1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * sha512_base.h - core logic for SHA-512 implementations 4 * 5 * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org> 6 */ 7 8 #ifndef _CRYPTO_SHA512_BASE_H 9 #define _CRYPTO_SHA512_BASE_H 10 11 #include <crypto/internal/hash.h> 12 #include <crypto/sha2.h> 13 #include <linux/compiler.h> 14 #include <linux/math.h> 15 #include <linux/string.h> 16 #include <linux/types.h> 17 #include <linux/unaligned.h> 18 19 typedef void (sha512_block_fn)(struct sha512_state *sst, u8 const *src, 20 int blocks); 21 22 static inline int sha384_base_init(struct shash_desc *desc) 23 { 24 struct sha512_state *sctx = shash_desc_ctx(desc); 25 26 sctx->state[0] = SHA384_H0; 27 sctx->state[1] = SHA384_H1; 28 sctx->state[2] = SHA384_H2; 29 sctx->state[3] = SHA384_H3; 30 sctx->state[4] = SHA384_H4; 31 sctx->state[5] = SHA384_H5; 32 sctx->state[6] = SHA384_H6; 33 sctx->state[7] = SHA384_H7; 34 sctx->count[0] = sctx->count[1] = 0; 35 36 return 0; 37 } 38 39 static inline int sha512_base_init(struct shash_desc *desc) 40 { 41 struct sha512_state *sctx = shash_desc_ctx(desc); 42 43 sctx->state[0] = SHA512_H0; 44 sctx->state[1] = SHA512_H1; 45 sctx->state[2] = SHA512_H2; 46 sctx->state[3] = SHA512_H3; 47 sctx->state[4] = SHA512_H4; 48 sctx->state[5] = SHA512_H5; 49 sctx->state[6] = SHA512_H6; 50 sctx->state[7] = SHA512_H7; 51 sctx->count[0] = sctx->count[1] = 0; 52 53 return 0; 54 } 55 56 static inline int sha512_base_do_update_blocks(struct shash_desc *desc, 57 const u8 *data, 58 unsigned int len, 59 sha512_block_fn *block_fn) 60 { 61 unsigned int remain = len - round_down(len, SHA512_BLOCK_SIZE); 62 struct sha512_state *sctx = shash_desc_ctx(desc); 63 64 len -= remain; 65 sctx->count[0] += len; 66 if (sctx->count[0] < len) 67 sctx->count[1]++; 68 block_fn(sctx, data, len / SHA512_BLOCK_SIZE); 69 return remain; 70 } 71 72 static inline int sha512_base_do_finup(struct shash_desc *desc, const u8 *src, 73 unsigned int len, 74 sha512_block_fn *block_fn) 75 { 76 unsigned int bit_offset = SHA512_BLOCK_SIZE / 8 - 2; 77 struct sha512_state *sctx = shash_desc_ctx(desc); 78 union { 79 __be64 b64[SHA512_BLOCK_SIZE / 4]; 80 u8 u8[SHA512_BLOCK_SIZE * 2]; 81 } block = {}; 82 83 if (len >= SHA512_BLOCK_SIZE) { 84 int remain; 85 86 remain = sha512_base_do_update_blocks(desc, src, len, block_fn); 87 src += len - remain; 88 len = remain; 89 } 90 91 if (len >= bit_offset * 8) 92 bit_offset += SHA512_BLOCK_SIZE / 8; 93 memcpy(&block, src, len); 94 block.u8[len] = 0x80; 95 sctx->count[0] += len; 96 block.b64[bit_offset] = cpu_to_be64(sctx->count[1] << 3 | 97 sctx->count[0] >> 61); 98 block.b64[bit_offset + 1] = cpu_to_be64(sctx->count[0] << 3); 99 block_fn(sctx, block.u8, (bit_offset + 2) * 8 / SHA512_BLOCK_SIZE); 100 memzero_explicit(&block, sizeof(block)); 101 102 return 0; 103 } 104 105 static inline int sha512_base_finish(struct shash_desc *desc, u8 *out) 106 { 107 unsigned int digest_size = crypto_shash_digestsize(desc->tfm); 108 struct sha512_state *sctx = shash_desc_ctx(desc); 109 __be64 *digest = (__be64 *)out; 110 int i; 111 112 for (i = 0; digest_size > 0; i++, digest_size -= sizeof(__be64)) 113 put_unaligned_be64(sctx->state[i], digest++); 114 return 0; 115 } 116 117 void sha512_generic_block_fn(struct sha512_state *sst, u8 const *src, 118 int blocks); 119 120 #endif /* _CRYPTO_SHA512_BASE_H */ 121