1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2018-2023 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <djwong@kernel.org> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_sb.h" 16 #include "xfs_inode.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_rmap_btree.h" 23 #include "xfs_refcount_btree.h" 24 #include "xfs_rtbitmap.h" 25 #include "xfs_extent_busy.h" 26 #include "xfs_ag.h" 27 #include "xfs_ag_resv.h" 28 #include "xfs_quota.h" 29 #include "xfs_qm.h" 30 #include "xfs_defer.h" 31 #include "xfs_errortag.h" 32 #include "xfs_error.h" 33 #include "xfs_reflink.h" 34 #include "xfs_health.h" 35 #include "xfs_buf_mem.h" 36 #include "xfs_da_format.h" 37 #include "xfs_da_btree.h" 38 #include "xfs_attr.h" 39 #include "xfs_dir2.h" 40 #include "xfs_rtrmap_btree.h" 41 #include "xfs_rtbitmap.h" 42 #include "xfs_rtgroup.h" 43 #include "xfs_rtalloc.h" 44 #include "xfs_metafile.h" 45 #include "xfs_rtrefcount_btree.h" 46 #include "xfs_zone_alloc.h" 47 #include "scrub/scrub.h" 48 #include "scrub/common.h" 49 #include "scrub/trace.h" 50 #include "scrub/repair.h" 51 #include "scrub/bitmap.h" 52 #include "scrub/stats.h" 53 #include "scrub/xfile.h" 54 #include "scrub/attr_repair.h" 55 56 /* 57 * Attempt to repair some metadata, if the metadata is corrupt and userspace 58 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", 59 * and will set *fixed to true if it thinks it repaired anything. 60 */ 61 int 62 xrep_attempt( 63 struct xfs_scrub *sc, 64 struct xchk_stats_run *run) 65 { 66 u64 repair_start; 67 int error = 0; 68 69 trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error); 70 71 xchk_ag_btcur_free(&sc->sa); 72 xchk_rtgroup_btcur_free(&sc->sr); 73 74 /* Repair whatever's broken. */ 75 ASSERT(sc->ops->repair); 76 run->repair_attempted = true; 77 repair_start = xchk_stats_now(); 78 error = sc->ops->repair(sc); 79 trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error); 80 run->repair_ns += xchk_stats_elapsed_ns(repair_start); 81 switch (error) { 82 case 0: 83 /* 84 * Repair succeeded. Commit the fixes and perform a second 85 * scrub so that we can tell userspace if we fixed the problem. 86 */ 87 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 88 sc->flags |= XREP_ALREADY_FIXED; 89 run->repair_succeeded = true; 90 return -EAGAIN; 91 case -ECHRNG: 92 sc->flags |= XCHK_NEED_DRAIN; 93 run->retries++; 94 return -EAGAIN; 95 case -EDEADLOCK: 96 /* Tell the caller to try again having grabbed all the locks. */ 97 if (!(sc->flags & XCHK_TRY_HARDER)) { 98 sc->flags |= XCHK_TRY_HARDER; 99 run->retries++; 100 return -EAGAIN; 101 } 102 /* 103 * We tried harder but still couldn't grab all the resources 104 * we needed to fix it. The corruption has not been fixed, 105 * so exit to userspace with the scan's output flags unchanged. 106 */ 107 return 0; 108 default: 109 /* 110 * EAGAIN tells the caller to re-scrub, so we cannot return 111 * that here. 112 */ 113 ASSERT(error != -EAGAIN); 114 return error; 115 } 116 } 117 118 /* 119 * Complain about unfixable problems in the filesystem. We don't log 120 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver 121 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the 122 * administrator isn't running xfs_scrub in no-repairs mode. 123 * 124 * Use this helper function because _ratelimited silently declares a static 125 * structure to track rate limiting information. 126 */ 127 void 128 xrep_failure( 129 struct xfs_mount *mp) 130 { 131 xfs_alert_ratelimited(mp, 132 "Corruption not fixed during online repair. Unmount and run xfs_repair."); 133 } 134 135 /* 136 * Repair probe -- userspace uses this to probe if we're willing to repair a 137 * given mountpoint. 138 */ 139 int 140 xrep_probe( 141 struct xfs_scrub *sc) 142 { 143 int error = 0; 144 145 if (xchk_should_terminate(sc, &error)) 146 return error; 147 148 return 0; 149 } 150 151 /* 152 * Roll a transaction, keeping the AG headers locked and reinitializing 153 * the btree cursors. 154 */ 155 int 156 xrep_roll_ag_trans( 157 struct xfs_scrub *sc) 158 { 159 int error; 160 161 /* 162 * Keep the AG header buffers locked while we roll the transaction. 163 * Ensure that both AG buffers are dirty and held when we roll the 164 * transaction so that they move forward in the log without losing the 165 * bli (and hence the bli type) when the transaction commits. 166 * 167 * Normal code would never hold clean buffers across a roll, but repair 168 * needs both buffers to maintain a total lock on the AG. 169 */ 170 if (sc->sa.agi_bp) { 171 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); 172 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 173 } 174 175 if (sc->sa.agf_bp) { 176 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); 177 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 178 } 179 180 /* 181 * Roll the transaction. We still hold the AG header buffers locked 182 * regardless of whether or not that succeeds. On failure, the buffers 183 * will be released during teardown on our way out of the kernel. If 184 * successful, join the buffers to the new transaction and move on. 185 */ 186 error = xfs_trans_roll(&sc->tp); 187 if (error) 188 return error; 189 190 /* Join the AG headers to the new transaction. */ 191 if (sc->sa.agi_bp) 192 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); 193 if (sc->sa.agf_bp) 194 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); 195 196 return 0; 197 } 198 199 /* Roll the scrub transaction, holding the primary metadata locked. */ 200 int 201 xrep_roll_trans( 202 struct xfs_scrub *sc) 203 { 204 if (!sc->ip) 205 return xrep_roll_ag_trans(sc); 206 return xfs_trans_roll_inode(&sc->tp, sc->ip); 207 } 208 209 /* Finish all deferred work attached to the repair transaction. */ 210 int 211 xrep_defer_finish( 212 struct xfs_scrub *sc) 213 { 214 int error; 215 216 /* 217 * Keep the AG header buffers locked while we complete deferred work 218 * items. Ensure that both AG buffers are dirty and held when we roll 219 * the transaction so that they move forward in the log without losing 220 * the bli (and hence the bli type) when the transaction commits. 221 * 222 * Normal code would never hold clean buffers across a roll, but repair 223 * needs both buffers to maintain a total lock on the AG. 224 */ 225 if (sc->sa.agi_bp) { 226 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); 227 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 228 } 229 230 if (sc->sa.agf_bp) { 231 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); 232 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 233 } 234 235 /* 236 * Finish all deferred work items. We still hold the AG header buffers 237 * locked regardless of whether or not that succeeds. On failure, the 238 * buffers will be released during teardown on our way out of the 239 * kernel. If successful, join the buffers to the new transaction 240 * and move on. 241 */ 242 error = xfs_defer_finish(&sc->tp); 243 if (error) 244 return error; 245 246 /* 247 * Release the hold that we set above because defer_finish won't do 248 * that for us. The defer roll code redirties held buffers after each 249 * roll, so the AG header buffers should be ready for logging. 250 */ 251 if (sc->sa.agi_bp) 252 xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp); 253 if (sc->sa.agf_bp) 254 xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp); 255 256 return 0; 257 } 258 259 /* 260 * Does the given AG have enough space to rebuild a btree? Neither AG 261 * reservation can be critical, and we must have enough space (factoring 262 * in AG reservations) to construct a whole btree. 263 */ 264 bool 265 xrep_ag_has_space( 266 struct xfs_perag *pag, 267 xfs_extlen_t nr_blocks, 268 enum xfs_ag_resv_type type) 269 { 270 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && 271 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && 272 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; 273 } 274 275 /* 276 * Figure out how many blocks to reserve for an AG repair. We calculate the 277 * worst case estimate for the number of blocks we'd need to rebuild one of 278 * any type of per-AG btree. 279 */ 280 xfs_extlen_t 281 xrep_calc_ag_resblks( 282 struct xfs_scrub *sc) 283 { 284 struct xfs_mount *mp = sc->mp; 285 struct xfs_scrub_metadata *sm = sc->sm; 286 struct xfs_perag *pag; 287 struct xfs_buf *bp; 288 xfs_agino_t icount = NULLAGINO; 289 xfs_extlen_t aglen = NULLAGBLOCK; 290 xfs_extlen_t usedlen; 291 xfs_extlen_t freelen; 292 xfs_extlen_t bnobt_sz; 293 xfs_extlen_t inobt_sz; 294 xfs_extlen_t rmapbt_sz; 295 xfs_extlen_t refcbt_sz; 296 int error; 297 298 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 299 return 0; 300 301 pag = xfs_perag_get(mp, sm->sm_agno); 302 if (xfs_perag_initialised_agi(pag)) { 303 /* Use in-core icount if possible. */ 304 icount = pag->pagi_count; 305 } else { 306 /* Try to get the actual counters from disk. */ 307 error = xfs_ialloc_read_agi(pag, NULL, 0, &bp); 308 if (!error) { 309 icount = pag->pagi_count; 310 xfs_buf_relse(bp); 311 } 312 } 313 314 /* Now grab the block counters from the AGF. */ 315 error = xfs_alloc_read_agf(pag, NULL, 0, &bp); 316 if (error) { 317 aglen = pag_group(pag)->xg_block_count; 318 freelen = aglen; 319 usedlen = aglen; 320 } else { 321 struct xfs_agf *agf = bp->b_addr; 322 323 aglen = be32_to_cpu(agf->agf_length); 324 freelen = be32_to_cpu(agf->agf_freeblks); 325 usedlen = aglen - freelen; 326 xfs_buf_relse(bp); 327 } 328 329 /* If the icount is impossible, make some worst-case assumptions. */ 330 if (icount == NULLAGINO || 331 !xfs_verify_agino(pag, icount)) { 332 icount = pag->agino_max - pag->agino_min + 1; 333 } 334 335 /* If the block counts are impossible, make worst-case assumptions. */ 336 if (aglen == NULLAGBLOCK || 337 aglen != pag_group(pag)->xg_block_count || 338 freelen >= aglen) { 339 aglen = pag_group(pag)->xg_block_count; 340 freelen = aglen; 341 usedlen = aglen; 342 } 343 344 trace_xrep_calc_ag_resblks(pag, icount, aglen, freelen, usedlen); 345 346 /* 347 * Figure out how many blocks we'd need worst case to rebuild 348 * each type of btree. Note that we can only rebuild the 349 * bnobt/cntbt or inobt/finobt as pairs. 350 */ 351 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); 352 if (xfs_has_sparseinodes(mp)) 353 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 354 XFS_INODES_PER_HOLEMASK_BIT); 355 else 356 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 357 XFS_INODES_PER_CHUNK); 358 if (xfs_has_finobt(mp)) 359 inobt_sz *= 2; 360 if (xfs_has_reflink(mp)) 361 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); 362 else 363 refcbt_sz = 0; 364 if (xfs_has_rmapbt(mp)) { 365 /* 366 * Guess how many blocks we need to rebuild the rmapbt. 367 * For non-reflink filesystems we can't have more records than 368 * used blocks. However, with reflink it's possible to have 369 * more than one rmap record per AG block. We don't know how 370 * many rmaps there could be in the AG, so we start off with 371 * what we hope is an generous over-estimation. 372 */ 373 if (xfs_has_reflink(mp)) 374 rmapbt_sz = xfs_rmapbt_calc_size(mp, 375 (unsigned long long)aglen * 2); 376 else 377 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); 378 } else { 379 rmapbt_sz = 0; 380 } 381 382 trace_xrep_calc_ag_resblks_btsize(pag, bnobt_sz, inobt_sz, rmapbt_sz, 383 refcbt_sz); 384 xfs_perag_put(pag); 385 386 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); 387 } 388 389 #ifdef CONFIG_XFS_RT 390 /* 391 * Figure out how many blocks to reserve for a rtgroup repair. We calculate 392 * the worst case estimate for the number of blocks we'd need to rebuild one of 393 * any type of per-rtgroup btree. 394 */ 395 xfs_extlen_t 396 xrep_calc_rtgroup_resblks( 397 struct xfs_scrub *sc) 398 { 399 struct xfs_mount *mp = sc->mp; 400 struct xfs_scrub_metadata *sm = sc->sm; 401 uint64_t usedlen; 402 xfs_extlen_t rmapbt_sz = 0; 403 404 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 405 return 0; 406 if (!xfs_has_rtgroups(mp)) { 407 ASSERT(0); 408 return -EFSCORRUPTED; 409 } 410 411 usedlen = xfs_rtbxlen_to_blen(mp, xfs_rtgroup_extents(mp, sm->sm_agno)); 412 ASSERT(usedlen <= XFS_MAX_RGBLOCKS); 413 414 if (xfs_has_rmapbt(mp)) 415 rmapbt_sz = xfs_rtrmapbt_calc_size(mp, usedlen); 416 417 trace_xrep_calc_rtgroup_resblks_btsize(mp, sm->sm_agno, usedlen, 418 rmapbt_sz); 419 420 return rmapbt_sz; 421 } 422 #endif /* CONFIG_XFS_RT */ 423 424 /* 425 * Reconstructing per-AG Btrees 426 * 427 * When a space btree is corrupt, we don't bother trying to fix it. Instead, 428 * we scan secondary space metadata to derive the records that should be in 429 * the damaged btree, initialize a fresh btree root, and insert the records. 430 * Note that for rebuilding the rmapbt we scan all the primary data to 431 * generate the new records. 432 * 433 * However, that leaves the matter of removing all the metadata describing the 434 * old broken structure. For primary metadata we use the rmap data to collect 435 * every extent with a matching rmap owner (bitmap); we then iterate all other 436 * metadata structures with the same rmap owner to collect the extents that 437 * cannot be removed (sublist). We then subtract sublist from bitmap to 438 * derive the blocks that were used by the old btree. These blocks can be 439 * reaped. 440 * 441 * For rmapbt reconstructions we must use different tactics for extent 442 * collection. First we iterate all primary metadata (this excludes the old 443 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap 444 * records are collected as bitmap. The bnobt records are collected as 445 * sublist. As with the other btrees we subtract sublist from bitmap, and the 446 * result (since the rmapbt lives in the free space) are the blocks from the 447 * old rmapbt. 448 */ 449 450 /* Ensure the freelist is the correct size. */ 451 int 452 xrep_fix_freelist( 453 struct xfs_scrub *sc, 454 int alloc_flags) 455 { 456 struct xfs_alloc_arg args = {0}; 457 458 args.mp = sc->mp; 459 args.tp = sc->tp; 460 args.agno = pag_agno(sc->sa.pag); 461 args.alignment = 1; 462 args.pag = sc->sa.pag; 463 464 return xfs_alloc_fix_freelist(&args, alloc_flags); 465 } 466 467 /* 468 * Finding per-AG Btree Roots for AGF/AGI Reconstruction 469 * 470 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild 471 * the AG headers by using the rmap data to rummage through the AG looking for 472 * btree roots. This is not guaranteed to work if the AG is heavily damaged 473 * or the rmap data are corrupt. 474 * 475 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL 476 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the 477 * AGI is being rebuilt. It must maintain these locks until it's safe for 478 * other threads to change the btrees' shapes. The caller provides 479 * information about the btrees to look for by passing in an array of 480 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. 481 * The (root, height) fields will be set on return if anything is found. The 482 * last element of the array should have a NULL buf_ops to mark the end of the 483 * array. 484 * 485 * For every rmapbt record matching any of the rmap owners in btree_info, 486 * read each block referenced by the rmap record. If the block is a btree 487 * block from this filesystem matching any of the magic numbers and has a 488 * level higher than what we've already seen, remember the block and the 489 * height of the tree required to have such a block. When the call completes, 490 * we return the highest block we've found for each btree description; those 491 * should be the roots. 492 */ 493 494 struct xrep_findroot { 495 struct xfs_scrub *sc; 496 struct xfs_buf *agfl_bp; 497 struct xfs_agf *agf; 498 struct xrep_find_ag_btree *btree_info; 499 }; 500 501 /* See if our block is in the AGFL. */ 502 STATIC int 503 xrep_findroot_agfl_walk( 504 struct xfs_mount *mp, 505 xfs_agblock_t bno, 506 void *priv) 507 { 508 xfs_agblock_t *agbno = priv; 509 510 return (*agbno == bno) ? -ECANCELED : 0; 511 } 512 513 /* Does this block match the btree information passed in? */ 514 STATIC int 515 xrep_findroot_block( 516 struct xrep_findroot *ri, 517 struct xrep_find_ag_btree *fab, 518 uint64_t owner, 519 xfs_agblock_t agbno, 520 bool *done_with_block) 521 { 522 struct xfs_mount *mp = ri->sc->mp; 523 struct xfs_buf *bp; 524 struct xfs_btree_block *btblock; 525 xfs_daddr_t daddr; 526 int block_level; 527 int error = 0; 528 529 daddr = xfs_agbno_to_daddr(ri->sc->sa.pag, agbno); 530 531 /* 532 * Blocks in the AGFL have stale contents that might just happen to 533 * have a matching magic and uuid. We don't want to pull these blocks 534 * in as part of a tree root, so we have to filter out the AGFL stuff 535 * here. If the AGFL looks insane we'll just refuse to repair. 536 */ 537 if (owner == XFS_RMAP_OWN_AG) { 538 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, 539 xrep_findroot_agfl_walk, &agbno); 540 if (error == -ECANCELED) 541 return 0; 542 if (error) 543 return error; 544 } 545 546 /* 547 * Read the buffer into memory so that we can see if it's a match for 548 * our btree type. We have no clue if it is beforehand, and we want to 549 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which 550 * will cause needless disk reads in subsequent calls to this function) 551 * and logging metadata verifier failures. 552 * 553 * Therefore, pass in NULL buffer ops. If the buffer was already in 554 * memory from some other caller it will already have b_ops assigned. 555 * If it was in memory from a previous unsuccessful findroot_block 556 * call, the buffer won't have b_ops but it should be clean and ready 557 * for us to try to verify if the read call succeeds. The same applies 558 * if the buffer wasn't in memory at all. 559 * 560 * Note: If we never match a btree type with this buffer, it will be 561 * left in memory with NULL b_ops. This shouldn't be a problem unless 562 * the buffer gets written. 563 */ 564 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, 565 mp->m_bsize, 0, &bp, NULL); 566 if (error) 567 return error; 568 569 /* Ensure the block magic matches the btree type we're looking for. */ 570 btblock = XFS_BUF_TO_BLOCK(bp); 571 ASSERT(fab->buf_ops->magic[1] != 0); 572 if (btblock->bb_magic != fab->buf_ops->magic[1]) 573 goto out; 574 575 /* 576 * If the buffer already has ops applied and they're not the ones for 577 * this btree type, we know this block doesn't match the btree and we 578 * can bail out. 579 * 580 * If the buffer ops match ours, someone else has already validated 581 * the block for us, so we can move on to checking if this is a root 582 * block candidate. 583 * 584 * If the buffer does not have ops, nobody has successfully validated 585 * the contents and the buffer cannot be dirty. If the magic, uuid, 586 * and structure match this btree type then we'll move on to checking 587 * if it's a root block candidate. If there is no match, bail out. 588 */ 589 if (bp->b_ops) { 590 if (bp->b_ops != fab->buf_ops) 591 goto out; 592 } else { 593 ASSERT(!xfs_trans_buf_is_dirty(bp)); 594 if (!uuid_equal(&btblock->bb_u.s.bb_uuid, 595 &mp->m_sb.sb_meta_uuid)) 596 goto out; 597 /* 598 * Read verifiers can reference b_ops, so we set the pointer 599 * here. If the verifier fails we'll reset the buffer state 600 * to what it was before we touched the buffer. 601 */ 602 bp->b_ops = fab->buf_ops; 603 fab->buf_ops->verify_read(bp); 604 if (bp->b_error) { 605 bp->b_ops = NULL; 606 bp->b_error = 0; 607 goto out; 608 } 609 610 /* 611 * Some read verifiers will (re)set b_ops, so we must be 612 * careful not to change b_ops after running the verifier. 613 */ 614 } 615 616 /* 617 * This block passes the magic/uuid and verifier tests for this btree 618 * type. We don't need the caller to try the other tree types. 619 */ 620 *done_with_block = true; 621 622 /* 623 * Compare this btree block's level to the height of the current 624 * candidate root block. 625 * 626 * If the level matches the root we found previously, throw away both 627 * blocks because there can't be two candidate roots. 628 * 629 * If level is lower in the tree than the root we found previously, 630 * ignore this block. 631 */ 632 block_level = xfs_btree_get_level(btblock); 633 if (block_level + 1 == fab->height) { 634 fab->root = NULLAGBLOCK; 635 goto out; 636 } else if (block_level < fab->height) { 637 goto out; 638 } 639 640 /* 641 * This is the highest block in the tree that we've found so far. 642 * Update the btree height to reflect what we've learned from this 643 * block. 644 */ 645 fab->height = block_level + 1; 646 647 /* 648 * If this block doesn't have sibling pointers, then it's the new root 649 * block candidate. Otherwise, the root will be found farther up the 650 * tree. 651 */ 652 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) && 653 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 654 fab->root = agbno; 655 else 656 fab->root = NULLAGBLOCK; 657 658 trace_xrep_findroot_block(ri->sc->sa.pag, agbno, 659 be32_to_cpu(btblock->bb_magic), fab->height - 1); 660 out: 661 xfs_trans_brelse(ri->sc->tp, bp); 662 return error; 663 } 664 665 /* 666 * Do any of the blocks in this rmap record match one of the btrees we're 667 * looking for? 668 */ 669 STATIC int 670 xrep_findroot_rmap( 671 struct xfs_btree_cur *cur, 672 const struct xfs_rmap_irec *rec, 673 void *priv) 674 { 675 struct xrep_findroot *ri = priv; 676 struct xrep_find_ag_btree *fab; 677 xfs_agblock_t b; 678 bool done; 679 int error = 0; 680 681 /* Ignore anything that isn't AG metadata. */ 682 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) 683 return 0; 684 685 /* Otherwise scan each block + btree type. */ 686 for (b = 0; b < rec->rm_blockcount; b++) { 687 done = false; 688 for (fab = ri->btree_info; fab->buf_ops; fab++) { 689 if (rec->rm_owner != fab->rmap_owner) 690 continue; 691 error = xrep_findroot_block(ri, fab, 692 rec->rm_owner, rec->rm_startblock + b, 693 &done); 694 if (error) 695 return error; 696 if (done) 697 break; 698 } 699 } 700 701 return 0; 702 } 703 704 /* Find the roots of the per-AG btrees described in btree_info. */ 705 int 706 xrep_find_ag_btree_roots( 707 struct xfs_scrub *sc, 708 struct xfs_buf *agf_bp, 709 struct xrep_find_ag_btree *btree_info, 710 struct xfs_buf *agfl_bp) 711 { 712 struct xfs_mount *mp = sc->mp; 713 struct xrep_findroot ri; 714 struct xrep_find_ag_btree *fab; 715 struct xfs_btree_cur *cur; 716 int error; 717 718 ASSERT(xfs_buf_islocked(agf_bp)); 719 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); 720 721 ri.sc = sc; 722 ri.btree_info = btree_info; 723 ri.agf = agf_bp->b_addr; 724 ri.agfl_bp = agfl_bp; 725 for (fab = btree_info; fab->buf_ops; fab++) { 726 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); 727 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); 728 fab->root = NULLAGBLOCK; 729 fab->height = 0; 730 } 731 732 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 733 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); 734 xfs_btree_del_cursor(cur, error); 735 736 return error; 737 } 738 739 #ifdef CONFIG_XFS_QUOTA 740 /* Update some quota flags in the superblock. */ 741 void 742 xrep_update_qflags( 743 struct xfs_scrub *sc, 744 unsigned int clear_flags, 745 unsigned int set_flags) 746 { 747 struct xfs_mount *mp = sc->mp; 748 struct xfs_buf *bp; 749 750 mutex_lock(&mp->m_quotainfo->qi_quotaofflock); 751 if ((mp->m_qflags & clear_flags) == 0 && 752 (mp->m_qflags & set_flags) == set_flags) 753 goto no_update; 754 755 mp->m_qflags &= ~clear_flags; 756 mp->m_qflags |= set_flags; 757 758 spin_lock(&mp->m_sb_lock); 759 mp->m_sb.sb_qflags &= ~clear_flags; 760 mp->m_sb.sb_qflags |= set_flags; 761 spin_unlock(&mp->m_sb_lock); 762 763 /* 764 * Update the quota flags in the ondisk superblock without touching 765 * the summary counters. We have not quiesced inode chunk allocation, 766 * so we cannot coordinate with updates to the icount and ifree percpu 767 * counters. 768 */ 769 bp = xfs_trans_getsb(sc->tp); 770 xfs_sb_to_disk(bp->b_addr, &mp->m_sb); 771 xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF); 772 xfs_trans_log_buf(sc->tp, bp, 0, sizeof(struct xfs_dsb) - 1); 773 774 no_update: 775 mutex_unlock(&mp->m_quotainfo->qi_quotaofflock); 776 } 777 778 /* Force a quotacheck the next time we mount. */ 779 void 780 xrep_force_quotacheck( 781 struct xfs_scrub *sc, 782 xfs_dqtype_t type) 783 { 784 uint flag; 785 786 flag = xfs_quota_chkd_flag(type); 787 if (!(flag & sc->mp->m_qflags)) 788 return; 789 790 xrep_update_qflags(sc, flag, 0); 791 } 792 793 /* 794 * Attach dquots to this inode, or schedule quotacheck to fix them. 795 * 796 * This function ensures that the appropriate dquots are attached to an inode. 797 * We cannot allow the dquot code to allocate an on-disk dquot block here 798 * because we're already in transaction context. The on-disk dquot should 799 * already exist anyway. If the quota code signals corruption or missing quota 800 * information, schedule quotacheck, which will repair corruptions in the quota 801 * metadata. 802 */ 803 int 804 xrep_ino_dqattach( 805 struct xfs_scrub *sc) 806 { 807 int error; 808 809 ASSERT(sc->tp != NULL); 810 ASSERT(sc->ip != NULL); 811 812 error = xfs_qm_dqattach(sc->ip); 813 switch (error) { 814 case -EFSBADCRC: 815 case -EFSCORRUPTED: 816 case -ENOENT: 817 xfs_err_ratelimited(sc->mp, 818 "inode %llu repair encountered quota error %d, quotacheck forced.", 819 (unsigned long long)sc->ip->i_ino, error); 820 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) 821 xrep_force_quotacheck(sc, XFS_DQTYPE_USER); 822 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) 823 xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP); 824 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) 825 xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ); 826 fallthrough; 827 case -ESRCH: 828 error = 0; 829 break; 830 default: 831 break; 832 } 833 834 return error; 835 } 836 #endif /* CONFIG_XFS_QUOTA */ 837 838 /* 839 * Ensure that the inode being repaired is ready to handle a certain number of 840 * extents, or return EFSCORRUPTED. Caller must hold the ILOCK of the inode 841 * being repaired and have joined it to the scrub transaction. 842 */ 843 int 844 xrep_ino_ensure_extent_count( 845 struct xfs_scrub *sc, 846 int whichfork, 847 xfs_extnum_t nextents) 848 { 849 xfs_extnum_t max_extents; 850 bool inode_has_nrext64; 851 852 inode_has_nrext64 = xfs_inode_has_large_extent_counts(sc->ip); 853 max_extents = xfs_iext_max_nextents(inode_has_nrext64, whichfork); 854 if (nextents <= max_extents) 855 return 0; 856 if (inode_has_nrext64) 857 return -EFSCORRUPTED; 858 if (!xfs_has_large_extent_counts(sc->mp)) 859 return -EFSCORRUPTED; 860 861 max_extents = xfs_iext_max_nextents(true, whichfork); 862 if (nextents > max_extents) 863 return -EFSCORRUPTED; 864 865 sc->ip->i_diflags2 |= XFS_DIFLAG2_NREXT64; 866 xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE); 867 return 0; 868 } 869 870 /* 871 * Initialize all the btree cursors for an AG repair except for the btree that 872 * we're rebuilding. 873 */ 874 void 875 xrep_ag_btcur_init( 876 struct xfs_scrub *sc, 877 struct xchk_ag *sa) 878 { 879 struct xfs_mount *mp = sc->mp; 880 881 /* Set up a bnobt cursor for cross-referencing. */ 882 if (sc->sm->sm_type != XFS_SCRUB_TYPE_BNOBT && 883 sc->sm->sm_type != XFS_SCRUB_TYPE_CNTBT) { 884 sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp, 885 sc->sa.pag); 886 sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp, 887 sc->sa.pag); 888 } 889 890 /* Set up a inobt cursor for cross-referencing. */ 891 if (sc->sm->sm_type != XFS_SCRUB_TYPE_INOBT && 892 sc->sm->sm_type != XFS_SCRUB_TYPE_FINOBT) { 893 sa->ino_cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp, 894 sa->agi_bp); 895 if (xfs_has_finobt(mp)) 896 sa->fino_cur = xfs_finobt_init_cursor(sc->sa.pag, 897 sc->tp, sa->agi_bp); 898 } 899 900 /* Set up a rmapbt cursor for cross-referencing. */ 901 if (sc->sm->sm_type != XFS_SCRUB_TYPE_RMAPBT && 902 xfs_has_rmapbt(mp)) 903 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp, 904 sc->sa.pag); 905 906 /* Set up a refcountbt cursor for cross-referencing. */ 907 if (sc->sm->sm_type != XFS_SCRUB_TYPE_REFCNTBT && 908 xfs_has_reflink(mp)) 909 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp, 910 sa->agf_bp, sc->sa.pag); 911 } 912 913 /* 914 * Reinitialize the in-core AG state after a repair by rereading the AGF 915 * buffer. We had better get the same AGF buffer as the one that's attached 916 * to the scrub context. 917 */ 918 int 919 xrep_reinit_pagf( 920 struct xfs_scrub *sc) 921 { 922 struct xfs_perag *pag = sc->sa.pag; 923 struct xfs_buf *bp; 924 int error; 925 926 ASSERT(pag); 927 ASSERT(xfs_perag_initialised_agf(pag)); 928 929 clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate); 930 error = xfs_alloc_read_agf(pag, sc->tp, 0, &bp); 931 if (error) 932 return error; 933 934 if (bp != sc->sa.agf_bp) { 935 ASSERT(bp == sc->sa.agf_bp); 936 return -EFSCORRUPTED; 937 } 938 939 return 0; 940 } 941 942 /* 943 * Reinitialize the in-core AG state after a repair by rereading the AGI 944 * buffer. We had better get the same AGI buffer as the one that's attached 945 * to the scrub context. 946 */ 947 int 948 xrep_reinit_pagi( 949 struct xfs_scrub *sc) 950 { 951 struct xfs_perag *pag = sc->sa.pag; 952 struct xfs_buf *bp; 953 int error; 954 955 ASSERT(pag); 956 ASSERT(xfs_perag_initialised_agi(pag)); 957 958 clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); 959 error = xfs_ialloc_read_agi(pag, sc->tp, 0, &bp); 960 if (error) 961 return error; 962 963 if (bp != sc->sa.agi_bp) { 964 ASSERT(bp == sc->sa.agi_bp); 965 return -EFSCORRUPTED; 966 } 967 968 return 0; 969 } 970 971 /* 972 * Given an active reference to a perag structure, load AG headers and cursors. 973 * This should only be called to scan an AG while repairing file-based metadata. 974 */ 975 int 976 xrep_ag_init( 977 struct xfs_scrub *sc, 978 struct xfs_perag *pag, 979 struct xchk_ag *sa) 980 { 981 int error; 982 983 ASSERT(!sa->pag); 984 985 error = xfs_ialloc_read_agi(pag, sc->tp, 0, &sa->agi_bp); 986 if (error) 987 return error; 988 989 error = xfs_alloc_read_agf(pag, sc->tp, 0, &sa->agf_bp); 990 if (error) 991 return error; 992 993 /* Grab our own passive reference from the caller's ref. */ 994 sa->pag = xfs_perag_hold(pag); 995 xrep_ag_btcur_init(sc, sa); 996 return 0; 997 } 998 999 #ifdef CONFIG_XFS_RT 1000 /* Initialize all the btree cursors for a RT repair. */ 1001 void 1002 xrep_rtgroup_btcur_init( 1003 struct xfs_scrub *sc, 1004 struct xchk_rt *sr) 1005 { 1006 struct xfs_mount *mp = sc->mp; 1007 1008 ASSERT(sr->rtg != NULL); 1009 1010 if (sc->sm->sm_type != XFS_SCRUB_TYPE_RTRMAPBT && 1011 (sr->rtlock_flags & XFS_RTGLOCK_RMAP) && 1012 xfs_has_rtrmapbt(mp)) 1013 sr->rmap_cur = xfs_rtrmapbt_init_cursor(sc->tp, sr->rtg); 1014 1015 if (sc->sm->sm_type != XFS_SCRUB_TYPE_RTREFCBT && 1016 (sr->rtlock_flags & XFS_RTGLOCK_REFCOUNT) && 1017 xfs_has_rtreflink(mp)) 1018 sr->refc_cur = xfs_rtrefcountbt_init_cursor(sc->tp, sr->rtg); 1019 } 1020 1021 /* 1022 * Given a reference to a rtgroup structure, lock rtgroup btree inodes and 1023 * create btree cursors. Must only be called to repair a regular rt file. 1024 */ 1025 int 1026 xrep_rtgroup_init( 1027 struct xfs_scrub *sc, 1028 struct xfs_rtgroup *rtg, 1029 struct xchk_rt *sr, 1030 unsigned int rtglock_flags) 1031 { 1032 ASSERT(sr->rtg == NULL); 1033 1034 xfs_rtgroup_lock(rtg, rtglock_flags); 1035 sr->rtlock_flags = rtglock_flags; 1036 1037 /* Grab our own passive reference from the caller's ref. */ 1038 sr->rtg = xfs_rtgroup_hold(rtg); 1039 xrep_rtgroup_btcur_init(sc, sr); 1040 return 0; 1041 } 1042 1043 /* Ensure that all rt blocks in the given range are not marked free. */ 1044 int 1045 xrep_require_rtext_inuse( 1046 struct xfs_scrub *sc, 1047 xfs_rgblock_t rgbno, 1048 xfs_filblks_t len) 1049 { 1050 struct xfs_mount *mp = sc->mp; 1051 xfs_rtxnum_t startrtx; 1052 xfs_rtxnum_t endrtx; 1053 bool is_free = false; 1054 int error = 0; 1055 1056 if (xfs_has_zoned(mp)) { 1057 if (!xfs_zone_rgbno_is_valid(sc->sr.rtg, rgbno + len - 1)) 1058 return -EFSCORRUPTED; 1059 return 0; 1060 } 1061 1062 startrtx = xfs_rgbno_to_rtx(mp, rgbno); 1063 endrtx = xfs_rgbno_to_rtx(mp, rgbno + len - 1); 1064 1065 error = xfs_rtalloc_extent_is_free(sc->sr.rtg, sc->tp, startrtx, 1066 endrtx - startrtx + 1, &is_free); 1067 if (error) 1068 return error; 1069 if (is_free) 1070 return -EFSCORRUPTED; 1071 1072 return 0; 1073 } 1074 #endif /* CONFIG_XFS_RT */ 1075 1076 /* Reinitialize the per-AG block reservation for the AG we just fixed. */ 1077 int 1078 xrep_reset_perag_resv( 1079 struct xfs_scrub *sc) 1080 { 1081 int error; 1082 1083 if (!(sc->flags & XREP_RESET_PERAG_RESV)) 1084 return 0; 1085 1086 ASSERT(sc->sa.pag != NULL); 1087 ASSERT(sc->ops->type == ST_PERAG); 1088 ASSERT(sc->tp); 1089 1090 sc->flags &= ~XREP_RESET_PERAG_RESV; 1091 xfs_ag_resv_free(sc->sa.pag); 1092 error = xfs_ag_resv_init(sc->sa.pag, sc->tp); 1093 if (error == -ENOSPC) { 1094 xfs_err(sc->mp, 1095 "Insufficient free space to reset per-AG reservation for AG %u after repair.", 1096 pag_agno(sc->sa.pag)); 1097 error = 0; 1098 } 1099 1100 return error; 1101 } 1102 1103 /* Decide if we are going to call the repair function for a scrub type. */ 1104 bool 1105 xrep_will_attempt( 1106 struct xfs_scrub *sc) 1107 { 1108 /* Userspace asked us to rebuild the structure regardless. */ 1109 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD) 1110 return true; 1111 1112 /* Let debug users force us into the repair routines. */ 1113 if (XFS_TEST_ERROR(false, sc->mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR)) 1114 return true; 1115 1116 /* Metadata is corrupt or failed cross-referencing. */ 1117 if (xchk_needs_repair(sc->sm)) 1118 return true; 1119 1120 return false; 1121 } 1122 1123 /* Try to fix some part of a metadata inode by calling another scrubber. */ 1124 STATIC int 1125 xrep_metadata_inode_subtype( 1126 struct xfs_scrub *sc, 1127 unsigned int scrub_type) 1128 { 1129 struct xfs_scrub_subord *sub; 1130 int error; 1131 1132 /* 1133 * Let's see if the inode needs repair. Use a subordinate scrub context 1134 * to call the scrub and repair functions so that we can hang on to the 1135 * resources that we already acquired instead of using the standard 1136 * setup/teardown routines. 1137 */ 1138 sub = xchk_scrub_create_subord(sc, scrub_type); 1139 error = sub->sc.ops->scrub(&sub->sc); 1140 if (error) 1141 goto out; 1142 if (!xrep_will_attempt(&sub->sc)) 1143 goto out; 1144 1145 /* 1146 * Repair some part of the inode. This will potentially join the inode 1147 * to the transaction. 1148 */ 1149 error = sub->sc.ops->repair(&sub->sc); 1150 if (error) 1151 goto out; 1152 1153 /* 1154 * Finish all deferred intent items and then roll the transaction so 1155 * that the inode will not be joined to the transaction when we exit 1156 * the function. 1157 */ 1158 error = xfs_defer_finish(&sub->sc.tp); 1159 if (error) 1160 goto out; 1161 error = xfs_trans_roll(&sub->sc.tp); 1162 if (error) 1163 goto out; 1164 1165 /* 1166 * Clear the corruption flags and re-check the metadata that we just 1167 * repaired. 1168 */ 1169 sub->sc.sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 1170 error = sub->sc.ops->scrub(&sub->sc); 1171 if (error) 1172 goto out; 1173 1174 /* If corruption persists, the repair has failed. */ 1175 if (xchk_needs_repair(sub->sc.sm)) { 1176 error = -EFSCORRUPTED; 1177 goto out; 1178 } 1179 out: 1180 xchk_scrub_free_subord(sub); 1181 return error; 1182 } 1183 1184 /* 1185 * Repair the ondisk forks of a metadata inode. The caller must ensure that 1186 * sc->ip points to the metadata inode and the ILOCK is held on that inode. 1187 * The inode must not be joined to the transaction before the call, and will 1188 * not be afterwards. 1189 */ 1190 int 1191 xrep_metadata_inode_forks( 1192 struct xfs_scrub *sc) 1193 { 1194 bool dirty = false; 1195 int error; 1196 1197 /* Repair the inode record and the data fork. */ 1198 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE); 1199 if (error) 1200 return error; 1201 1202 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD); 1203 if (error) 1204 return error; 1205 1206 /* 1207 * Metadata files can only have extended attributes on metadir 1208 * filesystems, either for parent pointers or for actual xattr data. 1209 * For a non-metadir filesystem, make sure the attr fork looks ok 1210 * before we delete it. 1211 */ 1212 if (xfs_inode_hasattr(sc->ip)) { 1213 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA); 1214 if (error) 1215 return error; 1216 } 1217 1218 /* Clear the reflink flag since metadata never shares. */ 1219 if (xfs_is_reflink_inode(sc->ip)) { 1220 dirty = true; 1221 xfs_trans_ijoin(sc->tp, sc->ip, 0); 1222 error = xfs_reflink_clear_inode_flag(sc->ip, &sc->tp); 1223 if (error) 1224 return error; 1225 } 1226 1227 /* 1228 * Metadata files on non-metadir filesystems cannot have attr forks, 1229 * so clear them now. 1230 */ 1231 if (xfs_inode_hasattr(sc->ip) && !xfs_has_metadir(sc->mp)) { 1232 if (!dirty) { 1233 dirty = true; 1234 xfs_trans_ijoin(sc->tp, sc->ip, 0); 1235 } 1236 error = xrep_xattr_reset_fork(sc); 1237 if (error) 1238 return error; 1239 } 1240 1241 /* 1242 * If we modified the inode, roll the transaction but don't rejoin the 1243 * inode to the new transaction because xrep_bmap_data can do that. 1244 */ 1245 if (dirty) { 1246 error = xfs_trans_roll(&sc->tp); 1247 if (error) 1248 return error; 1249 dirty = false; 1250 } 1251 1252 return 0; 1253 } 1254 1255 /* 1256 * Set up an in-memory buffer cache so that we can use the xfbtree. Allocating 1257 * a shmem file might take loks, so we cannot be in transaction context. Park 1258 * our resources in the scrub context and let the teardown function take care 1259 * of them at the right time. 1260 */ 1261 int 1262 xrep_setup_xfbtree( 1263 struct xfs_scrub *sc, 1264 const char *descr) 1265 { 1266 ASSERT(sc->tp == NULL); 1267 1268 return xmbuf_alloc(sc->mp, descr, &sc->xmbtp); 1269 } 1270 1271 /* 1272 * Create a dummy transaction for use in a live update hook function. This 1273 * function MUST NOT be called from regular repair code because the current 1274 * process' transaction is saved via the cookie. 1275 */ 1276 int 1277 xrep_trans_alloc_hook_dummy( 1278 struct xfs_mount *mp, 1279 void **cookiep, 1280 struct xfs_trans **tpp) 1281 { 1282 int error; 1283 1284 *cookiep = current->journal_info; 1285 current->journal_info = NULL; 1286 1287 error = xfs_trans_alloc_empty(mp, tpp); 1288 if (!error) 1289 return 0; 1290 1291 current->journal_info = *cookiep; 1292 *cookiep = NULL; 1293 return error; 1294 } 1295 1296 /* Cancel a dummy transaction used by a live update hook function. */ 1297 void 1298 xrep_trans_cancel_hook_dummy( 1299 void **cookiep, 1300 struct xfs_trans *tp) 1301 { 1302 xfs_trans_cancel(tp); 1303 current->journal_info = *cookiep; 1304 *cookiep = NULL; 1305 } 1306 1307 /* 1308 * See if this buffer can pass the given ->verify_struct() function. 1309 * 1310 * If the buffer already has ops attached and they're not the ones that were 1311 * passed in, we reject the buffer. Otherwise, we perform the structure test 1312 * (note that we do not check CRCs) and return the outcome of the test. The 1313 * buffer ops and error state are left unchanged. 1314 */ 1315 bool 1316 xrep_buf_verify_struct( 1317 struct xfs_buf *bp, 1318 const struct xfs_buf_ops *ops) 1319 { 1320 const struct xfs_buf_ops *old_ops = bp->b_ops; 1321 xfs_failaddr_t fa; 1322 int old_error; 1323 1324 if (old_ops) { 1325 if (old_ops != ops) 1326 return false; 1327 } 1328 1329 old_error = bp->b_error; 1330 bp->b_ops = ops; 1331 fa = bp->b_ops->verify_struct(bp); 1332 bp->b_ops = old_ops; 1333 bp->b_error = old_error; 1334 1335 return fa == NULL; 1336 } 1337 1338 /* Check the sanity of a rmap record for a metadata btree inode. */ 1339 int 1340 xrep_check_ino_btree_mapping( 1341 struct xfs_scrub *sc, 1342 const struct xfs_rmap_irec *rec) 1343 { 1344 enum xbtree_recpacking outcome; 1345 int error; 1346 1347 /* 1348 * Metadata btree inodes never have extended attributes, and all blocks 1349 * should have the bmbt block flag set. 1350 */ 1351 if ((rec->rm_flags & XFS_RMAP_ATTR_FORK) || 1352 !(rec->rm_flags & XFS_RMAP_BMBT_BLOCK)) 1353 return -EFSCORRUPTED; 1354 1355 /* Make sure the block is within the AG. */ 1356 if (!xfs_verify_agbext(sc->sa.pag, rec->rm_startblock, 1357 rec->rm_blockcount)) 1358 return -EFSCORRUPTED; 1359 1360 /* Make sure this isn't free space. */ 1361 error = xfs_alloc_has_records(sc->sa.bno_cur, rec->rm_startblock, 1362 rec->rm_blockcount, &outcome); 1363 if (error) 1364 return error; 1365 if (outcome != XBTREE_RECPACKING_EMPTY) 1366 return -EFSCORRUPTED; 1367 1368 return 0; 1369 } 1370 1371 /* 1372 * Reset the block count of the inode being repaired, and adjust the dquot 1373 * block usage to match. The inode must not have an xattr fork. 1374 */ 1375 void 1376 xrep_inode_set_nblocks( 1377 struct xfs_scrub *sc, 1378 int64_t new_blocks) 1379 { 1380 int64_t delta = 1381 new_blocks - sc->ip->i_nblocks; 1382 1383 sc->ip->i_nblocks = new_blocks; 1384 1385 xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE); 1386 if (delta != 0) 1387 xfs_trans_mod_dquot_byino(sc->tp, sc->ip, XFS_TRANS_DQ_BCOUNT, 1388 delta); 1389 } 1390 1391 /* Reset the block reservation for a metadata inode. */ 1392 int 1393 xrep_reset_metafile_resv( 1394 struct xfs_scrub *sc) 1395 { 1396 struct xfs_mount *mp = sc->mp; 1397 int64_t delta; 1398 int error; 1399 1400 delta = mp->m_metafile_resv_used + mp->m_metafile_resv_avail - 1401 mp->m_metafile_resv_target; 1402 if (delta == 0) 1403 return 0; 1404 1405 /* 1406 * Too many blocks have been reserved, transfer some from the incore 1407 * reservation back to the filesystem. 1408 */ 1409 if (delta > 0) { 1410 int64_t give_back; 1411 1412 give_back = min_t(uint64_t, delta, mp->m_metafile_resv_avail); 1413 if (give_back > 0) { 1414 xfs_mod_sb_delalloc(mp, -give_back); 1415 xfs_add_fdblocks(mp, give_back); 1416 mp->m_metafile_resv_avail -= give_back; 1417 } 1418 1419 return 0; 1420 } 1421 1422 /* 1423 * Not enough reservation; try to take some blocks from the filesystem 1424 * to the metabtree reservation. 1425 */ 1426 delta = -delta; /* delta is negative here, so invert the sign. */ 1427 error = xfs_dec_fdblocks(mp, delta, true); 1428 while (error == -ENOSPC) { 1429 delta--; 1430 if (delta == 0) { 1431 xfs_warn(sc->mp, 1432 "Insufficient free space to reset metabtree reservation after repair."); 1433 return 0; 1434 } 1435 error = xfs_dec_fdblocks(mp, delta, true); 1436 } 1437 if (error) 1438 return error; 1439 1440 xfs_mod_sb_delalloc(mp, delta); 1441 mp->m_metafile_resv_avail += delta; 1442 return 0; 1443 } 1444