1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements VFS file and inode operations for regular files, device 13 * nodes and symlinks as well as address space operations. 14 * 15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if 16 * the page is dirty and is used for optimization purposes - dirty pages are 17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release 18 * the budget for this page. The @PG_checked flag is set if full budgeting is 19 * required for the page e.g., when it corresponds to a file hole or it is 20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because 21 * it is OK to fail in this function, and the budget is released in 22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry 23 * information about how the page was budgeted, to make it possible to release 24 * the budget properly. 25 * 26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we 27 * implement. However, this is not true for 'ubifs_writepage()', which may be 28 * called with @i_mutex unlocked. For example, when flusher thread is doing 29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. 30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. 31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in 32 * 'ubifs_writepage()' we are only guaranteed that the page is locked. 33 * 34 * Similarly, @i_mutex is not always locked in 'ubifs_read_folio()', e.g., the 35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read -> 36 * ondemand_readahead -> read_folio"). In case of readahead, @I_SYNC flag is not 37 * set as well. However, UBIFS disables readahead. 38 */ 39 40 #include "ubifs.h" 41 #include <linux/mount.h> 42 #include <linux/slab.h> 43 #include <linux/migrate.h> 44 45 static int read_block(struct inode *inode, struct folio *folio, size_t offset, 46 unsigned int block, struct ubifs_data_node *dn) 47 { 48 struct ubifs_info *c = inode->i_sb->s_fs_info; 49 int err, len, out_len; 50 union ubifs_key key; 51 unsigned int dlen; 52 53 data_key_init(c, &key, inode->i_ino, block); 54 err = ubifs_tnc_lookup(c, &key, dn); 55 if (err) { 56 if (err == -ENOENT) 57 /* Not found, so it must be a hole */ 58 folio_zero_range(folio, offset, UBIFS_BLOCK_SIZE); 59 return err; 60 } 61 62 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 63 ubifs_inode(inode)->creat_sqnum); 64 len = le32_to_cpu(dn->size); 65 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 66 goto dump; 67 68 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 69 70 if (IS_ENCRYPTED(inode)) { 71 err = ubifs_decrypt(inode, dn, &dlen, block); 72 if (err) 73 goto dump; 74 } 75 76 out_len = UBIFS_BLOCK_SIZE; 77 err = ubifs_decompress_folio(c, &dn->data, dlen, folio, offset, 78 &out_len, le16_to_cpu(dn->compr_type)); 79 if (err || len != out_len) 80 goto dump; 81 82 /* 83 * Data length can be less than a full block, even for blocks that are 84 * not the last in the file (e.g., as a result of making a hole and 85 * appending data). Ensure that the remainder is zeroed out. 86 */ 87 if (len < UBIFS_BLOCK_SIZE) 88 folio_zero_range(folio, offset + len, UBIFS_BLOCK_SIZE - len); 89 90 return 0; 91 92 dump: 93 ubifs_err(c, "bad data node (block %u, inode %lu)", 94 block, inode->i_ino); 95 ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ); 96 return -EINVAL; 97 } 98 99 static int do_readpage(struct folio *folio) 100 { 101 int err = 0, i; 102 unsigned int block, beyond; 103 struct ubifs_data_node *dn = NULL; 104 struct inode *inode = folio->mapping->host; 105 struct ubifs_info *c = inode->i_sb->s_fs_info; 106 loff_t i_size = i_size_read(inode); 107 size_t offset = 0; 108 109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 110 inode->i_ino, folio->index, i_size, folio->flags); 111 ubifs_assert(c, !folio_test_checked(folio)); 112 ubifs_assert(c, !folio->private); 113 114 block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 115 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 116 if (block >= beyond) { 117 /* Reading beyond inode */ 118 folio_set_checked(folio); 119 folio_zero_range(folio, 0, folio_size(folio)); 120 goto out; 121 } 122 123 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS); 124 if (!dn) { 125 err = -ENOMEM; 126 goto out; 127 } 128 129 i = 0; 130 while (1) { 131 int ret; 132 133 if (block >= beyond) { 134 /* Reading beyond inode */ 135 err = -ENOENT; 136 folio_zero_range(folio, offset, UBIFS_BLOCK_SIZE); 137 } else { 138 ret = read_block(inode, folio, offset, block, dn); 139 if (ret) { 140 err = ret; 141 if (err != -ENOENT) 142 break; 143 } else if (block + 1 == beyond) { 144 int dlen = le32_to_cpu(dn->size); 145 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1); 146 147 if (ilen && ilen < dlen) 148 folio_zero_range(folio, offset + ilen, dlen - ilen); 149 } 150 } 151 if (++i >= (UBIFS_BLOCKS_PER_PAGE << folio_order(folio))) 152 break; 153 block += 1; 154 offset += UBIFS_BLOCK_SIZE; 155 } 156 157 if (err) { 158 struct ubifs_info *c = inode->i_sb->s_fs_info; 159 if (err == -ENOENT) { 160 /* Not found, so it must be a hole */ 161 folio_set_checked(folio); 162 dbg_gen("hole"); 163 err = 0; 164 } else { 165 ubifs_err(c, "cannot read page %lu of inode %lu, error %d", 166 folio->index, inode->i_ino, err); 167 } 168 } 169 170 out: 171 kfree(dn); 172 if (!err) 173 folio_mark_uptodate(folio); 174 return err; 175 } 176 177 /** 178 * release_new_page_budget - release budget of a new page. 179 * @c: UBIFS file-system description object 180 * 181 * This is a helper function which releases budget corresponding to the budget 182 * of one new page of data. 183 */ 184 static void release_new_page_budget(struct ubifs_info *c) 185 { 186 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 }; 187 188 ubifs_release_budget(c, &req); 189 } 190 191 /** 192 * release_existing_page_budget - release budget of an existing page. 193 * @c: UBIFS file-system description object 194 * 195 * This is a helper function which releases budget corresponding to the budget 196 * of changing one page of data which already exists on the flash media. 197 */ 198 static void release_existing_page_budget(struct ubifs_info *c) 199 { 200 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget}; 201 202 ubifs_release_budget(c, &req); 203 } 204 205 static int write_begin_slow(struct address_space *mapping, 206 loff_t pos, unsigned len, struct folio **foliop) 207 { 208 struct inode *inode = mapping->host; 209 struct ubifs_info *c = inode->i_sb->s_fs_info; 210 pgoff_t index = pos >> PAGE_SHIFT; 211 struct ubifs_budget_req req = { .new_page = 1 }; 212 int err, appending = !!(pos + len > inode->i_size); 213 struct folio *folio; 214 215 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld", 216 inode->i_ino, pos, len, inode->i_size); 217 218 /* 219 * At the slow path we have to budget before locking the folio, because 220 * budgeting may force write-back, which would wait on locked folios and 221 * deadlock if we had the folio locked. At this point we do not know 222 * anything about the folio, so assume that this is a new folio which is 223 * written to a hole. This corresponds to largest budget. Later the 224 * budget will be amended if this is not true. 225 */ 226 if (appending) 227 /* We are appending data, budget for inode change */ 228 req.dirtied_ino = 1; 229 230 err = ubifs_budget_space(c, &req); 231 if (unlikely(err)) 232 return err; 233 234 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 235 mapping_gfp_mask(mapping)); 236 if (IS_ERR(folio)) { 237 ubifs_release_budget(c, &req); 238 return PTR_ERR(folio); 239 } 240 241 if (!folio_test_uptodate(folio)) { 242 if (pos == folio_pos(folio) && len >= folio_size(folio)) 243 folio_set_checked(folio); 244 else { 245 err = do_readpage(folio); 246 if (err) { 247 folio_unlock(folio); 248 folio_put(folio); 249 ubifs_release_budget(c, &req); 250 return err; 251 } 252 } 253 } 254 255 if (folio->private) 256 /* 257 * The folio is dirty, which means it was budgeted twice: 258 * o first time the budget was allocated by the task which 259 * made the folio dirty and set the private field; 260 * o and then we budgeted for it for the second time at the 261 * very beginning of this function. 262 * 263 * So what we have to do is to release the folio budget we 264 * allocated. 265 */ 266 release_new_page_budget(c); 267 else if (!folio_test_checked(folio)) 268 /* 269 * We are changing a folio which already exists on the media. 270 * This means that changing the folio does not make the amount 271 * of indexing information larger, and this part of the budget 272 * which we have already acquired may be released. 273 */ 274 ubifs_convert_page_budget(c); 275 276 if (appending) { 277 struct ubifs_inode *ui = ubifs_inode(inode); 278 279 /* 280 * 'ubifs_write_end()' is optimized from the fast-path part of 281 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked 282 * if data is appended. 283 */ 284 mutex_lock(&ui->ui_mutex); 285 if (ui->dirty) 286 /* 287 * The inode is dirty already, so we may free the 288 * budget we allocated. 289 */ 290 ubifs_release_dirty_inode_budget(c, ui); 291 } 292 293 *foliop = folio; 294 return 0; 295 } 296 297 /** 298 * allocate_budget - allocate budget for 'ubifs_write_begin()'. 299 * @c: UBIFS file-system description object 300 * @folio: folio to allocate budget for 301 * @ui: UBIFS inode object the page belongs to 302 * @appending: non-zero if the page is appended 303 * 304 * This is a helper function for 'ubifs_write_begin()' which allocates budget 305 * for the operation. The budget is allocated differently depending on whether 306 * this is appending, whether the page is dirty or not, and so on. This 307 * function leaves the @ui->ui_mutex locked in case of appending. 308 * 309 * Returns: %0 in case of success and %-ENOSPC in case of failure. 310 */ 311 static int allocate_budget(struct ubifs_info *c, struct folio *folio, 312 struct ubifs_inode *ui, int appending) 313 { 314 struct ubifs_budget_req req = { .fast = 1 }; 315 316 if (folio->private) { 317 if (!appending) 318 /* 319 * The folio is dirty and we are not appending, which 320 * means no budget is needed at all. 321 */ 322 return 0; 323 324 mutex_lock(&ui->ui_mutex); 325 if (ui->dirty) 326 /* 327 * The page is dirty and we are appending, so the inode 328 * has to be marked as dirty. However, it is already 329 * dirty, so we do not need any budget. We may return, 330 * but @ui->ui_mutex hast to be left locked because we 331 * should prevent write-back from flushing the inode 332 * and freeing the budget. The lock will be released in 333 * 'ubifs_write_end()'. 334 */ 335 return 0; 336 337 /* 338 * The page is dirty, we are appending, the inode is clean, so 339 * we need to budget the inode change. 340 */ 341 req.dirtied_ino = 1; 342 } else { 343 if (folio_test_checked(folio)) 344 /* 345 * The page corresponds to a hole and does not 346 * exist on the media. So changing it makes 347 * the amount of indexing information 348 * larger, and we have to budget for a new 349 * page. 350 */ 351 req.new_page = 1; 352 else 353 /* 354 * Not a hole, the change will not add any new 355 * indexing information, budget for page 356 * change. 357 */ 358 req.dirtied_page = 1; 359 360 if (appending) { 361 mutex_lock(&ui->ui_mutex); 362 if (!ui->dirty) 363 /* 364 * The inode is clean but we will have to mark 365 * it as dirty because we are appending. This 366 * needs a budget. 367 */ 368 req.dirtied_ino = 1; 369 } 370 } 371 372 return ubifs_budget_space(c, &req); 373 } 374 375 /* 376 * This function is called when a page of data is going to be written. Since 377 * the page of data will not necessarily go to the flash straight away, UBIFS 378 * has to reserve space on the media for it, which is done by means of 379 * budgeting. 380 * 381 * This is the hot-path of the file-system and we are trying to optimize it as 382 * much as possible. For this reasons it is split on 2 parts - slow and fast. 383 * 384 * There many budgeting cases: 385 * o a new page is appended - we have to budget for a new page and for 386 * changing the inode; however, if the inode is already dirty, there is 387 * no need to budget for it; 388 * o an existing clean page is changed - we have budget for it; if the page 389 * does not exist on the media (a hole), we have to budget for a new 390 * page; otherwise, we may budget for changing an existing page; the 391 * difference between these cases is that changing an existing page does 392 * not introduce anything new to the FS indexing information, so it does 393 * not grow, and smaller budget is acquired in this case; 394 * o an existing dirty page is changed - no need to budget at all, because 395 * the page budget has been acquired by earlier, when the page has been 396 * marked dirty. 397 * 398 * UBIFS budgeting sub-system may force write-back if it thinks there is no 399 * space to reserve. This imposes some locking restrictions and makes it 400 * impossible to take into account the above cases, and makes it impossible to 401 * optimize budgeting. 402 * 403 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes 404 * there is a plenty of flash space and the budget will be acquired quickly, 405 * without forcing write-back. The slow path does not make this assumption. 406 */ 407 static int ubifs_write_begin(struct file *file, struct address_space *mapping, 408 loff_t pos, unsigned len, 409 struct folio **foliop, void **fsdata) 410 { 411 struct inode *inode = mapping->host; 412 struct ubifs_info *c = inode->i_sb->s_fs_info; 413 struct ubifs_inode *ui = ubifs_inode(inode); 414 pgoff_t index = pos >> PAGE_SHIFT; 415 int err, appending = !!(pos + len > inode->i_size); 416 int skipped_read = 0; 417 struct folio *folio; 418 419 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size); 420 ubifs_assert(c, !c->ro_media && !c->ro_mount); 421 422 if (unlikely(c->ro_error)) 423 return -EROFS; 424 425 /* Try out the fast-path part first */ 426 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 427 mapping_gfp_mask(mapping)); 428 if (IS_ERR(folio)) 429 return PTR_ERR(folio); 430 431 if (!folio_test_uptodate(folio)) { 432 /* The page is not loaded from the flash */ 433 if (pos == folio_pos(folio) && len >= folio_size(folio)) { 434 /* 435 * We change whole page so no need to load it. But we 436 * do not know whether this page exists on the media or 437 * not, so we assume the latter because it requires 438 * larger budget. The assumption is that it is better 439 * to budget a bit more than to read the page from the 440 * media. Thus, we are setting the @PG_checked flag 441 * here. 442 */ 443 folio_set_checked(folio); 444 skipped_read = 1; 445 } else { 446 err = do_readpage(folio); 447 if (err) { 448 folio_unlock(folio); 449 folio_put(folio); 450 return err; 451 } 452 } 453 } 454 455 err = allocate_budget(c, folio, ui, appending); 456 if (unlikely(err)) { 457 ubifs_assert(c, err == -ENOSPC); 458 /* 459 * If we skipped reading the page because we were going to 460 * write all of it, then it is not up to date. 461 */ 462 if (skipped_read) 463 folio_clear_checked(folio); 464 /* 465 * Budgeting failed which means it would have to force 466 * write-back but didn't, because we set the @fast flag in the 467 * request. Write-back cannot be done now, while we have the 468 * page locked, because it would deadlock. Unlock and free 469 * everything and fall-back to slow-path. 470 */ 471 if (appending) { 472 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 473 mutex_unlock(&ui->ui_mutex); 474 } 475 folio_unlock(folio); 476 folio_put(folio); 477 478 return write_begin_slow(mapping, pos, len, foliop); 479 } 480 481 /* 482 * Whee, we acquired budgeting quickly - without involving 483 * garbage-collection, committing or forcing write-back. We return 484 * with @ui->ui_mutex locked if we are appending pages, and unlocked 485 * otherwise. This is an optimization (slightly hacky though). 486 */ 487 *foliop = folio; 488 return 0; 489 } 490 491 /** 492 * cancel_budget - cancel budget. 493 * @c: UBIFS file-system description object 494 * @folio: folio to cancel budget for 495 * @ui: UBIFS inode object the page belongs to 496 * @appending: non-zero if the page is appended 497 * 498 * This is a helper function for a page write operation. It unlocks the 499 * @ui->ui_mutex in case of appending. 500 */ 501 static void cancel_budget(struct ubifs_info *c, struct folio *folio, 502 struct ubifs_inode *ui, int appending) 503 { 504 if (appending) { 505 if (!ui->dirty) 506 ubifs_release_dirty_inode_budget(c, ui); 507 mutex_unlock(&ui->ui_mutex); 508 } 509 if (!folio->private) { 510 if (folio_test_checked(folio)) 511 release_new_page_budget(c); 512 else 513 release_existing_page_budget(c); 514 } 515 } 516 517 static int ubifs_write_end(struct file *file, struct address_space *mapping, 518 loff_t pos, unsigned len, unsigned copied, 519 struct folio *folio, void *fsdata) 520 { 521 struct inode *inode = mapping->host; 522 struct ubifs_inode *ui = ubifs_inode(inode); 523 struct ubifs_info *c = inode->i_sb->s_fs_info; 524 loff_t end_pos = pos + len; 525 int appending = !!(end_pos > inode->i_size); 526 527 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld", 528 inode->i_ino, pos, folio->index, len, copied, inode->i_size); 529 530 if (unlikely(copied < len && !folio_test_uptodate(folio))) { 531 /* 532 * VFS copied less data to the folio than it intended and 533 * declared in its '->write_begin()' call via the @len 534 * argument. If the folio was not up-to-date, 535 * the 'ubifs_write_begin()' function did 536 * not load it from the media (for optimization reasons). This 537 * means that part of the folio contains garbage. So read the 538 * folio now. 539 */ 540 dbg_gen("copied %d instead of %d, read page and repeat", 541 copied, len); 542 cancel_budget(c, folio, ui, appending); 543 folio_clear_checked(folio); 544 545 /* 546 * Return 0 to force VFS to repeat the whole operation, or the 547 * error code if 'do_readpage()' fails. 548 */ 549 copied = do_readpage(folio); 550 goto out; 551 } 552 553 if (len == folio_size(folio)) 554 folio_mark_uptodate(folio); 555 556 if (!folio->private) { 557 folio_attach_private(folio, (void *)1); 558 atomic_long_inc(&c->dirty_pg_cnt); 559 filemap_dirty_folio(mapping, folio); 560 } 561 562 if (appending) { 563 i_size_write(inode, end_pos); 564 ui->ui_size = end_pos; 565 /* 566 * We do not set @I_DIRTY_PAGES (which means that 567 * the inode has dirty pages), this was done in 568 * filemap_dirty_folio(). 569 */ 570 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 571 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 572 mutex_unlock(&ui->ui_mutex); 573 } 574 575 out: 576 folio_unlock(folio); 577 folio_put(folio); 578 return copied; 579 } 580 581 /** 582 * populate_page - copy data nodes into a page for bulk-read. 583 * @c: UBIFS file-system description object 584 * @folio: folio 585 * @bu: bulk-read information 586 * @n: next zbranch slot 587 * 588 * Returns: %0 on success and a negative error code on failure. 589 */ 590 static int populate_page(struct ubifs_info *c, struct folio *folio, 591 struct bu_info *bu, int *n) 592 { 593 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0; 594 struct inode *inode = folio->mapping->host; 595 loff_t i_size = i_size_read(inode); 596 unsigned int page_block; 597 size_t offset = 0; 598 pgoff_t end_index; 599 600 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 601 inode->i_ino, folio->index, i_size, folio->flags); 602 603 end_index = (i_size - 1) >> PAGE_SHIFT; 604 if (!i_size || folio->index > end_index) { 605 hole = 1; 606 folio_zero_range(folio, 0, folio_size(folio)); 607 goto out_hole; 608 } 609 610 page_block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 611 while (1) { 612 int err, len, out_len, dlen; 613 614 if (nn >= bu->cnt) { 615 hole = 1; 616 folio_zero_range(folio, offset, UBIFS_BLOCK_SIZE); 617 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) { 618 struct ubifs_data_node *dn; 619 620 dn = bu->buf + (bu->zbranch[nn].offs - offs); 621 622 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 623 ubifs_inode(inode)->creat_sqnum); 624 625 len = le32_to_cpu(dn->size); 626 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 627 goto out_err; 628 629 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 630 out_len = UBIFS_BLOCK_SIZE; 631 632 if (IS_ENCRYPTED(inode)) { 633 err = ubifs_decrypt(inode, dn, &dlen, page_block); 634 if (err) 635 goto out_err; 636 } 637 638 err = ubifs_decompress_folio( 639 c, &dn->data, dlen, folio, offset, &out_len, 640 le16_to_cpu(dn->compr_type)); 641 if (err || len != out_len) 642 goto out_err; 643 644 if (len < UBIFS_BLOCK_SIZE) 645 folio_zero_range(folio, offset + len, 646 UBIFS_BLOCK_SIZE - len); 647 648 nn += 1; 649 read = (i << UBIFS_BLOCK_SHIFT) + len; 650 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) { 651 nn += 1; 652 continue; 653 } else { 654 hole = 1; 655 folio_zero_range(folio, offset, UBIFS_BLOCK_SIZE); 656 } 657 if (++i >= UBIFS_BLOCKS_PER_PAGE) 658 break; 659 offset += UBIFS_BLOCK_SIZE; 660 page_block += 1; 661 } 662 663 if (end_index == folio->index) { 664 int len = i_size & (PAGE_SIZE - 1); 665 666 if (len && len < read) 667 folio_zero_range(folio, len, read - len); 668 } 669 670 out_hole: 671 if (hole) { 672 folio_set_checked(folio); 673 dbg_gen("hole"); 674 } 675 676 folio_mark_uptodate(folio); 677 *n = nn; 678 return 0; 679 680 out_err: 681 ubifs_err(c, "bad data node (block %u, inode %lu)", 682 page_block, inode->i_ino); 683 return -EINVAL; 684 } 685 686 /** 687 * ubifs_do_bulk_read - do bulk-read. 688 * @c: UBIFS file-system description object 689 * @bu: bulk-read information 690 * @folio1: first folio to read 691 * 692 * Returns: %1 if the bulk-read is done, otherwise %0 is returned. 693 */ 694 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu, 695 struct folio *folio1) 696 { 697 pgoff_t offset = folio1->index, end_index; 698 struct address_space *mapping = folio1->mapping; 699 struct inode *inode = mapping->host; 700 struct ubifs_inode *ui = ubifs_inode(inode); 701 int err, page_idx, page_cnt, ret = 0, n = 0; 702 int allocate = bu->buf ? 0 : 1; 703 loff_t isize; 704 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS; 705 706 err = ubifs_tnc_get_bu_keys(c, bu); 707 if (err) 708 goto out_warn; 709 710 if (bu->eof) { 711 /* Turn off bulk-read at the end of the file */ 712 ui->read_in_a_row = 1; 713 ui->bulk_read = 0; 714 } 715 716 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT; 717 if (!page_cnt) { 718 /* 719 * This happens when there are multiple blocks per page and the 720 * blocks for the first page we are looking for, are not 721 * together. If all the pages were like this, bulk-read would 722 * reduce performance, so we turn it off for a while. 723 */ 724 goto out_bu_off; 725 } 726 727 if (bu->cnt) { 728 if (allocate) { 729 /* 730 * Allocate bulk-read buffer depending on how many data 731 * nodes we are going to read. 732 */ 733 bu->buf_len = bu->zbranch[bu->cnt - 1].offs + 734 bu->zbranch[bu->cnt - 1].len - 735 bu->zbranch[0].offs; 736 ubifs_assert(c, bu->buf_len > 0); 737 ubifs_assert(c, bu->buf_len <= c->leb_size); 738 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN); 739 if (!bu->buf) 740 goto out_bu_off; 741 } 742 743 err = ubifs_tnc_bulk_read(c, bu); 744 if (err) 745 goto out_warn; 746 } 747 748 err = populate_page(c, folio1, bu, &n); 749 if (err) 750 goto out_warn; 751 752 folio_unlock(folio1); 753 ret = 1; 754 755 isize = i_size_read(inode); 756 if (isize == 0) 757 goto out_free; 758 end_index = ((isize - 1) >> PAGE_SHIFT); 759 760 for (page_idx = 1; page_idx < page_cnt; page_idx++) { 761 pgoff_t page_offset = offset + page_idx; 762 struct folio *folio; 763 764 if (page_offset > end_index) 765 break; 766 folio = __filemap_get_folio(mapping, page_offset, 767 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT, 768 ra_gfp_mask); 769 if (IS_ERR(folio)) 770 break; 771 if (!folio_test_uptodate(folio)) 772 err = populate_page(c, folio, bu, &n); 773 folio_unlock(folio); 774 folio_put(folio); 775 if (err) 776 break; 777 } 778 779 ui->last_page_read = offset + page_idx - 1; 780 781 out_free: 782 if (allocate) 783 kfree(bu->buf); 784 return ret; 785 786 out_warn: 787 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err); 788 goto out_free; 789 790 out_bu_off: 791 ui->read_in_a_row = ui->bulk_read = 0; 792 goto out_free; 793 } 794 795 /** 796 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it. 797 * @folio: folio from which to start bulk-read. 798 * 799 * Some flash media are capable of reading sequentially at faster rates. UBIFS 800 * bulk-read facility is designed to take advantage of that, by reading in one 801 * go consecutive data nodes that are also located consecutively in the same 802 * LEB. 803 * 804 * Returns: %1 if a bulk-read is done and %0 otherwise. 805 */ 806 static int ubifs_bulk_read(struct folio *folio) 807 { 808 struct inode *inode = folio->mapping->host; 809 struct ubifs_info *c = inode->i_sb->s_fs_info; 810 struct ubifs_inode *ui = ubifs_inode(inode); 811 pgoff_t index = folio->index, last_page_read = ui->last_page_read; 812 struct bu_info *bu; 813 int err = 0, allocated = 0; 814 815 ui->last_page_read = index; 816 if (!c->bulk_read) 817 return 0; 818 819 /* 820 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization, 821 * so don't bother if we cannot lock the mutex. 822 */ 823 if (!mutex_trylock(&ui->ui_mutex)) 824 return 0; 825 826 if (index != last_page_read + 1) { 827 /* Turn off bulk-read if we stop reading sequentially */ 828 ui->read_in_a_row = 1; 829 if (ui->bulk_read) 830 ui->bulk_read = 0; 831 goto out_unlock; 832 } 833 834 if (!ui->bulk_read) { 835 ui->read_in_a_row += 1; 836 if (ui->read_in_a_row < 3) 837 goto out_unlock; 838 /* Three reads in a row, so switch on bulk-read */ 839 ui->bulk_read = 1; 840 } 841 842 /* 843 * If possible, try to use pre-allocated bulk-read information, which 844 * is protected by @c->bu_mutex. 845 */ 846 if (mutex_trylock(&c->bu_mutex)) 847 bu = &c->bu; 848 else { 849 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN); 850 if (!bu) 851 goto out_unlock; 852 853 bu->buf = NULL; 854 allocated = 1; 855 } 856 857 bu->buf_len = c->max_bu_buf_len; 858 data_key_init(c, &bu->key, inode->i_ino, 859 folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT); 860 err = ubifs_do_bulk_read(c, bu, folio); 861 862 if (!allocated) 863 mutex_unlock(&c->bu_mutex); 864 else 865 kfree(bu); 866 867 out_unlock: 868 mutex_unlock(&ui->ui_mutex); 869 return err; 870 } 871 872 static int ubifs_read_folio(struct file *file, struct folio *folio) 873 { 874 if (ubifs_bulk_read(folio)) 875 return 0; 876 do_readpage(folio); 877 folio_unlock(folio); 878 return 0; 879 } 880 881 static int do_writepage(struct folio *folio, size_t len) 882 { 883 int err = 0, blen; 884 unsigned int block; 885 size_t offset = 0; 886 union ubifs_key key; 887 struct inode *inode = folio->mapping->host; 888 struct ubifs_info *c = inode->i_sb->s_fs_info; 889 890 #ifdef UBIFS_DEBUG 891 struct ubifs_inode *ui = ubifs_inode(inode); 892 spin_lock(&ui->ui_lock); 893 ubifs_assert(c, folio->index <= ui->synced_i_size >> PAGE_SHIFT); 894 spin_unlock(&ui->ui_lock); 895 #endif 896 897 folio_start_writeback(folio); 898 899 block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 900 for (;;) { 901 blen = min_t(size_t, len, UBIFS_BLOCK_SIZE); 902 data_key_init(c, &key, inode->i_ino, block); 903 err = ubifs_jnl_write_data(c, inode, &key, folio, offset, blen); 904 if (err) 905 break; 906 len -= blen; 907 if (!len) 908 break; 909 block += 1; 910 offset += blen; 911 } 912 if (err) { 913 mapping_set_error(folio->mapping, err); 914 ubifs_err(c, "cannot write folio %lu of inode %lu, error %d", 915 folio->index, inode->i_ino, err); 916 ubifs_ro_mode(c, err); 917 } 918 919 ubifs_assert(c, folio->private != NULL); 920 if (folio_test_checked(folio)) 921 release_new_page_budget(c); 922 else 923 release_existing_page_budget(c); 924 925 atomic_long_dec(&c->dirty_pg_cnt); 926 folio_detach_private(folio); 927 folio_clear_checked(folio); 928 929 folio_unlock(folio); 930 folio_end_writeback(folio); 931 return err; 932 } 933 934 /* 935 * When writing-back dirty inodes, VFS first writes-back pages belonging to the 936 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a 937 * situation when a we have an inode with size 0, then a megabyte of data is 938 * appended to the inode, then write-back starts and flushes some amount of the 939 * dirty pages, the journal becomes full, commit happens and finishes, and then 940 * an unclean reboot happens. When the file system is mounted next time, the 941 * inode size would still be 0, but there would be many pages which are beyond 942 * the inode size, they would be indexed and consume flash space. Because the 943 * journal has been committed, the replay would not be able to detect this 944 * situation and correct the inode size. This means UBIFS would have to scan 945 * whole index and correct all inode sizes, which is long an unacceptable. 946 * 947 * To prevent situations like this, UBIFS writes pages back only if they are 948 * within the last synchronized inode size, i.e. the size which has been 949 * written to the flash media last time. Otherwise, UBIFS forces inode 950 * write-back, thus making sure the on-flash inode contains current inode size, 951 * and then keeps writing pages back. 952 * 953 * Some locking issues explanation. 'ubifs_writepage()' first is called with 954 * the page locked, and it locks @ui_mutex. However, write-back does take inode 955 * @i_mutex, which means other VFS operations may be run on this inode at the 956 * same time. And the problematic one is truncation to smaller size, from where 957 * we have to call 'truncate_setsize()', which first changes @inode->i_size, 958 * then drops the truncated pages. And while dropping the pages, it takes the 959 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()' 960 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. 961 * This means that @inode->i_size is changed while @ui_mutex is unlocked. 962 * 963 * XXX(truncate): with the new truncate sequence this is not true anymore, 964 * and the calls to truncate_setsize can be move around freely. They should 965 * be moved to the very end of the truncate sequence. 966 * 967 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond 968 * inode size. How do we do this if @inode->i_size may became smaller while we 969 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the 970 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size 971 * internally and updates it under @ui_mutex. 972 * 973 * Q: why we do not worry that if we race with truncation, we may end up with a 974 * situation when the inode is truncated while we are in the middle of 975 * 'do_writepage()', so we do write beyond inode size? 976 * A: If we are in the middle of 'do_writepage()', truncation would be locked 977 * on the page lock and it would not write the truncated inode node to the 978 * journal before we have finished. 979 */ 980 static int ubifs_writepage(struct folio *folio, struct writeback_control *wbc, 981 void *data) 982 { 983 struct inode *inode = folio->mapping->host; 984 struct ubifs_info *c = inode->i_sb->s_fs_info; 985 struct ubifs_inode *ui = ubifs_inode(inode); 986 loff_t i_size = i_size_read(inode), synced_i_size; 987 int err, len = folio_size(folio); 988 989 dbg_gen("ino %lu, pg %lu, pg flags %#lx", 990 inode->i_ino, folio->index, folio->flags); 991 ubifs_assert(c, folio->private != NULL); 992 993 /* Is the folio fully outside @i_size? (truncate in progress) */ 994 if (folio_pos(folio) >= i_size) { 995 err = 0; 996 goto out_unlock; 997 } 998 999 spin_lock(&ui->ui_lock); 1000 synced_i_size = ui->synced_i_size; 1001 spin_unlock(&ui->ui_lock); 1002 1003 /* Is the folio fully inside i_size? */ 1004 if (folio_pos(folio) + len <= i_size) { 1005 if (folio_pos(folio) + len > synced_i_size) { 1006 err = inode->i_sb->s_op->write_inode(inode, NULL); 1007 if (err) 1008 goto out_redirty; 1009 /* 1010 * The inode has been written, but the write-buffer has 1011 * not been synchronized, so in case of an unclean 1012 * reboot we may end up with some pages beyond inode 1013 * size, but they would be in the journal (because 1014 * commit flushes write buffers) and recovery would deal 1015 * with this. 1016 */ 1017 } 1018 return do_writepage(folio, len); 1019 } 1020 1021 /* 1022 * The folio straddles @i_size. It must be zeroed out on each and every 1023 * writepage invocation because it may be mmapped. "A file is mapped 1024 * in multiples of the page size. For a file that is not a multiple of 1025 * the page size, the remaining memory is zeroed when mapped, and 1026 * writes to that region are not written out to the file." 1027 */ 1028 len = i_size - folio_pos(folio); 1029 folio_zero_segment(folio, len, folio_size(folio)); 1030 1031 if (i_size > synced_i_size) { 1032 err = inode->i_sb->s_op->write_inode(inode, NULL); 1033 if (err) 1034 goto out_redirty; 1035 } 1036 1037 return do_writepage(folio, len); 1038 out_redirty: 1039 /* 1040 * folio_redirty_for_writepage() won't call ubifs_dirty_inode() because 1041 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so 1042 * there is no need to do space budget for dirty inode. 1043 */ 1044 folio_redirty_for_writepage(wbc, folio); 1045 out_unlock: 1046 folio_unlock(folio); 1047 return err; 1048 } 1049 1050 static int ubifs_writepages(struct address_space *mapping, 1051 struct writeback_control *wbc) 1052 { 1053 return write_cache_pages(mapping, wbc, ubifs_writepage, NULL); 1054 } 1055 1056 /** 1057 * do_attr_changes - change inode attributes. 1058 * @inode: inode to change attributes for 1059 * @attr: describes attributes to change 1060 */ 1061 static void do_attr_changes(struct inode *inode, const struct iattr *attr) 1062 { 1063 if (attr->ia_valid & ATTR_UID) 1064 inode->i_uid = attr->ia_uid; 1065 if (attr->ia_valid & ATTR_GID) 1066 inode->i_gid = attr->ia_gid; 1067 if (attr->ia_valid & ATTR_ATIME) 1068 inode_set_atime_to_ts(inode, attr->ia_atime); 1069 if (attr->ia_valid & ATTR_MTIME) 1070 inode_set_mtime_to_ts(inode, attr->ia_mtime); 1071 if (attr->ia_valid & ATTR_CTIME) 1072 inode_set_ctime_to_ts(inode, attr->ia_ctime); 1073 if (attr->ia_valid & ATTR_MODE) { 1074 umode_t mode = attr->ia_mode; 1075 1076 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 1077 mode &= ~S_ISGID; 1078 inode->i_mode = mode; 1079 } 1080 } 1081 1082 /** 1083 * do_truncation - truncate an inode. 1084 * @c: UBIFS file-system description object 1085 * @inode: inode to truncate 1086 * @attr: inode attribute changes description 1087 * 1088 * This function implements VFS '->setattr()' call when the inode is truncated 1089 * to a smaller size. 1090 * 1091 * Returns: %0 in case of success and a negative error code 1092 * in case of failure. 1093 */ 1094 static int do_truncation(struct ubifs_info *c, struct inode *inode, 1095 const struct iattr *attr) 1096 { 1097 int err; 1098 struct ubifs_budget_req req; 1099 loff_t old_size = inode->i_size, new_size = attr->ia_size; 1100 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1; 1101 struct ubifs_inode *ui = ubifs_inode(inode); 1102 1103 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size); 1104 memset(&req, 0, sizeof(struct ubifs_budget_req)); 1105 1106 /* 1107 * If this is truncation to a smaller size, and we do not truncate on a 1108 * block boundary, budget for changing one data block, because the last 1109 * block will be re-written. 1110 */ 1111 if (new_size & (UBIFS_BLOCK_SIZE - 1)) 1112 req.dirtied_page = 1; 1113 1114 req.dirtied_ino = 1; 1115 /* A funny way to budget for truncation node */ 1116 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ; 1117 err = ubifs_budget_space(c, &req); 1118 if (err) { 1119 /* 1120 * Treat truncations to zero as deletion and always allow them, 1121 * just like we do for '->unlink()'. 1122 */ 1123 if (new_size || err != -ENOSPC) 1124 return err; 1125 budgeted = 0; 1126 } 1127 1128 truncate_setsize(inode, new_size); 1129 1130 if (offset) { 1131 pgoff_t index = new_size >> PAGE_SHIFT; 1132 struct folio *folio; 1133 1134 folio = filemap_lock_folio(inode->i_mapping, index); 1135 if (!IS_ERR(folio)) { 1136 if (folio_test_dirty(folio)) { 1137 /* 1138 * 'ubifs_jnl_truncate()' will try to truncate 1139 * the last data node, but it contains 1140 * out-of-date data because the page is dirty. 1141 * Write the page now, so that 1142 * 'ubifs_jnl_truncate()' will see an already 1143 * truncated (and up to date) data node. 1144 */ 1145 ubifs_assert(c, folio->private != NULL); 1146 1147 folio_clear_dirty_for_io(folio); 1148 if (UBIFS_BLOCKS_PER_PAGE_SHIFT) 1149 offset = offset_in_folio(folio, 1150 new_size); 1151 err = do_writepage(folio, offset); 1152 folio_put(folio); 1153 if (err) 1154 goto out_budg; 1155 /* 1156 * We could now tell 'ubifs_jnl_truncate()' not 1157 * to read the last block. 1158 */ 1159 } else { 1160 /* 1161 * We could 'kmap()' the page and pass the data 1162 * to 'ubifs_jnl_truncate()' to save it from 1163 * having to read it. 1164 */ 1165 folio_unlock(folio); 1166 folio_put(folio); 1167 } 1168 } 1169 } 1170 1171 mutex_lock(&ui->ui_mutex); 1172 ui->ui_size = inode->i_size; 1173 /* Truncation changes inode [mc]time */ 1174 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1175 /* Other attributes may be changed at the same time as well */ 1176 do_attr_changes(inode, attr); 1177 err = ubifs_jnl_truncate(c, inode, old_size, new_size); 1178 mutex_unlock(&ui->ui_mutex); 1179 1180 out_budg: 1181 if (budgeted) 1182 ubifs_release_budget(c, &req); 1183 else { 1184 c->bi.nospace = c->bi.nospace_rp = 0; 1185 smp_wmb(); 1186 } 1187 return err; 1188 } 1189 1190 /** 1191 * do_setattr - change inode attributes. 1192 * @c: UBIFS file-system description object 1193 * @inode: inode to change attributes for 1194 * @attr: inode attribute changes description 1195 * 1196 * This function implements VFS '->setattr()' call for all cases except 1197 * truncations to smaller size. 1198 * 1199 * Returns: %0 in case of success and a negative 1200 * error code in case of failure. 1201 */ 1202 static int do_setattr(struct ubifs_info *c, struct inode *inode, 1203 const struct iattr *attr) 1204 { 1205 int err, release; 1206 loff_t new_size = attr->ia_size; 1207 struct ubifs_inode *ui = ubifs_inode(inode); 1208 struct ubifs_budget_req req = { .dirtied_ino = 1, 1209 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1210 1211 err = ubifs_budget_space(c, &req); 1212 if (err) 1213 return err; 1214 1215 if (attr->ia_valid & ATTR_SIZE) { 1216 dbg_gen("size %lld -> %lld", inode->i_size, new_size); 1217 truncate_setsize(inode, new_size); 1218 } 1219 1220 mutex_lock(&ui->ui_mutex); 1221 if (attr->ia_valid & ATTR_SIZE) { 1222 /* Truncation changes inode [mc]time */ 1223 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1224 /* 'truncate_setsize()' changed @i_size, update @ui_size */ 1225 ui->ui_size = inode->i_size; 1226 } 1227 1228 do_attr_changes(inode, attr); 1229 1230 release = ui->dirty; 1231 if (attr->ia_valid & ATTR_SIZE) 1232 /* 1233 * Inode length changed, so we have to make sure 1234 * @I_DIRTY_DATASYNC is set. 1235 */ 1236 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1237 else 1238 mark_inode_dirty_sync(inode); 1239 mutex_unlock(&ui->ui_mutex); 1240 1241 if (release) 1242 ubifs_release_budget(c, &req); 1243 if (IS_SYNC(inode)) 1244 err = inode->i_sb->s_op->write_inode(inode, NULL); 1245 return err; 1246 } 1247 1248 int ubifs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 1249 struct iattr *attr) 1250 { 1251 int err; 1252 struct inode *inode = d_inode(dentry); 1253 struct ubifs_info *c = inode->i_sb->s_fs_info; 1254 1255 dbg_gen("ino %lu, mode %#x, ia_valid %#x", 1256 inode->i_ino, inode->i_mode, attr->ia_valid); 1257 err = setattr_prepare(&nop_mnt_idmap, dentry, attr); 1258 if (err) 1259 return err; 1260 1261 err = dbg_check_synced_i_size(c, inode); 1262 if (err) 1263 return err; 1264 1265 err = fscrypt_prepare_setattr(dentry, attr); 1266 if (err) 1267 return err; 1268 1269 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size) 1270 /* Truncation to a smaller size */ 1271 err = do_truncation(c, inode, attr); 1272 else 1273 err = do_setattr(c, inode, attr); 1274 1275 return err; 1276 } 1277 1278 static void ubifs_invalidate_folio(struct folio *folio, size_t offset, 1279 size_t length) 1280 { 1281 struct inode *inode = folio->mapping->host; 1282 struct ubifs_info *c = inode->i_sb->s_fs_info; 1283 1284 ubifs_assert(c, folio_test_private(folio)); 1285 if (offset || length < folio_size(folio)) 1286 /* Partial folio remains dirty */ 1287 return; 1288 1289 if (folio_test_checked(folio)) 1290 release_new_page_budget(c); 1291 else 1292 release_existing_page_budget(c); 1293 1294 atomic_long_dec(&c->dirty_pg_cnt); 1295 folio_detach_private(folio); 1296 folio_clear_checked(folio); 1297 } 1298 1299 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1300 { 1301 struct inode *inode = file->f_mapping->host; 1302 struct ubifs_info *c = inode->i_sb->s_fs_info; 1303 int err; 1304 1305 dbg_gen("syncing inode %lu", inode->i_ino); 1306 1307 if (c->ro_mount) 1308 /* 1309 * For some really strange reasons VFS does not filter out 1310 * 'fsync()' for R/O mounted file-systems as per 2.6.39. 1311 */ 1312 return 0; 1313 1314 err = file_write_and_wait_range(file, start, end); 1315 if (err) 1316 return err; 1317 inode_lock(inode); 1318 1319 /* Synchronize the inode unless this is a 'datasync()' call. */ 1320 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) { 1321 err = inode->i_sb->s_op->write_inode(inode, NULL); 1322 if (err) 1323 goto out; 1324 } 1325 1326 /* 1327 * Nodes related to this inode may still sit in a write-buffer. Flush 1328 * them. 1329 */ 1330 err = ubifs_sync_wbufs_by_inode(c, inode); 1331 out: 1332 inode_unlock(inode); 1333 return err; 1334 } 1335 1336 /** 1337 * mctime_update_needed - check if mtime or ctime update is needed. 1338 * @inode: the inode to do the check for 1339 * @now: current time 1340 * 1341 * This helper function checks if the inode mtime/ctime should be updated or 1342 * not. If current values of the time-stamps are within the UBIFS inode time 1343 * granularity, they are not updated. This is an optimization. 1344 * 1345 * Returns: %1 if time update is needed, %0 if not 1346 */ 1347 static inline int mctime_update_needed(const struct inode *inode, 1348 const struct timespec64 *now) 1349 { 1350 struct timespec64 ctime = inode_get_ctime(inode); 1351 struct timespec64 mtime = inode_get_mtime(inode); 1352 1353 if (!timespec64_equal(&mtime, now) || !timespec64_equal(&ctime, now)) 1354 return 1; 1355 return 0; 1356 } 1357 1358 /** 1359 * ubifs_update_time - update time of inode. 1360 * @inode: inode to update 1361 * @flags: time updating control flag determines updating 1362 * which time fields of @inode 1363 * 1364 * This function updates time of the inode. 1365 * 1366 * Returns: %0 for success or a negative error code otherwise. 1367 */ 1368 int ubifs_update_time(struct inode *inode, int flags) 1369 { 1370 struct ubifs_inode *ui = ubifs_inode(inode); 1371 struct ubifs_info *c = inode->i_sb->s_fs_info; 1372 struct ubifs_budget_req req = { .dirtied_ino = 1, 1373 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1374 int err, release; 1375 1376 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) { 1377 generic_update_time(inode, flags); 1378 return 0; 1379 } 1380 1381 err = ubifs_budget_space(c, &req); 1382 if (err) 1383 return err; 1384 1385 mutex_lock(&ui->ui_mutex); 1386 inode_update_timestamps(inode, flags); 1387 release = ui->dirty; 1388 __mark_inode_dirty(inode, I_DIRTY_SYNC); 1389 mutex_unlock(&ui->ui_mutex); 1390 if (release) 1391 ubifs_release_budget(c, &req); 1392 return 0; 1393 } 1394 1395 /** 1396 * update_mctime - update mtime and ctime of an inode. 1397 * @inode: inode to update 1398 * 1399 * This function updates mtime and ctime of the inode if it is not equivalent to 1400 * current time. 1401 * 1402 * Returns: %0 in case of success and a negative error code in 1403 * case of failure. 1404 */ 1405 static int update_mctime(struct inode *inode) 1406 { 1407 struct timespec64 now = current_time(inode); 1408 struct ubifs_inode *ui = ubifs_inode(inode); 1409 struct ubifs_info *c = inode->i_sb->s_fs_info; 1410 1411 if (mctime_update_needed(inode, &now)) { 1412 int err, release; 1413 struct ubifs_budget_req req = { .dirtied_ino = 1, 1414 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1415 1416 err = ubifs_budget_space(c, &req); 1417 if (err) 1418 return err; 1419 1420 mutex_lock(&ui->ui_mutex); 1421 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1422 release = ui->dirty; 1423 mark_inode_dirty_sync(inode); 1424 mutex_unlock(&ui->ui_mutex); 1425 if (release) 1426 ubifs_release_budget(c, &req); 1427 } 1428 1429 return 0; 1430 } 1431 1432 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from) 1433 { 1434 int err = update_mctime(file_inode(iocb->ki_filp)); 1435 if (err) 1436 return err; 1437 1438 return generic_file_write_iter(iocb, from); 1439 } 1440 1441 static bool ubifs_dirty_folio(struct address_space *mapping, 1442 struct folio *folio) 1443 { 1444 bool ret; 1445 struct ubifs_info *c = mapping->host->i_sb->s_fs_info; 1446 1447 ret = filemap_dirty_folio(mapping, folio); 1448 /* 1449 * An attempt to dirty a page without budgeting for it - should not 1450 * happen. 1451 */ 1452 ubifs_assert(c, ret == false); 1453 return ret; 1454 } 1455 1456 static bool ubifs_release_folio(struct folio *folio, gfp_t unused_gfp_flags) 1457 { 1458 struct inode *inode = folio->mapping->host; 1459 struct ubifs_info *c = inode->i_sb->s_fs_info; 1460 1461 if (folio_test_writeback(folio)) 1462 return false; 1463 1464 /* 1465 * Page is private but not dirty, weird? There is one condition 1466 * making it happened. ubifs_writepage skipped the page because 1467 * page index beyonds isize (for example. truncated by other 1468 * process named A), then the page is invalidated by fadvise64 1469 * syscall before being truncated by process A. 1470 */ 1471 ubifs_assert(c, folio_test_private(folio)); 1472 if (folio_test_checked(folio)) 1473 release_new_page_budget(c); 1474 else 1475 release_existing_page_budget(c); 1476 1477 atomic_long_dec(&c->dirty_pg_cnt); 1478 folio_detach_private(folio); 1479 folio_clear_checked(folio); 1480 return true; 1481 } 1482 1483 /* 1484 * mmap()d file has taken write protection fault and is being made writable. 1485 * UBIFS must ensure page is budgeted for. 1486 */ 1487 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf) 1488 { 1489 struct folio *folio = page_folio(vmf->page); 1490 struct inode *inode = file_inode(vmf->vma->vm_file); 1491 struct ubifs_info *c = inode->i_sb->s_fs_info; 1492 struct timespec64 now = current_time(inode); 1493 struct ubifs_budget_req req = { .new_page = 1 }; 1494 int err, update_time; 1495 1496 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, folio->index, 1497 i_size_read(inode)); 1498 ubifs_assert(c, !c->ro_media && !c->ro_mount); 1499 1500 if (unlikely(c->ro_error)) 1501 return VM_FAULT_SIGBUS; /* -EROFS */ 1502 1503 /* 1504 * We have not locked @folio so far so we may budget for changing the 1505 * folio. Note, we cannot do this after we locked the folio, because 1506 * budgeting may cause write-back which would cause deadlock. 1507 * 1508 * At the moment we do not know whether the folio is dirty or not, so we 1509 * assume that it is not and budget for a new folio. We could look at 1510 * the @PG_private flag and figure this out, but we may race with write 1511 * back and the folio state may change by the time we lock it, so this 1512 * would need additional care. We do not bother with this at the 1513 * moment, although it might be good idea to do. Instead, we allocate 1514 * budget for a new folio and amend it later on if the folio was in fact 1515 * dirty. 1516 * 1517 * The budgeting-related logic of this function is similar to what we 1518 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there 1519 * for more comments. 1520 */ 1521 update_time = mctime_update_needed(inode, &now); 1522 if (update_time) 1523 /* 1524 * We have to change inode time stamp which requires extra 1525 * budgeting. 1526 */ 1527 req.dirtied_ino = 1; 1528 1529 err = ubifs_budget_space(c, &req); 1530 if (unlikely(err)) { 1531 if (err == -ENOSPC) 1532 ubifs_warn(c, "out of space for mmapped file (inode number %lu)", 1533 inode->i_ino); 1534 return VM_FAULT_SIGBUS; 1535 } 1536 1537 folio_lock(folio); 1538 if (unlikely(folio->mapping != inode->i_mapping || 1539 folio_pos(folio) >= i_size_read(inode))) { 1540 /* Folio got truncated out from underneath us */ 1541 goto sigbus; 1542 } 1543 1544 if (folio->private) 1545 release_new_page_budget(c); 1546 else { 1547 if (!folio_test_checked(folio)) 1548 ubifs_convert_page_budget(c); 1549 folio_attach_private(folio, (void *)1); 1550 atomic_long_inc(&c->dirty_pg_cnt); 1551 filemap_dirty_folio(folio->mapping, folio); 1552 } 1553 1554 if (update_time) { 1555 int release; 1556 struct ubifs_inode *ui = ubifs_inode(inode); 1557 1558 mutex_lock(&ui->ui_mutex); 1559 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1560 release = ui->dirty; 1561 mark_inode_dirty_sync(inode); 1562 mutex_unlock(&ui->ui_mutex); 1563 if (release) 1564 ubifs_release_dirty_inode_budget(c, ui); 1565 } 1566 1567 folio_wait_stable(folio); 1568 return VM_FAULT_LOCKED; 1569 1570 sigbus: 1571 folio_unlock(folio); 1572 ubifs_release_budget(c, &req); 1573 return VM_FAULT_SIGBUS; 1574 } 1575 1576 static const struct vm_operations_struct ubifs_file_vm_ops = { 1577 .fault = filemap_fault, 1578 .map_pages = filemap_map_pages, 1579 .page_mkwrite = ubifs_vm_page_mkwrite, 1580 }; 1581 1582 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma) 1583 { 1584 int err; 1585 1586 err = generic_file_mmap(file, vma); 1587 if (err) 1588 return err; 1589 vma->vm_ops = &ubifs_file_vm_ops; 1590 1591 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 1592 file_accessed(file); 1593 1594 return 0; 1595 } 1596 1597 static const char *ubifs_get_link(struct dentry *dentry, 1598 struct inode *inode, 1599 struct delayed_call *done) 1600 { 1601 struct ubifs_inode *ui = ubifs_inode(inode); 1602 1603 if (!IS_ENCRYPTED(inode)) 1604 return ui->data; 1605 1606 if (!dentry) 1607 return ERR_PTR(-ECHILD); 1608 1609 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done); 1610 } 1611 1612 static int ubifs_symlink_getattr(struct mnt_idmap *idmap, 1613 const struct path *path, struct kstat *stat, 1614 u32 request_mask, unsigned int query_flags) 1615 { 1616 ubifs_getattr(idmap, path, stat, request_mask, query_flags); 1617 1618 if (IS_ENCRYPTED(d_inode(path->dentry))) 1619 return fscrypt_symlink_getattr(path, stat); 1620 return 0; 1621 } 1622 1623 const struct address_space_operations ubifs_file_address_operations = { 1624 .read_folio = ubifs_read_folio, 1625 .writepages = ubifs_writepages, 1626 .write_begin = ubifs_write_begin, 1627 .write_end = ubifs_write_end, 1628 .invalidate_folio = ubifs_invalidate_folio, 1629 .dirty_folio = ubifs_dirty_folio, 1630 .migrate_folio = filemap_migrate_folio, 1631 .release_folio = ubifs_release_folio, 1632 }; 1633 1634 const struct inode_operations ubifs_file_inode_operations = { 1635 .setattr = ubifs_setattr, 1636 .getattr = ubifs_getattr, 1637 .listxattr = ubifs_listxattr, 1638 .update_time = ubifs_update_time, 1639 .fileattr_get = ubifs_fileattr_get, 1640 .fileattr_set = ubifs_fileattr_set, 1641 }; 1642 1643 const struct inode_operations ubifs_symlink_inode_operations = { 1644 .get_link = ubifs_get_link, 1645 .setattr = ubifs_setattr, 1646 .getattr = ubifs_symlink_getattr, 1647 .listxattr = ubifs_listxattr, 1648 .update_time = ubifs_update_time, 1649 }; 1650 1651 const struct file_operations ubifs_file_operations = { 1652 .llseek = generic_file_llseek, 1653 .read_iter = generic_file_read_iter, 1654 .write_iter = ubifs_write_iter, 1655 .mmap = ubifs_file_mmap, 1656 .fsync = ubifs_fsync, 1657 .unlocked_ioctl = ubifs_ioctl, 1658 .splice_read = filemap_splice_read, 1659 .splice_write = iter_file_splice_write, 1660 .open = fscrypt_file_open, 1661 #ifdef CONFIG_COMPAT 1662 .compat_ioctl = ubifs_compat_ioctl, 1663 #endif 1664 }; 1665