1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29 
30 /* The xid serves as a useful identifier for each incoming vfs request,
31    in a similar way to the mid which is useful to track each sent smb,
32    and CurrentXid can also provide a running counter (although it
33    will eventually wrap past zero) of the total vfs operations handled
34    since the cifs fs was mounted */
35 
36 unsigned int
37 _get_xid(void)
38 {
39 	unsigned int xid;
40 
41 	spin_lock(&GlobalMid_Lock);
42 	GlobalTotalActiveXid++;
43 
44 	/* keep high water mark for number of simultaneous ops in filesystem */
45 	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
46 		GlobalMaxActiveXid = GlobalTotalActiveXid;
47 	if (GlobalTotalActiveXid > 65000)
48 		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
49 	xid = GlobalCurrentXid++;
50 	spin_unlock(&GlobalMid_Lock);
51 	return xid;
52 }
53 
54 void
55 _free_xid(unsigned int xid)
56 {
57 	spin_lock(&GlobalMid_Lock);
58 	/* if (GlobalTotalActiveXid == 0)
59 		BUG(); */
60 	GlobalTotalActiveXid--;
61 	spin_unlock(&GlobalMid_Lock);
62 }
63 
64 struct cifs_ses *
65 sesInfoAlloc(void)
66 {
67 	struct cifs_ses *ret_buf;
68 
69 	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
70 	if (ret_buf) {
71 		atomic_inc(&sesInfoAllocCount);
72 		spin_lock_init(&ret_buf->ses_lock);
73 		ret_buf->ses_status = SES_NEW;
74 		++ret_buf->ses_count;
75 		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
76 		INIT_LIST_HEAD(&ret_buf->tcon_list);
77 		mutex_init(&ret_buf->session_mutex);
78 		spin_lock_init(&ret_buf->iface_lock);
79 		INIT_LIST_HEAD(&ret_buf->iface_list);
80 		spin_lock_init(&ret_buf->chan_lock);
81 	}
82 	return ret_buf;
83 }
84 
85 void
86 sesInfoFree(struct cifs_ses *buf_to_free)
87 {
88 	struct cifs_server_iface *iface = NULL, *niface = NULL;
89 
90 	if (buf_to_free == NULL) {
91 		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
92 		return;
93 	}
94 
95 	unload_nls(buf_to_free->local_nls);
96 	atomic_dec(&sesInfoAllocCount);
97 	kfree(buf_to_free->serverOS);
98 	kfree(buf_to_free->serverDomain);
99 	kfree(buf_to_free->serverNOS);
100 	kfree_sensitive(buf_to_free->password);
101 	kfree_sensitive(buf_to_free->password2);
102 	kfree(buf_to_free->user_name);
103 	kfree(buf_to_free->domainName);
104 	kfree(buf_to_free->dns_dom);
105 	kfree_sensitive(buf_to_free->auth_key.response);
106 	spin_lock(&buf_to_free->iface_lock);
107 	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
108 				 iface_head)
109 		kref_put(&iface->refcount, release_iface);
110 	spin_unlock(&buf_to_free->iface_lock);
111 	kfree_sensitive(buf_to_free);
112 }
113 
114 struct cifs_tcon *
115 tcon_info_alloc(bool dir_leases_enabled, enum smb3_tcon_ref_trace trace)
116 {
117 	struct cifs_tcon *ret_buf;
118 	static atomic_t tcon_debug_id;
119 
120 	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
121 	if (!ret_buf)
122 		return NULL;
123 
124 	if (dir_leases_enabled == true) {
125 		ret_buf->cfids = init_cached_dirs();
126 		if (!ret_buf->cfids) {
127 			kfree(ret_buf);
128 			return NULL;
129 		}
130 	}
131 	/* else ret_buf->cfids is already set to NULL above */
132 
133 	atomic_inc(&tconInfoAllocCount);
134 	ret_buf->status = TID_NEW;
135 	ret_buf->debug_id = atomic_inc_return(&tcon_debug_id);
136 	ret_buf->tc_count = 1;
137 	spin_lock_init(&ret_buf->tc_lock);
138 	INIT_LIST_HEAD(&ret_buf->openFileList);
139 	INIT_LIST_HEAD(&ret_buf->tcon_list);
140 	INIT_LIST_HEAD(&ret_buf->cifs_sb_list);
141 	spin_lock_init(&ret_buf->open_file_lock);
142 	spin_lock_init(&ret_buf->stat_lock);
143 	spin_lock_init(&ret_buf->sb_list_lock);
144 	atomic_set(&ret_buf->num_local_opens, 0);
145 	atomic_set(&ret_buf->num_remote_opens, 0);
146 	ret_buf->stats_from_time = ktime_get_real_seconds();
147 #ifdef CONFIG_CIFS_FSCACHE
148 	mutex_init(&ret_buf->fscache_lock);
149 #endif
150 	trace_smb3_tcon_ref(ret_buf->debug_id, ret_buf->tc_count, trace);
151 #ifdef CONFIG_CIFS_DFS_UPCALL
152 	INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
153 #endif
154 
155 	return ret_buf;
156 }
157 
158 void
159 tconInfoFree(struct cifs_tcon *tcon, enum smb3_tcon_ref_trace trace)
160 {
161 	if (tcon == NULL) {
162 		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
163 		return;
164 	}
165 	trace_smb3_tcon_ref(tcon->debug_id, tcon->tc_count, trace);
166 	free_cached_dirs(tcon->cfids);
167 	atomic_dec(&tconInfoAllocCount);
168 	kfree(tcon->nativeFileSystem);
169 	kfree_sensitive(tcon->password);
170 	kfree(tcon->origin_fullpath);
171 	kfree(tcon);
172 }
173 
174 struct smb_hdr *
175 cifs_buf_get(void)
176 {
177 	struct smb_hdr *ret_buf = NULL;
178 	/*
179 	 * SMB2 header is bigger than CIFS one - no problems to clean some
180 	 * more bytes for CIFS.
181 	 */
182 	size_t buf_size = sizeof(struct smb2_hdr);
183 
184 	/*
185 	 * We could use negotiated size instead of max_msgsize -
186 	 * but it may be more efficient to always alloc same size
187 	 * albeit slightly larger than necessary and maxbuffersize
188 	 * defaults to this and can not be bigger.
189 	 */
190 	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
191 
192 	/* clear the first few header bytes */
193 	/* for most paths, more is cleared in header_assemble */
194 	memset(ret_buf, 0, buf_size + 3);
195 	atomic_inc(&buf_alloc_count);
196 #ifdef CONFIG_CIFS_STATS2
197 	atomic_inc(&total_buf_alloc_count);
198 #endif /* CONFIG_CIFS_STATS2 */
199 
200 	return ret_buf;
201 }
202 
203 void
204 cifs_buf_release(void *buf_to_free)
205 {
206 	if (buf_to_free == NULL) {
207 		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
208 		return;
209 	}
210 	mempool_free(buf_to_free, cifs_req_poolp);
211 
212 	atomic_dec(&buf_alloc_count);
213 	return;
214 }
215 
216 struct smb_hdr *
217 cifs_small_buf_get(void)
218 {
219 	struct smb_hdr *ret_buf = NULL;
220 
221 /* We could use negotiated size instead of max_msgsize -
222    but it may be more efficient to always alloc same size
223    albeit slightly larger than necessary and maxbuffersize
224    defaults to this and can not be bigger */
225 	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
226 	/* No need to clear memory here, cleared in header assemble */
227 	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
228 	atomic_inc(&small_buf_alloc_count);
229 #ifdef CONFIG_CIFS_STATS2
230 	atomic_inc(&total_small_buf_alloc_count);
231 #endif /* CONFIG_CIFS_STATS2 */
232 
233 	return ret_buf;
234 }
235 
236 void
237 cifs_small_buf_release(void *buf_to_free)
238 {
239 
240 	if (buf_to_free == NULL) {
241 		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
242 		return;
243 	}
244 	mempool_free(buf_to_free, cifs_sm_req_poolp);
245 
246 	atomic_dec(&small_buf_alloc_count);
247 	return;
248 }
249 
250 void
251 free_rsp_buf(int resp_buftype, void *rsp)
252 {
253 	if (resp_buftype == CIFS_SMALL_BUFFER)
254 		cifs_small_buf_release(rsp);
255 	else if (resp_buftype == CIFS_LARGE_BUFFER)
256 		cifs_buf_release(rsp);
257 }
258 
259 /* NB: MID can not be set if treeCon not passed in, in that
260    case it is responsibility of caller to set the mid */
261 void
262 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
263 		const struct cifs_tcon *treeCon, int word_count
264 		/* length of fixed section (word count) in two byte units  */)
265 {
266 	char *temp = (char *) buffer;
267 
268 	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
269 
270 	buffer->smb_buf_length = cpu_to_be32(
271 	    (2 * word_count) + sizeof(struct smb_hdr) -
272 	    4 /*  RFC 1001 length field does not count */  +
273 	    2 /* for bcc field itself */) ;
274 
275 	buffer->Protocol[0] = 0xFF;
276 	buffer->Protocol[1] = 'S';
277 	buffer->Protocol[2] = 'M';
278 	buffer->Protocol[3] = 'B';
279 	buffer->Command = smb_command;
280 	buffer->Flags = 0x00;	/* case sensitive */
281 	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
282 	buffer->Pid = cpu_to_le16((__u16)current->tgid);
283 	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
284 	if (treeCon) {
285 		buffer->Tid = treeCon->tid;
286 		if (treeCon->ses) {
287 			if (treeCon->ses->capabilities & CAP_UNICODE)
288 				buffer->Flags2 |= SMBFLG2_UNICODE;
289 			if (treeCon->ses->capabilities & CAP_STATUS32)
290 				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
291 
292 			/* Uid is not converted */
293 			buffer->Uid = treeCon->ses->Suid;
294 			if (treeCon->ses->server)
295 				buffer->Mid = get_next_mid(treeCon->ses->server);
296 		}
297 		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
298 			buffer->Flags2 |= SMBFLG2_DFS;
299 		if (treeCon->nocase)
300 			buffer->Flags  |= SMBFLG_CASELESS;
301 		if ((treeCon->ses) && (treeCon->ses->server))
302 			if (treeCon->ses->server->sign)
303 				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
304 	}
305 
306 /*  endian conversion of flags is now done just before sending */
307 	buffer->WordCount = (char) word_count;
308 	return;
309 }
310 
311 static int
312 check_smb_hdr(struct smb_hdr *smb)
313 {
314 	/* does it have the right SMB "signature" ? */
315 	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
316 		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
317 			 *(unsigned int *)smb->Protocol);
318 		return 1;
319 	}
320 
321 	/* if it's a response then accept */
322 	if (smb->Flags & SMBFLG_RESPONSE)
323 		return 0;
324 
325 	/* only one valid case where server sends us request */
326 	if (smb->Command == SMB_COM_LOCKING_ANDX)
327 		return 0;
328 
329 	/*
330 	 * Windows NT server returns error resposne (e.g. STATUS_DELETE_PENDING
331 	 * or STATUS_OBJECT_NAME_NOT_FOUND or ERRDOS/ERRbadfile or any other)
332 	 * for some TRANS2 requests without the RESPONSE flag set in header.
333 	 */
334 	if (smb->Command == SMB_COM_TRANSACTION2 && smb->Status.CifsError != 0)
335 		return 0;
336 
337 	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
338 		 get_mid(smb));
339 	return 1;
340 }
341 
342 int
343 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
344 {
345 	struct smb_hdr *smb = (struct smb_hdr *)buf;
346 	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
347 	__u32 clc_len;  /* calculated length */
348 	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
349 		 total_read, rfclen);
350 
351 	/* is this frame too small to even get to a BCC? */
352 	if (total_read < 2 + sizeof(struct smb_hdr)) {
353 		if ((total_read >= sizeof(struct smb_hdr) - 1)
354 			    && (smb->Status.CifsError != 0)) {
355 			/* it's an error return */
356 			smb->WordCount = 0;
357 			/* some error cases do not return wct and bcc */
358 			return 0;
359 		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
360 				(smb->WordCount == 0)) {
361 			char *tmp = (char *)smb;
362 			/* Need to work around a bug in two servers here */
363 			/* First, check if the part of bcc they sent was zero */
364 			if (tmp[sizeof(struct smb_hdr)] == 0) {
365 				/* some servers return only half of bcc
366 				 * on simple responses (wct, bcc both zero)
367 				 * in particular have seen this on
368 				 * ulogoffX and FindClose. This leaves
369 				 * one byte of bcc potentially uninitialized
370 				 */
371 				/* zero rest of bcc */
372 				tmp[sizeof(struct smb_hdr)+1] = 0;
373 				return 0;
374 			}
375 			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
376 		} else {
377 			cifs_dbg(VFS, "Length less than smb header size\n");
378 		}
379 		return -EIO;
380 	} else if (total_read < sizeof(*smb) + 2 * smb->WordCount) {
381 		cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n",
382 			 __func__, smb->WordCount);
383 		return -EIO;
384 	}
385 
386 	/* otherwise, there is enough to get to the BCC */
387 	if (check_smb_hdr(smb))
388 		return -EIO;
389 	clc_len = smbCalcSize(smb);
390 
391 	if (4 + rfclen != total_read) {
392 		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
393 			 rfclen);
394 		return -EIO;
395 	}
396 
397 	if (4 + rfclen != clc_len) {
398 		__u16 mid = get_mid(smb);
399 		/* check if bcc wrapped around for large read responses */
400 		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
401 			/* check if lengths match mod 64K */
402 			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
403 				return 0; /* bcc wrapped */
404 		}
405 		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
406 			 clc_len, 4 + rfclen, mid);
407 
408 		if (4 + rfclen < clc_len) {
409 			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
410 				 rfclen, mid);
411 			return -EIO;
412 		} else if (rfclen > clc_len + 512) {
413 			/*
414 			 * Some servers (Windows XP in particular) send more
415 			 * data than the lengths in the SMB packet would
416 			 * indicate on certain calls (byte range locks and
417 			 * trans2 find first calls in particular). While the
418 			 * client can handle such a frame by ignoring the
419 			 * trailing data, we choose limit the amount of extra
420 			 * data to 512 bytes.
421 			 */
422 			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
423 				 rfclen, mid);
424 			return -EIO;
425 		}
426 	}
427 	return 0;
428 }
429 
430 bool
431 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
432 {
433 	struct smb_hdr *buf = (struct smb_hdr *)buffer;
434 	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
435 	struct TCP_Server_Info *pserver;
436 	struct cifs_ses *ses;
437 	struct cifs_tcon *tcon;
438 	struct cifsInodeInfo *pCifsInode;
439 	struct cifsFileInfo *netfile;
440 
441 	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
442 	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
443 	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
444 		struct smb_com_transaction_change_notify_rsp *pSMBr =
445 			(struct smb_com_transaction_change_notify_rsp *)buf;
446 		struct file_notify_information *pnotify;
447 		__u32 data_offset = 0;
448 		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
449 
450 		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
451 			data_offset = le32_to_cpu(pSMBr->DataOffset);
452 
453 			if (data_offset >
454 			    len - sizeof(struct file_notify_information)) {
455 				cifs_dbg(FYI, "Invalid data_offset %u\n",
456 					 data_offset);
457 				return true;
458 			}
459 			pnotify = (struct file_notify_information *)
460 				((char *)&pSMBr->hdr.Protocol + data_offset);
461 			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
462 				 pnotify->FileName, pnotify->Action);
463 			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
464 				sizeof(struct smb_hdr)+60); */
465 			return true;
466 		}
467 		if (pSMBr->hdr.Status.CifsError) {
468 			cifs_dbg(FYI, "notify err 0x%x\n",
469 				 pSMBr->hdr.Status.CifsError);
470 			return true;
471 		}
472 		return false;
473 	}
474 	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
475 		return false;
476 	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
477 		/* no sense logging error on invalid handle on oplock
478 		   break - harmless race between close request and oplock
479 		   break response is expected from time to time writing out
480 		   large dirty files cached on the client */
481 		if ((NT_STATUS_INVALID_HANDLE) ==
482 		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
483 			cifs_dbg(FYI, "Invalid handle on oplock break\n");
484 			return true;
485 		} else if (ERRbadfid ==
486 		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
487 			return true;
488 		} else {
489 			return false; /* on valid oplock brk we get "request" */
490 		}
491 	}
492 	if (pSMB->hdr.WordCount != 8)
493 		return false;
494 
495 	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
496 		 pSMB->LockType, pSMB->OplockLevel);
497 	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
498 		return false;
499 
500 	/* If server is a channel, select the primary channel */
501 	pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
502 
503 	/* look up tcon based on tid & uid */
504 	spin_lock(&cifs_tcp_ses_lock);
505 	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
506 		if (cifs_ses_exiting(ses))
507 			continue;
508 		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
509 			if (tcon->tid != buf->Tid)
510 				continue;
511 
512 			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
513 			spin_lock(&tcon->open_file_lock);
514 			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
515 				if (pSMB->Fid != netfile->fid.netfid)
516 					continue;
517 
518 				cifs_dbg(FYI, "file id match, oplock break\n");
519 				pCifsInode = CIFS_I(d_inode(netfile->dentry));
520 
521 				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
522 					&pCifsInode->flags);
523 
524 				netfile->oplock_epoch = 0;
525 				netfile->oplock_level = pSMB->OplockLevel;
526 				netfile->oplock_break_cancelled = false;
527 				cifs_queue_oplock_break(netfile);
528 
529 				spin_unlock(&tcon->open_file_lock);
530 				spin_unlock(&cifs_tcp_ses_lock);
531 				return true;
532 			}
533 			spin_unlock(&tcon->open_file_lock);
534 			spin_unlock(&cifs_tcp_ses_lock);
535 			cifs_dbg(FYI, "No matching file for oplock break\n");
536 			return true;
537 		}
538 	}
539 	spin_unlock(&cifs_tcp_ses_lock);
540 	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
541 	return true;
542 }
543 
544 void
545 dump_smb(void *buf, int smb_buf_length)
546 {
547 	if (traceSMB == 0)
548 		return;
549 
550 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
551 		       smb_buf_length, true);
552 }
553 
554 void
555 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
556 {
557 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
558 		struct cifs_tcon *tcon = NULL;
559 
560 		if (cifs_sb->master_tlink)
561 			tcon = cifs_sb_master_tcon(cifs_sb);
562 
563 		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
564 		cifs_sb->mnt_cifs_serverino_autodisabled = true;
565 		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
566 			 tcon ? tcon->tree_name : "new server");
567 		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
568 		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
569 
570 	}
571 }
572 
573 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
574 {
575 	oplock &= 0xF;
576 
577 	if (oplock == OPLOCK_EXCLUSIVE) {
578 		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
579 		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
580 			 &cinode->netfs.inode);
581 	} else if (oplock == OPLOCK_READ) {
582 		cinode->oplock = CIFS_CACHE_READ_FLG;
583 		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
584 			 &cinode->netfs.inode);
585 	} else
586 		cinode->oplock = 0;
587 }
588 
589 /*
590  * We wait for oplock breaks to be processed before we attempt to perform
591  * writes.
592  */
593 int cifs_get_writer(struct cifsInodeInfo *cinode)
594 {
595 	int rc;
596 
597 start:
598 	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
599 			 TASK_KILLABLE);
600 	if (rc)
601 		return rc;
602 
603 	spin_lock(&cinode->writers_lock);
604 	if (!cinode->writers)
605 		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
606 	cinode->writers++;
607 	/* Check to see if we have started servicing an oplock break */
608 	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
609 		cinode->writers--;
610 		if (cinode->writers == 0) {
611 			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
612 			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
613 		}
614 		spin_unlock(&cinode->writers_lock);
615 		goto start;
616 	}
617 	spin_unlock(&cinode->writers_lock);
618 	return 0;
619 }
620 
621 void cifs_put_writer(struct cifsInodeInfo *cinode)
622 {
623 	spin_lock(&cinode->writers_lock);
624 	cinode->writers--;
625 	if (cinode->writers == 0) {
626 		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
627 		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
628 	}
629 	spin_unlock(&cinode->writers_lock);
630 }
631 
632 /**
633  * cifs_queue_oplock_break - queue the oplock break handler for cfile
634  * @cfile: The file to break the oplock on
635  *
636  * This function is called from the demultiplex thread when it
637  * receives an oplock break for @cfile.
638  *
639  * Assumes the tcon->open_file_lock is held.
640  * Assumes cfile->file_info_lock is NOT held.
641  */
642 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
643 {
644 	/*
645 	 * Bump the handle refcount now while we hold the
646 	 * open_file_lock to enforce the validity of it for the oplock
647 	 * break handler. The matching put is done at the end of the
648 	 * handler.
649 	 */
650 	cifsFileInfo_get(cfile);
651 
652 	queue_work(cifsoplockd_wq, &cfile->oplock_break);
653 }
654 
655 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
656 {
657 	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
658 	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
659 }
660 
661 bool
662 backup_cred(struct cifs_sb_info *cifs_sb)
663 {
664 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
665 		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
666 			return true;
667 	}
668 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
669 		if (in_group_p(cifs_sb->ctx->backupgid))
670 			return true;
671 	}
672 
673 	return false;
674 }
675 
676 void
677 cifs_del_pending_open(struct cifs_pending_open *open)
678 {
679 	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
680 	list_del(&open->olist);
681 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
682 }
683 
684 void
685 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
686 			     struct cifs_pending_open *open)
687 {
688 	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
689 	open->oplock = CIFS_OPLOCK_NO_CHANGE;
690 	open->tlink = tlink;
691 	fid->pending_open = open;
692 	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
693 }
694 
695 void
696 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
697 		      struct cifs_pending_open *open)
698 {
699 	spin_lock(&tlink_tcon(tlink)->open_file_lock);
700 	cifs_add_pending_open_locked(fid, tlink, open);
701 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
702 }
703 
704 /*
705  * Critical section which runs after acquiring deferred_lock.
706  * As there is no reference count on cifs_deferred_close, pdclose
707  * should not be used outside deferred_lock.
708  */
709 bool
710 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
711 {
712 	struct cifs_deferred_close *dclose;
713 
714 	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
715 		if ((dclose->netfid == cfile->fid.netfid) &&
716 			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
717 			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
718 			*pdclose = dclose;
719 			return true;
720 		}
721 	}
722 	return false;
723 }
724 
725 /*
726  * Critical section which runs after acquiring deferred_lock.
727  */
728 void
729 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
730 {
731 	bool is_deferred = false;
732 	struct cifs_deferred_close *pdclose;
733 
734 	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
735 	if (is_deferred) {
736 		kfree(dclose);
737 		return;
738 	}
739 
740 	dclose->tlink = cfile->tlink;
741 	dclose->netfid = cfile->fid.netfid;
742 	dclose->persistent_fid = cfile->fid.persistent_fid;
743 	dclose->volatile_fid = cfile->fid.volatile_fid;
744 	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
745 }
746 
747 /*
748  * Critical section which runs after acquiring deferred_lock.
749  */
750 void
751 cifs_del_deferred_close(struct cifsFileInfo *cfile)
752 {
753 	bool is_deferred = false;
754 	struct cifs_deferred_close *dclose;
755 
756 	is_deferred = cifs_is_deferred_close(cfile, &dclose);
757 	if (!is_deferred)
758 		return;
759 	list_del(&dclose->dlist);
760 	kfree(dclose);
761 }
762 
763 void
764 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
765 {
766 	struct cifsFileInfo *cfile = NULL;
767 	struct file_list *tmp_list, *tmp_next_list;
768 	LIST_HEAD(file_head);
769 
770 	if (cifs_inode == NULL)
771 		return;
772 
773 	spin_lock(&cifs_inode->open_file_lock);
774 	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
775 		if (delayed_work_pending(&cfile->deferred)) {
776 			if (cancel_delayed_work(&cfile->deferred)) {
777 				spin_lock(&cifs_inode->deferred_lock);
778 				cifs_del_deferred_close(cfile);
779 				spin_unlock(&cifs_inode->deferred_lock);
780 
781 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
782 				if (tmp_list == NULL)
783 					break;
784 				tmp_list->cfile = cfile;
785 				list_add_tail(&tmp_list->list, &file_head);
786 			}
787 		}
788 	}
789 	spin_unlock(&cifs_inode->open_file_lock);
790 
791 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
792 		_cifsFileInfo_put(tmp_list->cfile, false, false);
793 		list_del(&tmp_list->list);
794 		kfree(tmp_list);
795 	}
796 }
797 
798 void
799 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
800 {
801 	struct cifsFileInfo *cfile;
802 	struct file_list *tmp_list, *tmp_next_list;
803 	LIST_HEAD(file_head);
804 
805 	spin_lock(&tcon->open_file_lock);
806 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
807 		if (delayed_work_pending(&cfile->deferred)) {
808 			if (cancel_delayed_work(&cfile->deferred)) {
809 				spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
810 				cifs_del_deferred_close(cfile);
811 				spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
812 
813 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
814 				if (tmp_list == NULL)
815 					break;
816 				tmp_list->cfile = cfile;
817 				list_add_tail(&tmp_list->list, &file_head);
818 			}
819 		}
820 	}
821 	spin_unlock(&tcon->open_file_lock);
822 
823 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
824 		_cifsFileInfo_put(tmp_list->cfile, true, false);
825 		list_del(&tmp_list->list);
826 		kfree(tmp_list);
827 	}
828 }
829 void
830 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
831 {
832 	struct cifsFileInfo *cfile;
833 	struct file_list *tmp_list, *tmp_next_list;
834 	void *page;
835 	const char *full_path;
836 	LIST_HEAD(file_head);
837 
838 	page = alloc_dentry_path();
839 	spin_lock(&tcon->open_file_lock);
840 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
841 		full_path = build_path_from_dentry(cfile->dentry, page);
842 		if (strstr(full_path, path)) {
843 			if (delayed_work_pending(&cfile->deferred)) {
844 				if (cancel_delayed_work(&cfile->deferred)) {
845 					spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
846 					cifs_del_deferred_close(cfile);
847 					spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
848 
849 					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
850 					if (tmp_list == NULL)
851 						break;
852 					tmp_list->cfile = cfile;
853 					list_add_tail(&tmp_list->list, &file_head);
854 				}
855 			}
856 		}
857 	}
858 	spin_unlock(&tcon->open_file_lock);
859 
860 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
861 		_cifsFileInfo_put(tmp_list->cfile, true, false);
862 		list_del(&tmp_list->list);
863 		kfree(tmp_list);
864 	}
865 	free_dentry_path(page);
866 }
867 
868 /*
869  * If a dentry has been deleted, all corresponding open handles should know that
870  * so that we do not defer close them.
871  */
872 void cifs_mark_open_handles_for_deleted_file(struct inode *inode,
873 					     const char *path)
874 {
875 	struct cifsFileInfo *cfile;
876 	void *page;
877 	const char *full_path;
878 	struct cifsInodeInfo *cinode = CIFS_I(inode);
879 
880 	page = alloc_dentry_path();
881 	spin_lock(&cinode->open_file_lock);
882 
883 	/*
884 	 * note: we need to construct path from dentry and compare only if the
885 	 * inode has any hardlinks. When number of hardlinks is 1, we can just
886 	 * mark all open handles since they are going to be from the same file.
887 	 */
888 	if (inode->i_nlink > 1) {
889 		list_for_each_entry(cfile, &cinode->openFileList, flist) {
890 			full_path = build_path_from_dentry(cfile->dentry, page);
891 			if (!IS_ERR(full_path) && strcmp(full_path, path) == 0)
892 				cfile->status_file_deleted = true;
893 		}
894 	} else {
895 		list_for_each_entry(cfile, &cinode->openFileList, flist)
896 			cfile->status_file_deleted = true;
897 	}
898 	spin_unlock(&cinode->open_file_lock);
899 	free_dentry_path(page);
900 }
901 
902 /* parses DFS referral V3 structure
903  * caller is responsible for freeing target_nodes
904  * returns:
905  * - on success - 0
906  * - on failure - errno
907  */
908 int
909 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
910 		    unsigned int *num_of_nodes,
911 		    struct dfs_info3_param **target_nodes,
912 		    const struct nls_table *nls_codepage, int remap,
913 		    const char *searchName, bool is_unicode)
914 {
915 	int i, rc = 0;
916 	char *data_end;
917 	struct dfs_referral_level_3 *ref;
918 
919 	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
920 
921 	if (*num_of_nodes < 1) {
922 		cifs_dbg(VFS | ONCE, "%s: [path=%s] num_referrals must be at least > 0, but we got %d\n",
923 			 __func__, searchName, *num_of_nodes);
924 		rc = -ENOENT;
925 		goto parse_DFS_referrals_exit;
926 	}
927 
928 	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
929 	if (ref->VersionNumber != cpu_to_le16(3)) {
930 		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
931 			 le16_to_cpu(ref->VersionNumber));
932 		rc = -EINVAL;
933 		goto parse_DFS_referrals_exit;
934 	}
935 
936 	/* get the upper boundary of the resp buffer */
937 	data_end = (char *)rsp + rsp_size;
938 
939 	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
940 		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
941 
942 	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
943 				GFP_KERNEL);
944 	if (*target_nodes == NULL) {
945 		rc = -ENOMEM;
946 		goto parse_DFS_referrals_exit;
947 	}
948 
949 	/* collect necessary data from referrals */
950 	for (i = 0; i < *num_of_nodes; i++) {
951 		char *temp;
952 		int max_len;
953 		struct dfs_info3_param *node = (*target_nodes)+i;
954 
955 		node->flags = le32_to_cpu(rsp->DFSFlags);
956 		if (is_unicode) {
957 			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
958 						GFP_KERNEL);
959 			if (tmp == NULL) {
960 				rc = -ENOMEM;
961 				goto parse_DFS_referrals_exit;
962 			}
963 			cifsConvertToUTF16((__le16 *) tmp, searchName,
964 					   PATH_MAX, nls_codepage, remap);
965 			node->path_consumed = cifs_utf16_bytes(tmp,
966 					le16_to_cpu(rsp->PathConsumed),
967 					nls_codepage);
968 			kfree(tmp);
969 		} else
970 			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
971 
972 		node->server_type = le16_to_cpu(ref->ServerType);
973 		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
974 
975 		/* copy DfsPath */
976 		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
977 		max_len = data_end - temp;
978 		node->path_name = cifs_strndup_from_utf16(temp, max_len,
979 						is_unicode, nls_codepage);
980 		if (!node->path_name) {
981 			rc = -ENOMEM;
982 			goto parse_DFS_referrals_exit;
983 		}
984 
985 		/* copy link target UNC */
986 		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
987 		max_len = data_end - temp;
988 		node->node_name = cifs_strndup_from_utf16(temp, max_len,
989 						is_unicode, nls_codepage);
990 		if (!node->node_name) {
991 			rc = -ENOMEM;
992 			goto parse_DFS_referrals_exit;
993 		}
994 
995 		node->ttl = le32_to_cpu(ref->TimeToLive);
996 
997 		ref++;
998 	}
999 
1000 parse_DFS_referrals_exit:
1001 	if (rc) {
1002 		free_dfs_info_array(*target_nodes, *num_of_nodes);
1003 		*target_nodes = NULL;
1004 		*num_of_nodes = 0;
1005 	}
1006 	return rc;
1007 }
1008 
1009 /**
1010  * cifs_alloc_hash - allocate hash and hash context together
1011  * @name: The name of the crypto hash algo
1012  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1013  *
1014  * The caller has to make sure @sdesc is initialized to either NULL or
1015  * a valid context. It can be freed via cifs_free_hash().
1016  */
1017 int
1018 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1019 {
1020 	int rc = 0;
1021 	struct crypto_shash *alg = NULL;
1022 
1023 	if (*sdesc)
1024 		return 0;
1025 
1026 	alg = crypto_alloc_shash(name, 0, 0);
1027 	if (IS_ERR(alg)) {
1028 		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1029 		rc = PTR_ERR(alg);
1030 		*sdesc = NULL;
1031 		return rc;
1032 	}
1033 
1034 	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1035 	if (*sdesc == NULL) {
1036 		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1037 		crypto_free_shash(alg);
1038 		return -ENOMEM;
1039 	}
1040 
1041 	(*sdesc)->tfm = alg;
1042 	return 0;
1043 }
1044 
1045 /**
1046  * cifs_free_hash - free hash and hash context together
1047  * @sdesc: Where to find the pointer to the hash TFM
1048  *
1049  * Freeing a NULL descriptor is safe.
1050  */
1051 void
1052 cifs_free_hash(struct shash_desc **sdesc)
1053 {
1054 	if (unlikely(!sdesc) || !*sdesc)
1055 		return;
1056 
1057 	if ((*sdesc)->tfm) {
1058 		crypto_free_shash((*sdesc)->tfm);
1059 		(*sdesc)->tfm = NULL;
1060 	}
1061 
1062 	kfree_sensitive(*sdesc);
1063 	*sdesc = NULL;
1064 }
1065 
1066 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1067 {
1068 	const char *end;
1069 
1070 	/* skip initial slashes */
1071 	while (*unc && (*unc == '\\' || *unc == '/'))
1072 		unc++;
1073 
1074 	end = unc;
1075 
1076 	while (*end && !(*end == '\\' || *end == '/'))
1077 		end++;
1078 
1079 	*h = unc;
1080 	*len = end - unc;
1081 }
1082 
1083 /**
1084  * copy_path_name - copy src path to dst, possibly truncating
1085  * @dst: The destination buffer
1086  * @src: The source name
1087  *
1088  * returns number of bytes written (including trailing nul)
1089  */
1090 int copy_path_name(char *dst, const char *src)
1091 {
1092 	int name_len;
1093 
1094 	/*
1095 	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1096 	 * will truncate and strlen(dst) will be PATH_MAX-1
1097 	 */
1098 	name_len = strscpy(dst, src, PATH_MAX);
1099 	if (WARN_ON_ONCE(name_len < 0))
1100 		name_len = PATH_MAX-1;
1101 
1102 	/* we count the trailing nul */
1103 	name_len++;
1104 	return name_len;
1105 }
1106 
1107 struct super_cb_data {
1108 	void *data;
1109 	struct super_block *sb;
1110 };
1111 
1112 static void tcon_super_cb(struct super_block *sb, void *arg)
1113 {
1114 	struct super_cb_data *sd = arg;
1115 	struct cifs_sb_info *cifs_sb;
1116 	struct cifs_tcon *t1 = sd->data, *t2;
1117 
1118 	if (sd->sb)
1119 		return;
1120 
1121 	cifs_sb = CIFS_SB(sb);
1122 	t2 = cifs_sb_master_tcon(cifs_sb);
1123 
1124 	spin_lock(&t2->tc_lock);
1125 	if ((t1->ses == t2->ses ||
1126 	     t1->ses->dfs_root_ses == t2->ses->dfs_root_ses) &&
1127 	    t1->ses->server == t2->ses->server &&
1128 	    t2->origin_fullpath &&
1129 	    dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1130 		sd->sb = sb;
1131 	spin_unlock(&t2->tc_lock);
1132 }
1133 
1134 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1135 					    void *data)
1136 {
1137 	struct super_cb_data sd = {
1138 		.data = data,
1139 		.sb = NULL,
1140 	};
1141 	struct file_system_type **fs_type = (struct file_system_type *[]) {
1142 		&cifs_fs_type, &smb3_fs_type, NULL,
1143 	};
1144 
1145 	for (; *fs_type; fs_type++) {
1146 		iterate_supers_type(*fs_type, f, &sd);
1147 		if (sd.sb) {
1148 			/*
1149 			 * Grab an active reference in order to prevent automounts (DFS links)
1150 			 * of expiring and then freeing up our cifs superblock pointer while
1151 			 * we're doing failover.
1152 			 */
1153 			cifs_sb_active(sd.sb);
1154 			return sd.sb;
1155 		}
1156 	}
1157 	pr_warn_once("%s: could not find dfs superblock\n", __func__);
1158 	return ERR_PTR(-EINVAL);
1159 }
1160 
1161 static void __cifs_put_super(struct super_block *sb)
1162 {
1163 	if (!IS_ERR_OR_NULL(sb))
1164 		cifs_sb_deactive(sb);
1165 }
1166 
1167 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1168 {
1169 	spin_lock(&tcon->tc_lock);
1170 	if (!tcon->origin_fullpath) {
1171 		spin_unlock(&tcon->tc_lock);
1172 		return ERR_PTR(-ENOENT);
1173 	}
1174 	spin_unlock(&tcon->tc_lock);
1175 	return __cifs_get_super(tcon_super_cb, tcon);
1176 }
1177 
1178 void cifs_put_tcp_super(struct super_block *sb)
1179 {
1180 	__cifs_put_super(sb);
1181 }
1182 
1183 #ifdef CONFIG_CIFS_DFS_UPCALL
1184 int match_target_ip(struct TCP_Server_Info *server,
1185 		    const char *host, size_t hostlen,
1186 		    bool *result)
1187 {
1188 	struct sockaddr_storage ss;
1189 	int rc;
1190 
1191 	cifs_dbg(FYI, "%s: hostname=%.*s\n", __func__, (int)hostlen, host);
1192 
1193 	*result = false;
1194 
1195 	rc = dns_resolve_name(server->dns_dom, host, hostlen,
1196 			      (struct sockaddr *)&ss);
1197 	if (rc < 0)
1198 		return rc;
1199 
1200 	spin_lock(&server->srv_lock);
1201 	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1202 	spin_unlock(&server->srv_lock);
1203 	cifs_dbg(FYI, "%s: ip addresses matched: %s\n", __func__, str_yes_no(*result));
1204 	return 0;
1205 }
1206 
1207 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1208 {
1209 	int rc;
1210 
1211 	kfree(cifs_sb->prepath);
1212 	cifs_sb->prepath = NULL;
1213 
1214 	if (prefix && *prefix) {
1215 		cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1216 		if (IS_ERR(cifs_sb->prepath)) {
1217 			rc = PTR_ERR(cifs_sb->prepath);
1218 			cifs_sb->prepath = NULL;
1219 			return rc;
1220 		}
1221 		if (cifs_sb->prepath)
1222 			convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1223 	}
1224 
1225 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1226 	return 0;
1227 }
1228 
1229 /*
1230  * Handle weird Windows SMB server behaviour. It responds with
1231  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1232  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1233  * non-ASCII unicode symbols.
1234  */
1235 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1236 				   struct cifs_tcon *tcon,
1237 				   struct cifs_sb_info *cifs_sb,
1238 				   const char *full_path,
1239 				   bool *islink)
1240 {
1241 	struct TCP_Server_Info *server = tcon->ses->server;
1242 	struct cifs_ses *ses = tcon->ses;
1243 	size_t len;
1244 	char *path;
1245 	char *ref_path;
1246 
1247 	*islink = false;
1248 
1249 	/*
1250 	 * Fast path - skip check when @full_path doesn't have a prefix path to
1251 	 * look up or tcon is not DFS.
1252 	 */
1253 	if (strlen(full_path) < 2 || !cifs_sb ||
1254 	    (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1255 	    !is_tcon_dfs(tcon))
1256 		return 0;
1257 
1258 	spin_lock(&server->srv_lock);
1259 	if (!server->leaf_fullpath) {
1260 		spin_unlock(&server->srv_lock);
1261 		return 0;
1262 	}
1263 	spin_unlock(&server->srv_lock);
1264 
1265 	/*
1266 	 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1267 	 * to get a referral to figure out whether it is an DFS link.
1268 	 */
1269 	len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1270 	path = kmalloc(len, GFP_KERNEL);
1271 	if (!path)
1272 		return -ENOMEM;
1273 
1274 	scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1275 	ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1276 					    cifs_remap(cifs_sb));
1277 	kfree(path);
1278 
1279 	if (IS_ERR(ref_path)) {
1280 		if (PTR_ERR(ref_path) != -EINVAL)
1281 			return PTR_ERR(ref_path);
1282 	} else {
1283 		struct dfs_info3_param *refs = NULL;
1284 		int num_refs = 0;
1285 
1286 		/*
1287 		 * XXX: we are not using dfs_cache_find() here because we might
1288 		 * end up filling all the DFS cache and thus potentially
1289 		 * removing cached DFS targets that the client would eventually
1290 		 * need during failover.
1291 		 */
1292 		ses = CIFS_DFS_ROOT_SES(ses);
1293 		if (ses->server->ops->get_dfs_refer &&
1294 		    !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1295 						     &num_refs, cifs_sb->local_nls,
1296 						     cifs_remap(cifs_sb)))
1297 			*islink = refs[0].server_type == DFS_TYPE_LINK;
1298 		free_dfs_info_array(refs, num_refs);
1299 		kfree(ref_path);
1300 	}
1301 	return 0;
1302 }
1303 #endif
1304 
1305 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1306 {
1307 	int timeout = 10;
1308 	int rc;
1309 
1310 	spin_lock(&server->srv_lock);
1311 	if (server->tcpStatus != CifsNeedReconnect) {
1312 		spin_unlock(&server->srv_lock);
1313 		return 0;
1314 	}
1315 	timeout *= server->nr_targets;
1316 	spin_unlock(&server->srv_lock);
1317 
1318 	/*
1319 	 * Give demultiplex thread up to 10 seconds to each target available for
1320 	 * reconnect -- should be greater than cifs socket timeout which is 7
1321 	 * seconds.
1322 	 *
1323 	 * On "soft" mounts we wait once. Hard mounts keep retrying until
1324 	 * process is killed or server comes back on-line.
1325 	 */
1326 	do {
1327 		rc = wait_event_interruptible_timeout(server->response_q,
1328 						      (server->tcpStatus != CifsNeedReconnect),
1329 						      timeout * HZ);
1330 		if (rc < 0) {
1331 			cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1332 				 __func__);
1333 			return -ERESTARTSYS;
1334 		}
1335 
1336 		/* are we still trying to reconnect? */
1337 		spin_lock(&server->srv_lock);
1338 		if (server->tcpStatus != CifsNeedReconnect) {
1339 			spin_unlock(&server->srv_lock);
1340 			return 0;
1341 		}
1342 		spin_unlock(&server->srv_lock);
1343 	} while (retry);
1344 
1345 	cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1346 	return -EHOSTDOWN;
1347 }
1348