1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * inode.c 4 * 5 * PURPOSE 6 * Inode handling routines for the OSTA-UDF(tm) filesystem. 7 * 8 * COPYRIGHT 9 * (C) 1998 Dave Boynton 10 * (C) 1998-2004 Ben Fennema 11 * (C) 1999-2000 Stelias Computing Inc 12 * 13 * HISTORY 14 * 15 * 10/04/98 dgb Added rudimentary directory functions 16 * 10/07/98 Fully working udf_block_map! It works! 17 * 11/25/98 bmap altered to better support extents 18 * 12/06/98 blf partition support in udf_iget, udf_block_map 19 * and udf_read_inode 20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 21 * block boundaries (which is not actually allowed) 22 * 12/20/98 added support for strategy 4096 23 * 03/07/99 rewrote udf_block_map (again) 24 * New funcs, inode_bmap, udf_next_aext 25 * 04/19/99 Support for writing device EA's for major/minor # 26 */ 27 28 #include "udfdecl.h" 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/pagemap.h> 32 #include <linux/writeback.h> 33 #include <linux/slab.h> 34 #include <linux/crc-itu-t.h> 35 #include <linux/mpage.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 39 #include "udf_i.h" 40 #include "udf_sb.h" 41 42 #define EXTENT_MERGE_SIZE 5 43 44 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 47 48 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 49 FE_PERM_O_DELETE) 50 51 struct udf_map_rq; 52 53 static umode_t udf_convert_permissions(struct fileEntry *); 54 static int udf_update_inode(struct inode *, int); 55 static int udf_sync_inode(struct inode *inode); 56 static int udf_alloc_i_data(struct inode *inode, size_t size); 57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map); 58 static int udf_insert_aext(struct inode *, struct extent_position, 59 struct kernel_lb_addr, uint32_t); 60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 61 struct kernel_long_ad *, int *); 62 static void udf_prealloc_extents(struct inode *, int, int, 63 struct kernel_long_ad *, int *); 64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int, 66 int, struct extent_position *); 67 static int udf_get_block_wb(struct inode *inode, sector_t block, 68 struct buffer_head *bh_result, int create); 69 70 static void __udf_clear_extent_cache(struct inode *inode) 71 { 72 struct udf_inode_info *iinfo = UDF_I(inode); 73 74 if (iinfo->cached_extent.lstart != -1) { 75 brelse(iinfo->cached_extent.epos.bh); 76 iinfo->cached_extent.lstart = -1; 77 } 78 } 79 80 /* Invalidate extent cache */ 81 static void udf_clear_extent_cache(struct inode *inode) 82 { 83 struct udf_inode_info *iinfo = UDF_I(inode); 84 85 spin_lock(&iinfo->i_extent_cache_lock); 86 __udf_clear_extent_cache(inode); 87 spin_unlock(&iinfo->i_extent_cache_lock); 88 } 89 90 /* Return contents of extent cache */ 91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 92 loff_t *lbcount, struct extent_position *pos) 93 { 94 struct udf_inode_info *iinfo = UDF_I(inode); 95 int ret = 0; 96 97 spin_lock(&iinfo->i_extent_cache_lock); 98 if ((iinfo->cached_extent.lstart <= bcount) && 99 (iinfo->cached_extent.lstart != -1)) { 100 /* Cache hit */ 101 *lbcount = iinfo->cached_extent.lstart; 102 memcpy(pos, &iinfo->cached_extent.epos, 103 sizeof(struct extent_position)); 104 if (pos->bh) 105 get_bh(pos->bh); 106 ret = 1; 107 } 108 spin_unlock(&iinfo->i_extent_cache_lock); 109 return ret; 110 } 111 112 /* Add extent to extent cache */ 113 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 114 struct extent_position *pos) 115 { 116 struct udf_inode_info *iinfo = UDF_I(inode); 117 118 spin_lock(&iinfo->i_extent_cache_lock); 119 /* Invalidate previously cached extent */ 120 __udf_clear_extent_cache(inode); 121 if (pos->bh) 122 get_bh(pos->bh); 123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 124 iinfo->cached_extent.lstart = estart; 125 switch (iinfo->i_alloc_type) { 126 case ICBTAG_FLAG_AD_SHORT: 127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 128 break; 129 case ICBTAG_FLAG_AD_LONG: 130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 131 break; 132 } 133 spin_unlock(&iinfo->i_extent_cache_lock); 134 } 135 136 void udf_evict_inode(struct inode *inode) 137 { 138 struct udf_inode_info *iinfo = UDF_I(inode); 139 int want_delete = 0; 140 141 if (!is_bad_inode(inode)) { 142 if (!inode->i_nlink) { 143 want_delete = 1; 144 udf_setsize(inode, 0); 145 udf_update_inode(inode, IS_SYNC(inode)); 146 } 147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 148 inode->i_size != iinfo->i_lenExtents) { 149 udf_warn(inode->i_sb, 150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 151 inode->i_ino, inode->i_mode, 152 (unsigned long long)inode->i_size, 153 (unsigned long long)iinfo->i_lenExtents); 154 } 155 } 156 truncate_inode_pages_final(&inode->i_data); 157 invalidate_inode_buffers(inode); 158 clear_inode(inode); 159 kfree(iinfo->i_data); 160 iinfo->i_data = NULL; 161 udf_clear_extent_cache(inode); 162 if (want_delete) { 163 udf_free_inode(inode); 164 } 165 } 166 167 static void udf_write_failed(struct address_space *mapping, loff_t to) 168 { 169 struct inode *inode = mapping->host; 170 struct udf_inode_info *iinfo = UDF_I(inode); 171 loff_t isize = inode->i_size; 172 173 if (to > isize) { 174 truncate_pagecache(inode, isize); 175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 176 down_write(&iinfo->i_data_sem); 177 udf_clear_extent_cache(inode); 178 udf_truncate_extents(inode); 179 up_write(&iinfo->i_data_sem); 180 } 181 } 182 } 183 184 static int udf_adinicb_writepage(struct folio *folio, 185 struct writeback_control *wbc, void *data) 186 { 187 struct inode *inode = folio->mapping->host; 188 struct udf_inode_info *iinfo = UDF_I(inode); 189 190 BUG_ON(!folio_test_locked(folio)); 191 BUG_ON(folio->index != 0); 192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0, 193 i_size_read(inode)); 194 folio_unlock(folio); 195 mark_inode_dirty(inode); 196 197 return 0; 198 } 199 200 static int udf_writepages(struct address_space *mapping, 201 struct writeback_control *wbc) 202 { 203 struct inode *inode = mapping->host; 204 struct udf_inode_info *iinfo = UDF_I(inode); 205 206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 207 return mpage_writepages(mapping, wbc, udf_get_block_wb); 208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL); 209 } 210 211 static void udf_adinicb_read_folio(struct folio *folio) 212 { 213 struct inode *inode = folio->mapping->host; 214 struct udf_inode_info *iinfo = UDF_I(inode); 215 loff_t isize = i_size_read(inode); 216 217 folio_fill_tail(folio, 0, iinfo->i_data + iinfo->i_lenEAttr, isize); 218 folio_mark_uptodate(folio); 219 } 220 221 static int udf_read_folio(struct file *file, struct folio *folio) 222 { 223 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 224 225 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 226 udf_adinicb_read_folio(folio); 227 folio_unlock(folio); 228 return 0; 229 } 230 return mpage_read_folio(folio, udf_get_block); 231 } 232 233 static void udf_readahead(struct readahead_control *rac) 234 { 235 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host); 236 237 /* 238 * No readahead needed for in-ICB files and udf_get_block() would get 239 * confused for such file anyway. 240 */ 241 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 242 return; 243 244 mpage_readahead(rac, udf_get_block); 245 } 246 247 static int udf_write_begin(struct file *file, struct address_space *mapping, 248 loff_t pos, unsigned len, 249 struct folio **foliop, void **fsdata) 250 { 251 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 252 struct folio *folio; 253 int ret; 254 255 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 256 ret = block_write_begin(mapping, pos, len, foliop, 257 udf_get_block); 258 if (unlikely(ret)) 259 udf_write_failed(mapping, pos + len); 260 return ret; 261 } 262 if (WARN_ON_ONCE(pos >= PAGE_SIZE)) 263 return -EIO; 264 folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN, 265 mapping_gfp_mask(mapping)); 266 if (IS_ERR(folio)) 267 return PTR_ERR(folio); 268 *foliop = folio; 269 if (!folio_test_uptodate(folio)) 270 udf_adinicb_read_folio(folio); 271 return 0; 272 } 273 274 static int udf_write_end(struct file *file, struct address_space *mapping, 275 loff_t pos, unsigned len, unsigned copied, 276 struct folio *folio, void *fsdata) 277 { 278 struct inode *inode = file_inode(file); 279 loff_t last_pos; 280 281 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 282 return generic_write_end(file, mapping, pos, len, copied, folio, 283 fsdata); 284 last_pos = pos + copied; 285 if (last_pos > inode->i_size) 286 i_size_write(inode, last_pos); 287 folio_mark_dirty(folio); 288 folio_unlock(folio); 289 folio_put(folio); 290 291 return copied; 292 } 293 294 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 295 { 296 struct file *file = iocb->ki_filp; 297 struct address_space *mapping = file->f_mapping; 298 struct inode *inode = mapping->host; 299 size_t count = iov_iter_count(iter); 300 ssize_t ret; 301 302 /* Fallback to buffered IO for in-ICB files */ 303 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 304 return 0; 305 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 306 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 307 udf_write_failed(mapping, iocb->ki_pos + count); 308 return ret; 309 } 310 311 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 312 { 313 struct udf_inode_info *iinfo = UDF_I(mapping->host); 314 315 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 316 return -EINVAL; 317 return generic_block_bmap(mapping, block, udf_get_block); 318 } 319 320 const struct address_space_operations udf_aops = { 321 .dirty_folio = block_dirty_folio, 322 .invalidate_folio = block_invalidate_folio, 323 .read_folio = udf_read_folio, 324 .readahead = udf_readahead, 325 .writepages = udf_writepages, 326 .write_begin = udf_write_begin, 327 .write_end = udf_write_end, 328 .direct_IO = udf_direct_IO, 329 .bmap = udf_bmap, 330 .migrate_folio = buffer_migrate_folio, 331 }; 332 333 /* 334 * Expand file stored in ICB to a normal one-block-file 335 * 336 * This function requires i_mutex held 337 */ 338 int udf_expand_file_adinicb(struct inode *inode) 339 { 340 struct folio *folio; 341 struct udf_inode_info *iinfo = UDF_I(inode); 342 int err; 343 344 WARN_ON_ONCE(!inode_is_locked(inode)); 345 if (!iinfo->i_lenAlloc) { 346 down_write(&iinfo->i_data_sem); 347 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 348 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 349 else 350 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 351 up_write(&iinfo->i_data_sem); 352 mark_inode_dirty(inode); 353 return 0; 354 } 355 356 folio = __filemap_get_folio(inode->i_mapping, 0, 357 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL); 358 if (IS_ERR(folio)) 359 return PTR_ERR(folio); 360 361 if (!folio_test_uptodate(folio)) 362 udf_adinicb_read_folio(folio); 363 down_write(&iinfo->i_data_sem); 364 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 365 iinfo->i_lenAlloc); 366 iinfo->i_lenAlloc = 0; 367 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 368 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 369 else 370 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 371 folio_mark_dirty(folio); 372 folio_unlock(folio); 373 up_write(&iinfo->i_data_sem); 374 err = filemap_fdatawrite(inode->i_mapping); 375 if (err) { 376 /* Restore everything back so that we don't lose data... */ 377 folio_lock(folio); 378 down_write(&iinfo->i_data_sem); 379 memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr, 380 folio, 0, inode->i_size); 381 folio_unlock(folio); 382 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 383 iinfo->i_lenAlloc = inode->i_size; 384 up_write(&iinfo->i_data_sem); 385 } 386 folio_put(folio); 387 mark_inode_dirty(inode); 388 389 return err; 390 } 391 392 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */ 393 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */ 394 395 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */ 396 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */ 397 398 struct udf_map_rq { 399 sector_t lblk; 400 udf_pblk_t pblk; 401 int iflags; /* UDF_MAP_ flags determining behavior */ 402 int oflags; /* UDF_BLK_ flags reporting results */ 403 }; 404 405 static int udf_map_block(struct inode *inode, struct udf_map_rq *map) 406 { 407 int ret; 408 struct udf_inode_info *iinfo = UDF_I(inode); 409 410 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)) 411 return -EFSCORRUPTED; 412 413 map->oflags = 0; 414 if (!(map->iflags & UDF_MAP_CREATE)) { 415 struct kernel_lb_addr eloc; 416 uint32_t elen; 417 sector_t offset; 418 struct extent_position epos = {}; 419 int8_t etype; 420 421 down_read(&iinfo->i_data_sem); 422 ret = inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset, 423 &etype); 424 if (ret < 0) 425 goto out_read; 426 if (ret > 0 && etype == (EXT_RECORDED_ALLOCATED >> 30)) { 427 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, 428 offset); 429 map->oflags |= UDF_BLK_MAPPED; 430 ret = 0; 431 } 432 out_read: 433 up_read(&iinfo->i_data_sem); 434 brelse(epos.bh); 435 436 return ret; 437 } 438 439 down_write(&iinfo->i_data_sem); 440 /* 441 * Block beyond EOF and prealloc extents? Just discard preallocation 442 * as it is not useful and complicates things. 443 */ 444 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents) 445 udf_discard_prealloc(inode); 446 udf_clear_extent_cache(inode); 447 ret = inode_getblk(inode, map); 448 up_write(&iinfo->i_data_sem); 449 return ret; 450 } 451 452 static int __udf_get_block(struct inode *inode, sector_t block, 453 struct buffer_head *bh_result, int flags) 454 { 455 int err; 456 struct udf_map_rq map = { 457 .lblk = block, 458 .iflags = flags, 459 }; 460 461 err = udf_map_block(inode, &map); 462 if (err < 0) 463 return err; 464 if (map.oflags & UDF_BLK_MAPPED) { 465 map_bh(bh_result, inode->i_sb, map.pblk); 466 if (map.oflags & UDF_BLK_NEW) 467 set_buffer_new(bh_result); 468 } 469 return 0; 470 } 471 472 int udf_get_block(struct inode *inode, sector_t block, 473 struct buffer_head *bh_result, int create) 474 { 475 int flags = create ? UDF_MAP_CREATE : 0; 476 477 /* 478 * We preallocate blocks only for regular files. It also makes sense 479 * for directories but there's a problem when to drop the 480 * preallocation. We might use some delayed work for that but I feel 481 * it's overengineering for a filesystem like UDF. 482 */ 483 if (!S_ISREG(inode->i_mode)) 484 flags |= UDF_MAP_NOPREALLOC; 485 return __udf_get_block(inode, block, bh_result, flags); 486 } 487 488 /* 489 * We shouldn't be allocating blocks on page writeback since we allocate them 490 * on page fault. We can spot dirty buffers without allocated blocks though 491 * when truncate expands file. These however don't have valid data so we can 492 * safely ignore them. So never allocate blocks from page writeback. 493 */ 494 static int udf_get_block_wb(struct inode *inode, sector_t block, 495 struct buffer_head *bh_result, int create) 496 { 497 return __udf_get_block(inode, block, bh_result, 0); 498 } 499 500 /* Extend the file with new blocks totaling 'new_block_bytes', 501 * return the number of extents added 502 */ 503 static int udf_do_extend_file(struct inode *inode, 504 struct extent_position *last_pos, 505 struct kernel_long_ad *last_ext, 506 loff_t new_block_bytes) 507 { 508 uint32_t add; 509 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 510 struct super_block *sb = inode->i_sb; 511 struct udf_inode_info *iinfo; 512 int err; 513 514 /* The previous extent is fake and we should not extend by anything 515 * - there's nothing to do... */ 516 if (!new_block_bytes && fake) 517 return 0; 518 519 iinfo = UDF_I(inode); 520 /* Round the last extent up to a multiple of block size */ 521 if (last_ext->extLength & (sb->s_blocksize - 1)) { 522 last_ext->extLength = 523 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 524 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 525 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 526 iinfo->i_lenExtents = 527 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 528 ~(sb->s_blocksize - 1); 529 } 530 531 add = 0; 532 /* Can we merge with the previous extent? */ 533 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 534 EXT_NOT_RECORDED_NOT_ALLOCATED) { 535 add = (1 << 30) - sb->s_blocksize - 536 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 537 if (add > new_block_bytes) 538 add = new_block_bytes; 539 new_block_bytes -= add; 540 last_ext->extLength += add; 541 } 542 543 if (fake) { 544 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 545 last_ext->extLength, 1); 546 if (err < 0) 547 goto out_err; 548 count++; 549 } else { 550 struct kernel_lb_addr tmploc; 551 uint32_t tmplen; 552 int8_t tmptype; 553 554 udf_write_aext(inode, last_pos, &last_ext->extLocation, 555 last_ext->extLength, 1); 556 557 /* 558 * We've rewritten the last extent. If we are going to add 559 * more extents, we may need to enter possible following 560 * empty indirect extent. 561 */ 562 if (new_block_bytes) { 563 err = udf_next_aext(inode, last_pos, &tmploc, &tmplen, 564 &tmptype, 0); 565 if (err < 0) 566 goto out_err; 567 } 568 } 569 iinfo->i_lenExtents += add; 570 571 /* Managed to do everything necessary? */ 572 if (!new_block_bytes) 573 goto out; 574 575 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 576 last_ext->extLocation.logicalBlockNum = 0; 577 last_ext->extLocation.partitionReferenceNum = 0; 578 add = (1 << 30) - sb->s_blocksize; 579 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 580 581 /* Create enough extents to cover the whole hole */ 582 while (new_block_bytes > add) { 583 new_block_bytes -= add; 584 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 585 last_ext->extLength, 1); 586 if (err) 587 goto out_err; 588 iinfo->i_lenExtents += add; 589 count++; 590 } 591 if (new_block_bytes) { 592 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 593 new_block_bytes; 594 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 595 last_ext->extLength, 1); 596 if (err) 597 goto out_err; 598 iinfo->i_lenExtents += new_block_bytes; 599 count++; 600 } 601 602 out: 603 /* last_pos should point to the last written extent... */ 604 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 605 last_pos->offset -= sizeof(struct short_ad); 606 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 607 last_pos->offset -= sizeof(struct long_ad); 608 else 609 return -EIO; 610 611 return count; 612 out_err: 613 /* Remove extents we've created so far */ 614 udf_clear_extent_cache(inode); 615 udf_truncate_extents(inode); 616 return err; 617 } 618 619 /* Extend the final block of the file to final_block_len bytes */ 620 static void udf_do_extend_final_block(struct inode *inode, 621 struct extent_position *last_pos, 622 struct kernel_long_ad *last_ext, 623 uint32_t new_elen) 624 { 625 uint32_t added_bytes; 626 627 /* 628 * Extent already large enough? It may be already rounded up to block 629 * size... 630 */ 631 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 632 return; 633 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 634 last_ext->extLength += added_bytes; 635 UDF_I(inode)->i_lenExtents += added_bytes; 636 637 udf_write_aext(inode, last_pos, &last_ext->extLocation, 638 last_ext->extLength, 1); 639 } 640 641 static int udf_extend_file(struct inode *inode, loff_t newsize) 642 { 643 644 struct extent_position epos; 645 struct kernel_lb_addr eloc; 646 uint32_t elen; 647 int8_t etype; 648 struct super_block *sb = inode->i_sb; 649 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 650 loff_t new_elen; 651 int adsize; 652 struct udf_inode_info *iinfo = UDF_I(inode); 653 struct kernel_long_ad extent; 654 int err = 0; 655 bool within_last_ext; 656 657 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 658 adsize = sizeof(struct short_ad); 659 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 660 adsize = sizeof(struct long_ad); 661 else 662 BUG(); 663 664 down_write(&iinfo->i_data_sem); 665 /* 666 * When creating hole in file, just don't bother with preserving 667 * preallocation. It likely won't be very useful anyway. 668 */ 669 udf_discard_prealloc(inode); 670 671 err = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset, &etype); 672 if (err < 0) 673 goto out; 674 within_last_ext = (err == 1); 675 /* We don't expect extents past EOF... */ 676 WARN_ON_ONCE(within_last_ext && 677 elen > ((loff_t)offset + 1) << inode->i_blkbits); 678 679 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 680 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 681 /* File has no extents at all or has empty last 682 * indirect extent! Create a fake extent... */ 683 extent.extLocation.logicalBlockNum = 0; 684 extent.extLocation.partitionReferenceNum = 0; 685 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 686 } else { 687 epos.offset -= adsize; 688 err = udf_next_aext(inode, &epos, &extent.extLocation, 689 &extent.extLength, &etype, 0); 690 if (err <= 0) 691 goto out; 692 extent.extLength |= etype << 30; 693 } 694 695 new_elen = ((loff_t)offset << inode->i_blkbits) | 696 (newsize & (sb->s_blocksize - 1)); 697 698 /* File has extent covering the new size (could happen when extending 699 * inside a block)? 700 */ 701 if (within_last_ext) { 702 /* Extending file within the last file block */ 703 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 704 } else { 705 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 706 } 707 708 if (err < 0) 709 goto out; 710 err = 0; 711 out: 712 brelse(epos.bh); 713 up_write(&iinfo->i_data_sem); 714 return err; 715 } 716 717 static int inode_getblk(struct inode *inode, struct udf_map_rq *map) 718 { 719 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 720 struct extent_position prev_epos, cur_epos, next_epos; 721 int count = 0, startnum = 0, endnum = 0; 722 uint32_t elen = 0, tmpelen; 723 struct kernel_lb_addr eloc, tmpeloc; 724 int c = 1; 725 loff_t lbcount = 0, b_off = 0; 726 udf_pblk_t newblocknum; 727 sector_t offset = 0; 728 int8_t etype, tmpetype; 729 struct udf_inode_info *iinfo = UDF_I(inode); 730 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 731 int lastblock = 0; 732 bool isBeyondEOF = false; 733 int ret = 0; 734 735 prev_epos.offset = udf_file_entry_alloc_offset(inode); 736 prev_epos.block = iinfo->i_location; 737 prev_epos.bh = NULL; 738 cur_epos = next_epos = prev_epos; 739 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits; 740 741 /* find the extent which contains the block we are looking for. 742 alternate between laarr[0] and laarr[1] for locations of the 743 current extent, and the previous extent */ 744 do { 745 if (prev_epos.bh != cur_epos.bh) { 746 brelse(prev_epos.bh); 747 get_bh(cur_epos.bh); 748 prev_epos.bh = cur_epos.bh; 749 } 750 if (cur_epos.bh != next_epos.bh) { 751 brelse(cur_epos.bh); 752 get_bh(next_epos.bh); 753 cur_epos.bh = next_epos.bh; 754 } 755 756 lbcount += elen; 757 758 prev_epos.block = cur_epos.block; 759 cur_epos.block = next_epos.block; 760 761 prev_epos.offset = cur_epos.offset; 762 cur_epos.offset = next_epos.offset; 763 764 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 1); 765 if (ret < 0) { 766 goto out_free; 767 } else if (ret == 0) { 768 isBeyondEOF = true; 769 break; 770 } 771 772 c = !c; 773 774 laarr[c].extLength = (etype << 30) | elen; 775 laarr[c].extLocation = eloc; 776 777 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 778 pgoal = eloc.logicalBlockNum + 779 ((elen + inode->i_sb->s_blocksize - 1) >> 780 inode->i_sb->s_blocksize_bits); 781 782 count++; 783 } while (lbcount + elen <= b_off); 784 785 b_off -= lbcount; 786 offset = b_off >> inode->i_sb->s_blocksize_bits; 787 /* 788 * Move prev_epos and cur_epos into indirect extent if we are at 789 * the pointer to it 790 */ 791 ret = udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, &tmpetype, 0); 792 if (ret < 0) 793 goto out_free; 794 ret = udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, &tmpetype, 0); 795 if (ret < 0) 796 goto out_free; 797 798 /* if the extent is allocated and recorded, return the block 799 if the extent is not a multiple of the blocksize, round up */ 800 801 if (!isBeyondEOF && etype == (EXT_RECORDED_ALLOCATED >> 30)) { 802 if (elen & (inode->i_sb->s_blocksize - 1)) { 803 elen = EXT_RECORDED_ALLOCATED | 804 ((elen + inode->i_sb->s_blocksize - 1) & 805 ~(inode->i_sb->s_blocksize - 1)); 806 iinfo->i_lenExtents = 807 ALIGN(iinfo->i_lenExtents, 808 inode->i_sb->s_blocksize); 809 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 810 } 811 map->oflags = UDF_BLK_MAPPED; 812 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 813 ret = 0; 814 goto out_free; 815 } 816 817 /* Are we beyond EOF and preallocated extent? */ 818 if (isBeyondEOF) { 819 loff_t hole_len; 820 821 if (count) { 822 if (c) 823 laarr[0] = laarr[1]; 824 startnum = 1; 825 } else { 826 /* Create a fake extent when there's not one */ 827 memset(&laarr[0].extLocation, 0x00, 828 sizeof(struct kernel_lb_addr)); 829 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 830 /* Will udf_do_extend_file() create real extent from 831 a fake one? */ 832 startnum = (offset > 0); 833 } 834 /* Create extents for the hole between EOF and offset */ 835 hole_len = (loff_t)offset << inode->i_blkbits; 836 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 837 if (ret < 0) 838 goto out_free; 839 c = 0; 840 offset = 0; 841 count += ret; 842 /* 843 * Is there any real extent? - otherwise we overwrite the fake 844 * one... 845 */ 846 if (count) 847 c = !c; 848 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 849 inode->i_sb->s_blocksize; 850 memset(&laarr[c].extLocation, 0x00, 851 sizeof(struct kernel_lb_addr)); 852 count++; 853 endnum = c + 1; 854 lastblock = 1; 855 } else { 856 endnum = startnum = ((count > 2) ? 2 : count); 857 858 /* if the current extent is in position 0, 859 swap it with the previous */ 860 if (!c && count != 1) { 861 laarr[2] = laarr[0]; 862 laarr[0] = laarr[1]; 863 laarr[1] = laarr[2]; 864 c = 1; 865 } 866 867 /* if the current block is located in an extent, 868 read the next extent */ 869 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 0); 870 if (ret > 0) { 871 laarr[c + 1].extLength = (etype << 30) | elen; 872 laarr[c + 1].extLocation = eloc; 873 count++; 874 startnum++; 875 endnum++; 876 } else if (ret == 0) 877 lastblock = 1; 878 else 879 goto out_free; 880 } 881 882 /* if the current extent is not recorded but allocated, get the 883 * block in the extent corresponding to the requested block */ 884 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 885 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 886 else { /* otherwise, allocate a new block */ 887 if (iinfo->i_next_alloc_block == map->lblk) 888 goal = iinfo->i_next_alloc_goal; 889 890 if (!goal) { 891 if (!(goal = pgoal)) /* XXX: what was intended here? */ 892 goal = iinfo->i_location.logicalBlockNum + 1; 893 } 894 895 newblocknum = udf_new_block(inode->i_sb, inode, 896 iinfo->i_location.partitionReferenceNum, 897 goal, &ret); 898 if (!newblocknum) 899 goto out_free; 900 if (isBeyondEOF) 901 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 902 } 903 904 /* if the extent the requsted block is located in contains multiple 905 * blocks, split the extent into at most three extents. blocks prior 906 * to requested block, requested block, and blocks after requested 907 * block */ 908 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 909 910 if (!(map->iflags & UDF_MAP_NOPREALLOC)) 911 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 912 913 /* merge any continuous blocks in laarr */ 914 udf_merge_extents(inode, laarr, &endnum); 915 916 /* write back the new extents, inserting new extents if the new number 917 * of extents is greater than the old number, and deleting extents if 918 * the new number of extents is less than the old number */ 919 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 920 if (ret < 0) 921 goto out_free; 922 923 map->pblk = udf_get_pblock(inode->i_sb, newblocknum, 924 iinfo->i_location.partitionReferenceNum, 0); 925 if (!map->pblk) { 926 ret = -EFSCORRUPTED; 927 goto out_free; 928 } 929 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED; 930 iinfo->i_next_alloc_block = map->lblk + 1; 931 iinfo->i_next_alloc_goal = newblocknum + 1; 932 inode_set_ctime_current(inode); 933 934 if (IS_SYNC(inode)) 935 udf_sync_inode(inode); 936 else 937 mark_inode_dirty(inode); 938 ret = 0; 939 out_free: 940 brelse(prev_epos.bh); 941 brelse(cur_epos.bh); 942 brelse(next_epos.bh); 943 return ret; 944 } 945 946 static void udf_split_extents(struct inode *inode, int *c, int offset, 947 udf_pblk_t newblocknum, 948 struct kernel_long_ad *laarr, int *endnum) 949 { 950 unsigned long blocksize = inode->i_sb->s_blocksize; 951 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 952 953 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 954 (laarr[*c].extLength >> 30) == 955 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 956 int curr = *c; 957 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 958 blocksize - 1) >> blocksize_bits; 959 int8_t etype = (laarr[curr].extLength >> 30); 960 961 if (blen == 1) 962 ; 963 else if (!offset || blen == offset + 1) { 964 laarr[curr + 2] = laarr[curr + 1]; 965 laarr[curr + 1] = laarr[curr]; 966 } else { 967 laarr[curr + 3] = laarr[curr + 1]; 968 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 969 } 970 971 if (offset) { 972 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 973 udf_free_blocks(inode->i_sb, inode, 974 &laarr[curr].extLocation, 975 0, offset); 976 laarr[curr].extLength = 977 EXT_NOT_RECORDED_NOT_ALLOCATED | 978 (offset << blocksize_bits); 979 laarr[curr].extLocation.logicalBlockNum = 0; 980 laarr[curr].extLocation. 981 partitionReferenceNum = 0; 982 } else 983 laarr[curr].extLength = (etype << 30) | 984 (offset << blocksize_bits); 985 curr++; 986 (*c)++; 987 (*endnum)++; 988 } 989 990 laarr[curr].extLocation.logicalBlockNum = newblocknum; 991 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 992 laarr[curr].extLocation.partitionReferenceNum = 993 UDF_I(inode)->i_location.partitionReferenceNum; 994 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 995 blocksize; 996 curr++; 997 998 if (blen != offset + 1) { 999 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 1000 laarr[curr].extLocation.logicalBlockNum += 1001 offset + 1; 1002 laarr[curr].extLength = (etype << 30) | 1003 ((blen - (offset + 1)) << blocksize_bits); 1004 curr++; 1005 (*endnum)++; 1006 } 1007 } 1008 } 1009 1010 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 1011 struct kernel_long_ad *laarr, 1012 int *endnum) 1013 { 1014 int start, length = 0, currlength = 0, i; 1015 1016 if (*endnum >= (c + 1)) { 1017 if (!lastblock) 1018 return; 1019 else 1020 start = c; 1021 } else { 1022 if ((laarr[c + 1].extLength >> 30) == 1023 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1024 start = c + 1; 1025 length = currlength = 1026 (((laarr[c + 1].extLength & 1027 UDF_EXTENT_LENGTH_MASK) + 1028 inode->i_sb->s_blocksize - 1) >> 1029 inode->i_sb->s_blocksize_bits); 1030 } else 1031 start = c; 1032 } 1033 1034 for (i = start + 1; i <= *endnum; i++) { 1035 if (i == *endnum) { 1036 if (lastblock) 1037 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1038 } else if ((laarr[i].extLength >> 30) == 1039 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1040 length += (((laarr[i].extLength & 1041 UDF_EXTENT_LENGTH_MASK) + 1042 inode->i_sb->s_blocksize - 1) >> 1043 inode->i_sb->s_blocksize_bits); 1044 } else 1045 break; 1046 } 1047 1048 if (length) { 1049 int next = laarr[start].extLocation.logicalBlockNum + 1050 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1051 inode->i_sb->s_blocksize - 1) >> 1052 inode->i_sb->s_blocksize_bits); 1053 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1054 laarr[start].extLocation.partitionReferenceNum, 1055 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1056 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1057 currlength); 1058 if (numalloc) { 1059 if (start == (c + 1)) 1060 laarr[start].extLength += 1061 (numalloc << 1062 inode->i_sb->s_blocksize_bits); 1063 else { 1064 memmove(&laarr[c + 2], &laarr[c + 1], 1065 sizeof(struct long_ad) * (*endnum - (c + 1))); 1066 (*endnum)++; 1067 laarr[c + 1].extLocation.logicalBlockNum = next; 1068 laarr[c + 1].extLocation.partitionReferenceNum = 1069 laarr[c].extLocation. 1070 partitionReferenceNum; 1071 laarr[c + 1].extLength = 1072 EXT_NOT_RECORDED_ALLOCATED | 1073 (numalloc << 1074 inode->i_sb->s_blocksize_bits); 1075 start = c + 1; 1076 } 1077 1078 for (i = start + 1; numalloc && i < *endnum; i++) { 1079 int elen = ((laarr[i].extLength & 1080 UDF_EXTENT_LENGTH_MASK) + 1081 inode->i_sb->s_blocksize - 1) >> 1082 inode->i_sb->s_blocksize_bits; 1083 1084 if (elen > numalloc) { 1085 laarr[i].extLength -= 1086 (numalloc << 1087 inode->i_sb->s_blocksize_bits); 1088 numalloc = 0; 1089 } else { 1090 numalloc -= elen; 1091 if (*endnum > (i + 1)) 1092 memmove(&laarr[i], 1093 &laarr[i + 1], 1094 sizeof(struct long_ad) * 1095 (*endnum - (i + 1))); 1096 i--; 1097 (*endnum)--; 1098 } 1099 } 1100 UDF_I(inode)->i_lenExtents += 1101 numalloc << inode->i_sb->s_blocksize_bits; 1102 } 1103 } 1104 } 1105 1106 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1107 int *endnum) 1108 { 1109 int i; 1110 unsigned long blocksize = inode->i_sb->s_blocksize; 1111 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1112 1113 for (i = 0; i < (*endnum - 1); i++) { 1114 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1115 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1116 1117 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1118 (((li->extLength >> 30) == 1119 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1120 ((lip1->extLocation.logicalBlockNum - 1121 li->extLocation.logicalBlockNum) == 1122 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1123 blocksize - 1) >> blocksize_bits)))) { 1124 1125 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1126 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1127 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) { 1128 li->extLength = lip1->extLength + 1129 (((li->extLength & 1130 UDF_EXTENT_LENGTH_MASK) + 1131 blocksize - 1) & ~(blocksize - 1)); 1132 if (*endnum > (i + 2)) 1133 memmove(&laarr[i + 1], &laarr[i + 2], 1134 sizeof(struct long_ad) * 1135 (*endnum - (i + 2))); 1136 i--; 1137 (*endnum)--; 1138 } 1139 } else if (((li->extLength >> 30) == 1140 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1141 ((lip1->extLength >> 30) == 1142 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1143 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1144 ((li->extLength & 1145 UDF_EXTENT_LENGTH_MASK) + 1146 blocksize - 1) >> blocksize_bits); 1147 li->extLocation.logicalBlockNum = 0; 1148 li->extLocation.partitionReferenceNum = 0; 1149 1150 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1151 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1152 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1153 lip1->extLength = (lip1->extLength - 1154 (li->extLength & 1155 UDF_EXTENT_LENGTH_MASK) + 1156 UDF_EXTENT_LENGTH_MASK) & 1157 ~(blocksize - 1); 1158 li->extLength = (li->extLength & 1159 UDF_EXTENT_FLAG_MASK) + 1160 (UDF_EXTENT_LENGTH_MASK + 1) - 1161 blocksize; 1162 } else { 1163 li->extLength = lip1->extLength + 1164 (((li->extLength & 1165 UDF_EXTENT_LENGTH_MASK) + 1166 blocksize - 1) & ~(blocksize - 1)); 1167 if (*endnum > (i + 2)) 1168 memmove(&laarr[i + 1], &laarr[i + 2], 1169 sizeof(struct long_ad) * 1170 (*endnum - (i + 2))); 1171 i--; 1172 (*endnum)--; 1173 } 1174 } else if ((li->extLength >> 30) == 1175 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1176 udf_free_blocks(inode->i_sb, inode, 1177 &li->extLocation, 0, 1178 ((li->extLength & 1179 UDF_EXTENT_LENGTH_MASK) + 1180 blocksize - 1) >> blocksize_bits); 1181 li->extLocation.logicalBlockNum = 0; 1182 li->extLocation.partitionReferenceNum = 0; 1183 li->extLength = (li->extLength & 1184 UDF_EXTENT_LENGTH_MASK) | 1185 EXT_NOT_RECORDED_NOT_ALLOCATED; 1186 } 1187 } 1188 } 1189 1190 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1191 int startnum, int endnum, 1192 struct extent_position *epos) 1193 { 1194 int start = 0, i; 1195 struct kernel_lb_addr tmploc; 1196 uint32_t tmplen; 1197 int8_t tmpetype; 1198 int err; 1199 1200 if (startnum > endnum) { 1201 for (i = 0; i < (startnum - endnum); i++) 1202 udf_delete_aext(inode, *epos); 1203 } else if (startnum < endnum) { 1204 for (i = 0; i < (endnum - startnum); i++) { 1205 err = udf_insert_aext(inode, *epos, 1206 laarr[i].extLocation, 1207 laarr[i].extLength); 1208 /* 1209 * If we fail here, we are likely corrupting the extent 1210 * list and leaking blocks. At least stop early to 1211 * limit the damage. 1212 */ 1213 if (err < 0) 1214 return err; 1215 err = udf_next_aext(inode, epos, &laarr[i].extLocation, 1216 &laarr[i].extLength, &tmpetype, 1); 1217 if (err < 0) 1218 return err; 1219 start++; 1220 } 1221 } 1222 1223 for (i = start; i < endnum; i++) { 1224 err = udf_next_aext(inode, epos, &tmploc, &tmplen, &tmpetype, 0); 1225 if (err < 0) 1226 return err; 1227 1228 udf_write_aext(inode, epos, &laarr[i].extLocation, 1229 laarr[i].extLength, 1); 1230 } 1231 return 0; 1232 } 1233 1234 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1235 int create, int *err) 1236 { 1237 struct buffer_head *bh = NULL; 1238 struct udf_map_rq map = { 1239 .lblk = block, 1240 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0), 1241 }; 1242 1243 *err = udf_map_block(inode, &map); 1244 if (*err || !(map.oflags & UDF_BLK_MAPPED)) 1245 return NULL; 1246 1247 bh = sb_getblk(inode->i_sb, map.pblk); 1248 if (!bh) { 1249 *err = -ENOMEM; 1250 return NULL; 1251 } 1252 if (map.oflags & UDF_BLK_NEW) { 1253 lock_buffer(bh); 1254 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1255 set_buffer_uptodate(bh); 1256 unlock_buffer(bh); 1257 mark_buffer_dirty_inode(bh, inode); 1258 return bh; 1259 } 1260 1261 if (bh_read(bh, 0) >= 0) 1262 return bh; 1263 1264 brelse(bh); 1265 *err = -EIO; 1266 return NULL; 1267 } 1268 1269 int udf_setsize(struct inode *inode, loff_t newsize) 1270 { 1271 int err = 0; 1272 struct udf_inode_info *iinfo; 1273 unsigned int bsize = i_blocksize(inode); 1274 1275 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1276 S_ISLNK(inode->i_mode))) 1277 return -EINVAL; 1278 1279 iinfo = UDF_I(inode); 1280 if (newsize > inode->i_size) { 1281 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1282 if (bsize >= 1283 (udf_file_entry_alloc_offset(inode) + newsize)) { 1284 down_write(&iinfo->i_data_sem); 1285 iinfo->i_lenAlloc = newsize; 1286 up_write(&iinfo->i_data_sem); 1287 goto set_size; 1288 } 1289 err = udf_expand_file_adinicb(inode); 1290 if (err) 1291 return err; 1292 } 1293 err = udf_extend_file(inode, newsize); 1294 if (err) 1295 return err; 1296 set_size: 1297 truncate_setsize(inode, newsize); 1298 } else { 1299 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1300 down_write(&iinfo->i_data_sem); 1301 udf_clear_extent_cache(inode); 1302 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1303 0x00, bsize - newsize - 1304 udf_file_entry_alloc_offset(inode)); 1305 iinfo->i_lenAlloc = newsize; 1306 truncate_setsize(inode, newsize); 1307 up_write(&iinfo->i_data_sem); 1308 goto update_time; 1309 } 1310 err = block_truncate_page(inode->i_mapping, newsize, 1311 udf_get_block); 1312 if (err) 1313 return err; 1314 truncate_setsize(inode, newsize); 1315 down_write(&iinfo->i_data_sem); 1316 udf_clear_extent_cache(inode); 1317 err = udf_truncate_extents(inode); 1318 up_write(&iinfo->i_data_sem); 1319 if (err) 1320 return err; 1321 } 1322 update_time: 1323 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1324 if (IS_SYNC(inode)) 1325 udf_sync_inode(inode); 1326 else 1327 mark_inode_dirty(inode); 1328 return err; 1329 } 1330 1331 /* 1332 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1333 * arbitrary - just that we hopefully don't limit any real use of rewritten 1334 * inode on write-once media but avoid looping for too long on corrupted media. 1335 */ 1336 #define UDF_MAX_ICB_NESTING 1024 1337 1338 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1339 { 1340 struct buffer_head *bh = NULL; 1341 struct fileEntry *fe; 1342 struct extendedFileEntry *efe; 1343 uint16_t ident; 1344 struct udf_inode_info *iinfo = UDF_I(inode); 1345 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1346 struct kernel_lb_addr *iloc = &iinfo->i_location; 1347 unsigned int link_count; 1348 unsigned int indirections = 0; 1349 int bs = inode->i_sb->s_blocksize; 1350 int ret = -EIO; 1351 uint32_t uid, gid; 1352 struct timespec64 ts; 1353 1354 reread: 1355 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1356 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1357 iloc->partitionReferenceNum, sbi->s_partitions); 1358 return -EIO; 1359 } 1360 1361 if (iloc->logicalBlockNum >= 1362 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1363 udf_debug("block=%u, partition=%u out of range\n", 1364 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1365 return -EIO; 1366 } 1367 1368 /* 1369 * Set defaults, but the inode is still incomplete! 1370 * Note: get_new_inode() sets the following on a new inode: 1371 * i_sb = sb 1372 * i_no = ino 1373 * i_flags = sb->s_flags 1374 * i_state = 0 1375 * clean_inode(): zero fills and sets 1376 * i_count = 1 1377 * i_nlink = 1 1378 * i_op = NULL; 1379 */ 1380 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1381 if (!bh) { 1382 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1383 return -EIO; 1384 } 1385 1386 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1387 ident != TAG_IDENT_USE) { 1388 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1389 inode->i_ino, ident); 1390 goto out; 1391 } 1392 1393 fe = (struct fileEntry *)bh->b_data; 1394 efe = (struct extendedFileEntry *)bh->b_data; 1395 1396 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1397 struct buffer_head *ibh; 1398 1399 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1400 if (ident == TAG_IDENT_IE && ibh) { 1401 struct kernel_lb_addr loc; 1402 struct indirectEntry *ie; 1403 1404 ie = (struct indirectEntry *)ibh->b_data; 1405 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1406 1407 if (ie->indirectICB.extLength) { 1408 brelse(ibh); 1409 memcpy(&iinfo->i_location, &loc, 1410 sizeof(struct kernel_lb_addr)); 1411 if (++indirections > UDF_MAX_ICB_NESTING) { 1412 udf_err(inode->i_sb, 1413 "too many ICBs in ICB hierarchy" 1414 " (max %d supported)\n", 1415 UDF_MAX_ICB_NESTING); 1416 goto out; 1417 } 1418 brelse(bh); 1419 goto reread; 1420 } 1421 } 1422 brelse(ibh); 1423 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1424 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1425 le16_to_cpu(fe->icbTag.strategyType)); 1426 goto out; 1427 } 1428 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1429 iinfo->i_strat4096 = 0; 1430 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1431 iinfo->i_strat4096 = 1; 1432 1433 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1434 ICBTAG_FLAG_AD_MASK; 1435 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1436 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1437 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1438 ret = -EIO; 1439 goto out; 1440 } 1441 iinfo->i_hidden = hidden_inode; 1442 iinfo->i_unique = 0; 1443 iinfo->i_lenEAttr = 0; 1444 iinfo->i_lenExtents = 0; 1445 iinfo->i_lenAlloc = 0; 1446 iinfo->i_next_alloc_block = 0; 1447 iinfo->i_next_alloc_goal = 0; 1448 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1449 iinfo->i_efe = 1; 1450 iinfo->i_use = 0; 1451 ret = udf_alloc_i_data(inode, bs - 1452 sizeof(struct extendedFileEntry)); 1453 if (ret) 1454 goto out; 1455 memcpy(iinfo->i_data, 1456 bh->b_data + sizeof(struct extendedFileEntry), 1457 bs - sizeof(struct extendedFileEntry)); 1458 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1459 iinfo->i_efe = 0; 1460 iinfo->i_use = 0; 1461 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1462 if (ret) 1463 goto out; 1464 memcpy(iinfo->i_data, 1465 bh->b_data + sizeof(struct fileEntry), 1466 bs - sizeof(struct fileEntry)); 1467 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1468 iinfo->i_efe = 0; 1469 iinfo->i_use = 1; 1470 iinfo->i_lenAlloc = le32_to_cpu( 1471 ((struct unallocSpaceEntry *)bh->b_data)-> 1472 lengthAllocDescs); 1473 ret = udf_alloc_i_data(inode, bs - 1474 sizeof(struct unallocSpaceEntry)); 1475 if (ret) 1476 goto out; 1477 memcpy(iinfo->i_data, 1478 bh->b_data + sizeof(struct unallocSpaceEntry), 1479 bs - sizeof(struct unallocSpaceEntry)); 1480 return 0; 1481 } 1482 1483 ret = -EIO; 1484 read_lock(&sbi->s_cred_lock); 1485 uid = le32_to_cpu(fe->uid); 1486 if (uid == UDF_INVALID_ID || 1487 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1488 inode->i_uid = sbi->s_uid; 1489 else 1490 i_uid_write(inode, uid); 1491 1492 gid = le32_to_cpu(fe->gid); 1493 if (gid == UDF_INVALID_ID || 1494 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1495 inode->i_gid = sbi->s_gid; 1496 else 1497 i_gid_write(inode, gid); 1498 1499 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1500 sbi->s_fmode != UDF_INVALID_MODE) 1501 inode->i_mode = sbi->s_fmode; 1502 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1503 sbi->s_dmode != UDF_INVALID_MODE) 1504 inode->i_mode = sbi->s_dmode; 1505 else 1506 inode->i_mode = udf_convert_permissions(fe); 1507 inode->i_mode &= ~sbi->s_umask; 1508 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1509 1510 read_unlock(&sbi->s_cred_lock); 1511 1512 link_count = le16_to_cpu(fe->fileLinkCount); 1513 if (!link_count) { 1514 if (!hidden_inode) { 1515 ret = -ESTALE; 1516 goto out; 1517 } 1518 link_count = 1; 1519 } 1520 set_nlink(inode, link_count); 1521 1522 inode->i_size = le64_to_cpu(fe->informationLength); 1523 iinfo->i_lenExtents = inode->i_size; 1524 1525 if (iinfo->i_efe == 0) { 1526 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1527 (inode->i_sb->s_blocksize_bits - 9); 1528 1529 udf_disk_stamp_to_time(&ts, fe->accessTime); 1530 inode_set_atime_to_ts(inode, ts); 1531 udf_disk_stamp_to_time(&ts, fe->modificationTime); 1532 inode_set_mtime_to_ts(inode, ts); 1533 udf_disk_stamp_to_time(&ts, fe->attrTime); 1534 inode_set_ctime_to_ts(inode, ts); 1535 1536 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1537 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1538 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1539 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1540 iinfo->i_streamdir = 0; 1541 iinfo->i_lenStreams = 0; 1542 } else { 1543 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1544 (inode->i_sb->s_blocksize_bits - 9); 1545 1546 udf_disk_stamp_to_time(&ts, efe->accessTime); 1547 inode_set_atime_to_ts(inode, ts); 1548 udf_disk_stamp_to_time(&ts, efe->modificationTime); 1549 inode_set_mtime_to_ts(inode, ts); 1550 udf_disk_stamp_to_time(&ts, efe->attrTime); 1551 inode_set_ctime_to_ts(inode, ts); 1552 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1553 1554 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1555 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1556 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1557 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1558 1559 /* Named streams */ 1560 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1561 iinfo->i_locStreamdir = 1562 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1563 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1564 if (iinfo->i_lenStreams >= inode->i_size) 1565 iinfo->i_lenStreams -= inode->i_size; 1566 else 1567 iinfo->i_lenStreams = 0; 1568 } 1569 inode->i_generation = iinfo->i_unique; 1570 1571 /* 1572 * Sanity check length of allocation descriptors and extended attrs to 1573 * avoid integer overflows 1574 */ 1575 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1576 goto out; 1577 /* Now do exact checks */ 1578 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1579 goto out; 1580 /* Sanity checks for files in ICB so that we don't get confused later */ 1581 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1582 /* 1583 * For file in ICB data is stored in allocation descriptor 1584 * so sizes should match 1585 */ 1586 if (iinfo->i_lenAlloc != inode->i_size) 1587 goto out; 1588 /* File in ICB has to fit in there... */ 1589 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1590 goto out; 1591 } 1592 1593 switch (fe->icbTag.fileType) { 1594 case ICBTAG_FILE_TYPE_DIRECTORY: 1595 inode->i_op = &udf_dir_inode_operations; 1596 inode->i_fop = &udf_dir_operations; 1597 inode->i_mode |= S_IFDIR; 1598 inc_nlink(inode); 1599 break; 1600 case ICBTAG_FILE_TYPE_REALTIME: 1601 case ICBTAG_FILE_TYPE_REGULAR: 1602 case ICBTAG_FILE_TYPE_UNDEF: 1603 case ICBTAG_FILE_TYPE_VAT20: 1604 inode->i_data.a_ops = &udf_aops; 1605 inode->i_op = &udf_file_inode_operations; 1606 inode->i_fop = &udf_file_operations; 1607 inode->i_mode |= S_IFREG; 1608 break; 1609 case ICBTAG_FILE_TYPE_BLOCK: 1610 inode->i_mode |= S_IFBLK; 1611 break; 1612 case ICBTAG_FILE_TYPE_CHAR: 1613 inode->i_mode |= S_IFCHR; 1614 break; 1615 case ICBTAG_FILE_TYPE_FIFO: 1616 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1617 break; 1618 case ICBTAG_FILE_TYPE_SOCKET: 1619 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1620 break; 1621 case ICBTAG_FILE_TYPE_SYMLINK: 1622 inode->i_data.a_ops = &udf_symlink_aops; 1623 inode->i_op = &udf_symlink_inode_operations; 1624 inode_nohighmem(inode); 1625 inode->i_mode = S_IFLNK | 0777; 1626 break; 1627 case ICBTAG_FILE_TYPE_MAIN: 1628 udf_debug("METADATA FILE-----\n"); 1629 break; 1630 case ICBTAG_FILE_TYPE_MIRROR: 1631 udf_debug("METADATA MIRROR FILE-----\n"); 1632 break; 1633 case ICBTAG_FILE_TYPE_BITMAP: 1634 udf_debug("METADATA BITMAP FILE-----\n"); 1635 break; 1636 default: 1637 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1638 inode->i_ino, fe->icbTag.fileType); 1639 goto out; 1640 } 1641 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1642 struct deviceSpec *dsea = 1643 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1644 if (dsea) { 1645 init_special_inode(inode, inode->i_mode, 1646 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1647 le32_to_cpu(dsea->minorDeviceIdent))); 1648 /* Developer ID ??? */ 1649 } else 1650 goto out; 1651 } 1652 ret = 0; 1653 out: 1654 brelse(bh); 1655 return ret; 1656 } 1657 1658 static int udf_alloc_i_data(struct inode *inode, size_t size) 1659 { 1660 struct udf_inode_info *iinfo = UDF_I(inode); 1661 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1662 if (!iinfo->i_data) 1663 return -ENOMEM; 1664 return 0; 1665 } 1666 1667 static umode_t udf_convert_permissions(struct fileEntry *fe) 1668 { 1669 umode_t mode; 1670 uint32_t permissions; 1671 uint32_t flags; 1672 1673 permissions = le32_to_cpu(fe->permissions); 1674 flags = le16_to_cpu(fe->icbTag.flags); 1675 1676 mode = ((permissions) & 0007) | 1677 ((permissions >> 2) & 0070) | 1678 ((permissions >> 4) & 0700) | 1679 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1680 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1681 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1682 1683 return mode; 1684 } 1685 1686 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1687 { 1688 struct udf_inode_info *iinfo = UDF_I(inode); 1689 1690 /* 1691 * UDF 2.01 sec. 3.3.3.3 Note 2: 1692 * In Unix, delete permission tracks write 1693 */ 1694 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1695 if (mode & 0200) 1696 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1697 if (mode & 0020) 1698 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1699 if (mode & 0002) 1700 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1701 } 1702 1703 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1704 { 1705 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1706 } 1707 1708 static int udf_sync_inode(struct inode *inode) 1709 { 1710 return udf_update_inode(inode, 1); 1711 } 1712 1713 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1714 { 1715 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1716 (iinfo->i_crtime.tv_sec == time.tv_sec && 1717 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1718 iinfo->i_crtime = time; 1719 } 1720 1721 static int udf_update_inode(struct inode *inode, int do_sync) 1722 { 1723 struct buffer_head *bh = NULL; 1724 struct fileEntry *fe; 1725 struct extendedFileEntry *efe; 1726 uint64_t lb_recorded; 1727 uint32_t udfperms; 1728 uint16_t icbflags; 1729 uint16_t crclen; 1730 int err = 0; 1731 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1732 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1733 struct udf_inode_info *iinfo = UDF_I(inode); 1734 1735 bh = sb_getblk(inode->i_sb, 1736 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1737 if (!bh) { 1738 udf_debug("getblk failure\n"); 1739 return -EIO; 1740 } 1741 1742 lock_buffer(bh); 1743 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1744 fe = (struct fileEntry *)bh->b_data; 1745 efe = (struct extendedFileEntry *)bh->b_data; 1746 1747 if (iinfo->i_use) { 1748 struct unallocSpaceEntry *use = 1749 (struct unallocSpaceEntry *)bh->b_data; 1750 1751 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1752 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1753 iinfo->i_data, inode->i_sb->s_blocksize - 1754 sizeof(struct unallocSpaceEntry)); 1755 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1756 crclen = sizeof(struct unallocSpaceEntry); 1757 1758 goto finish; 1759 } 1760 1761 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1762 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1763 else 1764 fe->uid = cpu_to_le32(i_uid_read(inode)); 1765 1766 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1767 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1768 else 1769 fe->gid = cpu_to_le32(i_gid_read(inode)); 1770 1771 udfperms = ((inode->i_mode & 0007)) | 1772 ((inode->i_mode & 0070) << 2) | 1773 ((inode->i_mode & 0700) << 4); 1774 1775 udfperms |= iinfo->i_extraPerms; 1776 fe->permissions = cpu_to_le32(udfperms); 1777 1778 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1779 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1780 else { 1781 if (iinfo->i_hidden) 1782 fe->fileLinkCount = cpu_to_le16(0); 1783 else 1784 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1785 } 1786 1787 fe->informationLength = cpu_to_le64(inode->i_size); 1788 1789 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1790 struct regid *eid; 1791 struct deviceSpec *dsea = 1792 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1793 if (!dsea) { 1794 dsea = (struct deviceSpec *) 1795 udf_add_extendedattr(inode, 1796 sizeof(struct deviceSpec) + 1797 sizeof(struct regid), 12, 0x3); 1798 dsea->attrType = cpu_to_le32(12); 1799 dsea->attrSubtype = 1; 1800 dsea->attrLength = cpu_to_le32( 1801 sizeof(struct deviceSpec) + 1802 sizeof(struct regid)); 1803 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1804 } 1805 eid = (struct regid *)dsea->impUse; 1806 memset(eid, 0, sizeof(*eid)); 1807 strcpy(eid->ident, UDF_ID_DEVELOPER); 1808 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1809 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1810 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1811 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1812 } 1813 1814 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1815 lb_recorded = 0; /* No extents => no blocks! */ 1816 else 1817 lb_recorded = 1818 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1819 (blocksize_bits - 9); 1820 1821 if (iinfo->i_efe == 0) { 1822 memcpy(bh->b_data + sizeof(struct fileEntry), 1823 iinfo->i_data, 1824 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1825 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1826 1827 udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode)); 1828 udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode)); 1829 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode)); 1830 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1831 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1832 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1833 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1834 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1835 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1836 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1837 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1838 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1839 crclen = sizeof(struct fileEntry); 1840 } else { 1841 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1842 iinfo->i_data, 1843 inode->i_sb->s_blocksize - 1844 sizeof(struct extendedFileEntry)); 1845 efe->objectSize = 1846 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1847 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1848 1849 if (iinfo->i_streamdir) { 1850 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1851 1852 icb_lad->extLocation = 1853 cpu_to_lelb(iinfo->i_locStreamdir); 1854 icb_lad->extLength = 1855 cpu_to_le32(inode->i_sb->s_blocksize); 1856 } 1857 1858 udf_adjust_time(iinfo, inode_get_atime(inode)); 1859 udf_adjust_time(iinfo, inode_get_mtime(inode)); 1860 udf_adjust_time(iinfo, inode_get_ctime(inode)); 1861 1862 udf_time_to_disk_stamp(&efe->accessTime, 1863 inode_get_atime(inode)); 1864 udf_time_to_disk_stamp(&efe->modificationTime, 1865 inode_get_mtime(inode)); 1866 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1867 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode)); 1868 1869 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1870 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1871 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1872 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1873 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1874 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1875 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1876 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1877 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1878 crclen = sizeof(struct extendedFileEntry); 1879 } 1880 1881 finish: 1882 if (iinfo->i_strat4096) { 1883 fe->icbTag.strategyType = cpu_to_le16(4096); 1884 fe->icbTag.strategyParameter = cpu_to_le16(1); 1885 fe->icbTag.numEntries = cpu_to_le16(2); 1886 } else { 1887 fe->icbTag.strategyType = cpu_to_le16(4); 1888 fe->icbTag.numEntries = cpu_to_le16(1); 1889 } 1890 1891 if (iinfo->i_use) 1892 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1893 else if (S_ISDIR(inode->i_mode)) 1894 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1895 else if (S_ISREG(inode->i_mode)) 1896 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1897 else if (S_ISLNK(inode->i_mode)) 1898 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1899 else if (S_ISBLK(inode->i_mode)) 1900 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1901 else if (S_ISCHR(inode->i_mode)) 1902 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1903 else if (S_ISFIFO(inode->i_mode)) 1904 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1905 else if (S_ISSOCK(inode->i_mode)) 1906 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1907 1908 icbflags = iinfo->i_alloc_type | 1909 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1910 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1911 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1912 (le16_to_cpu(fe->icbTag.flags) & 1913 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1914 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1915 1916 fe->icbTag.flags = cpu_to_le16(icbflags); 1917 if (sbi->s_udfrev >= 0x0200) 1918 fe->descTag.descVersion = cpu_to_le16(3); 1919 else 1920 fe->descTag.descVersion = cpu_to_le16(2); 1921 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1922 fe->descTag.tagLocation = cpu_to_le32( 1923 iinfo->i_location.logicalBlockNum); 1924 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1925 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1926 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1927 crclen)); 1928 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1929 1930 set_buffer_uptodate(bh); 1931 unlock_buffer(bh); 1932 1933 /* write the data blocks */ 1934 mark_buffer_dirty(bh); 1935 if (do_sync) { 1936 sync_dirty_buffer(bh); 1937 if (buffer_write_io_error(bh)) { 1938 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1939 inode->i_ino); 1940 err = -EIO; 1941 } 1942 } 1943 brelse(bh); 1944 1945 return err; 1946 } 1947 1948 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1949 bool hidden_inode) 1950 { 1951 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1952 struct inode *inode = iget_locked(sb, block); 1953 int err; 1954 1955 if (!inode) 1956 return ERR_PTR(-ENOMEM); 1957 1958 if (!(inode->i_state & I_NEW)) { 1959 if (UDF_I(inode)->i_hidden != hidden_inode) { 1960 iput(inode); 1961 return ERR_PTR(-EFSCORRUPTED); 1962 } 1963 return inode; 1964 } 1965 1966 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1967 err = udf_read_inode(inode, hidden_inode); 1968 if (err < 0) { 1969 iget_failed(inode); 1970 return ERR_PTR(err); 1971 } 1972 unlock_new_inode(inode); 1973 1974 return inode; 1975 } 1976 1977 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1978 struct extent_position *epos) 1979 { 1980 struct super_block *sb = inode->i_sb; 1981 struct buffer_head *bh; 1982 struct allocExtDesc *aed; 1983 struct extent_position nepos; 1984 struct kernel_lb_addr neloc; 1985 int ver, adsize; 1986 int err = 0; 1987 1988 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1989 adsize = sizeof(struct short_ad); 1990 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1991 adsize = sizeof(struct long_ad); 1992 else 1993 return -EIO; 1994 1995 neloc.logicalBlockNum = block; 1996 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1997 1998 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1999 if (!bh) 2000 return -EIO; 2001 lock_buffer(bh); 2002 memset(bh->b_data, 0x00, sb->s_blocksize); 2003 set_buffer_uptodate(bh); 2004 unlock_buffer(bh); 2005 mark_buffer_dirty_inode(bh, inode); 2006 2007 aed = (struct allocExtDesc *)(bh->b_data); 2008 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 2009 aed->previousAllocExtLocation = 2010 cpu_to_le32(epos->block.logicalBlockNum); 2011 } 2012 aed->lengthAllocDescs = cpu_to_le32(0); 2013 if (UDF_SB(sb)->s_udfrev >= 0x0200) 2014 ver = 3; 2015 else 2016 ver = 2; 2017 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 2018 sizeof(struct tag)); 2019 2020 nepos.block = neloc; 2021 nepos.offset = sizeof(struct allocExtDesc); 2022 nepos.bh = bh; 2023 2024 /* 2025 * Do we have to copy current last extent to make space for indirect 2026 * one? 2027 */ 2028 if (epos->offset + adsize > sb->s_blocksize) { 2029 struct kernel_lb_addr cp_loc; 2030 uint32_t cp_len; 2031 int8_t cp_type; 2032 2033 epos->offset -= adsize; 2034 err = udf_current_aext(inode, epos, &cp_loc, &cp_len, &cp_type, 0); 2035 if (err <= 0) 2036 goto err_out; 2037 cp_len |= ((uint32_t)cp_type) << 30; 2038 2039 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 2040 udf_write_aext(inode, epos, &nepos.block, 2041 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2042 } else { 2043 __udf_add_aext(inode, epos, &nepos.block, 2044 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2045 } 2046 2047 brelse(epos->bh); 2048 *epos = nepos; 2049 2050 return 0; 2051 err_out: 2052 brelse(bh); 2053 return err; 2054 } 2055 2056 /* 2057 * Append extent at the given position - should be the first free one in inode 2058 * / indirect extent. This function assumes there is enough space in the inode 2059 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2060 */ 2061 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2062 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2063 { 2064 struct udf_inode_info *iinfo = UDF_I(inode); 2065 struct allocExtDesc *aed; 2066 int adsize; 2067 2068 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2069 adsize = sizeof(struct short_ad); 2070 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2071 adsize = sizeof(struct long_ad); 2072 else 2073 return -EIO; 2074 2075 if (!epos->bh) { 2076 WARN_ON(iinfo->i_lenAlloc != 2077 epos->offset - udf_file_entry_alloc_offset(inode)); 2078 } else { 2079 aed = (struct allocExtDesc *)epos->bh->b_data; 2080 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2081 epos->offset - sizeof(struct allocExtDesc)); 2082 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2083 } 2084 2085 udf_write_aext(inode, epos, eloc, elen, inc); 2086 2087 if (!epos->bh) { 2088 iinfo->i_lenAlloc += adsize; 2089 mark_inode_dirty(inode); 2090 } else { 2091 aed = (struct allocExtDesc *)epos->bh->b_data; 2092 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2093 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2094 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2095 udf_update_tag(epos->bh->b_data, 2096 epos->offset + (inc ? 0 : adsize)); 2097 else 2098 udf_update_tag(epos->bh->b_data, 2099 sizeof(struct allocExtDesc)); 2100 mark_buffer_dirty_inode(epos->bh, inode); 2101 } 2102 2103 return 0; 2104 } 2105 2106 /* 2107 * Append extent at given position - should be the first free one in inode 2108 * / indirect extent. Takes care of allocating and linking indirect blocks. 2109 */ 2110 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2111 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2112 { 2113 int adsize; 2114 struct super_block *sb = inode->i_sb; 2115 2116 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2117 adsize = sizeof(struct short_ad); 2118 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2119 adsize = sizeof(struct long_ad); 2120 else 2121 return -EIO; 2122 2123 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2124 int err; 2125 udf_pblk_t new_block; 2126 2127 new_block = udf_new_block(sb, NULL, 2128 epos->block.partitionReferenceNum, 2129 epos->block.logicalBlockNum, &err); 2130 if (!new_block) 2131 return -ENOSPC; 2132 2133 err = udf_setup_indirect_aext(inode, new_block, epos); 2134 if (err) 2135 return err; 2136 } 2137 2138 return __udf_add_aext(inode, epos, eloc, elen, inc); 2139 } 2140 2141 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2142 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2143 { 2144 int adsize; 2145 uint8_t *ptr; 2146 struct short_ad *sad; 2147 struct long_ad *lad; 2148 struct udf_inode_info *iinfo = UDF_I(inode); 2149 2150 if (!epos->bh) 2151 ptr = iinfo->i_data + epos->offset - 2152 udf_file_entry_alloc_offset(inode) + 2153 iinfo->i_lenEAttr; 2154 else 2155 ptr = epos->bh->b_data + epos->offset; 2156 2157 switch (iinfo->i_alloc_type) { 2158 case ICBTAG_FLAG_AD_SHORT: 2159 sad = (struct short_ad *)ptr; 2160 sad->extLength = cpu_to_le32(elen); 2161 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2162 adsize = sizeof(struct short_ad); 2163 break; 2164 case ICBTAG_FLAG_AD_LONG: 2165 lad = (struct long_ad *)ptr; 2166 lad->extLength = cpu_to_le32(elen); 2167 lad->extLocation = cpu_to_lelb(*eloc); 2168 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2169 adsize = sizeof(struct long_ad); 2170 break; 2171 default: 2172 return; 2173 } 2174 2175 if (epos->bh) { 2176 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2177 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2178 struct allocExtDesc *aed = 2179 (struct allocExtDesc *)epos->bh->b_data; 2180 udf_update_tag(epos->bh->b_data, 2181 le32_to_cpu(aed->lengthAllocDescs) + 2182 sizeof(struct allocExtDesc)); 2183 } 2184 mark_buffer_dirty_inode(epos->bh, inode); 2185 } else { 2186 mark_inode_dirty(inode); 2187 } 2188 2189 if (inc) 2190 epos->offset += adsize; 2191 } 2192 2193 /* 2194 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2195 * someone does some weird stuff. 2196 */ 2197 #define UDF_MAX_INDIR_EXTS 16 2198 2199 /* 2200 * Returns 1 on success, -errno on error, 0 on hit EOF. 2201 */ 2202 int udf_next_aext(struct inode *inode, struct extent_position *epos, 2203 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype, 2204 int inc) 2205 { 2206 unsigned int indirections = 0; 2207 int ret = 0; 2208 udf_pblk_t block; 2209 2210 while (1) { 2211 ret = udf_current_aext(inode, epos, eloc, elen, 2212 etype, inc); 2213 if (ret <= 0) 2214 return ret; 2215 if (*etype != (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) 2216 return ret; 2217 2218 if (++indirections > UDF_MAX_INDIR_EXTS) { 2219 udf_err(inode->i_sb, 2220 "too many indirect extents in inode %lu\n", 2221 inode->i_ino); 2222 return -EFSCORRUPTED; 2223 } 2224 2225 epos->block = *eloc; 2226 epos->offset = sizeof(struct allocExtDesc); 2227 brelse(epos->bh); 2228 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2229 epos->bh = sb_bread(inode->i_sb, block); 2230 if (!epos->bh) { 2231 udf_debug("reading block %u failed!\n", block); 2232 return -EIO; 2233 } 2234 } 2235 } 2236 2237 /* 2238 * Returns 1 on success, -errno on error, 0 on hit EOF. 2239 */ 2240 int udf_current_aext(struct inode *inode, struct extent_position *epos, 2241 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype, 2242 int inc) 2243 { 2244 int alen; 2245 uint8_t *ptr; 2246 struct short_ad *sad; 2247 struct long_ad *lad; 2248 struct udf_inode_info *iinfo = UDF_I(inode); 2249 2250 if (!epos->bh) { 2251 if (!epos->offset) 2252 epos->offset = udf_file_entry_alloc_offset(inode); 2253 ptr = iinfo->i_data + epos->offset - 2254 udf_file_entry_alloc_offset(inode) + 2255 iinfo->i_lenEAttr; 2256 alen = udf_file_entry_alloc_offset(inode) + 2257 iinfo->i_lenAlloc; 2258 } else { 2259 struct allocExtDesc *header = 2260 (struct allocExtDesc *)epos->bh->b_data; 2261 2262 if (!epos->offset) 2263 epos->offset = sizeof(struct allocExtDesc); 2264 ptr = epos->bh->b_data + epos->offset; 2265 if (check_add_overflow(sizeof(struct allocExtDesc), 2266 le32_to_cpu(header->lengthAllocDescs), &alen)) 2267 return -1; 2268 } 2269 2270 switch (iinfo->i_alloc_type) { 2271 case ICBTAG_FLAG_AD_SHORT: 2272 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2273 if (!sad) 2274 return 0; 2275 *etype = le32_to_cpu(sad->extLength) >> 30; 2276 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2277 eloc->partitionReferenceNum = 2278 iinfo->i_location.partitionReferenceNum; 2279 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2280 break; 2281 case ICBTAG_FLAG_AD_LONG: 2282 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2283 if (!lad) 2284 return 0; 2285 *etype = le32_to_cpu(lad->extLength) >> 30; 2286 *eloc = lelb_to_cpu(lad->extLocation); 2287 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2288 break; 2289 default: 2290 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2291 return -EINVAL; 2292 } 2293 2294 return 1; 2295 } 2296 2297 static int udf_insert_aext(struct inode *inode, struct extent_position epos, 2298 struct kernel_lb_addr neloc, uint32_t nelen) 2299 { 2300 struct kernel_lb_addr oeloc; 2301 uint32_t oelen; 2302 int8_t etype; 2303 int ret; 2304 2305 if (epos.bh) 2306 get_bh(epos.bh); 2307 2308 while (1) { 2309 ret = udf_next_aext(inode, &epos, &oeloc, &oelen, &etype, 0); 2310 if (ret <= 0) 2311 break; 2312 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2313 neloc = oeloc; 2314 nelen = (etype << 30) | oelen; 2315 } 2316 if (ret == 0) 2317 ret = udf_add_aext(inode, &epos, &neloc, nelen, 1); 2318 brelse(epos.bh); 2319 2320 return ret; 2321 } 2322 2323 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2324 { 2325 struct extent_position oepos; 2326 int adsize; 2327 int8_t etype; 2328 struct allocExtDesc *aed; 2329 struct udf_inode_info *iinfo; 2330 struct kernel_lb_addr eloc; 2331 uint32_t elen; 2332 int ret; 2333 2334 if (epos.bh) { 2335 get_bh(epos.bh); 2336 get_bh(epos.bh); 2337 } 2338 2339 iinfo = UDF_I(inode); 2340 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2341 adsize = sizeof(struct short_ad); 2342 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2343 adsize = sizeof(struct long_ad); 2344 else 2345 adsize = 0; 2346 2347 oepos = epos; 2348 if (udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1) <= 0) 2349 return -1; 2350 2351 while (1) { 2352 ret = udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1); 2353 if (ret < 0) { 2354 brelse(epos.bh); 2355 brelse(oepos.bh); 2356 return -1; 2357 } 2358 if (ret == 0) 2359 break; 2360 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2361 if (oepos.bh != epos.bh) { 2362 oepos.block = epos.block; 2363 brelse(oepos.bh); 2364 get_bh(epos.bh); 2365 oepos.bh = epos.bh; 2366 oepos.offset = epos.offset - adsize; 2367 } 2368 } 2369 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2370 elen = 0; 2371 2372 if (epos.bh != oepos.bh) { 2373 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2374 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2375 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2376 if (!oepos.bh) { 2377 iinfo->i_lenAlloc -= (adsize * 2); 2378 mark_inode_dirty(inode); 2379 } else { 2380 aed = (struct allocExtDesc *)oepos.bh->b_data; 2381 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2382 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2383 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2384 udf_update_tag(oepos.bh->b_data, 2385 oepos.offset - (2 * adsize)); 2386 else 2387 udf_update_tag(oepos.bh->b_data, 2388 sizeof(struct allocExtDesc)); 2389 mark_buffer_dirty_inode(oepos.bh, inode); 2390 } 2391 } else { 2392 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2393 if (!oepos.bh) { 2394 iinfo->i_lenAlloc -= adsize; 2395 mark_inode_dirty(inode); 2396 } else { 2397 aed = (struct allocExtDesc *)oepos.bh->b_data; 2398 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2399 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2400 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2401 udf_update_tag(oepos.bh->b_data, 2402 epos.offset - adsize); 2403 else 2404 udf_update_tag(oepos.bh->b_data, 2405 sizeof(struct allocExtDesc)); 2406 mark_buffer_dirty_inode(oepos.bh, inode); 2407 } 2408 } 2409 2410 brelse(epos.bh); 2411 brelse(oepos.bh); 2412 2413 return (elen >> 30); 2414 } 2415 2416 /* 2417 * Returns 1 on success, -errno on error, 0 on hit EOF. 2418 */ 2419 int inode_bmap(struct inode *inode, sector_t block, struct extent_position *pos, 2420 struct kernel_lb_addr *eloc, uint32_t *elen, sector_t *offset, 2421 int8_t *etype) 2422 { 2423 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2424 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2425 struct udf_inode_info *iinfo; 2426 int err = 0; 2427 2428 iinfo = UDF_I(inode); 2429 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2430 pos->offset = 0; 2431 pos->block = iinfo->i_location; 2432 pos->bh = NULL; 2433 } 2434 *elen = 0; 2435 do { 2436 err = udf_next_aext(inode, pos, eloc, elen, etype, 1); 2437 if (err <= 0) { 2438 if (err == 0) { 2439 *offset = (bcount - lbcount) >> blocksize_bits; 2440 iinfo->i_lenExtents = lbcount; 2441 } 2442 return err; 2443 } 2444 lbcount += *elen; 2445 } while (lbcount <= bcount); 2446 /* update extent cache */ 2447 udf_update_extent_cache(inode, lbcount - *elen, pos); 2448 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2449 2450 return 1; 2451 } 2452