1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements most of the debugging stuff which is compiled in only 13 * when it is enabled. But some debugging check functions are implemented in 14 * corresponding subsystem, just because they are closely related and utilize 15 * various local functions of those subsystems. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/debugfs.h> 20 #include <linux/math64.h> 21 #include <linux/uaccess.h> 22 #include <linux/random.h> 23 #include <linux/ctype.h> 24 #include "ubifs.h" 25 26 static DEFINE_SPINLOCK(dbg_lock); 27 28 static const char *get_key_fmt(int fmt) 29 { 30 switch (fmt) { 31 case UBIFS_SIMPLE_KEY_FMT: 32 return "simple"; 33 default: 34 return "unknown/invalid format"; 35 } 36 } 37 38 static const char *get_key_hash(int hash) 39 { 40 switch (hash) { 41 case UBIFS_KEY_HASH_R5: 42 return "R5"; 43 case UBIFS_KEY_HASH_TEST: 44 return "test"; 45 default: 46 return "unknown/invalid name hash"; 47 } 48 } 49 50 static const char *get_key_type(int type) 51 { 52 switch (type) { 53 case UBIFS_INO_KEY: 54 return "inode"; 55 case UBIFS_DENT_KEY: 56 return "direntry"; 57 case UBIFS_XENT_KEY: 58 return "xentry"; 59 case UBIFS_DATA_KEY: 60 return "data"; 61 case UBIFS_TRUN_KEY: 62 return "truncate"; 63 default: 64 return "unknown/invalid key"; 65 } 66 } 67 68 static const char *get_dent_type(int type) 69 { 70 switch (type) { 71 case UBIFS_ITYPE_REG: 72 return "file"; 73 case UBIFS_ITYPE_DIR: 74 return "dir"; 75 case UBIFS_ITYPE_LNK: 76 return "symlink"; 77 case UBIFS_ITYPE_BLK: 78 return "blkdev"; 79 case UBIFS_ITYPE_CHR: 80 return "char dev"; 81 case UBIFS_ITYPE_FIFO: 82 return "fifo"; 83 case UBIFS_ITYPE_SOCK: 84 return "socket"; 85 default: 86 return "unknown/invalid type"; 87 } 88 } 89 90 const char *dbg_snprintf_key(const struct ubifs_info *c, 91 const union ubifs_key *key, char *buffer, int len) 92 { 93 char *p = buffer; 94 int type = key_type(c, key); 95 96 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 97 switch (type) { 98 case UBIFS_INO_KEY: 99 len -= snprintf(p, len, "(%lu, %s)", 100 (unsigned long)key_inum(c, key), 101 get_key_type(type)); 102 break; 103 case UBIFS_DENT_KEY: 104 case UBIFS_XENT_KEY: 105 len -= snprintf(p, len, "(%lu, %s, %#08x)", 106 (unsigned long)key_inum(c, key), 107 get_key_type(type), key_hash(c, key)); 108 break; 109 case UBIFS_DATA_KEY: 110 len -= snprintf(p, len, "(%lu, %s, %u)", 111 (unsigned long)key_inum(c, key), 112 get_key_type(type), key_block(c, key)); 113 break; 114 case UBIFS_TRUN_KEY: 115 len -= snprintf(p, len, "(%lu, %s)", 116 (unsigned long)key_inum(c, key), 117 get_key_type(type)); 118 break; 119 default: 120 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", 121 key->u32[0], key->u32[1]); 122 } 123 } else 124 len -= snprintf(p, len, "bad key format %d", c->key_fmt); 125 ubifs_assert(c, len > 0); 126 return p; 127 } 128 129 const char *dbg_ntype(int type) 130 { 131 switch (type) { 132 case UBIFS_PAD_NODE: 133 return "padding node"; 134 case UBIFS_SB_NODE: 135 return "superblock node"; 136 case UBIFS_MST_NODE: 137 return "master node"; 138 case UBIFS_REF_NODE: 139 return "reference node"; 140 case UBIFS_INO_NODE: 141 return "inode node"; 142 case UBIFS_DENT_NODE: 143 return "direntry node"; 144 case UBIFS_XENT_NODE: 145 return "xentry node"; 146 case UBIFS_DATA_NODE: 147 return "data node"; 148 case UBIFS_TRUN_NODE: 149 return "truncate node"; 150 case UBIFS_IDX_NODE: 151 return "indexing node"; 152 case UBIFS_CS_NODE: 153 return "commit start node"; 154 case UBIFS_ORPH_NODE: 155 return "orphan node"; 156 case UBIFS_AUTH_NODE: 157 return "auth node"; 158 default: 159 return "unknown node"; 160 } 161 } 162 163 static const char *dbg_gtype(int type) 164 { 165 switch (type) { 166 case UBIFS_NO_NODE_GROUP: 167 return "no node group"; 168 case UBIFS_IN_NODE_GROUP: 169 return "in node group"; 170 case UBIFS_LAST_OF_NODE_GROUP: 171 return "last of node group"; 172 default: 173 return "unknown"; 174 } 175 } 176 177 const char *dbg_cstate(int cmt_state) 178 { 179 switch (cmt_state) { 180 case COMMIT_RESTING: 181 return "commit resting"; 182 case COMMIT_BACKGROUND: 183 return "background commit requested"; 184 case COMMIT_REQUIRED: 185 return "commit required"; 186 case COMMIT_RUNNING_BACKGROUND: 187 return "BACKGROUND commit running"; 188 case COMMIT_RUNNING_REQUIRED: 189 return "commit running and required"; 190 case COMMIT_BROKEN: 191 return "broken commit"; 192 default: 193 return "unknown commit state"; 194 } 195 } 196 197 const char *dbg_jhead(int jhead) 198 { 199 switch (jhead) { 200 case GCHD: 201 return "0 (GC)"; 202 case BASEHD: 203 return "1 (base)"; 204 case DATAHD: 205 return "2 (data)"; 206 default: 207 return "unknown journal head"; 208 } 209 } 210 211 static void dump_ch(const struct ubifs_ch *ch) 212 { 213 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic)); 214 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc)); 215 pr_err("\tnode_type %d (%s)\n", ch->node_type, 216 dbg_ntype(ch->node_type)); 217 pr_err("\tgroup_type %d (%s)\n", ch->group_type, 218 dbg_gtype(ch->group_type)); 219 pr_err("\tsqnum %llu\n", 220 (unsigned long long)le64_to_cpu(ch->sqnum)); 221 pr_err("\tlen %u\n", le32_to_cpu(ch->len)); 222 } 223 224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) 225 { 226 const struct ubifs_inode *ui = ubifs_inode(inode); 227 struct fscrypt_name nm = {0}; 228 union ubifs_key key; 229 struct ubifs_dent_node *dent, *pdent = NULL; 230 int count = 2; 231 232 pr_err("Dump in-memory inode:"); 233 pr_err("\tinode %lu\n", inode->i_ino); 234 pr_err("\tsize %llu\n", 235 (unsigned long long)i_size_read(inode)); 236 pr_err("\tnlink %u\n", inode->i_nlink); 237 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode)); 238 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode)); 239 pr_err("\tatime %u.%u\n", 240 (unsigned int) inode_get_atime_sec(inode), 241 (unsigned int) inode_get_atime_nsec(inode)); 242 pr_err("\tmtime %u.%u\n", 243 (unsigned int) inode_get_mtime_sec(inode), 244 (unsigned int) inode_get_mtime_nsec(inode)); 245 pr_err("\tctime %u.%u\n", 246 (unsigned int) inode_get_ctime_sec(inode), 247 (unsigned int) inode_get_ctime_nsec(inode)); 248 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum); 249 pr_err("\txattr_size %u\n", ui->xattr_size); 250 pr_err("\txattr_cnt %u\n", ui->xattr_cnt); 251 pr_err("\txattr_names %u\n", ui->xattr_names); 252 pr_err("\tdirty %u\n", ui->dirty); 253 pr_err("\txattr %u\n", ui->xattr); 254 pr_err("\tbulk_read %u\n", ui->bulk_read); 255 pr_err("\tsynced_i_size %llu\n", 256 (unsigned long long)ui->synced_i_size); 257 pr_err("\tui_size %llu\n", 258 (unsigned long long)ui->ui_size); 259 pr_err("\tflags %d\n", ui->flags); 260 pr_err("\tcompr_type %d\n", ui->compr_type); 261 pr_err("\tlast_page_read %lu\n", ui->last_page_read); 262 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row); 263 pr_err("\tdata_len %d\n", ui->data_len); 264 265 if (!S_ISDIR(inode->i_mode)) 266 return; 267 268 pr_err("List of directory entries:\n"); 269 ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex)); 270 271 lowest_dent_key(c, &key, inode->i_ino); 272 while (1) { 273 dent = ubifs_tnc_next_ent(c, &key, &nm); 274 if (IS_ERR(dent)) { 275 if (PTR_ERR(dent) != -ENOENT) 276 pr_err("error %ld\n", PTR_ERR(dent)); 277 break; 278 } 279 280 pr_err("\t%d: inode %llu, type %s, len %d\n", 281 count++, (unsigned long long) le64_to_cpu(dent->inum), 282 get_dent_type(dent->type), 283 le16_to_cpu(dent->nlen)); 284 285 fname_name(&nm) = dent->name; 286 fname_len(&nm) = le16_to_cpu(dent->nlen); 287 kfree(pdent); 288 pdent = dent; 289 key_read(c, &dent->key, &key); 290 } 291 kfree(pdent); 292 } 293 294 void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len) 295 { 296 int i, n, type, safe_len, max_node_len, min_node_len; 297 union ubifs_key key; 298 const struct ubifs_ch *ch = node; 299 char key_buf[DBG_KEY_BUF_LEN]; 300 301 /* If the magic is incorrect, just hexdump the first bytes */ 302 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 303 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); 304 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 305 (void *)node, UBIFS_CH_SZ, 1); 306 return; 307 } 308 309 /* Skip dumping unknown type node */ 310 type = ch->node_type; 311 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { 312 pr_err("node type %d was not recognized\n", type); 313 return; 314 } 315 316 spin_lock(&dbg_lock); 317 dump_ch(node); 318 319 if (c->ranges[type].max_len == 0) { 320 max_node_len = min_node_len = c->ranges[type].len; 321 } else { 322 max_node_len = c->ranges[type].max_len; 323 min_node_len = c->ranges[type].min_len; 324 } 325 safe_len = le32_to_cpu(ch->len); 326 safe_len = safe_len > 0 ? safe_len : 0; 327 safe_len = min3(safe_len, max_node_len, node_len); 328 if (safe_len < min_node_len) { 329 pr_err("node len(%d) is too short for %s, left %d bytes:\n", 330 safe_len, dbg_ntype(type), 331 safe_len > UBIFS_CH_SZ ? 332 safe_len - (int)UBIFS_CH_SZ : 0); 333 if (safe_len > UBIFS_CH_SZ) 334 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 335 (void *)node + UBIFS_CH_SZ, 336 safe_len - UBIFS_CH_SZ, 0); 337 goto out_unlock; 338 } 339 if (safe_len != le32_to_cpu(ch->len)) 340 pr_err("\ttruncated node length %d\n", safe_len); 341 342 switch (type) { 343 case UBIFS_PAD_NODE: 344 { 345 const struct ubifs_pad_node *pad = node; 346 347 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len)); 348 break; 349 } 350 case UBIFS_SB_NODE: 351 { 352 const struct ubifs_sb_node *sup = node; 353 unsigned int sup_flags = le32_to_cpu(sup->flags); 354 355 pr_err("\tkey_hash %d (%s)\n", 356 (int)sup->key_hash, get_key_hash(sup->key_hash)); 357 pr_err("\tkey_fmt %d (%s)\n", 358 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 359 pr_err("\tflags %#x\n", sup_flags); 360 pr_err("\tbig_lpt %u\n", 361 !!(sup_flags & UBIFS_FLG_BIGLPT)); 362 pr_err("\tspace_fixup %u\n", 363 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 364 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); 365 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size)); 366 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); 367 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); 368 pr_err("\tmax_bud_bytes %llu\n", 369 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 370 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); 371 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); 372 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); 373 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); 374 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout)); 375 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); 376 pr_err("\tdefault_compr %u\n", 377 (int)le16_to_cpu(sup->default_compr)); 378 pr_err("\trp_size %llu\n", 379 (unsigned long long)le64_to_cpu(sup->rp_size)); 380 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); 381 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); 382 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); 383 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); 384 pr_err("\tUUID %pUB\n", sup->uuid); 385 break; 386 } 387 case UBIFS_MST_NODE: 388 { 389 const struct ubifs_mst_node *mst = node; 390 391 pr_err("\thighest_inum %llu\n", 392 (unsigned long long)le64_to_cpu(mst->highest_inum)); 393 pr_err("\tcommit number %llu\n", 394 (unsigned long long)le64_to_cpu(mst->cmt_no)); 395 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags)); 396 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); 397 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); 398 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs)); 399 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len)); 400 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); 401 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); 402 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); 403 pr_err("\tindex_size %llu\n", 404 (unsigned long long)le64_to_cpu(mst->index_size)); 405 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); 406 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); 407 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); 408 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); 409 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); 410 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); 411 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); 412 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); 413 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); 414 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); 415 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); 416 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); 417 pr_err("\ttotal_free %llu\n", 418 (unsigned long long)le64_to_cpu(mst->total_free)); 419 pr_err("\ttotal_dirty %llu\n", 420 (unsigned long long)le64_to_cpu(mst->total_dirty)); 421 pr_err("\ttotal_used %llu\n", 422 (unsigned long long)le64_to_cpu(mst->total_used)); 423 pr_err("\ttotal_dead %llu\n", 424 (unsigned long long)le64_to_cpu(mst->total_dead)); 425 pr_err("\ttotal_dark %llu\n", 426 (unsigned long long)le64_to_cpu(mst->total_dark)); 427 break; 428 } 429 case UBIFS_REF_NODE: 430 { 431 const struct ubifs_ref_node *ref = node; 432 433 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum)); 434 pr_err("\toffs %u\n", le32_to_cpu(ref->offs)); 435 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead)); 436 break; 437 } 438 case UBIFS_INO_NODE: 439 { 440 const struct ubifs_ino_node *ino = node; 441 442 key_read(c, &ino->key, &key); 443 pr_err("\tkey %s\n", 444 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 445 pr_err("\tcreat_sqnum %llu\n", 446 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 447 pr_err("\tsize %llu\n", 448 (unsigned long long)le64_to_cpu(ino->size)); 449 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink)); 450 pr_err("\tatime %lld.%u\n", 451 (long long)le64_to_cpu(ino->atime_sec), 452 le32_to_cpu(ino->atime_nsec)); 453 pr_err("\tmtime %lld.%u\n", 454 (long long)le64_to_cpu(ino->mtime_sec), 455 le32_to_cpu(ino->mtime_nsec)); 456 pr_err("\tctime %lld.%u\n", 457 (long long)le64_to_cpu(ino->ctime_sec), 458 le32_to_cpu(ino->ctime_nsec)); 459 pr_err("\tuid %u\n", le32_to_cpu(ino->uid)); 460 pr_err("\tgid %u\n", le32_to_cpu(ino->gid)); 461 pr_err("\tmode %u\n", le32_to_cpu(ino->mode)); 462 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags)); 463 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); 464 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); 465 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); 466 pr_err("\tcompr_type %#x\n", 467 (int)le16_to_cpu(ino->compr_type)); 468 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len)); 469 break; 470 } 471 case UBIFS_DENT_NODE: 472 case UBIFS_XENT_NODE: 473 { 474 const struct ubifs_dent_node *dent = node; 475 int nlen = le16_to_cpu(dent->nlen); 476 477 key_read(c, &dent->key, &key); 478 pr_err("\tkey %s\n", 479 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 480 pr_err("\tinum %llu\n", 481 (unsigned long long)le64_to_cpu(dent->inum)); 482 pr_err("\ttype %d\n", (int)dent->type); 483 pr_err("\tnlen %d\n", nlen); 484 pr_err("\tname "); 485 486 if (nlen > UBIFS_MAX_NLEN || 487 nlen > safe_len - UBIFS_DENT_NODE_SZ) 488 pr_err("(bad name length, not printing, bad or corrupted node)"); 489 else { 490 for (i = 0; i < nlen && dent->name[i]; i++) 491 pr_cont("%c", isprint(dent->name[i]) ? 492 dent->name[i] : '?'); 493 } 494 pr_cont("\n"); 495 496 break; 497 } 498 case UBIFS_DATA_NODE: 499 { 500 const struct ubifs_data_node *dn = node; 501 502 key_read(c, &dn->key, &key); 503 pr_err("\tkey %s\n", 504 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 505 pr_err("\tsize %u\n", le32_to_cpu(dn->size)); 506 pr_err("\tcompr_typ %d\n", 507 (int)le16_to_cpu(dn->compr_type)); 508 pr_err("\tdata size %u\n", 509 le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ); 510 pr_err("\tdata (length = %d):\n", 511 safe_len - (int)UBIFS_DATA_NODE_SZ); 512 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, 513 (void *)&dn->data, 514 safe_len - (int)UBIFS_DATA_NODE_SZ, 0); 515 break; 516 } 517 case UBIFS_TRUN_NODE: 518 { 519 const struct ubifs_trun_node *trun = node; 520 521 pr_err("\tinum %u\n", le32_to_cpu(trun->inum)); 522 pr_err("\told_size %llu\n", 523 (unsigned long long)le64_to_cpu(trun->old_size)); 524 pr_err("\tnew_size %llu\n", 525 (unsigned long long)le64_to_cpu(trun->new_size)); 526 break; 527 } 528 case UBIFS_IDX_NODE: 529 { 530 const struct ubifs_idx_node *idx = node; 531 int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) / 532 (ubifs_idx_node_sz(c, 1) - 533 UBIFS_IDX_NODE_SZ); 534 535 n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt); 536 pr_err("\tchild_cnt %d\n", (int)le16_to_cpu(idx->child_cnt)); 537 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level)); 538 pr_err("\tBranches:\n"); 539 540 for (i = 0; i < n && i < c->fanout; i++) { 541 const struct ubifs_branch *br; 542 543 br = ubifs_idx_branch(c, idx, i); 544 key_read(c, &br->key, &key); 545 pr_err("\t%d: LEB %d:%d len %d key %s\n", 546 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 547 le32_to_cpu(br->len), 548 dbg_snprintf_key(c, &key, key_buf, 549 DBG_KEY_BUF_LEN)); 550 } 551 break; 552 } 553 case UBIFS_CS_NODE: 554 break; 555 case UBIFS_ORPH_NODE: 556 { 557 const struct ubifs_orph_node *orph = node; 558 559 pr_err("\tcommit number %llu\n", 560 (unsigned long long) 561 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 562 pr_err("\tlast node flag %llu\n", 563 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 564 n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3; 565 pr_err("\t%d orphan inode numbers:\n", n); 566 for (i = 0; i < n; i++) 567 pr_err("\t ino %llu\n", 568 (unsigned long long)le64_to_cpu(orph->inos[i])); 569 break; 570 } 571 case UBIFS_AUTH_NODE: 572 { 573 break; 574 } 575 default: 576 pr_err("node type %d was not recognized\n", type); 577 } 578 579 out_unlock: 580 spin_unlock(&dbg_lock); 581 } 582 583 void ubifs_dump_budget_req(const struct ubifs_budget_req *req) 584 { 585 spin_lock(&dbg_lock); 586 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", 587 req->new_ino, req->dirtied_ino); 588 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n", 589 req->new_ino_d, req->dirtied_ino_d); 590 pr_err("\tnew_page %d, dirtied_page %d\n", 591 req->new_page, req->dirtied_page); 592 pr_err("\tnew_dent %d, mod_dent %d\n", 593 req->new_dent, req->mod_dent); 594 pr_err("\tidx_growth %d\n", req->idx_growth); 595 pr_err("\tdata_growth %d dd_growth %d\n", 596 req->data_growth, req->dd_growth); 597 spin_unlock(&dbg_lock); 598 } 599 600 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) 601 { 602 spin_lock(&dbg_lock); 603 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n", 604 current->pid, lst->empty_lebs, lst->idx_lebs); 605 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", 606 lst->taken_empty_lebs, lst->total_free, lst->total_dirty); 607 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", 608 lst->total_used, lst->total_dark, lst->total_dead); 609 spin_unlock(&dbg_lock); 610 } 611 612 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 613 { 614 int i; 615 struct rb_node *rb; 616 struct ubifs_bud *bud; 617 struct ubifs_gced_idx_leb *idx_gc; 618 long long available, outstanding, free; 619 620 spin_lock(&c->space_lock); 621 spin_lock(&dbg_lock); 622 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", 623 current->pid, bi->data_growth + bi->dd_growth, 624 bi->data_growth + bi->dd_growth + bi->idx_growth); 625 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", 626 bi->data_growth, bi->dd_growth, bi->idx_growth); 627 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", 628 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); 629 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", 630 bi->page_budget, bi->inode_budget, bi->dent_budget); 631 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); 632 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 633 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 634 635 if (bi != &c->bi) 636 /* 637 * If we are dumping saved budgeting data, do not print 638 * additional information which is about the current state, not 639 * the old one which corresponded to the saved budgeting data. 640 */ 641 goto out_unlock; 642 643 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 644 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 645 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", 646 atomic_long_read(&c->dirty_pg_cnt), 647 atomic_long_read(&c->dirty_zn_cnt), 648 atomic_long_read(&c->clean_zn_cnt)); 649 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); 650 651 /* If we are in R/O mode, journal heads do not exist */ 652 if (c->jheads) 653 for (i = 0; i < c->jhead_cnt; i++) 654 pr_err("\tjhead %s\t LEB %d\n", 655 dbg_jhead(c->jheads[i].wbuf.jhead), 656 c->jheads[i].wbuf.lnum); 657 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 658 bud = rb_entry(rb, struct ubifs_bud, rb); 659 pr_err("\tbud LEB %d\n", bud->lnum); 660 } 661 list_for_each_entry(bud, &c->old_buds, list) 662 pr_err("\told bud LEB %d\n", bud->lnum); 663 list_for_each_entry(idx_gc, &c->idx_gc, list) 664 pr_err("\tGC'ed idx LEB %d unmap %d\n", 665 idx_gc->lnum, idx_gc->unmap); 666 pr_err("\tcommit state %d\n", c->cmt_state); 667 668 /* Print budgeting predictions */ 669 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 670 outstanding = c->bi.data_growth + c->bi.dd_growth; 671 free = ubifs_get_free_space_nolock(c); 672 pr_err("Budgeting predictions:\n"); 673 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", 674 available, outstanding, free); 675 out_unlock: 676 spin_unlock(&dbg_lock); 677 spin_unlock(&c->space_lock); 678 } 679 680 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 681 { 682 int i, spc, dark = 0, dead = 0; 683 struct rb_node *rb; 684 struct ubifs_bud *bud; 685 686 spc = lp->free + lp->dirty; 687 if (spc < c->dead_wm) 688 dead = spc; 689 else 690 dark = ubifs_calc_dark(c, spc); 691 692 if (lp->flags & LPROPS_INDEX) 693 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", 694 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 695 lp->flags); 696 else 697 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", 698 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 699 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 700 701 if (lp->flags & LPROPS_TAKEN) { 702 if (lp->flags & LPROPS_INDEX) 703 pr_cont("index, taken"); 704 else 705 pr_cont("taken"); 706 } else { 707 const char *s; 708 709 if (lp->flags & LPROPS_INDEX) { 710 switch (lp->flags & LPROPS_CAT_MASK) { 711 case LPROPS_DIRTY_IDX: 712 s = "dirty index"; 713 break; 714 case LPROPS_FRDI_IDX: 715 s = "freeable index"; 716 break; 717 default: 718 s = "index"; 719 } 720 } else { 721 switch (lp->flags & LPROPS_CAT_MASK) { 722 case LPROPS_UNCAT: 723 s = "not categorized"; 724 break; 725 case LPROPS_DIRTY: 726 s = "dirty"; 727 break; 728 case LPROPS_FREE: 729 s = "free"; 730 break; 731 case LPROPS_EMPTY: 732 s = "empty"; 733 break; 734 case LPROPS_FREEABLE: 735 s = "freeable"; 736 break; 737 default: 738 s = NULL; 739 break; 740 } 741 } 742 pr_cont("%s", s); 743 } 744 745 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 746 bud = rb_entry(rb, struct ubifs_bud, rb); 747 if (bud->lnum == lp->lnum) { 748 int head = 0; 749 for (i = 0; i < c->jhead_cnt; i++) { 750 /* 751 * Note, if we are in R/O mode or in the middle 752 * of mounting/re-mounting, the write-buffers do 753 * not exist. 754 */ 755 if (c->jheads && 756 lp->lnum == c->jheads[i].wbuf.lnum) { 757 pr_cont(", jhead %s", dbg_jhead(i)); 758 head = 1; 759 } 760 } 761 if (!head) 762 pr_cont(", bud of jhead %s", 763 dbg_jhead(bud->jhead)); 764 } 765 } 766 if (lp->lnum == c->gc_lnum) 767 pr_cont(", GC LEB"); 768 pr_cont(")\n"); 769 } 770 771 void ubifs_dump_lprops(struct ubifs_info *c) 772 { 773 int lnum, err; 774 struct ubifs_lprops lp; 775 struct ubifs_lp_stats lst; 776 777 pr_err("(pid %d) start dumping LEB properties\n", current->pid); 778 ubifs_get_lp_stats(c, &lst); 779 ubifs_dump_lstats(&lst); 780 781 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 782 err = ubifs_read_one_lp(c, lnum, &lp); 783 if (err) { 784 ubifs_err(c, "cannot read lprops for LEB %d", lnum); 785 continue; 786 } 787 788 ubifs_dump_lprop(c, &lp); 789 } 790 pr_err("(pid %d) finish dumping LEB properties\n", current->pid); 791 } 792 793 void ubifs_dump_lpt_info(struct ubifs_info *c) 794 { 795 int i; 796 797 spin_lock(&dbg_lock); 798 pr_err("(pid %d) dumping LPT information\n", current->pid); 799 pr_err("\tlpt_sz: %lld\n", c->lpt_sz); 800 pr_err("\tpnode_sz: %d\n", c->pnode_sz); 801 pr_err("\tnnode_sz: %d\n", c->nnode_sz); 802 pr_err("\tltab_sz: %d\n", c->ltab_sz); 803 pr_err("\tlsave_sz: %d\n", c->lsave_sz); 804 pr_err("\tbig_lpt: %u\n", c->big_lpt); 805 pr_err("\tlpt_hght: %d\n", c->lpt_hght); 806 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt); 807 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt); 808 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 809 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 810 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt); 811 pr_err("\tspace_bits: %d\n", c->space_bits); 812 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 813 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 814 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 815 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits); 816 pr_err("\tlnum_bits: %d\n", c->lnum_bits); 817 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 818 pr_err("\tLPT head is at %d:%d\n", 819 c->nhead_lnum, c->nhead_offs); 820 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); 821 if (c->big_lpt) 822 pr_err("\tLPT lsave is at %d:%d\n", 823 c->lsave_lnum, c->lsave_offs); 824 for (i = 0; i < c->lpt_lebs; i++) 825 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", 826 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, 827 c->ltab[i].tgc, c->ltab[i].cmt); 828 spin_unlock(&dbg_lock); 829 } 830 831 void ubifs_dump_leb(const struct ubifs_info *c, int lnum) 832 { 833 struct ubifs_scan_leb *sleb; 834 struct ubifs_scan_node *snod; 835 void *buf; 836 837 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); 838 839 buf = __vmalloc(c->leb_size, GFP_NOFS); 840 if (!buf) { 841 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum); 842 return; 843 } 844 845 sleb = ubifs_scan(c, lnum, 0, buf, 0); 846 if (IS_ERR(sleb)) { 847 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb)); 848 goto out; 849 } 850 851 pr_err("LEB %d has %d nodes ending at %d\n", lnum, 852 sleb->nodes_cnt, sleb->endpt); 853 854 list_for_each_entry(snod, &sleb->nodes, list) { 855 cond_resched(); 856 pr_err("Dumping node at LEB %d:%d len %d\n", lnum, 857 snod->offs, snod->len); 858 ubifs_dump_node(c, snod->node, c->leb_size - snod->offs); 859 } 860 861 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); 862 ubifs_scan_destroy(sleb); 863 864 out: 865 vfree(buf); 866 } 867 868 void ubifs_dump_znode(const struct ubifs_info *c, 869 const struct ubifs_znode *znode) 870 { 871 int n; 872 const struct ubifs_zbranch *zbr; 873 char key_buf[DBG_KEY_BUF_LEN]; 874 875 spin_lock(&dbg_lock); 876 if (znode->parent) 877 zbr = &znode->parent->zbranch[znode->iip]; 878 else 879 zbr = &c->zroot; 880 881 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", 882 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, 883 znode->level, znode->child_cnt, znode->flags); 884 885 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 886 spin_unlock(&dbg_lock); 887 return; 888 } 889 890 pr_err("zbranches:\n"); 891 for (n = 0; n < znode->child_cnt; n++) { 892 zbr = &znode->zbranch[n]; 893 if (znode->level > 0) 894 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", 895 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 896 dbg_snprintf_key(c, &zbr->key, key_buf, 897 DBG_KEY_BUF_LEN)); 898 else 899 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", 900 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 901 dbg_snprintf_key(c, &zbr->key, key_buf, 902 DBG_KEY_BUF_LEN)); 903 } 904 spin_unlock(&dbg_lock); 905 } 906 907 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 908 { 909 int i; 910 911 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", 912 current->pid, cat, heap->cnt); 913 for (i = 0; i < heap->cnt; i++) { 914 struct ubifs_lprops *lprops = heap->arr[i]; 915 916 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", 917 i, lprops->lnum, lprops->hpos, lprops->free, 918 lprops->dirty, lprops->flags); 919 } 920 pr_err("(pid %d) finish dumping heap\n", current->pid); 921 } 922 923 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 924 struct ubifs_nnode *parent, int iip) 925 { 926 int i; 927 928 pr_err("(pid %d) dumping pnode:\n", current->pid); 929 pr_err("\taddress %zx parent %zx cnext %zx\n", 930 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 931 pr_err("\tflags %lu iip %d level %d num %d\n", 932 pnode->flags, iip, pnode->level, pnode->num); 933 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 934 struct ubifs_lprops *lp = &pnode->lprops[i]; 935 936 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", 937 i, lp->free, lp->dirty, lp->flags, lp->lnum); 938 } 939 } 940 941 void ubifs_dump_tnc(struct ubifs_info *c) 942 { 943 struct ubifs_znode *znode; 944 int level; 945 946 pr_err("\n"); 947 pr_err("(pid %d) start dumping TNC tree\n", current->pid); 948 if (c->zroot.znode) { 949 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL); 950 level = znode->level; 951 pr_err("== Level %d ==\n", level); 952 while (znode) { 953 if (level != znode->level) { 954 level = znode->level; 955 pr_err("== Level %d ==\n", level); 956 } 957 ubifs_dump_znode(c, znode); 958 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode); 959 } 960 } else { 961 pr_err("empty TNC tree in memory\n"); 962 } 963 pr_err("(pid %d) finish dumping TNC tree\n", current->pid); 964 } 965 966 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 967 void *priv) 968 { 969 ubifs_dump_znode(c, znode); 970 return 0; 971 } 972 973 /** 974 * ubifs_dump_index - dump the on-flash index. 975 * @c: UBIFS file-system description object 976 * 977 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' 978 * which dumps only in-memory znodes and does not read znodes which from flash. 979 */ 980 void ubifs_dump_index(struct ubifs_info *c) 981 { 982 dbg_walk_index(c, NULL, dump_znode, NULL); 983 } 984 985 /** 986 * dbg_save_space_info - save information about flash space. 987 * @c: UBIFS file-system description object 988 * 989 * This function saves information about UBIFS free space, dirty space, etc, in 990 * order to check it later. 991 */ 992 void dbg_save_space_info(struct ubifs_info *c) 993 { 994 struct ubifs_debug_info *d = c->dbg; 995 int freeable_cnt; 996 997 spin_lock(&c->space_lock); 998 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 999 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 1000 d->saved_idx_gc_cnt = c->idx_gc_cnt; 1001 1002 /* 1003 * We use a dirty hack here and zero out @c->freeable_cnt, because it 1004 * affects the free space calculations, and UBIFS might not know about 1005 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 1006 * only when we read their lprops, and we do this only lazily, upon the 1007 * need. So at any given point of time @c->freeable_cnt might be not 1008 * exactly accurate. 1009 * 1010 * Just one example about the issue we hit when we did not zero 1011 * @c->freeable_cnt. 1012 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 1013 * amount of free space in @d->saved_free 1014 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 1015 * information from flash, where we cache LEBs from various 1016 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 1017 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 1018 * -> 'ubifs_get_pnode()' -> 'update_cats()' 1019 * -> 'ubifs_add_to_cat()'). 1020 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 1021 * becomes %1. 1022 * 4. We calculate the amount of free space when the re-mount is 1023 * finished in 'dbg_check_space_info()' and it does not match 1024 * @d->saved_free. 1025 */ 1026 freeable_cnt = c->freeable_cnt; 1027 c->freeable_cnt = 0; 1028 d->saved_free = ubifs_get_free_space_nolock(c); 1029 c->freeable_cnt = freeable_cnt; 1030 spin_unlock(&c->space_lock); 1031 } 1032 1033 /** 1034 * dbg_check_space_info - check flash space information. 1035 * @c: UBIFS file-system description object 1036 * 1037 * This function compares current flash space information with the information 1038 * which was saved when the 'dbg_save_space_info()' function was called. 1039 * Returns zero if the information has not changed, and %-EINVAL if it has 1040 * changed. 1041 */ 1042 int dbg_check_space_info(struct ubifs_info *c) 1043 { 1044 struct ubifs_debug_info *d = c->dbg; 1045 struct ubifs_lp_stats lst; 1046 long long free; 1047 int freeable_cnt; 1048 1049 spin_lock(&c->space_lock); 1050 freeable_cnt = c->freeable_cnt; 1051 c->freeable_cnt = 0; 1052 free = ubifs_get_free_space_nolock(c); 1053 c->freeable_cnt = freeable_cnt; 1054 spin_unlock(&c->space_lock); 1055 1056 if (free != d->saved_free) { 1057 ubifs_err(c, "free space changed from %lld to %lld", 1058 d->saved_free, free); 1059 goto out; 1060 } 1061 1062 return 0; 1063 1064 out: 1065 ubifs_msg(c, "saved lprops statistics dump"); 1066 ubifs_dump_lstats(&d->saved_lst); 1067 ubifs_msg(c, "saved budgeting info dump"); 1068 ubifs_dump_budg(c, &d->saved_bi); 1069 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1070 ubifs_msg(c, "current lprops statistics dump"); 1071 ubifs_get_lp_stats(c, &lst); 1072 ubifs_dump_lstats(&lst); 1073 ubifs_msg(c, "current budgeting info dump"); 1074 ubifs_dump_budg(c, &c->bi); 1075 dump_stack(); 1076 return -EINVAL; 1077 } 1078 1079 /** 1080 * dbg_check_synced_i_size - check synchronized inode size. 1081 * @c: UBIFS file-system description object 1082 * @inode: inode to check 1083 * 1084 * If inode is clean, synchronized inode size has to be equivalent to current 1085 * inode size. This function has to be called only for locked inodes (@i_mutex 1086 * has to be locked). Returns %0 if synchronized inode size if correct, and 1087 * %-EINVAL if not. 1088 */ 1089 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1090 { 1091 int err = 0; 1092 struct ubifs_inode *ui = ubifs_inode(inode); 1093 1094 if (!dbg_is_chk_gen(c)) 1095 return 0; 1096 if (!S_ISREG(inode->i_mode)) 1097 return 0; 1098 1099 mutex_lock(&ui->ui_mutex); 1100 spin_lock(&ui->ui_lock); 1101 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1102 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean", 1103 ui->ui_size, ui->synced_i_size); 1104 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1105 inode->i_mode, i_size_read(inode)); 1106 dump_stack(); 1107 err = -EINVAL; 1108 } 1109 spin_unlock(&ui->ui_lock); 1110 mutex_unlock(&ui->ui_mutex); 1111 return err; 1112 } 1113 1114 /* 1115 * dbg_check_dir - check directory inode size and link count. 1116 * @c: UBIFS file-system description object 1117 * @dir: the directory to calculate size for 1118 * @size: the result is returned here 1119 * 1120 * This function makes sure that directory size and link count are correct. 1121 * Returns zero in case of success and a negative error code in case of 1122 * failure. 1123 * 1124 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1125 * calling this function. 1126 */ 1127 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1128 { 1129 unsigned int nlink = 2; 1130 union ubifs_key key; 1131 struct ubifs_dent_node *dent, *pdent = NULL; 1132 struct fscrypt_name nm = {0}; 1133 loff_t size = UBIFS_INO_NODE_SZ; 1134 1135 if (!dbg_is_chk_gen(c)) 1136 return 0; 1137 1138 if (!S_ISDIR(dir->i_mode)) 1139 return 0; 1140 1141 lowest_dent_key(c, &key, dir->i_ino); 1142 while (1) { 1143 int err; 1144 1145 dent = ubifs_tnc_next_ent(c, &key, &nm); 1146 if (IS_ERR(dent)) { 1147 err = PTR_ERR(dent); 1148 if (err == -ENOENT) 1149 break; 1150 kfree(pdent); 1151 return err; 1152 } 1153 1154 fname_name(&nm) = dent->name; 1155 fname_len(&nm) = le16_to_cpu(dent->nlen); 1156 size += CALC_DENT_SIZE(fname_len(&nm)); 1157 if (dent->type == UBIFS_ITYPE_DIR) 1158 nlink += 1; 1159 kfree(pdent); 1160 pdent = dent; 1161 key_read(c, &dent->key, &key); 1162 } 1163 kfree(pdent); 1164 1165 if (i_size_read(dir) != size) { 1166 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu", 1167 dir->i_ino, (unsigned long long)i_size_read(dir), 1168 (unsigned long long)size); 1169 ubifs_dump_inode(c, dir); 1170 dump_stack(); 1171 return -EINVAL; 1172 } 1173 if (dir->i_nlink != nlink) { 1174 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u", 1175 dir->i_ino, dir->i_nlink, nlink); 1176 ubifs_dump_inode(c, dir); 1177 dump_stack(); 1178 return -EINVAL; 1179 } 1180 1181 return 0; 1182 } 1183 1184 /** 1185 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1186 * @c: UBIFS file-system description object 1187 * @zbr1: first zbranch 1188 * @zbr2: following zbranch 1189 * 1190 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1191 * names of the direntries/xentries which are referred by the keys. This 1192 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1193 * sure the name of direntry/xentry referred by @zbr1 is less than 1194 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1195 * and a negative error code in case of failure. 1196 */ 1197 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1198 struct ubifs_zbranch *zbr2) 1199 { 1200 int err, nlen1, nlen2, cmp; 1201 struct ubifs_dent_node *dent1, *dent2; 1202 union ubifs_key key; 1203 char key_buf[DBG_KEY_BUF_LEN]; 1204 1205 ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key)); 1206 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1207 if (!dent1) 1208 return -ENOMEM; 1209 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1210 if (!dent2) { 1211 err = -ENOMEM; 1212 goto out_free; 1213 } 1214 1215 err = ubifs_tnc_read_node(c, zbr1, dent1); 1216 if (err) 1217 goto out_free; 1218 err = ubifs_validate_entry(c, dent1); 1219 if (err) 1220 goto out_free; 1221 1222 err = ubifs_tnc_read_node(c, zbr2, dent2); 1223 if (err) 1224 goto out_free; 1225 err = ubifs_validate_entry(c, dent2); 1226 if (err) 1227 goto out_free; 1228 1229 /* Make sure node keys are the same as in zbranch */ 1230 err = 1; 1231 key_read(c, &dent1->key, &key); 1232 if (keys_cmp(c, &zbr1->key, &key)) { 1233 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum, 1234 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1235 DBG_KEY_BUF_LEN)); 1236 ubifs_err(c, "but it should have key %s according to tnc", 1237 dbg_snprintf_key(c, &zbr1->key, key_buf, 1238 DBG_KEY_BUF_LEN)); 1239 ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ); 1240 goto out_free; 1241 } 1242 1243 key_read(c, &dent2->key, &key); 1244 if (keys_cmp(c, &zbr2->key, &key)) { 1245 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum, 1246 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1247 DBG_KEY_BUF_LEN)); 1248 ubifs_err(c, "but it should have key %s according to tnc", 1249 dbg_snprintf_key(c, &zbr2->key, key_buf, 1250 DBG_KEY_BUF_LEN)); 1251 ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ); 1252 goto out_free; 1253 } 1254 1255 nlen1 = le16_to_cpu(dent1->nlen); 1256 nlen2 = le16_to_cpu(dent2->nlen); 1257 1258 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1259 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1260 err = 0; 1261 goto out_free; 1262 } 1263 if (cmp == 0 && nlen1 == nlen2) 1264 ubifs_err(c, "2 xent/dent nodes with the same name"); 1265 else 1266 ubifs_err(c, "bad order of colliding key %s", 1267 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 1268 1269 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1270 ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ); 1271 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1272 ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ); 1273 1274 out_free: 1275 kfree(dent2); 1276 kfree(dent1); 1277 return err; 1278 } 1279 1280 /** 1281 * dbg_check_znode - check if znode is all right. 1282 * @c: UBIFS file-system description object 1283 * @zbr: zbranch which points to this znode 1284 * 1285 * This function makes sure that znode referred to by @zbr is all right. 1286 * Returns zero if it is, and %-EINVAL if it is not. 1287 */ 1288 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1289 { 1290 struct ubifs_znode *znode = zbr->znode; 1291 struct ubifs_znode *zp = znode->parent; 1292 int n, err, cmp; 1293 1294 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1295 err = 1; 1296 goto out; 1297 } 1298 if (znode->level < 0) { 1299 err = 2; 1300 goto out; 1301 } 1302 if (znode->iip < 0 || znode->iip >= c->fanout) { 1303 err = 3; 1304 goto out; 1305 } 1306 1307 if (zbr->len == 0) 1308 /* Only dirty zbranch may have no on-flash nodes */ 1309 if (!ubifs_zn_dirty(znode)) { 1310 err = 4; 1311 goto out; 1312 } 1313 1314 if (ubifs_zn_dirty(znode)) { 1315 /* 1316 * If znode is dirty, its parent has to be dirty as well. The 1317 * order of the operation is important, so we have to have 1318 * memory barriers. 1319 */ 1320 smp_mb(); 1321 if (zp && !ubifs_zn_dirty(zp)) { 1322 /* 1323 * The dirty flag is atomic and is cleared outside the 1324 * TNC mutex, so znode's dirty flag may now have 1325 * been cleared. The child is always cleared before the 1326 * parent, so we just need to check again. 1327 */ 1328 smp_mb(); 1329 if (ubifs_zn_dirty(znode)) { 1330 err = 5; 1331 goto out; 1332 } 1333 } 1334 } 1335 1336 if (zp) { 1337 const union ubifs_key *min, *max; 1338 1339 if (znode->level != zp->level - 1) { 1340 err = 6; 1341 goto out; 1342 } 1343 1344 /* Make sure the 'parent' pointer in our znode is correct */ 1345 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1346 if (!err) { 1347 /* This zbranch does not exist in the parent */ 1348 err = 7; 1349 goto out; 1350 } 1351 1352 if (znode->iip >= zp->child_cnt) { 1353 err = 8; 1354 goto out; 1355 } 1356 1357 if (znode->iip != n) { 1358 /* This may happen only in case of collisions */ 1359 if (keys_cmp(c, &zp->zbranch[n].key, 1360 &zp->zbranch[znode->iip].key)) { 1361 err = 9; 1362 goto out; 1363 } 1364 n = znode->iip; 1365 } 1366 1367 /* 1368 * Make sure that the first key in our znode is greater than or 1369 * equal to the key in the pointing zbranch. 1370 */ 1371 min = &zbr->key; 1372 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1373 if (cmp == 1) { 1374 err = 10; 1375 goto out; 1376 } 1377 1378 if (n + 1 < zp->child_cnt) { 1379 max = &zp->zbranch[n + 1].key; 1380 1381 /* 1382 * Make sure the last key in our znode is less or 1383 * equivalent than the key in the zbranch which goes 1384 * after our pointing zbranch. 1385 */ 1386 cmp = keys_cmp(c, max, 1387 &znode->zbranch[znode->child_cnt - 1].key); 1388 if (cmp == -1) { 1389 err = 11; 1390 goto out; 1391 } 1392 } 1393 } else { 1394 /* This may only be root znode */ 1395 if (zbr != &c->zroot) { 1396 err = 12; 1397 goto out; 1398 } 1399 } 1400 1401 /* 1402 * Make sure that next key is greater or equivalent then the previous 1403 * one. 1404 */ 1405 for (n = 1; n < znode->child_cnt; n++) { 1406 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1407 &znode->zbranch[n].key); 1408 if (cmp > 0) { 1409 err = 13; 1410 goto out; 1411 } 1412 if (cmp == 0) { 1413 /* This can only be keys with colliding hash */ 1414 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1415 err = 14; 1416 goto out; 1417 } 1418 1419 if (znode->level != 0 || c->replaying) 1420 continue; 1421 1422 /* 1423 * Colliding keys should follow binary order of 1424 * corresponding xentry/dentry names. 1425 */ 1426 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1427 &znode->zbranch[n]); 1428 if (err < 0) 1429 return err; 1430 if (err) { 1431 err = 15; 1432 goto out; 1433 } 1434 } 1435 } 1436 1437 for (n = 0; n < znode->child_cnt; n++) { 1438 if (!znode->zbranch[n].znode && 1439 (znode->zbranch[n].lnum == 0 || 1440 znode->zbranch[n].len == 0)) { 1441 err = 16; 1442 goto out; 1443 } 1444 1445 if (znode->zbranch[n].lnum != 0 && 1446 znode->zbranch[n].len == 0) { 1447 err = 17; 1448 goto out; 1449 } 1450 1451 if (znode->zbranch[n].lnum == 0 && 1452 znode->zbranch[n].len != 0) { 1453 err = 18; 1454 goto out; 1455 } 1456 1457 if (znode->zbranch[n].lnum == 0 && 1458 znode->zbranch[n].offs != 0) { 1459 err = 19; 1460 goto out; 1461 } 1462 1463 if (znode->level != 0 && znode->zbranch[n].znode) 1464 if (znode->zbranch[n].znode->parent != znode) { 1465 err = 20; 1466 goto out; 1467 } 1468 } 1469 1470 return 0; 1471 1472 out: 1473 ubifs_err(c, "failed, error %d", err); 1474 ubifs_msg(c, "dump of the znode"); 1475 ubifs_dump_znode(c, znode); 1476 if (zp) { 1477 ubifs_msg(c, "dump of the parent znode"); 1478 ubifs_dump_znode(c, zp); 1479 } 1480 dump_stack(); 1481 return -EINVAL; 1482 } 1483 1484 /** 1485 * dbg_check_tnc - check TNC tree. 1486 * @c: UBIFS file-system description object 1487 * @extra: do extra checks that are possible at start commit 1488 * 1489 * This function traverses whole TNC tree and checks every znode. Returns zero 1490 * if everything is all right and %-EINVAL if something is wrong with TNC. 1491 */ 1492 int dbg_check_tnc(struct ubifs_info *c, int extra) 1493 { 1494 struct ubifs_znode *znode; 1495 long clean_cnt = 0, dirty_cnt = 0; 1496 int err, last; 1497 1498 if (!dbg_is_chk_index(c)) 1499 return 0; 1500 1501 ubifs_assert(c, mutex_is_locked(&c->tnc_mutex)); 1502 if (!c->zroot.znode) 1503 return 0; 1504 1505 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1506 while (1) { 1507 struct ubifs_znode *prev; 1508 struct ubifs_zbranch *zbr; 1509 1510 if (!znode->parent) 1511 zbr = &c->zroot; 1512 else 1513 zbr = &znode->parent->zbranch[znode->iip]; 1514 1515 err = dbg_check_znode(c, zbr); 1516 if (err) 1517 return err; 1518 1519 if (extra) { 1520 if (ubifs_zn_dirty(znode)) 1521 dirty_cnt += 1; 1522 else 1523 clean_cnt += 1; 1524 } 1525 1526 prev = znode; 1527 znode = ubifs_tnc_postorder_next(c, znode); 1528 if (!znode) 1529 break; 1530 1531 /* 1532 * If the last key of this znode is equivalent to the first key 1533 * of the next znode (collision), then check order of the keys. 1534 */ 1535 last = prev->child_cnt - 1; 1536 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1537 !keys_cmp(c, &prev->zbranch[last].key, 1538 &znode->zbranch[0].key)) { 1539 err = dbg_check_key_order(c, &prev->zbranch[last], 1540 &znode->zbranch[0]); 1541 if (err < 0) 1542 return err; 1543 if (err) { 1544 ubifs_msg(c, "first znode"); 1545 ubifs_dump_znode(c, prev); 1546 ubifs_msg(c, "second znode"); 1547 ubifs_dump_znode(c, znode); 1548 return -EINVAL; 1549 } 1550 } 1551 } 1552 1553 if (extra) { 1554 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1555 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld", 1556 atomic_long_read(&c->clean_zn_cnt), 1557 clean_cnt); 1558 return -EINVAL; 1559 } 1560 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1561 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld", 1562 atomic_long_read(&c->dirty_zn_cnt), 1563 dirty_cnt); 1564 return -EINVAL; 1565 } 1566 } 1567 1568 return 0; 1569 } 1570 1571 /** 1572 * dbg_walk_index - walk the on-flash index. 1573 * @c: UBIFS file-system description object 1574 * @leaf_cb: called for each leaf node 1575 * @znode_cb: called for each indexing node 1576 * @priv: private data which is passed to callbacks 1577 * 1578 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1579 * node and @znode_cb for each indexing node. Returns zero in case of success 1580 * and a negative error code in case of failure. 1581 * 1582 * It would be better if this function removed every znode it pulled to into 1583 * the TNC, so that the behavior more closely matched the non-debugging 1584 * behavior. 1585 */ 1586 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1587 dbg_znode_callback znode_cb, void *priv) 1588 { 1589 int err; 1590 struct ubifs_zbranch *zbr; 1591 struct ubifs_znode *znode, *child; 1592 1593 mutex_lock(&c->tnc_mutex); 1594 /* If the root indexing node is not in TNC - pull it */ 1595 if (!c->zroot.znode) { 1596 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1597 if (IS_ERR(c->zroot.znode)) { 1598 err = PTR_ERR(c->zroot.znode); 1599 c->zroot.znode = NULL; 1600 goto out_unlock; 1601 } 1602 } 1603 1604 /* 1605 * We are going to traverse the indexing tree in the postorder manner. 1606 * Go down and find the leftmost indexing node where we are going to 1607 * start from. 1608 */ 1609 znode = c->zroot.znode; 1610 while (znode->level > 0) { 1611 zbr = &znode->zbranch[0]; 1612 child = zbr->znode; 1613 if (!child) { 1614 child = ubifs_load_znode(c, zbr, znode, 0); 1615 if (IS_ERR(child)) { 1616 err = PTR_ERR(child); 1617 goto out_unlock; 1618 } 1619 } 1620 1621 znode = child; 1622 } 1623 1624 /* Iterate over all indexing nodes */ 1625 while (1) { 1626 int idx; 1627 1628 cond_resched(); 1629 1630 if (znode_cb) { 1631 err = znode_cb(c, znode, priv); 1632 if (err) { 1633 ubifs_err(c, "znode checking function returned error %d", 1634 err); 1635 ubifs_dump_znode(c, znode); 1636 goto out_dump; 1637 } 1638 } 1639 if (leaf_cb && znode->level == 0) { 1640 for (idx = 0; idx < znode->child_cnt; idx++) { 1641 zbr = &znode->zbranch[idx]; 1642 err = leaf_cb(c, zbr, priv); 1643 if (err) { 1644 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d", 1645 err, zbr->lnum, zbr->offs); 1646 goto out_dump; 1647 } 1648 } 1649 } 1650 1651 if (!znode->parent) 1652 break; 1653 1654 idx = znode->iip + 1; 1655 znode = znode->parent; 1656 if (idx < znode->child_cnt) { 1657 /* Switch to the next index in the parent */ 1658 zbr = &znode->zbranch[idx]; 1659 child = zbr->znode; 1660 if (!child) { 1661 child = ubifs_load_znode(c, zbr, znode, idx); 1662 if (IS_ERR(child)) { 1663 err = PTR_ERR(child); 1664 goto out_unlock; 1665 } 1666 zbr->znode = child; 1667 } 1668 znode = child; 1669 } else 1670 /* 1671 * This is the last child, switch to the parent and 1672 * continue. 1673 */ 1674 continue; 1675 1676 /* Go to the lowest leftmost znode in the new sub-tree */ 1677 while (znode->level > 0) { 1678 zbr = &znode->zbranch[0]; 1679 child = zbr->znode; 1680 if (!child) { 1681 child = ubifs_load_znode(c, zbr, znode, 0); 1682 if (IS_ERR(child)) { 1683 err = PTR_ERR(child); 1684 goto out_unlock; 1685 } 1686 zbr->znode = child; 1687 } 1688 znode = child; 1689 } 1690 } 1691 1692 mutex_unlock(&c->tnc_mutex); 1693 return 0; 1694 1695 out_dump: 1696 if (znode->parent) 1697 zbr = &znode->parent->zbranch[znode->iip]; 1698 else 1699 zbr = &c->zroot; 1700 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1701 ubifs_dump_znode(c, znode); 1702 out_unlock: 1703 mutex_unlock(&c->tnc_mutex); 1704 return err; 1705 } 1706 1707 /** 1708 * add_size - add znode size to partially calculated index size. 1709 * @c: UBIFS file-system description object 1710 * @znode: znode to add size for 1711 * @priv: partially calculated index size 1712 * 1713 * This is a helper function for 'dbg_check_idx_size()' which is called for 1714 * every indexing node and adds its size to the 'long long' variable pointed to 1715 * by @priv. 1716 */ 1717 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1718 { 1719 long long *idx_size = priv; 1720 int add; 1721 1722 add = ubifs_idx_node_sz(c, znode->child_cnt); 1723 add = ALIGN(add, 8); 1724 *idx_size += add; 1725 return 0; 1726 } 1727 1728 /** 1729 * dbg_check_idx_size - check index size. 1730 * @c: UBIFS file-system description object 1731 * @idx_size: size to check 1732 * 1733 * This function walks the UBIFS index, calculates its size and checks that the 1734 * size is equivalent to @idx_size. Returns zero in case of success and a 1735 * negative error code in case of failure. 1736 */ 1737 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1738 { 1739 int err; 1740 long long calc = 0; 1741 1742 if (!dbg_is_chk_index(c)) 1743 return 0; 1744 1745 err = dbg_walk_index(c, NULL, add_size, &calc); 1746 if (err) { 1747 ubifs_err(c, "error %d while walking the index", err); 1748 goto out_err; 1749 } 1750 1751 if (calc != idx_size) { 1752 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld", 1753 calc, idx_size); 1754 dump_stack(); 1755 err = -EINVAL; 1756 goto out_err; 1757 } 1758 1759 return 0; 1760 1761 out_err: 1762 ubifs_destroy_tnc_tree(c); 1763 return err; 1764 } 1765 1766 /** 1767 * struct fsck_inode - information about an inode used when checking the file-system. 1768 * @rb: link in the RB-tree of inodes 1769 * @inum: inode number 1770 * @mode: inode type, permissions, etc 1771 * @nlink: inode link count 1772 * @xattr_cnt: count of extended attributes 1773 * @references: how many directory/xattr entries refer this inode (calculated 1774 * while walking the index) 1775 * @calc_cnt: for directory inode count of child directories 1776 * @size: inode size (read from on-flash inode) 1777 * @xattr_sz: summary size of all extended attributes (read from on-flash 1778 * inode) 1779 * @calc_sz: for directories calculated directory size 1780 * @calc_xcnt: count of extended attributes 1781 * @calc_xsz: calculated summary size of all extended attributes 1782 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1783 * inode (read from on-flash inode) 1784 * @calc_xnms: calculated sum of lengths of all extended attribute names 1785 */ 1786 struct fsck_inode { 1787 struct rb_node rb; 1788 ino_t inum; 1789 umode_t mode; 1790 unsigned int nlink; 1791 unsigned int xattr_cnt; 1792 int references; 1793 int calc_cnt; 1794 long long size; 1795 unsigned int xattr_sz; 1796 long long calc_sz; 1797 long long calc_xcnt; 1798 long long calc_xsz; 1799 unsigned int xattr_nms; 1800 long long calc_xnms; 1801 }; 1802 1803 /** 1804 * struct fsck_data - private FS checking information. 1805 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1806 */ 1807 struct fsck_data { 1808 struct rb_root inodes; 1809 }; 1810 1811 /** 1812 * add_inode - add inode information to RB-tree of inodes. 1813 * @c: UBIFS file-system description object 1814 * @fsckd: FS checking information 1815 * @ino: raw UBIFS inode to add 1816 * 1817 * This is a helper function for 'check_leaf()' which adds information about 1818 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1819 * case of success and a negative error code in case of failure. 1820 */ 1821 static struct fsck_inode *add_inode(struct ubifs_info *c, 1822 struct fsck_data *fsckd, 1823 struct ubifs_ino_node *ino) 1824 { 1825 struct rb_node **p, *parent = NULL; 1826 struct fsck_inode *fscki; 1827 ino_t inum = key_inum_flash(c, &ino->key); 1828 struct inode *inode; 1829 struct ubifs_inode *ui; 1830 1831 p = &fsckd->inodes.rb_node; 1832 while (*p) { 1833 parent = *p; 1834 fscki = rb_entry(parent, struct fsck_inode, rb); 1835 if (inum < fscki->inum) 1836 p = &(*p)->rb_left; 1837 else if (inum > fscki->inum) 1838 p = &(*p)->rb_right; 1839 else 1840 return fscki; 1841 } 1842 1843 if (inum > c->highest_inum) { 1844 ubifs_err(c, "too high inode number, max. is %lu", 1845 (unsigned long)c->highest_inum); 1846 return ERR_PTR(-EINVAL); 1847 } 1848 1849 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1850 if (!fscki) 1851 return ERR_PTR(-ENOMEM); 1852 1853 inode = ilookup(c->vfs_sb, inum); 1854 1855 fscki->inum = inum; 1856 /* 1857 * If the inode is present in the VFS inode cache, use it instead of 1858 * the on-flash inode which might be out-of-date. E.g., the size might 1859 * be out-of-date. If we do not do this, the following may happen, for 1860 * example: 1861 * 1. A power cut happens 1862 * 2. We mount the file-system R/O, the replay process fixes up the 1863 * inode size in the VFS cache, but on on-flash. 1864 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1865 * size. 1866 */ 1867 if (!inode) { 1868 fscki->nlink = le32_to_cpu(ino->nlink); 1869 fscki->size = le64_to_cpu(ino->size); 1870 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1871 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1872 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1873 fscki->mode = le32_to_cpu(ino->mode); 1874 } else { 1875 ui = ubifs_inode(inode); 1876 fscki->nlink = inode->i_nlink; 1877 fscki->size = inode->i_size; 1878 fscki->xattr_cnt = ui->xattr_cnt; 1879 fscki->xattr_sz = ui->xattr_size; 1880 fscki->xattr_nms = ui->xattr_names; 1881 fscki->mode = inode->i_mode; 1882 iput(inode); 1883 } 1884 1885 if (S_ISDIR(fscki->mode)) { 1886 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1887 fscki->calc_cnt = 2; 1888 } 1889 1890 rb_link_node(&fscki->rb, parent, p); 1891 rb_insert_color(&fscki->rb, &fsckd->inodes); 1892 1893 return fscki; 1894 } 1895 1896 /** 1897 * search_inode - search inode in the RB-tree of inodes. 1898 * @fsckd: FS checking information 1899 * @inum: inode number to search 1900 * 1901 * This is a helper function for 'check_leaf()' which searches inode @inum in 1902 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1903 * the inode was not found. 1904 */ 1905 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1906 { 1907 struct rb_node *p; 1908 struct fsck_inode *fscki; 1909 1910 p = fsckd->inodes.rb_node; 1911 while (p) { 1912 fscki = rb_entry(p, struct fsck_inode, rb); 1913 if (inum < fscki->inum) 1914 p = p->rb_left; 1915 else if (inum > fscki->inum) 1916 p = p->rb_right; 1917 else 1918 return fscki; 1919 } 1920 return NULL; 1921 } 1922 1923 /** 1924 * read_add_inode - read inode node and add it to RB-tree of inodes. 1925 * @c: UBIFS file-system description object 1926 * @fsckd: FS checking information 1927 * @inum: inode number to read 1928 * 1929 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1930 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1931 * information pointer in case of success and a negative error code in case of 1932 * failure. 1933 */ 1934 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1935 struct fsck_data *fsckd, ino_t inum) 1936 { 1937 int n, err; 1938 union ubifs_key key; 1939 struct ubifs_znode *znode; 1940 struct ubifs_zbranch *zbr; 1941 struct ubifs_ino_node *ino; 1942 struct fsck_inode *fscki; 1943 1944 fscki = search_inode(fsckd, inum); 1945 if (fscki) 1946 return fscki; 1947 1948 ino_key_init(c, &key, inum); 1949 err = ubifs_lookup_level0(c, &key, &znode, &n); 1950 if (!err) { 1951 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum); 1952 return ERR_PTR(-ENOENT); 1953 } else if (err < 0) { 1954 ubifs_err(c, "error %d while looking up inode %lu", 1955 err, (unsigned long)inum); 1956 return ERR_PTR(err); 1957 } 1958 1959 zbr = &znode->zbranch[n]; 1960 if (zbr->len < UBIFS_INO_NODE_SZ) { 1961 ubifs_err(c, "bad node %lu node length %d", 1962 (unsigned long)inum, zbr->len); 1963 return ERR_PTR(-EINVAL); 1964 } 1965 1966 ino = kmalloc(zbr->len, GFP_NOFS); 1967 if (!ino) 1968 return ERR_PTR(-ENOMEM); 1969 1970 err = ubifs_tnc_read_node(c, zbr, ino); 1971 if (err) { 1972 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 1973 zbr->lnum, zbr->offs, err); 1974 kfree(ino); 1975 return ERR_PTR(err); 1976 } 1977 1978 fscki = add_inode(c, fsckd, ino); 1979 kfree(ino); 1980 if (IS_ERR(fscki)) { 1981 ubifs_err(c, "error %ld while adding inode %lu node", 1982 PTR_ERR(fscki), (unsigned long)inum); 1983 return fscki; 1984 } 1985 1986 return fscki; 1987 } 1988 1989 /** 1990 * check_leaf - check leaf node. 1991 * @c: UBIFS file-system description object 1992 * @zbr: zbranch of the leaf node to check 1993 * @priv: FS checking information 1994 * 1995 * This is a helper function for 'dbg_check_filesystem()' which is called for 1996 * every single leaf node while walking the indexing tree. It checks that the 1997 * leaf node referred from the indexing tree exists, has correct CRC, and does 1998 * some other basic validation. This function is also responsible for building 1999 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 2000 * calculates reference count, size, etc for each inode in order to later 2001 * compare them to the information stored inside the inodes and detect possible 2002 * inconsistencies. Returns zero in case of success and a negative error code 2003 * in case of failure. 2004 */ 2005 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 2006 void *priv) 2007 { 2008 ino_t inum; 2009 void *node; 2010 struct ubifs_ch *ch; 2011 int err, type = key_type(c, &zbr->key); 2012 struct fsck_inode *fscki; 2013 2014 if (zbr->len < UBIFS_CH_SZ) { 2015 ubifs_err(c, "bad leaf length %d (LEB %d:%d)", 2016 zbr->len, zbr->lnum, zbr->offs); 2017 return -EINVAL; 2018 } 2019 2020 node = kmalloc(zbr->len, GFP_NOFS); 2021 if (!node) 2022 return -ENOMEM; 2023 2024 err = ubifs_tnc_read_node(c, zbr, node); 2025 if (err) { 2026 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d", 2027 zbr->lnum, zbr->offs, err); 2028 goto out_free; 2029 } 2030 2031 /* If this is an inode node, add it to RB-tree of inodes */ 2032 if (type == UBIFS_INO_KEY) { 2033 fscki = add_inode(c, priv, node); 2034 if (IS_ERR(fscki)) { 2035 err = PTR_ERR(fscki); 2036 ubifs_err(c, "error %d while adding inode node", err); 2037 goto out_dump; 2038 } 2039 goto out; 2040 } 2041 2042 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2043 type != UBIFS_DATA_KEY) { 2044 ubifs_err(c, "unexpected node type %d at LEB %d:%d", 2045 type, zbr->lnum, zbr->offs); 2046 err = -EINVAL; 2047 goto out_free; 2048 } 2049 2050 ch = node; 2051 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2052 ubifs_err(c, "too high sequence number, max. is %llu", 2053 c->max_sqnum); 2054 err = -EINVAL; 2055 goto out_dump; 2056 } 2057 2058 if (type == UBIFS_DATA_KEY) { 2059 long long blk_offs; 2060 struct ubifs_data_node *dn = node; 2061 2062 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ); 2063 2064 /* 2065 * Search the inode node this data node belongs to and insert 2066 * it to the RB-tree of inodes. 2067 */ 2068 inum = key_inum_flash(c, &dn->key); 2069 fscki = read_add_inode(c, priv, inum); 2070 if (IS_ERR(fscki)) { 2071 err = PTR_ERR(fscki); 2072 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu", 2073 err, (unsigned long)inum); 2074 goto out_dump; 2075 } 2076 2077 /* Make sure the data node is within inode size */ 2078 blk_offs = key_block_flash(c, &dn->key); 2079 blk_offs <<= UBIFS_BLOCK_SHIFT; 2080 blk_offs += le32_to_cpu(dn->size); 2081 if (blk_offs > fscki->size) { 2082 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld", 2083 zbr->lnum, zbr->offs, fscki->size); 2084 err = -EINVAL; 2085 goto out_dump; 2086 } 2087 } else { 2088 int nlen; 2089 struct ubifs_dent_node *dent = node; 2090 struct fsck_inode *fscki1; 2091 2092 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ); 2093 2094 err = ubifs_validate_entry(c, dent); 2095 if (err) 2096 goto out_dump; 2097 2098 /* 2099 * Search the inode node this entry refers to and the parent 2100 * inode node and insert them to the RB-tree of inodes. 2101 */ 2102 inum = le64_to_cpu(dent->inum); 2103 fscki = read_add_inode(c, priv, inum); 2104 if (IS_ERR(fscki)) { 2105 err = PTR_ERR(fscki); 2106 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu", 2107 err, (unsigned long)inum); 2108 goto out_dump; 2109 } 2110 2111 /* Count how many direntries or xentries refers this inode */ 2112 fscki->references += 1; 2113 2114 inum = key_inum_flash(c, &dent->key); 2115 fscki1 = read_add_inode(c, priv, inum); 2116 if (IS_ERR(fscki1)) { 2117 err = PTR_ERR(fscki1); 2118 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu", 2119 err, (unsigned long)inum); 2120 goto out_dump; 2121 } 2122 2123 nlen = le16_to_cpu(dent->nlen); 2124 if (type == UBIFS_XENT_KEY) { 2125 fscki1->calc_xcnt += 1; 2126 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2127 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2128 fscki1->calc_xnms += nlen; 2129 } else { 2130 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2131 if (dent->type == UBIFS_ITYPE_DIR) 2132 fscki1->calc_cnt += 1; 2133 } 2134 } 2135 2136 out: 2137 kfree(node); 2138 return 0; 2139 2140 out_dump: 2141 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2142 ubifs_dump_node(c, node, zbr->len); 2143 out_free: 2144 kfree(node); 2145 return err; 2146 } 2147 2148 /** 2149 * free_inodes - free RB-tree of inodes. 2150 * @fsckd: FS checking information 2151 */ 2152 static void free_inodes(struct fsck_data *fsckd) 2153 { 2154 struct fsck_inode *fscki, *n; 2155 2156 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb) 2157 kfree(fscki); 2158 } 2159 2160 /** 2161 * check_inodes - checks all inodes. 2162 * @c: UBIFS file-system description object 2163 * @fsckd: FS checking information 2164 * 2165 * This is a helper function for 'dbg_check_filesystem()' which walks the 2166 * RB-tree of inodes after the index scan has been finished, and checks that 2167 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2168 * %-EINVAL if not, and a negative error code in case of failure. 2169 */ 2170 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2171 { 2172 int n, err; 2173 union ubifs_key key; 2174 struct ubifs_znode *znode; 2175 struct ubifs_zbranch *zbr; 2176 struct ubifs_ino_node *ino; 2177 struct fsck_inode *fscki; 2178 struct rb_node *this = rb_first(&fsckd->inodes); 2179 2180 while (this) { 2181 fscki = rb_entry(this, struct fsck_inode, rb); 2182 this = rb_next(this); 2183 2184 if (S_ISDIR(fscki->mode)) { 2185 /* 2186 * Directories have to have exactly one reference (they 2187 * cannot have hardlinks), although root inode is an 2188 * exception. 2189 */ 2190 if (fscki->inum != UBIFS_ROOT_INO && 2191 fscki->references != 1) { 2192 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1", 2193 (unsigned long)fscki->inum, 2194 fscki->references); 2195 goto out_dump; 2196 } 2197 if (fscki->inum == UBIFS_ROOT_INO && 2198 fscki->references != 0) { 2199 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it", 2200 (unsigned long)fscki->inum, 2201 fscki->references); 2202 goto out_dump; 2203 } 2204 if (fscki->calc_sz != fscki->size) { 2205 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld", 2206 (unsigned long)fscki->inum, 2207 fscki->size, fscki->calc_sz); 2208 goto out_dump; 2209 } 2210 if (fscki->calc_cnt != fscki->nlink) { 2211 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d", 2212 (unsigned long)fscki->inum, 2213 fscki->nlink, fscki->calc_cnt); 2214 goto out_dump; 2215 } 2216 } else { 2217 if (fscki->references != fscki->nlink) { 2218 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d", 2219 (unsigned long)fscki->inum, 2220 fscki->nlink, fscki->references); 2221 goto out_dump; 2222 } 2223 } 2224 if (fscki->xattr_sz != fscki->calc_xsz) { 2225 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld", 2226 (unsigned long)fscki->inum, fscki->xattr_sz, 2227 fscki->calc_xsz); 2228 goto out_dump; 2229 } 2230 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2231 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld", 2232 (unsigned long)fscki->inum, 2233 fscki->xattr_cnt, fscki->calc_xcnt); 2234 goto out_dump; 2235 } 2236 if (fscki->xattr_nms != fscki->calc_xnms) { 2237 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld", 2238 (unsigned long)fscki->inum, fscki->xattr_nms, 2239 fscki->calc_xnms); 2240 goto out_dump; 2241 } 2242 } 2243 2244 return 0; 2245 2246 out_dump: 2247 /* Read the bad inode and dump it */ 2248 ino_key_init(c, &key, fscki->inum); 2249 err = ubifs_lookup_level0(c, &key, &znode, &n); 2250 if (!err) { 2251 ubifs_err(c, "inode %lu not found in index", 2252 (unsigned long)fscki->inum); 2253 return -ENOENT; 2254 } else if (err < 0) { 2255 ubifs_err(c, "error %d while looking up inode %lu", 2256 err, (unsigned long)fscki->inum); 2257 return err; 2258 } 2259 2260 zbr = &znode->zbranch[n]; 2261 ino = kmalloc(zbr->len, GFP_NOFS); 2262 if (!ino) 2263 return -ENOMEM; 2264 2265 err = ubifs_tnc_read_node(c, zbr, ino); 2266 if (err) { 2267 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 2268 zbr->lnum, zbr->offs, err); 2269 kfree(ino); 2270 return err; 2271 } 2272 2273 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d", 2274 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2275 ubifs_dump_node(c, ino, zbr->len); 2276 kfree(ino); 2277 return -EINVAL; 2278 } 2279 2280 /** 2281 * dbg_check_filesystem - check the file-system. 2282 * @c: UBIFS file-system description object 2283 * 2284 * This function checks the file system, namely: 2285 * o makes sure that all leaf nodes exist and their CRCs are correct; 2286 * o makes sure inode nlink, size, xattr size/count are correct (for all 2287 * inodes). 2288 * 2289 * The function reads whole indexing tree and all nodes, so it is pretty 2290 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2291 * not, and a negative error code in case of failure. 2292 */ 2293 int dbg_check_filesystem(struct ubifs_info *c) 2294 { 2295 int err; 2296 struct fsck_data fsckd; 2297 2298 if (!dbg_is_chk_fs(c)) 2299 return 0; 2300 2301 fsckd.inodes = RB_ROOT; 2302 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2303 if (err) 2304 goto out_free; 2305 2306 err = check_inodes(c, &fsckd); 2307 if (err) 2308 goto out_free; 2309 2310 free_inodes(&fsckd); 2311 return 0; 2312 2313 out_free: 2314 ubifs_err(c, "file-system check failed with error %d", err); 2315 dump_stack(); 2316 free_inodes(&fsckd); 2317 return err; 2318 } 2319 2320 /** 2321 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2322 * @c: UBIFS file-system description object 2323 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2324 * 2325 * This function returns zero if the list of data nodes is sorted correctly, 2326 * and %-EINVAL if not. 2327 */ 2328 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2329 { 2330 struct list_head *cur; 2331 struct ubifs_scan_node *sa, *sb; 2332 2333 if (!dbg_is_chk_gen(c)) 2334 return 0; 2335 2336 for (cur = head->next; cur->next != head; cur = cur->next) { 2337 ino_t inuma, inumb; 2338 uint32_t blka, blkb; 2339 2340 cond_resched(); 2341 sa = container_of(cur, struct ubifs_scan_node, list); 2342 sb = container_of(cur->next, struct ubifs_scan_node, list); 2343 2344 if (sa->type != UBIFS_DATA_NODE) { 2345 ubifs_err(c, "bad node type %d", sa->type); 2346 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs); 2347 return -EINVAL; 2348 } 2349 if (sb->type != UBIFS_DATA_NODE) { 2350 ubifs_err(c, "bad node type %d", sb->type); 2351 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs); 2352 return -EINVAL; 2353 } 2354 2355 inuma = key_inum(c, &sa->key); 2356 inumb = key_inum(c, &sb->key); 2357 2358 if (inuma < inumb) 2359 continue; 2360 if (inuma > inumb) { 2361 ubifs_err(c, "larger inum %lu goes before inum %lu", 2362 (unsigned long)inuma, (unsigned long)inumb); 2363 goto error_dump; 2364 } 2365 2366 blka = key_block(c, &sa->key); 2367 blkb = key_block(c, &sb->key); 2368 2369 if (blka > blkb) { 2370 ubifs_err(c, "larger block %u goes before %u", blka, blkb); 2371 goto error_dump; 2372 } 2373 if (blka == blkb) { 2374 ubifs_err(c, "two data nodes for the same block"); 2375 goto error_dump; 2376 } 2377 } 2378 2379 return 0; 2380 2381 error_dump: 2382 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs); 2383 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs); 2384 return -EINVAL; 2385 } 2386 2387 /** 2388 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2389 * @c: UBIFS file-system description object 2390 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2391 * 2392 * This function returns zero if the list of non-data nodes is sorted correctly, 2393 * and %-EINVAL if not. 2394 */ 2395 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2396 { 2397 struct list_head *cur; 2398 struct ubifs_scan_node *sa, *sb; 2399 2400 if (!dbg_is_chk_gen(c)) 2401 return 0; 2402 2403 for (cur = head->next; cur->next != head; cur = cur->next) { 2404 ino_t inuma, inumb; 2405 uint32_t hasha, hashb; 2406 2407 cond_resched(); 2408 sa = container_of(cur, struct ubifs_scan_node, list); 2409 sb = container_of(cur->next, struct ubifs_scan_node, list); 2410 2411 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2412 sa->type != UBIFS_XENT_NODE) { 2413 ubifs_err(c, "bad node type %d", sa->type); 2414 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs); 2415 return -EINVAL; 2416 } 2417 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE && 2418 sb->type != UBIFS_XENT_NODE) { 2419 ubifs_err(c, "bad node type %d", sb->type); 2420 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs); 2421 return -EINVAL; 2422 } 2423 2424 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2425 ubifs_err(c, "non-inode node goes before inode node"); 2426 goto error_dump; 2427 } 2428 2429 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2430 continue; 2431 2432 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2433 /* Inode nodes are sorted in descending size order */ 2434 if (sa->len < sb->len) { 2435 ubifs_err(c, "smaller inode node goes first"); 2436 goto error_dump; 2437 } 2438 continue; 2439 } 2440 2441 /* 2442 * This is either a dentry or xentry, which should be sorted in 2443 * ascending (parent ino, hash) order. 2444 */ 2445 inuma = key_inum(c, &sa->key); 2446 inumb = key_inum(c, &sb->key); 2447 2448 if (inuma < inumb) 2449 continue; 2450 if (inuma > inumb) { 2451 ubifs_err(c, "larger inum %lu goes before inum %lu", 2452 (unsigned long)inuma, (unsigned long)inumb); 2453 goto error_dump; 2454 } 2455 2456 hasha = key_block(c, &sa->key); 2457 hashb = key_block(c, &sb->key); 2458 2459 if (hasha > hashb) { 2460 ubifs_err(c, "larger hash %u goes before %u", 2461 hasha, hashb); 2462 goto error_dump; 2463 } 2464 } 2465 2466 return 0; 2467 2468 error_dump: 2469 ubifs_msg(c, "dumping first node"); 2470 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs); 2471 ubifs_msg(c, "dumping second node"); 2472 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs); 2473 return -EINVAL; 2474 } 2475 2476 static inline int chance(unsigned int n, unsigned int out_of) 2477 { 2478 return !!(get_random_u32_below(out_of) + 1 <= n); 2479 2480 } 2481 2482 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2483 { 2484 struct ubifs_debug_info *d = c->dbg; 2485 2486 ubifs_assert(c, dbg_is_tst_rcvry(c)); 2487 2488 if (!d->pc_cnt) { 2489 /* First call - decide delay to the power cut */ 2490 if (chance(1, 2)) { 2491 unsigned long delay; 2492 2493 if (chance(1, 2)) { 2494 d->pc_delay = 1; 2495 /* Fail within 1 minute */ 2496 delay = get_random_u32_below(60000); 2497 d->pc_timeout = jiffies; 2498 d->pc_timeout += msecs_to_jiffies(delay); 2499 ubifs_warn(c, "failing after %lums", delay); 2500 } else { 2501 d->pc_delay = 2; 2502 delay = get_random_u32_below(10000); 2503 /* Fail within 10000 operations */ 2504 d->pc_cnt_max = delay; 2505 ubifs_warn(c, "failing after %lu calls", delay); 2506 } 2507 } 2508 2509 d->pc_cnt += 1; 2510 } 2511 2512 /* Determine if failure delay has expired */ 2513 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2514 return 0; 2515 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2516 return 0; 2517 2518 if (lnum == UBIFS_SB_LNUM) { 2519 if (write && chance(1, 2)) 2520 return 0; 2521 if (chance(19, 20)) 2522 return 0; 2523 ubifs_warn(c, "failing in super block LEB %d", lnum); 2524 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2525 if (chance(19, 20)) 2526 return 0; 2527 ubifs_warn(c, "failing in master LEB %d", lnum); 2528 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2529 if (write && chance(99, 100)) 2530 return 0; 2531 if (chance(399, 400)) 2532 return 0; 2533 ubifs_warn(c, "failing in log LEB %d", lnum); 2534 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2535 if (write && chance(7, 8)) 2536 return 0; 2537 if (chance(19, 20)) 2538 return 0; 2539 ubifs_warn(c, "failing in LPT LEB %d", lnum); 2540 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2541 if (write && chance(1, 2)) 2542 return 0; 2543 if (chance(9, 10)) 2544 return 0; 2545 ubifs_warn(c, "failing in orphan LEB %d", lnum); 2546 } else if (lnum == c->ihead_lnum) { 2547 if (chance(99, 100)) 2548 return 0; 2549 ubifs_warn(c, "failing in index head LEB %d", lnum); 2550 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2551 if (chance(9, 10)) 2552 return 0; 2553 ubifs_warn(c, "failing in GC head LEB %d", lnum); 2554 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2555 !ubifs_search_bud(c, lnum)) { 2556 if (chance(19, 20)) 2557 return 0; 2558 ubifs_warn(c, "failing in non-bud LEB %d", lnum); 2559 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2560 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2561 if (chance(999, 1000)) 2562 return 0; 2563 ubifs_warn(c, "failing in bud LEB %d commit running", lnum); 2564 } else { 2565 if (chance(9999, 10000)) 2566 return 0; 2567 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum); 2568 } 2569 2570 d->pc_happened = 1; 2571 ubifs_warn(c, "========== Power cut emulated =========="); 2572 dump_stack(); 2573 return 1; 2574 } 2575 2576 static int corrupt_data(const struct ubifs_info *c, const void *buf, 2577 unsigned int len) 2578 { 2579 unsigned int from, to, ffs = chance(1, 2); 2580 unsigned char *p = (void *)buf; 2581 2582 from = get_random_u32_below(len); 2583 /* Corruption span max to end of write unit */ 2584 to = min(len, ALIGN(from + 1, c->max_write_size)); 2585 2586 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1, 2587 ffs ? "0xFFs" : "random data"); 2588 2589 if (ffs) 2590 memset(p + from, 0xFF, to - from); 2591 else 2592 get_random_bytes(p + from, to - from); 2593 2594 return to; 2595 } 2596 2597 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2598 int offs, int len) 2599 { 2600 int err, failing; 2601 2602 if (dbg_is_power_cut(c)) 2603 return -EROFS; 2604 2605 failing = power_cut_emulated(c, lnum, 1); 2606 if (failing) { 2607 len = corrupt_data(c, buf, len); 2608 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)", 2609 len, lnum, offs); 2610 } 2611 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 2612 if (err) 2613 return err; 2614 if (failing) 2615 return -EROFS; 2616 return 0; 2617 } 2618 2619 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2620 int len) 2621 { 2622 int err; 2623 2624 if (dbg_is_power_cut(c)) 2625 return -EROFS; 2626 if (power_cut_emulated(c, lnum, 1)) 2627 return -EROFS; 2628 err = ubi_leb_change(c->ubi, lnum, buf, len); 2629 if (err) 2630 return err; 2631 if (power_cut_emulated(c, lnum, 1)) 2632 return -EROFS; 2633 return 0; 2634 } 2635 2636 int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2637 { 2638 int err; 2639 2640 if (dbg_is_power_cut(c)) 2641 return -EROFS; 2642 if (power_cut_emulated(c, lnum, 0)) 2643 return -EROFS; 2644 err = ubi_leb_unmap(c->ubi, lnum); 2645 if (err) 2646 return err; 2647 if (power_cut_emulated(c, lnum, 0)) 2648 return -EROFS; 2649 return 0; 2650 } 2651 2652 int dbg_leb_map(struct ubifs_info *c, int lnum) 2653 { 2654 int err; 2655 2656 if (dbg_is_power_cut(c)) 2657 return -EROFS; 2658 if (power_cut_emulated(c, lnum, 0)) 2659 return -EROFS; 2660 err = ubi_leb_map(c->ubi, lnum); 2661 if (err) 2662 return err; 2663 if (power_cut_emulated(c, lnum, 0)) 2664 return -EROFS; 2665 return 0; 2666 } 2667 2668 /* 2669 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2670 * contain the stuff specific to particular file-system mounts. 2671 */ 2672 static struct dentry *dfs_rootdir; 2673 2674 static int dfs_file_open(struct inode *inode, struct file *file) 2675 { 2676 file->private_data = inode->i_private; 2677 return nonseekable_open(inode, file); 2678 } 2679 2680 /** 2681 * provide_user_output - provide output to the user reading a debugfs file. 2682 * @val: boolean value for the answer 2683 * @u: the buffer to store the answer at 2684 * @count: size of the buffer 2685 * @ppos: position in the @u output buffer 2686 * 2687 * This is a simple helper function which stores @val boolean value in the user 2688 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2689 * bytes written to @u in case of success and a negative error code in case of 2690 * failure. 2691 */ 2692 static int provide_user_output(int val, char __user *u, size_t count, 2693 loff_t *ppos) 2694 { 2695 char buf[3]; 2696 2697 if (val) 2698 buf[0] = '1'; 2699 else 2700 buf[0] = '0'; 2701 buf[1] = '\n'; 2702 buf[2] = 0x00; 2703 2704 return simple_read_from_buffer(u, count, ppos, buf, 2); 2705 } 2706 2707 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2708 loff_t *ppos) 2709 { 2710 struct dentry *dent = file->f_path.dentry; 2711 struct ubifs_info *c = file->private_data; 2712 struct ubifs_debug_info *d = c->dbg; 2713 int val; 2714 2715 if (dent == d->dfs_chk_gen) 2716 val = d->chk_gen; 2717 else if (dent == d->dfs_chk_index) 2718 val = d->chk_index; 2719 else if (dent == d->dfs_chk_orph) 2720 val = d->chk_orph; 2721 else if (dent == d->dfs_chk_lprops) 2722 val = d->chk_lprops; 2723 else if (dent == d->dfs_chk_fs) 2724 val = d->chk_fs; 2725 else if (dent == d->dfs_tst_rcvry) 2726 val = d->tst_rcvry; 2727 else if (dent == d->dfs_ro_error) 2728 val = c->ro_error; 2729 else 2730 return -EINVAL; 2731 2732 return provide_user_output(val, u, count, ppos); 2733 } 2734 2735 /** 2736 * interpret_user_input - interpret user debugfs file input. 2737 * @u: user-provided buffer with the input 2738 * @count: buffer size 2739 * 2740 * This is a helper function which interpret user input to a boolean UBIFS 2741 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2742 * in case of failure. 2743 */ 2744 static int interpret_user_input(const char __user *u, size_t count) 2745 { 2746 size_t buf_size; 2747 char buf[8]; 2748 2749 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2750 if (copy_from_user(buf, u, buf_size)) 2751 return -EFAULT; 2752 2753 if (buf[0] == '1') 2754 return 1; 2755 else if (buf[0] == '0') 2756 return 0; 2757 2758 return -EINVAL; 2759 } 2760 2761 static ssize_t dfs_file_write(struct file *file, const char __user *u, 2762 size_t count, loff_t *ppos) 2763 { 2764 struct ubifs_info *c = file->private_data; 2765 struct ubifs_debug_info *d = c->dbg; 2766 struct dentry *dent = file->f_path.dentry; 2767 int val; 2768 2769 if (file->f_path.dentry == d->dfs_dump_lprops) { 2770 ubifs_dump_lprops(c); 2771 return count; 2772 } 2773 if (file->f_path.dentry == d->dfs_dump_budg) { 2774 ubifs_dump_budg(c, &c->bi); 2775 return count; 2776 } 2777 if (file->f_path.dentry == d->dfs_dump_tnc) { 2778 mutex_lock(&c->tnc_mutex); 2779 ubifs_dump_tnc(c); 2780 mutex_unlock(&c->tnc_mutex); 2781 return count; 2782 } 2783 2784 val = interpret_user_input(u, count); 2785 if (val < 0) 2786 return val; 2787 2788 if (dent == d->dfs_chk_gen) 2789 d->chk_gen = val; 2790 else if (dent == d->dfs_chk_index) 2791 d->chk_index = val; 2792 else if (dent == d->dfs_chk_orph) 2793 d->chk_orph = val; 2794 else if (dent == d->dfs_chk_lprops) 2795 d->chk_lprops = val; 2796 else if (dent == d->dfs_chk_fs) 2797 d->chk_fs = val; 2798 else if (dent == d->dfs_tst_rcvry) 2799 d->tst_rcvry = val; 2800 else if (dent == d->dfs_ro_error) 2801 c->ro_error = !!val; 2802 else 2803 return -EINVAL; 2804 2805 return count; 2806 } 2807 2808 static const struct file_operations dfs_fops = { 2809 .open = dfs_file_open, 2810 .read = dfs_file_read, 2811 .write = dfs_file_write, 2812 .owner = THIS_MODULE, 2813 }; 2814 2815 /** 2816 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2817 * @c: UBIFS file-system description object 2818 * 2819 * This function creates all debugfs files for this instance of UBIFS. 2820 * 2821 * Note, the only reason we have not merged this function with the 2822 * 'ubifs_debugging_init()' function is because it is better to initialize 2823 * debugfs interfaces at the very end of the mount process, and remove them at 2824 * the very beginning of the mount process. 2825 */ 2826 void dbg_debugfs_init_fs(struct ubifs_info *c) 2827 { 2828 int n; 2829 const char *fname; 2830 struct ubifs_debug_info *d = c->dbg; 2831 2832 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN, UBIFS_DFS_DIR_NAME, 2833 c->vi.ubi_num, c->vi.vol_id); 2834 if (n >= UBIFS_DFS_DIR_LEN) { 2835 /* The array size is too small */ 2836 return; 2837 } 2838 2839 fname = d->dfs_dir_name; 2840 d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir); 2841 2842 fname = "dump_lprops"; 2843 d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, 2844 &dfs_fops); 2845 2846 fname = "dump_budg"; 2847 d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, 2848 &dfs_fops); 2849 2850 fname = "dump_tnc"; 2851 d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, 2852 &dfs_fops); 2853 2854 fname = "chk_general"; 2855 d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2856 d->dfs_dir, c, &dfs_fops); 2857 2858 fname = "chk_index"; 2859 d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2860 d->dfs_dir, c, &dfs_fops); 2861 2862 fname = "chk_orphans"; 2863 d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2864 d->dfs_dir, c, &dfs_fops); 2865 2866 fname = "chk_lprops"; 2867 d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2868 d->dfs_dir, c, &dfs_fops); 2869 2870 fname = "chk_fs"; 2871 d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2872 d->dfs_dir, c, &dfs_fops); 2873 2874 fname = "tst_recovery"; 2875 d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2876 d->dfs_dir, c, &dfs_fops); 2877 2878 fname = "ro_error"; 2879 d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2880 d->dfs_dir, c, &dfs_fops); 2881 } 2882 2883 /** 2884 * dbg_debugfs_exit_fs - remove all debugfs files. 2885 * @c: UBIFS file-system description object 2886 */ 2887 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2888 { 2889 debugfs_remove_recursive(c->dbg->dfs_dir); 2890 } 2891 2892 struct ubifs_global_debug_info ubifs_dbg; 2893 2894 static struct dentry *dfs_chk_gen; 2895 static struct dentry *dfs_chk_index; 2896 static struct dentry *dfs_chk_orph; 2897 static struct dentry *dfs_chk_lprops; 2898 static struct dentry *dfs_chk_fs; 2899 static struct dentry *dfs_tst_rcvry; 2900 2901 static ssize_t dfs_global_file_read(struct file *file, char __user *u, 2902 size_t count, loff_t *ppos) 2903 { 2904 struct dentry *dent = file->f_path.dentry; 2905 int val; 2906 2907 if (dent == dfs_chk_gen) 2908 val = ubifs_dbg.chk_gen; 2909 else if (dent == dfs_chk_index) 2910 val = ubifs_dbg.chk_index; 2911 else if (dent == dfs_chk_orph) 2912 val = ubifs_dbg.chk_orph; 2913 else if (dent == dfs_chk_lprops) 2914 val = ubifs_dbg.chk_lprops; 2915 else if (dent == dfs_chk_fs) 2916 val = ubifs_dbg.chk_fs; 2917 else if (dent == dfs_tst_rcvry) 2918 val = ubifs_dbg.tst_rcvry; 2919 else 2920 return -EINVAL; 2921 2922 return provide_user_output(val, u, count, ppos); 2923 } 2924 2925 static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 2926 size_t count, loff_t *ppos) 2927 { 2928 struct dentry *dent = file->f_path.dentry; 2929 int val; 2930 2931 val = interpret_user_input(u, count); 2932 if (val < 0) 2933 return val; 2934 2935 if (dent == dfs_chk_gen) 2936 ubifs_dbg.chk_gen = val; 2937 else if (dent == dfs_chk_index) 2938 ubifs_dbg.chk_index = val; 2939 else if (dent == dfs_chk_orph) 2940 ubifs_dbg.chk_orph = val; 2941 else if (dent == dfs_chk_lprops) 2942 ubifs_dbg.chk_lprops = val; 2943 else if (dent == dfs_chk_fs) 2944 ubifs_dbg.chk_fs = val; 2945 else if (dent == dfs_tst_rcvry) 2946 ubifs_dbg.tst_rcvry = val; 2947 else 2948 return -EINVAL; 2949 2950 return count; 2951 } 2952 2953 static const struct file_operations dfs_global_fops = { 2954 .read = dfs_global_file_read, 2955 .write = dfs_global_file_write, 2956 .owner = THIS_MODULE, 2957 }; 2958 2959 /** 2960 * dbg_debugfs_init - initialize debugfs file-system. 2961 * 2962 * UBIFS uses debugfs file-system to expose various debugging knobs to 2963 * user-space. This function creates "ubifs" directory in the debugfs 2964 * file-system. 2965 */ 2966 void dbg_debugfs_init(void) 2967 { 2968 const char *fname; 2969 2970 fname = "ubifs"; 2971 dfs_rootdir = debugfs_create_dir(fname, NULL); 2972 2973 fname = "chk_general"; 2974 dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, 2975 NULL, &dfs_global_fops); 2976 2977 fname = "chk_index"; 2978 dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2979 dfs_rootdir, NULL, &dfs_global_fops); 2980 2981 fname = "chk_orphans"; 2982 dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2983 dfs_rootdir, NULL, &dfs_global_fops); 2984 2985 fname = "chk_lprops"; 2986 dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2987 dfs_rootdir, NULL, &dfs_global_fops); 2988 2989 fname = "chk_fs"; 2990 dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, 2991 NULL, &dfs_global_fops); 2992 2993 fname = "tst_recovery"; 2994 dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2995 dfs_rootdir, NULL, &dfs_global_fops); 2996 } 2997 2998 /** 2999 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 3000 */ 3001 void dbg_debugfs_exit(void) 3002 { 3003 debugfs_remove_recursive(dfs_rootdir); 3004 } 3005 3006 void ubifs_assert_failed(struct ubifs_info *c, const char *expr, 3007 const char *file, int line) 3008 { 3009 ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line); 3010 3011 switch (c->assert_action) { 3012 case ASSACT_PANIC: 3013 BUG(); 3014 break; 3015 3016 case ASSACT_RO: 3017 ubifs_ro_mode(c, -EINVAL); 3018 break; 3019 3020 case ASSACT_REPORT: 3021 default: 3022 dump_stack(); 3023 break; 3024 3025 } 3026 } 3027 3028 /** 3029 * ubifs_debugging_init - initialize UBIFS debugging. 3030 * @c: UBIFS file-system description object 3031 * 3032 * This function initializes debugging-related data for the file system. 3033 * Returns zero in case of success and a negative error code in case of 3034 * failure. 3035 */ 3036 int ubifs_debugging_init(struct ubifs_info *c) 3037 { 3038 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3039 if (!c->dbg) 3040 return -ENOMEM; 3041 3042 return 0; 3043 } 3044 3045 /** 3046 * ubifs_debugging_exit - free debugging data. 3047 * @c: UBIFS file-system description object 3048 */ 3049 void ubifs_debugging_exit(struct ubifs_info *c) 3050 { 3051 kfree(c->dbg); 3052 } 3053