1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Functions to manage eBPF programs attached to cgroups 4 * 5 * Copyright (c) 2016 Daniel Mack 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/atomic.h> 10 #include <linux/cgroup.h> 11 #include <linux/filter.h> 12 #include <linux/slab.h> 13 #include <linux/sysctl.h> 14 #include <linux/string.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf-cgroup.h> 17 #include <linux/bpf_lsm.h> 18 #include <linux/bpf_verifier.h> 19 #include <net/sock.h> 20 #include <net/bpf_sk_storage.h> 21 22 #include "../cgroup/cgroup-internal.h" 23 24 DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE); 25 EXPORT_SYMBOL(cgroup_bpf_enabled_key); 26 27 /* 28 * cgroup bpf destruction makes heavy use of work items and there can be a lot 29 * of concurrent destructions. Use a separate workqueue so that cgroup bpf 30 * destruction work items don't end up filling up max_active of system_wq 31 * which may lead to deadlock. 32 */ 33 static struct workqueue_struct *cgroup_bpf_destroy_wq; 34 35 static int __init cgroup_bpf_wq_init(void) 36 { 37 cgroup_bpf_destroy_wq = alloc_workqueue("cgroup_bpf_destroy", 0, 1); 38 if (!cgroup_bpf_destroy_wq) 39 panic("Failed to alloc workqueue for cgroup bpf destroy.\n"); 40 return 0; 41 } 42 core_initcall(cgroup_bpf_wq_init); 43 44 static int cgroup_bpf_lifetime_notify(struct notifier_block *nb, 45 unsigned long action, void *data); 46 47 static struct notifier_block cgroup_bpf_lifetime_nb = { 48 .notifier_call = cgroup_bpf_lifetime_notify, 49 }; 50 51 void __init cgroup_bpf_lifetime_notifier_init(void) 52 { 53 BUG_ON(blocking_notifier_chain_register(&cgroup_lifetime_notifier, 54 &cgroup_bpf_lifetime_nb)); 55 } 56 57 /* __always_inline is necessary to prevent indirect call through run_prog 58 * function pointer. 59 */ 60 static __always_inline int 61 bpf_prog_run_array_cg(const struct cgroup_bpf *cgrp, 62 enum cgroup_bpf_attach_type atype, 63 const void *ctx, bpf_prog_run_fn run_prog, 64 int retval, u32 *ret_flags) 65 { 66 const struct bpf_prog_array_item *item; 67 const struct bpf_prog *prog; 68 const struct bpf_prog_array *array; 69 struct bpf_run_ctx *old_run_ctx; 70 struct bpf_cg_run_ctx run_ctx; 71 u32 func_ret; 72 73 run_ctx.retval = retval; 74 migrate_disable(); 75 rcu_read_lock(); 76 array = rcu_dereference(cgrp->effective[atype]); 77 item = &array->items[0]; 78 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 79 while ((prog = READ_ONCE(item->prog))) { 80 run_ctx.prog_item = item; 81 func_ret = run_prog(prog, ctx); 82 if (ret_flags) { 83 *(ret_flags) |= (func_ret >> 1); 84 func_ret &= 1; 85 } 86 if (!func_ret && !IS_ERR_VALUE((long)run_ctx.retval)) 87 run_ctx.retval = -EPERM; 88 item++; 89 } 90 bpf_reset_run_ctx(old_run_ctx); 91 rcu_read_unlock(); 92 migrate_enable(); 93 return run_ctx.retval; 94 } 95 96 unsigned int __cgroup_bpf_run_lsm_sock(const void *ctx, 97 const struct bpf_insn *insn) 98 { 99 const struct bpf_prog *shim_prog; 100 struct sock *sk; 101 struct cgroup *cgrp; 102 int ret = 0; 103 u64 *args; 104 105 args = (u64 *)ctx; 106 sk = (void *)(unsigned long)args[0]; 107 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 108 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 109 110 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 111 if (likely(cgrp)) 112 ret = bpf_prog_run_array_cg(&cgrp->bpf, 113 shim_prog->aux->cgroup_atype, 114 ctx, bpf_prog_run, 0, NULL); 115 return ret; 116 } 117 118 unsigned int __cgroup_bpf_run_lsm_socket(const void *ctx, 119 const struct bpf_insn *insn) 120 { 121 const struct bpf_prog *shim_prog; 122 struct socket *sock; 123 struct cgroup *cgrp; 124 int ret = 0; 125 u64 *args; 126 127 args = (u64 *)ctx; 128 sock = (void *)(unsigned long)args[0]; 129 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 130 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 131 132 cgrp = sock_cgroup_ptr(&sock->sk->sk_cgrp_data); 133 if (likely(cgrp)) 134 ret = bpf_prog_run_array_cg(&cgrp->bpf, 135 shim_prog->aux->cgroup_atype, 136 ctx, bpf_prog_run, 0, NULL); 137 return ret; 138 } 139 140 unsigned int __cgroup_bpf_run_lsm_current(const void *ctx, 141 const struct bpf_insn *insn) 142 { 143 const struct bpf_prog *shim_prog; 144 struct cgroup *cgrp; 145 int ret = 0; 146 147 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 148 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 149 150 /* We rely on trampoline's __bpf_prog_enter_lsm_cgroup to grab RCU read lock. */ 151 cgrp = task_dfl_cgroup(current); 152 if (likely(cgrp)) 153 ret = bpf_prog_run_array_cg(&cgrp->bpf, 154 shim_prog->aux->cgroup_atype, 155 ctx, bpf_prog_run, 0, NULL); 156 return ret; 157 } 158 159 #ifdef CONFIG_BPF_LSM 160 struct cgroup_lsm_atype { 161 u32 attach_btf_id; 162 int refcnt; 163 }; 164 165 static struct cgroup_lsm_atype cgroup_lsm_atype[CGROUP_LSM_NUM]; 166 167 static enum cgroup_bpf_attach_type 168 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id) 169 { 170 int i; 171 172 lockdep_assert_held(&cgroup_mutex); 173 174 if (attach_type != BPF_LSM_CGROUP) 175 return to_cgroup_bpf_attach_type(attach_type); 176 177 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++) 178 if (cgroup_lsm_atype[i].attach_btf_id == attach_btf_id) 179 return CGROUP_LSM_START + i; 180 181 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++) 182 if (cgroup_lsm_atype[i].attach_btf_id == 0) 183 return CGROUP_LSM_START + i; 184 185 return -E2BIG; 186 187 } 188 189 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) 190 { 191 int i = cgroup_atype - CGROUP_LSM_START; 192 193 lockdep_assert_held(&cgroup_mutex); 194 195 WARN_ON_ONCE(cgroup_lsm_atype[i].attach_btf_id && 196 cgroup_lsm_atype[i].attach_btf_id != attach_btf_id); 197 198 cgroup_lsm_atype[i].attach_btf_id = attach_btf_id; 199 cgroup_lsm_atype[i].refcnt++; 200 } 201 202 void bpf_cgroup_atype_put(int cgroup_atype) 203 { 204 int i = cgroup_atype - CGROUP_LSM_START; 205 206 cgroup_lock(); 207 if (--cgroup_lsm_atype[i].refcnt <= 0) 208 cgroup_lsm_atype[i].attach_btf_id = 0; 209 WARN_ON_ONCE(cgroup_lsm_atype[i].refcnt < 0); 210 cgroup_unlock(); 211 } 212 #else 213 static enum cgroup_bpf_attach_type 214 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id) 215 { 216 if (attach_type != BPF_LSM_CGROUP) 217 return to_cgroup_bpf_attach_type(attach_type); 218 return -EOPNOTSUPP; 219 } 220 #endif /* CONFIG_BPF_LSM */ 221 222 static void cgroup_bpf_offline(struct cgroup *cgrp) 223 { 224 cgroup_get(cgrp); 225 percpu_ref_kill(&cgrp->bpf.refcnt); 226 } 227 228 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[]) 229 { 230 enum bpf_cgroup_storage_type stype; 231 232 for_each_cgroup_storage_type(stype) 233 bpf_cgroup_storage_free(storages[stype]); 234 } 235 236 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[], 237 struct bpf_cgroup_storage *new_storages[], 238 enum bpf_attach_type type, 239 struct bpf_prog *prog, 240 struct cgroup *cgrp) 241 { 242 enum bpf_cgroup_storage_type stype; 243 struct bpf_cgroup_storage_key key; 244 struct bpf_map *map; 245 246 key.cgroup_inode_id = cgroup_id(cgrp); 247 key.attach_type = type; 248 249 for_each_cgroup_storage_type(stype) { 250 map = prog->aux->cgroup_storage[stype]; 251 if (!map) 252 continue; 253 254 storages[stype] = cgroup_storage_lookup((void *)map, &key, false); 255 if (storages[stype]) 256 continue; 257 258 storages[stype] = bpf_cgroup_storage_alloc(prog, stype); 259 if (IS_ERR(storages[stype])) { 260 bpf_cgroup_storages_free(new_storages); 261 return -ENOMEM; 262 } 263 264 new_storages[stype] = storages[stype]; 265 } 266 267 return 0; 268 } 269 270 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[], 271 struct bpf_cgroup_storage *src[]) 272 { 273 enum bpf_cgroup_storage_type stype; 274 275 for_each_cgroup_storage_type(stype) 276 dst[stype] = src[stype]; 277 } 278 279 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[], 280 struct cgroup *cgrp, 281 enum bpf_attach_type attach_type) 282 { 283 enum bpf_cgroup_storage_type stype; 284 285 for_each_cgroup_storage_type(stype) 286 bpf_cgroup_storage_link(storages[stype], cgrp, attach_type); 287 } 288 289 /* Called when bpf_cgroup_link is auto-detached from dying cgroup. 290 * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It 291 * doesn't free link memory, which will eventually be done by bpf_link's 292 * release() callback, when its last FD is closed. 293 */ 294 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link) 295 { 296 cgroup_put(link->cgroup); 297 link->cgroup = NULL; 298 } 299 300 /** 301 * cgroup_bpf_release() - put references of all bpf programs and 302 * release all cgroup bpf data 303 * @work: work structure embedded into the cgroup to modify 304 */ 305 static void cgroup_bpf_release(struct work_struct *work) 306 { 307 struct cgroup *p, *cgrp = container_of(work, struct cgroup, 308 bpf.release_work); 309 struct bpf_prog_array *old_array; 310 struct list_head *storages = &cgrp->bpf.storages; 311 struct bpf_cgroup_storage *storage, *stmp; 312 313 unsigned int atype; 314 315 cgroup_lock(); 316 317 for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) { 318 struct hlist_head *progs = &cgrp->bpf.progs[atype]; 319 struct bpf_prog_list *pl; 320 struct hlist_node *pltmp; 321 322 hlist_for_each_entry_safe(pl, pltmp, progs, node) { 323 hlist_del(&pl->node); 324 if (pl->prog) { 325 if (pl->prog->expected_attach_type == BPF_LSM_CGROUP) 326 bpf_trampoline_unlink_cgroup_shim(pl->prog); 327 bpf_prog_put(pl->prog); 328 } 329 if (pl->link) { 330 if (pl->link->link.prog->expected_attach_type == BPF_LSM_CGROUP) 331 bpf_trampoline_unlink_cgroup_shim(pl->link->link.prog); 332 bpf_cgroup_link_auto_detach(pl->link); 333 } 334 kfree(pl); 335 static_branch_dec(&cgroup_bpf_enabled_key[atype]); 336 } 337 old_array = rcu_dereference_protected( 338 cgrp->bpf.effective[atype], 339 lockdep_is_held(&cgroup_mutex)); 340 bpf_prog_array_free(old_array); 341 } 342 343 list_for_each_entry_safe(storage, stmp, storages, list_cg) { 344 bpf_cgroup_storage_unlink(storage); 345 bpf_cgroup_storage_free(storage); 346 } 347 348 cgroup_unlock(); 349 350 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 351 cgroup_bpf_put(p); 352 353 percpu_ref_exit(&cgrp->bpf.refcnt); 354 cgroup_put(cgrp); 355 } 356 357 /** 358 * cgroup_bpf_release_fn() - callback used to schedule releasing 359 * of bpf cgroup data 360 * @ref: percpu ref counter structure 361 */ 362 static void cgroup_bpf_release_fn(struct percpu_ref *ref) 363 { 364 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt); 365 366 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release); 367 queue_work(cgroup_bpf_destroy_wq, &cgrp->bpf.release_work); 368 } 369 370 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through 371 * link or direct prog. 372 */ 373 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl) 374 { 375 if (pl->prog) 376 return pl->prog; 377 if (pl->link) 378 return pl->link->link.prog; 379 return NULL; 380 } 381 382 /* count number of elements in the list. 383 * it's slow but the list cannot be long 384 */ 385 static u32 prog_list_length(struct hlist_head *head, int *preorder_cnt) 386 { 387 struct bpf_prog_list *pl; 388 u32 cnt = 0; 389 390 hlist_for_each_entry(pl, head, node) { 391 if (!prog_list_prog(pl)) 392 continue; 393 if (preorder_cnt && (pl->flags & BPF_F_PREORDER)) 394 (*preorder_cnt)++; 395 cnt++; 396 } 397 return cnt; 398 } 399 400 /* if parent has non-overridable prog attached, 401 * disallow attaching new programs to the descendent cgroup. 402 * if parent has overridable or multi-prog, allow attaching 403 */ 404 static bool hierarchy_allows_attach(struct cgroup *cgrp, 405 enum cgroup_bpf_attach_type atype) 406 { 407 struct cgroup *p; 408 409 p = cgroup_parent(cgrp); 410 if (!p) 411 return true; 412 do { 413 u32 flags = p->bpf.flags[atype]; 414 u32 cnt; 415 416 if (flags & BPF_F_ALLOW_MULTI) 417 return true; 418 cnt = prog_list_length(&p->bpf.progs[atype], NULL); 419 WARN_ON_ONCE(cnt > 1); 420 if (cnt == 1) 421 return !!(flags & BPF_F_ALLOW_OVERRIDE); 422 p = cgroup_parent(p); 423 } while (p); 424 return true; 425 } 426 427 /* compute a chain of effective programs for a given cgroup: 428 * start from the list of programs in this cgroup and add 429 * all parent programs. 430 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding 431 * to programs in this cgroup 432 */ 433 static int compute_effective_progs(struct cgroup *cgrp, 434 enum cgroup_bpf_attach_type atype, 435 struct bpf_prog_array **array) 436 { 437 struct bpf_prog_array_item *item; 438 struct bpf_prog_array *progs; 439 struct bpf_prog_list *pl; 440 struct cgroup *p = cgrp; 441 int i, j, cnt = 0, preorder_cnt = 0, fstart, bstart, init_bstart; 442 443 /* count number of effective programs by walking parents */ 444 do { 445 if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 446 cnt += prog_list_length(&p->bpf.progs[atype], &preorder_cnt); 447 p = cgroup_parent(p); 448 } while (p); 449 450 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL); 451 if (!progs) 452 return -ENOMEM; 453 454 /* populate the array with effective progs */ 455 cnt = 0; 456 p = cgrp; 457 fstart = preorder_cnt; 458 bstart = preorder_cnt - 1; 459 do { 460 if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 461 continue; 462 463 init_bstart = bstart; 464 hlist_for_each_entry(pl, &p->bpf.progs[atype], node) { 465 if (!prog_list_prog(pl)) 466 continue; 467 468 if (pl->flags & BPF_F_PREORDER) { 469 item = &progs->items[bstart]; 470 bstart--; 471 } else { 472 item = &progs->items[fstart]; 473 fstart++; 474 } 475 item->prog = prog_list_prog(pl); 476 bpf_cgroup_storages_assign(item->cgroup_storage, 477 pl->storage); 478 cnt++; 479 } 480 481 /* reverse pre-ordering progs at this cgroup level */ 482 for (i = bstart + 1, j = init_bstart; i < j; i++, j--) 483 swap(progs->items[i], progs->items[j]); 484 485 } while ((p = cgroup_parent(p))); 486 487 *array = progs; 488 return 0; 489 } 490 491 static void activate_effective_progs(struct cgroup *cgrp, 492 enum cgroup_bpf_attach_type atype, 493 struct bpf_prog_array *old_array) 494 { 495 old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array, 496 lockdep_is_held(&cgroup_mutex)); 497 /* free prog array after grace period, since __cgroup_bpf_run_*() 498 * might be still walking the array 499 */ 500 bpf_prog_array_free(old_array); 501 } 502 503 /** 504 * cgroup_bpf_inherit() - inherit effective programs from parent 505 * @cgrp: the cgroup to modify 506 */ 507 static int cgroup_bpf_inherit(struct cgroup *cgrp) 508 { 509 /* has to use marco instead of const int, since compiler thinks 510 * that array below is variable length 511 */ 512 #define NR ARRAY_SIZE(cgrp->bpf.effective) 513 struct bpf_prog_array *arrays[NR] = {}; 514 struct cgroup *p; 515 int ret, i; 516 517 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0, 518 GFP_KERNEL); 519 if (ret) 520 return ret; 521 522 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 523 cgroup_bpf_get(p); 524 525 for (i = 0; i < NR; i++) 526 INIT_HLIST_HEAD(&cgrp->bpf.progs[i]); 527 528 INIT_LIST_HEAD(&cgrp->bpf.storages); 529 530 for (i = 0; i < NR; i++) 531 if (compute_effective_progs(cgrp, i, &arrays[i])) 532 goto cleanup; 533 534 for (i = 0; i < NR; i++) 535 activate_effective_progs(cgrp, i, arrays[i]); 536 537 return 0; 538 cleanup: 539 for (i = 0; i < NR; i++) 540 bpf_prog_array_free(arrays[i]); 541 542 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 543 cgroup_bpf_put(p); 544 545 percpu_ref_exit(&cgrp->bpf.refcnt); 546 547 return -ENOMEM; 548 } 549 550 static int cgroup_bpf_lifetime_notify(struct notifier_block *nb, 551 unsigned long action, void *data) 552 { 553 struct cgroup *cgrp = data; 554 int ret = 0; 555 556 if (cgrp->root != &cgrp_dfl_root) 557 return NOTIFY_OK; 558 559 switch (action) { 560 case CGROUP_LIFETIME_ONLINE: 561 ret = cgroup_bpf_inherit(cgrp); 562 break; 563 case CGROUP_LIFETIME_OFFLINE: 564 cgroup_bpf_offline(cgrp); 565 break; 566 } 567 568 return notifier_from_errno(ret); 569 } 570 571 static int update_effective_progs(struct cgroup *cgrp, 572 enum cgroup_bpf_attach_type atype) 573 { 574 struct cgroup_subsys_state *css; 575 int err; 576 577 /* allocate and recompute effective prog arrays */ 578 css_for_each_descendant_pre(css, &cgrp->self) { 579 struct cgroup *desc = container_of(css, struct cgroup, self); 580 581 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 582 continue; 583 584 err = compute_effective_progs(desc, atype, &desc->bpf.inactive); 585 if (err) 586 goto cleanup; 587 } 588 589 /* all allocations were successful. Activate all prog arrays */ 590 css_for_each_descendant_pre(css, &cgrp->self) { 591 struct cgroup *desc = container_of(css, struct cgroup, self); 592 593 if (percpu_ref_is_zero(&desc->bpf.refcnt)) { 594 if (unlikely(desc->bpf.inactive)) { 595 bpf_prog_array_free(desc->bpf.inactive); 596 desc->bpf.inactive = NULL; 597 } 598 continue; 599 } 600 601 activate_effective_progs(desc, atype, desc->bpf.inactive); 602 desc->bpf.inactive = NULL; 603 } 604 605 return 0; 606 607 cleanup: 608 /* oom while computing effective. Free all computed effective arrays 609 * since they were not activated 610 */ 611 css_for_each_descendant_pre(css, &cgrp->self) { 612 struct cgroup *desc = container_of(css, struct cgroup, self); 613 614 bpf_prog_array_free(desc->bpf.inactive); 615 desc->bpf.inactive = NULL; 616 } 617 618 return err; 619 } 620 621 #define BPF_CGROUP_MAX_PROGS 64 622 623 static struct bpf_prog_list *find_attach_entry(struct hlist_head *progs, 624 struct bpf_prog *prog, 625 struct bpf_cgroup_link *link, 626 struct bpf_prog *replace_prog, 627 bool allow_multi) 628 { 629 struct bpf_prog_list *pl; 630 631 /* single-attach case */ 632 if (!allow_multi) { 633 if (hlist_empty(progs)) 634 return NULL; 635 return hlist_entry(progs->first, typeof(*pl), node); 636 } 637 638 hlist_for_each_entry(pl, progs, node) { 639 if (prog && pl->prog == prog && prog != replace_prog) 640 /* disallow attaching the same prog twice */ 641 return ERR_PTR(-EINVAL); 642 if (link && pl->link == link) 643 /* disallow attaching the same link twice */ 644 return ERR_PTR(-EINVAL); 645 } 646 647 /* direct prog multi-attach w/ replacement case */ 648 if (replace_prog) { 649 hlist_for_each_entry(pl, progs, node) { 650 if (pl->prog == replace_prog) 651 /* a match found */ 652 return pl; 653 } 654 /* prog to replace not found for cgroup */ 655 return ERR_PTR(-ENOENT); 656 } 657 658 return NULL; 659 } 660 661 /** 662 * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and 663 * propagate the change to descendants 664 * @cgrp: The cgroup which descendants to traverse 665 * @prog: A program to attach 666 * @link: A link to attach 667 * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set 668 * @type: Type of attach operation 669 * @flags: Option flags 670 * 671 * Exactly one of @prog or @link can be non-null. 672 * Must be called with cgroup_mutex held. 673 */ 674 static int __cgroup_bpf_attach(struct cgroup *cgrp, 675 struct bpf_prog *prog, struct bpf_prog *replace_prog, 676 struct bpf_cgroup_link *link, 677 enum bpf_attach_type type, u32 flags) 678 { 679 u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI)); 680 struct bpf_prog *old_prog = NULL; 681 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 682 struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 683 struct bpf_prog *new_prog = prog ? : link->link.prog; 684 enum cgroup_bpf_attach_type atype; 685 struct bpf_prog_list *pl; 686 struct hlist_head *progs; 687 int err; 688 689 if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) || 690 ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI))) 691 /* invalid combination */ 692 return -EINVAL; 693 if (link && (prog || replace_prog)) 694 /* only either link or prog/replace_prog can be specified */ 695 return -EINVAL; 696 if (!!replace_prog != !!(flags & BPF_F_REPLACE)) 697 /* replace_prog implies BPF_F_REPLACE, and vice versa */ 698 return -EINVAL; 699 700 atype = bpf_cgroup_atype_find(type, new_prog->aux->attach_btf_id); 701 if (atype < 0) 702 return -EINVAL; 703 704 progs = &cgrp->bpf.progs[atype]; 705 706 if (!hierarchy_allows_attach(cgrp, atype)) 707 return -EPERM; 708 709 if (!hlist_empty(progs) && cgrp->bpf.flags[atype] != saved_flags) 710 /* Disallow attaching non-overridable on top 711 * of existing overridable in this cgroup. 712 * Disallow attaching multi-prog if overridable or none 713 */ 714 return -EPERM; 715 716 if (prog_list_length(progs, NULL) >= BPF_CGROUP_MAX_PROGS) 717 return -E2BIG; 718 719 pl = find_attach_entry(progs, prog, link, replace_prog, 720 flags & BPF_F_ALLOW_MULTI); 721 if (IS_ERR(pl)) 722 return PTR_ERR(pl); 723 724 if (bpf_cgroup_storages_alloc(storage, new_storage, type, 725 prog ? : link->link.prog, cgrp)) 726 return -ENOMEM; 727 728 if (pl) { 729 old_prog = pl->prog; 730 } else { 731 struct hlist_node *last = NULL; 732 733 pl = kmalloc(sizeof(*pl), GFP_KERNEL); 734 if (!pl) { 735 bpf_cgroup_storages_free(new_storage); 736 return -ENOMEM; 737 } 738 if (hlist_empty(progs)) 739 hlist_add_head(&pl->node, progs); 740 else 741 hlist_for_each(last, progs) { 742 if (last->next) 743 continue; 744 hlist_add_behind(&pl->node, last); 745 break; 746 } 747 } 748 749 pl->prog = prog; 750 pl->link = link; 751 pl->flags = flags; 752 bpf_cgroup_storages_assign(pl->storage, storage); 753 cgrp->bpf.flags[atype] = saved_flags; 754 755 if (type == BPF_LSM_CGROUP) { 756 err = bpf_trampoline_link_cgroup_shim(new_prog, atype); 757 if (err) 758 goto cleanup; 759 } 760 761 err = update_effective_progs(cgrp, atype); 762 if (err) 763 goto cleanup_trampoline; 764 765 if (old_prog) { 766 if (type == BPF_LSM_CGROUP) 767 bpf_trampoline_unlink_cgroup_shim(old_prog); 768 bpf_prog_put(old_prog); 769 } else { 770 static_branch_inc(&cgroup_bpf_enabled_key[atype]); 771 } 772 bpf_cgroup_storages_link(new_storage, cgrp, type); 773 return 0; 774 775 cleanup_trampoline: 776 if (type == BPF_LSM_CGROUP) 777 bpf_trampoline_unlink_cgroup_shim(new_prog); 778 779 cleanup: 780 if (old_prog) { 781 pl->prog = old_prog; 782 pl->link = NULL; 783 } 784 bpf_cgroup_storages_free(new_storage); 785 if (!old_prog) { 786 hlist_del(&pl->node); 787 kfree(pl); 788 } 789 return err; 790 } 791 792 static int cgroup_bpf_attach(struct cgroup *cgrp, 793 struct bpf_prog *prog, struct bpf_prog *replace_prog, 794 struct bpf_cgroup_link *link, 795 enum bpf_attach_type type, 796 u32 flags) 797 { 798 int ret; 799 800 cgroup_lock(); 801 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags); 802 cgroup_unlock(); 803 return ret; 804 } 805 806 /* Swap updated BPF program for given link in effective program arrays across 807 * all descendant cgroups. This function is guaranteed to succeed. 808 */ 809 static void replace_effective_prog(struct cgroup *cgrp, 810 enum cgroup_bpf_attach_type atype, 811 struct bpf_cgroup_link *link) 812 { 813 struct bpf_prog_array_item *item; 814 struct cgroup_subsys_state *css; 815 struct bpf_prog_array *progs; 816 struct bpf_prog_list *pl; 817 struct hlist_head *head; 818 struct cgroup *cg; 819 int pos; 820 821 css_for_each_descendant_pre(css, &cgrp->self) { 822 struct cgroup *desc = container_of(css, struct cgroup, self); 823 824 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 825 continue; 826 827 /* find position of link in effective progs array */ 828 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) { 829 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 830 continue; 831 832 head = &cg->bpf.progs[atype]; 833 hlist_for_each_entry(pl, head, node) { 834 if (!prog_list_prog(pl)) 835 continue; 836 if (pl->link == link) 837 goto found; 838 pos++; 839 } 840 } 841 found: 842 BUG_ON(!cg); 843 progs = rcu_dereference_protected( 844 desc->bpf.effective[atype], 845 lockdep_is_held(&cgroup_mutex)); 846 item = &progs->items[pos]; 847 WRITE_ONCE(item->prog, link->link.prog); 848 } 849 } 850 851 /** 852 * __cgroup_bpf_replace() - Replace link's program and propagate the change 853 * to descendants 854 * @cgrp: The cgroup which descendants to traverse 855 * @link: A link for which to replace BPF program 856 * @new_prog: &struct bpf_prog for the target BPF program with its refcnt 857 * incremented 858 * 859 * Must be called with cgroup_mutex held. 860 */ 861 static int __cgroup_bpf_replace(struct cgroup *cgrp, 862 struct bpf_cgroup_link *link, 863 struct bpf_prog *new_prog) 864 { 865 enum cgroup_bpf_attach_type atype; 866 struct bpf_prog *old_prog; 867 struct bpf_prog_list *pl; 868 struct hlist_head *progs; 869 bool found = false; 870 871 atype = bpf_cgroup_atype_find(link->type, new_prog->aux->attach_btf_id); 872 if (atype < 0) 873 return -EINVAL; 874 875 progs = &cgrp->bpf.progs[atype]; 876 877 if (link->link.prog->type != new_prog->type) 878 return -EINVAL; 879 880 hlist_for_each_entry(pl, progs, node) { 881 if (pl->link == link) { 882 found = true; 883 break; 884 } 885 } 886 if (!found) 887 return -ENOENT; 888 889 old_prog = xchg(&link->link.prog, new_prog); 890 replace_effective_prog(cgrp, atype, link); 891 bpf_prog_put(old_prog); 892 return 0; 893 } 894 895 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog, 896 struct bpf_prog *old_prog) 897 { 898 struct bpf_cgroup_link *cg_link; 899 int ret; 900 901 cg_link = container_of(link, struct bpf_cgroup_link, link); 902 903 cgroup_lock(); 904 /* link might have been auto-released by dying cgroup, so fail */ 905 if (!cg_link->cgroup) { 906 ret = -ENOLINK; 907 goto out_unlock; 908 } 909 if (old_prog && link->prog != old_prog) { 910 ret = -EPERM; 911 goto out_unlock; 912 } 913 ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog); 914 out_unlock: 915 cgroup_unlock(); 916 return ret; 917 } 918 919 static struct bpf_prog_list *find_detach_entry(struct hlist_head *progs, 920 struct bpf_prog *prog, 921 struct bpf_cgroup_link *link, 922 bool allow_multi) 923 { 924 struct bpf_prog_list *pl; 925 926 if (!allow_multi) { 927 if (hlist_empty(progs)) 928 /* report error when trying to detach and nothing is attached */ 929 return ERR_PTR(-ENOENT); 930 931 /* to maintain backward compatibility NONE and OVERRIDE cgroups 932 * allow detaching with invalid FD (prog==NULL) in legacy mode 933 */ 934 return hlist_entry(progs->first, typeof(*pl), node); 935 } 936 937 if (!prog && !link) 938 /* to detach MULTI prog the user has to specify valid FD 939 * of the program or link to be detached 940 */ 941 return ERR_PTR(-EINVAL); 942 943 /* find the prog or link and detach it */ 944 hlist_for_each_entry(pl, progs, node) { 945 if (pl->prog == prog && pl->link == link) 946 return pl; 947 } 948 return ERR_PTR(-ENOENT); 949 } 950 951 /** 952 * purge_effective_progs() - After compute_effective_progs fails to alloc new 953 * cgrp->bpf.inactive table we can recover by 954 * recomputing the array in place. 955 * 956 * @cgrp: The cgroup which descendants to travers 957 * @prog: A program to detach or NULL 958 * @link: A link to detach or NULL 959 * @atype: Type of detach operation 960 */ 961 static void purge_effective_progs(struct cgroup *cgrp, struct bpf_prog *prog, 962 struct bpf_cgroup_link *link, 963 enum cgroup_bpf_attach_type atype) 964 { 965 struct cgroup_subsys_state *css; 966 struct bpf_prog_array *progs; 967 struct bpf_prog_list *pl; 968 struct hlist_head *head; 969 struct cgroup *cg; 970 int pos; 971 972 /* recompute effective prog array in place */ 973 css_for_each_descendant_pre(css, &cgrp->self) { 974 struct cgroup *desc = container_of(css, struct cgroup, self); 975 976 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 977 continue; 978 979 /* find position of link or prog in effective progs array */ 980 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) { 981 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 982 continue; 983 984 head = &cg->bpf.progs[atype]; 985 hlist_for_each_entry(pl, head, node) { 986 if (!prog_list_prog(pl)) 987 continue; 988 if (pl->prog == prog && pl->link == link) 989 goto found; 990 pos++; 991 } 992 } 993 994 /* no link or prog match, skip the cgroup of this layer */ 995 continue; 996 found: 997 progs = rcu_dereference_protected( 998 desc->bpf.effective[atype], 999 lockdep_is_held(&cgroup_mutex)); 1000 1001 /* Remove the program from the array */ 1002 WARN_ONCE(bpf_prog_array_delete_safe_at(progs, pos), 1003 "Failed to purge a prog from array at index %d", pos); 1004 } 1005 } 1006 1007 /** 1008 * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and 1009 * propagate the change to descendants 1010 * @cgrp: The cgroup which descendants to traverse 1011 * @prog: A program to detach or NULL 1012 * @link: A link to detach or NULL 1013 * @type: Type of detach operation 1014 * 1015 * At most one of @prog or @link can be non-NULL. 1016 * Must be called with cgroup_mutex held. 1017 */ 1018 static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 1019 struct bpf_cgroup_link *link, enum bpf_attach_type type) 1020 { 1021 enum cgroup_bpf_attach_type atype; 1022 struct bpf_prog *old_prog; 1023 struct bpf_prog_list *pl; 1024 struct hlist_head *progs; 1025 u32 attach_btf_id = 0; 1026 u32 flags; 1027 1028 if (prog) 1029 attach_btf_id = prog->aux->attach_btf_id; 1030 if (link) 1031 attach_btf_id = link->link.prog->aux->attach_btf_id; 1032 1033 atype = bpf_cgroup_atype_find(type, attach_btf_id); 1034 if (atype < 0) 1035 return -EINVAL; 1036 1037 progs = &cgrp->bpf.progs[atype]; 1038 flags = cgrp->bpf.flags[atype]; 1039 1040 if (prog && link) 1041 /* only one of prog or link can be specified */ 1042 return -EINVAL; 1043 1044 pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI); 1045 if (IS_ERR(pl)) 1046 return PTR_ERR(pl); 1047 1048 /* mark it deleted, so it's ignored while recomputing effective */ 1049 old_prog = pl->prog; 1050 pl->prog = NULL; 1051 pl->link = NULL; 1052 1053 if (update_effective_progs(cgrp, atype)) { 1054 /* if update effective array failed replace the prog with a dummy prog*/ 1055 pl->prog = old_prog; 1056 pl->link = link; 1057 purge_effective_progs(cgrp, old_prog, link, atype); 1058 } 1059 1060 /* now can actually delete it from this cgroup list */ 1061 hlist_del(&pl->node); 1062 1063 kfree(pl); 1064 if (hlist_empty(progs)) 1065 /* last program was detached, reset flags to zero */ 1066 cgrp->bpf.flags[atype] = 0; 1067 if (old_prog) { 1068 if (type == BPF_LSM_CGROUP) 1069 bpf_trampoline_unlink_cgroup_shim(old_prog); 1070 bpf_prog_put(old_prog); 1071 } 1072 static_branch_dec(&cgroup_bpf_enabled_key[atype]); 1073 return 0; 1074 } 1075 1076 static int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 1077 enum bpf_attach_type type) 1078 { 1079 int ret; 1080 1081 cgroup_lock(); 1082 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type); 1083 cgroup_unlock(); 1084 return ret; 1085 } 1086 1087 /* Must be called with cgroup_mutex held to avoid races. */ 1088 static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 1089 union bpf_attr __user *uattr) 1090 { 1091 __u32 __user *prog_attach_flags = u64_to_user_ptr(attr->query.prog_attach_flags); 1092 bool effective_query = attr->query.query_flags & BPF_F_QUERY_EFFECTIVE; 1093 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); 1094 enum bpf_attach_type type = attr->query.attach_type; 1095 enum cgroup_bpf_attach_type from_atype, to_atype; 1096 enum cgroup_bpf_attach_type atype; 1097 struct bpf_prog_array *effective; 1098 int cnt, ret = 0, i; 1099 int total_cnt = 0; 1100 u32 flags; 1101 1102 if (effective_query && prog_attach_flags) 1103 return -EINVAL; 1104 1105 if (type == BPF_LSM_CGROUP) { 1106 if (!effective_query && attr->query.prog_cnt && 1107 prog_ids && !prog_attach_flags) 1108 return -EINVAL; 1109 1110 from_atype = CGROUP_LSM_START; 1111 to_atype = CGROUP_LSM_END; 1112 flags = 0; 1113 } else { 1114 from_atype = to_cgroup_bpf_attach_type(type); 1115 if (from_atype < 0) 1116 return -EINVAL; 1117 to_atype = from_atype; 1118 flags = cgrp->bpf.flags[from_atype]; 1119 } 1120 1121 for (atype = from_atype; atype <= to_atype; atype++) { 1122 if (effective_query) { 1123 effective = rcu_dereference_protected(cgrp->bpf.effective[atype], 1124 lockdep_is_held(&cgroup_mutex)); 1125 total_cnt += bpf_prog_array_length(effective); 1126 } else { 1127 total_cnt += prog_list_length(&cgrp->bpf.progs[atype], NULL); 1128 } 1129 } 1130 1131 /* always output uattr->query.attach_flags as 0 during effective query */ 1132 flags = effective_query ? 0 : flags; 1133 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) 1134 return -EFAULT; 1135 if (copy_to_user(&uattr->query.prog_cnt, &total_cnt, sizeof(total_cnt))) 1136 return -EFAULT; 1137 if (attr->query.prog_cnt == 0 || !prog_ids || !total_cnt) 1138 /* return early if user requested only program count + flags */ 1139 return 0; 1140 1141 if (attr->query.prog_cnt < total_cnt) { 1142 total_cnt = attr->query.prog_cnt; 1143 ret = -ENOSPC; 1144 } 1145 1146 for (atype = from_atype; atype <= to_atype && total_cnt; atype++) { 1147 if (effective_query) { 1148 effective = rcu_dereference_protected(cgrp->bpf.effective[atype], 1149 lockdep_is_held(&cgroup_mutex)); 1150 cnt = min_t(int, bpf_prog_array_length(effective), total_cnt); 1151 ret = bpf_prog_array_copy_to_user(effective, prog_ids, cnt); 1152 } else { 1153 struct hlist_head *progs; 1154 struct bpf_prog_list *pl; 1155 struct bpf_prog *prog; 1156 u32 id; 1157 1158 progs = &cgrp->bpf.progs[atype]; 1159 cnt = min_t(int, prog_list_length(progs, NULL), total_cnt); 1160 i = 0; 1161 hlist_for_each_entry(pl, progs, node) { 1162 prog = prog_list_prog(pl); 1163 id = prog->aux->id; 1164 if (copy_to_user(prog_ids + i, &id, sizeof(id))) 1165 return -EFAULT; 1166 if (++i == cnt) 1167 break; 1168 } 1169 1170 if (prog_attach_flags) { 1171 flags = cgrp->bpf.flags[atype]; 1172 1173 for (i = 0; i < cnt; i++) 1174 if (copy_to_user(prog_attach_flags + i, 1175 &flags, sizeof(flags))) 1176 return -EFAULT; 1177 prog_attach_flags += cnt; 1178 } 1179 } 1180 1181 prog_ids += cnt; 1182 total_cnt -= cnt; 1183 } 1184 return ret; 1185 } 1186 1187 static int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 1188 union bpf_attr __user *uattr) 1189 { 1190 int ret; 1191 1192 cgroup_lock(); 1193 ret = __cgroup_bpf_query(cgrp, attr, uattr); 1194 cgroup_unlock(); 1195 return ret; 1196 } 1197 1198 int cgroup_bpf_prog_attach(const union bpf_attr *attr, 1199 enum bpf_prog_type ptype, struct bpf_prog *prog) 1200 { 1201 struct bpf_prog *replace_prog = NULL; 1202 struct cgroup *cgrp; 1203 int ret; 1204 1205 cgrp = cgroup_get_from_fd(attr->target_fd); 1206 if (IS_ERR(cgrp)) 1207 return PTR_ERR(cgrp); 1208 1209 if ((attr->attach_flags & BPF_F_ALLOW_MULTI) && 1210 (attr->attach_flags & BPF_F_REPLACE)) { 1211 replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype); 1212 if (IS_ERR(replace_prog)) { 1213 cgroup_put(cgrp); 1214 return PTR_ERR(replace_prog); 1215 } 1216 } 1217 1218 ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL, 1219 attr->attach_type, attr->attach_flags); 1220 1221 if (replace_prog) 1222 bpf_prog_put(replace_prog); 1223 cgroup_put(cgrp); 1224 return ret; 1225 } 1226 1227 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) 1228 { 1229 struct bpf_prog *prog; 1230 struct cgroup *cgrp; 1231 int ret; 1232 1233 cgrp = cgroup_get_from_fd(attr->target_fd); 1234 if (IS_ERR(cgrp)) 1235 return PTR_ERR(cgrp); 1236 1237 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); 1238 if (IS_ERR(prog)) 1239 prog = NULL; 1240 1241 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type); 1242 if (prog) 1243 bpf_prog_put(prog); 1244 1245 cgroup_put(cgrp); 1246 return ret; 1247 } 1248 1249 static void bpf_cgroup_link_release(struct bpf_link *link) 1250 { 1251 struct bpf_cgroup_link *cg_link = 1252 container_of(link, struct bpf_cgroup_link, link); 1253 struct cgroup *cg; 1254 1255 /* link might have been auto-detached by dying cgroup already, 1256 * in that case our work is done here 1257 */ 1258 if (!cg_link->cgroup) 1259 return; 1260 1261 cgroup_lock(); 1262 1263 /* re-check cgroup under lock again */ 1264 if (!cg_link->cgroup) { 1265 cgroup_unlock(); 1266 return; 1267 } 1268 1269 WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link, 1270 cg_link->type)); 1271 if (cg_link->type == BPF_LSM_CGROUP) 1272 bpf_trampoline_unlink_cgroup_shim(cg_link->link.prog); 1273 1274 cg = cg_link->cgroup; 1275 cg_link->cgroup = NULL; 1276 1277 cgroup_unlock(); 1278 1279 cgroup_put(cg); 1280 } 1281 1282 static void bpf_cgroup_link_dealloc(struct bpf_link *link) 1283 { 1284 struct bpf_cgroup_link *cg_link = 1285 container_of(link, struct bpf_cgroup_link, link); 1286 1287 kfree(cg_link); 1288 } 1289 1290 static int bpf_cgroup_link_detach(struct bpf_link *link) 1291 { 1292 bpf_cgroup_link_release(link); 1293 1294 return 0; 1295 } 1296 1297 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link, 1298 struct seq_file *seq) 1299 { 1300 struct bpf_cgroup_link *cg_link = 1301 container_of(link, struct bpf_cgroup_link, link); 1302 u64 cg_id = 0; 1303 1304 cgroup_lock(); 1305 if (cg_link->cgroup) 1306 cg_id = cgroup_id(cg_link->cgroup); 1307 cgroup_unlock(); 1308 1309 seq_printf(seq, 1310 "cgroup_id:\t%llu\n" 1311 "attach_type:\t%d\n", 1312 cg_id, 1313 cg_link->type); 1314 } 1315 1316 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link, 1317 struct bpf_link_info *info) 1318 { 1319 struct bpf_cgroup_link *cg_link = 1320 container_of(link, struct bpf_cgroup_link, link); 1321 u64 cg_id = 0; 1322 1323 cgroup_lock(); 1324 if (cg_link->cgroup) 1325 cg_id = cgroup_id(cg_link->cgroup); 1326 cgroup_unlock(); 1327 1328 info->cgroup.cgroup_id = cg_id; 1329 info->cgroup.attach_type = cg_link->type; 1330 return 0; 1331 } 1332 1333 static const struct bpf_link_ops bpf_cgroup_link_lops = { 1334 .release = bpf_cgroup_link_release, 1335 .dealloc = bpf_cgroup_link_dealloc, 1336 .detach = bpf_cgroup_link_detach, 1337 .update_prog = cgroup_bpf_replace, 1338 .show_fdinfo = bpf_cgroup_link_show_fdinfo, 1339 .fill_link_info = bpf_cgroup_link_fill_link_info, 1340 }; 1341 1342 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 1343 { 1344 struct bpf_link_primer link_primer; 1345 struct bpf_cgroup_link *link; 1346 struct cgroup *cgrp; 1347 int err; 1348 1349 if (attr->link_create.flags) 1350 return -EINVAL; 1351 1352 cgrp = cgroup_get_from_fd(attr->link_create.target_fd); 1353 if (IS_ERR(cgrp)) 1354 return PTR_ERR(cgrp); 1355 1356 link = kzalloc(sizeof(*link), GFP_USER); 1357 if (!link) { 1358 err = -ENOMEM; 1359 goto out_put_cgroup; 1360 } 1361 bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops, 1362 prog); 1363 link->cgroup = cgrp; 1364 link->type = attr->link_create.attach_type; 1365 1366 err = bpf_link_prime(&link->link, &link_primer); 1367 if (err) { 1368 kfree(link); 1369 goto out_put_cgroup; 1370 } 1371 1372 err = cgroup_bpf_attach(cgrp, NULL, NULL, link, 1373 link->type, BPF_F_ALLOW_MULTI); 1374 if (err) { 1375 bpf_link_cleanup(&link_primer); 1376 goto out_put_cgroup; 1377 } 1378 1379 return bpf_link_settle(&link_primer); 1380 1381 out_put_cgroup: 1382 cgroup_put(cgrp); 1383 return err; 1384 } 1385 1386 int cgroup_bpf_prog_query(const union bpf_attr *attr, 1387 union bpf_attr __user *uattr) 1388 { 1389 struct cgroup *cgrp; 1390 int ret; 1391 1392 cgrp = cgroup_get_from_fd(attr->query.target_fd); 1393 if (IS_ERR(cgrp)) 1394 return PTR_ERR(cgrp); 1395 1396 ret = cgroup_bpf_query(cgrp, attr, uattr); 1397 1398 cgroup_put(cgrp); 1399 return ret; 1400 } 1401 1402 /** 1403 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering 1404 * @sk: The socket sending or receiving traffic 1405 * @skb: The skb that is being sent or received 1406 * @atype: The type of program to be executed 1407 * 1408 * If no socket is passed, or the socket is not of type INET or INET6, 1409 * this function does nothing and returns 0. 1410 * 1411 * The program type passed in via @type must be suitable for network 1412 * filtering. No further check is performed to assert that. 1413 * 1414 * For egress packets, this function can return: 1415 * NET_XMIT_SUCCESS (0) - continue with packet output 1416 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr 1417 * NET_XMIT_CN (2) - continue with packet output and notify TCP 1418 * to call cwr 1419 * -err - drop packet 1420 * 1421 * For ingress packets, this function will return -EPERM if any 1422 * attached program was found and if it returned != 1 during execution. 1423 * Otherwise 0 is returned. 1424 */ 1425 int __cgroup_bpf_run_filter_skb(struct sock *sk, 1426 struct sk_buff *skb, 1427 enum cgroup_bpf_attach_type atype) 1428 { 1429 unsigned int offset = -skb_network_offset(skb); 1430 struct sock *save_sk; 1431 void *saved_data_end; 1432 struct cgroup *cgrp; 1433 int ret; 1434 1435 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 1436 return 0; 1437 1438 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1439 save_sk = skb->sk; 1440 skb->sk = sk; 1441 __skb_push(skb, offset); 1442 1443 /* compute pointers for the bpf prog */ 1444 bpf_compute_and_save_data_end(skb, &saved_data_end); 1445 1446 if (atype == CGROUP_INET_EGRESS) { 1447 u32 flags = 0; 1448 bool cn; 1449 1450 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, skb, 1451 __bpf_prog_run_save_cb, 0, &flags); 1452 1453 /* Return values of CGROUP EGRESS BPF programs are: 1454 * 0: drop packet 1455 * 1: keep packet 1456 * 2: drop packet and cn 1457 * 3: keep packet and cn 1458 * 1459 * The returned value is then converted to one of the NET_XMIT 1460 * or an error code that is then interpreted as drop packet 1461 * (and no cn): 1462 * 0: NET_XMIT_SUCCESS skb should be transmitted 1463 * 1: NET_XMIT_DROP skb should be dropped and cn 1464 * 2: NET_XMIT_CN skb should be transmitted and cn 1465 * 3: -err skb should be dropped 1466 */ 1467 1468 cn = flags & BPF_RET_SET_CN; 1469 if (ret && !IS_ERR_VALUE((long)ret)) 1470 ret = -EFAULT; 1471 if (!ret) 1472 ret = (cn ? NET_XMIT_CN : NET_XMIT_SUCCESS); 1473 else 1474 ret = (cn ? NET_XMIT_DROP : ret); 1475 } else { 1476 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, 1477 skb, __bpf_prog_run_save_cb, 0, 1478 NULL); 1479 if (ret && !IS_ERR_VALUE((long)ret)) 1480 ret = -EFAULT; 1481 } 1482 bpf_restore_data_end(skb, saved_data_end); 1483 __skb_pull(skb, offset); 1484 skb->sk = save_sk; 1485 1486 return ret; 1487 } 1488 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb); 1489 1490 /** 1491 * __cgroup_bpf_run_filter_sk() - Run a program on a sock 1492 * @sk: sock structure to manipulate 1493 * @atype: The type of program to be executed 1494 * 1495 * socket is passed is expected to be of type INET or INET6. 1496 * 1497 * The program type passed in via @type must be suitable for sock 1498 * filtering. No further check is performed to assert that. 1499 * 1500 * This function will return %-EPERM if any if an attached program was found 1501 * and if it returned != 1 during execution. In all other cases, 0 is returned. 1502 */ 1503 int __cgroup_bpf_run_filter_sk(struct sock *sk, 1504 enum cgroup_bpf_attach_type atype) 1505 { 1506 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1507 1508 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sk, bpf_prog_run, 0, 1509 NULL); 1510 } 1511 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk); 1512 1513 /** 1514 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and 1515 * provided by user sockaddr 1516 * @sk: sock struct that will use sockaddr 1517 * @uaddr: sockaddr struct provided by user 1518 * @uaddrlen: Pointer to the size of the sockaddr struct provided by user. It is 1519 * read-only for AF_INET[6] uaddr but can be modified for AF_UNIX 1520 * uaddr. 1521 * @atype: The type of program to be executed 1522 * @t_ctx: Pointer to attach type specific context 1523 * @flags: Pointer to u32 which contains higher bits of BPF program 1524 * return value (OR'ed together). 1525 * 1526 * socket is expected to be of type INET, INET6 or UNIX. 1527 * 1528 * This function will return %-EPERM if an attached program is found and 1529 * returned value != 1 during execution. In all other cases, 0 is returned. 1530 */ 1531 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk, 1532 struct sockaddr *uaddr, 1533 int *uaddrlen, 1534 enum cgroup_bpf_attach_type atype, 1535 void *t_ctx, 1536 u32 *flags) 1537 { 1538 struct bpf_sock_addr_kern ctx = { 1539 .sk = sk, 1540 .uaddr = uaddr, 1541 .t_ctx = t_ctx, 1542 }; 1543 struct sockaddr_storage unspec; 1544 struct cgroup *cgrp; 1545 int ret; 1546 1547 /* Check socket family since not all sockets represent network 1548 * endpoint (e.g. AF_UNIX). 1549 */ 1550 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6 && 1551 sk->sk_family != AF_UNIX) 1552 return 0; 1553 1554 if (!ctx.uaddr) { 1555 memset(&unspec, 0, sizeof(unspec)); 1556 ctx.uaddr = (struct sockaddr *)&unspec; 1557 ctx.uaddrlen = 0; 1558 } else { 1559 ctx.uaddrlen = *uaddrlen; 1560 } 1561 1562 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1563 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 1564 0, flags); 1565 1566 if (!ret && uaddr) 1567 *uaddrlen = ctx.uaddrlen; 1568 1569 return ret; 1570 } 1571 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr); 1572 1573 /** 1574 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock 1575 * @sk: socket to get cgroup from 1576 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains 1577 * sk with connection information (IP addresses, etc.) May not contain 1578 * cgroup info if it is a req sock. 1579 * @atype: The type of program to be executed 1580 * 1581 * socket passed is expected to be of type INET or INET6. 1582 * 1583 * The program type passed in via @type must be suitable for sock_ops 1584 * filtering. No further check is performed to assert that. 1585 * 1586 * This function will return %-EPERM if any if an attached program was found 1587 * and if it returned != 1 during execution. In all other cases, 0 is returned. 1588 */ 1589 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk, 1590 struct bpf_sock_ops_kern *sock_ops, 1591 enum cgroup_bpf_attach_type atype) 1592 { 1593 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1594 1595 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sock_ops, bpf_prog_run, 1596 0, NULL); 1597 } 1598 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops); 1599 1600 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor, 1601 short access, enum cgroup_bpf_attach_type atype) 1602 { 1603 struct cgroup *cgrp; 1604 struct bpf_cgroup_dev_ctx ctx = { 1605 .access_type = (access << 16) | dev_type, 1606 .major = major, 1607 .minor = minor, 1608 }; 1609 int ret; 1610 1611 rcu_read_lock(); 1612 cgrp = task_dfl_cgroup(current); 1613 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, 1614 NULL); 1615 rcu_read_unlock(); 1616 1617 return ret; 1618 } 1619 1620 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags) 1621 { 1622 /* flags argument is not used now, 1623 * but provides an ability to extend the API. 1624 * verifier checks that its value is correct. 1625 */ 1626 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map); 1627 struct bpf_cgroup_storage *storage; 1628 struct bpf_cg_run_ctx *ctx; 1629 void *ptr; 1630 1631 /* get current cgroup storage from BPF run context */ 1632 ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1633 storage = ctx->prog_item->cgroup_storage[stype]; 1634 1635 if (stype == BPF_CGROUP_STORAGE_SHARED) 1636 ptr = &READ_ONCE(storage->buf)->data[0]; 1637 else 1638 ptr = this_cpu_ptr(storage->percpu_buf); 1639 1640 return (unsigned long)ptr; 1641 } 1642 1643 const struct bpf_func_proto bpf_get_local_storage_proto = { 1644 .func = bpf_get_local_storage, 1645 .gpl_only = false, 1646 .ret_type = RET_PTR_TO_MAP_VALUE, 1647 .arg1_type = ARG_CONST_MAP_PTR, 1648 .arg2_type = ARG_ANYTHING, 1649 }; 1650 1651 BPF_CALL_0(bpf_get_retval) 1652 { 1653 struct bpf_cg_run_ctx *ctx = 1654 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1655 1656 return ctx->retval; 1657 } 1658 1659 const struct bpf_func_proto bpf_get_retval_proto = { 1660 .func = bpf_get_retval, 1661 .gpl_only = false, 1662 .ret_type = RET_INTEGER, 1663 }; 1664 1665 BPF_CALL_1(bpf_set_retval, int, retval) 1666 { 1667 struct bpf_cg_run_ctx *ctx = 1668 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1669 1670 ctx->retval = retval; 1671 return 0; 1672 } 1673 1674 const struct bpf_func_proto bpf_set_retval_proto = { 1675 .func = bpf_set_retval, 1676 .gpl_only = false, 1677 .ret_type = RET_INTEGER, 1678 .arg1_type = ARG_ANYTHING, 1679 }; 1680 1681 static const struct bpf_func_proto * 1682 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1683 { 1684 const struct bpf_func_proto *func_proto; 1685 1686 func_proto = cgroup_common_func_proto(func_id, prog); 1687 if (func_proto) 1688 return func_proto; 1689 1690 switch (func_id) { 1691 case BPF_FUNC_perf_event_output: 1692 return &bpf_event_output_data_proto; 1693 default: 1694 return bpf_base_func_proto(func_id, prog); 1695 } 1696 } 1697 1698 static bool cgroup_dev_is_valid_access(int off, int size, 1699 enum bpf_access_type type, 1700 const struct bpf_prog *prog, 1701 struct bpf_insn_access_aux *info) 1702 { 1703 const int size_default = sizeof(__u32); 1704 1705 if (type == BPF_WRITE) 1706 return false; 1707 1708 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx)) 1709 return false; 1710 /* The verifier guarantees that size > 0. */ 1711 if (off % size != 0) 1712 return false; 1713 1714 switch (off) { 1715 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type): 1716 bpf_ctx_record_field_size(info, size_default); 1717 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 1718 return false; 1719 break; 1720 default: 1721 if (size != size_default) 1722 return false; 1723 } 1724 1725 return true; 1726 } 1727 1728 const struct bpf_prog_ops cg_dev_prog_ops = { 1729 }; 1730 1731 const struct bpf_verifier_ops cg_dev_verifier_ops = { 1732 .get_func_proto = cgroup_dev_func_proto, 1733 .is_valid_access = cgroup_dev_is_valid_access, 1734 }; 1735 1736 /** 1737 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl 1738 * 1739 * @head: sysctl table header 1740 * @table: sysctl table 1741 * @write: sysctl is being read (= 0) or written (= 1) 1742 * @buf: pointer to buffer (in and out) 1743 * @pcount: value-result argument: value is size of buffer pointed to by @buf, 1744 * result is size of @new_buf if program set new value, initial value 1745 * otherwise 1746 * @ppos: value-result argument: value is position at which read from or write 1747 * to sysctl is happening, result is new position if program overrode it, 1748 * initial value otherwise 1749 * @atype: type of program to be executed 1750 * 1751 * Program is run when sysctl is being accessed, either read or written, and 1752 * can allow or deny such access. 1753 * 1754 * This function will return %-EPERM if an attached program is found and 1755 * returned value != 1 during execution. In all other cases 0 is returned. 1756 */ 1757 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head, 1758 const struct ctl_table *table, int write, 1759 char **buf, size_t *pcount, loff_t *ppos, 1760 enum cgroup_bpf_attach_type atype) 1761 { 1762 struct bpf_sysctl_kern ctx = { 1763 .head = head, 1764 .table = table, 1765 .write = write, 1766 .ppos = ppos, 1767 .cur_val = NULL, 1768 .cur_len = PAGE_SIZE, 1769 .new_val = NULL, 1770 .new_len = 0, 1771 .new_updated = 0, 1772 }; 1773 struct cgroup *cgrp; 1774 loff_t pos = 0; 1775 int ret; 1776 1777 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL); 1778 if (!ctx.cur_val || 1779 table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) { 1780 /* Let BPF program decide how to proceed. */ 1781 ctx.cur_len = 0; 1782 } 1783 1784 if (write && *buf && *pcount) { 1785 /* BPF program should be able to override new value with a 1786 * buffer bigger than provided by user. 1787 */ 1788 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL); 1789 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount); 1790 if (ctx.new_val) { 1791 memcpy(ctx.new_val, *buf, ctx.new_len); 1792 } else { 1793 /* Let BPF program decide how to proceed. */ 1794 ctx.new_len = 0; 1795 } 1796 } 1797 1798 rcu_read_lock(); 1799 cgrp = task_dfl_cgroup(current); 1800 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, 1801 NULL); 1802 rcu_read_unlock(); 1803 1804 kfree(ctx.cur_val); 1805 1806 if (ret == 1 && ctx.new_updated) { 1807 kfree(*buf); 1808 *buf = ctx.new_val; 1809 *pcount = ctx.new_len; 1810 } else { 1811 kfree(ctx.new_val); 1812 } 1813 1814 return ret; 1815 } 1816 1817 #ifdef CONFIG_NET 1818 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen, 1819 struct bpf_sockopt_buf *buf) 1820 { 1821 if (unlikely(max_optlen < 0)) 1822 return -EINVAL; 1823 1824 if (unlikely(max_optlen > PAGE_SIZE)) { 1825 /* We don't expose optvals that are greater than PAGE_SIZE 1826 * to the BPF program. 1827 */ 1828 max_optlen = PAGE_SIZE; 1829 } 1830 1831 if (max_optlen <= sizeof(buf->data)) { 1832 /* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE 1833 * bytes avoid the cost of kzalloc. 1834 */ 1835 ctx->optval = buf->data; 1836 ctx->optval_end = ctx->optval + max_optlen; 1837 return max_optlen; 1838 } 1839 1840 ctx->optval = kzalloc(max_optlen, GFP_USER); 1841 if (!ctx->optval) 1842 return -ENOMEM; 1843 1844 ctx->optval_end = ctx->optval + max_optlen; 1845 1846 return max_optlen; 1847 } 1848 1849 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx, 1850 struct bpf_sockopt_buf *buf) 1851 { 1852 if (ctx->optval == buf->data) 1853 return; 1854 kfree(ctx->optval); 1855 } 1856 1857 static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx, 1858 struct bpf_sockopt_buf *buf) 1859 { 1860 return ctx->optval != buf->data; 1861 } 1862 1863 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level, 1864 int *optname, sockptr_t optval, 1865 int *optlen, char **kernel_optval) 1866 { 1867 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1868 struct bpf_sockopt_buf buf = {}; 1869 struct bpf_sockopt_kern ctx = { 1870 .sk = sk, 1871 .level = *level, 1872 .optname = *optname, 1873 }; 1874 int ret, max_optlen; 1875 1876 /* Allocate a bit more than the initial user buffer for 1877 * BPF program. The canonical use case is overriding 1878 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic). 1879 */ 1880 max_optlen = max_t(int, 16, *optlen); 1881 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); 1882 if (max_optlen < 0) 1883 return max_optlen; 1884 1885 ctx.optlen = *optlen; 1886 1887 if (copy_from_sockptr(ctx.optval, optval, 1888 min(*optlen, max_optlen))) { 1889 ret = -EFAULT; 1890 goto out; 1891 } 1892 1893 lock_sock(sk); 1894 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_SETSOCKOPT, 1895 &ctx, bpf_prog_run, 0, NULL); 1896 release_sock(sk); 1897 1898 if (ret) 1899 goto out; 1900 1901 if (ctx.optlen == -1) { 1902 /* optlen set to -1, bypass kernel */ 1903 ret = 1; 1904 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) { 1905 /* optlen is out of bounds */ 1906 if (*optlen > PAGE_SIZE && ctx.optlen >= 0) { 1907 pr_info_once("bpf setsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n", 1908 ctx.optlen, max_optlen); 1909 ret = 0; 1910 goto out; 1911 } 1912 ret = -EFAULT; 1913 } else { 1914 /* optlen within bounds, run kernel handler */ 1915 ret = 0; 1916 1917 /* export any potential modifications */ 1918 *level = ctx.level; 1919 *optname = ctx.optname; 1920 1921 /* optlen == 0 from BPF indicates that we should 1922 * use original userspace data. 1923 */ 1924 if (ctx.optlen != 0) { 1925 *optlen = ctx.optlen; 1926 /* We've used bpf_sockopt_kern->buf as an intermediary 1927 * storage, but the BPF program indicates that we need 1928 * to pass this data to the kernel setsockopt handler. 1929 * No way to export on-stack buf, have to allocate a 1930 * new buffer. 1931 */ 1932 if (!sockopt_buf_allocated(&ctx, &buf)) { 1933 void *p = kmalloc(ctx.optlen, GFP_USER); 1934 1935 if (!p) { 1936 ret = -ENOMEM; 1937 goto out; 1938 } 1939 memcpy(p, ctx.optval, ctx.optlen); 1940 *kernel_optval = p; 1941 } else { 1942 *kernel_optval = ctx.optval; 1943 } 1944 /* export and don't free sockopt buf */ 1945 return 0; 1946 } 1947 } 1948 1949 out: 1950 sockopt_free_buf(&ctx, &buf); 1951 return ret; 1952 } 1953 1954 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level, 1955 int optname, sockptr_t optval, 1956 sockptr_t optlen, int max_optlen, 1957 int retval) 1958 { 1959 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1960 struct bpf_sockopt_buf buf = {}; 1961 struct bpf_sockopt_kern ctx = { 1962 .sk = sk, 1963 .level = level, 1964 .optname = optname, 1965 .current_task = current, 1966 }; 1967 int orig_optlen; 1968 int ret; 1969 1970 orig_optlen = max_optlen; 1971 ctx.optlen = max_optlen; 1972 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); 1973 if (max_optlen < 0) 1974 return max_optlen; 1975 1976 if (!retval) { 1977 /* If kernel getsockopt finished successfully, 1978 * copy whatever was returned to the user back 1979 * into our temporary buffer. Set optlen to the 1980 * one that kernel returned as well to let 1981 * BPF programs inspect the value. 1982 */ 1983 if (copy_from_sockptr(&ctx.optlen, optlen, 1984 sizeof(ctx.optlen))) { 1985 ret = -EFAULT; 1986 goto out; 1987 } 1988 1989 if (ctx.optlen < 0) { 1990 ret = -EFAULT; 1991 goto out; 1992 } 1993 orig_optlen = ctx.optlen; 1994 1995 if (copy_from_sockptr(ctx.optval, optval, 1996 min(ctx.optlen, max_optlen))) { 1997 ret = -EFAULT; 1998 goto out; 1999 } 2000 } 2001 2002 lock_sock(sk); 2003 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, 2004 &ctx, bpf_prog_run, retval, NULL); 2005 release_sock(sk); 2006 2007 if (ret < 0) 2008 goto out; 2009 2010 if (!sockptr_is_null(optval) && 2011 (ctx.optlen > max_optlen || ctx.optlen < 0)) { 2012 if (orig_optlen > PAGE_SIZE && ctx.optlen >= 0) { 2013 pr_info_once("bpf getsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n", 2014 ctx.optlen, max_optlen); 2015 ret = retval; 2016 goto out; 2017 } 2018 ret = -EFAULT; 2019 goto out; 2020 } 2021 2022 if (ctx.optlen != 0) { 2023 if (!sockptr_is_null(optval) && 2024 copy_to_sockptr(optval, ctx.optval, ctx.optlen)) { 2025 ret = -EFAULT; 2026 goto out; 2027 } 2028 if (copy_to_sockptr(optlen, &ctx.optlen, sizeof(ctx.optlen))) { 2029 ret = -EFAULT; 2030 goto out; 2031 } 2032 } 2033 2034 out: 2035 sockopt_free_buf(&ctx, &buf); 2036 return ret; 2037 } 2038 2039 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level, 2040 int optname, void *optval, 2041 int *optlen, int retval) 2042 { 2043 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 2044 struct bpf_sockopt_kern ctx = { 2045 .sk = sk, 2046 .level = level, 2047 .optname = optname, 2048 .optlen = *optlen, 2049 .optval = optval, 2050 .optval_end = optval + *optlen, 2051 .current_task = current, 2052 }; 2053 int ret; 2054 2055 /* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy 2056 * user data back into BPF buffer when reval != 0. This is 2057 * done as an optimization to avoid extra copy, assuming 2058 * kernel won't populate the data in case of an error. 2059 * Here we always pass the data and memset() should 2060 * be called if that data shouldn't be "exported". 2061 */ 2062 2063 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, 2064 &ctx, bpf_prog_run, retval, NULL); 2065 if (ret < 0) 2066 return ret; 2067 2068 if (ctx.optlen > *optlen) 2069 return -EFAULT; 2070 2071 /* BPF programs can shrink the buffer, export the modifications. 2072 */ 2073 if (ctx.optlen != 0) 2074 *optlen = ctx.optlen; 2075 2076 return ret; 2077 } 2078 #endif 2079 2080 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp, 2081 size_t *lenp) 2082 { 2083 ssize_t tmp_ret = 0, ret; 2084 2085 if (dir->header.parent) { 2086 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp); 2087 if (tmp_ret < 0) 2088 return tmp_ret; 2089 } 2090 2091 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp); 2092 if (ret < 0) 2093 return ret; 2094 *bufp += ret; 2095 *lenp -= ret; 2096 ret += tmp_ret; 2097 2098 /* Avoid leading slash. */ 2099 if (!ret) 2100 return ret; 2101 2102 tmp_ret = strscpy(*bufp, "/", *lenp); 2103 if (tmp_ret < 0) 2104 return tmp_ret; 2105 *bufp += tmp_ret; 2106 *lenp -= tmp_ret; 2107 2108 return ret + tmp_ret; 2109 } 2110 2111 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf, 2112 size_t, buf_len, u64, flags) 2113 { 2114 ssize_t tmp_ret = 0, ret; 2115 2116 if (!buf) 2117 return -EINVAL; 2118 2119 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) { 2120 if (!ctx->head) 2121 return -EINVAL; 2122 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len); 2123 if (tmp_ret < 0) 2124 return tmp_ret; 2125 } 2126 2127 ret = strscpy(buf, ctx->table->procname, buf_len); 2128 2129 return ret < 0 ? ret : tmp_ret + ret; 2130 } 2131 2132 static const struct bpf_func_proto bpf_sysctl_get_name_proto = { 2133 .func = bpf_sysctl_get_name, 2134 .gpl_only = false, 2135 .ret_type = RET_INTEGER, 2136 .arg1_type = ARG_PTR_TO_CTX, 2137 .arg2_type = ARG_PTR_TO_MEM | MEM_WRITE, 2138 .arg3_type = ARG_CONST_SIZE, 2139 .arg4_type = ARG_ANYTHING, 2140 }; 2141 2142 static int copy_sysctl_value(char *dst, size_t dst_len, char *src, 2143 size_t src_len) 2144 { 2145 if (!dst) 2146 return -EINVAL; 2147 2148 if (!dst_len) 2149 return -E2BIG; 2150 2151 if (!src || !src_len) { 2152 memset(dst, 0, dst_len); 2153 return -EINVAL; 2154 } 2155 2156 memcpy(dst, src, min(dst_len, src_len)); 2157 2158 if (dst_len > src_len) { 2159 memset(dst + src_len, '\0', dst_len - src_len); 2160 return src_len; 2161 } 2162 2163 dst[dst_len - 1] = '\0'; 2164 2165 return -E2BIG; 2166 } 2167 2168 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx, 2169 char *, buf, size_t, buf_len) 2170 { 2171 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len); 2172 } 2173 2174 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = { 2175 .func = bpf_sysctl_get_current_value, 2176 .gpl_only = false, 2177 .ret_type = RET_INTEGER, 2178 .arg1_type = ARG_PTR_TO_CTX, 2179 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 2180 .arg3_type = ARG_CONST_SIZE, 2181 }; 2182 2183 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf, 2184 size_t, buf_len) 2185 { 2186 if (!ctx->write) { 2187 if (buf && buf_len) 2188 memset(buf, '\0', buf_len); 2189 return -EINVAL; 2190 } 2191 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len); 2192 } 2193 2194 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = { 2195 .func = bpf_sysctl_get_new_value, 2196 .gpl_only = false, 2197 .ret_type = RET_INTEGER, 2198 .arg1_type = ARG_PTR_TO_CTX, 2199 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 2200 .arg3_type = ARG_CONST_SIZE, 2201 }; 2202 2203 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx, 2204 const char *, buf, size_t, buf_len) 2205 { 2206 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len) 2207 return -EINVAL; 2208 2209 if (buf_len > PAGE_SIZE - 1) 2210 return -E2BIG; 2211 2212 memcpy(ctx->new_val, buf, buf_len); 2213 ctx->new_len = buf_len; 2214 ctx->new_updated = 1; 2215 2216 return 0; 2217 } 2218 2219 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = { 2220 .func = bpf_sysctl_set_new_value, 2221 .gpl_only = false, 2222 .ret_type = RET_INTEGER, 2223 .arg1_type = ARG_PTR_TO_CTX, 2224 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 2225 .arg3_type = ARG_CONST_SIZE, 2226 }; 2227 2228 static const struct bpf_func_proto * 2229 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2230 { 2231 const struct bpf_func_proto *func_proto; 2232 2233 func_proto = cgroup_common_func_proto(func_id, prog); 2234 if (func_proto) 2235 return func_proto; 2236 2237 switch (func_id) { 2238 case BPF_FUNC_sysctl_get_name: 2239 return &bpf_sysctl_get_name_proto; 2240 case BPF_FUNC_sysctl_get_current_value: 2241 return &bpf_sysctl_get_current_value_proto; 2242 case BPF_FUNC_sysctl_get_new_value: 2243 return &bpf_sysctl_get_new_value_proto; 2244 case BPF_FUNC_sysctl_set_new_value: 2245 return &bpf_sysctl_set_new_value_proto; 2246 case BPF_FUNC_ktime_get_coarse_ns: 2247 return &bpf_ktime_get_coarse_ns_proto; 2248 case BPF_FUNC_perf_event_output: 2249 return &bpf_event_output_data_proto; 2250 default: 2251 return bpf_base_func_proto(func_id, prog); 2252 } 2253 } 2254 2255 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type, 2256 const struct bpf_prog *prog, 2257 struct bpf_insn_access_aux *info) 2258 { 2259 const int size_default = sizeof(__u32); 2260 2261 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size) 2262 return false; 2263 2264 switch (off) { 2265 case bpf_ctx_range(struct bpf_sysctl, write): 2266 if (type != BPF_READ) 2267 return false; 2268 bpf_ctx_record_field_size(info, size_default); 2269 return bpf_ctx_narrow_access_ok(off, size, size_default); 2270 case bpf_ctx_range(struct bpf_sysctl, file_pos): 2271 if (type == BPF_READ) { 2272 bpf_ctx_record_field_size(info, size_default); 2273 return bpf_ctx_narrow_access_ok(off, size, size_default); 2274 } else { 2275 return size == size_default; 2276 } 2277 default: 2278 return false; 2279 } 2280 } 2281 2282 static u32 sysctl_convert_ctx_access(enum bpf_access_type type, 2283 const struct bpf_insn *si, 2284 struct bpf_insn *insn_buf, 2285 struct bpf_prog *prog, u32 *target_size) 2286 { 2287 struct bpf_insn *insn = insn_buf; 2288 u32 read_size; 2289 2290 switch (si->off) { 2291 case offsetof(struct bpf_sysctl, write): 2292 *insn++ = BPF_LDX_MEM( 2293 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 2294 bpf_target_off(struct bpf_sysctl_kern, write, 2295 sizeof_field(struct bpf_sysctl_kern, 2296 write), 2297 target_size)); 2298 break; 2299 case offsetof(struct bpf_sysctl, file_pos): 2300 /* ppos is a pointer so it should be accessed via indirect 2301 * loads and stores. Also for stores additional temporary 2302 * register is used since neither src_reg nor dst_reg can be 2303 * overridden. 2304 */ 2305 if (type == BPF_WRITE) { 2306 int treg = BPF_REG_9; 2307 2308 if (si->src_reg == treg || si->dst_reg == treg) 2309 --treg; 2310 if (si->src_reg == treg || si->dst_reg == treg) 2311 --treg; 2312 *insn++ = BPF_STX_MEM( 2313 BPF_DW, si->dst_reg, treg, 2314 offsetof(struct bpf_sysctl_kern, tmp_reg)); 2315 *insn++ = BPF_LDX_MEM( 2316 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 2317 treg, si->dst_reg, 2318 offsetof(struct bpf_sysctl_kern, ppos)); 2319 *insn++ = BPF_RAW_INSN( 2320 BPF_CLASS(si->code) | BPF_MEM | BPF_SIZEOF(u32), 2321 treg, si->src_reg, 2322 bpf_ctx_narrow_access_offset( 2323 0, sizeof(u32), sizeof(loff_t)), 2324 si->imm); 2325 *insn++ = BPF_LDX_MEM( 2326 BPF_DW, treg, si->dst_reg, 2327 offsetof(struct bpf_sysctl_kern, tmp_reg)); 2328 } else { 2329 *insn++ = BPF_LDX_MEM( 2330 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 2331 si->dst_reg, si->src_reg, 2332 offsetof(struct bpf_sysctl_kern, ppos)); 2333 read_size = bpf_size_to_bytes(BPF_SIZE(si->code)); 2334 *insn++ = BPF_LDX_MEM( 2335 BPF_SIZE(si->code), si->dst_reg, si->dst_reg, 2336 bpf_ctx_narrow_access_offset( 2337 0, read_size, sizeof(loff_t))); 2338 } 2339 *target_size = sizeof(u32); 2340 break; 2341 } 2342 2343 return insn - insn_buf; 2344 } 2345 2346 const struct bpf_verifier_ops cg_sysctl_verifier_ops = { 2347 .get_func_proto = sysctl_func_proto, 2348 .is_valid_access = sysctl_is_valid_access, 2349 .convert_ctx_access = sysctl_convert_ctx_access, 2350 }; 2351 2352 const struct bpf_prog_ops cg_sysctl_prog_ops = { 2353 }; 2354 2355 #ifdef CONFIG_NET 2356 BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx) 2357 { 2358 const struct net *net = ctx ? sock_net(ctx->sk) : &init_net; 2359 2360 return net->net_cookie; 2361 } 2362 2363 static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = { 2364 .func = bpf_get_netns_cookie_sockopt, 2365 .gpl_only = false, 2366 .ret_type = RET_INTEGER, 2367 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 2368 }; 2369 #endif 2370 2371 static const struct bpf_func_proto * 2372 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2373 { 2374 const struct bpf_func_proto *func_proto; 2375 2376 func_proto = cgroup_common_func_proto(func_id, prog); 2377 if (func_proto) 2378 return func_proto; 2379 2380 switch (func_id) { 2381 #ifdef CONFIG_NET 2382 case BPF_FUNC_get_netns_cookie: 2383 return &bpf_get_netns_cookie_sockopt_proto; 2384 case BPF_FUNC_sk_storage_get: 2385 return &bpf_sk_storage_get_proto; 2386 case BPF_FUNC_sk_storage_delete: 2387 return &bpf_sk_storage_delete_proto; 2388 case BPF_FUNC_setsockopt: 2389 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) 2390 return &bpf_sk_setsockopt_proto; 2391 return NULL; 2392 case BPF_FUNC_getsockopt: 2393 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) 2394 return &bpf_sk_getsockopt_proto; 2395 return NULL; 2396 #endif 2397 #ifdef CONFIG_INET 2398 case BPF_FUNC_tcp_sock: 2399 return &bpf_tcp_sock_proto; 2400 #endif 2401 case BPF_FUNC_perf_event_output: 2402 return &bpf_event_output_data_proto; 2403 default: 2404 return bpf_base_func_proto(func_id, prog); 2405 } 2406 } 2407 2408 static bool cg_sockopt_is_valid_access(int off, int size, 2409 enum bpf_access_type type, 2410 const struct bpf_prog *prog, 2411 struct bpf_insn_access_aux *info) 2412 { 2413 const int size_default = sizeof(__u32); 2414 2415 if (off < 0 || off >= sizeof(struct bpf_sockopt)) 2416 return false; 2417 2418 if (off % size != 0) 2419 return false; 2420 2421 if (type == BPF_WRITE) { 2422 switch (off) { 2423 case offsetof(struct bpf_sockopt, retval): 2424 if (size != size_default) 2425 return false; 2426 return prog->expected_attach_type == 2427 BPF_CGROUP_GETSOCKOPT; 2428 case offsetof(struct bpf_sockopt, optname): 2429 fallthrough; 2430 case offsetof(struct bpf_sockopt, level): 2431 if (size != size_default) 2432 return false; 2433 return prog->expected_attach_type == 2434 BPF_CGROUP_SETSOCKOPT; 2435 case offsetof(struct bpf_sockopt, optlen): 2436 return size == size_default; 2437 default: 2438 return false; 2439 } 2440 } 2441 2442 switch (off) { 2443 case offsetof(struct bpf_sockopt, sk): 2444 if (size != sizeof(__u64)) 2445 return false; 2446 info->reg_type = PTR_TO_SOCKET; 2447 break; 2448 case offsetof(struct bpf_sockopt, optval): 2449 if (size != sizeof(__u64)) 2450 return false; 2451 info->reg_type = PTR_TO_PACKET; 2452 break; 2453 case offsetof(struct bpf_sockopt, optval_end): 2454 if (size != sizeof(__u64)) 2455 return false; 2456 info->reg_type = PTR_TO_PACKET_END; 2457 break; 2458 case offsetof(struct bpf_sockopt, retval): 2459 if (size != size_default) 2460 return false; 2461 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT; 2462 default: 2463 if (size != size_default) 2464 return false; 2465 break; 2466 } 2467 return true; 2468 } 2469 2470 #define CG_SOCKOPT_READ_FIELD(F) \ 2471 BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \ 2472 si->dst_reg, si->src_reg, \ 2473 offsetof(struct bpf_sockopt_kern, F)) 2474 2475 #define CG_SOCKOPT_WRITE_FIELD(F) \ 2476 BPF_RAW_INSN((BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F) | \ 2477 BPF_MEM | BPF_CLASS(si->code)), \ 2478 si->dst_reg, si->src_reg, \ 2479 offsetof(struct bpf_sockopt_kern, F), \ 2480 si->imm) 2481 2482 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type, 2483 const struct bpf_insn *si, 2484 struct bpf_insn *insn_buf, 2485 struct bpf_prog *prog, 2486 u32 *target_size) 2487 { 2488 struct bpf_insn *insn = insn_buf; 2489 2490 switch (si->off) { 2491 case offsetof(struct bpf_sockopt, sk): 2492 *insn++ = CG_SOCKOPT_READ_FIELD(sk); 2493 break; 2494 case offsetof(struct bpf_sockopt, level): 2495 if (type == BPF_WRITE) 2496 *insn++ = CG_SOCKOPT_WRITE_FIELD(level); 2497 else 2498 *insn++ = CG_SOCKOPT_READ_FIELD(level); 2499 break; 2500 case offsetof(struct bpf_sockopt, optname): 2501 if (type == BPF_WRITE) 2502 *insn++ = CG_SOCKOPT_WRITE_FIELD(optname); 2503 else 2504 *insn++ = CG_SOCKOPT_READ_FIELD(optname); 2505 break; 2506 case offsetof(struct bpf_sockopt, optlen): 2507 if (type == BPF_WRITE) 2508 *insn++ = CG_SOCKOPT_WRITE_FIELD(optlen); 2509 else 2510 *insn++ = CG_SOCKOPT_READ_FIELD(optlen); 2511 break; 2512 case offsetof(struct bpf_sockopt, retval): 2513 BUILD_BUG_ON(offsetof(struct bpf_cg_run_ctx, run_ctx) != 0); 2514 2515 if (type == BPF_WRITE) { 2516 int treg = BPF_REG_9; 2517 2518 if (si->src_reg == treg || si->dst_reg == treg) 2519 --treg; 2520 if (si->src_reg == treg || si->dst_reg == treg) 2521 --treg; 2522 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, treg, 2523 offsetof(struct bpf_sockopt_kern, tmp_reg)); 2524 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), 2525 treg, si->dst_reg, 2526 offsetof(struct bpf_sockopt_kern, current_task)); 2527 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), 2528 treg, treg, 2529 offsetof(struct task_struct, bpf_ctx)); 2530 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_MEM | 2531 BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), 2532 treg, si->src_reg, 2533 offsetof(struct bpf_cg_run_ctx, retval), 2534 si->imm); 2535 *insn++ = BPF_LDX_MEM(BPF_DW, treg, si->dst_reg, 2536 offsetof(struct bpf_sockopt_kern, tmp_reg)); 2537 } else { 2538 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), 2539 si->dst_reg, si->src_reg, 2540 offsetof(struct bpf_sockopt_kern, current_task)); 2541 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), 2542 si->dst_reg, si->dst_reg, 2543 offsetof(struct task_struct, bpf_ctx)); 2544 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), 2545 si->dst_reg, si->dst_reg, 2546 offsetof(struct bpf_cg_run_ctx, retval)); 2547 } 2548 break; 2549 case offsetof(struct bpf_sockopt, optval): 2550 *insn++ = CG_SOCKOPT_READ_FIELD(optval); 2551 break; 2552 case offsetof(struct bpf_sockopt, optval_end): 2553 *insn++ = CG_SOCKOPT_READ_FIELD(optval_end); 2554 break; 2555 } 2556 2557 return insn - insn_buf; 2558 } 2559 2560 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf, 2561 bool direct_write, 2562 const struct bpf_prog *prog) 2563 { 2564 /* Nothing to do for sockopt argument. The data is kzalloc'ated. 2565 */ 2566 return 0; 2567 } 2568 2569 const struct bpf_verifier_ops cg_sockopt_verifier_ops = { 2570 .get_func_proto = cg_sockopt_func_proto, 2571 .is_valid_access = cg_sockopt_is_valid_access, 2572 .convert_ctx_access = cg_sockopt_convert_ctx_access, 2573 .gen_prologue = cg_sockopt_get_prologue, 2574 }; 2575 2576 const struct bpf_prog_ops cg_sockopt_prog_ops = { 2577 }; 2578 2579 /* Common helpers for cgroup hooks. */ 2580 const struct bpf_func_proto * 2581 cgroup_common_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2582 { 2583 switch (func_id) { 2584 case BPF_FUNC_get_local_storage: 2585 return &bpf_get_local_storage_proto; 2586 case BPF_FUNC_get_retval: 2587 switch (prog->expected_attach_type) { 2588 case BPF_CGROUP_INET_INGRESS: 2589 case BPF_CGROUP_INET_EGRESS: 2590 case BPF_CGROUP_SOCK_OPS: 2591 case BPF_CGROUP_UDP4_RECVMSG: 2592 case BPF_CGROUP_UDP6_RECVMSG: 2593 case BPF_CGROUP_UNIX_RECVMSG: 2594 case BPF_CGROUP_INET4_GETPEERNAME: 2595 case BPF_CGROUP_INET6_GETPEERNAME: 2596 case BPF_CGROUP_UNIX_GETPEERNAME: 2597 case BPF_CGROUP_INET4_GETSOCKNAME: 2598 case BPF_CGROUP_INET6_GETSOCKNAME: 2599 case BPF_CGROUP_UNIX_GETSOCKNAME: 2600 return NULL; 2601 default: 2602 return &bpf_get_retval_proto; 2603 } 2604 case BPF_FUNC_set_retval: 2605 switch (prog->expected_attach_type) { 2606 case BPF_CGROUP_INET_INGRESS: 2607 case BPF_CGROUP_INET_EGRESS: 2608 case BPF_CGROUP_SOCK_OPS: 2609 case BPF_CGROUP_UDP4_RECVMSG: 2610 case BPF_CGROUP_UDP6_RECVMSG: 2611 case BPF_CGROUP_UNIX_RECVMSG: 2612 case BPF_CGROUP_INET4_GETPEERNAME: 2613 case BPF_CGROUP_INET6_GETPEERNAME: 2614 case BPF_CGROUP_UNIX_GETPEERNAME: 2615 case BPF_CGROUP_INET4_GETSOCKNAME: 2616 case BPF_CGROUP_INET6_GETSOCKNAME: 2617 case BPF_CGROUP_UNIX_GETSOCKNAME: 2618 return NULL; 2619 default: 2620 return &bpf_set_retval_proto; 2621 } 2622 default: 2623 return NULL; 2624 } 2625 } 2626