either held by user space 1314 * or pinned in bpffs. 1315 */ 1316 WRITE_ONCE(async->cb, NULL); 1317 kfree(cb); 1318 ret = -EPERM; 1319 } 1320 out: 1321 __bpf_spin_unlock_irqrestore(&async->lock); 1322 return ret; 1323 } 1324 1325 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map, 1326 u64, flags) 1327 { 1328 clock_t clockid = flags & (MAX_CLOCKS - 1); 1329 1330 BUILD_BUG_ON(MAX_CLOCKS != 16); 1331 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer)); 1332 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer)); 1333 1334 if (flags >= MAX_CLOCKS || 1335 /* similar to timerfd except _ALARM variants are not supported */ 1336 (clockid != CLOCK_MONOTONIC && 1337 clockid != CLOCK_REALTIME && 1338 clockid != CLOCK_BOOTTIME)) 1339 return -EINVAL; 1340 1341 return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER); 1342 } 1343 1344 static const struct bpf_func_proto bpf_timer_init_proto = { 1345 .func = bpf_timer_init, 1346 .gpl_only = true, 1347 .ret_type = RET_INTEGER, 1348 .arg1_type = ARG_PTR_TO_TIMER, 1349 .arg2_type = ARG_CONST_MAP_PTR, 1350 .arg3_type = ARG_ANYTHING, 1351 }; 1352 1353 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn, 1354 struct bpf_prog_aux *aux, unsigned int flags, 1355 enum bpf_async_type type) 1356 { 1357 struct bpf_prog *prev, *prog = aux->prog; 1358 struct bpf_async_cb *cb; 1359 int ret = 0; 1360 1361 if (in_nmi()) 1362 return -EOPNOTSUPP; 1363 __bpf_spin_lock_irqsave(&async->lock); 1364 cb = async->cb; 1365 if (!cb) { 1366 ret = -EINVAL; 1367 goto out; 1368 } 1369 if (!atomic64_read(&cb->map->usercnt)) { 1370 /* maps with timers must be either held by user space 1371 * or pinned in bpffs. Otherwise timer might still be 1372 * running even when bpf prog is detached and user space 1373 * is gone, since map_release_uref won't ever be called. 1374 */ 1375 ret = -EPERM; 1376 goto out; 1377 } 1378 prev = cb->prog; 1379 if (prev != prog) { 1380 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1381 * can pick different callback_fn-s within the same prog. 1382 */ 1383 prog = bpf_prog_inc_not_zero(prog); 1384 if (IS_ERR(prog)) { 1385 ret = PTR_ERR(prog); 1386 goto out; 1387 } 1388 if (prev) 1389 /* Drop prev prog refcnt when swapping with new prog */ 1390 bpf_prog_put(prev); 1391 cb->prog = prog; 1392 } 1393 rcu_assign_pointer(cb->callback_fn, callback_fn); 1394 out: 1395 __bpf_spin_unlock_irqrestore(&async->lock); 1396 return ret; 1397 } 1398 1399 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn, 1400 struct bpf_prog_aux *, aux) 1401 { 1402 return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER); 1403 } 1404 1405 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1406 .func = bpf_timer_set_callback, 1407 .gpl_only = true, 1408 .ret_type = RET_INTEGER, 1409 .arg1_type = ARG_PTR_TO_TIMER, 1410 .arg2_type = ARG_PTR_TO_FUNC, 1411 }; 1412 1413 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags) 1414 { 1415 struct bpf_hrtimer *t; 1416 int ret = 0; 1417 enum hrtimer_mode mode; 1418 1419 if (in_nmi()) 1420 return -EOPNOTSUPP; 1421 if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN)) 1422 return -EINVAL; 1423 __bpf_spin_lock_irqsave(&timer->lock); 1424 t = timer->timer; 1425 if (!t || !t->cb.prog) { 1426 ret = -EINVAL; 1427 goto out; 1428 } 1429 1430 if (flags & BPF_F_TIMER_ABS) 1431 mode = HRTIMER_MODE_ABS_SOFT; 1432 else 1433 mode = HRTIMER_MODE_REL_SOFT; 1434 1435 if (flags & BPF_F_TIMER_CPU_PIN) 1436 mode |= HRTIMER_MODE_PINNED; 1437 1438 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); 1439 out: 1440 __bpf_spin_unlock_irqrestore(&timer->lock); 1441 return ret; 1442 } 1443 1444 static const struct bpf_func_proto bpf_timer_start_proto = { 1445 .func = bpf_timer_start, 1446 .gpl_only = true, 1447 .ret_type = RET_INTEGER, 1448 .arg1_type = ARG_PTR_TO_TIMER, 1449 .arg2_type = ARG_ANYTHING, 1450 .arg3_type = ARG_ANYTHING, 1451 }; 1452 1453 static void drop_prog_refcnt(struct bpf_async_cb *async) 1454 { 1455 struct bpf_prog *prog = async->prog; 1456 1457 if (prog) { 1458 bpf_prog_put(prog); 1459 async->prog = NULL; 1460 rcu_assign_pointer(async->callback_fn, NULL); 1461 } 1462 } 1463 1464 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer) 1465 { 1466 struct bpf_hrtimer *t, *cur_t; 1467 bool inc = false; 1468 int ret = 0; 1469 1470 if (in_nmi()) 1471 return -EOPNOTSUPP; 1472 rcu_read_lock(); 1473 __bpf_spin_lock_irqsave(&timer->lock); 1474 t = timer->timer; 1475 if (!t) { 1476 ret = -EINVAL; 1477 goto out; 1478 } 1479 1480 cur_t = this_cpu_read(hrtimer_running); 1481 if (cur_t == t) { 1482 /* If bpf callback_fn is trying to bpf_timer_cancel() 1483 * its own timer the hrtimer_cancel() will deadlock 1484 * since it waits for callback_fn to finish. 1485 */ 1486 ret = -EDEADLK; 1487 goto out; 1488 } 1489 1490 /* Only account in-flight cancellations when invoked from a timer 1491 * callback, since we want to avoid waiting only if other _callbacks_ 1492 * are waiting on us, to avoid introducing lockups. Non-callback paths 1493 * are ok, since nobody would synchronously wait for their completion. 1494 */ 1495 if (!cur_t) 1496 goto drop; 1497 atomic_inc(&t->cancelling); 1498 /* Need full barrier after relaxed atomic_inc */ 1499 smp_mb__after_atomic(); 1500 inc = true; 1501 if (atomic_read(&cur_t->cancelling)) { 1502 /* We're cancelling timer t, while some other timer callback is 1503 * attempting to cancel us. In such a case, it might be possible 1504 * that timer t belongs to the other callback, or some other 1505 * callback waiting upon it (creating transitive dependencies 1506 * upon us), and we will enter a deadlock if we continue 1507 * cancelling and waiting for it synchronously, since it might 1508 * do the same. Bail! 1509 */ 1510 ret = -EDEADLK; 1511 goto out; 1512 } 1513 drop: 1514 drop_prog_refcnt(&t->cb); 1515 out: 1516 __bpf_spin_unlock_irqrestore(&timer->lock); 1517 /* Cancel the timer and wait for associated callback to finish 1518 * if it was running. 1519 */ 1520 ret = ret ?: hrtimer_cancel(&t->timer); 1521 if (inc) 1522 atomic_dec(&t->cancelling); 1523 rcu_read_unlock(); 1524 return ret; 1525 } 1526 1527 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1528 .func = bpf_timer_cancel, 1529 .gpl_only = true, 1530 .ret_type = RET_INTEGER, 1531 .arg1_type = ARG_PTR_TO_TIMER, 1532 }; 1533 1534 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async) 1535 { 1536 struct bpf_async_cb *cb; 1537 1538 /* Performance optimization: read async->cb without lock first. */ 1539 if (!READ_ONCE(async->cb)) 1540 return NULL; 1541 1542 __bpf_spin_lock_irqsave(&async->lock); 1543 /* re-read it under lock */ 1544 cb = async->cb; 1545 if (!cb) 1546 goto out; 1547 drop_prog_refcnt(cb); 1548 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1549 * this timer, since it won't be initialized. 1550 */ 1551 WRITE_ONCE(async->cb, NULL); 1552 out: 1553 __bpf_spin_unlock_irqrestore(&async->lock); 1554 return cb; 1555 } 1556 1557 /* This function is called by map_delete/update_elem for individual element and 1558 * by ops->map_release_uref when the user space reference to a map reaches zero. 1559 */ 1560 void bpf_timer_cancel_and_free(void *val) 1561 { 1562 struct bpf_hrtimer *t; 1563 1564 t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val); 1565 1566 if (!t) 1567 return; 1568 /* We check that bpf_map_delete/update_elem() was called from timer 1569 * callback_fn. In such case we don't call hrtimer_cancel() (since it 1570 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will 1571 * just return -1). Though callback_fn is still running on this cpu it's 1572 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1573 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1574 * since async->cb = NULL was already done. The timer will be 1575 * effectively cancelled because bpf_timer_cb() will return 1576 * HRTIMER_NORESTART. 1577 * 1578 * However, it is possible the timer callback_fn calling us armed the 1579 * timer _before_ calling us, such that failing to cancel it here will 1580 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer. 1581 * Therefore, we _need_ to cancel any outstanding timers before we do 1582 * kfree_rcu, even though no more timers can be armed. 1583 * 1584 * Moreover, we need to schedule work even if timer does not belong to 1585 * the calling callback_fn, as on two different CPUs, we can end up in a 1586 * situation where both sides run in parallel, try to cancel one 1587 * another, and we end up waiting on both sides in hrtimer_cancel 1588 * without making forward progress, since timer1 depends on time2 1589 * callback to finish, and vice versa. 1590 * 1591 * CPU 1 (timer1_cb) CPU 2 (timer2_cb) 1592 * bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1) 1593 * 1594 * To avoid these issues, punt to workqueue context when we are in a 1595 * timer callback. 1596 */ 1597 if (this_cpu_read(hrtimer_running)) { 1598 queue_work(system_unbound_wq, &t->cb.delete_work); 1599 return; 1600 } 1601 1602 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 1603 /* If the timer is running on other CPU, also use a kworker to 1604 * wait for the completion of the timer instead of trying to 1605 * acquire a sleepable lock in hrtimer_cancel() to wait for its 1606 * completion. 1607 */ 1608 if (hrtimer_try_to_cancel(&t->timer) >= 0) 1609 kfree_rcu(t, cb.rcu); 1610 else 1611 queue_work(system_unbound_wq, &t->cb.delete_work); 1612 } else { 1613 bpf_timer_delete_work(&t->cb.delete_work); 1614 } 1615 } 1616 1617 /* This function is called by map_delete/update_elem for individual element and 1618 * by ops->map_release_uref when the user space reference to a map reaches zero. 1619 */ 1620 void bpf_wq_cancel_and_free(void *val) 1621 { 1622 struct bpf_work *work; 1623 1624 BTF_TYPE_EMIT(struct bpf_wq); 1625 1626 work = (struct bpf_work *)__bpf_async_cancel_and_free(val); 1627 if (!work) 1628 return; 1629 /* Trigger cancel of the sleepable work, but *do not* wait for 1630 * it to finish if it was running as we might not be in a 1631 * sleepable context. 1632 * kfree will be called once the work has finished. 1633 */ 1634 schedule_work(&work->delete_work); 1635 } 1636 1637 BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr) 1638 { 1639 unsigned long *kptr = dst; 1640 1641 /* This helper may be inlined by verifier. */ 1642 return xchg(kptr, (unsigned long)ptr); 1643 } 1644 1645 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1646 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to 1647 * denote type that verifier will determine. 1648 */ 1649 static const struct bpf_func_proto bpf_kptr_xchg_proto = { 1650 .func = bpf_kptr_xchg, 1651 .gpl_only = false, 1652 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1653 .ret_btf_id = BPF_PTR_POISON, 1654 .arg1_type = ARG_KPTR_XCHG_DEST, 1655 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1656 .arg2_btf_id = BPF_PTR_POISON, 1657 }; 1658 1659 /* Since the upper 8 bits of dynptr->size is reserved, the 1660 * maximum supported size is 2^24 - 1. 1661 */ 1662 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1663 #define DYNPTR_TYPE_SHIFT 28 1664 #define DYNPTR_SIZE_MASK 0xFFFFFF 1665 #define DYNPTR_RDONLY_BIT BIT(31) 1666 1667 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) 1668 { 1669 return ptr->size & DYNPTR_RDONLY_BIT; 1670 } 1671 1672 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 1673 { 1674 ptr->size |= DYNPTR_RDONLY_BIT; 1675 } 1676 1677 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1678 { 1679 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1680 } 1681 1682 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) 1683 { 1684 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; 1685 } 1686 1687 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 1688 { 1689 return ptr->size & DYNPTR_SIZE_MASK; 1690 } 1691 1692 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size) 1693 { 1694 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; 1695 1696 ptr->size = new_size | metadata; 1697 } 1698 1699 int bpf_dynptr_check_size(u32 size) 1700 { 1701 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1702 } 1703 1704 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1705 enum bpf_dynptr_type type, u32 offset, u32 size) 1706 { 1707 ptr->data = data; 1708 ptr->offset = offset; 1709 ptr->size = size; 1710 bpf_dynptr_set_type(ptr, type); 1711 } 1712 1713 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1714 { 1715 memset(ptr, 0, sizeof(*ptr)); 1716 } 1717 1718 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1719 { 1720 int err; 1721 1722 BTF_TYPE_EMIT(struct bpf_dynptr); 1723 1724 err = bpf_dynptr_check_size(size); 1725 if (err) 1726 goto error; 1727 1728 /* flags is currently unsupported */ 1729 if (flags) { 1730 err = -EINVAL; 1731 goto error; 1732 } 1733 1734 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1735 1736 return 0; 1737 1738 error: 1739 bpf_dynptr_set_null(ptr); 1740 return err; 1741 } 1742 1743 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1744 .func = bpf_dynptr_from_mem, 1745 .gpl_only = false, 1746 .ret_type = RET_INTEGER, 1747 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1748 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1749 .arg3_type = ARG_ANYTHING, 1750 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE, 1751 }; 1752 1753 static int __bpf_dynptr_read(void *dst, u32 len, const struct bpf_dynptr_kern *src, 1754 u32 offset, u64 flags) 1755 { 1756 enum bpf_dynptr_type type; 1757 int err; 1758 1759 if (!src->data || flags) 1760 return -EINVAL; 1761 1762 err = bpf_dynptr_check_off_len(src, offset, len); 1763 if (err) 1764 return err; 1765 1766 type = bpf_dynptr_get_type(src); 1767 1768 switch (type) { 1769 case BPF_DYNPTR_TYPE_LOCAL: 1770 case BPF_DYNPTR_TYPE_RINGBUF: 1771 /* Source and destination may possibly overlap, hence use memmove to 1772 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1773 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1774 */ 1775 memmove(dst, src->data + src->offset + offset, len); 1776 return 0; 1777 case BPF_DYNPTR_TYPE_SKB: 1778 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); 1779 case BPF_DYNPTR_TYPE_XDP: 1780 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); 1781 default: 1782 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); 1783 return -EFAULT; 1784 } 1785 } 1786 1787 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src, 1788 u32, offset, u64, flags) 1789 { 1790 return __bpf_dynptr_read(dst, len, src, offset, flags); 1791 } 1792 1793 static const struct bpf_func_proto bpf_dynptr_read_proto = { 1794 .func = bpf_dynptr_read, 1795 .gpl_only = false, 1796 .ret_type = RET_INTEGER, 1797 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1798 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1799 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1800 .arg4_type = ARG_ANYTHING, 1801 .arg5_type = ARG_ANYTHING, 1802 }; 1803 1804 int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u32 offset, void *src, 1805 u32 len, u64 flags) 1806 { 1807 enum bpf_dynptr_type type; 1808 int err; 1809 1810 if (!dst->data || __bpf_dynptr_is_rdonly(dst)) 1811 return -EINVAL; 1812 1813 err = bpf_dynptr_check_off_len(dst, offset, len); 1814 if (err) 1815 return err; 1816 1817 type = bpf_dynptr_get_type(dst); 1818 1819 switch (type) { 1820 case BPF_DYNPTR_TYPE_LOCAL: 1821 case BPF_DYNPTR_TYPE_RINGBUF: 1822 if (flags) 1823 return -EINVAL; 1824 /* Source and destination may possibly overlap, hence use memmove to 1825 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1826 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1827 */ 1828 memmove(dst->data + dst->offset + offset, src, len); 1829 return 0; 1830 case BPF_DYNPTR_TYPE_SKB: 1831 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, 1832 flags); 1833 case BPF_DYNPTR_TYPE_XDP: 1834 if (flags) 1835 return -EINVAL; 1836 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); 1837 default: 1838 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); 1839 return -EFAULT; 1840 } 1841 } 1842 1843 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src, 1844 u32, len, u64, flags) 1845 { 1846 return __bpf_dynptr_write(dst, offset, src, len, flags); 1847 } 1848 1849 static const struct bpf_func_proto bpf_dynptr_write_proto = { 1850 .func = bpf_dynptr_write, 1851 .gpl_only = false, 1852 .ret_type = RET_INTEGER, 1853 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1854 .arg2_type = ARG_ANYTHING, 1855 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1856 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1857 .arg5_type = ARG_ANYTHING, 1858 }; 1859 1860 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) 1861 { 1862 enum bpf_dynptr_type type; 1863 int err; 1864 1865 if (!ptr->data) 1866 return 0; 1867 1868 err = bpf_dynptr_check_off_len(ptr, offset, len); 1869 if (err) 1870 return 0; 1871 1872 if (__bpf_dynptr_is_rdonly(ptr)) 1873 return 0; 1874 1875 type = bpf_dynptr_get_type(ptr); 1876 1877 switch (type) { 1878 case BPF_DYNPTR_TYPE_LOCAL: 1879 case BPF_DYNPTR_TYPE_RINGBUF: 1880 return (unsigned long)(ptr->data + ptr->offset + offset); 1881 case BPF_DYNPTR_TYPE_SKB: 1882 case BPF_DYNPTR_TYPE_XDP: 1883 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ 1884 return 0; 1885 default: 1886 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); 1887 return 0; 1888 } 1889 } 1890 1891 static const struct bpf_func_proto bpf_dynptr_data_proto = { 1892 .func = bpf_dynptr_data, 1893 .gpl_only = false, 1894 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1895 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1896 .arg2_type = ARG_ANYTHING, 1897 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1898 }; 1899 1900 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1901 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1902 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1903 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1904 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1905 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1906 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1907 const struct bpf_func_proto bpf_perf_event_read_proto __weak; 1908 const struct bpf_func_proto bpf_send_signal_proto __weak; 1909 const struct bpf_func_proto bpf_send_signal_thread_proto __weak; 1910 const struct bpf_func_proto bpf_get_task_stack_sleepable_proto __weak; 1911 const struct bpf_func_proto bpf_get_task_stack_proto __weak; 1912 const struct bpf_func_proto bpf_get_branch_snapshot_proto __weak; 1913 1914 const struct bpf_func_proto * 1915 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1916 { 1917 switch (func_id) { 1918 case BPF_FUNC_map_lookup_elem: 1919 return &bpf_map_lookup_elem_proto; 1920 case BPF_FUNC_map_update_elem: 1921 return &bpf_map_update_elem_proto; 1922 case BPF_FUNC_map_delete_elem: 1923 return &bpf_map_delete_elem_proto; 1924 case BPF_FUNC_map_push_elem: 1925 return &bpf_map_push_elem_proto; 1926 case BPF_FUNC_map_pop_elem: 1927 return &bpf_map_pop_elem_proto; 1928 case BPF_FUNC_map_peek_elem: 1929 return &bpf_map_peek_elem_proto; 1930 case BPF_FUNC_map_lookup_percpu_elem: 1931 return &bpf_map_lookup_percpu_elem_proto; 1932 case BPF_FUNC_get_prandom_u32: 1933 return &bpf_get_prandom_u32_proto; 1934 case BPF_FUNC_get_smp_processor_id: 1935 return &bpf_get_raw_smp_processor_id_proto; 1936 case BPF_FUNC_get_numa_node_id: 1937 return &bpf_get_numa_node_id_proto; 1938 case BPF_FUNC_tail_call: 1939 return &bpf_tail_call_proto; 1940 case BPF_FUNC_ktime_get_ns: 1941 return &bpf_ktime_get_ns_proto; 1942 case BPF_FUNC_ktime_get_boot_ns: 1943 return &bpf_ktime_get_boot_ns_proto; 1944 case BPF_FUNC_ktime_get_tai_ns: 1945 return &bpf_ktime_get_tai_ns_proto; 1946 case BPF_FUNC_ringbuf_output: 1947 return &bpf_ringbuf_output_proto; 1948 case BPF_FUNC_ringbuf_reserve: 1949 return &bpf_ringbuf_reserve_proto; 1950 case BPF_FUNC_ringbuf_submit: 1951 return &bpf_ringbuf_submit_proto; 1952 case BPF_FUNC_ringbuf_discard: 1953 return &bpf_ringbuf_discard_proto; 1954 case BPF_FUNC_ringbuf_query: 1955 return &bpf_ringbuf_query_proto; 1956 case BPF_FUNC_strncmp: 1957 return &bpf_strncmp_proto; 1958 case BPF_FUNC_strtol: 1959 return &bpf_strtol_proto; 1960 case BPF_FUNC_strtoul: 1961 return &bpf_strtoul_proto; 1962 case BPF_FUNC_get_current_pid_tgid: 1963 return &bpf_get_current_pid_tgid_proto; 1964 case BPF_FUNC_get_ns_current_pid_tgid: 1965 return &bpf_get_ns_current_pid_tgid_proto; 1966 case BPF_FUNC_get_current_uid_gid: 1967 return &bpf_get_current_uid_gid_proto; 1968 default: 1969 break; 1970 } 1971 1972 if (!bpf_token_capable(prog->aux->token, CAP_BPF)) 1973 return NULL; 1974 1975 switch (func_id) { 1976 case BPF_FUNC_spin_lock: 1977 return &bpf_spin_lock_proto; 1978 case BPF_FUNC_spin_unlock: 1979 return &bpf_spin_unlock_proto; 1980 case BPF_FUNC_jiffies64: 1981 return &bpf_jiffies64_proto; 1982 case BPF_FUNC_per_cpu_ptr: 1983 return &bpf_per_cpu_ptr_proto; 1984 case BPF_FUNC_this_cpu_ptr: 1985 return &bpf_this_cpu_ptr_proto; 1986 case BPF_FUNC_timer_init: 1987 return &bpf_timer_init_proto; 1988 case BPF_FUNC_timer_set_callback: 1989 return &bpf_timer_set_callback_proto; 1990 case BPF_FUNC_timer_start: 1991 return &bpf_timer_start_proto; 1992 case BPF_FUNC_timer_cancel: 1993 return &bpf_timer_cancel_proto; 1994 case BPF_FUNC_kptr_xchg: 1995 return &bpf_kptr_xchg_proto; 1996 case BPF_FUNC_for_each_map_elem: 1997 return &bpf_for_each_map_elem_proto; 1998 case BPF_FUNC_loop: 1999 return &bpf_loop_proto; 2000 case BPF_FUNC_user_ringbuf_drain: 2001 return &bpf_user_ringbuf_drain_proto; 2002 case BPF_FUNC_ringbuf_reserve_dynptr: 2003 return &bpf_ringbuf_reserve_dynptr_proto; 2004 case BPF_FUNC_ringbuf_submit_dynptr: 2005 return &bpf_ringbuf_submit_dynptr_proto; 2006 case BPF_FUNC_ringbuf_discard_dynptr: 2007 return &bpf_ringbuf_discard_dynptr_proto; 2008 case BPF_FUNC_dynptr_from_mem: 2009 return &bpf_dynptr_from_mem_proto; 2010 case BPF_FUNC_dynptr_read: 2011 return &bpf_dynptr_read_proto; 2012 case BPF_FUNC_dynptr_write: 2013 return &bpf_dynptr_write_proto; 2014 case BPF_FUNC_dynptr_data: 2015 return &bpf_dynptr_data_proto; 2016 #ifdef CONFIG_CGROUPS 2017 case BPF_FUNC_cgrp_storage_get: 2018 return &bpf_cgrp_storage_get_proto; 2019 case BPF_FUNC_cgrp_storage_delete: 2020 return &bpf_cgrp_storage_delete_proto; 2021 case BPF_FUNC_get_current_cgroup_id: 2022 return &bpf_get_current_cgroup_id_proto; 2023 case BPF_FUNC_get_current_ancestor_cgroup_id: 2024 return &bpf_get_current_ancestor_cgroup_id_proto; 2025 case BPF_FUNC_current_task_under_cgroup: 2026 return &bpf_current_task_under_cgroup_proto; 2027 #endif 2028 #ifdef CONFIG_CGROUP_NET_CLASSID 2029 case BPF_FUNC_get_cgroup_classid: 2030 return &bpf_get_cgroup_classid_curr_proto; 2031 #endif 2032 case BPF_FUNC_task_storage_get: 2033 if (bpf_prog_check_recur(prog)) 2034 return &bpf_task_storage_get_recur_proto; 2035 return &bpf_task_storage_get_proto; 2036 case BPF_FUNC_task_storage_delete: 2037 if (bpf_prog_check_recur(prog)) 2038 return &bpf_task_storage_delete_recur_proto; 2039 return &bpf_task_storage_delete_proto; 2040 default: 2041 break; 2042 } 2043 2044 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON)) 2045 return NULL; 2046 2047 switch (func_id) { 2048 case BPF_FUNC_trace_printk: 2049 return bpf_get_trace_printk_proto(); 2050 case BPF_FUNC_get_current_task: 2051 return &bpf_get_current_task_proto; 2052 case BPF_FUNC_get_current_task_btf: 2053 return &bpf_get_current_task_btf_proto; 2054 case BPF_FUNC_get_current_comm: 2055 return &bpf_get_current_comm_proto; 2056 case BPF_FUNC_probe_read_user: 2057 return &bpf_probe_read_user_proto; 2058 case BPF_FUNC_probe_read_kernel: 2059 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 2060 NULL : &bpf_probe_read_kernel_proto; 2061 case BPF_FUNC_probe_read_user_str: 2062 return &bpf_probe_read_user_str_proto; 2063 case BPF_FUNC_probe_read_kernel_str: 2064 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 2065 NULL : &bpf_probe_read_kernel_str_proto; 2066 case BPF_FUNC_copy_from_user: 2067 return &bpf_copy_from_user_proto; 2068 case BPF_FUNC_copy_from_user_task: 2069 return &bpf_copy_from_user_task_proto; 2070 case BPF_FUNC_snprintf_btf: 2071 return &bpf_snprintf_btf_proto; 2072 case BPF_FUNC_snprintf: 2073 return &bpf_snprintf_proto; 2074 case BPF_FUNC_task_pt_regs: 2075 return &bpf_task_pt_regs_proto; 2076 case BPF_FUNC_trace_vprintk: 2077 return bpf_get_trace_vprintk_proto(); 2078 case BPF_FUNC_perf_event_read_value: 2079 return bpf_get_perf_event_read_value_proto(); 2080 case BPF_FUNC_perf_event_read: 2081 return &bpf_perf_event_read_proto; 2082 case BPF_FUNC_send_signal: 2083 return &bpf_send_signal_proto; 2084 case BPF_FUNC_send_signal_thread: 2085 return &bpf_send_signal_thread_proto; 2086 case BPF_FUNC_get_task_stack: 2087 return prog->sleepable ? &bpf_get_task_stack_sleepable_proto 2088 : &bpf_get_task_stack_proto; 2089 case BPF_FUNC_get_branch_snapshot: 2090 return &bpf_get_branch_snapshot_proto; 2091 case BPF_FUNC_find_vma: 2092 return &bpf_find_vma_proto; 2093 default: 2094 return NULL; 2095 } 2096 } 2097 EXPORT_SYMBOL_GPL(bpf_base_func_proto); 2098 2099 void bpf_list_head_free(const struct btf_field *field, void *list_head, 2100 struct bpf_spin_lock *spin_lock) 2101 { 2102 struct list_head *head = list_head, *orig_head = list_head; 2103 2104 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); 2105 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); 2106 2107 /* Do the actual list draining outside the lock to not hold the lock for 2108 * too long, and also prevent deadlocks if tracing programs end up 2109 * executing on entry/exit of functions called inside the critical 2110 * section, and end up doing map ops that call bpf_list_head_free for 2111 * the same map value again. 2112 */ 2113 __bpf_spin_lock_irqsave(spin_lock); 2114 if (!head->next || list_empty(head)) 2115 goto unlock; 2116 head = head->next; 2117 unlock: 2118 INIT_LIST_HEAD(orig_head); 2119 __bpf_spin_unlock_irqrestore(spin_lock); 2120 2121 while (head != orig_head) { 2122 void *obj = head; 2123 2124 obj -= field->graph_root.node_offset; 2125 head = head->next; 2126 /* The contained type can also have resources, including a 2127 * bpf_list_head which needs to be freed. 2128 */ 2129 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); 2130 } 2131 } 2132 2133 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are 2134 * 'rb_node *', so field name of rb_node within containing struct is not 2135 * needed. 2136 * 2137 * Since bpf_rb_tree's node type has a corresponding struct btf_field with 2138 * graph_root.node_offset, it's not necessary to know field name 2139 * or type of node struct 2140 */ 2141 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ 2142 for (pos = rb_first_postorder(root); \ 2143 pos && ({ n = rb_next_postorder(pos); 1; }); \ 2144 pos = n) 2145 2146 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 2147 struct bpf_spin_lock *spin_lock) 2148 { 2149 struct rb_root_cached orig_root, *root = rb_root; 2150 struct rb_node *pos, *n; 2151 void *obj; 2152 2153 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); 2154 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); 2155 2156 __bpf_spin_lock_irqsave(spin_lock); 2157 orig_root = *root; 2158 *root = RB_ROOT_CACHED; 2159 __bpf_spin_unlock_irqrestore(spin_lock); 2160 2161 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { 2162 obj = pos; 2163 obj -= field->graph_root.node_offset; 2164 2165 2166 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); 2167 } 2168 } 2169 2170 __bpf_kfunc_start_defs(); 2171 2172 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) 2173 { 2174 struct btf_struct_meta *meta = meta__ign; 2175 u64 size = local_type_id__k; 2176 void *p; 2177 2178 p = bpf_mem_alloc(&bpf_global_ma, size); 2179 if (!p) 2180 return NULL; 2181 if (meta) 2182 bpf_obj_init(meta->record, p); 2183 return p; 2184 } 2185 2186 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign) 2187 { 2188 u64 size = local_type_id__k; 2189 2190 /* The verifier has ensured that meta__ign must be NULL */ 2191 return bpf_mem_alloc(&bpf_global_percpu_ma, size); 2192 } 2193 2194 /* Must be called under migrate_disable(), as required by bpf_mem_free */ 2195 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu) 2196 { 2197 struct bpf_mem_alloc *ma; 2198 2199 if (rec && rec->refcount_off >= 0 && 2200 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { 2201 /* Object is refcounted and refcount_dec didn't result in 0 2202 * refcount. Return without freeing the object 2203 */ 2204 return; 2205 } 2206 2207 if (rec) 2208 bpf_obj_free_fields(rec, p); 2209 2210 if (percpu) 2211 ma = &bpf_global_percpu_ma; 2212 else 2213 ma = &bpf_global_ma; 2214 bpf_mem_free_rcu(ma, p); 2215 } 2216 2217 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) 2218 { 2219 struct btf_struct_meta *meta = meta__ign; 2220 void *p = p__alloc; 2221 2222 __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false); 2223 } 2224 2225 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign) 2226 { 2227 /* The verifier has ensured that meta__ign must be NULL */ 2228 bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc); 2229 } 2230 2231 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) 2232 { 2233 struct btf_struct_meta *meta = meta__ign; 2234 struct bpf_refcount *ref; 2235 2236 /* Could just cast directly to refcount_t *, but need some code using 2237 * bpf_refcount type so that it is emitted in vmlinux BTF 2238 */ 2239 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); 2240 if (!refcount_inc_not_zero((refcount_t *)ref)) 2241 return NULL; 2242 2243 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null 2244 * in verifier.c 2245 */ 2246 return (void *)p__refcounted_kptr; 2247 } 2248 2249 static int __bpf_list_add(struct bpf_list_node_kern *node, 2250 struct bpf_list_head *head, 2251 bool tail, struct btf_record *rec, u64 off) 2252 { 2253 struct list_head *n = &node->list_head, *h = (void *)head; 2254 2255 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2256 * called on its fields, so init here 2257 */ 2258 if (unlikely(!h->next)) 2259 INIT_LIST_HEAD(h); 2260 2261 /* node->owner != NULL implies !list_empty(n), no need to separately 2262 * check the latter 2263 */ 2264 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2265 /* Only called from BPF prog, no need to migrate_disable */ 2266 __bpf_obj_drop_impl((void *)n - off, rec, false); 2267 return -EINVAL; 2268 } 2269 2270 tail ? list_add_tail(n, h) : list_add(n, h); 2271 WRITE_ONCE(node->owner, head); 2272 2273 return 0; 2274 } 2275 2276 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, 2277 struct bpf_list_node *node, 2278 void *meta__ign, u64 off) 2279 { 2280 struct bpf_list_node_kern *n = (void *)node; 2281 struct btf_struct_meta *meta = meta__ign; 2282 2283 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off); 2284 } 2285 2286 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, 2287 struct bpf_list_node *node, 2288 void *meta__ign, u64 off) 2289 { 2290 struct bpf_list_node_kern *n = (void *)node; 2291 struct btf_struct_meta *meta = meta__ign; 2292 2293 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off); 2294 } 2295 2296 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) 2297 { 2298 struct list_head *n, *h = (void *)head; 2299 struct bpf_list_node_kern *node; 2300 2301 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2302 * called on its fields, so init here 2303 */ 2304 if (unlikely(!h->next)) 2305 INIT_LIST_HEAD(h); 2306 if (list_empty(h)) 2307 return NULL; 2308 2309 n = tail ? h->prev : h->next; 2310 node = container_of(n, struct bpf_list_node_kern, list_head); 2311 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head)) 2312 return NULL; 2313 2314 list_del_init(n); 2315 WRITE_ONCE(node->owner, NULL); 2316 return (struct bpf_list_node *)n; 2317 } 2318 2319 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) 2320 { 2321 return __bpf_list_del(head, false); 2322 } 2323 2324 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) 2325 { 2326 return __bpf_list_del(head, true); 2327 } 2328 2329 __bpf_kfunc struct bpf_list_node *bpf_list_front(struct bpf_list_head *head) 2330 { 2331 struct list_head *h = (struct list_head *)head; 2332 2333 if (list_empty(h) || unlikely(!h->next)) 2334 return NULL; 2335 2336 return (struct bpf_list_node *)h->next; 2337 } 2338 2339 __bpf_kfunc struct bpf_list_node *bpf_list_back(struct bpf_list_head *head) 2340 { 2341 struct list_head *h = (struct list_head *)head; 2342 2343 if (list_empty(h) || unlikely(!h->next)) 2344 return NULL; 2345 2346 return (struct bpf_list_node *)h->prev; 2347 } 2348 2349 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, 2350 struct bpf_rb_node *node) 2351 { 2352 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; 2353 struct rb_root_cached *r = (struct rb_root_cached *)root; 2354 struct rb_node *n = &node_internal->rb_node; 2355 2356 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or 2357 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n) 2358 */ 2359 if (READ_ONCE(node_internal->owner) != root) 2360 return NULL; 2361 2362 rb_erase_cached(n, r); 2363 RB_CLEAR_NODE(n); 2364 WRITE_ONCE(node_internal->owner, NULL); 2365 return (struct bpf_rb_node *)n; 2366 } 2367 2368 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF 2369 * program 2370 */ 2371 static int __bpf_rbtree_add(struct bpf_rb_root *root, 2372 struct bpf_rb_node_kern *node, 2373 void *less, struct btf_record *rec, u64 off) 2374 { 2375 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; 2376 struct rb_node *parent = NULL, *n = &node->rb_node; 2377 bpf_callback_t cb = (bpf_callback_t)less; 2378 bool leftmost = true; 2379 2380 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately 2381 * check the latter 2382 */ 2383 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2384 /* Only called from BPF prog, no need to migrate_disable */ 2385 __bpf_obj_drop_impl((void *)n - off, rec, false); 2386 return -EINVAL; 2387 } 2388 2389 while (*link) { 2390 parent = *link; 2391 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { 2392 link = &parent->rb_left; 2393 } else { 2394 link = &parent->rb_right; 2395 leftmost = false; 2396 } 2397 } 2398 2399 rb_link_node(n, parent, link); 2400 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); 2401 WRITE_ONCE(node->owner, root); 2402 return 0; 2403 } 2404 2405 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 2406 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), 2407 void *meta__ign, u64 off) 2408 { 2409 struct btf_struct_meta *meta = meta__ign; 2410 struct bpf_rb_node_kern *n = (void *)node; 2411 2412 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off); 2413 } 2414 2415 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) 2416 { 2417 struct rb_root_cached *r = (struct rb_root_cached *)root; 2418 2419 return (struct bpf_rb_node *)rb_first_cached(r); 2420 } 2421 2422 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_root(struct bpf_rb_root *root) 2423 { 2424 struct rb_root_cached *r = (struct rb_root_cached *)root; 2425 2426 return (struct bpf_rb_node *)r->rb_root.rb_node; 2427 } 2428 2429 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_left(struct bpf_rb_root *root, struct bpf_rb_node *node) 2430 { 2431 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; 2432 2433 if (READ_ONCE(node_internal->owner) != root) 2434 return NULL; 2435 2436 return (struct bpf_rb_node *)node_internal->rb_node.rb_left; 2437 } 2438 2439 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_right(struct bpf_rb_root *root, struct bpf_rb_node *node) 2440 { 2441 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; 2442 2443 if (READ_ONCE(node_internal->owner) != root) 2444 return NULL; 2445 2446 return (struct bpf_rb_node *)node_internal->rb_node.rb_right; 2447 } 2448 2449 /** 2450 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this 2451 * kfunc which is not stored in a map as a kptr, must be released by calling 2452 * bpf_task_release(). 2453 * @p: The task on which a reference is being acquired. 2454 */ 2455 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) 2456 { 2457 if (refcount_inc_not_zero(&p->rcu_users)) 2458 return p; 2459 return NULL; 2460 } 2461 2462 /** 2463 * bpf_task_release - Release the reference acquired on a task. 2464 * @p: The task on which a reference is being released. 2465 */ 2466 __bpf_kfunc void bpf_task_release(struct task_struct *p) 2467 { 2468 put_task_struct_rcu_user(p); 2469 } 2470 2471 __bpf_kfunc void bpf_task_release_dtor(void *p) 2472 { 2473 put_task_struct_rcu_user(p); 2474 } 2475 CFI_NOSEAL(bpf_task_release_dtor); 2476 2477 #ifdef CONFIG_CGROUPS 2478 /** 2479 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by 2480 * this kfunc which is not stored in a map as a kptr, must be released by 2481 * calling bpf_cgroup_release(). 2482 * @cgrp: The cgroup on which a reference is being acquired. 2483 */ 2484 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) 2485 { 2486 return cgroup_tryget(cgrp) ? cgrp : NULL; 2487 } 2488 2489 /** 2490 * bpf_cgroup_release - Release the reference acquired on a cgroup. 2491 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to 2492 * not be freed until the current grace period has ended, even if its refcount 2493 * drops to 0. 2494 * @cgrp: The cgroup on which a reference is being released. 2495 */ 2496 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) 2497 { 2498 cgroup_put(cgrp); 2499 } 2500 2501 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp) 2502 { 2503 cgroup_put(cgrp); 2504 } 2505 CFI_NOSEAL(bpf_cgroup_release_dtor); 2506 2507 /** 2508 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor 2509 * array. A cgroup returned by this kfunc which is not subsequently stored in a 2510 * map, must be released by calling bpf_cgroup_release(). 2511 * @cgrp: The cgroup for which we're performing a lookup. 2512 * @level: The level of ancestor to look up. 2513 */ 2514 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) 2515 { 2516 struct cgroup *ancestor; 2517 2518 if (level > cgrp->level || level < 0) 2519 return NULL; 2520 2521 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ 2522 ancestor = cgrp->ancestors[level]; 2523 if (!cgroup_tryget(ancestor)) 2524 return NULL; 2525 return ancestor; 2526 } 2527 2528 /** 2529 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this 2530 * kfunc which is not subsequently stored in a map, must be released by calling 2531 * bpf_cgroup_release(). 2532 * @cgid: cgroup id. 2533 */ 2534 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) 2535 { 2536 struct cgroup *cgrp; 2537 2538 cgrp = cgroup_get_from_id(cgid); 2539 if (IS_ERR(cgrp)) 2540 return NULL; 2541 return cgrp; 2542 } 2543 2544 /** 2545 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test 2546 * task's membership of cgroup ancestry. 2547 * @task: the task to be tested 2548 * @ancestor: possible ancestor of @task's cgroup 2549 * 2550 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. 2551 * It follows all the same rules as cgroup_is_descendant, and only applies 2552 * to the default hierarchy. 2553 */ 2554 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, 2555 struct cgroup *ancestor) 2556 { 2557 long ret; 2558 2559 rcu_read_lock(); 2560 ret = task_under_cgroup_hierarchy(task, ancestor); 2561 rcu_read_unlock(); 2562 return ret; 2563 } 2564 2565 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 2566 { 2567 struct bpf_array *array = container_of(map, struct bpf_array, map); 2568 struct cgroup *cgrp; 2569 2570 if (unlikely(idx >= array->map.max_entries)) 2571 return -E2BIG; 2572 2573 cgrp = READ_ONCE(array->ptrs[idx]); 2574 if (unlikely(!cgrp)) 2575 return -EAGAIN; 2576 2577 return task_under_cgroup_hierarchy(current, cgrp); 2578 } 2579 2580 const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 2581 .func = bpf_current_task_under_cgroup, 2582 .gpl_only = false, 2583 .ret_type = RET_INTEGER, 2584 .arg1_type = ARG_CONST_MAP_PTR, 2585 .arg2_type = ARG_ANYTHING, 2586 }; 2587 2588 /** 2589 * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a 2590 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its 2591 * hierarchy ID. 2592 * @task: The target task 2593 * @hierarchy_id: The ID of a cgroup1 hierarchy 2594 * 2595 * On success, the cgroup is returen. On failure, NULL is returned. 2596 */ 2597 __bpf_kfunc struct cgroup * 2598 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id) 2599 { 2600 struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id); 2601 2602 if (IS_ERR(cgrp)) 2603 return NULL; 2604 return cgrp; 2605 } 2606 #endif /* CONFIG_CGROUPS */ 2607 2608 /** 2609 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up 2610 * in the root pid namespace idr. If a task is returned, it must either be 2611 * stored in a map, or released with bpf_task_release(). 2612 * @pid: The pid of the task being looked up. 2613 */ 2614 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) 2615 { 2616 struct task_struct *p; 2617 2618 rcu_read_lock(); 2619 p = find_task_by_pid_ns(pid, &init_pid_ns); 2620 if (p) 2621 p = bpf_task_acquire(p); 2622 rcu_read_unlock(); 2623 2624 return p; 2625 } 2626 2627 /** 2628 * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up 2629 * in the pid namespace of the current task. If a task is returned, it must 2630 * either be stored in a map, or released with bpf_task_release(). 2631 * @vpid: The vpid of the task being looked up. 2632 */ 2633 __bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid) 2634 { 2635 struct task_struct *p; 2636 2637 rcu_read_lock(); 2638 p = find_task_by_vpid(vpid); 2639 if (p) 2640 p = bpf_task_acquire(p); 2641 rcu_read_unlock(); 2642 2643 return p; 2644 } 2645 2646 /** 2647 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. 2648 * @p: The dynptr whose data slice to retrieve 2649 * @offset: Offset into the dynptr 2650 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2651 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2652 * length of the requested slice. This must be a constant. 2653 * 2654 * For non-skb and non-xdp type dynptrs, there is no difference between 2655 * bpf_dynptr_slice and bpf_dynptr_data. 2656 * 2657 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2658 * 2659 * If the intention is to write to the data slice, please use 2660 * bpf_dynptr_slice_rdwr. 2661 * 2662 * The user must check that the returned pointer is not null before using it. 2663 * 2664 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice 2665 * does not change the underlying packet data pointers, so a call to 2666 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in 2667 * the bpf program. 2668 * 2669 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only 2670 * data slice (can be either direct pointer to the data or a pointer to the user 2671 * provided buffer, with its contents containing the data, if unable to obtain 2672 * direct pointer) 2673 */ 2674 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset, 2675 void *buffer__opt, u32 buffer__szk) 2676 { 2677 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2678 enum bpf_dynptr_type type; 2679 u32 len = buffer__szk; 2680 int err; 2681 2682 if (!ptr->data) 2683 return NULL; 2684 2685 err = bpf_dynptr_check_off_len(ptr, offset, len); 2686 if (err) 2687 return NULL; 2688 2689 type = bpf_dynptr_get_type(ptr); 2690 2691 switch (type) { 2692 case BPF_DYNPTR_TYPE_LOCAL: 2693 case BPF_DYNPTR_TYPE_RINGBUF: 2694 return ptr->data + ptr->offset + offset; 2695 case BPF_DYNPTR_TYPE_SKB: 2696 if (buffer__opt) 2697 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); 2698 else 2699 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len); 2700 case BPF_DYNPTR_TYPE_XDP: 2701 { 2702 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); 2703 if (!IS_ERR_OR_NULL(xdp_ptr)) 2704 return xdp_ptr; 2705 2706 if (!buffer__opt) 2707 return NULL; 2708 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); 2709 return buffer__opt; 2710 } 2711 default: 2712 WARN_ONCE(true, "unknown dynptr type %d\n", type); 2713 return NULL; 2714 } 2715 } 2716 2717 /** 2718 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. 2719 * @p: The dynptr whose data slice to retrieve 2720 * @offset: Offset into the dynptr 2721 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2722 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2723 * length of the requested slice. This must be a constant. 2724 * 2725 * For non-skb and non-xdp type dynptrs, there is no difference between 2726 * bpf_dynptr_slice and bpf_dynptr_data. 2727 * 2728 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2729 * 2730 * The returned pointer is writable and may point to either directly the dynptr 2731 * data at the requested offset or to the buffer if unable to obtain a direct 2732 * data pointer to (example: the requested slice is to the paged area of an skb 2733 * packet). In the case where the returned pointer is to the buffer, the user 2734 * is responsible for persisting writes through calling bpf_dynptr_write(). This 2735 * usually looks something like this pattern: 2736 * 2737 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); 2738 * if (!eth) 2739 * return TC_ACT_SHOT; 2740 * 2741 * // mutate eth header // 2742 * 2743 * if (eth == buffer) 2744 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); 2745 * 2746 * Please note that, as in the example above, the user must check that the 2747 * returned pointer is not null before using it. 2748 * 2749 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr 2750 * does not change the underlying packet data pointers, so a call to 2751 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in 2752 * the bpf program. 2753 * 2754 * Return: NULL if the call failed (eg invalid dynptr), pointer to a 2755 * data slice (can be either direct pointer to the data or a pointer to the user 2756 * provided buffer, with its contents containing the data, if unable to obtain 2757 * direct pointer) 2758 */ 2759 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset, 2760 void *buffer__opt, u32 buffer__szk) 2761 { 2762 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2763 2764 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) 2765 return NULL; 2766 2767 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. 2768 * 2769 * For skb-type dynptrs, it is safe to write into the returned pointer 2770 * if the bpf program allows skb data writes. There are two possibilities 2771 * that may occur when calling bpf_dynptr_slice_rdwr: 2772 * 2773 * 1) The requested slice is in the head of the skb. In this case, the 2774 * returned pointer is directly to skb data, and if the skb is cloned, the 2775 * verifier will have uncloned it (see bpf_unclone_prologue()) already. 2776 * The pointer can be directly written into. 2777 * 2778 * 2) Some portion of the requested slice is in the paged buffer area. 2779 * In this case, the requested data will be copied out into the buffer 2780 * and the returned pointer will be a pointer to the buffer. The skb 2781 * will not be pulled. To persist the write, the user will need to call 2782 * bpf_dynptr_write(), which will pull the skb and commit the write. 2783 * 2784 * Similarly for xdp programs, if the requested slice is not across xdp 2785 * fragments, then a direct pointer will be returned, otherwise the data 2786 * will be copied out into the buffer and the user will need to call 2787 * bpf_dynptr_write() to commit changes. 2788 */ 2789 return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk); 2790 } 2791 2792 __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end) 2793 { 2794 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2795 u32 size; 2796 2797 if (!ptr->data || start > end) 2798 return -EINVAL; 2799 2800 size = __bpf_dynptr_size(ptr); 2801 2802 if (start > size || end > size) 2803 return -ERANGE; 2804 2805 ptr->offset += start; 2806 bpf_dynptr_set_size(ptr, end - start); 2807 2808 return 0; 2809 } 2810 2811 __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p) 2812 { 2813 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2814 2815 return !ptr->data; 2816 } 2817 2818 __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p) 2819 { 2820 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2821 2822 if (!ptr->data) 2823 return false; 2824 2825 return __bpf_dynptr_is_rdonly(ptr); 2826 } 2827 2828 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p) 2829 { 2830 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2831 2832 if (!ptr->data) 2833 return -EINVAL; 2834 2835 return __bpf_dynptr_size(ptr); 2836 } 2837 2838 __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p, 2839 struct bpf_dynptr *clone__uninit) 2840 { 2841 struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit; 2842 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; 2843 2844 if (!ptr->data) { 2845 bpf_dynptr_set_null(clone); 2846 return -EINVAL; 2847 } 2848 2849 *clone = *ptr; 2850 2851 return 0; 2852 } 2853 2854 /** 2855 * bpf_dynptr_copy() - Copy data from one dynptr to another. 2856 * @dst_ptr: Destination dynptr - where data should be copied to 2857 * @dst_off: Offset into the destination dynptr 2858 * @src_ptr: Source dynptr - where data should be copied from 2859 * @src_off: Offset into the source dynptr 2860 * @size: Length of the data to copy from source to destination 2861 * 2862 * Copies data from source dynptr to destination dynptr. 2863 * Returns 0 on success; negative error, otherwise. 2864 */ 2865 __bpf_kfunc int bpf_dynptr_copy(struct bpf_dynptr *dst_ptr, u32 dst_off, 2866 struct bpf_dynptr *src_ptr, u32 src_off, u32 size) 2867 { 2868 struct bpf_dynptr_kern *dst = (struct bpf_dynptr_kern *)dst_ptr; 2869 struct bpf_dynptr_kern *src = (struct bpf_dynptr_kern *)src_ptr; 2870 void *src_slice, *dst_slice; 2871 char buf[256]; 2872 u32 off; 2873 2874 src_slice = bpf_dynptr_slice(src_ptr, src_off, NULL, size); 2875 dst_slice = bpf_dynptr_slice_rdwr(dst_ptr, dst_off, NULL, size); 2876 2877 if (src_slice && dst_slice) { 2878 memmove(dst_slice, src_slice, size); 2879 return 0; 2880 } 2881 2882 if (src_slice) 2883 return __bpf_dynptr_write(dst, dst_off, src_slice, size, 0); 2884 2885 if (dst_slice) 2886 return __bpf_dynptr_read(dst_slice, size, src, src_off, 0); 2887 2888 if (bpf_dynptr_check_off_len(dst, dst_off, size) || 2889 bpf_dynptr_check_off_len(src, src_off, size)) 2890 return -E2BIG; 2891 2892 off = 0; 2893 while (off < size) { 2894 u32 chunk_sz = min_t(u32, sizeof(buf), size - off); 2895 int err; 2896 2897 err = __bpf_dynptr_read(buf, chunk_sz, src, src_off + off, 0); 2898 if (err) 2899 return err; 2900 err = __bpf_dynptr_write(dst, dst_off + off, buf, chunk_sz, 0); 2901 if (err) 2902 return err; 2903 2904 off += chunk_sz; 2905 } 2906 return 0; 2907 } 2908 2909 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) 2910 { 2911 return obj; 2912 } 2913 2914 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k) 2915 { 2916 return (void *)obj__ign; 2917 } 2918 2919 __bpf_kfunc void bpf_rcu_read_lock(void) 2920 { 2921 rcu_read_lock(); 2922 } 2923 2924 __bpf_kfunc void bpf_rcu_read_unlock(void) 2925 { 2926 rcu_read_unlock(); 2927 } 2928 2929 struct bpf_throw_ctx { 2930 struct bpf_prog_aux *aux; 2931 u64 sp; 2932 u64 bp; 2933 int cnt; 2934 }; 2935 2936 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp) 2937 { 2938 struct bpf_throw_ctx *ctx = cookie; 2939 struct bpf_prog *prog; 2940 2941 if (!is_bpf_text_address(ip)) 2942 return !ctx->cnt; 2943 prog = bpf_prog_ksym_find(ip); 2944 ctx->cnt++; 2945 if (bpf_is_subprog(prog)) 2946 return true; 2947 ctx->aux = prog->aux; 2948 ctx->sp = sp; 2949 ctx->bp = bp; 2950 return false; 2951 } 2952 2953 __bpf_kfunc void bpf_throw(u64 cookie) 2954 { 2955 struct bpf_throw_ctx ctx = {}; 2956 2957 arch_bpf_stack_walk(bpf_stack_walker, &ctx); 2958 WARN_ON_ONCE(!ctx.aux); 2959 if (ctx.aux) 2960 WARN_ON_ONCE(!ctx.aux->exception_boundary); 2961 WARN_ON_ONCE(!ctx.bp); 2962 WARN_ON_ONCE(!ctx.cnt); 2963 /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning 2964 * deeper stack depths than ctx.sp as we do not return from bpf_throw, 2965 * which skips compiler generated instrumentation to do the same. 2966 */ 2967 kasan_unpoison_task_stack_below((void *)(long)ctx.sp); 2968 ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0); 2969 WARN(1, "A call to BPF exception callback should never return\n"); 2970 } 2971 2972 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags) 2973 { 2974 struct bpf_async_kern *async = (struct bpf_async_kern *)wq; 2975 struct bpf_map *map = p__map; 2976 2977 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq)); 2978 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq)); 2979 2980 if (flags) 2981 return -EINVAL; 2982 2983 return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ); 2984 } 2985 2986 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags) 2987 { 2988 struct bpf_async_kern *async = (struct bpf_async_kern *)wq; 2989 struct bpf_work *w; 2990 2991 if (in_nmi()) 2992 return -EOPNOTSUPP; 2993 if (flags) 2994 return -EINVAL; 2995 w = READ_ONCE(async->work); 2996 if (!w || !READ_ONCE(w->cb.prog)) 2997 return -EINVAL; 2998 2999 schedule_work(&w->work); 3000 return 0; 3001 } 3002 3003 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq, 3004 int (callback_fn)(void *map, int *key, void *value), 3005 unsigned int flags, 3006 void *aux__prog) 3007 { 3008 struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__prog; 3009 struct bpf_async_kern *async = (struct bpf_async_kern *)wq; 3010 3011 if (flags) 3012 return -EINVAL; 3013 3014 return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ); 3015 } 3016 3017 __bpf_kfunc void bpf_preempt_disable(void) 3018 { 3019 preempt_disable(); 3020 } 3021 3022 __bpf_kfunc void bpf_preempt_enable(void) 3023 { 3024 preempt_enable(); 3025 } 3026 3027 struct bpf_iter_bits { 3028 __u64 __opaque[2]; 3029 } __aligned(8); 3030 3031 #define BITS_ITER_NR_WORDS_MAX 511 3032 3033 struct bpf_iter_bits_kern { 3034 union { 3035 __u64 *bits; 3036 __u64 bits_copy; 3037 }; 3038 int nr_bits; 3039 int bit; 3040 } __aligned(8); 3041 3042 /* On 64-bit hosts, unsigned long and u64 have the same size, so passing 3043 * a u64 pointer and an unsigned long pointer to find_next_bit() will 3044 * return the same result, as both point to the same 8-byte area. 3045 * 3046 * For 32-bit little-endian hosts, using a u64 pointer or unsigned long 3047 * pointer also makes no difference. This is because the first iterated 3048 * unsigned long is composed of bits 0-31 of the u64 and the second unsigned 3049 * long is composed of bits 32-63 of the u64. 3050 * 3051 * However, for 32-bit big-endian hosts, this is not the case. The first 3052 * iterated unsigned long will be bits 32-63 of the u64, so swap these two 3053 * ulong values within the u64. 3054 */ 3055 static void swap_ulong_in_u64(u64 *bits, unsigned int nr) 3056 { 3057 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN) 3058 unsigned int i; 3059 3060 for (i = 0; i < nr; i++) 3061 bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32); 3062 #endif 3063 } 3064 3065 /** 3066 * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area 3067 * @it: The new bpf_iter_bits to be created 3068 * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over 3069 * @nr_words: The size of the specified memory area, measured in 8-byte units. 3070 * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be 3071 * further reduced by the BPF memory allocator implementation. 3072 * 3073 * This function initializes a new bpf_iter_bits structure for iterating over 3074 * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It 3075 * copies the data of the memory area to the newly created bpf_iter_bits @it for 3076 * subsequent iteration operations. 3077 * 3078 * On success, 0 is returned. On failure, ERR is returned. 3079 */ 3080 __bpf_kfunc int 3081 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) 3082 { 3083 struct bpf_iter_bits_kern *kit = (void *)it; 3084 u32 nr_bytes = nr_words * sizeof(u64); 3085 u32 nr_bits = BYTES_TO_BITS(nr_bytes); 3086 int err; 3087 3088 BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits)); 3089 BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) != 3090 __alignof__(struct bpf_iter_bits)); 3091 3092 kit->nr_bits = 0; 3093 kit->bits_copy = 0; 3094 kit->bit = -1; 3095 3096 if (!unsafe_ptr__ign || !nr_words) 3097 return -EINVAL; 3098 if (nr_words > BITS_ITER_NR_WORDS_MAX) 3099 return -E2BIG; 3100 3101 /* Optimization for u64 mask */ 3102 if (nr_bits == 64) { 3103 err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign); 3104 if (err) 3105 return -EFAULT; 3106 3107 swap_ulong_in_u64(&kit->bits_copy, nr_words); 3108 3109 kit->nr_bits = nr_bits; 3110 return 0; 3111 } 3112 3113 if (bpf_mem_alloc_check_size(false, nr_bytes)) 3114 return -E2BIG; 3115 3116 /* Fallback to memalloc */ 3117 kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes); 3118 if (!kit->bits) 3119 return -ENOMEM; 3120 3121 err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign); 3122 if (err) { 3123 bpf_mem_free(&bpf_global_ma, kit->bits); 3124 return err; 3125 } 3126 3127 swap_ulong_in_u64(kit->bits, nr_words); 3128 3129 kit->nr_bits = nr_bits; 3130 return 0; 3131 } 3132 3133 /** 3134 * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits 3135 * @it: The bpf_iter_bits to be checked 3136 * 3137 * This function returns a pointer to a number representing the value of the 3138 * next bit in the bits. 3139 * 3140 * If there are no further bits available, it returns NULL. 3141 */ 3142 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it) 3143 { 3144 struct bpf_iter_bits_kern *kit = (void *)it; 3145 int bit = kit->bit, nr_bits = kit->nr_bits; 3146 const void *bits; 3147 3148 if (!nr_bits || bit >= nr_bits) 3149 return NULL; 3150 3151 bits = nr_bits == 64 ? &kit->bits_copy : kit->bits; 3152 bit = find_next_bit(bits, nr_bits, bit + 1); 3153 if (bit >= nr_bits) { 3154 kit->bit = bit; 3155 return NULL; 3156 } 3157 3158 kit->bit = bit; 3159 return &kit->bit; 3160 } 3161 3162 /** 3163 * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits 3164 * @it: The bpf_iter_bits to be destroyed 3165 * 3166 * Destroy the resource associated with the bpf_iter_bits. 3167 */ 3168 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it) 3169 { 3170 struct bpf_iter_bits_kern *kit = (void *)it; 3171 3172 if (kit->nr_bits <= 64) 3173 return; 3174 bpf_mem_free(&bpf_global_ma, kit->bits); 3175 } 3176 3177 /** 3178 * bpf_copy_from_user_str() - Copy a string from an unsafe user address 3179 * @dst: Destination address, in kernel space. This buffer must be 3180 * at least @dst__sz bytes long. 3181 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL. 3182 * @unsafe_ptr__ign: Source address, in user space. 3183 * @flags: The only supported flag is BPF_F_PAD_ZEROS 3184 * 3185 * Copies a NUL-terminated string from userspace to BPF space. If user string is 3186 * too long this will still ensure zero termination in the dst buffer unless 3187 * buffer size is 0. 3188 * 3189 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and 3190 * memset all of @dst on failure. 3191 */ 3192 __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags) 3193 { 3194 int ret; 3195 3196 if (unlikely(flags & ~BPF_F_PAD_ZEROS)) 3197 return -EINVAL; 3198 3199 if (unlikely(!dst__sz)) 3200 return 0; 3201 3202 ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1); 3203 if (ret < 0) { 3204 if (flags & BPF_F_PAD_ZEROS) 3205 memset((char *)dst, 0, dst__sz); 3206 3207 return ret; 3208 } 3209 3210 if (flags & BPF_F_PAD_ZEROS) 3211 memset((char *)dst + ret, 0, dst__sz - ret); 3212 else 3213 ((char *)dst)[ret] = '\0'; 3214 3215 return ret + 1; 3216 } 3217 3218 /** 3219 * bpf_copy_from_user_task_str() - Copy a string from an task's address space 3220 * @dst: Destination address, in kernel space. This buffer must be 3221 * at least @dst__sz bytes long. 3222 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL. 3223 * @unsafe_ptr__ign: Source address in the task's address space. 3224 * @tsk: The task whose address space will be used 3225 * @flags: The only supported flag is BPF_F_PAD_ZEROS 3226 * 3227 * Copies a NUL terminated string from a task's address space to @dst__sz 3228 * buffer. If user string is too long this will still ensure zero termination 3229 * in the @dst__sz buffer unless buffer size is 0. 3230 * 3231 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst__sz to 0 on success 3232 * and memset all of @dst__sz on failure. 3233 * 3234 * Return: The number of copied bytes on success including the NUL terminator. 3235 * A negative error code on failure. 3236 */ 3237 __bpf_kfunc int bpf_copy_from_user_task_str(void *dst, u32 dst__sz, 3238 const void __user *unsafe_ptr__ign, 3239 struct task_struct *tsk, u64 flags) 3240 { 3241 int ret; 3242 3243 if (unlikely(flags & ~BPF_F_PAD_ZEROS)) 3244 return -EINVAL; 3245 3246 if (unlikely(dst__sz == 0)) 3247 return 0; 3248 3249 ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_ptr__ign, dst, dst__sz, 0); 3250 if (ret < 0) { 3251 if (flags & BPF_F_PAD_ZEROS) 3252 memset(dst, 0, dst__sz); 3253 return ret; 3254 } 3255 3256 if (flags & BPF_F_PAD_ZEROS) 3257 memset(dst + ret, 0, dst__sz - ret); 3258 3259 return ret + 1; 3260 } 3261 3262 /* Keep unsinged long in prototype so that kfunc is usable when emitted to 3263 * vmlinux.h in BPF programs directly, but note that while in BPF prog, the 3264 * unsigned long always points to 8-byte region on stack, the kernel may only 3265 * read and write the 4-bytes on 32-bit. 3266 */ 3267 __bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag) 3268 { 3269 local_irq_save(*flags__irq_flag); 3270 } 3271 3272 __bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag) 3273 { 3274 local_irq_restore(*flags__irq_flag); 3275 } 3276 3277 __bpf_kfunc void __bpf_trap(void) 3278 { 3279 } 3280 3281 __bpf_kfunc_end_defs(); 3282 3283 BTF_KFUNCS_START(generic_btf_ids) 3284 #ifdef CONFIG_CRASH_DUMP 3285 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) 3286 #endif 3287 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 3288 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 3289 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) 3290 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE) 3291 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU) 3292 BTF_ID_FLAGS(func, bpf_list_push_front_impl) 3293 BTF_ID_FLAGS(func, bpf_list_push_back_impl) 3294 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) 3295 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) 3296 BTF_ID_FLAGS(func, bpf_list_front, KF_RET_NULL) 3297 BTF_ID_FLAGS(func, bpf_list_back, KF_RET_NULL) 3298 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 3299 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) 3300 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) 3301 BTF_ID_FLAGS(func, bpf_rbtree_add_impl) 3302 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) 3303 BTF_ID_FLAGS(func, bpf_rbtree_root, KF_RET_NULL) 3304 BTF_ID_FLAGS(func, bpf_rbtree_left, KF_RET_NULL) 3305 BTF_ID_FLAGS(func, bpf_rbtree_right, KF_RET_NULL) 3306 3307 #ifdef CONFIG_CGROUPS 3308 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 3309 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) 3310 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 3311 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) 3312 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) 3313 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 3314 #endif 3315 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) 3316 BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL) 3317 BTF_ID_FLAGS(func, bpf_throw) 3318 #ifdef CONFIG_BPF_EVENTS 3319 BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS) 3320 #endif 3321 BTF_KFUNCS_END(generic_btf_ids) 3322 3323 static const struct btf_kfunc_id_set generic_kfunc_set = { 3324 .owner = THIS_MODULE, 3325 .set = &generic_btf_ids, 3326 }; 3327 3328 3329 BTF_ID_LIST(generic_dtor_ids) 3330 BTF_ID(struct, task_struct) 3331 BTF_ID(func, bpf_task_release_dtor) 3332 #ifdef CONFIG_CGROUPS 3333 BTF_ID(struct, cgroup) 3334 BTF_ID(func, bpf_cgroup_release_dtor) 3335 #endif 3336 3337 BTF_KFUNCS_START(common_btf_ids) 3338 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL) 3339 BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL) 3340 BTF_ID_FLAGS(func, bpf_rcu_read_lock) 3341 BTF_ID_FLAGS(func, bpf_rcu_read_unlock) 3342 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) 3343 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) 3344 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) 3345 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) 3346 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) 3347 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU) 3348 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL) 3349 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY) 3350 #ifdef CONFIG_CGROUPS 3351 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS) 3352 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL) 3353 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY) 3354 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) 3355 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL) 3356 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY) 3357 #endif 3358 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) 3359 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL) 3360 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY) 3361 BTF_ID_FLAGS(func, bpf_dynptr_adjust) 3362 BTF_ID_FLAGS(func, bpf_dynptr_is_null) 3363 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) 3364 BTF_ID_FLAGS(func, bpf_dynptr_size) 3365 BTF_ID_FLAGS(func, bpf_dynptr_clone) 3366 BTF_ID_FLAGS(func, bpf_dynptr_copy) 3367 #ifdef CONFIG_NET 3368 BTF_ID_FLAGS(func, bpf_modify_return_test_tp) 3369 #endif 3370 BTF_ID_FLAGS(func, bpf_wq_init) 3371 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl) 3372 BTF_ID_FLAGS(func, bpf_wq_start) 3373 BTF_ID_FLAGS(func, bpf_preempt_disable) 3374 BTF_ID_FLAGS(func, bpf_preempt_enable) 3375 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW) 3376 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL) 3377 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY) 3378 BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE) 3379 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str, KF_SLEEPABLE) 3380 BTF_ID_FLAGS(func, bpf_get_kmem_cache) 3381 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE) 3382 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE) 3383 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE) 3384 BTF_ID_FLAGS(func, bpf_local_irq_save) 3385 BTF_ID_FLAGS(func, bpf_local_irq_restore) 3386 BTF_ID_FLAGS(func, bpf_probe_read_user_dynptr) 3387 BTF_ID_FLAGS(func, bpf_probe_read_kernel_dynptr) 3388 BTF_ID_FLAGS(func, bpf_probe_read_user_str_dynptr) 3389 BTF_ID_FLAGS(func, bpf_probe_read_kernel_str_dynptr) 3390 BTF_ID_FLAGS(func, bpf_copy_from_user_dynptr, KF_SLEEPABLE) 3391 BTF_ID_FLAGS(func, bpf_copy_from_user_str_dynptr, KF_SLEEPABLE) 3392 BTF_ID_FLAGS(func, bpf_copy_from_user_task_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS) 3393 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS) 3394 #ifdef CONFIG_DMA_SHARED_BUFFER 3395 BTF_ID_FLAGS(func, bpf_iter_dmabuf_new, KF_ITER_NEW | KF_SLEEPABLE) 3396 BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE) 3397 BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE) 3398 #endif 3399 BTF_ID_FLAGS(func, __bpf_trap) 3400 BTF_KFUNCS_END(common_btf_ids) 3401 3402 static const struct btf_kfunc_id_set common_kfunc_set = { 3403 .owner = THIS_MODULE, 3404 .set = &common_btf_ids, 3405 }; 3406 3407 static int __init kfunc_init(void) 3408 { 3409 int ret; 3410 const struct btf_id_dtor_kfunc generic_dtors[] = { 3411 { 3412 .btf_id = generic_dtor_ids[0], 3413 .kfunc_btf_id = generic_dtor_ids[1] 3414 }, 3415 #ifdef CONFIG_CGROUPS 3416 { 3417 .btf_id = generic_dtor_ids[2], 3418 .kfunc_btf_id = generic_dtor_ids[3] 3419 }, 3420 #endif 3421 }; 3422 3423 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); 3424 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); 3425 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set); 3426 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); 3427 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set); 3428 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set); 3429 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, 3430 ARRAY_SIZE(generic_dtors), 3431 THIS_MODULE); 3432 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); 3433 } 3434 3435 late_initcall(kfunc_init); 3436 3437 /* Get a pointer to dynptr data up to len bytes for read only access. If 3438 * the dynptr doesn't have continuous data up to len bytes, return NULL. 3439 */ 3440 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len) 3441 { 3442 const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr; 3443 3444 return bpf_dynptr_slice(p, 0, NULL, len); 3445 } 3446 3447 /* Get a pointer to dynptr data up to len bytes for read write access. If 3448 * the dynptr doesn't have continuous data up to len bytes, or the dynptr 3449 * is read only, return NULL. 3450 */ 3451 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len) 3452 { 3453 if (__bpf_dynptr_is_rdonly(ptr)) 3454 return NULL; 3455 return (void *)__bpf_dynptr_data(ptr, len); 3456 } 3457