1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/fs.h>
5 #include <linux/file.h>
6 #include <linux/blk-mq.h>
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/fsnotify.h>
10 #include <linux/poll.h>
11 #include <linux/nospec.h>
12 #include <linux/compat.h>
13 #include <linux/io_uring/cmd.h>
14 #include <linux/indirect_call_wrapper.h>
15 
16 #include <uapi/linux/io_uring.h>
17 
18 #include "io_uring.h"
19 #include "opdef.h"
20 #include "kbuf.h"
21 #include "alloc_cache.h"
22 #include "rsrc.h"
23 #include "poll.h"
24 #include "rw.h"
25 
26 static void io_complete_rw(struct kiocb *kiocb, long res);
27 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res);
28 
29 struct io_rw {
30 	/* NOTE: kiocb has the file as the first member, so don't do it here */
31 	struct kiocb			kiocb;
32 	u64				addr;
33 	u32				len;
34 	rwf_t				flags;
35 };
36 
37 static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask)
38 {
39 	/* If FMODE_NOWAIT is set for a file, we're golden */
40 	if (req->flags & REQ_F_SUPPORT_NOWAIT)
41 		return true;
42 	/* No FMODE_NOWAIT, if we can poll, check the status */
43 	if (io_file_can_poll(req)) {
44 		struct poll_table_struct pt = { ._key = mask };
45 
46 		return vfs_poll(req->file, &pt) & mask;
47 	}
48 	/* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */
49 	return false;
50 }
51 
52 static int io_iov_compat_buffer_select_prep(struct io_rw *rw)
53 {
54 	struct compat_iovec __user *uiov = u64_to_user_ptr(rw->addr);
55 	struct compat_iovec iov;
56 
57 	if (copy_from_user(&iov, uiov, sizeof(iov)))
58 		return -EFAULT;
59 	rw->len = iov.iov_len;
60 	return 0;
61 }
62 
63 static int io_iov_buffer_select_prep(struct io_kiocb *req)
64 {
65 	struct iovec __user *uiov;
66 	struct iovec iov;
67 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
68 
69 	if (rw->len != 1)
70 		return -EINVAL;
71 
72 	if (io_is_compat(req->ctx))
73 		return io_iov_compat_buffer_select_prep(rw);
74 
75 	uiov = u64_to_user_ptr(rw->addr);
76 	if (copy_from_user(&iov, uiov, sizeof(*uiov)))
77 		return -EFAULT;
78 	rw->len = iov.iov_len;
79 	return 0;
80 }
81 
82 static int io_import_vec(int ddir, struct io_kiocb *req,
83 			 struct io_async_rw *io,
84 			 const struct iovec __user *uvec,
85 			 size_t uvec_segs)
86 {
87 	int ret, nr_segs;
88 	struct iovec *iov;
89 
90 	if (io->vec.iovec) {
91 		nr_segs = io->vec.nr;
92 		iov = io->vec.iovec;
93 	} else {
94 		nr_segs = 1;
95 		iov = &io->fast_iov;
96 	}
97 
98 	ret = __import_iovec(ddir, uvec, uvec_segs, nr_segs, &iov, &io->iter,
99 			     io_is_compat(req->ctx));
100 	if (unlikely(ret < 0))
101 		return ret;
102 	if (iov) {
103 		req->flags |= REQ_F_NEED_CLEANUP;
104 		io_vec_reset_iovec(&io->vec, iov, io->iter.nr_segs);
105 	}
106 	return 0;
107 }
108 
109 static int __io_import_rw_buffer(int ddir, struct io_kiocb *req,
110 			     struct io_async_rw *io,
111 			     unsigned int issue_flags)
112 {
113 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
114 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
115 	void __user *buf = u64_to_user_ptr(rw->addr);
116 	size_t sqe_len = rw->len;
117 
118 	if (def->vectored && !(req->flags & REQ_F_BUFFER_SELECT))
119 		return io_import_vec(ddir, req, io, buf, sqe_len);
120 
121 	if (io_do_buffer_select(req)) {
122 		buf = io_buffer_select(req, &sqe_len, io->buf_group, issue_flags);
123 		if (!buf)
124 			return -ENOBUFS;
125 		rw->addr = (unsigned long) buf;
126 		rw->len = sqe_len;
127 	}
128 	return import_ubuf(ddir, buf, sqe_len, &io->iter);
129 }
130 
131 static inline int io_import_rw_buffer(int rw, struct io_kiocb *req,
132 				      struct io_async_rw *io,
133 				      unsigned int issue_flags)
134 {
135 	int ret;
136 
137 	ret = __io_import_rw_buffer(rw, req, io, issue_flags);
138 	if (unlikely(ret < 0))
139 		return ret;
140 
141 	iov_iter_save_state(&io->iter, &io->iter_state);
142 	return 0;
143 }
144 
145 static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags)
146 {
147 	struct io_async_rw *rw = req->async_data;
148 
149 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
150 		return;
151 
152 	io_alloc_cache_vec_kasan(&rw->vec);
153 	if (rw->vec.nr > IO_VEC_CACHE_SOFT_CAP)
154 		io_vec_free(&rw->vec);
155 
156 	if (io_alloc_cache_put(&req->ctx->rw_cache, rw)) {
157 		req->async_data = NULL;
158 		req->flags &= ~REQ_F_ASYNC_DATA;
159 	}
160 }
161 
162 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags)
163 {
164 	/*
165 	 * Disable quick recycling for anything that's gone through io-wq.
166 	 * In theory, this should be fine to cleanup. However, some read or
167 	 * write iter handling touches the iovec AFTER having called into the
168 	 * handler, eg to reexpand or revert. This means we can have:
169 	 *
170 	 * task			io-wq
171 	 *   issue
172 	 *     punt to io-wq
173 	 *			issue
174 	 *			  blkdev_write_iter()
175 	 *			    ->ki_complete()
176 	 *			      io_complete_rw()
177 	 *			        queue tw complete
178 	 *  run tw
179 	 *    req_rw_cleanup
180 	 *			iov_iter_count() <- look at iov_iter again
181 	 *
182 	 * which can lead to a UAF. This is only possible for io-wq offload
183 	 * as the cleanup can run in parallel. As io-wq is not the fast path,
184 	 * just leave cleanup to the end.
185 	 *
186 	 * This is really a bug in the core code that does this, any issue
187 	 * path should assume that a successful (or -EIOCBQUEUED) return can
188 	 * mean that the underlying data can be gone at any time. But that
189 	 * should be fixed seperately, and then this check could be killed.
190 	 */
191 	if (!(req->flags & (REQ_F_REISSUE | REQ_F_REFCOUNT))) {
192 		req->flags &= ~REQ_F_NEED_CLEANUP;
193 		io_rw_recycle(req, issue_flags);
194 	}
195 }
196 
197 static int io_rw_alloc_async(struct io_kiocb *req)
198 {
199 	struct io_ring_ctx *ctx = req->ctx;
200 	struct io_async_rw *rw;
201 
202 	rw = io_uring_alloc_async_data(&ctx->rw_cache, req);
203 	if (!rw)
204 		return -ENOMEM;
205 	if (rw->vec.iovec)
206 		req->flags |= REQ_F_NEED_CLEANUP;
207 	rw->bytes_done = 0;
208 	return 0;
209 }
210 
211 static inline void io_meta_save_state(struct io_async_rw *io)
212 {
213 	io->meta_state.seed = io->meta.seed;
214 	iov_iter_save_state(&io->meta.iter, &io->meta_state.iter_meta);
215 }
216 
217 static inline void io_meta_restore(struct io_async_rw *io, struct kiocb *kiocb)
218 {
219 	if (kiocb->ki_flags & IOCB_HAS_METADATA) {
220 		io->meta.seed = io->meta_state.seed;
221 		iov_iter_restore(&io->meta.iter, &io->meta_state.iter_meta);
222 	}
223 }
224 
225 static int io_prep_rw_pi(struct io_kiocb *req, struct io_rw *rw, int ddir,
226 			 u64 attr_ptr, u64 attr_type_mask)
227 {
228 	struct io_uring_attr_pi pi_attr;
229 	struct io_async_rw *io;
230 	int ret;
231 
232 	if (copy_from_user(&pi_attr, u64_to_user_ptr(attr_ptr),
233 	    sizeof(pi_attr)))
234 		return -EFAULT;
235 
236 	if (pi_attr.rsvd)
237 		return -EINVAL;
238 
239 	io = req->async_data;
240 	io->meta.flags = pi_attr.flags;
241 	io->meta.app_tag = pi_attr.app_tag;
242 	io->meta.seed = pi_attr.seed;
243 	ret = import_ubuf(ddir, u64_to_user_ptr(pi_attr.addr),
244 			  pi_attr.len, &io->meta.iter);
245 	if (unlikely(ret < 0))
246 		return ret;
247 	req->flags |= REQ_F_HAS_METADATA;
248 	io_meta_save_state(io);
249 	return ret;
250 }
251 
252 static int __io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
253 			int ddir)
254 {
255 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
256 	struct io_async_rw *io;
257 	unsigned ioprio;
258 	u64 attr_type_mask;
259 	int ret;
260 
261 	if (io_rw_alloc_async(req))
262 		return -ENOMEM;
263 	io = req->async_data;
264 
265 	rw->kiocb.ki_pos = READ_ONCE(sqe->off);
266 	/* used for fixed read/write too - just read unconditionally */
267 	req->buf_index = READ_ONCE(sqe->buf_index);
268 	io->buf_group = req->buf_index;
269 
270 	ioprio = READ_ONCE(sqe->ioprio);
271 	if (ioprio) {
272 		ret = ioprio_check_cap(ioprio);
273 		if (ret)
274 			return ret;
275 
276 		rw->kiocb.ki_ioprio = ioprio;
277 	} else {
278 		rw->kiocb.ki_ioprio = get_current_ioprio();
279 	}
280 	rw->kiocb.dio_complete = NULL;
281 	rw->kiocb.ki_flags = 0;
282 	rw->kiocb.ki_write_stream = READ_ONCE(sqe->write_stream);
283 
284 	if (req->ctx->flags & IORING_SETUP_IOPOLL)
285 		rw->kiocb.ki_complete = io_complete_rw_iopoll;
286 	else
287 		rw->kiocb.ki_complete = io_complete_rw;
288 
289 	rw->addr = READ_ONCE(sqe->addr);
290 	rw->len = READ_ONCE(sqe->len);
291 	rw->flags = READ_ONCE(sqe->rw_flags);
292 
293 	attr_type_mask = READ_ONCE(sqe->attr_type_mask);
294 	if (attr_type_mask) {
295 		u64 attr_ptr;
296 
297 		/* only PI attribute is supported currently */
298 		if (attr_type_mask != IORING_RW_ATTR_FLAG_PI)
299 			return -EINVAL;
300 
301 		attr_ptr = READ_ONCE(sqe->attr_ptr);
302 		return io_prep_rw_pi(req, rw, ddir, attr_ptr, attr_type_mask);
303 	}
304 	return 0;
305 }
306 
307 static int io_rw_do_import(struct io_kiocb *req, int ddir)
308 {
309 	if (io_do_buffer_select(req))
310 		return 0;
311 
312 	return io_import_rw_buffer(ddir, req, req->async_data, 0);
313 }
314 
315 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
316 		      int ddir)
317 {
318 	int ret;
319 
320 	ret = __io_prep_rw(req, sqe, ddir);
321 	if (unlikely(ret))
322 		return ret;
323 
324 	return io_rw_do_import(req, ddir);
325 }
326 
327 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe)
328 {
329 	return io_prep_rw(req, sqe, ITER_DEST);
330 }
331 
332 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe)
333 {
334 	return io_prep_rw(req, sqe, ITER_SOURCE);
335 }
336 
337 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe,
338 		       int ddir)
339 {
340 	int ret;
341 
342 	ret = io_prep_rw(req, sqe, ddir);
343 	if (unlikely(ret))
344 		return ret;
345 	if (!(req->flags & REQ_F_BUFFER_SELECT))
346 		return 0;
347 
348 	/*
349 	 * Have to do this validation here, as this is in io_read() rw->len
350 	 * might have chanaged due to buffer selection
351 	 */
352 	return io_iov_buffer_select_prep(req);
353 }
354 
355 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe)
356 {
357 	return io_prep_rwv(req, sqe, ITER_DEST);
358 }
359 
360 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe)
361 {
362 	return io_prep_rwv(req, sqe, ITER_SOURCE);
363 }
364 
365 static int io_init_rw_fixed(struct io_kiocb *req, unsigned int issue_flags,
366 			    int ddir)
367 {
368 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
369 	struct io_async_rw *io = req->async_data;
370 	int ret;
371 
372 	if (io->bytes_done)
373 		return 0;
374 
375 	ret = io_import_reg_buf(req, &io->iter, rw->addr, rw->len, ddir,
376 				issue_flags);
377 	iov_iter_save_state(&io->iter, &io->iter_state);
378 	return ret;
379 }
380 
381 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
382 {
383 	return __io_prep_rw(req, sqe, ITER_DEST);
384 }
385 
386 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
387 {
388 	return __io_prep_rw(req, sqe, ITER_SOURCE);
389 }
390 
391 static int io_rw_import_reg_vec(struct io_kiocb *req,
392 				struct io_async_rw *io,
393 				int ddir, unsigned int issue_flags)
394 {
395 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
396 	unsigned uvec_segs = rw->len;
397 	int ret;
398 
399 	ret = io_import_reg_vec(ddir, &io->iter, req, &io->vec,
400 				uvec_segs, issue_flags);
401 	if (unlikely(ret))
402 		return ret;
403 	iov_iter_save_state(&io->iter, &io->iter_state);
404 	req->flags &= ~REQ_F_IMPORT_BUFFER;
405 	return 0;
406 }
407 
408 static int io_rw_prep_reg_vec(struct io_kiocb *req)
409 {
410 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
411 	struct io_async_rw *io = req->async_data;
412 	const struct iovec __user *uvec;
413 
414 	uvec = u64_to_user_ptr(rw->addr);
415 	return io_prep_reg_iovec(req, &io->vec, uvec, rw->len);
416 }
417 
418 int io_prep_readv_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
419 {
420 	int ret;
421 
422 	ret = __io_prep_rw(req, sqe, ITER_DEST);
423 	if (unlikely(ret))
424 		return ret;
425 	return io_rw_prep_reg_vec(req);
426 }
427 
428 int io_prep_writev_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
429 {
430 	int ret;
431 
432 	ret = __io_prep_rw(req, sqe, ITER_SOURCE);
433 	if (unlikely(ret))
434 		return ret;
435 	return io_rw_prep_reg_vec(req);
436 }
437 
438 /*
439  * Multishot read is prepared just like a normal read/write request, only
440  * difference is that we set the MULTISHOT flag.
441  */
442 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
443 {
444 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
445 	int ret;
446 
447 	/* must be used with provided buffers */
448 	if (!(req->flags & REQ_F_BUFFER_SELECT))
449 		return -EINVAL;
450 
451 	ret = __io_prep_rw(req, sqe, ITER_DEST);
452 	if (unlikely(ret))
453 		return ret;
454 
455 	if (rw->addr || rw->len)
456 		return -EINVAL;
457 
458 	req->flags |= REQ_F_APOLL_MULTISHOT;
459 	return 0;
460 }
461 
462 void io_readv_writev_cleanup(struct io_kiocb *req)
463 {
464 	lockdep_assert_held(&req->ctx->uring_lock);
465 	io_rw_recycle(req, 0);
466 }
467 
468 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
469 {
470 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
471 
472 	if (rw->kiocb.ki_pos != -1)
473 		return &rw->kiocb.ki_pos;
474 
475 	if (!(req->file->f_mode & FMODE_STREAM)) {
476 		req->flags |= REQ_F_CUR_POS;
477 		rw->kiocb.ki_pos = req->file->f_pos;
478 		return &rw->kiocb.ki_pos;
479 	}
480 
481 	rw->kiocb.ki_pos = 0;
482 	return NULL;
483 }
484 
485 static bool io_rw_should_reissue(struct io_kiocb *req)
486 {
487 #ifdef CONFIG_BLOCK
488 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
489 	umode_t mode = file_inode(req->file)->i_mode;
490 	struct io_async_rw *io = req->async_data;
491 	struct io_ring_ctx *ctx = req->ctx;
492 
493 	if (!S_ISBLK(mode) && !S_ISREG(mode))
494 		return false;
495 	if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
496 	    !(ctx->flags & IORING_SETUP_IOPOLL)))
497 		return false;
498 	/*
499 	 * If ref is dying, we might be running poll reap from the exit work.
500 	 * Don't attempt to reissue from that path, just let it fail with
501 	 * -EAGAIN.
502 	 */
503 	if (percpu_ref_is_dying(&ctx->refs))
504 		return false;
505 
506 	io_meta_restore(io, &rw->kiocb);
507 	iov_iter_restore(&io->iter, &io->iter_state);
508 	return true;
509 #else
510 	return false;
511 #endif
512 }
513 
514 static void io_req_end_write(struct io_kiocb *req)
515 {
516 	if (req->flags & REQ_F_ISREG) {
517 		struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
518 
519 		kiocb_end_write(&rw->kiocb);
520 	}
521 }
522 
523 /*
524  * Trigger the notifications after having done some IO, and finish the write
525  * accounting, if any.
526  */
527 static void io_req_io_end(struct io_kiocb *req)
528 {
529 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
530 
531 	if (rw->kiocb.ki_flags & IOCB_WRITE) {
532 		io_req_end_write(req);
533 		fsnotify_modify(req->file);
534 	} else {
535 		fsnotify_access(req->file);
536 	}
537 }
538 
539 static void __io_complete_rw_common(struct io_kiocb *req, long res)
540 {
541 	if (res == req->cqe.res)
542 		return;
543 	if (res == -EAGAIN && io_rw_should_reissue(req)) {
544 		req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
545 	} else {
546 		req_set_fail(req);
547 		req->cqe.res = res;
548 	}
549 }
550 
551 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
552 {
553 	struct io_async_rw *io = req->async_data;
554 
555 	/* add previously done IO, if any */
556 	if (req_has_async_data(req) && io->bytes_done > 0) {
557 		if (res < 0)
558 			res = io->bytes_done;
559 		else
560 			res += io->bytes_done;
561 	}
562 	return res;
563 }
564 
565 void io_req_rw_complete(struct io_kiocb *req, io_tw_token_t tw)
566 {
567 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
568 	struct kiocb *kiocb = &rw->kiocb;
569 
570 	if ((kiocb->ki_flags & IOCB_DIO_CALLER_COMP) && kiocb->dio_complete) {
571 		long res = kiocb->dio_complete(rw->kiocb.private);
572 
573 		io_req_set_res(req, io_fixup_rw_res(req, res), 0);
574 	}
575 
576 	io_req_io_end(req);
577 
578 	if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING))
579 		req->cqe.flags |= io_put_kbuf(req, req->cqe.res, 0);
580 
581 	io_req_rw_cleanup(req, 0);
582 	io_req_task_complete(req, tw);
583 }
584 
585 static void io_complete_rw(struct kiocb *kiocb, long res)
586 {
587 	struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
588 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
589 
590 	if (!kiocb->dio_complete || !(kiocb->ki_flags & IOCB_DIO_CALLER_COMP)) {
591 		__io_complete_rw_common(req, res);
592 		io_req_set_res(req, io_fixup_rw_res(req, res), 0);
593 	}
594 	req->io_task_work.func = io_req_rw_complete;
595 	__io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE);
596 }
597 
598 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
599 {
600 	struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
601 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
602 
603 	if (kiocb->ki_flags & IOCB_WRITE)
604 		io_req_end_write(req);
605 	if (unlikely(res != req->cqe.res)) {
606 		if (res == -EAGAIN && io_rw_should_reissue(req))
607 			req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
608 		else
609 			req->cqe.res = res;
610 	}
611 
612 	/* order with io_iopoll_complete() checking ->iopoll_completed */
613 	smp_store_release(&req->iopoll_completed, 1);
614 }
615 
616 static inline void io_rw_done(struct io_kiocb *req, ssize_t ret)
617 {
618 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
619 
620 	/* IO was queued async, completion will happen later */
621 	if (ret == -EIOCBQUEUED)
622 		return;
623 
624 	/* transform internal restart error codes */
625 	if (unlikely(ret < 0)) {
626 		switch (ret) {
627 		case -ERESTARTSYS:
628 		case -ERESTARTNOINTR:
629 		case -ERESTARTNOHAND:
630 		case -ERESTART_RESTARTBLOCK:
631 			/*
632 			 * We can't just restart the syscall, since previously
633 			 * submitted sqes may already be in progress. Just fail
634 			 * this IO with EINTR.
635 			 */
636 			ret = -EINTR;
637 			break;
638 		}
639 	}
640 
641 	if (req->ctx->flags & IORING_SETUP_IOPOLL)
642 		io_complete_rw_iopoll(&rw->kiocb, ret);
643 	else
644 		io_complete_rw(&rw->kiocb, ret);
645 }
646 
647 static int kiocb_done(struct io_kiocb *req, ssize_t ret,
648 		       unsigned int issue_flags)
649 {
650 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
651 	unsigned final_ret = io_fixup_rw_res(req, ret);
652 
653 	if (ret >= 0 && req->flags & REQ_F_CUR_POS)
654 		req->file->f_pos = rw->kiocb.ki_pos;
655 	if (ret >= 0 && !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
656 		__io_complete_rw_common(req, ret);
657 		/*
658 		 * Safe to call io_end from here as we're inline
659 		 * from the submission path.
660 		 */
661 		io_req_io_end(req);
662 		io_req_set_res(req, final_ret, io_put_kbuf(req, ret, issue_flags));
663 		io_req_rw_cleanup(req, issue_flags);
664 		return IOU_COMPLETE;
665 	} else {
666 		io_rw_done(req, ret);
667 	}
668 
669 	return IOU_ISSUE_SKIP_COMPLETE;
670 }
671 
672 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
673 {
674 	return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
675 }
676 
677 /*
678  * For files that don't have ->read_iter() and ->write_iter(), handle them
679  * by looping over ->read() or ->write() manually.
680  */
681 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter)
682 {
683 	struct io_kiocb *req = cmd_to_io_kiocb(rw);
684 	struct kiocb *kiocb = &rw->kiocb;
685 	struct file *file = kiocb->ki_filp;
686 	ssize_t ret = 0;
687 	loff_t *ppos;
688 
689 	/*
690 	 * Don't support polled IO through this interface, and we can't
691 	 * support non-blocking either. For the latter, this just causes
692 	 * the kiocb to be handled from an async context.
693 	 */
694 	if (kiocb->ki_flags & IOCB_HIPRI)
695 		return -EOPNOTSUPP;
696 	if ((kiocb->ki_flags & IOCB_NOWAIT) &&
697 	    !(kiocb->ki_filp->f_flags & O_NONBLOCK))
698 		return -EAGAIN;
699 	if ((req->flags & REQ_F_BUF_NODE) && req->buf_node->buf->is_kbuf)
700 		return -EFAULT;
701 
702 	ppos = io_kiocb_ppos(kiocb);
703 
704 	while (iov_iter_count(iter)) {
705 		void __user *addr;
706 		size_t len;
707 		ssize_t nr;
708 
709 		if (iter_is_ubuf(iter)) {
710 			addr = iter->ubuf + iter->iov_offset;
711 			len = iov_iter_count(iter);
712 		} else if (!iov_iter_is_bvec(iter)) {
713 			addr = iter_iov_addr(iter);
714 			len = iter_iov_len(iter);
715 		} else {
716 			addr = u64_to_user_ptr(rw->addr);
717 			len = rw->len;
718 		}
719 
720 		if (ddir == READ)
721 			nr = file->f_op->read(file, addr, len, ppos);
722 		else
723 			nr = file->f_op->write(file, addr, len, ppos);
724 
725 		if (nr < 0) {
726 			if (!ret)
727 				ret = nr;
728 			break;
729 		}
730 		ret += nr;
731 		if (!iov_iter_is_bvec(iter)) {
732 			iov_iter_advance(iter, nr);
733 		} else {
734 			rw->addr += nr;
735 			rw->len -= nr;
736 			if (!rw->len)
737 				break;
738 		}
739 		if (nr != len)
740 			break;
741 	}
742 
743 	return ret;
744 }
745 
746 /*
747  * This is our waitqueue callback handler, registered through __folio_lock_async()
748  * when we initially tried to do the IO with the iocb armed our waitqueue.
749  * This gets called when the page is unlocked, and we generally expect that to
750  * happen when the page IO is completed and the page is now uptodate. This will
751  * queue a task_work based retry of the operation, attempting to copy the data
752  * again. If the latter fails because the page was NOT uptodate, then we will
753  * do a thread based blocking retry of the operation. That's the unexpected
754  * slow path.
755  */
756 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
757 			     int sync, void *arg)
758 {
759 	struct wait_page_queue *wpq;
760 	struct io_kiocb *req = wait->private;
761 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
762 	struct wait_page_key *key = arg;
763 
764 	wpq = container_of(wait, struct wait_page_queue, wait);
765 
766 	if (!wake_page_match(wpq, key))
767 		return 0;
768 
769 	rw->kiocb.ki_flags &= ~IOCB_WAITQ;
770 	list_del_init(&wait->entry);
771 	io_req_task_queue(req);
772 	return 1;
773 }
774 
775 /*
776  * This controls whether a given IO request should be armed for async page
777  * based retry. If we return false here, the request is handed to the async
778  * worker threads for retry. If we're doing buffered reads on a regular file,
779  * we prepare a private wait_page_queue entry and retry the operation. This
780  * will either succeed because the page is now uptodate and unlocked, or it
781  * will register a callback when the page is unlocked at IO completion. Through
782  * that callback, io_uring uses task_work to setup a retry of the operation.
783  * That retry will attempt the buffered read again. The retry will generally
784  * succeed, or in rare cases where it fails, we then fall back to using the
785  * async worker threads for a blocking retry.
786  */
787 static bool io_rw_should_retry(struct io_kiocb *req)
788 {
789 	struct io_async_rw *io = req->async_data;
790 	struct wait_page_queue *wait = &io->wpq;
791 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
792 	struct kiocb *kiocb = &rw->kiocb;
793 
794 	/*
795 	 * Never retry for NOWAIT or a request with metadata, we just complete
796 	 * with -EAGAIN.
797 	 */
798 	if (req->flags & (REQ_F_NOWAIT | REQ_F_HAS_METADATA))
799 		return false;
800 
801 	/* Only for buffered IO */
802 	if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
803 		return false;
804 
805 	/*
806 	 * just use poll if we can, and don't attempt if the fs doesn't
807 	 * support callback based unlocks
808 	 */
809 	if (io_file_can_poll(req) ||
810 	    !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC))
811 		return false;
812 
813 	wait->wait.func = io_async_buf_func;
814 	wait->wait.private = req;
815 	wait->wait.flags = 0;
816 	INIT_LIST_HEAD(&wait->wait.entry);
817 	kiocb->ki_flags |= IOCB_WAITQ;
818 	kiocb->ki_flags &= ~IOCB_NOWAIT;
819 	kiocb->ki_waitq = wait;
820 	return true;
821 }
822 
823 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter)
824 {
825 	struct file *file = rw->kiocb.ki_filp;
826 
827 	if (likely(file->f_op->read_iter))
828 		return file->f_op->read_iter(&rw->kiocb, iter);
829 	else if (file->f_op->read)
830 		return loop_rw_iter(READ, rw, iter);
831 	else
832 		return -EINVAL;
833 }
834 
835 static bool need_complete_io(struct io_kiocb *req)
836 {
837 	return req->flags & REQ_F_ISREG ||
838 		S_ISBLK(file_inode(req->file)->i_mode);
839 }
840 
841 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type)
842 {
843 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
844 	struct kiocb *kiocb = &rw->kiocb;
845 	struct io_ring_ctx *ctx = req->ctx;
846 	struct file *file = req->file;
847 	int ret;
848 
849 	if (unlikely(!(file->f_mode & mode)))
850 		return -EBADF;
851 
852 	if (!(req->flags & REQ_F_FIXED_FILE))
853 		req->flags |= io_file_get_flags(file);
854 
855 	kiocb->ki_flags = file->f_iocb_flags;
856 	ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type);
857 	if (unlikely(ret))
858 		return ret;
859 	kiocb->ki_flags |= IOCB_ALLOC_CACHE;
860 
861 	/*
862 	 * If the file is marked O_NONBLOCK, still allow retry for it if it
863 	 * supports async. Otherwise it's impossible to use O_NONBLOCK files
864 	 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
865 	 */
866 	if (kiocb->ki_flags & IOCB_NOWAIT ||
867 	    ((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT))))
868 		req->flags |= REQ_F_NOWAIT;
869 
870 	if (ctx->flags & IORING_SETUP_IOPOLL) {
871 		if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
872 			return -EOPNOTSUPP;
873 		kiocb->private = NULL;
874 		kiocb->ki_flags |= IOCB_HIPRI;
875 		req->iopoll_completed = 0;
876 		if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) {
877 			/* make sure every req only blocks once*/
878 			req->flags &= ~REQ_F_IOPOLL_STATE;
879 			req->iopoll_start = ktime_get_ns();
880 		}
881 	} else {
882 		if (kiocb->ki_flags & IOCB_HIPRI)
883 			return -EINVAL;
884 	}
885 
886 	if (req->flags & REQ_F_HAS_METADATA) {
887 		struct io_async_rw *io = req->async_data;
888 
889 		/*
890 		 * We have a union of meta fields with wpq used for buffered-io
891 		 * in io_async_rw, so fail it here.
892 		 */
893 		if (!(req->file->f_flags & O_DIRECT))
894 			return -EOPNOTSUPP;
895 		kiocb->ki_flags |= IOCB_HAS_METADATA;
896 		kiocb->private = &io->meta;
897 	}
898 
899 	return 0;
900 }
901 
902 static int __io_read(struct io_kiocb *req, unsigned int issue_flags)
903 {
904 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
905 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
906 	struct io_async_rw *io = req->async_data;
907 	struct kiocb *kiocb = &rw->kiocb;
908 	ssize_t ret;
909 	loff_t *ppos;
910 
911 	if (req->flags & REQ_F_IMPORT_BUFFER) {
912 		ret = io_rw_import_reg_vec(req, io, ITER_DEST, issue_flags);
913 		if (unlikely(ret))
914 			return ret;
915 	} else if (io_do_buffer_select(req)) {
916 		ret = io_import_rw_buffer(ITER_DEST, req, io, issue_flags);
917 		if (unlikely(ret < 0))
918 			return ret;
919 	}
920 	ret = io_rw_init_file(req, FMODE_READ, READ);
921 	if (unlikely(ret))
922 		return ret;
923 	req->cqe.res = iov_iter_count(&io->iter);
924 
925 	if (force_nonblock) {
926 		/* If the file doesn't support async, just async punt */
927 		if (unlikely(!io_file_supports_nowait(req, EPOLLIN)))
928 			return -EAGAIN;
929 		kiocb->ki_flags |= IOCB_NOWAIT;
930 	} else {
931 		/* Ensure we clear previously set non-block flag */
932 		kiocb->ki_flags &= ~IOCB_NOWAIT;
933 	}
934 
935 	ppos = io_kiocb_update_pos(req);
936 
937 	ret = rw_verify_area(READ, req->file, ppos, req->cqe.res);
938 	if (unlikely(ret))
939 		return ret;
940 
941 	ret = io_iter_do_read(rw, &io->iter);
942 
943 	/*
944 	 * Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT
945 	 * issue, even though they should be returning -EAGAIN. To be safe,
946 	 * retry from blocking context for either.
947 	 */
948 	if (ret == -EOPNOTSUPP && force_nonblock)
949 		ret = -EAGAIN;
950 
951 	if (ret == -EAGAIN) {
952 		/* If we can poll, just do that. */
953 		if (io_file_can_poll(req))
954 			return -EAGAIN;
955 		/* IOPOLL retry should happen for io-wq threads */
956 		if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
957 			goto done;
958 		/* no retry on NONBLOCK nor RWF_NOWAIT */
959 		if (req->flags & REQ_F_NOWAIT)
960 			goto done;
961 		ret = 0;
962 	} else if (ret == -EIOCBQUEUED) {
963 		return IOU_ISSUE_SKIP_COMPLETE;
964 	} else if (ret == req->cqe.res || ret <= 0 || !force_nonblock ||
965 		   (req->flags & REQ_F_NOWAIT) || !need_complete_io(req) ||
966 		   (issue_flags & IO_URING_F_MULTISHOT)) {
967 		/* read all, failed, already did sync or don't want to retry */
968 		goto done;
969 	}
970 
971 	/*
972 	 * Don't depend on the iter state matching what was consumed, or being
973 	 * untouched in case of error. Restore it and we'll advance it
974 	 * manually if we need to.
975 	 */
976 	iov_iter_restore(&io->iter, &io->iter_state);
977 	io_meta_restore(io, kiocb);
978 
979 	do {
980 		/*
981 		 * We end up here because of a partial read, either from
982 		 * above or inside this loop. Advance the iter by the bytes
983 		 * that were consumed.
984 		 */
985 		iov_iter_advance(&io->iter, ret);
986 		if (!iov_iter_count(&io->iter))
987 			break;
988 		io->bytes_done += ret;
989 		iov_iter_save_state(&io->iter, &io->iter_state);
990 
991 		/* if we can retry, do so with the callbacks armed */
992 		if (!io_rw_should_retry(req)) {
993 			kiocb->ki_flags &= ~IOCB_WAITQ;
994 			return -EAGAIN;
995 		}
996 
997 		req->cqe.res = iov_iter_count(&io->iter);
998 		/*
999 		 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
1000 		 * we get -EIOCBQUEUED, then we'll get a notification when the
1001 		 * desired page gets unlocked. We can also get a partial read
1002 		 * here, and if we do, then just retry at the new offset.
1003 		 */
1004 		ret = io_iter_do_read(rw, &io->iter);
1005 		if (ret == -EIOCBQUEUED)
1006 			return IOU_ISSUE_SKIP_COMPLETE;
1007 		/* we got some bytes, but not all. retry. */
1008 		kiocb->ki_flags &= ~IOCB_WAITQ;
1009 		iov_iter_restore(&io->iter, &io->iter_state);
1010 	} while (ret > 0);
1011 done:
1012 	/* it's faster to check here then delegate to kfree */
1013 	return ret;
1014 }
1015 
1016 int io_read(struct io_kiocb *req, unsigned int issue_flags)
1017 {
1018 	int ret;
1019 
1020 	ret = __io_read(req, issue_flags);
1021 	if (ret >= 0)
1022 		return kiocb_done(req, ret, issue_flags);
1023 
1024 	return ret;
1025 }
1026 
1027 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags)
1028 {
1029 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1030 	unsigned int cflags = 0;
1031 	int ret;
1032 
1033 	/*
1034 	 * Multishot MUST be used on a pollable file
1035 	 */
1036 	if (!io_file_can_poll(req))
1037 		return -EBADFD;
1038 
1039 	/* make it sync, multishot doesn't support async execution */
1040 	rw->kiocb.ki_complete = NULL;
1041 	ret = __io_read(req, issue_flags);
1042 
1043 	/*
1044 	 * If we get -EAGAIN, recycle our buffer and just let normal poll
1045 	 * handling arm it.
1046 	 */
1047 	if (ret == -EAGAIN) {
1048 		/*
1049 		 * Reset rw->len to 0 again to avoid clamping future mshot
1050 		 * reads, in case the buffer size varies.
1051 		 */
1052 		if (io_kbuf_recycle(req, issue_flags))
1053 			rw->len = 0;
1054 		return IOU_RETRY;
1055 	} else if (ret <= 0) {
1056 		io_kbuf_recycle(req, issue_flags);
1057 		if (ret < 0)
1058 			req_set_fail(req);
1059 	} else if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
1060 		cflags = io_put_kbuf(req, ret, issue_flags);
1061 	} else {
1062 		/*
1063 		 * Any successful return value will keep the multishot read
1064 		 * armed, if it's still set. Put our buffer and post a CQE. If
1065 		 * we fail to post a CQE, or multishot is no longer set, then
1066 		 * jump to the termination path. This request is then done.
1067 		 */
1068 		cflags = io_put_kbuf(req, ret, issue_flags);
1069 		rw->len = 0; /* similarly to above, reset len to 0 */
1070 
1071 		if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) {
1072 			if (issue_flags & IO_URING_F_MULTISHOT)
1073 				/*
1074 				 * Force retry, as we might have more data to
1075 				 * be read and otherwise it won't get retried
1076 				 * until (if ever) another poll is triggered.
1077 				 */
1078 				io_poll_multishot_retry(req);
1079 
1080 			return IOU_RETRY;
1081 		}
1082 	}
1083 
1084 	/*
1085 	 * Either an error, or we've hit overflow posting the CQE. For any
1086 	 * multishot request, hitting overflow will terminate it.
1087 	 */
1088 	io_req_set_res(req, ret, cflags);
1089 	io_req_rw_cleanup(req, issue_flags);
1090 	return IOU_COMPLETE;
1091 }
1092 
1093 static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb)
1094 {
1095 	struct inode *inode;
1096 	bool ret;
1097 
1098 	if (!(req->flags & REQ_F_ISREG))
1099 		return true;
1100 	if (!(kiocb->ki_flags & IOCB_NOWAIT)) {
1101 		kiocb_start_write(kiocb);
1102 		return true;
1103 	}
1104 
1105 	inode = file_inode(kiocb->ki_filp);
1106 	ret = sb_start_write_trylock(inode->i_sb);
1107 	if (ret)
1108 		__sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
1109 	return ret;
1110 }
1111 
1112 int io_write(struct io_kiocb *req, unsigned int issue_flags)
1113 {
1114 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
1115 	struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1116 	struct io_async_rw *io = req->async_data;
1117 	struct kiocb *kiocb = &rw->kiocb;
1118 	ssize_t ret, ret2;
1119 	loff_t *ppos;
1120 
1121 	if (req->flags & REQ_F_IMPORT_BUFFER) {
1122 		ret = io_rw_import_reg_vec(req, io, ITER_SOURCE, issue_flags);
1123 		if (unlikely(ret))
1124 			return ret;
1125 	}
1126 
1127 	ret = io_rw_init_file(req, FMODE_WRITE, WRITE);
1128 	if (unlikely(ret))
1129 		return ret;
1130 	req->cqe.res = iov_iter_count(&io->iter);
1131 
1132 	if (force_nonblock) {
1133 		/* If the file doesn't support async, just async punt */
1134 		if (unlikely(!io_file_supports_nowait(req, EPOLLOUT)))
1135 			goto ret_eagain;
1136 
1137 		/* Check if we can support NOWAIT. */
1138 		if (!(kiocb->ki_flags & IOCB_DIRECT) &&
1139 		    !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) &&
1140 		    (req->flags & REQ_F_ISREG))
1141 			goto ret_eagain;
1142 
1143 		kiocb->ki_flags |= IOCB_NOWAIT;
1144 	} else {
1145 		/* Ensure we clear previously set non-block flag */
1146 		kiocb->ki_flags &= ~IOCB_NOWAIT;
1147 	}
1148 
1149 	ppos = io_kiocb_update_pos(req);
1150 
1151 	ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res);
1152 	if (unlikely(ret))
1153 		return ret;
1154 
1155 	if (unlikely(!io_kiocb_start_write(req, kiocb)))
1156 		return -EAGAIN;
1157 	kiocb->ki_flags |= IOCB_WRITE;
1158 
1159 	if (likely(req->file->f_op->write_iter))
1160 		ret2 = req->file->f_op->write_iter(kiocb, &io->iter);
1161 	else if (req->file->f_op->write)
1162 		ret2 = loop_rw_iter(WRITE, rw, &io->iter);
1163 	else
1164 		ret2 = -EINVAL;
1165 
1166 	/*
1167 	 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
1168 	 * retry them without IOCB_NOWAIT.
1169 	 */
1170 	if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
1171 		ret2 = -EAGAIN;
1172 	/* no retry on NONBLOCK nor RWF_NOWAIT */
1173 	if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
1174 		goto done;
1175 	if (!force_nonblock || ret2 != -EAGAIN) {
1176 		/* IOPOLL retry should happen for io-wq threads */
1177 		if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
1178 			goto ret_eagain;
1179 
1180 		if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) {
1181 			trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2,
1182 						req->cqe.res, ret2);
1183 
1184 			/* This is a partial write. The file pos has already been
1185 			 * updated, setup the async struct to complete the request
1186 			 * in the worker. Also update bytes_done to account for
1187 			 * the bytes already written.
1188 			 */
1189 			iov_iter_save_state(&io->iter, &io->iter_state);
1190 			io->bytes_done += ret2;
1191 
1192 			if (kiocb->ki_flags & IOCB_WRITE)
1193 				io_req_end_write(req);
1194 			return -EAGAIN;
1195 		}
1196 done:
1197 		return kiocb_done(req, ret2, issue_flags);
1198 	} else {
1199 ret_eagain:
1200 		iov_iter_restore(&io->iter, &io->iter_state);
1201 		io_meta_restore(io, kiocb);
1202 		if (kiocb->ki_flags & IOCB_WRITE)
1203 			io_req_end_write(req);
1204 		return -EAGAIN;
1205 	}
1206 }
1207 
1208 int io_read_fixed(struct io_kiocb *req, unsigned int issue_flags)
1209 {
1210 	int ret;
1211 
1212 	ret = io_init_rw_fixed(req, issue_flags, ITER_DEST);
1213 	if (unlikely(ret))
1214 		return ret;
1215 
1216 	return io_read(req, issue_flags);
1217 }
1218 
1219 int io_write_fixed(struct io_kiocb *req, unsigned int issue_flags)
1220 {
1221 	int ret;
1222 
1223 	ret = io_init_rw_fixed(req, issue_flags, ITER_SOURCE);
1224 	if (unlikely(ret))
1225 		return ret;
1226 
1227 	return io_write(req, issue_flags);
1228 }
1229 
1230 void io_rw_fail(struct io_kiocb *req)
1231 {
1232 	int res;
1233 
1234 	res = io_fixup_rw_res(req, req->cqe.res);
1235 	io_req_set_res(req, res, req->cqe.flags);
1236 }
1237 
1238 static int io_uring_classic_poll(struct io_kiocb *req, struct io_comp_batch *iob,
1239 				unsigned int poll_flags)
1240 {
1241 	struct file *file = req->file;
1242 
1243 	if (req->opcode == IORING_OP_URING_CMD) {
1244 		struct io_uring_cmd *ioucmd;
1245 
1246 		ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
1247 		return file->f_op->uring_cmd_iopoll(ioucmd, iob, poll_flags);
1248 	} else {
1249 		struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1250 
1251 		return file->f_op->iopoll(&rw->kiocb, iob, poll_flags);
1252 	}
1253 }
1254 
1255 static u64 io_hybrid_iopoll_delay(struct io_ring_ctx *ctx, struct io_kiocb *req)
1256 {
1257 	struct hrtimer_sleeper timer;
1258 	enum hrtimer_mode mode;
1259 	ktime_t kt;
1260 	u64 sleep_time;
1261 
1262 	if (req->flags & REQ_F_IOPOLL_STATE)
1263 		return 0;
1264 
1265 	if (ctx->hybrid_poll_time == LLONG_MAX)
1266 		return 0;
1267 
1268 	/* Using half the running time to do schedule */
1269 	sleep_time = ctx->hybrid_poll_time / 2;
1270 
1271 	kt = ktime_set(0, sleep_time);
1272 	req->flags |= REQ_F_IOPOLL_STATE;
1273 
1274 	mode = HRTIMER_MODE_REL;
1275 	hrtimer_setup_sleeper_on_stack(&timer, CLOCK_MONOTONIC, mode);
1276 	hrtimer_set_expires(&timer.timer, kt);
1277 	set_current_state(TASK_INTERRUPTIBLE);
1278 	hrtimer_sleeper_start_expires(&timer, mode);
1279 
1280 	if (timer.task)
1281 		io_schedule();
1282 
1283 	hrtimer_cancel(&timer.timer);
1284 	__set_current_state(TASK_RUNNING);
1285 	destroy_hrtimer_on_stack(&timer.timer);
1286 	return sleep_time;
1287 }
1288 
1289 static int io_uring_hybrid_poll(struct io_kiocb *req,
1290 				struct io_comp_batch *iob, unsigned int poll_flags)
1291 {
1292 	struct io_ring_ctx *ctx = req->ctx;
1293 	u64 runtime, sleep_time;
1294 	int ret;
1295 
1296 	sleep_time = io_hybrid_iopoll_delay(ctx, req);
1297 	ret = io_uring_classic_poll(req, iob, poll_flags);
1298 	runtime = ktime_get_ns() - req->iopoll_start - sleep_time;
1299 
1300 	/*
1301 	 * Use minimum sleep time if we're polling devices with different
1302 	 * latencies. We could get more completions from the faster ones.
1303 	 */
1304 	if (ctx->hybrid_poll_time > runtime)
1305 		ctx->hybrid_poll_time = runtime;
1306 
1307 	return ret;
1308 }
1309 
1310 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
1311 {
1312 	struct io_wq_work_node *pos, *start, *prev;
1313 	unsigned int poll_flags = 0;
1314 	DEFINE_IO_COMP_BATCH(iob);
1315 	int nr_events = 0;
1316 
1317 	/*
1318 	 * Only spin for completions if we don't have multiple devices hanging
1319 	 * off our complete list.
1320 	 */
1321 	if (ctx->poll_multi_queue || force_nonspin)
1322 		poll_flags |= BLK_POLL_ONESHOT;
1323 
1324 	wq_list_for_each(pos, start, &ctx->iopoll_list) {
1325 		struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1326 		int ret;
1327 
1328 		/*
1329 		 * Move completed and retryable entries to our local lists.
1330 		 * If we find a request that requires polling, break out
1331 		 * and complete those lists first, if we have entries there.
1332 		 */
1333 		if (READ_ONCE(req->iopoll_completed))
1334 			break;
1335 
1336 		if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL)
1337 			ret = io_uring_hybrid_poll(req, &iob, poll_flags);
1338 		else
1339 			ret = io_uring_classic_poll(req, &iob, poll_flags);
1340 
1341 		if (unlikely(ret < 0))
1342 			return ret;
1343 		else if (ret)
1344 			poll_flags |= BLK_POLL_ONESHOT;
1345 
1346 		/* iopoll may have completed current req */
1347 		if (!rq_list_empty(&iob.req_list) ||
1348 		    READ_ONCE(req->iopoll_completed))
1349 			break;
1350 	}
1351 
1352 	if (!rq_list_empty(&iob.req_list))
1353 		iob.complete(&iob);
1354 	else if (!pos)
1355 		return 0;
1356 
1357 	prev = start;
1358 	wq_list_for_each_resume(pos, prev) {
1359 		struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1360 
1361 		/* order with io_complete_rw_iopoll(), e.g. ->result updates */
1362 		if (!smp_load_acquire(&req->iopoll_completed))
1363 			break;
1364 		nr_events++;
1365 		req->cqe.flags = io_put_kbuf(req, req->cqe.res, 0);
1366 		if (req->opcode != IORING_OP_URING_CMD)
1367 			io_req_rw_cleanup(req, 0);
1368 	}
1369 	if (unlikely(!nr_events))
1370 		return 0;
1371 
1372 	pos = start ? start->next : ctx->iopoll_list.first;
1373 	wq_list_cut(&ctx->iopoll_list, prev, start);
1374 
1375 	if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs)))
1376 		return 0;
1377 	ctx->submit_state.compl_reqs.first = pos;
1378 	__io_submit_flush_completions(ctx);
1379 	return nr_events;
1380 }
1381 
1382 void io_rw_cache_free(const void *entry)
1383 {
1384 	struct io_async_rw *rw = (struct io_async_rw *) entry;
1385 
1386 	io_vec_free(&rw->vec);
1387 	kfree(rw);
1388 }
1389