1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/skmsg.h> 25 #include <linux/perf_event.h> 26 #include <linux/bsearch.h> 27 #include <linux/kobject.h> 28 #include <linux/sysfs.h> 29 #include <linux/overflow.h> 30 31 #include <net/netfilter/nf_bpf_link.h> 32 33 #include <net/sock.h> 34 #include <net/xdp.h> 35 #include "../tools/lib/bpf/relo_core.h" 36 37 /* BTF (BPF Type Format) is the meta data format which describes 38 * the data types of BPF program/map. Hence, it basically focus 39 * on the C programming language which the modern BPF is primary 40 * using. 41 * 42 * ELF Section: 43 * ~~~~~~~~~~~ 44 * The BTF data is stored under the ".BTF" ELF section 45 * 46 * struct btf_type: 47 * ~~~~~~~~~~~~~~~ 48 * Each 'struct btf_type' object describes a C data type. 49 * Depending on the type it is describing, a 'struct btf_type' 50 * object may be followed by more data. F.e. 51 * To describe an array, 'struct btf_type' is followed by 52 * 'struct btf_array'. 53 * 54 * 'struct btf_type' and any extra data following it are 55 * 4 bytes aligned. 56 * 57 * Type section: 58 * ~~~~~~~~~~~~~ 59 * The BTF type section contains a list of 'struct btf_type' objects. 60 * Each one describes a C type. Recall from the above section 61 * that a 'struct btf_type' object could be immediately followed by extra 62 * data in order to describe some particular C types. 63 * 64 * type_id: 65 * ~~~~~~~ 66 * Each btf_type object is identified by a type_id. The type_id 67 * is implicitly implied by the location of the btf_type object in 68 * the BTF type section. The first one has type_id 1. The second 69 * one has type_id 2...etc. Hence, an earlier btf_type has 70 * a smaller type_id. 71 * 72 * A btf_type object may refer to another btf_type object by using 73 * type_id (i.e. the "type" in the "struct btf_type"). 74 * 75 * NOTE that we cannot assume any reference-order. 76 * A btf_type object can refer to an earlier btf_type object 77 * but it can also refer to a later btf_type object. 78 * 79 * For example, to describe "const void *". A btf_type 80 * object describing "const" may refer to another btf_type 81 * object describing "void *". This type-reference is done 82 * by specifying type_id: 83 * 84 * [1] CONST (anon) type_id=2 85 * [2] PTR (anon) type_id=0 86 * 87 * The above is the btf_verifier debug log: 88 * - Each line started with "[?]" is a btf_type object 89 * - [?] is the type_id of the btf_type object. 90 * - CONST/PTR is the BTF_KIND_XXX 91 * - "(anon)" is the name of the type. It just 92 * happens that CONST and PTR has no name. 93 * - type_id=XXX is the 'u32 type' in btf_type 94 * 95 * NOTE: "void" has type_id 0 96 * 97 * String section: 98 * ~~~~~~~~~~~~~~ 99 * The BTF string section contains the names used by the type section. 100 * Each string is referred by an "offset" from the beginning of the 101 * string section. 102 * 103 * Each string is '\0' terminated. 104 * 105 * The first character in the string section must be '\0' 106 * which is used to mean 'anonymous'. Some btf_type may not 107 * have a name. 108 */ 109 110 /* BTF verification: 111 * 112 * To verify BTF data, two passes are needed. 113 * 114 * Pass #1 115 * ~~~~~~~ 116 * The first pass is to collect all btf_type objects to 117 * an array: "btf->types". 118 * 119 * Depending on the C type that a btf_type is describing, 120 * a btf_type may be followed by extra data. We don't know 121 * how many btf_type is there, and more importantly we don't 122 * know where each btf_type is located in the type section. 123 * 124 * Without knowing the location of each type_id, most verifications 125 * cannot be done. e.g. an earlier btf_type may refer to a later 126 * btf_type (recall the "const void *" above), so we cannot 127 * check this type-reference in the first pass. 128 * 129 * In the first pass, it still does some verifications (e.g. 130 * checking the name is a valid offset to the string section). 131 * 132 * Pass #2 133 * ~~~~~~~ 134 * The main focus is to resolve a btf_type that is referring 135 * to another type. 136 * 137 * We have to ensure the referring type: 138 * 1) does exist in the BTF (i.e. in btf->types[]) 139 * 2) does not cause a loop: 140 * struct A { 141 * struct B b; 142 * }; 143 * 144 * struct B { 145 * struct A a; 146 * }; 147 * 148 * btf_type_needs_resolve() decides if a btf_type needs 149 * to be resolved. 150 * 151 * The needs_resolve type implements the "resolve()" ops which 152 * essentially does a DFS and detects backedge. 153 * 154 * During resolve (or DFS), different C types have different 155 * "RESOLVED" conditions. 156 * 157 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 158 * members because a member is always referring to another 159 * type. A struct's member can be treated as "RESOLVED" if 160 * it is referring to a BTF_KIND_PTR. Otherwise, the 161 * following valid C struct would be rejected: 162 * 163 * struct A { 164 * int m; 165 * struct A *a; 166 * }; 167 * 168 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 169 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 170 * detect a pointer loop, e.g.: 171 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 172 * ^ | 173 * +-----------------------------------------+ 174 * 175 */ 176 177 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 178 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 179 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 180 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 181 #define BITS_ROUNDUP_BYTES(bits) \ 182 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 183 184 #define BTF_INFO_MASK 0x9f00ffff 185 #define BTF_INT_MASK 0x0fffffff 186 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 187 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 188 189 /* 16MB for 64k structs and each has 16 members and 190 * a few MB spaces for the string section. 191 * The hard limit is S32_MAX. 192 */ 193 #define BTF_MAX_SIZE (16 * 1024 * 1024) 194 195 #define for_each_member_from(i, from, struct_type, member) \ 196 for (i = from, member = btf_type_member(struct_type) + from; \ 197 i < btf_type_vlen(struct_type); \ 198 i++, member++) 199 200 #define for_each_vsi_from(i, from, struct_type, member) \ 201 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 202 i < btf_type_vlen(struct_type); \ 203 i++, member++) 204 205 DEFINE_IDR(btf_idr); 206 DEFINE_SPINLOCK(btf_idr_lock); 207 208 enum btf_kfunc_hook { 209 BTF_KFUNC_HOOK_COMMON, 210 BTF_KFUNC_HOOK_XDP, 211 BTF_KFUNC_HOOK_TC, 212 BTF_KFUNC_HOOK_STRUCT_OPS, 213 BTF_KFUNC_HOOK_TRACING, 214 BTF_KFUNC_HOOK_SYSCALL, 215 BTF_KFUNC_HOOK_FMODRET, 216 BTF_KFUNC_HOOK_CGROUP, 217 BTF_KFUNC_HOOK_SCHED_ACT, 218 BTF_KFUNC_HOOK_SK_SKB, 219 BTF_KFUNC_HOOK_SOCKET_FILTER, 220 BTF_KFUNC_HOOK_LWT, 221 BTF_KFUNC_HOOK_NETFILTER, 222 BTF_KFUNC_HOOK_KPROBE, 223 BTF_KFUNC_HOOK_MAX, 224 }; 225 226 enum { 227 BTF_KFUNC_SET_MAX_CNT = 256, 228 BTF_DTOR_KFUNC_MAX_CNT = 256, 229 BTF_KFUNC_FILTER_MAX_CNT = 16, 230 }; 231 232 struct btf_kfunc_hook_filter { 233 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; 234 u32 nr_filters; 235 }; 236 237 struct btf_kfunc_set_tab { 238 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 239 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; 240 }; 241 242 struct btf_id_dtor_kfunc_tab { 243 u32 cnt; 244 struct btf_id_dtor_kfunc dtors[]; 245 }; 246 247 struct btf_struct_ops_tab { 248 u32 cnt; 249 u32 capacity; 250 struct bpf_struct_ops_desc ops[]; 251 }; 252 253 struct btf { 254 void *data; 255 struct btf_type **types; 256 u32 *resolved_ids; 257 u32 *resolved_sizes; 258 const char *strings; 259 void *nohdr_data; 260 struct btf_header hdr; 261 u32 nr_types; /* includes VOID for base BTF */ 262 u32 types_size; 263 u32 data_size; 264 refcount_t refcnt; 265 u32 id; 266 struct rcu_head rcu; 267 struct btf_kfunc_set_tab *kfunc_set_tab; 268 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 269 struct btf_struct_metas *struct_meta_tab; 270 struct btf_struct_ops_tab *struct_ops_tab; 271 272 /* split BTF support */ 273 struct btf *base_btf; 274 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 275 u32 start_str_off; /* first string offset (0 for base BTF) */ 276 char name[MODULE_NAME_LEN]; 277 bool kernel_btf; 278 __u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */ 279 }; 280 281 enum verifier_phase { 282 CHECK_META, 283 CHECK_TYPE, 284 }; 285 286 struct resolve_vertex { 287 const struct btf_type *t; 288 u32 type_id; 289 u16 next_member; 290 }; 291 292 enum visit_state { 293 NOT_VISITED, 294 VISITED, 295 RESOLVED, 296 }; 297 298 enum resolve_mode { 299 RESOLVE_TBD, /* To Be Determined */ 300 RESOLVE_PTR, /* Resolving for Pointer */ 301 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 302 * or array 303 */ 304 }; 305 306 #define MAX_RESOLVE_DEPTH 32 307 308 struct btf_sec_info { 309 u32 off; 310 u32 len; 311 }; 312 313 struct btf_verifier_env { 314 struct btf *btf; 315 u8 *visit_states; 316 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 317 struct bpf_verifier_log log; 318 u32 log_type_id; 319 u32 top_stack; 320 enum verifier_phase phase; 321 enum resolve_mode resolve_mode; 322 }; 323 324 static const char * const btf_kind_str[NR_BTF_KINDS] = { 325 [BTF_KIND_UNKN] = "UNKNOWN", 326 [BTF_KIND_INT] = "INT", 327 [BTF_KIND_PTR] = "PTR", 328 [BTF_KIND_ARRAY] = "ARRAY", 329 [BTF_KIND_STRUCT] = "STRUCT", 330 [BTF_KIND_UNION] = "UNION", 331 [BTF_KIND_ENUM] = "ENUM", 332 [BTF_KIND_FWD] = "FWD", 333 [BTF_KIND_TYPEDEF] = "TYPEDEF", 334 [BTF_KIND_VOLATILE] = "VOLATILE", 335 [BTF_KIND_CONST] = "CONST", 336 [BTF_KIND_RESTRICT] = "RESTRICT", 337 [BTF_KIND_FUNC] = "FUNC", 338 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 339 [BTF_KIND_VAR] = "VAR", 340 [BTF_KIND_DATASEC] = "DATASEC", 341 [BTF_KIND_FLOAT] = "FLOAT", 342 [BTF_KIND_DECL_TAG] = "DECL_TAG", 343 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 344 [BTF_KIND_ENUM64] = "ENUM64", 345 }; 346 347 const char *btf_type_str(const struct btf_type *t) 348 { 349 return btf_kind_str[BTF_INFO_KIND(t->info)]; 350 } 351 352 /* Chunk size we use in safe copy of data to be shown. */ 353 #define BTF_SHOW_OBJ_SAFE_SIZE 32 354 355 /* 356 * This is the maximum size of a base type value (equivalent to a 357 * 128-bit int); if we are at the end of our safe buffer and have 358 * less than 16 bytes space we can't be assured of being able 359 * to copy the next type safely, so in such cases we will initiate 360 * a new copy. 361 */ 362 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 363 364 /* Type name size */ 365 #define BTF_SHOW_NAME_SIZE 80 366 367 /* 368 * The suffix of a type that indicates it cannot alias another type when 369 * comparing BTF IDs for kfunc invocations. 370 */ 371 #define NOCAST_ALIAS_SUFFIX "___init" 372 373 /* 374 * Common data to all BTF show operations. Private show functions can add 375 * their own data to a structure containing a struct btf_show and consult it 376 * in the show callback. See btf_type_show() below. 377 * 378 * One challenge with showing nested data is we want to skip 0-valued 379 * data, but in order to figure out whether a nested object is all zeros 380 * we need to walk through it. As a result, we need to make two passes 381 * when handling structs, unions and arrays; the first path simply looks 382 * for nonzero data, while the second actually does the display. The first 383 * pass is signalled by show->state.depth_check being set, and if we 384 * encounter a non-zero value we set show->state.depth_to_show to 385 * the depth at which we encountered it. When we have completed the 386 * first pass, we will know if anything needs to be displayed if 387 * depth_to_show > depth. See btf_[struct,array]_show() for the 388 * implementation of this. 389 * 390 * Another problem is we want to ensure the data for display is safe to 391 * access. To support this, the anonymous "struct {} obj" tracks the data 392 * object and our safe copy of it. We copy portions of the data needed 393 * to the object "copy" buffer, but because its size is limited to 394 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 395 * traverse larger objects for display. 396 * 397 * The various data type show functions all start with a call to 398 * btf_show_start_type() which returns a pointer to the safe copy 399 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 400 * raw data itself). btf_show_obj_safe() is responsible for 401 * using copy_from_kernel_nofault() to update the safe data if necessary 402 * as we traverse the object's data. skbuff-like semantics are 403 * used: 404 * 405 * - obj.head points to the start of the toplevel object for display 406 * - obj.size is the size of the toplevel object 407 * - obj.data points to the current point in the original data at 408 * which our safe data starts. obj.data will advance as we copy 409 * portions of the data. 410 * 411 * In most cases a single copy will suffice, but larger data structures 412 * such as "struct task_struct" will require many copies. The logic in 413 * btf_show_obj_safe() handles the logic that determines if a new 414 * copy_from_kernel_nofault() is needed. 415 */ 416 struct btf_show { 417 u64 flags; 418 void *target; /* target of show operation (seq file, buffer) */ 419 __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 420 const struct btf *btf; 421 /* below are used during iteration */ 422 struct { 423 u8 depth; 424 u8 depth_to_show; 425 u8 depth_check; 426 u8 array_member:1, 427 array_terminated:1; 428 u16 array_encoding; 429 u32 type_id; 430 int status; /* non-zero for error */ 431 const struct btf_type *type; 432 const struct btf_member *member; 433 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 434 } state; 435 struct { 436 u32 size; 437 void *head; 438 void *data; 439 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 440 } obj; 441 }; 442 443 struct btf_kind_operations { 444 s32 (*check_meta)(struct btf_verifier_env *env, 445 const struct btf_type *t, 446 u32 meta_left); 447 int (*resolve)(struct btf_verifier_env *env, 448 const struct resolve_vertex *v); 449 int (*check_member)(struct btf_verifier_env *env, 450 const struct btf_type *struct_type, 451 const struct btf_member *member, 452 const struct btf_type *member_type); 453 int (*check_kflag_member)(struct btf_verifier_env *env, 454 const struct btf_type *struct_type, 455 const struct btf_member *member, 456 const struct btf_type *member_type); 457 void (*log_details)(struct btf_verifier_env *env, 458 const struct btf_type *t); 459 void (*show)(const struct btf *btf, const struct btf_type *t, 460 u32 type_id, void *data, u8 bits_offsets, 461 struct btf_show *show); 462 }; 463 464 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 465 static struct btf_type btf_void; 466 467 static int btf_resolve(struct btf_verifier_env *env, 468 const struct btf_type *t, u32 type_id); 469 470 static int btf_func_check(struct btf_verifier_env *env, 471 const struct btf_type *t); 472 473 static bool btf_type_is_modifier(const struct btf_type *t) 474 { 475 /* Some of them is not strictly a C modifier 476 * but they are grouped into the same bucket 477 * for BTF concern: 478 * A type (t) that refers to another 479 * type through t->type AND its size cannot 480 * be determined without following the t->type. 481 * 482 * ptr does not fall into this bucket 483 * because its size is always sizeof(void *). 484 */ 485 switch (BTF_INFO_KIND(t->info)) { 486 case BTF_KIND_TYPEDEF: 487 case BTF_KIND_VOLATILE: 488 case BTF_KIND_CONST: 489 case BTF_KIND_RESTRICT: 490 case BTF_KIND_TYPE_TAG: 491 return true; 492 } 493 494 return false; 495 } 496 497 bool btf_type_is_void(const struct btf_type *t) 498 { 499 return t == &btf_void; 500 } 501 502 static bool btf_type_is_datasec(const struct btf_type *t) 503 { 504 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 505 } 506 507 static bool btf_type_is_decl_tag(const struct btf_type *t) 508 { 509 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 510 } 511 512 static bool btf_type_nosize(const struct btf_type *t) 513 { 514 return btf_type_is_void(t) || btf_type_is_fwd(t) || 515 btf_type_is_func(t) || btf_type_is_func_proto(t) || 516 btf_type_is_decl_tag(t); 517 } 518 519 static bool btf_type_nosize_or_null(const struct btf_type *t) 520 { 521 return !t || btf_type_nosize(t); 522 } 523 524 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 525 { 526 return btf_type_is_func(t) || btf_type_is_struct(t) || 527 btf_type_is_var(t) || btf_type_is_typedef(t); 528 } 529 530 bool btf_is_vmlinux(const struct btf *btf) 531 { 532 return btf->kernel_btf && !btf->base_btf; 533 } 534 535 u32 btf_nr_types(const struct btf *btf) 536 { 537 u32 total = 0; 538 539 while (btf) { 540 total += btf->nr_types; 541 btf = btf->base_btf; 542 } 543 544 return total; 545 } 546 547 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 548 { 549 const struct btf_type *t; 550 const char *tname; 551 u32 i, total; 552 553 total = btf_nr_types(btf); 554 for (i = 1; i < total; i++) { 555 t = btf_type_by_id(btf, i); 556 if (BTF_INFO_KIND(t->info) != kind) 557 continue; 558 559 tname = btf_name_by_offset(btf, t->name_off); 560 if (!strcmp(tname, name)) 561 return i; 562 } 563 564 return -ENOENT; 565 } 566 567 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 568 { 569 struct btf *btf; 570 s32 ret; 571 int id; 572 573 btf = bpf_get_btf_vmlinux(); 574 if (IS_ERR(btf)) 575 return PTR_ERR(btf); 576 if (!btf) 577 return -EINVAL; 578 579 ret = btf_find_by_name_kind(btf, name, kind); 580 /* ret is never zero, since btf_find_by_name_kind returns 581 * positive btf_id or negative error. 582 */ 583 if (ret > 0) { 584 btf_get(btf); 585 *btf_p = btf; 586 return ret; 587 } 588 589 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 590 spin_lock_bh(&btf_idr_lock); 591 idr_for_each_entry(&btf_idr, btf, id) { 592 if (!btf_is_module(btf)) 593 continue; 594 /* linear search could be slow hence unlock/lock 595 * the IDR to avoiding holding it for too long 596 */ 597 btf_get(btf); 598 spin_unlock_bh(&btf_idr_lock); 599 ret = btf_find_by_name_kind(btf, name, kind); 600 if (ret > 0) { 601 *btf_p = btf; 602 return ret; 603 } 604 btf_put(btf); 605 spin_lock_bh(&btf_idr_lock); 606 } 607 spin_unlock_bh(&btf_idr_lock); 608 return ret; 609 } 610 EXPORT_SYMBOL_GPL(bpf_find_btf_id); 611 612 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 613 u32 id, u32 *res_id) 614 { 615 const struct btf_type *t = btf_type_by_id(btf, id); 616 617 while (btf_type_is_modifier(t)) { 618 id = t->type; 619 t = btf_type_by_id(btf, t->type); 620 } 621 622 if (res_id) 623 *res_id = id; 624 625 return t; 626 } 627 628 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 629 u32 id, u32 *res_id) 630 { 631 const struct btf_type *t; 632 633 t = btf_type_skip_modifiers(btf, id, NULL); 634 if (!btf_type_is_ptr(t)) 635 return NULL; 636 637 return btf_type_skip_modifiers(btf, t->type, res_id); 638 } 639 640 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 641 u32 id, u32 *res_id) 642 { 643 const struct btf_type *ptype; 644 645 ptype = btf_type_resolve_ptr(btf, id, res_id); 646 if (ptype && btf_type_is_func_proto(ptype)) 647 return ptype; 648 649 return NULL; 650 } 651 652 /* Types that act only as a source, not sink or intermediate 653 * type when resolving. 654 */ 655 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 656 { 657 return btf_type_is_var(t) || 658 btf_type_is_decl_tag(t) || 659 btf_type_is_datasec(t); 660 } 661 662 /* What types need to be resolved? 663 * 664 * btf_type_is_modifier() is an obvious one. 665 * 666 * btf_type_is_struct() because its member refers to 667 * another type (through member->type). 668 * 669 * btf_type_is_var() because the variable refers to 670 * another type. btf_type_is_datasec() holds multiple 671 * btf_type_is_var() types that need resolving. 672 * 673 * btf_type_is_array() because its element (array->type) 674 * refers to another type. Array can be thought of a 675 * special case of struct while array just has the same 676 * member-type repeated by array->nelems of times. 677 */ 678 static bool btf_type_needs_resolve(const struct btf_type *t) 679 { 680 return btf_type_is_modifier(t) || 681 btf_type_is_ptr(t) || 682 btf_type_is_struct(t) || 683 btf_type_is_array(t) || 684 btf_type_is_var(t) || 685 btf_type_is_func(t) || 686 btf_type_is_decl_tag(t) || 687 btf_type_is_datasec(t); 688 } 689 690 /* t->size can be used */ 691 static bool btf_type_has_size(const struct btf_type *t) 692 { 693 switch (BTF_INFO_KIND(t->info)) { 694 case BTF_KIND_INT: 695 case BTF_KIND_STRUCT: 696 case BTF_KIND_UNION: 697 case BTF_KIND_ENUM: 698 case BTF_KIND_DATASEC: 699 case BTF_KIND_FLOAT: 700 case BTF_KIND_ENUM64: 701 return true; 702 } 703 704 return false; 705 } 706 707 static const char *btf_int_encoding_str(u8 encoding) 708 { 709 if (encoding == 0) 710 return "(none)"; 711 else if (encoding == BTF_INT_SIGNED) 712 return "SIGNED"; 713 else if (encoding == BTF_INT_CHAR) 714 return "CHAR"; 715 else if (encoding == BTF_INT_BOOL) 716 return "BOOL"; 717 else 718 return "UNKN"; 719 } 720 721 static u32 btf_type_int(const struct btf_type *t) 722 { 723 return *(u32 *)(t + 1); 724 } 725 726 static const struct btf_array *btf_type_array(const struct btf_type *t) 727 { 728 return (const struct btf_array *)(t + 1); 729 } 730 731 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 732 { 733 return (const struct btf_enum *)(t + 1); 734 } 735 736 static const struct btf_var *btf_type_var(const struct btf_type *t) 737 { 738 return (const struct btf_var *)(t + 1); 739 } 740 741 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 742 { 743 return (const struct btf_decl_tag *)(t + 1); 744 } 745 746 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 747 { 748 return (const struct btf_enum64 *)(t + 1); 749 } 750 751 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 752 { 753 return kind_ops[BTF_INFO_KIND(t->info)]; 754 } 755 756 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 757 { 758 if (!BTF_STR_OFFSET_VALID(offset)) 759 return false; 760 761 while (offset < btf->start_str_off) 762 btf = btf->base_btf; 763 764 offset -= btf->start_str_off; 765 return offset < btf->hdr.str_len; 766 } 767 768 static bool __btf_name_char_ok(char c, bool first) 769 { 770 if ((first ? !isalpha(c) : 771 !isalnum(c)) && 772 c != '_' && 773 c != '.') 774 return false; 775 return true; 776 } 777 778 const char *btf_str_by_offset(const struct btf *btf, u32 offset) 779 { 780 while (offset < btf->start_str_off) 781 btf = btf->base_btf; 782 783 offset -= btf->start_str_off; 784 if (offset < btf->hdr.str_len) 785 return &btf->strings[offset]; 786 787 return NULL; 788 } 789 790 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 791 { 792 /* offset must be valid */ 793 const char *src = btf_str_by_offset(btf, offset); 794 const char *src_limit; 795 796 if (!__btf_name_char_ok(*src, true)) 797 return false; 798 799 /* set a limit on identifier length */ 800 src_limit = src + KSYM_NAME_LEN; 801 src++; 802 while (*src && src < src_limit) { 803 if (!__btf_name_char_ok(*src, false)) 804 return false; 805 src++; 806 } 807 808 return !*src; 809 } 810 811 /* Allow any printable character in DATASEC names */ 812 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 813 { 814 /* offset must be valid */ 815 const char *src = btf_str_by_offset(btf, offset); 816 const char *src_limit; 817 818 if (!*src) 819 return false; 820 821 /* set a limit on identifier length */ 822 src_limit = src + KSYM_NAME_LEN; 823 while (*src && src < src_limit) { 824 if (!isprint(*src)) 825 return false; 826 src++; 827 } 828 829 return !*src; 830 } 831 832 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 833 { 834 const char *name; 835 836 if (!offset) 837 return "(anon)"; 838 839 name = btf_str_by_offset(btf, offset); 840 return name ?: "(invalid-name-offset)"; 841 } 842 843 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 844 { 845 return btf_str_by_offset(btf, offset); 846 } 847 848 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 849 { 850 while (type_id < btf->start_id) 851 btf = btf->base_btf; 852 853 type_id -= btf->start_id; 854 if (type_id >= btf->nr_types) 855 return NULL; 856 return btf->types[type_id]; 857 } 858 EXPORT_SYMBOL_GPL(btf_type_by_id); 859 860 /* 861 * Regular int is not a bit field and it must be either 862 * u8/u16/u32/u64 or __int128. 863 */ 864 static bool btf_type_int_is_regular(const struct btf_type *t) 865 { 866 u8 nr_bits, nr_bytes; 867 u32 int_data; 868 869 int_data = btf_type_int(t); 870 nr_bits = BTF_INT_BITS(int_data); 871 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 872 if (BITS_PER_BYTE_MASKED(nr_bits) || 873 BTF_INT_OFFSET(int_data) || 874 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 875 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 876 nr_bytes != (2 * sizeof(u64)))) { 877 return false; 878 } 879 880 return true; 881 } 882 883 /* 884 * Check that given struct member is a regular int with expected 885 * offset and size. 886 */ 887 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 888 const struct btf_member *m, 889 u32 expected_offset, u32 expected_size) 890 { 891 const struct btf_type *t; 892 u32 id, int_data; 893 u8 nr_bits; 894 895 id = m->type; 896 t = btf_type_id_size(btf, &id, NULL); 897 if (!t || !btf_type_is_int(t)) 898 return false; 899 900 int_data = btf_type_int(t); 901 nr_bits = BTF_INT_BITS(int_data); 902 if (btf_type_kflag(s)) { 903 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 904 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 905 906 /* if kflag set, int should be a regular int and 907 * bit offset should be at byte boundary. 908 */ 909 return !bitfield_size && 910 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 911 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 912 } 913 914 if (BTF_INT_OFFSET(int_data) || 915 BITS_PER_BYTE_MASKED(m->offset) || 916 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 917 BITS_PER_BYTE_MASKED(nr_bits) || 918 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 919 return false; 920 921 return true; 922 } 923 924 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 925 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 926 u32 id) 927 { 928 const struct btf_type *t = btf_type_by_id(btf, id); 929 930 while (btf_type_is_modifier(t) && 931 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 932 t = btf_type_by_id(btf, t->type); 933 } 934 935 return t; 936 } 937 938 #define BTF_SHOW_MAX_ITER 10 939 940 #define BTF_KIND_BIT(kind) (1ULL << kind) 941 942 /* 943 * Populate show->state.name with type name information. 944 * Format of type name is 945 * 946 * [.member_name = ] (type_name) 947 */ 948 static const char *btf_show_name(struct btf_show *show) 949 { 950 /* BTF_MAX_ITER array suffixes "[]" */ 951 const char *array_suffixes = "[][][][][][][][][][]"; 952 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 953 /* BTF_MAX_ITER pointer suffixes "*" */ 954 const char *ptr_suffixes = "**********"; 955 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 956 const char *name = NULL, *prefix = "", *parens = ""; 957 const struct btf_member *m = show->state.member; 958 const struct btf_type *t; 959 const struct btf_array *array; 960 u32 id = show->state.type_id; 961 const char *member = NULL; 962 bool show_member = false; 963 u64 kinds = 0; 964 int i; 965 966 show->state.name[0] = '\0'; 967 968 /* 969 * Don't show type name if we're showing an array member; 970 * in that case we show the array type so don't need to repeat 971 * ourselves for each member. 972 */ 973 if (show->state.array_member) 974 return ""; 975 976 /* Retrieve member name, if any. */ 977 if (m) { 978 member = btf_name_by_offset(show->btf, m->name_off); 979 show_member = strlen(member) > 0; 980 id = m->type; 981 } 982 983 /* 984 * Start with type_id, as we have resolved the struct btf_type * 985 * via btf_modifier_show() past the parent typedef to the child 986 * struct, int etc it is defined as. In such cases, the type_id 987 * still represents the starting type while the struct btf_type * 988 * in our show->state points at the resolved type of the typedef. 989 */ 990 t = btf_type_by_id(show->btf, id); 991 if (!t) 992 return ""; 993 994 /* 995 * The goal here is to build up the right number of pointer and 996 * array suffixes while ensuring the type name for a typedef 997 * is represented. Along the way we accumulate a list of 998 * BTF kinds we have encountered, since these will inform later 999 * display; for example, pointer types will not require an 1000 * opening "{" for struct, we will just display the pointer value. 1001 * 1002 * We also want to accumulate the right number of pointer or array 1003 * indices in the format string while iterating until we get to 1004 * the typedef/pointee/array member target type. 1005 * 1006 * We start by pointing at the end of pointer and array suffix 1007 * strings; as we accumulate pointers and arrays we move the pointer 1008 * or array string backwards so it will show the expected number of 1009 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 1010 * and/or arrays and typedefs are supported as a precaution. 1011 * 1012 * We also want to get typedef name while proceeding to resolve 1013 * type it points to so that we can add parentheses if it is a 1014 * "typedef struct" etc. 1015 */ 1016 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 1017 1018 switch (BTF_INFO_KIND(t->info)) { 1019 case BTF_KIND_TYPEDEF: 1020 if (!name) 1021 name = btf_name_by_offset(show->btf, 1022 t->name_off); 1023 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 1024 id = t->type; 1025 break; 1026 case BTF_KIND_ARRAY: 1027 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 1028 parens = "["; 1029 if (!t) 1030 return ""; 1031 array = btf_type_array(t); 1032 if (array_suffix > array_suffixes) 1033 array_suffix -= 2; 1034 id = array->type; 1035 break; 1036 case BTF_KIND_PTR: 1037 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1038 if (ptr_suffix > ptr_suffixes) 1039 ptr_suffix -= 1; 1040 id = t->type; 1041 break; 1042 default: 1043 id = 0; 1044 break; 1045 } 1046 if (!id) 1047 break; 1048 t = btf_type_skip_qualifiers(show->btf, id); 1049 } 1050 /* We may not be able to represent this type; bail to be safe */ 1051 if (i == BTF_SHOW_MAX_ITER) 1052 return ""; 1053 1054 if (!name) 1055 name = btf_name_by_offset(show->btf, t->name_off); 1056 1057 switch (BTF_INFO_KIND(t->info)) { 1058 case BTF_KIND_STRUCT: 1059 case BTF_KIND_UNION: 1060 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1061 "struct" : "union"; 1062 /* if it's an array of struct/union, parens is already set */ 1063 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1064 parens = "{"; 1065 break; 1066 case BTF_KIND_ENUM: 1067 case BTF_KIND_ENUM64: 1068 prefix = "enum"; 1069 break; 1070 default: 1071 break; 1072 } 1073 1074 /* pointer does not require parens */ 1075 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1076 parens = ""; 1077 /* typedef does not require struct/union/enum prefix */ 1078 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1079 prefix = ""; 1080 1081 if (!name) 1082 name = ""; 1083 1084 /* Even if we don't want type name info, we want parentheses etc */ 1085 if (show->flags & BTF_SHOW_NONAME) 1086 snprintf(show->state.name, sizeof(show->state.name), "%s", 1087 parens); 1088 else 1089 snprintf(show->state.name, sizeof(show->state.name), 1090 "%s%s%s(%s%s%s%s%s%s)%s", 1091 /* first 3 strings comprise ".member = " */ 1092 show_member ? "." : "", 1093 show_member ? member : "", 1094 show_member ? " = " : "", 1095 /* ...next is our prefix (struct, enum, etc) */ 1096 prefix, 1097 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1098 /* ...this is the type name itself */ 1099 name, 1100 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1101 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1102 array_suffix, parens); 1103 1104 return show->state.name; 1105 } 1106 1107 static const char *__btf_show_indent(struct btf_show *show) 1108 { 1109 const char *indents = " "; 1110 const char *indent = &indents[strlen(indents)]; 1111 1112 if ((indent - show->state.depth) >= indents) 1113 return indent - show->state.depth; 1114 return indents; 1115 } 1116 1117 static const char *btf_show_indent(struct btf_show *show) 1118 { 1119 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1120 } 1121 1122 static const char *btf_show_newline(struct btf_show *show) 1123 { 1124 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1125 } 1126 1127 static const char *btf_show_delim(struct btf_show *show) 1128 { 1129 if (show->state.depth == 0) 1130 return ""; 1131 1132 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1133 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1134 return "|"; 1135 1136 return ","; 1137 } 1138 1139 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1140 { 1141 va_list args; 1142 1143 if (!show->state.depth_check) { 1144 va_start(args, fmt); 1145 show->showfn(show, fmt, args); 1146 va_end(args); 1147 } 1148 } 1149 1150 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1151 * format specifiers to the format specifier passed in; these do the work of 1152 * adding indentation, delimiters etc while the caller simply has to specify 1153 * the type value(s) in the format specifier + value(s). 1154 */ 1155 #define btf_show_type_value(show, fmt, value) \ 1156 do { \ 1157 if ((value) != (__typeof__(value))0 || \ 1158 (show->flags & BTF_SHOW_ZERO) || \ 1159 show->state.depth == 0) { \ 1160 btf_show(show, "%s%s" fmt "%s%s", \ 1161 btf_show_indent(show), \ 1162 btf_show_name(show), \ 1163 value, btf_show_delim(show), \ 1164 btf_show_newline(show)); \ 1165 if (show->state.depth > show->state.depth_to_show) \ 1166 show->state.depth_to_show = show->state.depth; \ 1167 } \ 1168 } while (0) 1169 1170 #define btf_show_type_values(show, fmt, ...) \ 1171 do { \ 1172 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1173 btf_show_name(show), \ 1174 __VA_ARGS__, btf_show_delim(show), \ 1175 btf_show_newline(show)); \ 1176 if (show->state.depth > show->state.depth_to_show) \ 1177 show->state.depth_to_show = show->state.depth; \ 1178 } while (0) 1179 1180 /* How much is left to copy to safe buffer after @data? */ 1181 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1182 { 1183 return show->obj.head + show->obj.size - data; 1184 } 1185 1186 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1187 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1188 { 1189 return data >= show->obj.data && 1190 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1191 } 1192 1193 /* 1194 * If object pointed to by @data of @size falls within our safe buffer, return 1195 * the equivalent pointer to the same safe data. Assumes 1196 * copy_from_kernel_nofault() has already happened and our safe buffer is 1197 * populated. 1198 */ 1199 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1200 { 1201 if (btf_show_obj_is_safe(show, data, size)) 1202 return show->obj.safe + (data - show->obj.data); 1203 return NULL; 1204 } 1205 1206 /* 1207 * Return a safe-to-access version of data pointed to by @data. 1208 * We do this by copying the relevant amount of information 1209 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1210 * 1211 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1212 * safe copy is needed. 1213 * 1214 * Otherwise we need to determine if we have the required amount 1215 * of data (determined by the @data pointer and the size of the 1216 * largest base type we can encounter (represented by 1217 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1218 * that we will be able to print some of the current object, 1219 * and if more is needed a copy will be triggered. 1220 * Some objects such as structs will not fit into the buffer; 1221 * in such cases additional copies when we iterate over their 1222 * members may be needed. 1223 * 1224 * btf_show_obj_safe() is used to return a safe buffer for 1225 * btf_show_start_type(); this ensures that as we recurse into 1226 * nested types we always have safe data for the given type. 1227 * This approach is somewhat wasteful; it's possible for example 1228 * that when iterating over a large union we'll end up copying the 1229 * same data repeatedly, but the goal is safety not performance. 1230 * We use stack data as opposed to per-CPU buffers because the 1231 * iteration over a type can take some time, and preemption handling 1232 * would greatly complicate use of the safe buffer. 1233 */ 1234 static void *btf_show_obj_safe(struct btf_show *show, 1235 const struct btf_type *t, 1236 void *data) 1237 { 1238 const struct btf_type *rt; 1239 int size_left, size; 1240 void *safe = NULL; 1241 1242 if (show->flags & BTF_SHOW_UNSAFE) 1243 return data; 1244 1245 rt = btf_resolve_size(show->btf, t, &size); 1246 if (IS_ERR(rt)) { 1247 show->state.status = PTR_ERR(rt); 1248 return NULL; 1249 } 1250 1251 /* 1252 * Is this toplevel object? If so, set total object size and 1253 * initialize pointers. Otherwise check if we still fall within 1254 * our safe object data. 1255 */ 1256 if (show->state.depth == 0) { 1257 show->obj.size = size; 1258 show->obj.head = data; 1259 } else { 1260 /* 1261 * If the size of the current object is > our remaining 1262 * safe buffer we _may_ need to do a new copy. However 1263 * consider the case of a nested struct; it's size pushes 1264 * us over the safe buffer limit, but showing any individual 1265 * struct members does not. In such cases, we don't need 1266 * to initiate a fresh copy yet; however we definitely need 1267 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1268 * in our buffer, regardless of the current object size. 1269 * The logic here is that as we resolve types we will 1270 * hit a base type at some point, and we need to be sure 1271 * the next chunk of data is safely available to display 1272 * that type info safely. We cannot rely on the size of 1273 * the current object here because it may be much larger 1274 * than our current buffer (e.g. task_struct is 8k). 1275 * All we want to do here is ensure that we can print the 1276 * next basic type, which we can if either 1277 * - the current type size is within the safe buffer; or 1278 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1279 * the safe buffer. 1280 */ 1281 safe = __btf_show_obj_safe(show, data, 1282 min(size, 1283 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1284 } 1285 1286 /* 1287 * We need a new copy to our safe object, either because we haven't 1288 * yet copied and are initializing safe data, or because the data 1289 * we want falls outside the boundaries of the safe object. 1290 */ 1291 if (!safe) { 1292 size_left = btf_show_obj_size_left(show, data); 1293 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1294 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1295 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1296 data, size_left); 1297 if (!show->state.status) { 1298 show->obj.data = data; 1299 safe = show->obj.safe; 1300 } 1301 } 1302 1303 return safe; 1304 } 1305 1306 /* 1307 * Set the type we are starting to show and return a safe data pointer 1308 * to be used for showing the associated data. 1309 */ 1310 static void *btf_show_start_type(struct btf_show *show, 1311 const struct btf_type *t, 1312 u32 type_id, void *data) 1313 { 1314 show->state.type = t; 1315 show->state.type_id = type_id; 1316 show->state.name[0] = '\0'; 1317 1318 return btf_show_obj_safe(show, t, data); 1319 } 1320 1321 static void btf_show_end_type(struct btf_show *show) 1322 { 1323 show->state.type = NULL; 1324 show->state.type_id = 0; 1325 show->state.name[0] = '\0'; 1326 } 1327 1328 static void *btf_show_start_aggr_type(struct btf_show *show, 1329 const struct btf_type *t, 1330 u32 type_id, void *data) 1331 { 1332 void *safe_data = btf_show_start_type(show, t, type_id, data); 1333 1334 if (!safe_data) 1335 return safe_data; 1336 1337 btf_show(show, "%s%s%s", btf_show_indent(show), 1338 btf_show_name(show), 1339 btf_show_newline(show)); 1340 show->state.depth++; 1341 return safe_data; 1342 } 1343 1344 static void btf_show_end_aggr_type(struct btf_show *show, 1345 const char *suffix) 1346 { 1347 show->state.depth--; 1348 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1349 btf_show_delim(show), btf_show_newline(show)); 1350 btf_show_end_type(show); 1351 } 1352 1353 static void btf_show_start_member(struct btf_show *show, 1354 const struct btf_member *m) 1355 { 1356 show->state.member = m; 1357 } 1358 1359 static void btf_show_start_array_member(struct btf_show *show) 1360 { 1361 show->state.array_member = 1; 1362 btf_show_start_member(show, NULL); 1363 } 1364 1365 static void btf_show_end_member(struct btf_show *show) 1366 { 1367 show->state.member = NULL; 1368 } 1369 1370 static void btf_show_end_array_member(struct btf_show *show) 1371 { 1372 show->state.array_member = 0; 1373 btf_show_end_member(show); 1374 } 1375 1376 static void *btf_show_start_array_type(struct btf_show *show, 1377 const struct btf_type *t, 1378 u32 type_id, 1379 u16 array_encoding, 1380 void *data) 1381 { 1382 show->state.array_encoding = array_encoding; 1383 show->state.array_terminated = 0; 1384 return btf_show_start_aggr_type(show, t, type_id, data); 1385 } 1386 1387 static void btf_show_end_array_type(struct btf_show *show) 1388 { 1389 show->state.array_encoding = 0; 1390 show->state.array_terminated = 0; 1391 btf_show_end_aggr_type(show, "]"); 1392 } 1393 1394 static void *btf_show_start_struct_type(struct btf_show *show, 1395 const struct btf_type *t, 1396 u32 type_id, 1397 void *data) 1398 { 1399 return btf_show_start_aggr_type(show, t, type_id, data); 1400 } 1401 1402 static void btf_show_end_struct_type(struct btf_show *show) 1403 { 1404 btf_show_end_aggr_type(show, "}"); 1405 } 1406 1407 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1408 const char *fmt, ...) 1409 { 1410 va_list args; 1411 1412 va_start(args, fmt); 1413 bpf_verifier_vlog(log, fmt, args); 1414 va_end(args); 1415 } 1416 1417 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1418 const char *fmt, ...) 1419 { 1420 struct bpf_verifier_log *log = &env->log; 1421 va_list args; 1422 1423 if (!bpf_verifier_log_needed(log)) 1424 return; 1425 1426 va_start(args, fmt); 1427 bpf_verifier_vlog(log, fmt, args); 1428 va_end(args); 1429 } 1430 1431 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1432 const struct btf_type *t, 1433 bool log_details, 1434 const char *fmt, ...) 1435 { 1436 struct bpf_verifier_log *log = &env->log; 1437 struct btf *btf = env->btf; 1438 va_list args; 1439 1440 if (!bpf_verifier_log_needed(log)) 1441 return; 1442 1443 if (log->level == BPF_LOG_KERNEL) { 1444 /* btf verifier prints all types it is processing via 1445 * btf_verifier_log_type(..., fmt = NULL). 1446 * Skip those prints for in-kernel BTF verification. 1447 */ 1448 if (!fmt) 1449 return; 1450 1451 /* Skip logging when loading module BTF with mismatches permitted */ 1452 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1453 return; 1454 } 1455 1456 __btf_verifier_log(log, "[%u] %s %s%s", 1457 env->log_type_id, 1458 btf_type_str(t), 1459 __btf_name_by_offset(btf, t->name_off), 1460 log_details ? " " : ""); 1461 1462 if (log_details) 1463 btf_type_ops(t)->log_details(env, t); 1464 1465 if (fmt && *fmt) { 1466 __btf_verifier_log(log, " "); 1467 va_start(args, fmt); 1468 bpf_verifier_vlog(log, fmt, args); 1469 va_end(args); 1470 } 1471 1472 __btf_verifier_log(log, "\n"); 1473 } 1474 1475 #define btf_verifier_log_type(env, t, ...) \ 1476 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1477 #define btf_verifier_log_basic(env, t, ...) \ 1478 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1479 1480 __printf(4, 5) 1481 static void btf_verifier_log_member(struct btf_verifier_env *env, 1482 const struct btf_type *struct_type, 1483 const struct btf_member *member, 1484 const char *fmt, ...) 1485 { 1486 struct bpf_verifier_log *log = &env->log; 1487 struct btf *btf = env->btf; 1488 va_list args; 1489 1490 if (!bpf_verifier_log_needed(log)) 1491 return; 1492 1493 if (log->level == BPF_LOG_KERNEL) { 1494 if (!fmt) 1495 return; 1496 1497 /* Skip logging when loading module BTF with mismatches permitted */ 1498 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1499 return; 1500 } 1501 1502 /* The CHECK_META phase already did a btf dump. 1503 * 1504 * If member is logged again, it must hit an error in 1505 * parsing this member. It is useful to print out which 1506 * struct this member belongs to. 1507 */ 1508 if (env->phase != CHECK_META) 1509 btf_verifier_log_type(env, struct_type, NULL); 1510 1511 if (btf_type_kflag(struct_type)) 1512 __btf_verifier_log(log, 1513 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1514 __btf_name_by_offset(btf, member->name_off), 1515 member->type, 1516 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1517 BTF_MEMBER_BIT_OFFSET(member->offset)); 1518 else 1519 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1520 __btf_name_by_offset(btf, member->name_off), 1521 member->type, member->offset); 1522 1523 if (fmt && *fmt) { 1524 __btf_verifier_log(log, " "); 1525 va_start(args, fmt); 1526 bpf_verifier_vlog(log, fmt, args); 1527 va_end(args); 1528 } 1529 1530 __btf_verifier_log(log, "\n"); 1531 } 1532 1533 __printf(4, 5) 1534 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1535 const struct btf_type *datasec_type, 1536 const struct btf_var_secinfo *vsi, 1537 const char *fmt, ...) 1538 { 1539 struct bpf_verifier_log *log = &env->log; 1540 va_list args; 1541 1542 if (!bpf_verifier_log_needed(log)) 1543 return; 1544 if (log->level == BPF_LOG_KERNEL && !fmt) 1545 return; 1546 if (env->phase != CHECK_META) 1547 btf_verifier_log_type(env, datasec_type, NULL); 1548 1549 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1550 vsi->type, vsi->offset, vsi->size); 1551 if (fmt && *fmt) { 1552 __btf_verifier_log(log, " "); 1553 va_start(args, fmt); 1554 bpf_verifier_vlog(log, fmt, args); 1555 va_end(args); 1556 } 1557 1558 __btf_verifier_log(log, "\n"); 1559 } 1560 1561 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1562 u32 btf_data_size) 1563 { 1564 struct bpf_verifier_log *log = &env->log; 1565 const struct btf *btf = env->btf; 1566 const struct btf_header *hdr; 1567 1568 if (!bpf_verifier_log_needed(log)) 1569 return; 1570 1571 if (log->level == BPF_LOG_KERNEL) 1572 return; 1573 hdr = &btf->hdr; 1574 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1575 __btf_verifier_log(log, "version: %u\n", hdr->version); 1576 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1577 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1578 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1579 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1580 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1581 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1582 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1583 } 1584 1585 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1586 { 1587 struct btf *btf = env->btf; 1588 1589 if (btf->types_size == btf->nr_types) { 1590 /* Expand 'types' array */ 1591 1592 struct btf_type **new_types; 1593 u32 expand_by, new_size; 1594 1595 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1596 btf_verifier_log(env, "Exceeded max num of types"); 1597 return -E2BIG; 1598 } 1599 1600 expand_by = max_t(u32, btf->types_size >> 2, 16); 1601 new_size = min_t(u32, BTF_MAX_TYPE, 1602 btf->types_size + expand_by); 1603 1604 new_types = kvcalloc(new_size, sizeof(*new_types), 1605 GFP_KERNEL | __GFP_NOWARN); 1606 if (!new_types) 1607 return -ENOMEM; 1608 1609 if (btf->nr_types == 0) { 1610 if (!btf->base_btf) { 1611 /* lazily init VOID type */ 1612 new_types[0] = &btf_void; 1613 btf->nr_types++; 1614 } 1615 } else { 1616 memcpy(new_types, btf->types, 1617 sizeof(*btf->types) * btf->nr_types); 1618 } 1619 1620 kvfree(btf->types); 1621 btf->types = new_types; 1622 btf->types_size = new_size; 1623 } 1624 1625 btf->types[btf->nr_types++] = t; 1626 1627 return 0; 1628 } 1629 1630 static int btf_alloc_id(struct btf *btf) 1631 { 1632 int id; 1633 1634 idr_preload(GFP_KERNEL); 1635 spin_lock_bh(&btf_idr_lock); 1636 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1637 if (id > 0) 1638 btf->id = id; 1639 spin_unlock_bh(&btf_idr_lock); 1640 idr_preload_end(); 1641 1642 if (WARN_ON_ONCE(!id)) 1643 return -ENOSPC; 1644 1645 return id > 0 ? 0 : id; 1646 } 1647 1648 static void btf_free_id(struct btf *btf) 1649 { 1650 unsigned long flags; 1651 1652 /* 1653 * In map-in-map, calling map_delete_elem() on outer 1654 * map will call bpf_map_put on the inner map. 1655 * It will then eventually call btf_free_id() 1656 * on the inner map. Some of the map_delete_elem() 1657 * implementation may have irq disabled, so 1658 * we need to use the _irqsave() version instead 1659 * of the _bh() version. 1660 */ 1661 spin_lock_irqsave(&btf_idr_lock, flags); 1662 idr_remove(&btf_idr, btf->id); 1663 spin_unlock_irqrestore(&btf_idr_lock, flags); 1664 } 1665 1666 static void btf_free_kfunc_set_tab(struct btf *btf) 1667 { 1668 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1669 int hook; 1670 1671 if (!tab) 1672 return; 1673 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1674 kfree(tab->sets[hook]); 1675 kfree(tab); 1676 btf->kfunc_set_tab = NULL; 1677 } 1678 1679 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1680 { 1681 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1682 1683 if (!tab) 1684 return; 1685 kfree(tab); 1686 btf->dtor_kfunc_tab = NULL; 1687 } 1688 1689 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1690 { 1691 int i; 1692 1693 if (!tab) 1694 return; 1695 for (i = 0; i < tab->cnt; i++) 1696 btf_record_free(tab->types[i].record); 1697 kfree(tab); 1698 } 1699 1700 static void btf_free_struct_meta_tab(struct btf *btf) 1701 { 1702 struct btf_struct_metas *tab = btf->struct_meta_tab; 1703 1704 btf_struct_metas_free(tab); 1705 btf->struct_meta_tab = NULL; 1706 } 1707 1708 static void btf_free_struct_ops_tab(struct btf *btf) 1709 { 1710 struct btf_struct_ops_tab *tab = btf->struct_ops_tab; 1711 u32 i; 1712 1713 if (!tab) 1714 return; 1715 1716 for (i = 0; i < tab->cnt; i++) 1717 bpf_struct_ops_desc_release(&tab->ops[i]); 1718 1719 kfree(tab); 1720 btf->struct_ops_tab = NULL; 1721 } 1722 1723 static void btf_free(struct btf *btf) 1724 { 1725 btf_free_struct_meta_tab(btf); 1726 btf_free_dtor_kfunc_tab(btf); 1727 btf_free_kfunc_set_tab(btf); 1728 btf_free_struct_ops_tab(btf); 1729 kvfree(btf->types); 1730 kvfree(btf->resolved_sizes); 1731 kvfree(btf->resolved_ids); 1732 /* vmlinux does not allocate btf->data, it simply points it at 1733 * __start_BTF. 1734 */ 1735 if (!btf_is_vmlinux(btf)) 1736 kvfree(btf->data); 1737 kvfree(btf->base_id_map); 1738 kfree(btf); 1739 } 1740 1741 static void btf_free_rcu(struct rcu_head *rcu) 1742 { 1743 struct btf *btf = container_of(rcu, struct btf, rcu); 1744 1745 btf_free(btf); 1746 } 1747 1748 const char *btf_get_name(const struct btf *btf) 1749 { 1750 return btf->name; 1751 } 1752 1753 void btf_get(struct btf *btf) 1754 { 1755 refcount_inc(&btf->refcnt); 1756 } 1757 1758 void btf_put(struct btf *btf) 1759 { 1760 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1761 btf_free_id(btf); 1762 call_rcu(&btf->rcu, btf_free_rcu); 1763 } 1764 } 1765 1766 struct btf *btf_base_btf(const struct btf *btf) 1767 { 1768 return btf->base_btf; 1769 } 1770 1771 const struct btf_header *btf_header(const struct btf *btf) 1772 { 1773 return &btf->hdr; 1774 } 1775 1776 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf) 1777 { 1778 btf->base_btf = (struct btf *)base_btf; 1779 btf->start_id = btf_nr_types(base_btf); 1780 btf->start_str_off = base_btf->hdr.str_len; 1781 } 1782 1783 static int env_resolve_init(struct btf_verifier_env *env) 1784 { 1785 struct btf *btf = env->btf; 1786 u32 nr_types = btf->nr_types; 1787 u32 *resolved_sizes = NULL; 1788 u32 *resolved_ids = NULL; 1789 u8 *visit_states = NULL; 1790 1791 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1792 GFP_KERNEL | __GFP_NOWARN); 1793 if (!resolved_sizes) 1794 goto nomem; 1795 1796 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1797 GFP_KERNEL | __GFP_NOWARN); 1798 if (!resolved_ids) 1799 goto nomem; 1800 1801 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1802 GFP_KERNEL | __GFP_NOWARN); 1803 if (!visit_states) 1804 goto nomem; 1805 1806 btf->resolved_sizes = resolved_sizes; 1807 btf->resolved_ids = resolved_ids; 1808 env->visit_states = visit_states; 1809 1810 return 0; 1811 1812 nomem: 1813 kvfree(resolved_sizes); 1814 kvfree(resolved_ids); 1815 kvfree(visit_states); 1816 return -ENOMEM; 1817 } 1818 1819 static void btf_verifier_env_free(struct btf_verifier_env *env) 1820 { 1821 kvfree(env->visit_states); 1822 kfree(env); 1823 } 1824 1825 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1826 const struct btf_type *next_type) 1827 { 1828 switch (env->resolve_mode) { 1829 case RESOLVE_TBD: 1830 /* int, enum or void is a sink */ 1831 return !btf_type_needs_resolve(next_type); 1832 case RESOLVE_PTR: 1833 /* int, enum, void, struct, array, func or func_proto is a sink 1834 * for ptr 1835 */ 1836 return !btf_type_is_modifier(next_type) && 1837 !btf_type_is_ptr(next_type); 1838 case RESOLVE_STRUCT_OR_ARRAY: 1839 /* int, enum, void, ptr, func or func_proto is a sink 1840 * for struct and array 1841 */ 1842 return !btf_type_is_modifier(next_type) && 1843 !btf_type_is_array(next_type) && 1844 !btf_type_is_struct(next_type); 1845 default: 1846 BUG(); 1847 } 1848 } 1849 1850 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1851 u32 type_id) 1852 { 1853 /* base BTF types should be resolved by now */ 1854 if (type_id < env->btf->start_id) 1855 return true; 1856 1857 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1858 } 1859 1860 static int env_stack_push(struct btf_verifier_env *env, 1861 const struct btf_type *t, u32 type_id) 1862 { 1863 const struct btf *btf = env->btf; 1864 struct resolve_vertex *v; 1865 1866 if (env->top_stack == MAX_RESOLVE_DEPTH) 1867 return -E2BIG; 1868 1869 if (type_id < btf->start_id 1870 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1871 return -EEXIST; 1872 1873 env->visit_states[type_id - btf->start_id] = VISITED; 1874 1875 v = &env->stack[env->top_stack++]; 1876 v->t = t; 1877 v->type_id = type_id; 1878 v->next_member = 0; 1879 1880 if (env->resolve_mode == RESOLVE_TBD) { 1881 if (btf_type_is_ptr(t)) 1882 env->resolve_mode = RESOLVE_PTR; 1883 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1884 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1885 } 1886 1887 return 0; 1888 } 1889 1890 static void env_stack_set_next_member(struct btf_verifier_env *env, 1891 u16 next_member) 1892 { 1893 env->stack[env->top_stack - 1].next_member = next_member; 1894 } 1895 1896 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1897 u32 resolved_type_id, 1898 u32 resolved_size) 1899 { 1900 u32 type_id = env->stack[--(env->top_stack)].type_id; 1901 struct btf *btf = env->btf; 1902 1903 type_id -= btf->start_id; /* adjust to local type id */ 1904 btf->resolved_sizes[type_id] = resolved_size; 1905 btf->resolved_ids[type_id] = resolved_type_id; 1906 env->visit_states[type_id] = RESOLVED; 1907 } 1908 1909 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1910 { 1911 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1912 } 1913 1914 /* Resolve the size of a passed-in "type" 1915 * 1916 * type: is an array (e.g. u32 array[x][y]) 1917 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1918 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1919 * corresponds to the return type. 1920 * *elem_type: u32 1921 * *elem_id: id of u32 1922 * *total_nelems: (x * y). Hence, individual elem size is 1923 * (*type_size / *total_nelems) 1924 * *type_id: id of type if it's changed within the function, 0 if not 1925 * 1926 * type: is not an array (e.g. const struct X) 1927 * return type: type "struct X" 1928 * *type_size: sizeof(struct X) 1929 * *elem_type: same as return type ("struct X") 1930 * *elem_id: 0 1931 * *total_nelems: 1 1932 * *type_id: id of type if it's changed within the function, 0 if not 1933 */ 1934 static const struct btf_type * 1935 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1936 u32 *type_size, const struct btf_type **elem_type, 1937 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1938 { 1939 const struct btf_type *array_type = NULL; 1940 const struct btf_array *array = NULL; 1941 u32 i, size, nelems = 1, id = 0; 1942 1943 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1944 switch (BTF_INFO_KIND(type->info)) { 1945 /* type->size can be used */ 1946 case BTF_KIND_INT: 1947 case BTF_KIND_STRUCT: 1948 case BTF_KIND_UNION: 1949 case BTF_KIND_ENUM: 1950 case BTF_KIND_FLOAT: 1951 case BTF_KIND_ENUM64: 1952 size = type->size; 1953 goto resolved; 1954 1955 case BTF_KIND_PTR: 1956 size = sizeof(void *); 1957 goto resolved; 1958 1959 /* Modifiers */ 1960 case BTF_KIND_TYPEDEF: 1961 case BTF_KIND_VOLATILE: 1962 case BTF_KIND_CONST: 1963 case BTF_KIND_RESTRICT: 1964 case BTF_KIND_TYPE_TAG: 1965 id = type->type; 1966 type = btf_type_by_id(btf, type->type); 1967 break; 1968 1969 case BTF_KIND_ARRAY: 1970 if (!array_type) 1971 array_type = type; 1972 array = btf_type_array(type); 1973 if (nelems && array->nelems > U32_MAX / nelems) 1974 return ERR_PTR(-EINVAL); 1975 nelems *= array->nelems; 1976 type = btf_type_by_id(btf, array->type); 1977 break; 1978 1979 /* type without size */ 1980 default: 1981 return ERR_PTR(-EINVAL); 1982 } 1983 } 1984 1985 return ERR_PTR(-EINVAL); 1986 1987 resolved: 1988 if (nelems && size > U32_MAX / nelems) 1989 return ERR_PTR(-EINVAL); 1990 1991 *type_size = nelems * size; 1992 if (total_nelems) 1993 *total_nelems = nelems; 1994 if (elem_type) 1995 *elem_type = type; 1996 if (elem_id) 1997 *elem_id = array ? array->type : 0; 1998 if (type_id && id) 1999 *type_id = id; 2000 2001 return array_type ? : type; 2002 } 2003 2004 const struct btf_type * 2005 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 2006 u32 *type_size) 2007 { 2008 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 2009 } 2010 2011 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 2012 { 2013 while (type_id < btf->start_id) 2014 btf = btf->base_btf; 2015 2016 return btf->resolved_ids[type_id - btf->start_id]; 2017 } 2018 2019 /* The input param "type_id" must point to a needs_resolve type */ 2020 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 2021 u32 *type_id) 2022 { 2023 *type_id = btf_resolved_type_id(btf, *type_id); 2024 return btf_type_by_id(btf, *type_id); 2025 } 2026 2027 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 2028 { 2029 while (type_id < btf->start_id) 2030 btf = btf->base_btf; 2031 2032 return btf->resolved_sizes[type_id - btf->start_id]; 2033 } 2034 2035 const struct btf_type *btf_type_id_size(const struct btf *btf, 2036 u32 *type_id, u32 *ret_size) 2037 { 2038 const struct btf_type *size_type; 2039 u32 size_type_id = *type_id; 2040 u32 size = 0; 2041 2042 size_type = btf_type_by_id(btf, size_type_id); 2043 if (btf_type_nosize_or_null(size_type)) 2044 return NULL; 2045 2046 if (btf_type_has_size(size_type)) { 2047 size = size_type->size; 2048 } else if (btf_type_is_array(size_type)) { 2049 size = btf_resolved_type_size(btf, size_type_id); 2050 } else if (btf_type_is_ptr(size_type)) { 2051 size = sizeof(void *); 2052 } else { 2053 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 2054 !btf_type_is_var(size_type))) 2055 return NULL; 2056 2057 size_type_id = btf_resolved_type_id(btf, size_type_id); 2058 size_type = btf_type_by_id(btf, size_type_id); 2059 if (btf_type_nosize_or_null(size_type)) 2060 return NULL; 2061 else if (btf_type_has_size(size_type)) 2062 size = size_type->size; 2063 else if (btf_type_is_array(size_type)) 2064 size = btf_resolved_type_size(btf, size_type_id); 2065 else if (btf_type_is_ptr(size_type)) 2066 size = sizeof(void *); 2067 else 2068 return NULL; 2069 } 2070 2071 *type_id = size_type_id; 2072 if (ret_size) 2073 *ret_size = size; 2074 2075 return size_type; 2076 } 2077 2078 static int btf_df_check_member(struct btf_verifier_env *env, 2079 const struct btf_type *struct_type, 2080 const struct btf_member *member, 2081 const struct btf_type *member_type) 2082 { 2083 btf_verifier_log_basic(env, struct_type, 2084 "Unsupported check_member"); 2085 return -EINVAL; 2086 } 2087 2088 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2089 const struct btf_type *struct_type, 2090 const struct btf_member *member, 2091 const struct btf_type *member_type) 2092 { 2093 btf_verifier_log_basic(env, struct_type, 2094 "Unsupported check_kflag_member"); 2095 return -EINVAL; 2096 } 2097 2098 /* Used for ptr, array struct/union and float type members. 2099 * int, enum and modifier types have their specific callback functions. 2100 */ 2101 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2102 const struct btf_type *struct_type, 2103 const struct btf_member *member, 2104 const struct btf_type *member_type) 2105 { 2106 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2107 btf_verifier_log_member(env, struct_type, member, 2108 "Invalid member bitfield_size"); 2109 return -EINVAL; 2110 } 2111 2112 /* bitfield size is 0, so member->offset represents bit offset only. 2113 * It is safe to call non kflag check_member variants. 2114 */ 2115 return btf_type_ops(member_type)->check_member(env, struct_type, 2116 member, 2117 member_type); 2118 } 2119 2120 static int btf_df_resolve(struct btf_verifier_env *env, 2121 const struct resolve_vertex *v) 2122 { 2123 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2124 return -EINVAL; 2125 } 2126 2127 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2128 u32 type_id, void *data, u8 bits_offsets, 2129 struct btf_show *show) 2130 { 2131 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2132 } 2133 2134 static int btf_int_check_member(struct btf_verifier_env *env, 2135 const struct btf_type *struct_type, 2136 const struct btf_member *member, 2137 const struct btf_type *member_type) 2138 { 2139 u32 int_data = btf_type_int(member_type); 2140 u32 struct_bits_off = member->offset; 2141 u32 struct_size = struct_type->size; 2142 u32 nr_copy_bits; 2143 u32 bytes_offset; 2144 2145 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2146 btf_verifier_log_member(env, struct_type, member, 2147 "bits_offset exceeds U32_MAX"); 2148 return -EINVAL; 2149 } 2150 2151 struct_bits_off += BTF_INT_OFFSET(int_data); 2152 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2153 nr_copy_bits = BTF_INT_BITS(int_data) + 2154 BITS_PER_BYTE_MASKED(struct_bits_off); 2155 2156 if (nr_copy_bits > BITS_PER_U128) { 2157 btf_verifier_log_member(env, struct_type, member, 2158 "nr_copy_bits exceeds 128"); 2159 return -EINVAL; 2160 } 2161 2162 if (struct_size < bytes_offset || 2163 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2164 btf_verifier_log_member(env, struct_type, member, 2165 "Member exceeds struct_size"); 2166 return -EINVAL; 2167 } 2168 2169 return 0; 2170 } 2171 2172 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2173 const struct btf_type *struct_type, 2174 const struct btf_member *member, 2175 const struct btf_type *member_type) 2176 { 2177 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2178 u32 int_data = btf_type_int(member_type); 2179 u32 struct_size = struct_type->size; 2180 u32 nr_copy_bits; 2181 2182 /* a regular int type is required for the kflag int member */ 2183 if (!btf_type_int_is_regular(member_type)) { 2184 btf_verifier_log_member(env, struct_type, member, 2185 "Invalid member base type"); 2186 return -EINVAL; 2187 } 2188 2189 /* check sanity of bitfield size */ 2190 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2191 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2192 nr_int_data_bits = BTF_INT_BITS(int_data); 2193 if (!nr_bits) { 2194 /* Not a bitfield member, member offset must be at byte 2195 * boundary. 2196 */ 2197 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2198 btf_verifier_log_member(env, struct_type, member, 2199 "Invalid member offset"); 2200 return -EINVAL; 2201 } 2202 2203 nr_bits = nr_int_data_bits; 2204 } else if (nr_bits > nr_int_data_bits) { 2205 btf_verifier_log_member(env, struct_type, member, 2206 "Invalid member bitfield_size"); 2207 return -EINVAL; 2208 } 2209 2210 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2211 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2212 if (nr_copy_bits > BITS_PER_U128) { 2213 btf_verifier_log_member(env, struct_type, member, 2214 "nr_copy_bits exceeds 128"); 2215 return -EINVAL; 2216 } 2217 2218 if (struct_size < bytes_offset || 2219 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2220 btf_verifier_log_member(env, struct_type, member, 2221 "Member exceeds struct_size"); 2222 return -EINVAL; 2223 } 2224 2225 return 0; 2226 } 2227 2228 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2229 const struct btf_type *t, 2230 u32 meta_left) 2231 { 2232 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2233 u16 encoding; 2234 2235 if (meta_left < meta_needed) { 2236 btf_verifier_log_basic(env, t, 2237 "meta_left:%u meta_needed:%u", 2238 meta_left, meta_needed); 2239 return -EINVAL; 2240 } 2241 2242 if (btf_type_vlen(t)) { 2243 btf_verifier_log_type(env, t, "vlen != 0"); 2244 return -EINVAL; 2245 } 2246 2247 if (btf_type_kflag(t)) { 2248 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2249 return -EINVAL; 2250 } 2251 2252 int_data = btf_type_int(t); 2253 if (int_data & ~BTF_INT_MASK) { 2254 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2255 int_data); 2256 return -EINVAL; 2257 } 2258 2259 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2260 2261 if (nr_bits > BITS_PER_U128) { 2262 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2263 BITS_PER_U128); 2264 return -EINVAL; 2265 } 2266 2267 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2268 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2269 return -EINVAL; 2270 } 2271 2272 /* 2273 * Only one of the encoding bits is allowed and it 2274 * should be sufficient for the pretty print purpose (i.e. decoding). 2275 * Multiple bits can be allowed later if it is found 2276 * to be insufficient. 2277 */ 2278 encoding = BTF_INT_ENCODING(int_data); 2279 if (encoding && 2280 encoding != BTF_INT_SIGNED && 2281 encoding != BTF_INT_CHAR && 2282 encoding != BTF_INT_BOOL) { 2283 btf_verifier_log_type(env, t, "Unsupported encoding"); 2284 return -ENOTSUPP; 2285 } 2286 2287 btf_verifier_log_type(env, t, NULL); 2288 2289 return meta_needed; 2290 } 2291 2292 static void btf_int_log(struct btf_verifier_env *env, 2293 const struct btf_type *t) 2294 { 2295 int int_data = btf_type_int(t); 2296 2297 btf_verifier_log(env, 2298 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2299 t->size, BTF_INT_OFFSET(int_data), 2300 BTF_INT_BITS(int_data), 2301 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2302 } 2303 2304 static void btf_int128_print(struct btf_show *show, void *data) 2305 { 2306 /* data points to a __int128 number. 2307 * Suppose 2308 * int128_num = *(__int128 *)data; 2309 * The below formulas shows what upper_num and lower_num represents: 2310 * upper_num = int128_num >> 64; 2311 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2312 */ 2313 u64 upper_num, lower_num; 2314 2315 #ifdef __BIG_ENDIAN_BITFIELD 2316 upper_num = *(u64 *)data; 2317 lower_num = *(u64 *)(data + 8); 2318 #else 2319 upper_num = *(u64 *)(data + 8); 2320 lower_num = *(u64 *)data; 2321 #endif 2322 if (upper_num == 0) 2323 btf_show_type_value(show, "0x%llx", lower_num); 2324 else 2325 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2326 lower_num); 2327 } 2328 2329 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2330 u16 right_shift_bits) 2331 { 2332 u64 upper_num, lower_num; 2333 2334 #ifdef __BIG_ENDIAN_BITFIELD 2335 upper_num = print_num[0]; 2336 lower_num = print_num[1]; 2337 #else 2338 upper_num = print_num[1]; 2339 lower_num = print_num[0]; 2340 #endif 2341 2342 /* shake out un-needed bits by shift/or operations */ 2343 if (left_shift_bits >= 64) { 2344 upper_num = lower_num << (left_shift_bits - 64); 2345 lower_num = 0; 2346 } else { 2347 upper_num = (upper_num << left_shift_bits) | 2348 (lower_num >> (64 - left_shift_bits)); 2349 lower_num = lower_num << left_shift_bits; 2350 } 2351 2352 if (right_shift_bits >= 64) { 2353 lower_num = upper_num >> (right_shift_bits - 64); 2354 upper_num = 0; 2355 } else { 2356 lower_num = (lower_num >> right_shift_bits) | 2357 (upper_num << (64 - right_shift_bits)); 2358 upper_num = upper_num >> right_shift_bits; 2359 } 2360 2361 #ifdef __BIG_ENDIAN_BITFIELD 2362 print_num[0] = upper_num; 2363 print_num[1] = lower_num; 2364 #else 2365 print_num[0] = lower_num; 2366 print_num[1] = upper_num; 2367 #endif 2368 } 2369 2370 static void btf_bitfield_show(void *data, u8 bits_offset, 2371 u8 nr_bits, struct btf_show *show) 2372 { 2373 u16 left_shift_bits, right_shift_bits; 2374 u8 nr_copy_bytes; 2375 u8 nr_copy_bits; 2376 u64 print_num[2] = {}; 2377 2378 nr_copy_bits = nr_bits + bits_offset; 2379 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2380 2381 memcpy(print_num, data, nr_copy_bytes); 2382 2383 #ifdef __BIG_ENDIAN_BITFIELD 2384 left_shift_bits = bits_offset; 2385 #else 2386 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2387 #endif 2388 right_shift_bits = BITS_PER_U128 - nr_bits; 2389 2390 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2391 btf_int128_print(show, print_num); 2392 } 2393 2394 2395 static void btf_int_bits_show(const struct btf *btf, 2396 const struct btf_type *t, 2397 void *data, u8 bits_offset, 2398 struct btf_show *show) 2399 { 2400 u32 int_data = btf_type_int(t); 2401 u8 nr_bits = BTF_INT_BITS(int_data); 2402 u8 total_bits_offset; 2403 2404 /* 2405 * bits_offset is at most 7. 2406 * BTF_INT_OFFSET() cannot exceed 128 bits. 2407 */ 2408 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2409 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2410 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2411 btf_bitfield_show(data, bits_offset, nr_bits, show); 2412 } 2413 2414 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2415 u32 type_id, void *data, u8 bits_offset, 2416 struct btf_show *show) 2417 { 2418 u32 int_data = btf_type_int(t); 2419 u8 encoding = BTF_INT_ENCODING(int_data); 2420 bool sign = encoding & BTF_INT_SIGNED; 2421 u8 nr_bits = BTF_INT_BITS(int_data); 2422 void *safe_data; 2423 2424 safe_data = btf_show_start_type(show, t, type_id, data); 2425 if (!safe_data) 2426 return; 2427 2428 if (bits_offset || BTF_INT_OFFSET(int_data) || 2429 BITS_PER_BYTE_MASKED(nr_bits)) { 2430 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2431 goto out; 2432 } 2433 2434 switch (nr_bits) { 2435 case 128: 2436 btf_int128_print(show, safe_data); 2437 break; 2438 case 64: 2439 if (sign) 2440 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2441 else 2442 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2443 break; 2444 case 32: 2445 if (sign) 2446 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2447 else 2448 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2449 break; 2450 case 16: 2451 if (sign) 2452 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2453 else 2454 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2455 break; 2456 case 8: 2457 if (show->state.array_encoding == BTF_INT_CHAR) { 2458 /* check for null terminator */ 2459 if (show->state.array_terminated) 2460 break; 2461 if (*(char *)data == '\0') { 2462 show->state.array_terminated = 1; 2463 break; 2464 } 2465 if (isprint(*(char *)data)) { 2466 btf_show_type_value(show, "'%c'", 2467 *(char *)safe_data); 2468 break; 2469 } 2470 } 2471 if (sign) 2472 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2473 else 2474 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2475 break; 2476 default: 2477 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2478 break; 2479 } 2480 out: 2481 btf_show_end_type(show); 2482 } 2483 2484 static const struct btf_kind_operations int_ops = { 2485 .check_meta = btf_int_check_meta, 2486 .resolve = btf_df_resolve, 2487 .check_member = btf_int_check_member, 2488 .check_kflag_member = btf_int_check_kflag_member, 2489 .log_details = btf_int_log, 2490 .show = btf_int_show, 2491 }; 2492 2493 static int btf_modifier_check_member(struct btf_verifier_env *env, 2494 const struct btf_type *struct_type, 2495 const struct btf_member *member, 2496 const struct btf_type *member_type) 2497 { 2498 const struct btf_type *resolved_type; 2499 u32 resolved_type_id = member->type; 2500 struct btf_member resolved_member; 2501 struct btf *btf = env->btf; 2502 2503 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2504 if (!resolved_type) { 2505 btf_verifier_log_member(env, struct_type, member, 2506 "Invalid member"); 2507 return -EINVAL; 2508 } 2509 2510 resolved_member = *member; 2511 resolved_member.type = resolved_type_id; 2512 2513 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2514 &resolved_member, 2515 resolved_type); 2516 } 2517 2518 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2519 const struct btf_type *struct_type, 2520 const struct btf_member *member, 2521 const struct btf_type *member_type) 2522 { 2523 const struct btf_type *resolved_type; 2524 u32 resolved_type_id = member->type; 2525 struct btf_member resolved_member; 2526 struct btf *btf = env->btf; 2527 2528 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2529 if (!resolved_type) { 2530 btf_verifier_log_member(env, struct_type, member, 2531 "Invalid member"); 2532 return -EINVAL; 2533 } 2534 2535 resolved_member = *member; 2536 resolved_member.type = resolved_type_id; 2537 2538 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2539 &resolved_member, 2540 resolved_type); 2541 } 2542 2543 static int btf_ptr_check_member(struct btf_verifier_env *env, 2544 const struct btf_type *struct_type, 2545 const struct btf_member *member, 2546 const struct btf_type *member_type) 2547 { 2548 u32 struct_size, struct_bits_off, bytes_offset; 2549 2550 struct_size = struct_type->size; 2551 struct_bits_off = member->offset; 2552 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2553 2554 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2555 btf_verifier_log_member(env, struct_type, member, 2556 "Member is not byte aligned"); 2557 return -EINVAL; 2558 } 2559 2560 if (struct_size - bytes_offset < sizeof(void *)) { 2561 btf_verifier_log_member(env, struct_type, member, 2562 "Member exceeds struct_size"); 2563 return -EINVAL; 2564 } 2565 2566 return 0; 2567 } 2568 2569 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2570 const struct btf_type *t, 2571 u32 meta_left) 2572 { 2573 const char *value; 2574 2575 if (btf_type_vlen(t)) { 2576 btf_verifier_log_type(env, t, "vlen != 0"); 2577 return -EINVAL; 2578 } 2579 2580 if (btf_type_kflag(t) && !btf_type_is_type_tag(t)) { 2581 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2582 return -EINVAL; 2583 } 2584 2585 if (!BTF_TYPE_ID_VALID(t->type)) { 2586 btf_verifier_log_type(env, t, "Invalid type_id"); 2587 return -EINVAL; 2588 } 2589 2590 /* typedef/type_tag type must have a valid name, and other ref types, 2591 * volatile, const, restrict, should have a null name. 2592 */ 2593 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2594 if (!t->name_off || 2595 !btf_name_valid_identifier(env->btf, t->name_off)) { 2596 btf_verifier_log_type(env, t, "Invalid name"); 2597 return -EINVAL; 2598 } 2599 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2600 value = btf_name_by_offset(env->btf, t->name_off); 2601 if (!value || !value[0]) { 2602 btf_verifier_log_type(env, t, "Invalid name"); 2603 return -EINVAL; 2604 } 2605 } else { 2606 if (t->name_off) { 2607 btf_verifier_log_type(env, t, "Invalid name"); 2608 return -EINVAL; 2609 } 2610 } 2611 2612 btf_verifier_log_type(env, t, NULL); 2613 2614 return 0; 2615 } 2616 2617 static int btf_modifier_resolve(struct btf_verifier_env *env, 2618 const struct resolve_vertex *v) 2619 { 2620 const struct btf_type *t = v->t; 2621 const struct btf_type *next_type; 2622 u32 next_type_id = t->type; 2623 struct btf *btf = env->btf; 2624 2625 next_type = btf_type_by_id(btf, next_type_id); 2626 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2627 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2628 return -EINVAL; 2629 } 2630 2631 if (!env_type_is_resolve_sink(env, next_type) && 2632 !env_type_is_resolved(env, next_type_id)) 2633 return env_stack_push(env, next_type, next_type_id); 2634 2635 /* Figure out the resolved next_type_id with size. 2636 * They will be stored in the current modifier's 2637 * resolved_ids and resolved_sizes such that it can 2638 * save us a few type-following when we use it later (e.g. in 2639 * pretty print). 2640 */ 2641 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2642 if (env_type_is_resolved(env, next_type_id)) 2643 next_type = btf_type_id_resolve(btf, &next_type_id); 2644 2645 /* "typedef void new_void", "const void"...etc */ 2646 if (!btf_type_is_void(next_type) && 2647 !btf_type_is_fwd(next_type) && 2648 !btf_type_is_func_proto(next_type)) { 2649 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2650 return -EINVAL; 2651 } 2652 } 2653 2654 env_stack_pop_resolved(env, next_type_id, 0); 2655 2656 return 0; 2657 } 2658 2659 static int btf_var_resolve(struct btf_verifier_env *env, 2660 const struct resolve_vertex *v) 2661 { 2662 const struct btf_type *next_type; 2663 const struct btf_type *t = v->t; 2664 u32 next_type_id = t->type; 2665 struct btf *btf = env->btf; 2666 2667 next_type = btf_type_by_id(btf, next_type_id); 2668 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2669 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2670 return -EINVAL; 2671 } 2672 2673 if (!env_type_is_resolve_sink(env, next_type) && 2674 !env_type_is_resolved(env, next_type_id)) 2675 return env_stack_push(env, next_type, next_type_id); 2676 2677 if (btf_type_is_modifier(next_type)) { 2678 const struct btf_type *resolved_type; 2679 u32 resolved_type_id; 2680 2681 resolved_type_id = next_type_id; 2682 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2683 2684 if (btf_type_is_ptr(resolved_type) && 2685 !env_type_is_resolve_sink(env, resolved_type) && 2686 !env_type_is_resolved(env, resolved_type_id)) 2687 return env_stack_push(env, resolved_type, 2688 resolved_type_id); 2689 } 2690 2691 /* We must resolve to something concrete at this point, no 2692 * forward types or similar that would resolve to size of 2693 * zero is allowed. 2694 */ 2695 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2696 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2697 return -EINVAL; 2698 } 2699 2700 env_stack_pop_resolved(env, next_type_id, 0); 2701 2702 return 0; 2703 } 2704 2705 static int btf_ptr_resolve(struct btf_verifier_env *env, 2706 const struct resolve_vertex *v) 2707 { 2708 const struct btf_type *next_type; 2709 const struct btf_type *t = v->t; 2710 u32 next_type_id = t->type; 2711 struct btf *btf = env->btf; 2712 2713 next_type = btf_type_by_id(btf, next_type_id); 2714 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2715 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2716 return -EINVAL; 2717 } 2718 2719 if (!env_type_is_resolve_sink(env, next_type) && 2720 !env_type_is_resolved(env, next_type_id)) 2721 return env_stack_push(env, next_type, next_type_id); 2722 2723 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2724 * the modifier may have stopped resolving when it was resolved 2725 * to a ptr (last-resolved-ptr). 2726 * 2727 * We now need to continue from the last-resolved-ptr to 2728 * ensure the last-resolved-ptr will not referring back to 2729 * the current ptr (t). 2730 */ 2731 if (btf_type_is_modifier(next_type)) { 2732 const struct btf_type *resolved_type; 2733 u32 resolved_type_id; 2734 2735 resolved_type_id = next_type_id; 2736 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2737 2738 if (btf_type_is_ptr(resolved_type) && 2739 !env_type_is_resolve_sink(env, resolved_type) && 2740 !env_type_is_resolved(env, resolved_type_id)) 2741 return env_stack_push(env, resolved_type, 2742 resolved_type_id); 2743 } 2744 2745 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2746 if (env_type_is_resolved(env, next_type_id)) 2747 next_type = btf_type_id_resolve(btf, &next_type_id); 2748 2749 if (!btf_type_is_void(next_type) && 2750 !btf_type_is_fwd(next_type) && 2751 !btf_type_is_func_proto(next_type)) { 2752 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2753 return -EINVAL; 2754 } 2755 } 2756 2757 env_stack_pop_resolved(env, next_type_id, 0); 2758 2759 return 0; 2760 } 2761 2762 static void btf_modifier_show(const struct btf *btf, 2763 const struct btf_type *t, 2764 u32 type_id, void *data, 2765 u8 bits_offset, struct btf_show *show) 2766 { 2767 if (btf->resolved_ids) 2768 t = btf_type_id_resolve(btf, &type_id); 2769 else 2770 t = btf_type_skip_modifiers(btf, type_id, NULL); 2771 2772 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2773 } 2774 2775 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2776 u32 type_id, void *data, u8 bits_offset, 2777 struct btf_show *show) 2778 { 2779 t = btf_type_id_resolve(btf, &type_id); 2780 2781 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2782 } 2783 2784 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2785 u32 type_id, void *data, u8 bits_offset, 2786 struct btf_show *show) 2787 { 2788 void *safe_data; 2789 2790 safe_data = btf_show_start_type(show, t, type_id, data); 2791 if (!safe_data) 2792 return; 2793 2794 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2795 if (show->flags & BTF_SHOW_PTR_RAW) 2796 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2797 else 2798 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2799 btf_show_end_type(show); 2800 } 2801 2802 static void btf_ref_type_log(struct btf_verifier_env *env, 2803 const struct btf_type *t) 2804 { 2805 btf_verifier_log(env, "type_id=%u", t->type); 2806 } 2807 2808 static const struct btf_kind_operations modifier_ops = { 2809 .check_meta = btf_ref_type_check_meta, 2810 .resolve = btf_modifier_resolve, 2811 .check_member = btf_modifier_check_member, 2812 .check_kflag_member = btf_modifier_check_kflag_member, 2813 .log_details = btf_ref_type_log, 2814 .show = btf_modifier_show, 2815 }; 2816 2817 static const struct btf_kind_operations ptr_ops = { 2818 .check_meta = btf_ref_type_check_meta, 2819 .resolve = btf_ptr_resolve, 2820 .check_member = btf_ptr_check_member, 2821 .check_kflag_member = btf_generic_check_kflag_member, 2822 .log_details = btf_ref_type_log, 2823 .show = btf_ptr_show, 2824 }; 2825 2826 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2827 const struct btf_type *t, 2828 u32 meta_left) 2829 { 2830 if (btf_type_vlen(t)) { 2831 btf_verifier_log_type(env, t, "vlen != 0"); 2832 return -EINVAL; 2833 } 2834 2835 if (t->type) { 2836 btf_verifier_log_type(env, t, "type != 0"); 2837 return -EINVAL; 2838 } 2839 2840 /* fwd type must have a valid name */ 2841 if (!t->name_off || 2842 !btf_name_valid_identifier(env->btf, t->name_off)) { 2843 btf_verifier_log_type(env, t, "Invalid name"); 2844 return -EINVAL; 2845 } 2846 2847 btf_verifier_log_type(env, t, NULL); 2848 2849 return 0; 2850 } 2851 2852 static void btf_fwd_type_log(struct btf_verifier_env *env, 2853 const struct btf_type *t) 2854 { 2855 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2856 } 2857 2858 static const struct btf_kind_operations fwd_ops = { 2859 .check_meta = btf_fwd_check_meta, 2860 .resolve = btf_df_resolve, 2861 .check_member = btf_df_check_member, 2862 .check_kflag_member = btf_df_check_kflag_member, 2863 .log_details = btf_fwd_type_log, 2864 .show = btf_df_show, 2865 }; 2866 2867 static int btf_array_check_member(struct btf_verifier_env *env, 2868 const struct btf_type *struct_type, 2869 const struct btf_member *member, 2870 const struct btf_type *member_type) 2871 { 2872 u32 struct_bits_off = member->offset; 2873 u32 struct_size, bytes_offset; 2874 u32 array_type_id, array_size; 2875 struct btf *btf = env->btf; 2876 2877 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2878 btf_verifier_log_member(env, struct_type, member, 2879 "Member is not byte aligned"); 2880 return -EINVAL; 2881 } 2882 2883 array_type_id = member->type; 2884 btf_type_id_size(btf, &array_type_id, &array_size); 2885 struct_size = struct_type->size; 2886 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2887 if (struct_size - bytes_offset < array_size) { 2888 btf_verifier_log_member(env, struct_type, member, 2889 "Member exceeds struct_size"); 2890 return -EINVAL; 2891 } 2892 2893 return 0; 2894 } 2895 2896 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2897 const struct btf_type *t, 2898 u32 meta_left) 2899 { 2900 const struct btf_array *array = btf_type_array(t); 2901 u32 meta_needed = sizeof(*array); 2902 2903 if (meta_left < meta_needed) { 2904 btf_verifier_log_basic(env, t, 2905 "meta_left:%u meta_needed:%u", 2906 meta_left, meta_needed); 2907 return -EINVAL; 2908 } 2909 2910 /* array type should not have a name */ 2911 if (t->name_off) { 2912 btf_verifier_log_type(env, t, "Invalid name"); 2913 return -EINVAL; 2914 } 2915 2916 if (btf_type_vlen(t)) { 2917 btf_verifier_log_type(env, t, "vlen != 0"); 2918 return -EINVAL; 2919 } 2920 2921 if (btf_type_kflag(t)) { 2922 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2923 return -EINVAL; 2924 } 2925 2926 if (t->size) { 2927 btf_verifier_log_type(env, t, "size != 0"); 2928 return -EINVAL; 2929 } 2930 2931 /* Array elem type and index type cannot be in type void, 2932 * so !array->type and !array->index_type are not allowed. 2933 */ 2934 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2935 btf_verifier_log_type(env, t, "Invalid elem"); 2936 return -EINVAL; 2937 } 2938 2939 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2940 btf_verifier_log_type(env, t, "Invalid index"); 2941 return -EINVAL; 2942 } 2943 2944 btf_verifier_log_type(env, t, NULL); 2945 2946 return meta_needed; 2947 } 2948 2949 static int btf_array_resolve(struct btf_verifier_env *env, 2950 const struct resolve_vertex *v) 2951 { 2952 const struct btf_array *array = btf_type_array(v->t); 2953 const struct btf_type *elem_type, *index_type; 2954 u32 elem_type_id, index_type_id; 2955 struct btf *btf = env->btf; 2956 u32 elem_size; 2957 2958 /* Check array->index_type */ 2959 index_type_id = array->index_type; 2960 index_type = btf_type_by_id(btf, index_type_id); 2961 if (btf_type_nosize_or_null(index_type) || 2962 btf_type_is_resolve_source_only(index_type)) { 2963 btf_verifier_log_type(env, v->t, "Invalid index"); 2964 return -EINVAL; 2965 } 2966 2967 if (!env_type_is_resolve_sink(env, index_type) && 2968 !env_type_is_resolved(env, index_type_id)) 2969 return env_stack_push(env, index_type, index_type_id); 2970 2971 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2972 if (!index_type || !btf_type_is_int(index_type) || 2973 !btf_type_int_is_regular(index_type)) { 2974 btf_verifier_log_type(env, v->t, "Invalid index"); 2975 return -EINVAL; 2976 } 2977 2978 /* Check array->type */ 2979 elem_type_id = array->type; 2980 elem_type = btf_type_by_id(btf, elem_type_id); 2981 if (btf_type_nosize_or_null(elem_type) || 2982 btf_type_is_resolve_source_only(elem_type)) { 2983 btf_verifier_log_type(env, v->t, 2984 "Invalid elem"); 2985 return -EINVAL; 2986 } 2987 2988 if (!env_type_is_resolve_sink(env, elem_type) && 2989 !env_type_is_resolved(env, elem_type_id)) 2990 return env_stack_push(env, elem_type, elem_type_id); 2991 2992 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2993 if (!elem_type) { 2994 btf_verifier_log_type(env, v->t, "Invalid elem"); 2995 return -EINVAL; 2996 } 2997 2998 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2999 btf_verifier_log_type(env, v->t, "Invalid array of int"); 3000 return -EINVAL; 3001 } 3002 3003 if (array->nelems && elem_size > U32_MAX / array->nelems) { 3004 btf_verifier_log_type(env, v->t, 3005 "Array size overflows U32_MAX"); 3006 return -EINVAL; 3007 } 3008 3009 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 3010 3011 return 0; 3012 } 3013 3014 static void btf_array_log(struct btf_verifier_env *env, 3015 const struct btf_type *t) 3016 { 3017 const struct btf_array *array = btf_type_array(t); 3018 3019 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 3020 array->type, array->index_type, array->nelems); 3021 } 3022 3023 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 3024 u32 type_id, void *data, u8 bits_offset, 3025 struct btf_show *show) 3026 { 3027 const struct btf_array *array = btf_type_array(t); 3028 const struct btf_kind_operations *elem_ops; 3029 const struct btf_type *elem_type; 3030 u32 i, elem_size = 0, elem_type_id; 3031 u16 encoding = 0; 3032 3033 elem_type_id = array->type; 3034 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 3035 if (elem_type && btf_type_has_size(elem_type)) 3036 elem_size = elem_type->size; 3037 3038 if (elem_type && btf_type_is_int(elem_type)) { 3039 u32 int_type = btf_type_int(elem_type); 3040 3041 encoding = BTF_INT_ENCODING(int_type); 3042 3043 /* 3044 * BTF_INT_CHAR encoding never seems to be set for 3045 * char arrays, so if size is 1 and element is 3046 * printable as a char, we'll do that. 3047 */ 3048 if (elem_size == 1) 3049 encoding = BTF_INT_CHAR; 3050 } 3051 3052 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 3053 return; 3054 3055 if (!elem_type) 3056 goto out; 3057 elem_ops = btf_type_ops(elem_type); 3058 3059 for (i = 0; i < array->nelems; i++) { 3060 3061 btf_show_start_array_member(show); 3062 3063 elem_ops->show(btf, elem_type, elem_type_id, data, 3064 bits_offset, show); 3065 data += elem_size; 3066 3067 btf_show_end_array_member(show); 3068 3069 if (show->state.array_terminated) 3070 break; 3071 } 3072 out: 3073 btf_show_end_array_type(show); 3074 } 3075 3076 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3077 u32 type_id, void *data, u8 bits_offset, 3078 struct btf_show *show) 3079 { 3080 const struct btf_member *m = show->state.member; 3081 3082 /* 3083 * First check if any members would be shown (are non-zero). 3084 * See comments above "struct btf_show" definition for more 3085 * details on how this works at a high-level. 3086 */ 3087 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3088 if (!show->state.depth_check) { 3089 show->state.depth_check = show->state.depth + 1; 3090 show->state.depth_to_show = 0; 3091 } 3092 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3093 show->state.member = m; 3094 3095 if (show->state.depth_check != show->state.depth + 1) 3096 return; 3097 show->state.depth_check = 0; 3098 3099 if (show->state.depth_to_show <= show->state.depth) 3100 return; 3101 /* 3102 * Reaching here indicates we have recursed and found 3103 * non-zero array member(s). 3104 */ 3105 } 3106 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3107 } 3108 3109 static const struct btf_kind_operations array_ops = { 3110 .check_meta = btf_array_check_meta, 3111 .resolve = btf_array_resolve, 3112 .check_member = btf_array_check_member, 3113 .check_kflag_member = btf_generic_check_kflag_member, 3114 .log_details = btf_array_log, 3115 .show = btf_array_show, 3116 }; 3117 3118 static int btf_struct_check_member(struct btf_verifier_env *env, 3119 const struct btf_type *struct_type, 3120 const struct btf_member *member, 3121 const struct btf_type *member_type) 3122 { 3123 u32 struct_bits_off = member->offset; 3124 u32 struct_size, bytes_offset; 3125 3126 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3127 btf_verifier_log_member(env, struct_type, member, 3128 "Member is not byte aligned"); 3129 return -EINVAL; 3130 } 3131 3132 struct_size = struct_type->size; 3133 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3134 if (struct_size - bytes_offset < member_type->size) { 3135 btf_verifier_log_member(env, struct_type, member, 3136 "Member exceeds struct_size"); 3137 return -EINVAL; 3138 } 3139 3140 return 0; 3141 } 3142 3143 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3144 const struct btf_type *t, 3145 u32 meta_left) 3146 { 3147 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3148 const struct btf_member *member; 3149 u32 meta_needed, last_offset; 3150 struct btf *btf = env->btf; 3151 u32 struct_size = t->size; 3152 u32 offset; 3153 u16 i; 3154 3155 meta_needed = btf_type_vlen(t) * sizeof(*member); 3156 if (meta_left < meta_needed) { 3157 btf_verifier_log_basic(env, t, 3158 "meta_left:%u meta_needed:%u", 3159 meta_left, meta_needed); 3160 return -EINVAL; 3161 } 3162 3163 /* struct type either no name or a valid one */ 3164 if (t->name_off && 3165 !btf_name_valid_identifier(env->btf, t->name_off)) { 3166 btf_verifier_log_type(env, t, "Invalid name"); 3167 return -EINVAL; 3168 } 3169 3170 btf_verifier_log_type(env, t, NULL); 3171 3172 last_offset = 0; 3173 for_each_member(i, t, member) { 3174 if (!btf_name_offset_valid(btf, member->name_off)) { 3175 btf_verifier_log_member(env, t, member, 3176 "Invalid member name_offset:%u", 3177 member->name_off); 3178 return -EINVAL; 3179 } 3180 3181 /* struct member either no name or a valid one */ 3182 if (member->name_off && 3183 !btf_name_valid_identifier(btf, member->name_off)) { 3184 btf_verifier_log_member(env, t, member, "Invalid name"); 3185 return -EINVAL; 3186 } 3187 /* A member cannot be in type void */ 3188 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3189 btf_verifier_log_member(env, t, member, 3190 "Invalid type_id"); 3191 return -EINVAL; 3192 } 3193 3194 offset = __btf_member_bit_offset(t, member); 3195 if (is_union && offset) { 3196 btf_verifier_log_member(env, t, member, 3197 "Invalid member bits_offset"); 3198 return -EINVAL; 3199 } 3200 3201 /* 3202 * ">" instead of ">=" because the last member could be 3203 * "char a[0];" 3204 */ 3205 if (last_offset > offset) { 3206 btf_verifier_log_member(env, t, member, 3207 "Invalid member bits_offset"); 3208 return -EINVAL; 3209 } 3210 3211 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3212 btf_verifier_log_member(env, t, member, 3213 "Member bits_offset exceeds its struct size"); 3214 return -EINVAL; 3215 } 3216 3217 btf_verifier_log_member(env, t, member, NULL); 3218 last_offset = offset; 3219 } 3220 3221 return meta_needed; 3222 } 3223 3224 static int btf_struct_resolve(struct btf_verifier_env *env, 3225 const struct resolve_vertex *v) 3226 { 3227 const struct btf_member *member; 3228 int err; 3229 u16 i; 3230 3231 /* Before continue resolving the next_member, 3232 * ensure the last member is indeed resolved to a 3233 * type with size info. 3234 */ 3235 if (v->next_member) { 3236 const struct btf_type *last_member_type; 3237 const struct btf_member *last_member; 3238 u32 last_member_type_id; 3239 3240 last_member = btf_type_member(v->t) + v->next_member - 1; 3241 last_member_type_id = last_member->type; 3242 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3243 last_member_type_id))) 3244 return -EINVAL; 3245 3246 last_member_type = btf_type_by_id(env->btf, 3247 last_member_type_id); 3248 if (btf_type_kflag(v->t)) 3249 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3250 last_member, 3251 last_member_type); 3252 else 3253 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3254 last_member, 3255 last_member_type); 3256 if (err) 3257 return err; 3258 } 3259 3260 for_each_member_from(i, v->next_member, v->t, member) { 3261 u32 member_type_id = member->type; 3262 const struct btf_type *member_type = btf_type_by_id(env->btf, 3263 member_type_id); 3264 3265 if (btf_type_nosize_or_null(member_type) || 3266 btf_type_is_resolve_source_only(member_type)) { 3267 btf_verifier_log_member(env, v->t, member, 3268 "Invalid member"); 3269 return -EINVAL; 3270 } 3271 3272 if (!env_type_is_resolve_sink(env, member_type) && 3273 !env_type_is_resolved(env, member_type_id)) { 3274 env_stack_set_next_member(env, i + 1); 3275 return env_stack_push(env, member_type, member_type_id); 3276 } 3277 3278 if (btf_type_kflag(v->t)) 3279 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3280 member, 3281 member_type); 3282 else 3283 err = btf_type_ops(member_type)->check_member(env, v->t, 3284 member, 3285 member_type); 3286 if (err) 3287 return err; 3288 } 3289 3290 env_stack_pop_resolved(env, 0, 0); 3291 3292 return 0; 3293 } 3294 3295 static void btf_struct_log(struct btf_verifier_env *env, 3296 const struct btf_type *t) 3297 { 3298 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3299 } 3300 3301 enum { 3302 BTF_FIELD_IGNORE = 0, 3303 BTF_FIELD_FOUND = 1, 3304 }; 3305 3306 struct btf_field_info { 3307 enum btf_field_type type; 3308 u32 off; 3309 union { 3310 struct { 3311 u32 type_id; 3312 } kptr; 3313 struct { 3314 const char *node_name; 3315 u32 value_btf_id; 3316 } graph_root; 3317 }; 3318 }; 3319 3320 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3321 u32 off, int sz, enum btf_field_type field_type, 3322 struct btf_field_info *info) 3323 { 3324 if (!__btf_type_is_struct(t)) 3325 return BTF_FIELD_IGNORE; 3326 if (t->size != sz) 3327 return BTF_FIELD_IGNORE; 3328 info->type = field_type; 3329 info->off = off; 3330 return BTF_FIELD_FOUND; 3331 } 3332 3333 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3334 u32 off, int sz, struct btf_field_info *info, u32 field_mask) 3335 { 3336 enum btf_field_type type; 3337 const char *tag_value; 3338 bool is_type_tag; 3339 u32 res_id; 3340 3341 /* Permit modifiers on the pointer itself */ 3342 if (btf_type_is_volatile(t)) 3343 t = btf_type_by_id(btf, t->type); 3344 /* For PTR, sz is always == 8 */ 3345 if (!btf_type_is_ptr(t)) 3346 return BTF_FIELD_IGNORE; 3347 t = btf_type_by_id(btf, t->type); 3348 is_type_tag = btf_type_is_type_tag(t) && !btf_type_kflag(t); 3349 if (!is_type_tag) 3350 return BTF_FIELD_IGNORE; 3351 /* Reject extra tags */ 3352 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3353 return -EINVAL; 3354 tag_value = __btf_name_by_offset(btf, t->name_off); 3355 if (!strcmp("kptr_untrusted", tag_value)) 3356 type = BPF_KPTR_UNREF; 3357 else if (!strcmp("kptr", tag_value)) 3358 type = BPF_KPTR_REF; 3359 else if (!strcmp("percpu_kptr", tag_value)) 3360 type = BPF_KPTR_PERCPU; 3361 else if (!strcmp("uptr", tag_value)) 3362 type = BPF_UPTR; 3363 else 3364 return -EINVAL; 3365 3366 if (!(type & field_mask)) 3367 return BTF_FIELD_IGNORE; 3368 3369 /* Get the base type */ 3370 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3371 /* Only pointer to struct is allowed */ 3372 if (!__btf_type_is_struct(t)) 3373 return -EINVAL; 3374 3375 info->type = type; 3376 info->off = off; 3377 info->kptr.type_id = res_id; 3378 return BTF_FIELD_FOUND; 3379 } 3380 3381 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 3382 int comp_idx, const char *tag_key, int last_id) 3383 { 3384 int len = strlen(tag_key); 3385 int i, n; 3386 3387 for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) { 3388 const struct btf_type *t = btf_type_by_id(btf, i); 3389 3390 if (!btf_type_is_decl_tag(t)) 3391 continue; 3392 if (pt != btf_type_by_id(btf, t->type)) 3393 continue; 3394 if (btf_type_decl_tag(t)->component_idx != comp_idx) 3395 continue; 3396 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3397 continue; 3398 return i; 3399 } 3400 return -ENOENT; 3401 } 3402 3403 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 3404 int comp_idx, const char *tag_key) 3405 { 3406 const char *value = NULL; 3407 const struct btf_type *t; 3408 int len, id; 3409 3410 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0); 3411 if (id < 0) 3412 return ERR_PTR(id); 3413 3414 t = btf_type_by_id(btf, id); 3415 len = strlen(tag_key); 3416 value = __btf_name_by_offset(btf, t->name_off) + len; 3417 3418 /* Prevent duplicate entries for same type */ 3419 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id); 3420 if (id >= 0) 3421 return ERR_PTR(-EEXIST); 3422 3423 return value; 3424 } 3425 3426 static int 3427 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3428 const struct btf_type *t, int comp_idx, u32 off, 3429 int sz, struct btf_field_info *info, 3430 enum btf_field_type head_type) 3431 { 3432 const char *node_field_name; 3433 const char *value_type; 3434 s32 id; 3435 3436 if (!__btf_type_is_struct(t)) 3437 return BTF_FIELD_IGNORE; 3438 if (t->size != sz) 3439 return BTF_FIELD_IGNORE; 3440 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3441 if (IS_ERR(value_type)) 3442 return -EINVAL; 3443 node_field_name = strstr(value_type, ":"); 3444 if (!node_field_name) 3445 return -EINVAL; 3446 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); 3447 if (!value_type) 3448 return -ENOMEM; 3449 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3450 kfree(value_type); 3451 if (id < 0) 3452 return id; 3453 node_field_name++; 3454 if (str_is_empty(node_field_name)) 3455 return -EINVAL; 3456 info->type = head_type; 3457 info->off = off; 3458 info->graph_root.value_btf_id = id; 3459 info->graph_root.node_name = node_field_name; 3460 return BTF_FIELD_FOUND; 3461 } 3462 3463 #define field_mask_test_name(field_type, field_type_str) \ 3464 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3465 type = field_type; \ 3466 goto end; \ 3467 } 3468 3469 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type, 3470 u32 field_mask, u32 *seen_mask, 3471 int *align, int *sz) 3472 { 3473 int type = 0; 3474 const char *name = __btf_name_by_offset(btf, var_type->name_off); 3475 3476 if (field_mask & BPF_SPIN_LOCK) { 3477 if (!strcmp(name, "bpf_spin_lock")) { 3478 if (*seen_mask & BPF_SPIN_LOCK) 3479 return -E2BIG; 3480 *seen_mask |= BPF_SPIN_LOCK; 3481 type = BPF_SPIN_LOCK; 3482 goto end; 3483 } 3484 } 3485 if (field_mask & BPF_RES_SPIN_LOCK) { 3486 if (!strcmp(name, "bpf_res_spin_lock")) { 3487 if (*seen_mask & BPF_RES_SPIN_LOCK) 3488 return -E2BIG; 3489 *seen_mask |= BPF_RES_SPIN_LOCK; 3490 type = BPF_RES_SPIN_LOCK; 3491 goto end; 3492 } 3493 } 3494 if (field_mask & BPF_TIMER) { 3495 if (!strcmp(name, "bpf_timer")) { 3496 if (*seen_mask & BPF_TIMER) 3497 return -E2BIG; 3498 *seen_mask |= BPF_TIMER; 3499 type = BPF_TIMER; 3500 goto end; 3501 } 3502 } 3503 if (field_mask & BPF_WORKQUEUE) { 3504 if (!strcmp(name, "bpf_wq")) { 3505 if (*seen_mask & BPF_WORKQUEUE) 3506 return -E2BIG; 3507 *seen_mask |= BPF_WORKQUEUE; 3508 type = BPF_WORKQUEUE; 3509 goto end; 3510 } 3511 } 3512 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3513 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3514 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3515 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3516 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); 3517 3518 /* Only return BPF_KPTR when all other types with matchable names fail */ 3519 if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) { 3520 type = BPF_KPTR_REF; 3521 goto end; 3522 } 3523 return 0; 3524 end: 3525 *sz = btf_field_type_size(type); 3526 *align = btf_field_type_align(type); 3527 return type; 3528 } 3529 3530 #undef field_mask_test_name 3531 3532 /* Repeat a number of fields for a specified number of times. 3533 * 3534 * Copy the fields starting from the first field and repeat them for 3535 * repeat_cnt times. The fields are repeated by adding the offset of each 3536 * field with 3537 * (i + 1) * elem_size 3538 * where i is the repeat index and elem_size is the size of an element. 3539 */ 3540 static int btf_repeat_fields(struct btf_field_info *info, int info_cnt, 3541 u32 field_cnt, u32 repeat_cnt, u32 elem_size) 3542 { 3543 u32 i, j; 3544 u32 cur; 3545 3546 /* Ensure not repeating fields that should not be repeated. */ 3547 for (i = 0; i < field_cnt; i++) { 3548 switch (info[i].type) { 3549 case BPF_KPTR_UNREF: 3550 case BPF_KPTR_REF: 3551 case BPF_KPTR_PERCPU: 3552 case BPF_UPTR: 3553 case BPF_LIST_HEAD: 3554 case BPF_RB_ROOT: 3555 break; 3556 default: 3557 return -EINVAL; 3558 } 3559 } 3560 3561 /* The type of struct size or variable size is u32, 3562 * so the multiplication will not overflow. 3563 */ 3564 if (field_cnt * (repeat_cnt + 1) > info_cnt) 3565 return -E2BIG; 3566 3567 cur = field_cnt; 3568 for (i = 0; i < repeat_cnt; i++) { 3569 memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0])); 3570 for (j = 0; j < field_cnt; j++) 3571 info[cur++].off += (i + 1) * elem_size; 3572 } 3573 3574 return 0; 3575 } 3576 3577 static int btf_find_struct_field(const struct btf *btf, 3578 const struct btf_type *t, u32 field_mask, 3579 struct btf_field_info *info, int info_cnt, 3580 u32 level); 3581 3582 /* Find special fields in the struct type of a field. 3583 * 3584 * This function is used to find fields of special types that is not a 3585 * global variable or a direct field of a struct type. It also handles the 3586 * repetition if it is the element type of an array. 3587 */ 3588 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t, 3589 u32 off, u32 nelems, 3590 u32 field_mask, struct btf_field_info *info, 3591 int info_cnt, u32 level) 3592 { 3593 int ret, err, i; 3594 3595 level++; 3596 if (level >= MAX_RESOLVE_DEPTH) 3597 return -E2BIG; 3598 3599 ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level); 3600 3601 if (ret <= 0) 3602 return ret; 3603 3604 /* Shift the offsets of the nested struct fields to the offsets 3605 * related to the container. 3606 */ 3607 for (i = 0; i < ret; i++) 3608 info[i].off += off; 3609 3610 if (nelems > 1) { 3611 err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size); 3612 if (err == 0) 3613 ret *= nelems; 3614 else 3615 ret = err; 3616 } 3617 3618 return ret; 3619 } 3620 3621 static int btf_find_field_one(const struct btf *btf, 3622 const struct btf_type *var, 3623 const struct btf_type *var_type, 3624 int var_idx, 3625 u32 off, u32 expected_size, 3626 u32 field_mask, u32 *seen_mask, 3627 struct btf_field_info *info, int info_cnt, 3628 u32 level) 3629 { 3630 int ret, align, sz, field_type; 3631 struct btf_field_info tmp; 3632 const struct btf_array *array; 3633 u32 i, nelems = 1; 3634 3635 /* Walk into array types to find the element type and the number of 3636 * elements in the (flattened) array. 3637 */ 3638 for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) { 3639 array = btf_array(var_type); 3640 nelems *= array->nelems; 3641 var_type = btf_type_by_id(btf, array->type); 3642 } 3643 if (i == MAX_RESOLVE_DEPTH) 3644 return -E2BIG; 3645 if (nelems == 0) 3646 return 0; 3647 3648 field_type = btf_get_field_type(btf, var_type, 3649 field_mask, seen_mask, &align, &sz); 3650 /* Look into variables of struct types */ 3651 if (!field_type && __btf_type_is_struct(var_type)) { 3652 sz = var_type->size; 3653 if (expected_size && expected_size != sz * nelems) 3654 return 0; 3655 ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask, 3656 &info[0], info_cnt, level); 3657 return ret; 3658 } 3659 3660 if (field_type == 0) 3661 return 0; 3662 if (field_type < 0) 3663 return field_type; 3664 3665 if (expected_size && expected_size != sz * nelems) 3666 return 0; 3667 if (off % align) 3668 return 0; 3669 3670 switch (field_type) { 3671 case BPF_SPIN_LOCK: 3672 case BPF_RES_SPIN_LOCK: 3673 case BPF_TIMER: 3674 case BPF_WORKQUEUE: 3675 case BPF_LIST_NODE: 3676 case BPF_RB_NODE: 3677 case BPF_REFCOUNT: 3678 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3679 info_cnt ? &info[0] : &tmp); 3680 if (ret < 0) 3681 return ret; 3682 break; 3683 case BPF_KPTR_UNREF: 3684 case BPF_KPTR_REF: 3685 case BPF_KPTR_PERCPU: 3686 case BPF_UPTR: 3687 ret = btf_find_kptr(btf, var_type, off, sz, 3688 info_cnt ? &info[0] : &tmp, field_mask); 3689 if (ret < 0) 3690 return ret; 3691 break; 3692 case BPF_LIST_HEAD: 3693 case BPF_RB_ROOT: 3694 ret = btf_find_graph_root(btf, var, var_type, 3695 var_idx, off, sz, 3696 info_cnt ? &info[0] : &tmp, 3697 field_type); 3698 if (ret < 0) 3699 return ret; 3700 break; 3701 default: 3702 return -EFAULT; 3703 } 3704 3705 if (ret == BTF_FIELD_IGNORE) 3706 return 0; 3707 if (!info_cnt) 3708 return -E2BIG; 3709 if (nelems > 1) { 3710 ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz); 3711 if (ret < 0) 3712 return ret; 3713 } 3714 return nelems; 3715 } 3716 3717 static int btf_find_struct_field(const struct btf *btf, 3718 const struct btf_type *t, u32 field_mask, 3719 struct btf_field_info *info, int info_cnt, 3720 u32 level) 3721 { 3722 int ret, idx = 0; 3723 const struct btf_member *member; 3724 u32 i, off, seen_mask = 0; 3725 3726 for_each_member(i, t, member) { 3727 const struct btf_type *member_type = btf_type_by_id(btf, 3728 member->type); 3729 3730 off = __btf_member_bit_offset(t, member); 3731 if (off % 8) 3732 /* valid C code cannot generate such BTF */ 3733 return -EINVAL; 3734 off /= 8; 3735 3736 ret = btf_find_field_one(btf, t, member_type, i, 3737 off, 0, 3738 field_mask, &seen_mask, 3739 &info[idx], info_cnt - idx, level); 3740 if (ret < 0) 3741 return ret; 3742 idx += ret; 3743 } 3744 return idx; 3745 } 3746 3747 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3748 u32 field_mask, struct btf_field_info *info, 3749 int info_cnt, u32 level) 3750 { 3751 int ret, idx = 0; 3752 const struct btf_var_secinfo *vsi; 3753 u32 i, off, seen_mask = 0; 3754 3755 for_each_vsi(i, t, vsi) { 3756 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3757 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3758 3759 off = vsi->offset; 3760 ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size, 3761 field_mask, &seen_mask, 3762 &info[idx], info_cnt - idx, 3763 level); 3764 if (ret < 0) 3765 return ret; 3766 idx += ret; 3767 } 3768 return idx; 3769 } 3770 3771 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3772 u32 field_mask, struct btf_field_info *info, 3773 int info_cnt) 3774 { 3775 if (__btf_type_is_struct(t)) 3776 return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0); 3777 else if (btf_type_is_datasec(t)) 3778 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0); 3779 return -EINVAL; 3780 } 3781 3782 /* Callers have to ensure the life cycle of btf if it is program BTF */ 3783 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3784 struct btf_field_info *info) 3785 { 3786 struct module *mod = NULL; 3787 const struct btf_type *t; 3788 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3789 * is that BTF, otherwise it's program BTF 3790 */ 3791 struct btf *kptr_btf; 3792 int ret; 3793 s32 id; 3794 3795 /* Find type in map BTF, and use it to look up the matching type 3796 * in vmlinux or module BTFs, by name and kind. 3797 */ 3798 t = btf_type_by_id(btf, info->kptr.type_id); 3799 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3800 &kptr_btf); 3801 if (id == -ENOENT) { 3802 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3803 WARN_ON_ONCE(btf_is_kernel(btf)); 3804 3805 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3806 * kptr allocated via bpf_obj_new 3807 */ 3808 field->kptr.dtor = NULL; 3809 id = info->kptr.type_id; 3810 kptr_btf = (struct btf *)btf; 3811 goto found_dtor; 3812 } 3813 if (id < 0) 3814 return id; 3815 3816 /* Find and stash the function pointer for the destruction function that 3817 * needs to be eventually invoked from the map free path. 3818 */ 3819 if (info->type == BPF_KPTR_REF) { 3820 const struct btf_type *dtor_func; 3821 const char *dtor_func_name; 3822 unsigned long addr; 3823 s32 dtor_btf_id; 3824 3825 /* This call also serves as a whitelist of allowed objects that 3826 * can be used as a referenced pointer and be stored in a map at 3827 * the same time. 3828 */ 3829 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3830 if (dtor_btf_id < 0) { 3831 ret = dtor_btf_id; 3832 goto end_btf; 3833 } 3834 3835 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3836 if (!dtor_func) { 3837 ret = -ENOENT; 3838 goto end_btf; 3839 } 3840 3841 if (btf_is_module(kptr_btf)) { 3842 mod = btf_try_get_module(kptr_btf); 3843 if (!mod) { 3844 ret = -ENXIO; 3845 goto end_btf; 3846 } 3847 } 3848 3849 /* We already verified dtor_func to be btf_type_is_func 3850 * in register_btf_id_dtor_kfuncs. 3851 */ 3852 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3853 addr = kallsyms_lookup_name(dtor_func_name); 3854 if (!addr) { 3855 ret = -EINVAL; 3856 goto end_mod; 3857 } 3858 field->kptr.dtor = (void *)addr; 3859 } 3860 3861 found_dtor: 3862 field->kptr.btf_id = id; 3863 field->kptr.btf = kptr_btf; 3864 field->kptr.module = mod; 3865 return 0; 3866 end_mod: 3867 module_put(mod); 3868 end_btf: 3869 btf_put(kptr_btf); 3870 return ret; 3871 } 3872 3873 static int btf_parse_graph_root(const struct btf *btf, 3874 struct btf_field *field, 3875 struct btf_field_info *info, 3876 const char *node_type_name, 3877 size_t node_type_align) 3878 { 3879 const struct btf_type *t, *n = NULL; 3880 const struct btf_member *member; 3881 u32 offset; 3882 int i; 3883 3884 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3885 /* We've already checked that value_btf_id is a struct type. We 3886 * just need to figure out the offset of the list_node, and 3887 * verify its type. 3888 */ 3889 for_each_member(i, t, member) { 3890 if (strcmp(info->graph_root.node_name, 3891 __btf_name_by_offset(btf, member->name_off))) 3892 continue; 3893 /* Invalid BTF, two members with same name */ 3894 if (n) 3895 return -EINVAL; 3896 n = btf_type_by_id(btf, member->type); 3897 if (!__btf_type_is_struct(n)) 3898 return -EINVAL; 3899 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3900 return -EINVAL; 3901 offset = __btf_member_bit_offset(n, member); 3902 if (offset % 8) 3903 return -EINVAL; 3904 offset /= 8; 3905 if (offset % node_type_align) 3906 return -EINVAL; 3907 3908 field->graph_root.btf = (struct btf *)btf; 3909 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3910 field->graph_root.node_offset = offset; 3911 } 3912 if (!n) 3913 return -ENOENT; 3914 return 0; 3915 } 3916 3917 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3918 struct btf_field_info *info) 3919 { 3920 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3921 __alignof__(struct bpf_list_node)); 3922 } 3923 3924 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3925 struct btf_field_info *info) 3926 { 3927 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3928 __alignof__(struct bpf_rb_node)); 3929 } 3930 3931 static int btf_field_cmp(const void *_a, const void *_b, const void *priv) 3932 { 3933 const struct btf_field *a = (const struct btf_field *)_a; 3934 const struct btf_field *b = (const struct btf_field *)_b; 3935 3936 if (a->offset < b->offset) 3937 return -1; 3938 else if (a->offset > b->offset) 3939 return 1; 3940 return 0; 3941 } 3942 3943 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3944 u32 field_mask, u32 value_size) 3945 { 3946 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3947 u32 next_off = 0, field_type_size; 3948 struct btf_record *rec; 3949 int ret, i, cnt; 3950 3951 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3952 if (ret < 0) 3953 return ERR_PTR(ret); 3954 if (!ret) 3955 return NULL; 3956 3957 cnt = ret; 3958 /* This needs to be kzalloc to zero out padding and unused fields, see 3959 * comment in btf_record_equal. 3960 */ 3961 rec = kzalloc(struct_size(rec, fields, cnt), GFP_KERNEL | __GFP_NOWARN); 3962 if (!rec) 3963 return ERR_PTR(-ENOMEM); 3964 3965 rec->spin_lock_off = -EINVAL; 3966 rec->res_spin_lock_off = -EINVAL; 3967 rec->timer_off = -EINVAL; 3968 rec->wq_off = -EINVAL; 3969 rec->refcount_off = -EINVAL; 3970 for (i = 0; i < cnt; i++) { 3971 field_type_size = btf_field_type_size(info_arr[i].type); 3972 if (info_arr[i].off + field_type_size > value_size) { 3973 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3974 ret = -EFAULT; 3975 goto end; 3976 } 3977 if (info_arr[i].off < next_off) { 3978 ret = -EEXIST; 3979 goto end; 3980 } 3981 next_off = info_arr[i].off + field_type_size; 3982 3983 rec->field_mask |= info_arr[i].type; 3984 rec->fields[i].offset = info_arr[i].off; 3985 rec->fields[i].type = info_arr[i].type; 3986 rec->fields[i].size = field_type_size; 3987 3988 switch (info_arr[i].type) { 3989 case BPF_SPIN_LOCK: 3990 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3991 /* Cache offset for faster lookup at runtime */ 3992 rec->spin_lock_off = rec->fields[i].offset; 3993 break; 3994 case BPF_RES_SPIN_LOCK: 3995 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3996 /* Cache offset for faster lookup at runtime */ 3997 rec->res_spin_lock_off = rec->fields[i].offset; 3998 break; 3999 case BPF_TIMER: 4000 WARN_ON_ONCE(rec->timer_off >= 0); 4001 /* Cache offset for faster lookup at runtime */ 4002 rec->timer_off = rec->fields[i].offset; 4003 break; 4004 case BPF_WORKQUEUE: 4005 WARN_ON_ONCE(rec->wq_off >= 0); 4006 /* Cache offset for faster lookup at runtime */ 4007 rec->wq_off = rec->fields[i].offset; 4008 break; 4009 case BPF_REFCOUNT: 4010 WARN_ON_ONCE(rec->refcount_off >= 0); 4011 /* Cache offset for faster lookup at runtime */ 4012 rec->refcount_off = rec->fields[i].offset; 4013 break; 4014 case BPF_KPTR_UNREF: 4015 case BPF_KPTR_REF: 4016 case BPF_KPTR_PERCPU: 4017 case BPF_UPTR: 4018 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 4019 if (ret < 0) 4020 goto end; 4021 break; 4022 case BPF_LIST_HEAD: 4023 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 4024 if (ret < 0) 4025 goto end; 4026 break; 4027 case BPF_RB_ROOT: 4028 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 4029 if (ret < 0) 4030 goto end; 4031 break; 4032 case BPF_LIST_NODE: 4033 case BPF_RB_NODE: 4034 break; 4035 default: 4036 ret = -EFAULT; 4037 goto end; 4038 } 4039 rec->cnt++; 4040 } 4041 4042 if (rec->spin_lock_off >= 0 && rec->res_spin_lock_off >= 0) { 4043 ret = -EINVAL; 4044 goto end; 4045 } 4046 4047 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 4048 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 4049 btf_record_has_field(rec, BPF_RB_ROOT)) && 4050 (rec->spin_lock_off < 0 && rec->res_spin_lock_off < 0)) { 4051 ret = -EINVAL; 4052 goto end; 4053 } 4054 4055 if (rec->refcount_off < 0 && 4056 btf_record_has_field(rec, BPF_LIST_NODE) && 4057 btf_record_has_field(rec, BPF_RB_NODE)) { 4058 ret = -EINVAL; 4059 goto end; 4060 } 4061 4062 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, 4063 NULL, rec); 4064 4065 return rec; 4066 end: 4067 btf_record_free(rec); 4068 return ERR_PTR(ret); 4069 } 4070 4071 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 4072 { 4073 int i; 4074 4075 /* There are three types that signify ownership of some other type: 4076 * kptr_ref, bpf_list_head, bpf_rb_root. 4077 * kptr_ref only supports storing kernel types, which can't store 4078 * references to program allocated local types. 4079 * 4080 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 4081 * does not form cycles. 4082 */ 4083 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR))) 4084 return 0; 4085 for (i = 0; i < rec->cnt; i++) { 4086 struct btf_struct_meta *meta; 4087 const struct btf_type *t; 4088 u32 btf_id; 4089 4090 if (rec->fields[i].type == BPF_UPTR) { 4091 /* The uptr only supports pinning one page and cannot 4092 * point to a kernel struct 4093 */ 4094 if (btf_is_kernel(rec->fields[i].kptr.btf)) 4095 return -EINVAL; 4096 t = btf_type_by_id(rec->fields[i].kptr.btf, 4097 rec->fields[i].kptr.btf_id); 4098 if (!t->size) 4099 return -EINVAL; 4100 if (t->size > PAGE_SIZE) 4101 return -E2BIG; 4102 continue; 4103 } 4104 4105 if (!(rec->fields[i].type & BPF_GRAPH_ROOT)) 4106 continue; 4107 btf_id = rec->fields[i].graph_root.value_btf_id; 4108 meta = btf_find_struct_meta(btf, btf_id); 4109 if (!meta) 4110 return -EFAULT; 4111 rec->fields[i].graph_root.value_rec = meta->record; 4112 4113 /* We need to set value_rec for all root types, but no need 4114 * to check ownership cycle for a type unless it's also a 4115 * node type. 4116 */ 4117 if (!(rec->field_mask & BPF_GRAPH_NODE)) 4118 continue; 4119 4120 /* We need to ensure ownership acyclicity among all types. The 4121 * proper way to do it would be to topologically sort all BTF 4122 * IDs based on the ownership edges, since there can be multiple 4123 * bpf_{list_head,rb_node} in a type. Instead, we use the 4124 * following resaoning: 4125 * 4126 * - A type can only be owned by another type in user BTF if it 4127 * has a bpf_{list,rb}_node. Let's call these node types. 4128 * - A type can only _own_ another type in user BTF if it has a 4129 * bpf_{list_head,rb_root}. Let's call these root types. 4130 * 4131 * We ensure that if a type is both a root and node, its 4132 * element types cannot be root types. 4133 * 4134 * To ensure acyclicity: 4135 * 4136 * When A is an root type but not a node, its ownership 4137 * chain can be: 4138 * A -> B -> C 4139 * Where: 4140 * - A is an root, e.g. has bpf_rb_root. 4141 * - B is both a root and node, e.g. has bpf_rb_node and 4142 * bpf_list_head. 4143 * - C is only an root, e.g. has bpf_list_node 4144 * 4145 * When A is both a root and node, some other type already 4146 * owns it in the BTF domain, hence it can not own 4147 * another root type through any of the ownership edges. 4148 * A -> B 4149 * Where: 4150 * - A is both an root and node. 4151 * - B is only an node. 4152 */ 4153 if (meta->record->field_mask & BPF_GRAPH_ROOT) 4154 return -ELOOP; 4155 } 4156 return 0; 4157 } 4158 4159 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 4160 u32 type_id, void *data, u8 bits_offset, 4161 struct btf_show *show) 4162 { 4163 const struct btf_member *member; 4164 void *safe_data; 4165 u32 i; 4166 4167 safe_data = btf_show_start_struct_type(show, t, type_id, data); 4168 if (!safe_data) 4169 return; 4170 4171 for_each_member(i, t, member) { 4172 const struct btf_type *member_type = btf_type_by_id(btf, 4173 member->type); 4174 const struct btf_kind_operations *ops; 4175 u32 member_offset, bitfield_size; 4176 u32 bytes_offset; 4177 u8 bits8_offset; 4178 4179 btf_show_start_member(show, member); 4180 4181 member_offset = __btf_member_bit_offset(t, member); 4182 bitfield_size = __btf_member_bitfield_size(t, member); 4183 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 4184 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 4185 if (bitfield_size) { 4186 safe_data = btf_show_start_type(show, member_type, 4187 member->type, 4188 data + bytes_offset); 4189 if (safe_data) 4190 btf_bitfield_show(safe_data, 4191 bits8_offset, 4192 bitfield_size, show); 4193 btf_show_end_type(show); 4194 } else { 4195 ops = btf_type_ops(member_type); 4196 ops->show(btf, member_type, member->type, 4197 data + bytes_offset, bits8_offset, show); 4198 } 4199 4200 btf_show_end_member(show); 4201 } 4202 4203 btf_show_end_struct_type(show); 4204 } 4205 4206 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 4207 u32 type_id, void *data, u8 bits_offset, 4208 struct btf_show *show) 4209 { 4210 const struct btf_member *m = show->state.member; 4211 4212 /* 4213 * First check if any members would be shown (are non-zero). 4214 * See comments above "struct btf_show" definition for more 4215 * details on how this works at a high-level. 4216 */ 4217 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 4218 if (!show->state.depth_check) { 4219 show->state.depth_check = show->state.depth + 1; 4220 show->state.depth_to_show = 0; 4221 } 4222 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4223 /* Restore saved member data here */ 4224 show->state.member = m; 4225 if (show->state.depth_check != show->state.depth + 1) 4226 return; 4227 show->state.depth_check = 0; 4228 4229 if (show->state.depth_to_show <= show->state.depth) 4230 return; 4231 /* 4232 * Reaching here indicates we have recursed and found 4233 * non-zero child values. 4234 */ 4235 } 4236 4237 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4238 } 4239 4240 static const struct btf_kind_operations struct_ops = { 4241 .check_meta = btf_struct_check_meta, 4242 .resolve = btf_struct_resolve, 4243 .check_member = btf_struct_check_member, 4244 .check_kflag_member = btf_generic_check_kflag_member, 4245 .log_details = btf_struct_log, 4246 .show = btf_struct_show, 4247 }; 4248 4249 static int btf_enum_check_member(struct btf_verifier_env *env, 4250 const struct btf_type *struct_type, 4251 const struct btf_member *member, 4252 const struct btf_type *member_type) 4253 { 4254 u32 struct_bits_off = member->offset; 4255 u32 struct_size, bytes_offset; 4256 4257 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4258 btf_verifier_log_member(env, struct_type, member, 4259 "Member is not byte aligned"); 4260 return -EINVAL; 4261 } 4262 4263 struct_size = struct_type->size; 4264 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4265 if (struct_size - bytes_offset < member_type->size) { 4266 btf_verifier_log_member(env, struct_type, member, 4267 "Member exceeds struct_size"); 4268 return -EINVAL; 4269 } 4270 4271 return 0; 4272 } 4273 4274 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4275 const struct btf_type *struct_type, 4276 const struct btf_member *member, 4277 const struct btf_type *member_type) 4278 { 4279 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4280 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4281 4282 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4283 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4284 if (!nr_bits) { 4285 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4286 btf_verifier_log_member(env, struct_type, member, 4287 "Member is not byte aligned"); 4288 return -EINVAL; 4289 } 4290 4291 nr_bits = int_bitsize; 4292 } else if (nr_bits > int_bitsize) { 4293 btf_verifier_log_member(env, struct_type, member, 4294 "Invalid member bitfield_size"); 4295 return -EINVAL; 4296 } 4297 4298 struct_size = struct_type->size; 4299 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4300 if (struct_size < bytes_end) { 4301 btf_verifier_log_member(env, struct_type, member, 4302 "Member exceeds struct_size"); 4303 return -EINVAL; 4304 } 4305 4306 return 0; 4307 } 4308 4309 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4310 const struct btf_type *t, 4311 u32 meta_left) 4312 { 4313 const struct btf_enum *enums = btf_type_enum(t); 4314 struct btf *btf = env->btf; 4315 const char *fmt_str; 4316 u16 i, nr_enums; 4317 u32 meta_needed; 4318 4319 nr_enums = btf_type_vlen(t); 4320 meta_needed = nr_enums * sizeof(*enums); 4321 4322 if (meta_left < meta_needed) { 4323 btf_verifier_log_basic(env, t, 4324 "meta_left:%u meta_needed:%u", 4325 meta_left, meta_needed); 4326 return -EINVAL; 4327 } 4328 4329 if (t->size > 8 || !is_power_of_2(t->size)) { 4330 btf_verifier_log_type(env, t, "Unexpected size"); 4331 return -EINVAL; 4332 } 4333 4334 /* enum type either no name or a valid one */ 4335 if (t->name_off && 4336 !btf_name_valid_identifier(env->btf, t->name_off)) { 4337 btf_verifier_log_type(env, t, "Invalid name"); 4338 return -EINVAL; 4339 } 4340 4341 btf_verifier_log_type(env, t, NULL); 4342 4343 for (i = 0; i < nr_enums; i++) { 4344 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4345 btf_verifier_log(env, "\tInvalid name_offset:%u", 4346 enums[i].name_off); 4347 return -EINVAL; 4348 } 4349 4350 /* enum member must have a valid name */ 4351 if (!enums[i].name_off || 4352 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4353 btf_verifier_log_type(env, t, "Invalid name"); 4354 return -EINVAL; 4355 } 4356 4357 if (env->log.level == BPF_LOG_KERNEL) 4358 continue; 4359 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4360 btf_verifier_log(env, fmt_str, 4361 __btf_name_by_offset(btf, enums[i].name_off), 4362 enums[i].val); 4363 } 4364 4365 return meta_needed; 4366 } 4367 4368 static void btf_enum_log(struct btf_verifier_env *env, 4369 const struct btf_type *t) 4370 { 4371 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4372 } 4373 4374 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4375 u32 type_id, void *data, u8 bits_offset, 4376 struct btf_show *show) 4377 { 4378 const struct btf_enum *enums = btf_type_enum(t); 4379 u32 i, nr_enums = btf_type_vlen(t); 4380 void *safe_data; 4381 int v; 4382 4383 safe_data = btf_show_start_type(show, t, type_id, data); 4384 if (!safe_data) 4385 return; 4386 4387 v = *(int *)safe_data; 4388 4389 for (i = 0; i < nr_enums; i++) { 4390 if (v != enums[i].val) 4391 continue; 4392 4393 btf_show_type_value(show, "%s", 4394 __btf_name_by_offset(btf, 4395 enums[i].name_off)); 4396 4397 btf_show_end_type(show); 4398 return; 4399 } 4400 4401 if (btf_type_kflag(t)) 4402 btf_show_type_value(show, "%d", v); 4403 else 4404 btf_show_type_value(show, "%u", v); 4405 btf_show_end_type(show); 4406 } 4407 4408 static const struct btf_kind_operations enum_ops = { 4409 .check_meta = btf_enum_check_meta, 4410 .resolve = btf_df_resolve, 4411 .check_member = btf_enum_check_member, 4412 .check_kflag_member = btf_enum_check_kflag_member, 4413 .log_details = btf_enum_log, 4414 .show = btf_enum_show, 4415 }; 4416 4417 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4418 const struct btf_type *t, 4419 u32 meta_left) 4420 { 4421 const struct btf_enum64 *enums = btf_type_enum64(t); 4422 struct btf *btf = env->btf; 4423 const char *fmt_str; 4424 u16 i, nr_enums; 4425 u32 meta_needed; 4426 4427 nr_enums = btf_type_vlen(t); 4428 meta_needed = nr_enums * sizeof(*enums); 4429 4430 if (meta_left < meta_needed) { 4431 btf_verifier_log_basic(env, t, 4432 "meta_left:%u meta_needed:%u", 4433 meta_left, meta_needed); 4434 return -EINVAL; 4435 } 4436 4437 if (t->size > 8 || !is_power_of_2(t->size)) { 4438 btf_verifier_log_type(env, t, "Unexpected size"); 4439 return -EINVAL; 4440 } 4441 4442 /* enum type either no name or a valid one */ 4443 if (t->name_off && 4444 !btf_name_valid_identifier(env->btf, t->name_off)) { 4445 btf_verifier_log_type(env, t, "Invalid name"); 4446 return -EINVAL; 4447 } 4448 4449 btf_verifier_log_type(env, t, NULL); 4450 4451 for (i = 0; i < nr_enums; i++) { 4452 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4453 btf_verifier_log(env, "\tInvalid name_offset:%u", 4454 enums[i].name_off); 4455 return -EINVAL; 4456 } 4457 4458 /* enum member must have a valid name */ 4459 if (!enums[i].name_off || 4460 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4461 btf_verifier_log_type(env, t, "Invalid name"); 4462 return -EINVAL; 4463 } 4464 4465 if (env->log.level == BPF_LOG_KERNEL) 4466 continue; 4467 4468 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4469 btf_verifier_log(env, fmt_str, 4470 __btf_name_by_offset(btf, enums[i].name_off), 4471 btf_enum64_value(enums + i)); 4472 } 4473 4474 return meta_needed; 4475 } 4476 4477 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4478 u32 type_id, void *data, u8 bits_offset, 4479 struct btf_show *show) 4480 { 4481 const struct btf_enum64 *enums = btf_type_enum64(t); 4482 u32 i, nr_enums = btf_type_vlen(t); 4483 void *safe_data; 4484 s64 v; 4485 4486 safe_data = btf_show_start_type(show, t, type_id, data); 4487 if (!safe_data) 4488 return; 4489 4490 v = *(u64 *)safe_data; 4491 4492 for (i = 0; i < nr_enums; i++) { 4493 if (v != btf_enum64_value(enums + i)) 4494 continue; 4495 4496 btf_show_type_value(show, "%s", 4497 __btf_name_by_offset(btf, 4498 enums[i].name_off)); 4499 4500 btf_show_end_type(show); 4501 return; 4502 } 4503 4504 if (btf_type_kflag(t)) 4505 btf_show_type_value(show, "%lld", v); 4506 else 4507 btf_show_type_value(show, "%llu", v); 4508 btf_show_end_type(show); 4509 } 4510 4511 static const struct btf_kind_operations enum64_ops = { 4512 .check_meta = btf_enum64_check_meta, 4513 .resolve = btf_df_resolve, 4514 .check_member = btf_enum_check_member, 4515 .check_kflag_member = btf_enum_check_kflag_member, 4516 .log_details = btf_enum_log, 4517 .show = btf_enum64_show, 4518 }; 4519 4520 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4521 const struct btf_type *t, 4522 u32 meta_left) 4523 { 4524 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4525 4526 if (meta_left < meta_needed) { 4527 btf_verifier_log_basic(env, t, 4528 "meta_left:%u meta_needed:%u", 4529 meta_left, meta_needed); 4530 return -EINVAL; 4531 } 4532 4533 if (t->name_off) { 4534 btf_verifier_log_type(env, t, "Invalid name"); 4535 return -EINVAL; 4536 } 4537 4538 if (btf_type_kflag(t)) { 4539 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4540 return -EINVAL; 4541 } 4542 4543 btf_verifier_log_type(env, t, NULL); 4544 4545 return meta_needed; 4546 } 4547 4548 static void btf_func_proto_log(struct btf_verifier_env *env, 4549 const struct btf_type *t) 4550 { 4551 const struct btf_param *args = (const struct btf_param *)(t + 1); 4552 u16 nr_args = btf_type_vlen(t), i; 4553 4554 btf_verifier_log(env, "return=%u args=(", t->type); 4555 if (!nr_args) { 4556 btf_verifier_log(env, "void"); 4557 goto done; 4558 } 4559 4560 if (nr_args == 1 && !args[0].type) { 4561 /* Only one vararg */ 4562 btf_verifier_log(env, "vararg"); 4563 goto done; 4564 } 4565 4566 btf_verifier_log(env, "%u %s", args[0].type, 4567 __btf_name_by_offset(env->btf, 4568 args[0].name_off)); 4569 for (i = 1; i < nr_args - 1; i++) 4570 btf_verifier_log(env, ", %u %s", args[i].type, 4571 __btf_name_by_offset(env->btf, 4572 args[i].name_off)); 4573 4574 if (nr_args > 1) { 4575 const struct btf_param *last_arg = &args[nr_args - 1]; 4576 4577 if (last_arg->type) 4578 btf_verifier_log(env, ", %u %s", last_arg->type, 4579 __btf_name_by_offset(env->btf, 4580 last_arg->name_off)); 4581 else 4582 btf_verifier_log(env, ", vararg"); 4583 } 4584 4585 done: 4586 btf_verifier_log(env, ")"); 4587 } 4588 4589 static const struct btf_kind_operations func_proto_ops = { 4590 .check_meta = btf_func_proto_check_meta, 4591 .resolve = btf_df_resolve, 4592 /* 4593 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4594 * a struct's member. 4595 * 4596 * It should be a function pointer instead. 4597 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4598 * 4599 * Hence, there is no btf_func_check_member(). 4600 */ 4601 .check_member = btf_df_check_member, 4602 .check_kflag_member = btf_df_check_kflag_member, 4603 .log_details = btf_func_proto_log, 4604 .show = btf_df_show, 4605 }; 4606 4607 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4608 const struct btf_type *t, 4609 u32 meta_left) 4610 { 4611 if (!t->name_off || 4612 !btf_name_valid_identifier(env->btf, t->name_off)) { 4613 btf_verifier_log_type(env, t, "Invalid name"); 4614 return -EINVAL; 4615 } 4616 4617 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4618 btf_verifier_log_type(env, t, "Invalid func linkage"); 4619 return -EINVAL; 4620 } 4621 4622 if (btf_type_kflag(t)) { 4623 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4624 return -EINVAL; 4625 } 4626 4627 btf_verifier_log_type(env, t, NULL); 4628 4629 return 0; 4630 } 4631 4632 static int btf_func_resolve(struct btf_verifier_env *env, 4633 const struct resolve_vertex *v) 4634 { 4635 const struct btf_type *t = v->t; 4636 u32 next_type_id = t->type; 4637 int err; 4638 4639 err = btf_func_check(env, t); 4640 if (err) 4641 return err; 4642 4643 env_stack_pop_resolved(env, next_type_id, 0); 4644 return 0; 4645 } 4646 4647 static const struct btf_kind_operations func_ops = { 4648 .check_meta = btf_func_check_meta, 4649 .resolve = btf_func_resolve, 4650 .check_member = btf_df_check_member, 4651 .check_kflag_member = btf_df_check_kflag_member, 4652 .log_details = btf_ref_type_log, 4653 .show = btf_df_show, 4654 }; 4655 4656 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4657 const struct btf_type *t, 4658 u32 meta_left) 4659 { 4660 const struct btf_var *var; 4661 u32 meta_needed = sizeof(*var); 4662 4663 if (meta_left < meta_needed) { 4664 btf_verifier_log_basic(env, t, 4665 "meta_left:%u meta_needed:%u", 4666 meta_left, meta_needed); 4667 return -EINVAL; 4668 } 4669 4670 if (btf_type_vlen(t)) { 4671 btf_verifier_log_type(env, t, "vlen != 0"); 4672 return -EINVAL; 4673 } 4674 4675 if (btf_type_kflag(t)) { 4676 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4677 return -EINVAL; 4678 } 4679 4680 if (!t->name_off || 4681 !btf_name_valid_identifier(env->btf, t->name_off)) { 4682 btf_verifier_log_type(env, t, "Invalid name"); 4683 return -EINVAL; 4684 } 4685 4686 /* A var cannot be in type void */ 4687 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4688 btf_verifier_log_type(env, t, "Invalid type_id"); 4689 return -EINVAL; 4690 } 4691 4692 var = btf_type_var(t); 4693 if (var->linkage != BTF_VAR_STATIC && 4694 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4695 btf_verifier_log_type(env, t, "Linkage not supported"); 4696 return -EINVAL; 4697 } 4698 4699 btf_verifier_log_type(env, t, NULL); 4700 4701 return meta_needed; 4702 } 4703 4704 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4705 { 4706 const struct btf_var *var = btf_type_var(t); 4707 4708 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4709 } 4710 4711 static const struct btf_kind_operations var_ops = { 4712 .check_meta = btf_var_check_meta, 4713 .resolve = btf_var_resolve, 4714 .check_member = btf_df_check_member, 4715 .check_kflag_member = btf_df_check_kflag_member, 4716 .log_details = btf_var_log, 4717 .show = btf_var_show, 4718 }; 4719 4720 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4721 const struct btf_type *t, 4722 u32 meta_left) 4723 { 4724 const struct btf_var_secinfo *vsi; 4725 u64 last_vsi_end_off = 0, sum = 0; 4726 u32 i, meta_needed; 4727 4728 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4729 if (meta_left < meta_needed) { 4730 btf_verifier_log_basic(env, t, 4731 "meta_left:%u meta_needed:%u", 4732 meta_left, meta_needed); 4733 return -EINVAL; 4734 } 4735 4736 if (!t->size) { 4737 btf_verifier_log_type(env, t, "size == 0"); 4738 return -EINVAL; 4739 } 4740 4741 if (btf_type_kflag(t)) { 4742 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4743 return -EINVAL; 4744 } 4745 4746 if (!t->name_off || 4747 !btf_name_valid_section(env->btf, t->name_off)) { 4748 btf_verifier_log_type(env, t, "Invalid name"); 4749 return -EINVAL; 4750 } 4751 4752 btf_verifier_log_type(env, t, NULL); 4753 4754 for_each_vsi(i, t, vsi) { 4755 /* A var cannot be in type void */ 4756 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4757 btf_verifier_log_vsi(env, t, vsi, 4758 "Invalid type_id"); 4759 return -EINVAL; 4760 } 4761 4762 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4763 btf_verifier_log_vsi(env, t, vsi, 4764 "Invalid offset"); 4765 return -EINVAL; 4766 } 4767 4768 if (!vsi->size || vsi->size > t->size) { 4769 btf_verifier_log_vsi(env, t, vsi, 4770 "Invalid size"); 4771 return -EINVAL; 4772 } 4773 4774 last_vsi_end_off = vsi->offset + vsi->size; 4775 if (last_vsi_end_off > t->size) { 4776 btf_verifier_log_vsi(env, t, vsi, 4777 "Invalid offset+size"); 4778 return -EINVAL; 4779 } 4780 4781 btf_verifier_log_vsi(env, t, vsi, NULL); 4782 sum += vsi->size; 4783 } 4784 4785 if (t->size < sum) { 4786 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4787 return -EINVAL; 4788 } 4789 4790 return meta_needed; 4791 } 4792 4793 static int btf_datasec_resolve(struct btf_verifier_env *env, 4794 const struct resolve_vertex *v) 4795 { 4796 const struct btf_var_secinfo *vsi; 4797 struct btf *btf = env->btf; 4798 u16 i; 4799 4800 env->resolve_mode = RESOLVE_TBD; 4801 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4802 u32 var_type_id = vsi->type, type_id, type_size = 0; 4803 const struct btf_type *var_type = btf_type_by_id(env->btf, 4804 var_type_id); 4805 if (!var_type || !btf_type_is_var(var_type)) { 4806 btf_verifier_log_vsi(env, v->t, vsi, 4807 "Not a VAR kind member"); 4808 return -EINVAL; 4809 } 4810 4811 if (!env_type_is_resolve_sink(env, var_type) && 4812 !env_type_is_resolved(env, var_type_id)) { 4813 env_stack_set_next_member(env, i + 1); 4814 return env_stack_push(env, var_type, var_type_id); 4815 } 4816 4817 type_id = var_type->type; 4818 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4819 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4820 return -EINVAL; 4821 } 4822 4823 if (vsi->size < type_size) { 4824 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4825 return -EINVAL; 4826 } 4827 } 4828 4829 env_stack_pop_resolved(env, 0, 0); 4830 return 0; 4831 } 4832 4833 static void btf_datasec_log(struct btf_verifier_env *env, 4834 const struct btf_type *t) 4835 { 4836 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4837 } 4838 4839 static void btf_datasec_show(const struct btf *btf, 4840 const struct btf_type *t, u32 type_id, 4841 void *data, u8 bits_offset, 4842 struct btf_show *show) 4843 { 4844 const struct btf_var_secinfo *vsi; 4845 const struct btf_type *var; 4846 u32 i; 4847 4848 if (!btf_show_start_type(show, t, type_id, data)) 4849 return; 4850 4851 btf_show_type_value(show, "section (\"%s\") = {", 4852 __btf_name_by_offset(btf, t->name_off)); 4853 for_each_vsi(i, t, vsi) { 4854 var = btf_type_by_id(btf, vsi->type); 4855 if (i) 4856 btf_show(show, ","); 4857 btf_type_ops(var)->show(btf, var, vsi->type, 4858 data + vsi->offset, bits_offset, show); 4859 } 4860 btf_show_end_type(show); 4861 } 4862 4863 static const struct btf_kind_operations datasec_ops = { 4864 .check_meta = btf_datasec_check_meta, 4865 .resolve = btf_datasec_resolve, 4866 .check_member = btf_df_check_member, 4867 .check_kflag_member = btf_df_check_kflag_member, 4868 .log_details = btf_datasec_log, 4869 .show = btf_datasec_show, 4870 }; 4871 4872 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4873 const struct btf_type *t, 4874 u32 meta_left) 4875 { 4876 if (btf_type_vlen(t)) { 4877 btf_verifier_log_type(env, t, "vlen != 0"); 4878 return -EINVAL; 4879 } 4880 4881 if (btf_type_kflag(t)) { 4882 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4883 return -EINVAL; 4884 } 4885 4886 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4887 t->size != 16) { 4888 btf_verifier_log_type(env, t, "Invalid type_size"); 4889 return -EINVAL; 4890 } 4891 4892 btf_verifier_log_type(env, t, NULL); 4893 4894 return 0; 4895 } 4896 4897 static int btf_float_check_member(struct btf_verifier_env *env, 4898 const struct btf_type *struct_type, 4899 const struct btf_member *member, 4900 const struct btf_type *member_type) 4901 { 4902 u64 start_offset_bytes; 4903 u64 end_offset_bytes; 4904 u64 misalign_bits; 4905 u64 align_bytes; 4906 u64 align_bits; 4907 4908 /* Different architectures have different alignment requirements, so 4909 * here we check only for the reasonable minimum. This way we ensure 4910 * that types after CO-RE can pass the kernel BTF verifier. 4911 */ 4912 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4913 align_bits = align_bytes * BITS_PER_BYTE; 4914 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4915 if (misalign_bits) { 4916 btf_verifier_log_member(env, struct_type, member, 4917 "Member is not properly aligned"); 4918 return -EINVAL; 4919 } 4920 4921 start_offset_bytes = member->offset / BITS_PER_BYTE; 4922 end_offset_bytes = start_offset_bytes + member_type->size; 4923 if (end_offset_bytes > struct_type->size) { 4924 btf_verifier_log_member(env, struct_type, member, 4925 "Member exceeds struct_size"); 4926 return -EINVAL; 4927 } 4928 4929 return 0; 4930 } 4931 4932 static void btf_float_log(struct btf_verifier_env *env, 4933 const struct btf_type *t) 4934 { 4935 btf_verifier_log(env, "size=%u", t->size); 4936 } 4937 4938 static const struct btf_kind_operations float_ops = { 4939 .check_meta = btf_float_check_meta, 4940 .resolve = btf_df_resolve, 4941 .check_member = btf_float_check_member, 4942 .check_kflag_member = btf_generic_check_kflag_member, 4943 .log_details = btf_float_log, 4944 .show = btf_df_show, 4945 }; 4946 4947 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4948 const struct btf_type *t, 4949 u32 meta_left) 4950 { 4951 const struct btf_decl_tag *tag; 4952 u32 meta_needed = sizeof(*tag); 4953 s32 component_idx; 4954 const char *value; 4955 4956 if (meta_left < meta_needed) { 4957 btf_verifier_log_basic(env, t, 4958 "meta_left:%u meta_needed:%u", 4959 meta_left, meta_needed); 4960 return -EINVAL; 4961 } 4962 4963 value = btf_name_by_offset(env->btf, t->name_off); 4964 if (!value || !value[0]) { 4965 btf_verifier_log_type(env, t, "Invalid value"); 4966 return -EINVAL; 4967 } 4968 4969 if (btf_type_vlen(t)) { 4970 btf_verifier_log_type(env, t, "vlen != 0"); 4971 return -EINVAL; 4972 } 4973 4974 component_idx = btf_type_decl_tag(t)->component_idx; 4975 if (component_idx < -1) { 4976 btf_verifier_log_type(env, t, "Invalid component_idx"); 4977 return -EINVAL; 4978 } 4979 4980 btf_verifier_log_type(env, t, NULL); 4981 4982 return meta_needed; 4983 } 4984 4985 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4986 const struct resolve_vertex *v) 4987 { 4988 const struct btf_type *next_type; 4989 const struct btf_type *t = v->t; 4990 u32 next_type_id = t->type; 4991 struct btf *btf = env->btf; 4992 s32 component_idx; 4993 u32 vlen; 4994 4995 next_type = btf_type_by_id(btf, next_type_id); 4996 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4997 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4998 return -EINVAL; 4999 } 5000 5001 if (!env_type_is_resolve_sink(env, next_type) && 5002 !env_type_is_resolved(env, next_type_id)) 5003 return env_stack_push(env, next_type, next_type_id); 5004 5005 component_idx = btf_type_decl_tag(t)->component_idx; 5006 if (component_idx != -1) { 5007 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 5008 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 5009 return -EINVAL; 5010 } 5011 5012 if (btf_type_is_struct(next_type)) { 5013 vlen = btf_type_vlen(next_type); 5014 } else { 5015 /* next_type should be a function */ 5016 next_type = btf_type_by_id(btf, next_type->type); 5017 vlen = btf_type_vlen(next_type); 5018 } 5019 5020 if ((u32)component_idx >= vlen) { 5021 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 5022 return -EINVAL; 5023 } 5024 } 5025 5026 env_stack_pop_resolved(env, next_type_id, 0); 5027 5028 return 0; 5029 } 5030 5031 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 5032 { 5033 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 5034 btf_type_decl_tag(t)->component_idx); 5035 } 5036 5037 static const struct btf_kind_operations decl_tag_ops = { 5038 .check_meta = btf_decl_tag_check_meta, 5039 .resolve = btf_decl_tag_resolve, 5040 .check_member = btf_df_check_member, 5041 .check_kflag_member = btf_df_check_kflag_member, 5042 .log_details = btf_decl_tag_log, 5043 .show = btf_df_show, 5044 }; 5045 5046 static int btf_func_proto_check(struct btf_verifier_env *env, 5047 const struct btf_type *t) 5048 { 5049 const struct btf_type *ret_type; 5050 const struct btf_param *args; 5051 const struct btf *btf; 5052 u16 nr_args, i; 5053 int err; 5054 5055 btf = env->btf; 5056 args = (const struct btf_param *)(t + 1); 5057 nr_args = btf_type_vlen(t); 5058 5059 /* Check func return type which could be "void" (t->type == 0) */ 5060 if (t->type) { 5061 u32 ret_type_id = t->type; 5062 5063 ret_type = btf_type_by_id(btf, ret_type_id); 5064 if (!ret_type) { 5065 btf_verifier_log_type(env, t, "Invalid return type"); 5066 return -EINVAL; 5067 } 5068 5069 if (btf_type_is_resolve_source_only(ret_type)) { 5070 btf_verifier_log_type(env, t, "Invalid return type"); 5071 return -EINVAL; 5072 } 5073 5074 if (btf_type_needs_resolve(ret_type) && 5075 !env_type_is_resolved(env, ret_type_id)) { 5076 err = btf_resolve(env, ret_type, ret_type_id); 5077 if (err) 5078 return err; 5079 } 5080 5081 /* Ensure the return type is a type that has a size */ 5082 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 5083 btf_verifier_log_type(env, t, "Invalid return type"); 5084 return -EINVAL; 5085 } 5086 } 5087 5088 if (!nr_args) 5089 return 0; 5090 5091 /* Last func arg type_id could be 0 if it is a vararg */ 5092 if (!args[nr_args - 1].type) { 5093 if (args[nr_args - 1].name_off) { 5094 btf_verifier_log_type(env, t, "Invalid arg#%u", 5095 nr_args); 5096 return -EINVAL; 5097 } 5098 nr_args--; 5099 } 5100 5101 for (i = 0; i < nr_args; i++) { 5102 const struct btf_type *arg_type; 5103 u32 arg_type_id; 5104 5105 arg_type_id = args[i].type; 5106 arg_type = btf_type_by_id(btf, arg_type_id); 5107 if (!arg_type) { 5108 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5109 return -EINVAL; 5110 } 5111 5112 if (btf_type_is_resolve_source_only(arg_type)) { 5113 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5114 return -EINVAL; 5115 } 5116 5117 if (args[i].name_off && 5118 (!btf_name_offset_valid(btf, args[i].name_off) || 5119 !btf_name_valid_identifier(btf, args[i].name_off))) { 5120 btf_verifier_log_type(env, t, 5121 "Invalid arg#%u", i + 1); 5122 return -EINVAL; 5123 } 5124 5125 if (btf_type_needs_resolve(arg_type) && 5126 !env_type_is_resolved(env, arg_type_id)) { 5127 err = btf_resolve(env, arg_type, arg_type_id); 5128 if (err) 5129 return err; 5130 } 5131 5132 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 5133 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5134 return -EINVAL; 5135 } 5136 } 5137 5138 return 0; 5139 } 5140 5141 static int btf_func_check(struct btf_verifier_env *env, 5142 const struct btf_type *t) 5143 { 5144 const struct btf_type *proto_type; 5145 const struct btf_param *args; 5146 const struct btf *btf; 5147 u16 nr_args, i; 5148 5149 btf = env->btf; 5150 proto_type = btf_type_by_id(btf, t->type); 5151 5152 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 5153 btf_verifier_log_type(env, t, "Invalid type_id"); 5154 return -EINVAL; 5155 } 5156 5157 args = (const struct btf_param *)(proto_type + 1); 5158 nr_args = btf_type_vlen(proto_type); 5159 for (i = 0; i < nr_args; i++) { 5160 if (!args[i].name_off && args[i].type) { 5161 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5162 return -EINVAL; 5163 } 5164 } 5165 5166 return 0; 5167 } 5168 5169 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 5170 [BTF_KIND_INT] = &int_ops, 5171 [BTF_KIND_PTR] = &ptr_ops, 5172 [BTF_KIND_ARRAY] = &array_ops, 5173 [BTF_KIND_STRUCT] = &struct_ops, 5174 [BTF_KIND_UNION] = &struct_ops, 5175 [BTF_KIND_ENUM] = &enum_ops, 5176 [BTF_KIND_FWD] = &fwd_ops, 5177 [BTF_KIND_TYPEDEF] = &modifier_ops, 5178 [BTF_KIND_VOLATILE] = &modifier_ops, 5179 [BTF_KIND_CONST] = &modifier_ops, 5180 [BTF_KIND_RESTRICT] = &modifier_ops, 5181 [BTF_KIND_FUNC] = &func_ops, 5182 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 5183 [BTF_KIND_VAR] = &var_ops, 5184 [BTF_KIND_DATASEC] = &datasec_ops, 5185 [BTF_KIND_FLOAT] = &float_ops, 5186 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 5187 [BTF_KIND_TYPE_TAG] = &modifier_ops, 5188 [BTF_KIND_ENUM64] = &enum64_ops, 5189 }; 5190 5191 static s32 btf_check_meta(struct btf_verifier_env *env, 5192 const struct btf_type *t, 5193 u32 meta_left) 5194 { 5195 u32 saved_meta_left = meta_left; 5196 s32 var_meta_size; 5197 5198 if (meta_left < sizeof(*t)) { 5199 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 5200 env->log_type_id, meta_left, sizeof(*t)); 5201 return -EINVAL; 5202 } 5203 meta_left -= sizeof(*t); 5204 5205 if (t->info & ~BTF_INFO_MASK) { 5206 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 5207 env->log_type_id, t->info); 5208 return -EINVAL; 5209 } 5210 5211 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 5212 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 5213 btf_verifier_log(env, "[%u] Invalid kind:%u", 5214 env->log_type_id, BTF_INFO_KIND(t->info)); 5215 return -EINVAL; 5216 } 5217 5218 if (!btf_name_offset_valid(env->btf, t->name_off)) { 5219 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 5220 env->log_type_id, t->name_off); 5221 return -EINVAL; 5222 } 5223 5224 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 5225 if (var_meta_size < 0) 5226 return var_meta_size; 5227 5228 meta_left -= var_meta_size; 5229 5230 return saved_meta_left - meta_left; 5231 } 5232 5233 static int btf_check_all_metas(struct btf_verifier_env *env) 5234 { 5235 struct btf *btf = env->btf; 5236 struct btf_header *hdr; 5237 void *cur, *end; 5238 5239 hdr = &btf->hdr; 5240 cur = btf->nohdr_data + hdr->type_off; 5241 end = cur + hdr->type_len; 5242 5243 env->log_type_id = btf->base_btf ? btf->start_id : 1; 5244 while (cur < end) { 5245 struct btf_type *t = cur; 5246 s32 meta_size; 5247 5248 meta_size = btf_check_meta(env, t, end - cur); 5249 if (meta_size < 0) 5250 return meta_size; 5251 5252 btf_add_type(env, t); 5253 cur += meta_size; 5254 env->log_type_id++; 5255 } 5256 5257 return 0; 5258 } 5259 5260 static bool btf_resolve_valid(struct btf_verifier_env *env, 5261 const struct btf_type *t, 5262 u32 type_id) 5263 { 5264 struct btf *btf = env->btf; 5265 5266 if (!env_type_is_resolved(env, type_id)) 5267 return false; 5268 5269 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5270 return !btf_resolved_type_id(btf, type_id) && 5271 !btf_resolved_type_size(btf, type_id); 5272 5273 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5274 return btf_resolved_type_id(btf, type_id) && 5275 !btf_resolved_type_size(btf, type_id); 5276 5277 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5278 btf_type_is_var(t)) { 5279 t = btf_type_id_resolve(btf, &type_id); 5280 return t && 5281 !btf_type_is_modifier(t) && 5282 !btf_type_is_var(t) && 5283 !btf_type_is_datasec(t); 5284 } 5285 5286 if (btf_type_is_array(t)) { 5287 const struct btf_array *array = btf_type_array(t); 5288 const struct btf_type *elem_type; 5289 u32 elem_type_id = array->type; 5290 u32 elem_size; 5291 5292 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5293 return elem_type && !btf_type_is_modifier(elem_type) && 5294 (array->nelems * elem_size == 5295 btf_resolved_type_size(btf, type_id)); 5296 } 5297 5298 return false; 5299 } 5300 5301 static int btf_resolve(struct btf_verifier_env *env, 5302 const struct btf_type *t, u32 type_id) 5303 { 5304 u32 save_log_type_id = env->log_type_id; 5305 const struct resolve_vertex *v; 5306 int err = 0; 5307 5308 env->resolve_mode = RESOLVE_TBD; 5309 env_stack_push(env, t, type_id); 5310 while (!err && (v = env_stack_peak(env))) { 5311 env->log_type_id = v->type_id; 5312 err = btf_type_ops(v->t)->resolve(env, v); 5313 } 5314 5315 env->log_type_id = type_id; 5316 if (err == -E2BIG) { 5317 btf_verifier_log_type(env, t, 5318 "Exceeded max resolving depth:%u", 5319 MAX_RESOLVE_DEPTH); 5320 } else if (err == -EEXIST) { 5321 btf_verifier_log_type(env, t, "Loop detected"); 5322 } 5323 5324 /* Final sanity check */ 5325 if (!err && !btf_resolve_valid(env, t, type_id)) { 5326 btf_verifier_log_type(env, t, "Invalid resolve state"); 5327 err = -EINVAL; 5328 } 5329 5330 env->log_type_id = save_log_type_id; 5331 return err; 5332 } 5333 5334 static int btf_check_all_types(struct btf_verifier_env *env) 5335 { 5336 struct btf *btf = env->btf; 5337 const struct btf_type *t; 5338 u32 type_id, i; 5339 int err; 5340 5341 err = env_resolve_init(env); 5342 if (err) 5343 return err; 5344 5345 env->phase++; 5346 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5347 type_id = btf->start_id + i; 5348 t = btf_type_by_id(btf, type_id); 5349 5350 env->log_type_id = type_id; 5351 if (btf_type_needs_resolve(t) && 5352 !env_type_is_resolved(env, type_id)) { 5353 err = btf_resolve(env, t, type_id); 5354 if (err) 5355 return err; 5356 } 5357 5358 if (btf_type_is_func_proto(t)) { 5359 err = btf_func_proto_check(env, t); 5360 if (err) 5361 return err; 5362 } 5363 } 5364 5365 return 0; 5366 } 5367 5368 static int btf_parse_type_sec(struct btf_verifier_env *env) 5369 { 5370 const struct btf_header *hdr = &env->btf->hdr; 5371 int err; 5372 5373 /* Type section must align to 4 bytes */ 5374 if (hdr->type_off & (sizeof(u32) - 1)) { 5375 btf_verifier_log(env, "Unaligned type_off"); 5376 return -EINVAL; 5377 } 5378 5379 if (!env->btf->base_btf && !hdr->type_len) { 5380 btf_verifier_log(env, "No type found"); 5381 return -EINVAL; 5382 } 5383 5384 err = btf_check_all_metas(env); 5385 if (err) 5386 return err; 5387 5388 return btf_check_all_types(env); 5389 } 5390 5391 static int btf_parse_str_sec(struct btf_verifier_env *env) 5392 { 5393 const struct btf_header *hdr; 5394 struct btf *btf = env->btf; 5395 const char *start, *end; 5396 5397 hdr = &btf->hdr; 5398 start = btf->nohdr_data + hdr->str_off; 5399 end = start + hdr->str_len; 5400 5401 if (end != btf->data + btf->data_size) { 5402 btf_verifier_log(env, "String section is not at the end"); 5403 return -EINVAL; 5404 } 5405 5406 btf->strings = start; 5407 5408 if (btf->base_btf && !hdr->str_len) 5409 return 0; 5410 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5411 btf_verifier_log(env, "Invalid string section"); 5412 return -EINVAL; 5413 } 5414 if (!btf->base_btf && start[0]) { 5415 btf_verifier_log(env, "Invalid string section"); 5416 return -EINVAL; 5417 } 5418 5419 return 0; 5420 } 5421 5422 static const size_t btf_sec_info_offset[] = { 5423 offsetof(struct btf_header, type_off), 5424 offsetof(struct btf_header, str_off), 5425 }; 5426 5427 static int btf_sec_info_cmp(const void *a, const void *b) 5428 { 5429 const struct btf_sec_info *x = a; 5430 const struct btf_sec_info *y = b; 5431 5432 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5433 } 5434 5435 static int btf_check_sec_info(struct btf_verifier_env *env, 5436 u32 btf_data_size) 5437 { 5438 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5439 u32 total, expected_total, i; 5440 const struct btf_header *hdr; 5441 const struct btf *btf; 5442 5443 btf = env->btf; 5444 hdr = &btf->hdr; 5445 5446 /* Populate the secs from hdr */ 5447 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5448 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5449 btf_sec_info_offset[i]); 5450 5451 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5452 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5453 5454 /* Check for gaps and overlap among sections */ 5455 total = 0; 5456 expected_total = btf_data_size - hdr->hdr_len; 5457 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5458 if (expected_total < secs[i].off) { 5459 btf_verifier_log(env, "Invalid section offset"); 5460 return -EINVAL; 5461 } 5462 if (total < secs[i].off) { 5463 /* gap */ 5464 btf_verifier_log(env, "Unsupported section found"); 5465 return -EINVAL; 5466 } 5467 if (total > secs[i].off) { 5468 btf_verifier_log(env, "Section overlap found"); 5469 return -EINVAL; 5470 } 5471 if (expected_total - total < secs[i].len) { 5472 btf_verifier_log(env, 5473 "Total section length too long"); 5474 return -EINVAL; 5475 } 5476 total += secs[i].len; 5477 } 5478 5479 /* There is data other than hdr and known sections */ 5480 if (expected_total != total) { 5481 btf_verifier_log(env, "Unsupported section found"); 5482 return -EINVAL; 5483 } 5484 5485 return 0; 5486 } 5487 5488 static int btf_parse_hdr(struct btf_verifier_env *env) 5489 { 5490 u32 hdr_len, hdr_copy, btf_data_size; 5491 const struct btf_header *hdr; 5492 struct btf *btf; 5493 5494 btf = env->btf; 5495 btf_data_size = btf->data_size; 5496 5497 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5498 btf_verifier_log(env, "hdr_len not found"); 5499 return -EINVAL; 5500 } 5501 5502 hdr = btf->data; 5503 hdr_len = hdr->hdr_len; 5504 if (btf_data_size < hdr_len) { 5505 btf_verifier_log(env, "btf_header not found"); 5506 return -EINVAL; 5507 } 5508 5509 /* Ensure the unsupported header fields are zero */ 5510 if (hdr_len > sizeof(btf->hdr)) { 5511 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5512 u8 *end = btf->data + hdr_len; 5513 5514 for (; expected_zero < end; expected_zero++) { 5515 if (*expected_zero) { 5516 btf_verifier_log(env, "Unsupported btf_header"); 5517 return -E2BIG; 5518 } 5519 } 5520 } 5521 5522 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5523 memcpy(&btf->hdr, btf->data, hdr_copy); 5524 5525 hdr = &btf->hdr; 5526 5527 btf_verifier_log_hdr(env, btf_data_size); 5528 5529 if (hdr->magic != BTF_MAGIC) { 5530 btf_verifier_log(env, "Invalid magic"); 5531 return -EINVAL; 5532 } 5533 5534 if (hdr->version != BTF_VERSION) { 5535 btf_verifier_log(env, "Unsupported version"); 5536 return -ENOTSUPP; 5537 } 5538 5539 if (hdr->flags) { 5540 btf_verifier_log(env, "Unsupported flags"); 5541 return -ENOTSUPP; 5542 } 5543 5544 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5545 btf_verifier_log(env, "No data"); 5546 return -EINVAL; 5547 } 5548 5549 return btf_check_sec_info(env, btf_data_size); 5550 } 5551 5552 static const char *alloc_obj_fields[] = { 5553 "bpf_spin_lock", 5554 "bpf_list_head", 5555 "bpf_list_node", 5556 "bpf_rb_root", 5557 "bpf_rb_node", 5558 "bpf_refcount", 5559 }; 5560 5561 static struct btf_struct_metas * 5562 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5563 { 5564 struct btf_struct_metas *tab = NULL; 5565 struct btf_id_set *aof; 5566 int i, n, id, ret; 5567 5568 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5569 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5570 5571 aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN); 5572 if (!aof) 5573 return ERR_PTR(-ENOMEM); 5574 aof->cnt = 0; 5575 5576 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5577 /* Try to find whether this special type exists in user BTF, and 5578 * if so remember its ID so we can easily find it among members 5579 * of structs that we iterate in the next loop. 5580 */ 5581 struct btf_id_set *new_aof; 5582 5583 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5584 if (id < 0) 5585 continue; 5586 5587 new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1), 5588 GFP_KERNEL | __GFP_NOWARN); 5589 if (!new_aof) { 5590 ret = -ENOMEM; 5591 goto free_aof; 5592 } 5593 aof = new_aof; 5594 aof->ids[aof->cnt++] = id; 5595 } 5596 5597 n = btf_nr_types(btf); 5598 for (i = 1; i < n; i++) { 5599 /* Try to find if there are kptrs in user BTF and remember their ID */ 5600 struct btf_id_set *new_aof; 5601 struct btf_field_info tmp; 5602 const struct btf_type *t; 5603 5604 t = btf_type_by_id(btf, i); 5605 if (!t) { 5606 ret = -EINVAL; 5607 goto free_aof; 5608 } 5609 5610 ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR); 5611 if (ret != BTF_FIELD_FOUND) 5612 continue; 5613 5614 new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1), 5615 GFP_KERNEL | __GFP_NOWARN); 5616 if (!new_aof) { 5617 ret = -ENOMEM; 5618 goto free_aof; 5619 } 5620 aof = new_aof; 5621 aof->ids[aof->cnt++] = i; 5622 } 5623 5624 if (!aof->cnt) { 5625 kfree(aof); 5626 return NULL; 5627 } 5628 sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL); 5629 5630 for (i = 1; i < n; i++) { 5631 struct btf_struct_metas *new_tab; 5632 const struct btf_member *member; 5633 struct btf_struct_meta *type; 5634 struct btf_record *record; 5635 const struct btf_type *t; 5636 int j, tab_cnt; 5637 5638 t = btf_type_by_id(btf, i); 5639 if (!__btf_type_is_struct(t)) 5640 continue; 5641 5642 cond_resched(); 5643 5644 for_each_member(j, t, member) { 5645 if (btf_id_set_contains(aof, member->type)) 5646 goto parse; 5647 } 5648 continue; 5649 parse: 5650 tab_cnt = tab ? tab->cnt : 0; 5651 new_tab = krealloc(tab, struct_size(new_tab, types, tab_cnt + 1), 5652 GFP_KERNEL | __GFP_NOWARN); 5653 if (!new_tab) { 5654 ret = -ENOMEM; 5655 goto free; 5656 } 5657 if (!tab) 5658 new_tab->cnt = 0; 5659 tab = new_tab; 5660 5661 type = &tab->types[tab->cnt]; 5662 type->btf_id = i; 5663 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5664 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT | 5665 BPF_KPTR, t->size); 5666 /* The record cannot be unset, treat it as an error if so */ 5667 if (IS_ERR_OR_NULL(record)) { 5668 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5669 goto free; 5670 } 5671 type->record = record; 5672 tab->cnt++; 5673 } 5674 kfree(aof); 5675 return tab; 5676 free: 5677 btf_struct_metas_free(tab); 5678 free_aof: 5679 kfree(aof); 5680 return ERR_PTR(ret); 5681 } 5682 5683 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5684 { 5685 struct btf_struct_metas *tab; 5686 5687 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5688 tab = btf->struct_meta_tab; 5689 if (!tab) 5690 return NULL; 5691 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5692 } 5693 5694 static int btf_check_type_tags(struct btf_verifier_env *env, 5695 struct btf *btf, int start_id) 5696 { 5697 int i, n, good_id = start_id - 1; 5698 bool in_tags; 5699 5700 n = btf_nr_types(btf); 5701 for (i = start_id; i < n; i++) { 5702 const struct btf_type *t; 5703 int chain_limit = 32; 5704 u32 cur_id = i; 5705 5706 t = btf_type_by_id(btf, i); 5707 if (!t) 5708 return -EINVAL; 5709 if (!btf_type_is_modifier(t)) 5710 continue; 5711 5712 cond_resched(); 5713 5714 in_tags = btf_type_is_type_tag(t); 5715 while (btf_type_is_modifier(t)) { 5716 if (!chain_limit--) { 5717 btf_verifier_log(env, "Max chain length or cycle detected"); 5718 return -ELOOP; 5719 } 5720 if (btf_type_is_type_tag(t)) { 5721 if (!in_tags) { 5722 btf_verifier_log(env, "Type tags don't precede modifiers"); 5723 return -EINVAL; 5724 } 5725 } else if (in_tags) { 5726 in_tags = false; 5727 } 5728 if (cur_id <= good_id) 5729 break; 5730 /* Move to next type */ 5731 cur_id = t->type; 5732 t = btf_type_by_id(btf, cur_id); 5733 if (!t) 5734 return -EINVAL; 5735 } 5736 good_id = i; 5737 } 5738 return 0; 5739 } 5740 5741 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) 5742 { 5743 u32 log_true_size; 5744 int err; 5745 5746 err = bpf_vlog_finalize(log, &log_true_size); 5747 5748 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && 5749 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), 5750 &log_true_size, sizeof(log_true_size))) 5751 err = -EFAULT; 5752 5753 return err; 5754 } 5755 5756 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 5757 { 5758 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); 5759 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); 5760 struct btf_struct_metas *struct_meta_tab; 5761 struct btf_verifier_env *env = NULL; 5762 struct btf *btf = NULL; 5763 u8 *data; 5764 int err, ret; 5765 5766 if (attr->btf_size > BTF_MAX_SIZE) 5767 return ERR_PTR(-E2BIG); 5768 5769 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5770 if (!env) 5771 return ERR_PTR(-ENOMEM); 5772 5773 /* user could have requested verbose verifier output 5774 * and supplied buffer to store the verification trace 5775 */ 5776 err = bpf_vlog_init(&env->log, attr->btf_log_level, 5777 log_ubuf, attr->btf_log_size); 5778 if (err) 5779 goto errout_free; 5780 5781 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5782 if (!btf) { 5783 err = -ENOMEM; 5784 goto errout; 5785 } 5786 env->btf = btf; 5787 5788 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); 5789 if (!data) { 5790 err = -ENOMEM; 5791 goto errout; 5792 } 5793 5794 btf->data = data; 5795 btf->data_size = attr->btf_size; 5796 5797 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { 5798 err = -EFAULT; 5799 goto errout; 5800 } 5801 5802 err = btf_parse_hdr(env); 5803 if (err) 5804 goto errout; 5805 5806 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5807 5808 err = btf_parse_str_sec(env); 5809 if (err) 5810 goto errout; 5811 5812 err = btf_parse_type_sec(env); 5813 if (err) 5814 goto errout; 5815 5816 err = btf_check_type_tags(env, btf, 1); 5817 if (err) 5818 goto errout; 5819 5820 struct_meta_tab = btf_parse_struct_metas(&env->log, btf); 5821 if (IS_ERR(struct_meta_tab)) { 5822 err = PTR_ERR(struct_meta_tab); 5823 goto errout; 5824 } 5825 btf->struct_meta_tab = struct_meta_tab; 5826 5827 if (struct_meta_tab) { 5828 int i; 5829 5830 for (i = 0; i < struct_meta_tab->cnt; i++) { 5831 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5832 if (err < 0) 5833 goto errout_meta; 5834 } 5835 } 5836 5837 err = finalize_log(&env->log, uattr, uattr_size); 5838 if (err) 5839 goto errout_free; 5840 5841 btf_verifier_env_free(env); 5842 refcount_set(&btf->refcnt, 1); 5843 return btf; 5844 5845 errout_meta: 5846 btf_free_struct_meta_tab(btf); 5847 errout: 5848 /* overwrite err with -ENOSPC or -EFAULT */ 5849 ret = finalize_log(&env->log, uattr, uattr_size); 5850 if (ret) 5851 err = ret; 5852 errout_free: 5853 btf_verifier_env_free(env); 5854 if (btf) 5855 btf_free(btf); 5856 return ERR_PTR(err); 5857 } 5858 5859 extern char __start_BTF[]; 5860 extern char __stop_BTF[]; 5861 extern struct btf *btf_vmlinux; 5862 5863 #define BPF_MAP_TYPE(_id, _ops) 5864 #define BPF_LINK_TYPE(_id, _name) 5865 static union { 5866 struct bpf_ctx_convert { 5867 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5868 prog_ctx_type _id##_prog; \ 5869 kern_ctx_type _id##_kern; 5870 #include <linux/bpf_types.h> 5871 #undef BPF_PROG_TYPE 5872 } *__t; 5873 /* 't' is written once under lock. Read many times. */ 5874 const struct btf_type *t; 5875 } bpf_ctx_convert; 5876 enum { 5877 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5878 __ctx_convert##_id, 5879 #include <linux/bpf_types.h> 5880 #undef BPF_PROG_TYPE 5881 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5882 }; 5883 static u8 bpf_ctx_convert_map[] = { 5884 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5885 [_id] = __ctx_convert##_id, 5886 #include <linux/bpf_types.h> 5887 #undef BPF_PROG_TYPE 5888 0, /* avoid empty array */ 5889 }; 5890 #undef BPF_MAP_TYPE 5891 #undef BPF_LINK_TYPE 5892 5893 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type) 5894 { 5895 const struct btf_type *conv_struct; 5896 const struct btf_member *ctx_type; 5897 5898 conv_struct = bpf_ctx_convert.t; 5899 if (!conv_struct) 5900 return NULL; 5901 /* prog_type is valid bpf program type. No need for bounds check. */ 5902 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5903 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5904 * Like 'struct __sk_buff' 5905 */ 5906 return btf_type_by_id(btf_vmlinux, ctx_type->type); 5907 } 5908 5909 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type) 5910 { 5911 const struct btf_type *conv_struct; 5912 const struct btf_member *ctx_type; 5913 5914 conv_struct = bpf_ctx_convert.t; 5915 if (!conv_struct) 5916 return -EFAULT; 5917 /* prog_type is valid bpf program type. No need for bounds check. */ 5918 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5919 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5920 * Like 'struct sk_buff' 5921 */ 5922 return ctx_type->type; 5923 } 5924 5925 bool btf_is_projection_of(const char *pname, const char *tname) 5926 { 5927 if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5928 return true; 5929 if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5930 return true; 5931 return false; 5932 } 5933 5934 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5935 const struct btf_type *t, enum bpf_prog_type prog_type, 5936 int arg) 5937 { 5938 const struct btf_type *ctx_type; 5939 const char *tname, *ctx_tname; 5940 5941 t = btf_type_by_id(btf, t->type); 5942 5943 /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to 5944 * check before we skip all the typedef below. 5945 */ 5946 if (prog_type == BPF_PROG_TYPE_KPROBE) { 5947 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5948 t = btf_type_by_id(btf, t->type); 5949 5950 if (btf_type_is_typedef(t)) { 5951 tname = btf_name_by_offset(btf, t->name_off); 5952 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 5953 return true; 5954 } 5955 } 5956 5957 while (btf_type_is_modifier(t)) 5958 t = btf_type_by_id(btf, t->type); 5959 if (!btf_type_is_struct(t)) { 5960 /* Only pointer to struct is supported for now. 5961 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5962 * is not supported yet. 5963 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5964 */ 5965 return false; 5966 } 5967 tname = btf_name_by_offset(btf, t->name_off); 5968 if (!tname) { 5969 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5970 return false; 5971 } 5972 5973 ctx_type = find_canonical_prog_ctx_type(prog_type); 5974 if (!ctx_type) { 5975 bpf_log(log, "btf_vmlinux is malformed\n"); 5976 /* should not happen */ 5977 return false; 5978 } 5979 again: 5980 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 5981 if (!ctx_tname) { 5982 /* should not happen */ 5983 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5984 return false; 5985 } 5986 /* program types without named context types work only with arg:ctx tag */ 5987 if (ctx_tname[0] == '\0') 5988 return false; 5989 /* only compare that prog's ctx type name is the same as 5990 * kernel expects. No need to compare field by field. 5991 * It's ok for bpf prog to do: 5992 * struct __sk_buff {}; 5993 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5994 * { // no fields of skb are ever used } 5995 */ 5996 if (btf_is_projection_of(ctx_tname, tname)) 5997 return true; 5998 if (strcmp(ctx_tname, tname)) { 5999 /* bpf_user_pt_regs_t is a typedef, so resolve it to 6000 * underlying struct and check name again 6001 */ 6002 if (!btf_type_is_modifier(ctx_type)) 6003 return false; 6004 while (btf_type_is_modifier(ctx_type)) 6005 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 6006 goto again; 6007 } 6008 return true; 6009 } 6010 6011 /* forward declarations for arch-specific underlying types of 6012 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef 6013 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still 6014 * works correctly with __builtin_types_compatible_p() on respective 6015 * architectures 6016 */ 6017 struct user_regs_struct; 6018 struct user_pt_regs; 6019 6020 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 6021 const struct btf_type *t, int arg, 6022 enum bpf_prog_type prog_type, 6023 enum bpf_attach_type attach_type) 6024 { 6025 const struct btf_type *ctx_type; 6026 const char *tname, *ctx_tname; 6027 6028 if (!btf_is_ptr(t)) { 6029 bpf_log(log, "arg#%d type isn't a pointer\n", arg); 6030 return -EINVAL; 6031 } 6032 t = btf_type_by_id(btf, t->type); 6033 6034 /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */ 6035 if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) { 6036 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 6037 t = btf_type_by_id(btf, t->type); 6038 6039 if (btf_type_is_typedef(t)) { 6040 tname = btf_name_by_offset(btf, t->name_off); 6041 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 6042 return 0; 6043 } 6044 } 6045 6046 /* all other program types don't use typedefs for context type */ 6047 while (btf_type_is_modifier(t)) 6048 t = btf_type_by_id(btf, t->type); 6049 6050 /* `void *ctx __arg_ctx` is always valid */ 6051 if (btf_type_is_void(t)) 6052 return 0; 6053 6054 tname = btf_name_by_offset(btf, t->name_off); 6055 if (str_is_empty(tname)) { 6056 bpf_log(log, "arg#%d type doesn't have a name\n", arg); 6057 return -EINVAL; 6058 } 6059 6060 /* special cases */ 6061 switch (prog_type) { 6062 case BPF_PROG_TYPE_KPROBE: 6063 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6064 return 0; 6065 break; 6066 case BPF_PROG_TYPE_PERF_EVENT: 6067 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6068 __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6069 return 0; 6070 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6071 __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6072 return 0; 6073 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6074 __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6075 return 0; 6076 break; 6077 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6078 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6079 /* allow u64* as ctx */ 6080 if (btf_is_int(t) && t->size == 8) 6081 return 0; 6082 break; 6083 case BPF_PROG_TYPE_TRACING: 6084 switch (attach_type) { 6085 case BPF_TRACE_RAW_TP: 6086 /* tp_btf program is TRACING, so need special case here */ 6087 if (__btf_type_is_struct(t) && 6088 strcmp(tname, "bpf_raw_tracepoint_args") == 0) 6089 return 0; 6090 /* allow u64* as ctx */ 6091 if (btf_is_int(t) && t->size == 8) 6092 return 0; 6093 break; 6094 case BPF_TRACE_ITER: 6095 /* allow struct bpf_iter__xxx types only */ 6096 if (__btf_type_is_struct(t) && 6097 strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0) 6098 return 0; 6099 break; 6100 case BPF_TRACE_FENTRY: 6101 case BPF_TRACE_FEXIT: 6102 case BPF_MODIFY_RETURN: 6103 /* allow u64* as ctx */ 6104 if (btf_is_int(t) && t->size == 8) 6105 return 0; 6106 break; 6107 default: 6108 break; 6109 } 6110 break; 6111 case BPF_PROG_TYPE_LSM: 6112 case BPF_PROG_TYPE_STRUCT_OPS: 6113 /* allow u64* as ctx */ 6114 if (btf_is_int(t) && t->size == 8) 6115 return 0; 6116 break; 6117 case BPF_PROG_TYPE_TRACEPOINT: 6118 case BPF_PROG_TYPE_SYSCALL: 6119 case BPF_PROG_TYPE_EXT: 6120 return 0; /* anything goes */ 6121 default: 6122 break; 6123 } 6124 6125 ctx_type = find_canonical_prog_ctx_type(prog_type); 6126 if (!ctx_type) { 6127 /* should not happen */ 6128 bpf_log(log, "btf_vmlinux is malformed\n"); 6129 return -EINVAL; 6130 } 6131 6132 /* resolve typedefs and check that underlying structs are matching as well */ 6133 while (btf_type_is_modifier(ctx_type)) 6134 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 6135 6136 /* if program type doesn't have distinctly named struct type for 6137 * context, then __arg_ctx argument can only be `void *`, which we 6138 * already checked above 6139 */ 6140 if (!__btf_type_is_struct(ctx_type)) { 6141 bpf_log(log, "arg#%d should be void pointer\n", arg); 6142 return -EINVAL; 6143 } 6144 6145 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 6146 if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) { 6147 bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname); 6148 return -EINVAL; 6149 } 6150 6151 return 0; 6152 } 6153 6154 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 6155 struct btf *btf, 6156 const struct btf_type *t, 6157 enum bpf_prog_type prog_type, 6158 int arg) 6159 { 6160 if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg)) 6161 return -ENOENT; 6162 return find_kern_ctx_type_id(prog_type); 6163 } 6164 6165 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 6166 { 6167 const struct btf_member *kctx_member; 6168 const struct btf_type *conv_struct; 6169 const struct btf_type *kctx_type; 6170 u32 kctx_type_id; 6171 6172 conv_struct = bpf_ctx_convert.t; 6173 /* get member for kernel ctx type */ 6174 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 6175 kctx_type_id = kctx_member->type; 6176 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 6177 if (!btf_type_is_struct(kctx_type)) { 6178 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 6179 return -EINVAL; 6180 } 6181 6182 return kctx_type_id; 6183 } 6184 6185 BTF_ID_LIST(bpf_ctx_convert_btf_id) 6186 BTF_ID(struct, bpf_ctx_convert) 6187 6188 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name, 6189 void *data, unsigned int data_size) 6190 { 6191 struct btf *btf = NULL; 6192 int err; 6193 6194 if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) 6195 return ERR_PTR(-ENOENT); 6196 6197 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6198 if (!btf) { 6199 err = -ENOMEM; 6200 goto errout; 6201 } 6202 env->btf = btf; 6203 6204 btf->data = data; 6205 btf->data_size = data_size; 6206 btf->kernel_btf = true; 6207 snprintf(btf->name, sizeof(btf->name), "%s", name); 6208 6209 err = btf_parse_hdr(env); 6210 if (err) 6211 goto errout; 6212 6213 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6214 6215 err = btf_parse_str_sec(env); 6216 if (err) 6217 goto errout; 6218 6219 err = btf_check_all_metas(env); 6220 if (err) 6221 goto errout; 6222 6223 err = btf_check_type_tags(env, btf, 1); 6224 if (err) 6225 goto errout; 6226 6227 refcount_set(&btf->refcnt, 1); 6228 6229 return btf; 6230 6231 errout: 6232 if (btf) { 6233 kvfree(btf->types); 6234 kfree(btf); 6235 } 6236 return ERR_PTR(err); 6237 } 6238 6239 struct btf *btf_parse_vmlinux(void) 6240 { 6241 struct btf_verifier_env *env = NULL; 6242 struct bpf_verifier_log *log; 6243 struct btf *btf; 6244 int err; 6245 6246 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6247 if (!env) 6248 return ERR_PTR(-ENOMEM); 6249 6250 log = &env->log; 6251 log->level = BPF_LOG_KERNEL; 6252 btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF); 6253 if (IS_ERR(btf)) 6254 goto err_out; 6255 6256 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 6257 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 6258 err = btf_alloc_id(btf); 6259 if (err) { 6260 btf_free(btf); 6261 btf = ERR_PTR(err); 6262 } 6263 err_out: 6264 btf_verifier_env_free(env); 6265 return btf; 6266 } 6267 6268 /* If .BTF_ids section was created with distilled base BTF, both base and 6269 * split BTF ids will need to be mapped to actual base/split ids for 6270 * BTF now that it has been relocated. 6271 */ 6272 static __u32 btf_relocate_id(const struct btf *btf, __u32 id) 6273 { 6274 if (!btf->base_btf || !btf->base_id_map) 6275 return id; 6276 return btf->base_id_map[id]; 6277 } 6278 6279 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6280 6281 static struct btf *btf_parse_module(const char *module_name, const void *data, 6282 unsigned int data_size, void *base_data, 6283 unsigned int base_data_size) 6284 { 6285 struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL; 6286 struct btf_verifier_env *env = NULL; 6287 struct bpf_verifier_log *log; 6288 int err = 0; 6289 6290 vmlinux_btf = bpf_get_btf_vmlinux(); 6291 if (IS_ERR(vmlinux_btf)) 6292 return vmlinux_btf; 6293 if (!vmlinux_btf) 6294 return ERR_PTR(-EINVAL); 6295 6296 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6297 if (!env) 6298 return ERR_PTR(-ENOMEM); 6299 6300 log = &env->log; 6301 log->level = BPF_LOG_KERNEL; 6302 6303 if (base_data) { 6304 base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size); 6305 if (IS_ERR(base_btf)) { 6306 err = PTR_ERR(base_btf); 6307 goto errout; 6308 } 6309 } else { 6310 base_btf = vmlinux_btf; 6311 } 6312 6313 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6314 if (!btf) { 6315 err = -ENOMEM; 6316 goto errout; 6317 } 6318 env->btf = btf; 6319 6320 btf->base_btf = base_btf; 6321 btf->start_id = base_btf->nr_types; 6322 btf->start_str_off = base_btf->hdr.str_len; 6323 btf->kernel_btf = true; 6324 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 6325 6326 btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN); 6327 if (!btf->data) { 6328 err = -ENOMEM; 6329 goto errout; 6330 } 6331 btf->data_size = data_size; 6332 6333 err = btf_parse_hdr(env); 6334 if (err) 6335 goto errout; 6336 6337 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6338 6339 err = btf_parse_str_sec(env); 6340 if (err) 6341 goto errout; 6342 6343 err = btf_check_all_metas(env); 6344 if (err) 6345 goto errout; 6346 6347 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 6348 if (err) 6349 goto errout; 6350 6351 if (base_btf != vmlinux_btf) { 6352 err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map); 6353 if (err) 6354 goto errout; 6355 btf_free(base_btf); 6356 base_btf = vmlinux_btf; 6357 } 6358 6359 btf_verifier_env_free(env); 6360 refcount_set(&btf->refcnt, 1); 6361 return btf; 6362 6363 errout: 6364 btf_verifier_env_free(env); 6365 if (!IS_ERR(base_btf) && base_btf != vmlinux_btf) 6366 btf_free(base_btf); 6367 if (btf) { 6368 kvfree(btf->data); 6369 kvfree(btf->types); 6370 kfree(btf); 6371 } 6372 return ERR_PTR(err); 6373 } 6374 6375 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6376 6377 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 6378 { 6379 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6380 6381 if (tgt_prog) 6382 return tgt_prog->aux->btf; 6383 else 6384 return prog->aux->attach_btf; 6385 } 6386 6387 static bool is_void_or_int_ptr(struct btf *btf, const struct btf_type *t) 6388 { 6389 /* skip modifiers */ 6390 t = btf_type_skip_modifiers(btf, t->type, NULL); 6391 return btf_type_is_void(t) || btf_type_is_int(t); 6392 } 6393 6394 u32 btf_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 6395 int off) 6396 { 6397 const struct btf_param *args; 6398 const struct btf_type *t; 6399 u32 offset = 0, nr_args; 6400 int i; 6401 6402 if (!func_proto) 6403 return off / 8; 6404 6405 nr_args = btf_type_vlen(func_proto); 6406 args = (const struct btf_param *)(func_proto + 1); 6407 for (i = 0; i < nr_args; i++) { 6408 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6409 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6410 if (off < offset) 6411 return i; 6412 } 6413 6414 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 6415 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6416 if (off < offset) 6417 return nr_args; 6418 6419 return nr_args + 1; 6420 } 6421 6422 static bool prog_args_trusted(const struct bpf_prog *prog) 6423 { 6424 enum bpf_attach_type atype = prog->expected_attach_type; 6425 6426 switch (prog->type) { 6427 case BPF_PROG_TYPE_TRACING: 6428 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 6429 case BPF_PROG_TYPE_LSM: 6430 return bpf_lsm_is_trusted(prog); 6431 case BPF_PROG_TYPE_STRUCT_OPS: 6432 return true; 6433 default: 6434 return false; 6435 } 6436 } 6437 6438 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto, 6439 u32 arg_no) 6440 { 6441 const struct btf_param *args; 6442 const struct btf_type *t; 6443 int off = 0, i; 6444 u32 sz; 6445 6446 args = btf_params(func_proto); 6447 for (i = 0; i < arg_no; i++) { 6448 t = btf_type_by_id(btf, args[i].type); 6449 t = btf_resolve_size(btf, t, &sz); 6450 if (IS_ERR(t)) 6451 return PTR_ERR(t); 6452 off += roundup(sz, 8); 6453 } 6454 6455 return off; 6456 } 6457 6458 struct bpf_raw_tp_null_args { 6459 const char *func; 6460 u64 mask; 6461 }; 6462 6463 static const struct bpf_raw_tp_null_args raw_tp_null_args[] = { 6464 /* sched */ 6465 { "sched_pi_setprio", 0x10 }, 6466 /* ... from sched_numa_pair_template event class */ 6467 { "sched_stick_numa", 0x100 }, 6468 { "sched_swap_numa", 0x100 }, 6469 /* afs */ 6470 { "afs_make_fs_call", 0x10 }, 6471 { "afs_make_fs_calli", 0x10 }, 6472 { "afs_make_fs_call1", 0x10 }, 6473 { "afs_make_fs_call2", 0x10 }, 6474 { "afs_protocol_error", 0x1 }, 6475 { "afs_flock_ev", 0x10 }, 6476 /* cachefiles */ 6477 { "cachefiles_lookup", 0x1 | 0x200 }, 6478 { "cachefiles_unlink", 0x1 }, 6479 { "cachefiles_rename", 0x1 }, 6480 { "cachefiles_prep_read", 0x1 }, 6481 { "cachefiles_mark_active", 0x1 }, 6482 { "cachefiles_mark_failed", 0x1 }, 6483 { "cachefiles_mark_inactive", 0x1 }, 6484 { "cachefiles_vfs_error", 0x1 }, 6485 { "cachefiles_io_error", 0x1 }, 6486 { "cachefiles_ondemand_open", 0x1 }, 6487 { "cachefiles_ondemand_copen", 0x1 }, 6488 { "cachefiles_ondemand_close", 0x1 }, 6489 { "cachefiles_ondemand_read", 0x1 }, 6490 { "cachefiles_ondemand_cread", 0x1 }, 6491 { "cachefiles_ondemand_fd_write", 0x1 }, 6492 { "cachefiles_ondemand_fd_release", 0x1 }, 6493 /* ext4, from ext4__mballoc event class */ 6494 { "ext4_mballoc_discard", 0x10 }, 6495 { "ext4_mballoc_free", 0x10 }, 6496 /* fib */ 6497 { "fib_table_lookup", 0x100 }, 6498 /* filelock */ 6499 /* ... from filelock_lock event class */ 6500 { "posix_lock_inode", 0x10 }, 6501 { "fcntl_setlk", 0x10 }, 6502 { "locks_remove_posix", 0x10 }, 6503 { "flock_lock_inode", 0x10 }, 6504 /* ... from filelock_lease event class */ 6505 { "break_lease_noblock", 0x10 }, 6506 { "break_lease_block", 0x10 }, 6507 { "break_lease_unblock", 0x10 }, 6508 { "generic_delete_lease", 0x10 }, 6509 { "time_out_leases", 0x10 }, 6510 /* host1x */ 6511 { "host1x_cdma_push_gather", 0x10000 }, 6512 /* huge_memory */ 6513 { "mm_khugepaged_scan_pmd", 0x10 }, 6514 { "mm_collapse_huge_page_isolate", 0x1 }, 6515 { "mm_khugepaged_scan_file", 0x10 }, 6516 { "mm_khugepaged_collapse_file", 0x10 }, 6517 /* kmem */ 6518 { "mm_page_alloc", 0x1 }, 6519 { "mm_page_pcpu_drain", 0x1 }, 6520 /* .. from mm_page event class */ 6521 { "mm_page_alloc_zone_locked", 0x1 }, 6522 /* netfs */ 6523 { "netfs_failure", 0x10 }, 6524 /* power */ 6525 { "device_pm_callback_start", 0x10 }, 6526 /* qdisc */ 6527 { "qdisc_dequeue", 0x1000 }, 6528 /* rxrpc */ 6529 { "rxrpc_recvdata", 0x1 }, 6530 { "rxrpc_resend", 0x10 }, 6531 { "rxrpc_tq", 0x10 }, 6532 { "rxrpc_client", 0x1 }, 6533 /* skb */ 6534 {"kfree_skb", 0x1000}, 6535 /* sunrpc */ 6536 { "xs_stream_read_data", 0x1 }, 6537 /* ... from xprt_cong_event event class */ 6538 { "xprt_reserve_cong", 0x10 }, 6539 { "xprt_release_cong", 0x10 }, 6540 { "xprt_get_cong", 0x10 }, 6541 { "xprt_put_cong", 0x10 }, 6542 /* tcp */ 6543 { "tcp_send_reset", 0x11 }, 6544 { "tcp_sendmsg_locked", 0x100 }, 6545 /* tegra_apb_dma */ 6546 { "tegra_dma_tx_status", 0x100 }, 6547 /* timer_migration */ 6548 { "tmigr_update_events", 0x1 }, 6549 /* writeback, from writeback_folio_template event class */ 6550 { "writeback_dirty_folio", 0x10 }, 6551 { "folio_wait_writeback", 0x10 }, 6552 /* rdma */ 6553 { "mr_integ_alloc", 0x2000 }, 6554 /* bpf_testmod */ 6555 { "bpf_testmod_test_read", 0x0 }, 6556 /* amdgpu */ 6557 { "amdgpu_vm_bo_map", 0x1 }, 6558 { "amdgpu_vm_bo_unmap", 0x1 }, 6559 /* netfs */ 6560 { "netfs_folioq", 0x1 }, 6561 /* xfs from xfs_defer_pending_class */ 6562 { "xfs_defer_create_intent", 0x1 }, 6563 { "xfs_defer_cancel_list", 0x1 }, 6564 { "xfs_defer_pending_finish", 0x1 }, 6565 { "xfs_defer_pending_abort", 0x1 }, 6566 { "xfs_defer_relog_intent", 0x1 }, 6567 { "xfs_defer_isolate_paused", 0x1 }, 6568 { "xfs_defer_item_pause", 0x1 }, 6569 { "xfs_defer_item_unpause", 0x1 }, 6570 /* xfs from xfs_defer_pending_item_class */ 6571 { "xfs_defer_add_item", 0x1 }, 6572 { "xfs_defer_cancel_item", 0x1 }, 6573 { "xfs_defer_finish_item", 0x1 }, 6574 /* xfs from xfs_icwalk_class */ 6575 { "xfs_ioc_free_eofblocks", 0x10 }, 6576 { "xfs_blockgc_free_space", 0x10 }, 6577 /* xfs from xfs_btree_cur_class */ 6578 { "xfs_btree_updkeys", 0x100 }, 6579 { "xfs_btree_overlapped_query_range", 0x100 }, 6580 /* xfs from xfs_imap_class*/ 6581 { "xfs_map_blocks_found", 0x10000 }, 6582 { "xfs_map_blocks_alloc", 0x10000 }, 6583 { "xfs_iomap_alloc", 0x1000 }, 6584 { "xfs_iomap_found", 0x1000 }, 6585 /* xfs from xfs_fs_class */ 6586 { "xfs_inodegc_flush", 0x1 }, 6587 { "xfs_inodegc_push", 0x1 }, 6588 { "xfs_inodegc_start", 0x1 }, 6589 { "xfs_inodegc_stop", 0x1 }, 6590 { "xfs_inodegc_queue", 0x1 }, 6591 { "xfs_inodegc_throttle", 0x1 }, 6592 { "xfs_fs_sync_fs", 0x1 }, 6593 { "xfs_blockgc_start", 0x1 }, 6594 { "xfs_blockgc_stop", 0x1 }, 6595 { "xfs_blockgc_worker", 0x1 }, 6596 { "xfs_blockgc_flush_all", 0x1 }, 6597 /* xfs_scrub */ 6598 { "xchk_nlinks_live_update", 0x10 }, 6599 /* xfs_scrub from xchk_metapath_class */ 6600 { "xchk_metapath_lookup", 0x100 }, 6601 /* nfsd */ 6602 { "nfsd_dirent", 0x1 }, 6603 { "nfsd_file_acquire", 0x1001 }, 6604 { "nfsd_file_insert_err", 0x1 }, 6605 { "nfsd_file_cons_err", 0x1 }, 6606 /* nfs4 */ 6607 { "nfs4_setup_sequence", 0x1 }, 6608 { "pnfs_update_layout", 0x10000 }, 6609 { "nfs4_inode_callback_event", 0x200 }, 6610 { "nfs4_inode_stateid_callback_event", 0x200 }, 6611 /* nfs from pnfs_layout_event */ 6612 { "pnfs_mds_fallback_pg_init_read", 0x10000 }, 6613 { "pnfs_mds_fallback_pg_init_write", 0x10000 }, 6614 { "pnfs_mds_fallback_pg_get_mirror_count", 0x10000 }, 6615 { "pnfs_mds_fallback_read_done", 0x10000 }, 6616 { "pnfs_mds_fallback_write_done", 0x10000 }, 6617 { "pnfs_mds_fallback_read_pagelist", 0x10000 }, 6618 { "pnfs_mds_fallback_write_pagelist", 0x10000 }, 6619 /* coda */ 6620 { "coda_dec_pic_run", 0x10 }, 6621 { "coda_dec_pic_done", 0x10 }, 6622 /* cfg80211 */ 6623 { "cfg80211_scan_done", 0x11 }, 6624 { "rdev_set_coalesce", 0x10 }, 6625 { "cfg80211_report_wowlan_wakeup", 0x100 }, 6626 { "cfg80211_inform_bss_frame", 0x100 }, 6627 { "cfg80211_michael_mic_failure", 0x10000 }, 6628 /* cfg80211 from wiphy_work_event */ 6629 { "wiphy_work_queue", 0x10 }, 6630 { "wiphy_work_run", 0x10 }, 6631 { "wiphy_work_cancel", 0x10 }, 6632 { "wiphy_work_flush", 0x10 }, 6633 /* hugetlbfs */ 6634 { "hugetlbfs_alloc_inode", 0x10 }, 6635 /* spufs */ 6636 { "spufs_context", 0x10 }, 6637 /* kvm_hv */ 6638 { "kvm_page_fault_enter", 0x100 }, 6639 /* dpu */ 6640 { "dpu_crtc_setup_mixer", 0x100 }, 6641 /* binder */ 6642 { "binder_transaction", 0x100 }, 6643 /* bcachefs */ 6644 { "btree_path_free", 0x100 }, 6645 /* hfi1_tx */ 6646 { "hfi1_sdma_progress", 0x1000 }, 6647 /* iptfs */ 6648 { "iptfs_ingress_postq_event", 0x1000 }, 6649 /* neigh */ 6650 { "neigh_update", 0x10 }, 6651 /* snd_firewire_lib */ 6652 { "amdtp_packet", 0x100 }, 6653 }; 6654 6655 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 6656 const struct bpf_prog *prog, 6657 struct bpf_insn_access_aux *info) 6658 { 6659 const struct btf_type *t = prog->aux->attach_func_proto; 6660 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6661 struct btf *btf = bpf_prog_get_target_btf(prog); 6662 const char *tname = prog->aux->attach_func_name; 6663 struct bpf_verifier_log *log = info->log; 6664 const struct btf_param *args; 6665 bool ptr_err_raw_tp = false; 6666 const char *tag_value; 6667 u32 nr_args, arg; 6668 int i, ret; 6669 6670 if (off % 8) { 6671 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 6672 tname, off); 6673 return false; 6674 } 6675 arg = btf_ctx_arg_idx(btf, t, off); 6676 args = (const struct btf_param *)(t + 1); 6677 /* if (t == NULL) Fall back to default BPF prog with 6678 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 6679 */ 6680 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 6681 if (prog->aux->attach_btf_trace) { 6682 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 6683 args++; 6684 nr_args--; 6685 } 6686 6687 if (arg > nr_args) { 6688 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6689 tname, arg + 1); 6690 return false; 6691 } 6692 6693 if (arg == nr_args) { 6694 switch (prog->expected_attach_type) { 6695 case BPF_LSM_MAC: 6696 /* mark we are accessing the return value */ 6697 info->is_retval = true; 6698 fallthrough; 6699 case BPF_LSM_CGROUP: 6700 case BPF_TRACE_FEXIT: 6701 /* When LSM programs are attached to void LSM hooks 6702 * they use FEXIT trampolines and when attached to 6703 * int LSM hooks, they use MODIFY_RETURN trampolines. 6704 * 6705 * While the LSM programs are BPF_MODIFY_RETURN-like 6706 * the check: 6707 * 6708 * if (ret_type != 'int') 6709 * return -EINVAL; 6710 * 6711 * is _not_ done here. This is still safe as LSM hooks 6712 * have only void and int return types. 6713 */ 6714 if (!t) 6715 return true; 6716 t = btf_type_by_id(btf, t->type); 6717 break; 6718 case BPF_MODIFY_RETURN: 6719 /* For now the BPF_MODIFY_RETURN can only be attached to 6720 * functions that return an int. 6721 */ 6722 if (!t) 6723 return false; 6724 6725 t = btf_type_skip_modifiers(btf, t->type, NULL); 6726 if (!btf_type_is_small_int(t)) { 6727 bpf_log(log, 6728 "ret type %s not allowed for fmod_ret\n", 6729 btf_type_str(t)); 6730 return false; 6731 } 6732 break; 6733 default: 6734 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6735 tname, arg + 1); 6736 return false; 6737 } 6738 } else { 6739 if (!t) 6740 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6741 return true; 6742 t = btf_type_by_id(btf, args[arg].type); 6743 } 6744 6745 /* skip modifiers */ 6746 while (btf_type_is_modifier(t)) 6747 t = btf_type_by_id(btf, t->type); 6748 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6749 /* accessing a scalar */ 6750 return true; 6751 if (!btf_type_is_ptr(t)) { 6752 bpf_log(log, 6753 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6754 tname, arg, 6755 __btf_name_by_offset(btf, t->name_off), 6756 btf_type_str(t)); 6757 return false; 6758 } 6759 6760 if (size != sizeof(u64)) { 6761 bpf_log(log, "func '%s' size %d must be 8\n", 6762 tname, size); 6763 return false; 6764 } 6765 6766 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6767 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6768 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6769 u32 type, flag; 6770 6771 type = base_type(ctx_arg_info->reg_type); 6772 flag = type_flag(ctx_arg_info->reg_type); 6773 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6774 (flag & PTR_MAYBE_NULL)) { 6775 info->reg_type = ctx_arg_info->reg_type; 6776 return true; 6777 } 6778 } 6779 6780 /* 6781 * If it's a pointer to void, it's the same as scalar from the verifier 6782 * safety POV. Either way, no futher pointer walking is allowed. 6783 */ 6784 if (is_void_or_int_ptr(btf, t)) 6785 return true; 6786 6787 /* this is a pointer to another type */ 6788 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6789 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6790 6791 if (ctx_arg_info->offset == off) { 6792 if (!ctx_arg_info->btf_id) { 6793 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6794 return false; 6795 } 6796 6797 info->reg_type = ctx_arg_info->reg_type; 6798 info->btf = ctx_arg_info->btf ? : btf_vmlinux; 6799 info->btf_id = ctx_arg_info->btf_id; 6800 info->ref_obj_id = ctx_arg_info->ref_obj_id; 6801 return true; 6802 } 6803 } 6804 6805 info->reg_type = PTR_TO_BTF_ID; 6806 if (prog_args_trusted(prog)) 6807 info->reg_type |= PTR_TRUSTED; 6808 6809 if (btf_param_match_suffix(btf, &args[arg], "__nullable")) 6810 info->reg_type |= PTR_MAYBE_NULL; 6811 6812 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 6813 struct btf *btf = prog->aux->attach_btf; 6814 const struct btf_type *t; 6815 const char *tname; 6816 6817 /* BTF lookups cannot fail, return false on error */ 6818 t = btf_type_by_id(btf, prog->aux->attach_btf_id); 6819 if (!t) 6820 return false; 6821 tname = btf_name_by_offset(btf, t->name_off); 6822 if (!tname) 6823 return false; 6824 /* Checked by bpf_check_attach_target */ 6825 tname += sizeof("btf_trace_") - 1; 6826 for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) { 6827 /* Is this a func with potential NULL args? */ 6828 if (strcmp(tname, raw_tp_null_args[i].func)) 6829 continue; 6830 if (raw_tp_null_args[i].mask & (0x1ULL << (arg * 4))) 6831 info->reg_type |= PTR_MAYBE_NULL; 6832 /* Is the current arg IS_ERR? */ 6833 if (raw_tp_null_args[i].mask & (0x2ULL << (arg * 4))) 6834 ptr_err_raw_tp = true; 6835 break; 6836 } 6837 /* If we don't know NULL-ness specification and the tracepoint 6838 * is coming from a loadable module, be conservative and mark 6839 * argument as PTR_MAYBE_NULL. 6840 */ 6841 if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf)) 6842 info->reg_type |= PTR_MAYBE_NULL; 6843 } 6844 6845 if (tgt_prog) { 6846 enum bpf_prog_type tgt_type; 6847 6848 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6849 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6850 else 6851 tgt_type = tgt_prog->type; 6852 6853 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6854 if (ret > 0) { 6855 info->btf = btf_vmlinux; 6856 info->btf_id = ret; 6857 return true; 6858 } else { 6859 return false; 6860 } 6861 } 6862 6863 info->btf = btf; 6864 info->btf_id = t->type; 6865 t = btf_type_by_id(btf, t->type); 6866 6867 if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) { 6868 tag_value = __btf_name_by_offset(btf, t->name_off); 6869 if (strcmp(tag_value, "user") == 0) 6870 info->reg_type |= MEM_USER; 6871 if (strcmp(tag_value, "percpu") == 0) 6872 info->reg_type |= MEM_PERCPU; 6873 } 6874 6875 /* skip modifiers */ 6876 while (btf_type_is_modifier(t)) { 6877 info->btf_id = t->type; 6878 t = btf_type_by_id(btf, t->type); 6879 } 6880 if (!btf_type_is_struct(t)) { 6881 bpf_log(log, 6882 "func '%s' arg%d type %s is not a struct\n", 6883 tname, arg, btf_type_str(t)); 6884 return false; 6885 } 6886 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6887 tname, arg, info->btf_id, btf_type_str(t), 6888 __btf_name_by_offset(btf, t->name_off)); 6889 6890 /* Perform all checks on the validity of type for this argument, but if 6891 * we know it can be IS_ERR at runtime, scrub pointer type and mark as 6892 * scalar. 6893 */ 6894 if (ptr_err_raw_tp) { 6895 bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg); 6896 info->reg_type = SCALAR_VALUE; 6897 } 6898 return true; 6899 } 6900 EXPORT_SYMBOL_GPL(btf_ctx_access); 6901 6902 enum bpf_struct_walk_result { 6903 /* < 0 error */ 6904 WALK_SCALAR = 0, 6905 WALK_PTR, 6906 WALK_STRUCT, 6907 }; 6908 6909 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6910 const struct btf_type *t, int off, int size, 6911 u32 *next_btf_id, enum bpf_type_flag *flag, 6912 const char **field_name) 6913 { 6914 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6915 const struct btf_type *mtype, *elem_type = NULL; 6916 const struct btf_member *member; 6917 const char *tname, *mname, *tag_value; 6918 u32 vlen, elem_id, mid; 6919 6920 again: 6921 if (btf_type_is_modifier(t)) 6922 t = btf_type_skip_modifiers(btf, t->type, NULL); 6923 tname = __btf_name_by_offset(btf, t->name_off); 6924 if (!btf_type_is_struct(t)) { 6925 bpf_log(log, "Type '%s' is not a struct\n", tname); 6926 return -EINVAL; 6927 } 6928 6929 vlen = btf_type_vlen(t); 6930 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED)) 6931 /* 6932 * walking unions yields untrusted pointers 6933 * with exception of __bpf_md_ptr and other 6934 * unions with a single member 6935 */ 6936 *flag |= PTR_UNTRUSTED; 6937 6938 if (off + size > t->size) { 6939 /* If the last element is a variable size array, we may 6940 * need to relax the rule. 6941 */ 6942 struct btf_array *array_elem; 6943 6944 if (vlen == 0) 6945 goto error; 6946 6947 member = btf_type_member(t) + vlen - 1; 6948 mtype = btf_type_skip_modifiers(btf, member->type, 6949 NULL); 6950 if (!btf_type_is_array(mtype)) 6951 goto error; 6952 6953 array_elem = (struct btf_array *)(mtype + 1); 6954 if (array_elem->nelems != 0) 6955 goto error; 6956 6957 moff = __btf_member_bit_offset(t, member) / 8; 6958 if (off < moff) 6959 goto error; 6960 6961 /* allow structure and integer */ 6962 t = btf_type_skip_modifiers(btf, array_elem->type, 6963 NULL); 6964 6965 if (btf_type_is_int(t)) 6966 return WALK_SCALAR; 6967 6968 if (!btf_type_is_struct(t)) 6969 goto error; 6970 6971 off = (off - moff) % t->size; 6972 goto again; 6973 6974 error: 6975 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6976 tname, off, size); 6977 return -EACCES; 6978 } 6979 6980 for_each_member(i, t, member) { 6981 /* offset of the field in bytes */ 6982 moff = __btf_member_bit_offset(t, member) / 8; 6983 if (off + size <= moff) 6984 /* won't find anything, field is already too far */ 6985 break; 6986 6987 if (__btf_member_bitfield_size(t, member)) { 6988 u32 end_bit = __btf_member_bit_offset(t, member) + 6989 __btf_member_bitfield_size(t, member); 6990 6991 /* off <= moff instead of off == moff because clang 6992 * does not generate a BTF member for anonymous 6993 * bitfield like the ":16" here: 6994 * struct { 6995 * int :16; 6996 * int x:8; 6997 * }; 6998 */ 6999 if (off <= moff && 7000 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 7001 return WALK_SCALAR; 7002 7003 /* off may be accessing a following member 7004 * 7005 * or 7006 * 7007 * Doing partial access at either end of this 7008 * bitfield. Continue on this case also to 7009 * treat it as not accessing this bitfield 7010 * and eventually error out as field not 7011 * found to keep it simple. 7012 * It could be relaxed if there was a legit 7013 * partial access case later. 7014 */ 7015 continue; 7016 } 7017 7018 /* In case of "off" is pointing to holes of a struct */ 7019 if (off < moff) 7020 break; 7021 7022 /* type of the field */ 7023 mid = member->type; 7024 mtype = btf_type_by_id(btf, member->type); 7025 mname = __btf_name_by_offset(btf, member->name_off); 7026 7027 mtype = __btf_resolve_size(btf, mtype, &msize, 7028 &elem_type, &elem_id, &total_nelems, 7029 &mid); 7030 if (IS_ERR(mtype)) { 7031 bpf_log(log, "field %s doesn't have size\n", mname); 7032 return -EFAULT; 7033 } 7034 7035 mtrue_end = moff + msize; 7036 if (off >= mtrue_end) 7037 /* no overlap with member, keep iterating */ 7038 continue; 7039 7040 if (btf_type_is_array(mtype)) { 7041 u32 elem_idx; 7042 7043 /* __btf_resolve_size() above helps to 7044 * linearize a multi-dimensional array. 7045 * 7046 * The logic here is treating an array 7047 * in a struct as the following way: 7048 * 7049 * struct outer { 7050 * struct inner array[2][2]; 7051 * }; 7052 * 7053 * looks like: 7054 * 7055 * struct outer { 7056 * struct inner array_elem0; 7057 * struct inner array_elem1; 7058 * struct inner array_elem2; 7059 * struct inner array_elem3; 7060 * }; 7061 * 7062 * When accessing outer->array[1][0], it moves 7063 * moff to "array_elem2", set mtype to 7064 * "struct inner", and msize also becomes 7065 * sizeof(struct inner). Then most of the 7066 * remaining logic will fall through without 7067 * caring the current member is an array or 7068 * not. 7069 * 7070 * Unlike mtype/msize/moff, mtrue_end does not 7071 * change. The naming difference ("_true") tells 7072 * that it is not always corresponding to 7073 * the current mtype/msize/moff. 7074 * It is the true end of the current 7075 * member (i.e. array in this case). That 7076 * will allow an int array to be accessed like 7077 * a scratch space, 7078 * i.e. allow access beyond the size of 7079 * the array's element as long as it is 7080 * within the mtrue_end boundary. 7081 */ 7082 7083 /* skip empty array */ 7084 if (moff == mtrue_end) 7085 continue; 7086 7087 msize /= total_nelems; 7088 elem_idx = (off - moff) / msize; 7089 moff += elem_idx * msize; 7090 mtype = elem_type; 7091 mid = elem_id; 7092 } 7093 7094 /* the 'off' we're looking for is either equal to start 7095 * of this field or inside of this struct 7096 */ 7097 if (btf_type_is_struct(mtype)) { 7098 /* our field must be inside that union or struct */ 7099 t = mtype; 7100 7101 /* return if the offset matches the member offset */ 7102 if (off == moff) { 7103 *next_btf_id = mid; 7104 return WALK_STRUCT; 7105 } 7106 7107 /* adjust offset we're looking for */ 7108 off -= moff; 7109 goto again; 7110 } 7111 7112 if (btf_type_is_ptr(mtype)) { 7113 const struct btf_type *stype, *t; 7114 enum bpf_type_flag tmp_flag = 0; 7115 u32 id; 7116 7117 if (msize != size || off != moff) { 7118 bpf_log(log, 7119 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 7120 mname, moff, tname, off, size); 7121 return -EACCES; 7122 } 7123 7124 /* check type tag */ 7125 t = btf_type_by_id(btf, mtype->type); 7126 if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) { 7127 tag_value = __btf_name_by_offset(btf, t->name_off); 7128 /* check __user tag */ 7129 if (strcmp(tag_value, "user") == 0) 7130 tmp_flag = MEM_USER; 7131 /* check __percpu tag */ 7132 if (strcmp(tag_value, "percpu") == 0) 7133 tmp_flag = MEM_PERCPU; 7134 /* check __rcu tag */ 7135 if (strcmp(tag_value, "rcu") == 0) 7136 tmp_flag = MEM_RCU; 7137 } 7138 7139 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 7140 if (btf_type_is_struct(stype)) { 7141 *next_btf_id = id; 7142 *flag |= tmp_flag; 7143 if (field_name) 7144 *field_name = mname; 7145 return WALK_PTR; 7146 } 7147 } 7148 7149 /* Allow more flexible access within an int as long as 7150 * it is within mtrue_end. 7151 * Since mtrue_end could be the end of an array, 7152 * that also allows using an array of int as a scratch 7153 * space. e.g. skb->cb[]. 7154 */ 7155 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { 7156 bpf_log(log, 7157 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 7158 mname, mtrue_end, tname, off, size); 7159 return -EACCES; 7160 } 7161 7162 return WALK_SCALAR; 7163 } 7164 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 7165 return -EINVAL; 7166 } 7167 7168 int btf_struct_access(struct bpf_verifier_log *log, 7169 const struct bpf_reg_state *reg, 7170 int off, int size, enum bpf_access_type atype __maybe_unused, 7171 u32 *next_btf_id, enum bpf_type_flag *flag, 7172 const char **field_name) 7173 { 7174 const struct btf *btf = reg->btf; 7175 enum bpf_type_flag tmp_flag = 0; 7176 const struct btf_type *t; 7177 u32 id = reg->btf_id; 7178 int err; 7179 7180 while (type_is_alloc(reg->type)) { 7181 struct btf_struct_meta *meta; 7182 struct btf_record *rec; 7183 int i; 7184 7185 meta = btf_find_struct_meta(btf, id); 7186 if (!meta) 7187 break; 7188 rec = meta->record; 7189 for (i = 0; i < rec->cnt; i++) { 7190 struct btf_field *field = &rec->fields[i]; 7191 u32 offset = field->offset; 7192 if (off < offset + field->size && offset < off + size) { 7193 bpf_log(log, 7194 "direct access to %s is disallowed\n", 7195 btf_field_type_name(field->type)); 7196 return -EACCES; 7197 } 7198 } 7199 break; 7200 } 7201 7202 t = btf_type_by_id(btf, id); 7203 do { 7204 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 7205 7206 switch (err) { 7207 case WALK_PTR: 7208 /* For local types, the destination register cannot 7209 * become a pointer again. 7210 */ 7211 if (type_is_alloc(reg->type)) 7212 return SCALAR_VALUE; 7213 /* If we found the pointer or scalar on t+off, 7214 * we're done. 7215 */ 7216 *next_btf_id = id; 7217 *flag = tmp_flag; 7218 return PTR_TO_BTF_ID; 7219 case WALK_SCALAR: 7220 return SCALAR_VALUE; 7221 case WALK_STRUCT: 7222 /* We found nested struct, so continue the search 7223 * by diving in it. At this point the offset is 7224 * aligned with the new type, so set it to 0. 7225 */ 7226 t = btf_type_by_id(btf, id); 7227 off = 0; 7228 break; 7229 default: 7230 /* It's either error or unknown return value.. 7231 * scream and leave. 7232 */ 7233 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 7234 return -EINVAL; 7235 return err; 7236 } 7237 } while (t); 7238 7239 return -EINVAL; 7240 } 7241 7242 /* Check that two BTF types, each specified as an BTF object + id, are exactly 7243 * the same. Trivial ID check is not enough due to module BTFs, because we can 7244 * end up with two different module BTFs, but IDs point to the common type in 7245 * vmlinux BTF. 7246 */ 7247 bool btf_types_are_same(const struct btf *btf1, u32 id1, 7248 const struct btf *btf2, u32 id2) 7249 { 7250 if (id1 != id2) 7251 return false; 7252 if (btf1 == btf2) 7253 return true; 7254 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 7255 } 7256 7257 bool btf_struct_ids_match(struct bpf_verifier_log *log, 7258 const struct btf *btf, u32 id, int off, 7259 const struct btf *need_btf, u32 need_type_id, 7260 bool strict) 7261 { 7262 const struct btf_type *type; 7263 enum bpf_type_flag flag = 0; 7264 int err; 7265 7266 /* Are we already done? */ 7267 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 7268 return true; 7269 /* In case of strict type match, we do not walk struct, the top level 7270 * type match must succeed. When strict is true, off should have already 7271 * been 0. 7272 */ 7273 if (strict) 7274 return false; 7275 again: 7276 type = btf_type_by_id(btf, id); 7277 if (!type) 7278 return false; 7279 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 7280 if (err != WALK_STRUCT) 7281 return false; 7282 7283 /* We found nested struct object. If it matches 7284 * the requested ID, we're done. Otherwise let's 7285 * continue the search with offset 0 in the new 7286 * type. 7287 */ 7288 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 7289 off = 0; 7290 goto again; 7291 } 7292 7293 return true; 7294 } 7295 7296 static int __get_type_size(struct btf *btf, u32 btf_id, 7297 const struct btf_type **ret_type) 7298 { 7299 const struct btf_type *t; 7300 7301 *ret_type = btf_type_by_id(btf, 0); 7302 if (!btf_id) 7303 /* void */ 7304 return 0; 7305 t = btf_type_by_id(btf, btf_id); 7306 while (t && btf_type_is_modifier(t)) 7307 t = btf_type_by_id(btf, t->type); 7308 if (!t) 7309 return -EINVAL; 7310 *ret_type = t; 7311 if (btf_type_is_ptr(t)) 7312 /* kernel size of pointer. Not BPF's size of pointer*/ 7313 return sizeof(void *); 7314 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 7315 return t->size; 7316 return -EINVAL; 7317 } 7318 7319 static u8 __get_type_fmodel_flags(const struct btf_type *t) 7320 { 7321 u8 flags = 0; 7322 7323 if (__btf_type_is_struct(t)) 7324 flags |= BTF_FMODEL_STRUCT_ARG; 7325 if (btf_type_is_signed_int(t)) 7326 flags |= BTF_FMODEL_SIGNED_ARG; 7327 7328 return flags; 7329 } 7330 7331 int btf_distill_func_proto(struct bpf_verifier_log *log, 7332 struct btf *btf, 7333 const struct btf_type *func, 7334 const char *tname, 7335 struct btf_func_model *m) 7336 { 7337 const struct btf_param *args; 7338 const struct btf_type *t; 7339 u32 i, nargs; 7340 int ret; 7341 7342 if (!func) { 7343 /* BTF function prototype doesn't match the verifier types. 7344 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 7345 */ 7346 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7347 m->arg_size[i] = 8; 7348 m->arg_flags[i] = 0; 7349 } 7350 m->ret_size = 8; 7351 m->ret_flags = 0; 7352 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 7353 return 0; 7354 } 7355 args = (const struct btf_param *)(func + 1); 7356 nargs = btf_type_vlen(func); 7357 if (nargs > MAX_BPF_FUNC_ARGS) { 7358 bpf_log(log, 7359 "The function %s has %d arguments. Too many.\n", 7360 tname, nargs); 7361 return -EINVAL; 7362 } 7363 ret = __get_type_size(btf, func->type, &t); 7364 if (ret < 0 || __btf_type_is_struct(t)) { 7365 bpf_log(log, 7366 "The function %s return type %s is unsupported.\n", 7367 tname, btf_type_str(t)); 7368 return -EINVAL; 7369 } 7370 m->ret_size = ret; 7371 m->ret_flags = __get_type_fmodel_flags(t); 7372 7373 for (i = 0; i < nargs; i++) { 7374 if (i == nargs - 1 && args[i].type == 0) { 7375 bpf_log(log, 7376 "The function %s with variable args is unsupported.\n", 7377 tname); 7378 return -EINVAL; 7379 } 7380 ret = __get_type_size(btf, args[i].type, &t); 7381 7382 /* No support of struct argument size greater than 16 bytes */ 7383 if (ret < 0 || ret > 16) { 7384 bpf_log(log, 7385 "The function %s arg%d type %s is unsupported.\n", 7386 tname, i, btf_type_str(t)); 7387 return -EINVAL; 7388 } 7389 if (ret == 0) { 7390 bpf_log(log, 7391 "The function %s has malformed void argument.\n", 7392 tname); 7393 return -EINVAL; 7394 } 7395 m->arg_size[i] = ret; 7396 m->arg_flags[i] = __get_type_fmodel_flags(t); 7397 } 7398 m->nr_args = nargs; 7399 return 0; 7400 } 7401 7402 /* Compare BTFs of two functions assuming only scalars and pointers to context. 7403 * t1 points to BTF_KIND_FUNC in btf1 7404 * t2 points to BTF_KIND_FUNC in btf2 7405 * Returns: 7406 * EINVAL - function prototype mismatch 7407 * EFAULT - verifier bug 7408 * 0 - 99% match. The last 1% is validated by the verifier. 7409 */ 7410 static int btf_check_func_type_match(struct bpf_verifier_log *log, 7411 struct btf *btf1, const struct btf_type *t1, 7412 struct btf *btf2, const struct btf_type *t2) 7413 { 7414 const struct btf_param *args1, *args2; 7415 const char *fn1, *fn2, *s1, *s2; 7416 u32 nargs1, nargs2, i; 7417 7418 fn1 = btf_name_by_offset(btf1, t1->name_off); 7419 fn2 = btf_name_by_offset(btf2, t2->name_off); 7420 7421 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 7422 bpf_log(log, "%s() is not a global function\n", fn1); 7423 return -EINVAL; 7424 } 7425 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 7426 bpf_log(log, "%s() is not a global function\n", fn2); 7427 return -EINVAL; 7428 } 7429 7430 t1 = btf_type_by_id(btf1, t1->type); 7431 if (!t1 || !btf_type_is_func_proto(t1)) 7432 return -EFAULT; 7433 t2 = btf_type_by_id(btf2, t2->type); 7434 if (!t2 || !btf_type_is_func_proto(t2)) 7435 return -EFAULT; 7436 7437 args1 = (const struct btf_param *)(t1 + 1); 7438 nargs1 = btf_type_vlen(t1); 7439 args2 = (const struct btf_param *)(t2 + 1); 7440 nargs2 = btf_type_vlen(t2); 7441 7442 if (nargs1 != nargs2) { 7443 bpf_log(log, "%s() has %d args while %s() has %d args\n", 7444 fn1, nargs1, fn2, nargs2); 7445 return -EINVAL; 7446 } 7447 7448 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7449 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7450 if (t1->info != t2->info) { 7451 bpf_log(log, 7452 "Return type %s of %s() doesn't match type %s of %s()\n", 7453 btf_type_str(t1), fn1, 7454 btf_type_str(t2), fn2); 7455 return -EINVAL; 7456 } 7457 7458 for (i = 0; i < nargs1; i++) { 7459 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 7460 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 7461 7462 if (t1->info != t2->info) { 7463 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 7464 i, fn1, btf_type_str(t1), 7465 fn2, btf_type_str(t2)); 7466 return -EINVAL; 7467 } 7468 if (btf_type_has_size(t1) && t1->size != t2->size) { 7469 bpf_log(log, 7470 "arg%d in %s() has size %d while %s() has %d\n", 7471 i, fn1, t1->size, 7472 fn2, t2->size); 7473 return -EINVAL; 7474 } 7475 7476 /* global functions are validated with scalars and pointers 7477 * to context only. And only global functions can be replaced. 7478 * Hence type check only those types. 7479 */ 7480 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 7481 continue; 7482 if (!btf_type_is_ptr(t1)) { 7483 bpf_log(log, 7484 "arg%d in %s() has unrecognized type\n", 7485 i, fn1); 7486 return -EINVAL; 7487 } 7488 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7489 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7490 if (!btf_type_is_struct(t1)) { 7491 bpf_log(log, 7492 "arg%d in %s() is not a pointer to context\n", 7493 i, fn1); 7494 return -EINVAL; 7495 } 7496 if (!btf_type_is_struct(t2)) { 7497 bpf_log(log, 7498 "arg%d in %s() is not a pointer to context\n", 7499 i, fn2); 7500 return -EINVAL; 7501 } 7502 /* This is an optional check to make program writing easier. 7503 * Compare names of structs and report an error to the user. 7504 * btf_prepare_func_args() already checked that t2 struct 7505 * is a context type. btf_prepare_func_args() will check 7506 * later that t1 struct is a context type as well. 7507 */ 7508 s1 = btf_name_by_offset(btf1, t1->name_off); 7509 s2 = btf_name_by_offset(btf2, t2->name_off); 7510 if (strcmp(s1, s2)) { 7511 bpf_log(log, 7512 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 7513 i, fn1, s1, fn2, s2); 7514 return -EINVAL; 7515 } 7516 } 7517 return 0; 7518 } 7519 7520 /* Compare BTFs of given program with BTF of target program */ 7521 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 7522 struct btf *btf2, const struct btf_type *t2) 7523 { 7524 struct btf *btf1 = prog->aux->btf; 7525 const struct btf_type *t1; 7526 u32 btf_id = 0; 7527 7528 if (!prog->aux->func_info) { 7529 bpf_log(log, "Program extension requires BTF\n"); 7530 return -EINVAL; 7531 } 7532 7533 btf_id = prog->aux->func_info[0].type_id; 7534 if (!btf_id) 7535 return -EFAULT; 7536 7537 t1 = btf_type_by_id(btf1, btf_id); 7538 if (!t1 || !btf_type_is_func(t1)) 7539 return -EFAULT; 7540 7541 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 7542 } 7543 7544 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t) 7545 { 7546 const char *name; 7547 7548 t = btf_type_by_id(btf, t->type); /* skip PTR */ 7549 7550 while (btf_type_is_modifier(t)) 7551 t = btf_type_by_id(btf, t->type); 7552 7553 /* allow either struct or struct forward declaration */ 7554 if (btf_type_is_struct(t) || 7555 (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) { 7556 name = btf_str_by_offset(btf, t->name_off); 7557 return name && strcmp(name, "bpf_dynptr") == 0; 7558 } 7559 7560 return false; 7561 } 7562 7563 struct bpf_cand_cache { 7564 const char *name; 7565 u32 name_len; 7566 u16 kind; 7567 u16 cnt; 7568 struct { 7569 const struct btf *btf; 7570 u32 id; 7571 } cands[]; 7572 }; 7573 7574 static DEFINE_MUTEX(cand_cache_mutex); 7575 7576 static struct bpf_cand_cache * 7577 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id); 7578 7579 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx, 7580 const struct btf *btf, const struct btf_type *t) 7581 { 7582 struct bpf_cand_cache *cc; 7583 struct bpf_core_ctx ctx = { 7584 .btf = btf, 7585 .log = log, 7586 }; 7587 u32 kern_type_id, type_id; 7588 int err = 0; 7589 7590 /* skip PTR and modifiers */ 7591 type_id = t->type; 7592 t = btf_type_by_id(btf, t->type); 7593 while (btf_type_is_modifier(t)) { 7594 type_id = t->type; 7595 t = btf_type_by_id(btf, t->type); 7596 } 7597 7598 mutex_lock(&cand_cache_mutex); 7599 cc = bpf_core_find_cands(&ctx, type_id); 7600 if (IS_ERR(cc)) { 7601 err = PTR_ERR(cc); 7602 bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n", 7603 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7604 err); 7605 goto cand_cache_unlock; 7606 } 7607 if (cc->cnt != 1) { 7608 bpf_log(log, "arg#%d reference type('%s %s') %s\n", 7609 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7610 cc->cnt == 0 ? "has no matches" : "is ambiguous"); 7611 err = cc->cnt == 0 ? -ENOENT : -ESRCH; 7612 goto cand_cache_unlock; 7613 } 7614 if (btf_is_module(cc->cands[0].btf)) { 7615 bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n", 7616 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off)); 7617 err = -EOPNOTSUPP; 7618 goto cand_cache_unlock; 7619 } 7620 kern_type_id = cc->cands[0].id; 7621 7622 cand_cache_unlock: 7623 mutex_unlock(&cand_cache_mutex); 7624 if (err) 7625 return err; 7626 7627 return kern_type_id; 7628 } 7629 7630 enum btf_arg_tag { 7631 ARG_TAG_CTX = BIT_ULL(0), 7632 ARG_TAG_NONNULL = BIT_ULL(1), 7633 ARG_TAG_TRUSTED = BIT_ULL(2), 7634 ARG_TAG_NULLABLE = BIT_ULL(3), 7635 ARG_TAG_ARENA = BIT_ULL(4), 7636 }; 7637 7638 /* Process BTF of a function to produce high-level expectation of function 7639 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information 7640 * is cached in subprog info for reuse. 7641 * Returns: 7642 * EFAULT - there is a verifier bug. Abort verification. 7643 * EINVAL - cannot convert BTF. 7644 * 0 - Successfully processed BTF and constructed argument expectations. 7645 */ 7646 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog) 7647 { 7648 bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL; 7649 struct bpf_subprog_info *sub = subprog_info(env, subprog); 7650 struct bpf_verifier_log *log = &env->log; 7651 struct bpf_prog *prog = env->prog; 7652 enum bpf_prog_type prog_type = prog->type; 7653 struct btf *btf = prog->aux->btf; 7654 const struct btf_param *args; 7655 const struct btf_type *t, *ref_t, *fn_t; 7656 u32 i, nargs, btf_id; 7657 const char *tname; 7658 7659 if (sub->args_cached) 7660 return 0; 7661 7662 if (!prog->aux->func_info) { 7663 verifier_bug(env, "func_info undefined"); 7664 return -EFAULT; 7665 } 7666 7667 btf_id = prog->aux->func_info[subprog].type_id; 7668 if (!btf_id) { 7669 if (!is_global) /* not fatal for static funcs */ 7670 return -EINVAL; 7671 bpf_log(log, "Global functions need valid BTF\n"); 7672 return -EFAULT; 7673 } 7674 7675 fn_t = btf_type_by_id(btf, btf_id); 7676 if (!fn_t || !btf_type_is_func(fn_t)) { 7677 /* These checks were already done by the verifier while loading 7678 * struct bpf_func_info 7679 */ 7680 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 7681 subprog); 7682 return -EFAULT; 7683 } 7684 tname = btf_name_by_offset(btf, fn_t->name_off); 7685 7686 if (prog->aux->func_info_aux[subprog].unreliable) { 7687 verifier_bug(env, "unreliable BTF for function %s()", tname); 7688 return -EFAULT; 7689 } 7690 if (prog_type == BPF_PROG_TYPE_EXT) 7691 prog_type = prog->aux->dst_prog->type; 7692 7693 t = btf_type_by_id(btf, fn_t->type); 7694 if (!t || !btf_type_is_func_proto(t)) { 7695 bpf_log(log, "Invalid type of function %s()\n", tname); 7696 return -EFAULT; 7697 } 7698 args = (const struct btf_param *)(t + 1); 7699 nargs = btf_type_vlen(t); 7700 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7701 if (!is_global) 7702 return -EINVAL; 7703 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7704 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7705 return -EINVAL; 7706 } 7707 /* check that function returns int, exception cb also requires this */ 7708 t = btf_type_by_id(btf, t->type); 7709 while (btf_type_is_modifier(t)) 7710 t = btf_type_by_id(btf, t->type); 7711 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7712 if (!is_global) 7713 return -EINVAL; 7714 bpf_log(log, 7715 "Global function %s() doesn't return scalar. Only those are supported.\n", 7716 tname); 7717 return -EINVAL; 7718 } 7719 /* Convert BTF function arguments into verifier types. 7720 * Only PTR_TO_CTX and SCALAR are supported atm. 7721 */ 7722 for (i = 0; i < nargs; i++) { 7723 u32 tags = 0; 7724 int id = 0; 7725 7726 /* 'arg:<tag>' decl_tag takes precedence over derivation of 7727 * register type from BTF type itself 7728 */ 7729 while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) { 7730 const struct btf_type *tag_t = btf_type_by_id(btf, id); 7731 const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4; 7732 7733 /* disallow arg tags in static subprogs */ 7734 if (!is_global) { 7735 bpf_log(log, "arg#%d type tag is not supported in static functions\n", i); 7736 return -EOPNOTSUPP; 7737 } 7738 7739 if (strcmp(tag, "ctx") == 0) { 7740 tags |= ARG_TAG_CTX; 7741 } else if (strcmp(tag, "trusted") == 0) { 7742 tags |= ARG_TAG_TRUSTED; 7743 } else if (strcmp(tag, "nonnull") == 0) { 7744 tags |= ARG_TAG_NONNULL; 7745 } else if (strcmp(tag, "nullable") == 0) { 7746 tags |= ARG_TAG_NULLABLE; 7747 } else if (strcmp(tag, "arena") == 0) { 7748 tags |= ARG_TAG_ARENA; 7749 } else { 7750 bpf_log(log, "arg#%d has unsupported set of tags\n", i); 7751 return -EOPNOTSUPP; 7752 } 7753 } 7754 if (id != -ENOENT) { 7755 bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id); 7756 return id; 7757 } 7758 7759 t = btf_type_by_id(btf, args[i].type); 7760 while (btf_type_is_modifier(t)) 7761 t = btf_type_by_id(btf, t->type); 7762 if (!btf_type_is_ptr(t)) 7763 goto skip_pointer; 7764 7765 if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) { 7766 if (tags & ~ARG_TAG_CTX) { 7767 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7768 return -EINVAL; 7769 } 7770 if ((tags & ARG_TAG_CTX) && 7771 btf_validate_prog_ctx_type(log, btf, t, i, prog_type, 7772 prog->expected_attach_type)) 7773 return -EINVAL; 7774 sub->args[i].arg_type = ARG_PTR_TO_CTX; 7775 continue; 7776 } 7777 if (btf_is_dynptr_ptr(btf, t)) { 7778 if (tags) { 7779 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7780 return -EINVAL; 7781 } 7782 sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY; 7783 continue; 7784 } 7785 if (tags & ARG_TAG_TRUSTED) { 7786 int kern_type_id; 7787 7788 if (tags & ARG_TAG_NONNULL) { 7789 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7790 return -EINVAL; 7791 } 7792 7793 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); 7794 if (kern_type_id < 0) 7795 return kern_type_id; 7796 7797 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED; 7798 if (tags & ARG_TAG_NULLABLE) 7799 sub->args[i].arg_type |= PTR_MAYBE_NULL; 7800 sub->args[i].btf_id = kern_type_id; 7801 continue; 7802 } 7803 if (tags & ARG_TAG_ARENA) { 7804 if (tags & ~ARG_TAG_ARENA) { 7805 bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i); 7806 return -EINVAL; 7807 } 7808 sub->args[i].arg_type = ARG_PTR_TO_ARENA; 7809 continue; 7810 } 7811 if (is_global) { /* generic user data pointer */ 7812 u32 mem_size; 7813 7814 if (tags & ARG_TAG_NULLABLE) { 7815 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7816 return -EINVAL; 7817 } 7818 7819 t = btf_type_skip_modifiers(btf, t->type, NULL); 7820 ref_t = btf_resolve_size(btf, t, &mem_size); 7821 if (IS_ERR(ref_t)) { 7822 bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7823 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7824 PTR_ERR(ref_t)); 7825 return -EINVAL; 7826 } 7827 7828 sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL; 7829 if (tags & ARG_TAG_NONNULL) 7830 sub->args[i].arg_type &= ~PTR_MAYBE_NULL; 7831 sub->args[i].mem_size = mem_size; 7832 continue; 7833 } 7834 7835 skip_pointer: 7836 if (tags) { 7837 bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i); 7838 return -EINVAL; 7839 } 7840 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7841 sub->args[i].arg_type = ARG_ANYTHING; 7842 continue; 7843 } 7844 if (!is_global) 7845 return -EINVAL; 7846 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7847 i, btf_type_str(t), tname); 7848 return -EINVAL; 7849 } 7850 7851 sub->arg_cnt = nargs; 7852 sub->args_cached = true; 7853 7854 return 0; 7855 } 7856 7857 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7858 struct btf_show *show) 7859 { 7860 const struct btf_type *t = btf_type_by_id(btf, type_id); 7861 7862 show->btf = btf; 7863 memset(&show->state, 0, sizeof(show->state)); 7864 memset(&show->obj, 0, sizeof(show->obj)); 7865 7866 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7867 } 7868 7869 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt, 7870 va_list args) 7871 { 7872 seq_vprintf((struct seq_file *)show->target, fmt, args); 7873 } 7874 7875 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7876 void *obj, struct seq_file *m, u64 flags) 7877 { 7878 struct btf_show sseq; 7879 7880 sseq.target = m; 7881 sseq.showfn = btf_seq_show; 7882 sseq.flags = flags; 7883 7884 btf_type_show(btf, type_id, obj, &sseq); 7885 7886 return sseq.state.status; 7887 } 7888 7889 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7890 struct seq_file *m) 7891 { 7892 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7893 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7894 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7895 } 7896 7897 struct btf_show_snprintf { 7898 struct btf_show show; 7899 int len_left; /* space left in string */ 7900 int len; /* length we would have written */ 7901 }; 7902 7903 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7904 va_list args) 7905 { 7906 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7907 int len; 7908 7909 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7910 7911 if (len < 0) { 7912 ssnprintf->len_left = 0; 7913 ssnprintf->len = len; 7914 } else if (len >= ssnprintf->len_left) { 7915 /* no space, drive on to get length we would have written */ 7916 ssnprintf->len_left = 0; 7917 ssnprintf->len += len; 7918 } else { 7919 ssnprintf->len_left -= len; 7920 ssnprintf->len += len; 7921 show->target += len; 7922 } 7923 } 7924 7925 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7926 char *buf, int len, u64 flags) 7927 { 7928 struct btf_show_snprintf ssnprintf; 7929 7930 ssnprintf.show.target = buf; 7931 ssnprintf.show.flags = flags; 7932 ssnprintf.show.showfn = btf_snprintf_show; 7933 ssnprintf.len_left = len; 7934 ssnprintf.len = 0; 7935 7936 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7937 7938 /* If we encountered an error, return it. */ 7939 if (ssnprintf.show.state.status) 7940 return ssnprintf.show.state.status; 7941 7942 /* Otherwise return length we would have written */ 7943 return ssnprintf.len; 7944 } 7945 7946 #ifdef CONFIG_PROC_FS 7947 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7948 { 7949 const struct btf *btf = filp->private_data; 7950 7951 seq_printf(m, "btf_id:\t%u\n", btf->id); 7952 } 7953 #endif 7954 7955 static int btf_release(struct inode *inode, struct file *filp) 7956 { 7957 btf_put(filp->private_data); 7958 return 0; 7959 } 7960 7961 const struct file_operations btf_fops = { 7962 #ifdef CONFIG_PROC_FS 7963 .show_fdinfo = bpf_btf_show_fdinfo, 7964 #endif 7965 .release = btf_release, 7966 }; 7967 7968 static int __btf_new_fd(struct btf *btf) 7969 { 7970 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7971 } 7972 7973 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 7974 { 7975 struct btf *btf; 7976 int ret; 7977 7978 btf = btf_parse(attr, uattr, uattr_size); 7979 if (IS_ERR(btf)) 7980 return PTR_ERR(btf); 7981 7982 ret = btf_alloc_id(btf); 7983 if (ret) { 7984 btf_free(btf); 7985 return ret; 7986 } 7987 7988 /* 7989 * The BTF ID is published to the userspace. 7990 * All BTF free must go through call_rcu() from 7991 * now on (i.e. free by calling btf_put()). 7992 */ 7993 7994 ret = __btf_new_fd(btf); 7995 if (ret < 0) 7996 btf_put(btf); 7997 7998 return ret; 7999 } 8000 8001 struct btf *btf_get_by_fd(int fd) 8002 { 8003 struct btf *btf; 8004 CLASS(fd, f)(fd); 8005 8006 btf = __btf_get_by_fd(f); 8007 if (!IS_ERR(btf)) 8008 refcount_inc(&btf->refcnt); 8009 8010 return btf; 8011 } 8012 8013 int btf_get_info_by_fd(const struct btf *btf, 8014 const union bpf_attr *attr, 8015 union bpf_attr __user *uattr) 8016 { 8017 struct bpf_btf_info __user *uinfo; 8018 struct bpf_btf_info info; 8019 u32 info_copy, btf_copy; 8020 void __user *ubtf; 8021 char __user *uname; 8022 u32 uinfo_len, uname_len, name_len; 8023 int ret = 0; 8024 8025 uinfo = u64_to_user_ptr(attr->info.info); 8026 uinfo_len = attr->info.info_len; 8027 8028 info_copy = min_t(u32, uinfo_len, sizeof(info)); 8029 memset(&info, 0, sizeof(info)); 8030 if (copy_from_user(&info, uinfo, info_copy)) 8031 return -EFAULT; 8032 8033 info.id = btf->id; 8034 ubtf = u64_to_user_ptr(info.btf); 8035 btf_copy = min_t(u32, btf->data_size, info.btf_size); 8036 if (copy_to_user(ubtf, btf->data, btf_copy)) 8037 return -EFAULT; 8038 info.btf_size = btf->data_size; 8039 8040 info.kernel_btf = btf->kernel_btf; 8041 8042 uname = u64_to_user_ptr(info.name); 8043 uname_len = info.name_len; 8044 if (!uname ^ !uname_len) 8045 return -EINVAL; 8046 8047 name_len = strlen(btf->name); 8048 info.name_len = name_len; 8049 8050 if (uname) { 8051 if (uname_len >= name_len + 1) { 8052 if (copy_to_user(uname, btf->name, name_len + 1)) 8053 return -EFAULT; 8054 } else { 8055 char zero = '\0'; 8056 8057 if (copy_to_user(uname, btf->name, uname_len - 1)) 8058 return -EFAULT; 8059 if (put_user(zero, uname + uname_len - 1)) 8060 return -EFAULT; 8061 /* let user-space know about too short buffer */ 8062 ret = -ENOSPC; 8063 } 8064 } 8065 8066 if (copy_to_user(uinfo, &info, info_copy) || 8067 put_user(info_copy, &uattr->info.info_len)) 8068 return -EFAULT; 8069 8070 return ret; 8071 } 8072 8073 int btf_get_fd_by_id(u32 id) 8074 { 8075 struct btf *btf; 8076 int fd; 8077 8078 rcu_read_lock(); 8079 btf = idr_find(&btf_idr, id); 8080 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 8081 btf = ERR_PTR(-ENOENT); 8082 rcu_read_unlock(); 8083 8084 if (IS_ERR(btf)) 8085 return PTR_ERR(btf); 8086 8087 fd = __btf_new_fd(btf); 8088 if (fd < 0) 8089 btf_put(btf); 8090 8091 return fd; 8092 } 8093 8094 u32 btf_obj_id(const struct btf *btf) 8095 { 8096 return btf->id; 8097 } 8098 8099 bool btf_is_kernel(const struct btf *btf) 8100 { 8101 return btf->kernel_btf; 8102 } 8103 8104 bool btf_is_module(const struct btf *btf) 8105 { 8106 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 8107 } 8108 8109 enum { 8110 BTF_MODULE_F_LIVE = (1 << 0), 8111 }; 8112 8113 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8114 struct btf_module { 8115 struct list_head list; 8116 struct module *module; 8117 struct btf *btf; 8118 struct bin_attribute *sysfs_attr; 8119 int flags; 8120 }; 8121 8122 static LIST_HEAD(btf_modules); 8123 static DEFINE_MUTEX(btf_module_mutex); 8124 8125 static void purge_cand_cache(struct btf *btf); 8126 8127 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 8128 void *module) 8129 { 8130 struct btf_module *btf_mod, *tmp; 8131 struct module *mod = module; 8132 struct btf *btf; 8133 int err = 0; 8134 8135 if (mod->btf_data_size == 0 || 8136 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 8137 op != MODULE_STATE_GOING)) 8138 goto out; 8139 8140 switch (op) { 8141 case MODULE_STATE_COMING: 8142 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 8143 if (!btf_mod) { 8144 err = -ENOMEM; 8145 goto out; 8146 } 8147 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size, 8148 mod->btf_base_data, mod->btf_base_data_size); 8149 if (IS_ERR(btf)) { 8150 kfree(btf_mod); 8151 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 8152 pr_warn("failed to validate module [%s] BTF: %ld\n", 8153 mod->name, PTR_ERR(btf)); 8154 err = PTR_ERR(btf); 8155 } else { 8156 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 8157 } 8158 goto out; 8159 } 8160 err = btf_alloc_id(btf); 8161 if (err) { 8162 btf_free(btf); 8163 kfree(btf_mod); 8164 goto out; 8165 } 8166 8167 purge_cand_cache(NULL); 8168 mutex_lock(&btf_module_mutex); 8169 btf_mod->module = module; 8170 btf_mod->btf = btf; 8171 list_add(&btf_mod->list, &btf_modules); 8172 mutex_unlock(&btf_module_mutex); 8173 8174 if (IS_ENABLED(CONFIG_SYSFS)) { 8175 struct bin_attribute *attr; 8176 8177 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 8178 if (!attr) 8179 goto out; 8180 8181 sysfs_bin_attr_init(attr); 8182 attr->attr.name = btf->name; 8183 attr->attr.mode = 0444; 8184 attr->size = btf->data_size; 8185 attr->private = btf->data; 8186 attr->read_new = sysfs_bin_attr_simple_read; 8187 8188 err = sysfs_create_bin_file(btf_kobj, attr); 8189 if (err) { 8190 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 8191 mod->name, err); 8192 kfree(attr); 8193 err = 0; 8194 goto out; 8195 } 8196 8197 btf_mod->sysfs_attr = attr; 8198 } 8199 8200 break; 8201 case MODULE_STATE_LIVE: 8202 mutex_lock(&btf_module_mutex); 8203 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8204 if (btf_mod->module != module) 8205 continue; 8206 8207 btf_mod->flags |= BTF_MODULE_F_LIVE; 8208 break; 8209 } 8210 mutex_unlock(&btf_module_mutex); 8211 break; 8212 case MODULE_STATE_GOING: 8213 mutex_lock(&btf_module_mutex); 8214 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8215 if (btf_mod->module != module) 8216 continue; 8217 8218 list_del(&btf_mod->list); 8219 if (btf_mod->sysfs_attr) 8220 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 8221 purge_cand_cache(btf_mod->btf); 8222 btf_put(btf_mod->btf); 8223 kfree(btf_mod->sysfs_attr); 8224 kfree(btf_mod); 8225 break; 8226 } 8227 mutex_unlock(&btf_module_mutex); 8228 break; 8229 } 8230 out: 8231 return notifier_from_errno(err); 8232 } 8233 8234 static struct notifier_block btf_module_nb = { 8235 .notifier_call = btf_module_notify, 8236 }; 8237 8238 static int __init btf_module_init(void) 8239 { 8240 register_module_notifier(&btf_module_nb); 8241 return 0; 8242 } 8243 8244 fs_initcall(btf_module_init); 8245 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 8246 8247 struct module *btf_try_get_module(const struct btf *btf) 8248 { 8249 struct module *res = NULL; 8250 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8251 struct btf_module *btf_mod, *tmp; 8252 8253 mutex_lock(&btf_module_mutex); 8254 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8255 if (btf_mod->btf != btf) 8256 continue; 8257 8258 /* We must only consider module whose __init routine has 8259 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 8260 * which is set from the notifier callback for 8261 * MODULE_STATE_LIVE. 8262 */ 8263 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 8264 res = btf_mod->module; 8265 8266 break; 8267 } 8268 mutex_unlock(&btf_module_mutex); 8269 #endif 8270 8271 return res; 8272 } 8273 8274 /* Returns struct btf corresponding to the struct module. 8275 * This function can return NULL or ERR_PTR. 8276 */ 8277 static struct btf *btf_get_module_btf(const struct module *module) 8278 { 8279 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8280 struct btf_module *btf_mod, *tmp; 8281 #endif 8282 struct btf *btf = NULL; 8283 8284 if (!module) { 8285 btf = bpf_get_btf_vmlinux(); 8286 if (!IS_ERR_OR_NULL(btf)) 8287 btf_get(btf); 8288 return btf; 8289 } 8290 8291 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8292 mutex_lock(&btf_module_mutex); 8293 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8294 if (btf_mod->module != module) 8295 continue; 8296 8297 btf_get(btf_mod->btf); 8298 btf = btf_mod->btf; 8299 break; 8300 } 8301 mutex_unlock(&btf_module_mutex); 8302 #endif 8303 8304 return btf; 8305 } 8306 8307 static int check_btf_kconfigs(const struct module *module, const char *feature) 8308 { 8309 if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 8310 pr_err("missing vmlinux BTF, cannot register %s\n", feature); 8311 return -ENOENT; 8312 } 8313 if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) 8314 pr_warn("missing module BTF, cannot register %s\n", feature); 8315 return 0; 8316 } 8317 8318 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 8319 { 8320 struct btf *btf = NULL; 8321 int btf_obj_fd = 0; 8322 long ret; 8323 8324 if (flags) 8325 return -EINVAL; 8326 8327 if (name_sz <= 1 || name[name_sz - 1]) 8328 return -EINVAL; 8329 8330 ret = bpf_find_btf_id(name, kind, &btf); 8331 if (ret > 0 && btf_is_module(btf)) { 8332 btf_obj_fd = __btf_new_fd(btf); 8333 if (btf_obj_fd < 0) { 8334 btf_put(btf); 8335 return btf_obj_fd; 8336 } 8337 return ret | (((u64)btf_obj_fd) << 32); 8338 } 8339 if (ret > 0) 8340 btf_put(btf); 8341 return ret; 8342 } 8343 8344 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 8345 .func = bpf_btf_find_by_name_kind, 8346 .gpl_only = false, 8347 .ret_type = RET_INTEGER, 8348 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 8349 .arg2_type = ARG_CONST_SIZE, 8350 .arg3_type = ARG_ANYTHING, 8351 .arg4_type = ARG_ANYTHING, 8352 }; 8353 8354 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 8355 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 8356 BTF_TRACING_TYPE_xxx 8357 #undef BTF_TRACING_TYPE 8358 8359 /* Validate well-formedness of iter argument type. 8360 * On success, return positive BTF ID of iter state's STRUCT type. 8361 * On error, negative error is returned. 8362 */ 8363 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx) 8364 { 8365 const struct btf_param *arg; 8366 const struct btf_type *t; 8367 const char *name; 8368 int btf_id; 8369 8370 if (btf_type_vlen(func) <= arg_idx) 8371 return -EINVAL; 8372 8373 arg = &btf_params(func)[arg_idx]; 8374 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8375 if (!t || !btf_type_is_ptr(t)) 8376 return -EINVAL; 8377 t = btf_type_skip_modifiers(btf, t->type, &btf_id); 8378 if (!t || !__btf_type_is_struct(t)) 8379 return -EINVAL; 8380 8381 name = btf_name_by_offset(btf, t->name_off); 8382 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 8383 return -EINVAL; 8384 8385 return btf_id; 8386 } 8387 8388 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 8389 const struct btf_type *func, u32 func_flags) 8390 { 8391 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8392 const char *sfx, *iter_name; 8393 const struct btf_type *t; 8394 char exp_name[128]; 8395 u32 nr_args; 8396 int btf_id; 8397 8398 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 8399 if (!flags || (flags & (flags - 1))) 8400 return -EINVAL; 8401 8402 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 8403 nr_args = btf_type_vlen(func); 8404 if (nr_args < 1) 8405 return -EINVAL; 8406 8407 btf_id = btf_check_iter_arg(btf, func, 0); 8408 if (btf_id < 0) 8409 return btf_id; 8410 8411 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 8412 * fit nicely in stack slots 8413 */ 8414 t = btf_type_by_id(btf, btf_id); 8415 if (t->size == 0 || (t->size % 8)) 8416 return -EINVAL; 8417 8418 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 8419 * naming pattern 8420 */ 8421 iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1; 8422 if (flags & KF_ITER_NEW) 8423 sfx = "new"; 8424 else if (flags & KF_ITER_NEXT) 8425 sfx = "next"; 8426 else /* (flags & KF_ITER_DESTROY) */ 8427 sfx = "destroy"; 8428 8429 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 8430 if (strcmp(func_name, exp_name)) 8431 return -EINVAL; 8432 8433 /* only iter constructor should have extra arguments */ 8434 if (!(flags & KF_ITER_NEW) && nr_args != 1) 8435 return -EINVAL; 8436 8437 if (flags & KF_ITER_NEXT) { 8438 /* bpf_iter_<type>_next() should return pointer */ 8439 t = btf_type_skip_modifiers(btf, func->type, NULL); 8440 if (!t || !btf_type_is_ptr(t)) 8441 return -EINVAL; 8442 } 8443 8444 if (flags & KF_ITER_DESTROY) { 8445 /* bpf_iter_<type>_destroy() should return void */ 8446 t = btf_type_by_id(btf, func->type); 8447 if (!t || !btf_type_is_void(t)) 8448 return -EINVAL; 8449 } 8450 8451 return 0; 8452 } 8453 8454 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 8455 { 8456 const struct btf_type *func; 8457 const char *func_name; 8458 int err; 8459 8460 /* any kfunc should be FUNC -> FUNC_PROTO */ 8461 func = btf_type_by_id(btf, func_id); 8462 if (!func || !btf_type_is_func(func)) 8463 return -EINVAL; 8464 8465 /* sanity check kfunc name */ 8466 func_name = btf_name_by_offset(btf, func->name_off); 8467 if (!func_name || !func_name[0]) 8468 return -EINVAL; 8469 8470 func = btf_type_by_id(btf, func->type); 8471 if (!func || !btf_type_is_func_proto(func)) 8472 return -EINVAL; 8473 8474 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 8475 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 8476 if (err) 8477 return err; 8478 } 8479 8480 return 0; 8481 } 8482 8483 /* Kernel Function (kfunc) BTF ID set registration API */ 8484 8485 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 8486 const struct btf_kfunc_id_set *kset) 8487 { 8488 struct btf_kfunc_hook_filter *hook_filter; 8489 struct btf_id_set8 *add_set = kset->set; 8490 bool vmlinux_set = !btf_is_module(btf); 8491 bool add_filter = !!kset->filter; 8492 struct btf_kfunc_set_tab *tab; 8493 struct btf_id_set8 *set; 8494 u32 set_cnt, i; 8495 int ret; 8496 8497 if (hook >= BTF_KFUNC_HOOK_MAX) { 8498 ret = -EINVAL; 8499 goto end; 8500 } 8501 8502 if (!add_set->cnt) 8503 return 0; 8504 8505 tab = btf->kfunc_set_tab; 8506 8507 if (tab && add_filter) { 8508 u32 i; 8509 8510 hook_filter = &tab->hook_filters[hook]; 8511 for (i = 0; i < hook_filter->nr_filters; i++) { 8512 if (hook_filter->filters[i] == kset->filter) { 8513 add_filter = false; 8514 break; 8515 } 8516 } 8517 8518 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { 8519 ret = -E2BIG; 8520 goto end; 8521 } 8522 } 8523 8524 if (!tab) { 8525 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 8526 if (!tab) 8527 return -ENOMEM; 8528 btf->kfunc_set_tab = tab; 8529 } 8530 8531 set = tab->sets[hook]; 8532 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 8533 * for module sets. 8534 */ 8535 if (WARN_ON_ONCE(set && !vmlinux_set)) { 8536 ret = -EINVAL; 8537 goto end; 8538 } 8539 8540 /* In case of vmlinux sets, there may be more than one set being 8541 * registered per hook. To create a unified set, we allocate a new set 8542 * and concatenate all individual sets being registered. While each set 8543 * is individually sorted, they may become unsorted when concatenated, 8544 * hence re-sorting the final set again is required to make binary 8545 * searching the set using btf_id_set8_contains function work. 8546 * 8547 * For module sets, we need to allocate as we may need to relocate 8548 * BTF ids. 8549 */ 8550 set_cnt = set ? set->cnt : 0; 8551 8552 if (set_cnt > U32_MAX - add_set->cnt) { 8553 ret = -EOVERFLOW; 8554 goto end; 8555 } 8556 8557 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 8558 ret = -E2BIG; 8559 goto end; 8560 } 8561 8562 /* Grow set */ 8563 set = krealloc(tab->sets[hook], 8564 struct_size(set, pairs, set_cnt + add_set->cnt), 8565 GFP_KERNEL | __GFP_NOWARN); 8566 if (!set) { 8567 ret = -ENOMEM; 8568 goto end; 8569 } 8570 8571 /* For newly allocated set, initialize set->cnt to 0 */ 8572 if (!tab->sets[hook]) 8573 set->cnt = 0; 8574 tab->sets[hook] = set; 8575 8576 /* Concatenate the two sets */ 8577 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 8578 /* Now that the set is copied, update with relocated BTF ids */ 8579 for (i = set->cnt; i < set->cnt + add_set->cnt; i++) 8580 set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id); 8581 8582 set->cnt += add_set->cnt; 8583 8584 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 8585 8586 if (add_filter) { 8587 hook_filter = &tab->hook_filters[hook]; 8588 hook_filter->filters[hook_filter->nr_filters++] = kset->filter; 8589 } 8590 return 0; 8591 end: 8592 btf_free_kfunc_set_tab(btf); 8593 return ret; 8594 } 8595 8596 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 8597 enum btf_kfunc_hook hook, 8598 u32 kfunc_btf_id, 8599 const struct bpf_prog *prog) 8600 { 8601 struct btf_kfunc_hook_filter *hook_filter; 8602 struct btf_id_set8 *set; 8603 u32 *id, i; 8604 8605 if (hook >= BTF_KFUNC_HOOK_MAX) 8606 return NULL; 8607 if (!btf->kfunc_set_tab) 8608 return NULL; 8609 hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; 8610 for (i = 0; i < hook_filter->nr_filters; i++) { 8611 if (hook_filter->filters[i](prog, kfunc_btf_id)) 8612 return NULL; 8613 } 8614 set = btf->kfunc_set_tab->sets[hook]; 8615 if (!set) 8616 return NULL; 8617 id = btf_id_set8_contains(set, kfunc_btf_id); 8618 if (!id) 8619 return NULL; 8620 /* The flags for BTF ID are located next to it */ 8621 return id + 1; 8622 } 8623 8624 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 8625 { 8626 switch (prog_type) { 8627 case BPF_PROG_TYPE_UNSPEC: 8628 return BTF_KFUNC_HOOK_COMMON; 8629 case BPF_PROG_TYPE_XDP: 8630 return BTF_KFUNC_HOOK_XDP; 8631 case BPF_PROG_TYPE_SCHED_CLS: 8632 return BTF_KFUNC_HOOK_TC; 8633 case BPF_PROG_TYPE_STRUCT_OPS: 8634 return BTF_KFUNC_HOOK_STRUCT_OPS; 8635 case BPF_PROG_TYPE_TRACING: 8636 case BPF_PROG_TYPE_TRACEPOINT: 8637 case BPF_PROG_TYPE_PERF_EVENT: 8638 case BPF_PROG_TYPE_LSM: 8639 return BTF_KFUNC_HOOK_TRACING; 8640 case BPF_PROG_TYPE_SYSCALL: 8641 return BTF_KFUNC_HOOK_SYSCALL; 8642 case BPF_PROG_TYPE_CGROUP_SKB: 8643 case BPF_PROG_TYPE_CGROUP_SOCK: 8644 case BPF_PROG_TYPE_CGROUP_DEVICE: 8645 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 8646 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 8647 case BPF_PROG_TYPE_CGROUP_SYSCTL: 8648 case BPF_PROG_TYPE_SOCK_OPS: 8649 return BTF_KFUNC_HOOK_CGROUP; 8650 case BPF_PROG_TYPE_SCHED_ACT: 8651 return BTF_KFUNC_HOOK_SCHED_ACT; 8652 case BPF_PROG_TYPE_SK_SKB: 8653 return BTF_KFUNC_HOOK_SK_SKB; 8654 case BPF_PROG_TYPE_SOCKET_FILTER: 8655 return BTF_KFUNC_HOOK_SOCKET_FILTER; 8656 case BPF_PROG_TYPE_LWT_OUT: 8657 case BPF_PROG_TYPE_LWT_IN: 8658 case BPF_PROG_TYPE_LWT_XMIT: 8659 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 8660 return BTF_KFUNC_HOOK_LWT; 8661 case BPF_PROG_TYPE_NETFILTER: 8662 return BTF_KFUNC_HOOK_NETFILTER; 8663 case BPF_PROG_TYPE_KPROBE: 8664 return BTF_KFUNC_HOOK_KPROBE; 8665 default: 8666 return BTF_KFUNC_HOOK_MAX; 8667 } 8668 } 8669 8670 /* Caution: 8671 * Reference to the module (obtained using btf_try_get_module) corresponding to 8672 * the struct btf *MUST* be held when calling this function from verifier 8673 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 8674 * keeping the reference for the duration of the call provides the necessary 8675 * protection for looking up a well-formed btf->kfunc_set_tab. 8676 */ 8677 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 8678 u32 kfunc_btf_id, 8679 const struct bpf_prog *prog) 8680 { 8681 enum bpf_prog_type prog_type = resolve_prog_type(prog); 8682 enum btf_kfunc_hook hook; 8683 u32 *kfunc_flags; 8684 8685 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); 8686 if (kfunc_flags) 8687 return kfunc_flags; 8688 8689 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8690 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); 8691 } 8692 8693 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, 8694 const struct bpf_prog *prog) 8695 { 8696 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); 8697 } 8698 8699 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 8700 const struct btf_kfunc_id_set *kset) 8701 { 8702 struct btf *btf; 8703 int ret, i; 8704 8705 btf = btf_get_module_btf(kset->owner); 8706 if (!btf) 8707 return check_btf_kconfigs(kset->owner, "kfunc"); 8708 if (IS_ERR(btf)) 8709 return PTR_ERR(btf); 8710 8711 for (i = 0; i < kset->set->cnt; i++) { 8712 ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id), 8713 kset->set->pairs[i].flags); 8714 if (ret) 8715 goto err_out; 8716 } 8717 8718 ret = btf_populate_kfunc_set(btf, hook, kset); 8719 8720 err_out: 8721 btf_put(btf); 8722 return ret; 8723 } 8724 8725 /* This function must be invoked only from initcalls/module init functions */ 8726 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 8727 const struct btf_kfunc_id_set *kset) 8728 { 8729 enum btf_kfunc_hook hook; 8730 8731 /* All kfuncs need to be tagged as such in BTF. 8732 * WARN() for initcall registrations that do not check errors. 8733 */ 8734 if (!(kset->set->flags & BTF_SET8_KFUNCS)) { 8735 WARN_ON(!kset->owner); 8736 return -EINVAL; 8737 } 8738 8739 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8740 return __register_btf_kfunc_id_set(hook, kset); 8741 } 8742 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 8743 8744 /* This function must be invoked only from initcalls/module init functions */ 8745 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 8746 { 8747 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 8748 } 8749 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 8750 8751 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 8752 { 8753 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 8754 struct btf_id_dtor_kfunc *dtor; 8755 8756 if (!tab) 8757 return -ENOENT; 8758 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 8759 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 8760 */ 8761 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 8762 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 8763 if (!dtor) 8764 return -ENOENT; 8765 return dtor->kfunc_btf_id; 8766 } 8767 8768 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 8769 { 8770 const struct btf_type *dtor_func, *dtor_func_proto, *t; 8771 const struct btf_param *args; 8772 s32 dtor_btf_id; 8773 u32 nr_args, i; 8774 8775 for (i = 0; i < cnt; i++) { 8776 dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id); 8777 8778 dtor_func = btf_type_by_id(btf, dtor_btf_id); 8779 if (!dtor_func || !btf_type_is_func(dtor_func)) 8780 return -EINVAL; 8781 8782 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 8783 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 8784 return -EINVAL; 8785 8786 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 8787 t = btf_type_by_id(btf, dtor_func_proto->type); 8788 if (!t || !btf_type_is_void(t)) 8789 return -EINVAL; 8790 8791 nr_args = btf_type_vlen(dtor_func_proto); 8792 if (nr_args != 1) 8793 return -EINVAL; 8794 args = btf_params(dtor_func_proto); 8795 t = btf_type_by_id(btf, args[0].type); 8796 /* Allow any pointer type, as width on targets Linux supports 8797 * will be same for all pointer types (i.e. sizeof(void *)) 8798 */ 8799 if (!t || !btf_type_is_ptr(t)) 8800 return -EINVAL; 8801 } 8802 return 0; 8803 } 8804 8805 /* This function must be invoked only from initcalls/module init functions */ 8806 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 8807 struct module *owner) 8808 { 8809 struct btf_id_dtor_kfunc_tab *tab; 8810 struct btf *btf; 8811 u32 tab_cnt, i; 8812 int ret; 8813 8814 btf = btf_get_module_btf(owner); 8815 if (!btf) 8816 return check_btf_kconfigs(owner, "dtor kfuncs"); 8817 if (IS_ERR(btf)) 8818 return PTR_ERR(btf); 8819 8820 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8821 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8822 ret = -E2BIG; 8823 goto end; 8824 } 8825 8826 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 8827 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 8828 if (ret < 0) 8829 goto end; 8830 8831 tab = btf->dtor_kfunc_tab; 8832 /* Only one call allowed for modules */ 8833 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 8834 ret = -EINVAL; 8835 goto end; 8836 } 8837 8838 tab_cnt = tab ? tab->cnt : 0; 8839 if (tab_cnt > U32_MAX - add_cnt) { 8840 ret = -EOVERFLOW; 8841 goto end; 8842 } 8843 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8844 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8845 ret = -E2BIG; 8846 goto end; 8847 } 8848 8849 tab = krealloc(btf->dtor_kfunc_tab, 8850 struct_size(tab, dtors, tab_cnt + add_cnt), 8851 GFP_KERNEL | __GFP_NOWARN); 8852 if (!tab) { 8853 ret = -ENOMEM; 8854 goto end; 8855 } 8856 8857 if (!btf->dtor_kfunc_tab) 8858 tab->cnt = 0; 8859 btf->dtor_kfunc_tab = tab; 8860 8861 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8862 8863 /* remap BTF ids based on BTF relocation (if any) */ 8864 for (i = tab_cnt; i < tab_cnt + add_cnt; i++) { 8865 tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id); 8866 tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id); 8867 } 8868 8869 tab->cnt += add_cnt; 8870 8871 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8872 8873 end: 8874 if (ret) 8875 btf_free_dtor_kfunc_tab(btf); 8876 btf_put(btf); 8877 return ret; 8878 } 8879 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8880 8881 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8882 8883 /* Check local and target types for compatibility. This check is used for 8884 * type-based CO-RE relocations and follow slightly different rules than 8885 * field-based relocations. This function assumes that root types were already 8886 * checked for name match. Beyond that initial root-level name check, names 8887 * are completely ignored. Compatibility rules are as follows: 8888 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8889 * kind should match for local and target types (i.e., STRUCT is not 8890 * compatible with UNION); 8891 * - for ENUMs/ENUM64s, the size is ignored; 8892 * - for INT, size and signedness are ignored; 8893 * - for ARRAY, dimensionality is ignored, element types are checked for 8894 * compatibility recursively; 8895 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8896 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8897 * - FUNC_PROTOs are compatible if they have compatible signature: same 8898 * number of input args and compatible return and argument types. 8899 * These rules are not set in stone and probably will be adjusted as we get 8900 * more experience with using BPF CO-RE relocations. 8901 */ 8902 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8903 const struct btf *targ_btf, __u32 targ_id) 8904 { 8905 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8906 MAX_TYPES_ARE_COMPAT_DEPTH); 8907 } 8908 8909 #define MAX_TYPES_MATCH_DEPTH 2 8910 8911 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8912 const struct btf *targ_btf, u32 targ_id) 8913 { 8914 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8915 MAX_TYPES_MATCH_DEPTH); 8916 } 8917 8918 static bool bpf_core_is_flavor_sep(const char *s) 8919 { 8920 /* check X___Y name pattern, where X and Y are not underscores */ 8921 return s[0] != '_' && /* X */ 8922 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8923 s[4] != '_'; /* Y */ 8924 } 8925 8926 size_t bpf_core_essential_name_len(const char *name) 8927 { 8928 size_t n = strlen(name); 8929 int i; 8930 8931 for (i = n - 5; i >= 0; i--) { 8932 if (bpf_core_is_flavor_sep(name + i)) 8933 return i + 1; 8934 } 8935 return n; 8936 } 8937 8938 static void bpf_free_cands(struct bpf_cand_cache *cands) 8939 { 8940 if (!cands->cnt) 8941 /* empty candidate array was allocated on stack */ 8942 return; 8943 kfree(cands); 8944 } 8945 8946 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 8947 { 8948 kfree(cands->name); 8949 kfree(cands); 8950 } 8951 8952 #define VMLINUX_CAND_CACHE_SIZE 31 8953 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 8954 8955 #define MODULE_CAND_CACHE_SIZE 31 8956 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 8957 8958 static void __print_cand_cache(struct bpf_verifier_log *log, 8959 struct bpf_cand_cache **cache, 8960 int cache_size) 8961 { 8962 struct bpf_cand_cache *cc; 8963 int i, j; 8964 8965 for (i = 0; i < cache_size; i++) { 8966 cc = cache[i]; 8967 if (!cc) 8968 continue; 8969 bpf_log(log, "[%d]%s(", i, cc->name); 8970 for (j = 0; j < cc->cnt; j++) { 8971 bpf_log(log, "%d", cc->cands[j].id); 8972 if (j < cc->cnt - 1) 8973 bpf_log(log, " "); 8974 } 8975 bpf_log(log, "), "); 8976 } 8977 } 8978 8979 static void print_cand_cache(struct bpf_verifier_log *log) 8980 { 8981 mutex_lock(&cand_cache_mutex); 8982 bpf_log(log, "vmlinux_cand_cache:"); 8983 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8984 bpf_log(log, "\nmodule_cand_cache:"); 8985 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8986 bpf_log(log, "\n"); 8987 mutex_unlock(&cand_cache_mutex); 8988 } 8989 8990 static u32 hash_cands(struct bpf_cand_cache *cands) 8991 { 8992 return jhash(cands->name, cands->name_len, 0); 8993 } 8994 8995 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 8996 struct bpf_cand_cache **cache, 8997 int cache_size) 8998 { 8999 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 9000 9001 if (cc && cc->name_len == cands->name_len && 9002 !strncmp(cc->name, cands->name, cands->name_len)) 9003 return cc; 9004 return NULL; 9005 } 9006 9007 static size_t sizeof_cands(int cnt) 9008 { 9009 return offsetof(struct bpf_cand_cache, cands[cnt]); 9010 } 9011 9012 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 9013 struct bpf_cand_cache **cache, 9014 int cache_size) 9015 { 9016 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 9017 9018 if (*cc) { 9019 bpf_free_cands_from_cache(*cc); 9020 *cc = NULL; 9021 } 9022 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 9023 if (!new_cands) { 9024 bpf_free_cands(cands); 9025 return ERR_PTR(-ENOMEM); 9026 } 9027 /* strdup the name, since it will stay in cache. 9028 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 9029 */ 9030 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 9031 bpf_free_cands(cands); 9032 if (!new_cands->name) { 9033 kfree(new_cands); 9034 return ERR_PTR(-ENOMEM); 9035 } 9036 *cc = new_cands; 9037 return new_cands; 9038 } 9039 9040 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 9041 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 9042 int cache_size) 9043 { 9044 struct bpf_cand_cache *cc; 9045 int i, j; 9046 9047 for (i = 0; i < cache_size; i++) { 9048 cc = cache[i]; 9049 if (!cc) 9050 continue; 9051 if (!btf) { 9052 /* when new module is loaded purge all of module_cand_cache, 9053 * since new module might have candidates with the name 9054 * that matches cached cands. 9055 */ 9056 bpf_free_cands_from_cache(cc); 9057 cache[i] = NULL; 9058 continue; 9059 } 9060 /* when module is unloaded purge cache entries 9061 * that match module's btf 9062 */ 9063 for (j = 0; j < cc->cnt; j++) 9064 if (cc->cands[j].btf == btf) { 9065 bpf_free_cands_from_cache(cc); 9066 cache[i] = NULL; 9067 break; 9068 } 9069 } 9070 9071 } 9072 9073 static void purge_cand_cache(struct btf *btf) 9074 { 9075 mutex_lock(&cand_cache_mutex); 9076 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9077 mutex_unlock(&cand_cache_mutex); 9078 } 9079 #endif 9080 9081 static struct bpf_cand_cache * 9082 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 9083 int targ_start_id) 9084 { 9085 struct bpf_cand_cache *new_cands; 9086 const struct btf_type *t; 9087 const char *targ_name; 9088 size_t targ_essent_len; 9089 int n, i; 9090 9091 n = btf_nr_types(targ_btf); 9092 for (i = targ_start_id; i < n; i++) { 9093 t = btf_type_by_id(targ_btf, i); 9094 if (btf_kind(t) != cands->kind) 9095 continue; 9096 9097 targ_name = btf_name_by_offset(targ_btf, t->name_off); 9098 if (!targ_name) 9099 continue; 9100 9101 /* the resched point is before strncmp to make sure that search 9102 * for non-existing name will have a chance to schedule(). 9103 */ 9104 cond_resched(); 9105 9106 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 9107 continue; 9108 9109 targ_essent_len = bpf_core_essential_name_len(targ_name); 9110 if (targ_essent_len != cands->name_len) 9111 continue; 9112 9113 /* most of the time there is only one candidate for a given kind+name pair */ 9114 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 9115 if (!new_cands) { 9116 bpf_free_cands(cands); 9117 return ERR_PTR(-ENOMEM); 9118 } 9119 9120 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 9121 bpf_free_cands(cands); 9122 cands = new_cands; 9123 cands->cands[cands->cnt].btf = targ_btf; 9124 cands->cands[cands->cnt].id = i; 9125 cands->cnt++; 9126 } 9127 return cands; 9128 } 9129 9130 static struct bpf_cand_cache * 9131 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 9132 { 9133 struct bpf_cand_cache *cands, *cc, local_cand = {}; 9134 const struct btf *local_btf = ctx->btf; 9135 const struct btf_type *local_type; 9136 const struct btf *main_btf; 9137 size_t local_essent_len; 9138 struct btf *mod_btf; 9139 const char *name; 9140 int id; 9141 9142 main_btf = bpf_get_btf_vmlinux(); 9143 if (IS_ERR(main_btf)) 9144 return ERR_CAST(main_btf); 9145 if (!main_btf) 9146 return ERR_PTR(-EINVAL); 9147 9148 local_type = btf_type_by_id(local_btf, local_type_id); 9149 if (!local_type) 9150 return ERR_PTR(-EINVAL); 9151 9152 name = btf_name_by_offset(local_btf, local_type->name_off); 9153 if (str_is_empty(name)) 9154 return ERR_PTR(-EINVAL); 9155 local_essent_len = bpf_core_essential_name_len(name); 9156 9157 cands = &local_cand; 9158 cands->name = name; 9159 cands->kind = btf_kind(local_type); 9160 cands->name_len = local_essent_len; 9161 9162 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 9163 /* cands is a pointer to stack here */ 9164 if (cc) { 9165 if (cc->cnt) 9166 return cc; 9167 goto check_modules; 9168 } 9169 9170 /* Attempt to find target candidates in vmlinux BTF first */ 9171 cands = bpf_core_add_cands(cands, main_btf, 1); 9172 if (IS_ERR(cands)) 9173 return ERR_CAST(cands); 9174 9175 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 9176 9177 /* populate cache even when cands->cnt == 0 */ 9178 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 9179 if (IS_ERR(cc)) 9180 return ERR_CAST(cc); 9181 9182 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 9183 if (cc->cnt) 9184 return cc; 9185 9186 check_modules: 9187 /* cands is a pointer to stack here and cands->cnt == 0 */ 9188 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9189 if (cc) 9190 /* if cache has it return it even if cc->cnt == 0 */ 9191 return cc; 9192 9193 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 9194 spin_lock_bh(&btf_idr_lock); 9195 idr_for_each_entry(&btf_idr, mod_btf, id) { 9196 if (!btf_is_module(mod_btf)) 9197 continue; 9198 /* linear search could be slow hence unlock/lock 9199 * the IDR to avoiding holding it for too long 9200 */ 9201 btf_get(mod_btf); 9202 spin_unlock_bh(&btf_idr_lock); 9203 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 9204 btf_put(mod_btf); 9205 if (IS_ERR(cands)) 9206 return ERR_CAST(cands); 9207 spin_lock_bh(&btf_idr_lock); 9208 } 9209 spin_unlock_bh(&btf_idr_lock); 9210 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 9211 * or pointer to stack if cands->cnd == 0. 9212 * Copy it into the cache even when cands->cnt == 0 and 9213 * return the result. 9214 */ 9215 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9216 } 9217 9218 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 9219 int relo_idx, void *insn) 9220 { 9221 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 9222 struct bpf_core_cand_list cands = {}; 9223 struct bpf_core_relo_res targ_res; 9224 struct bpf_core_spec *specs; 9225 const struct btf_type *type; 9226 int err; 9227 9228 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 9229 * into arrays of btf_ids of struct fields and array indices. 9230 */ 9231 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 9232 if (!specs) 9233 return -ENOMEM; 9234 9235 type = btf_type_by_id(ctx->btf, relo->type_id); 9236 if (!type) { 9237 bpf_log(ctx->log, "relo #%u: bad type id %u\n", 9238 relo_idx, relo->type_id); 9239 kfree(specs); 9240 return -EINVAL; 9241 } 9242 9243 if (need_cands) { 9244 struct bpf_cand_cache *cc; 9245 int i; 9246 9247 mutex_lock(&cand_cache_mutex); 9248 cc = bpf_core_find_cands(ctx, relo->type_id); 9249 if (IS_ERR(cc)) { 9250 bpf_log(ctx->log, "target candidate search failed for %d\n", 9251 relo->type_id); 9252 err = PTR_ERR(cc); 9253 goto out; 9254 } 9255 if (cc->cnt) { 9256 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 9257 if (!cands.cands) { 9258 err = -ENOMEM; 9259 goto out; 9260 } 9261 } 9262 for (i = 0; i < cc->cnt; i++) { 9263 bpf_log(ctx->log, 9264 "CO-RE relocating %s %s: found target candidate [%d]\n", 9265 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 9266 cands.cands[i].btf = cc->cands[i].btf; 9267 cands.cands[i].id = cc->cands[i].id; 9268 } 9269 cands.len = cc->cnt; 9270 /* cand_cache_mutex needs to span the cache lookup and 9271 * copy of btf pointer into bpf_core_cand_list, 9272 * since module can be unloaded while bpf_core_calc_relo_insn 9273 * is working with module's btf. 9274 */ 9275 } 9276 9277 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 9278 &targ_res); 9279 if (err) 9280 goto out; 9281 9282 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 9283 &targ_res); 9284 9285 out: 9286 kfree(specs); 9287 if (need_cands) { 9288 kfree(cands.cands); 9289 mutex_unlock(&cand_cache_mutex); 9290 if (ctx->log->level & BPF_LOG_LEVEL2) 9291 print_cand_cache(ctx->log); 9292 } 9293 return err; 9294 } 9295 9296 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 9297 const struct bpf_reg_state *reg, 9298 const char *field_name, u32 btf_id, const char *suffix) 9299 { 9300 struct btf *btf = reg->btf; 9301 const struct btf_type *walk_type, *safe_type; 9302 const char *tname; 9303 char safe_tname[64]; 9304 long ret, safe_id; 9305 const struct btf_member *member; 9306 u32 i; 9307 9308 walk_type = btf_type_by_id(btf, reg->btf_id); 9309 if (!walk_type) 9310 return false; 9311 9312 tname = btf_name_by_offset(btf, walk_type->name_off); 9313 9314 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 9315 if (ret >= sizeof(safe_tname)) 9316 return false; 9317 9318 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 9319 if (safe_id < 0) 9320 return false; 9321 9322 safe_type = btf_type_by_id(btf, safe_id); 9323 if (!safe_type) 9324 return false; 9325 9326 for_each_member(i, safe_type, member) { 9327 const char *m_name = __btf_name_by_offset(btf, member->name_off); 9328 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 9329 u32 id; 9330 9331 if (!btf_type_is_ptr(mtype)) 9332 continue; 9333 9334 btf_type_skip_modifiers(btf, mtype->type, &id); 9335 /* If we match on both type and name, the field is considered trusted. */ 9336 if (btf_id == id && !strcmp(field_name, m_name)) 9337 return true; 9338 } 9339 9340 return false; 9341 } 9342 9343 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 9344 const struct btf *reg_btf, u32 reg_id, 9345 const struct btf *arg_btf, u32 arg_id) 9346 { 9347 const char *reg_name, *arg_name, *search_needle; 9348 const struct btf_type *reg_type, *arg_type; 9349 int reg_len, arg_len, cmp_len; 9350 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 9351 9352 reg_type = btf_type_by_id(reg_btf, reg_id); 9353 if (!reg_type) 9354 return false; 9355 9356 arg_type = btf_type_by_id(arg_btf, arg_id); 9357 if (!arg_type) 9358 return false; 9359 9360 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 9361 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 9362 9363 reg_len = strlen(reg_name); 9364 arg_len = strlen(arg_name); 9365 9366 /* Exactly one of the two type names may be suffixed with ___init, so 9367 * if the strings are the same size, they can't possibly be no-cast 9368 * aliases of one another. If you have two of the same type names, e.g. 9369 * they're both nf_conn___init, it would be improper to return true 9370 * because they are _not_ no-cast aliases, they are the same type. 9371 */ 9372 if (reg_len == arg_len) 9373 return false; 9374 9375 /* Either of the two names must be the other name, suffixed with ___init. */ 9376 if ((reg_len != arg_len + pattern_len) && 9377 (arg_len != reg_len + pattern_len)) 9378 return false; 9379 9380 if (reg_len < arg_len) { 9381 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 9382 cmp_len = reg_len; 9383 } else { 9384 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 9385 cmp_len = arg_len; 9386 } 9387 9388 if (!search_needle) 9389 return false; 9390 9391 /* ___init suffix must come at the end of the name */ 9392 if (*(search_needle + pattern_len) != '\0') 9393 return false; 9394 9395 return !strncmp(reg_name, arg_name, cmp_len); 9396 } 9397 9398 #ifdef CONFIG_BPF_JIT 9399 static int 9400 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops, 9401 struct bpf_verifier_log *log) 9402 { 9403 struct btf_struct_ops_tab *tab, *new_tab; 9404 int i, err; 9405 9406 tab = btf->struct_ops_tab; 9407 if (!tab) { 9408 tab = kzalloc(struct_size(tab, ops, 4), GFP_KERNEL); 9409 if (!tab) 9410 return -ENOMEM; 9411 tab->capacity = 4; 9412 btf->struct_ops_tab = tab; 9413 } 9414 9415 for (i = 0; i < tab->cnt; i++) 9416 if (tab->ops[i].st_ops == st_ops) 9417 return -EEXIST; 9418 9419 if (tab->cnt == tab->capacity) { 9420 new_tab = krealloc(tab, 9421 struct_size(tab, ops, tab->capacity * 2), 9422 GFP_KERNEL); 9423 if (!new_tab) 9424 return -ENOMEM; 9425 tab = new_tab; 9426 tab->capacity *= 2; 9427 btf->struct_ops_tab = tab; 9428 } 9429 9430 tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops; 9431 9432 err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log); 9433 if (err) 9434 return err; 9435 9436 btf->struct_ops_tab->cnt++; 9437 9438 return 0; 9439 } 9440 9441 const struct bpf_struct_ops_desc * 9442 bpf_struct_ops_find_value(struct btf *btf, u32 value_id) 9443 { 9444 const struct bpf_struct_ops_desc *st_ops_list; 9445 unsigned int i; 9446 u32 cnt; 9447 9448 if (!value_id) 9449 return NULL; 9450 if (!btf->struct_ops_tab) 9451 return NULL; 9452 9453 cnt = btf->struct_ops_tab->cnt; 9454 st_ops_list = btf->struct_ops_tab->ops; 9455 for (i = 0; i < cnt; i++) { 9456 if (st_ops_list[i].value_id == value_id) 9457 return &st_ops_list[i]; 9458 } 9459 9460 return NULL; 9461 } 9462 9463 const struct bpf_struct_ops_desc * 9464 bpf_struct_ops_find(struct btf *btf, u32 type_id) 9465 { 9466 const struct bpf_struct_ops_desc *st_ops_list; 9467 unsigned int i; 9468 u32 cnt; 9469 9470 if (!type_id) 9471 return NULL; 9472 if (!btf->struct_ops_tab) 9473 return NULL; 9474 9475 cnt = btf->struct_ops_tab->cnt; 9476 st_ops_list = btf->struct_ops_tab->ops; 9477 for (i = 0; i < cnt; i++) { 9478 if (st_ops_list[i].type_id == type_id) 9479 return &st_ops_list[i]; 9480 } 9481 9482 return NULL; 9483 } 9484 9485 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops) 9486 { 9487 struct bpf_verifier_log *log; 9488 struct btf *btf; 9489 int err = 0; 9490 9491 btf = btf_get_module_btf(st_ops->owner); 9492 if (!btf) 9493 return check_btf_kconfigs(st_ops->owner, "struct_ops"); 9494 if (IS_ERR(btf)) 9495 return PTR_ERR(btf); 9496 9497 log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN); 9498 if (!log) { 9499 err = -ENOMEM; 9500 goto errout; 9501 } 9502 9503 log->level = BPF_LOG_KERNEL; 9504 9505 err = btf_add_struct_ops(btf, st_ops, log); 9506 9507 errout: 9508 kfree(log); 9509 btf_put(btf); 9510 9511 return err; 9512 } 9513 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops); 9514 #endif 9515 9516 bool btf_param_match_suffix(const struct btf *btf, 9517 const struct btf_param *arg, 9518 const char *suffix) 9519 { 9520 int suffix_len = strlen(suffix), len; 9521 const char *param_name; 9522 9523 /* In the future, this can be ported to use BTF tagging */ 9524 param_name = btf_name_by_offset(btf, arg->name_off); 9525 if (str_is_empty(param_name)) 9526 return false; 9527 len = strlen(param_name); 9528 if (len <= suffix_len) 9529 return false; 9530 param_name += len - suffix_len; 9531 return !strncmp(param_name, suffix, suffix_len); 9532 } 9533