1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Resource Director Technology(RDT) 4 * - Monitoring code 5 * 6 * Copyright (C) 2017 Intel Corporation 7 * 8 * Author: 9 * Vikas Shivappa <vikas.shivappa@intel.com> 10 * 11 * This replaces the cqm.c based on perf but we reuse a lot of 12 * code and datastructures originally from Peter Zijlstra and Matt Fleming. 13 * 14 * More information about RDT be found in the Intel (R) x86 Architecture 15 * Software Developer Manual June 2016, volume 3, section 17.17. 16 */ 17 18 #define pr_fmt(fmt) "resctrl: " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/resctrl.h> 22 #include <linux/sizes.h> 23 #include <linux/slab.h> 24 25 #include "internal.h" 26 27 #define CREATE_TRACE_POINTS 28 29 #include "monitor_trace.h" 30 31 /** 32 * struct rmid_entry - dirty tracking for all RMID. 33 * @closid: The CLOSID for this entry. 34 * @rmid: The RMID for this entry. 35 * @busy: The number of domains with cached data using this RMID. 36 * @list: Member of the rmid_free_lru list when busy == 0. 37 * 38 * Depending on the architecture the correct monitor is accessed using 39 * both @closid and @rmid, or @rmid only. 40 * 41 * Take the rdtgroup_mutex when accessing. 42 */ 43 struct rmid_entry { 44 u32 closid; 45 u32 rmid; 46 int busy; 47 struct list_head list; 48 }; 49 50 /* 51 * @rmid_free_lru - A least recently used list of free RMIDs 52 * These RMIDs are guaranteed to have an occupancy less than the 53 * threshold occupancy 54 */ 55 static LIST_HEAD(rmid_free_lru); 56 57 /* 58 * @closid_num_dirty_rmid The number of dirty RMID each CLOSID has. 59 * Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined. 60 * Indexed by CLOSID. Protected by rdtgroup_mutex. 61 */ 62 static u32 *closid_num_dirty_rmid; 63 64 /* 65 * @rmid_limbo_count - count of currently unused but (potentially) 66 * dirty RMIDs. 67 * This counts RMIDs that no one is currently using but that 68 * may have a occupancy value > resctrl_rmid_realloc_threshold. User can 69 * change the threshold occupancy value. 70 */ 71 static unsigned int rmid_limbo_count; 72 73 /* 74 * @rmid_entry - The entry in the limbo and free lists. 75 */ 76 static struct rmid_entry *rmid_ptrs; 77 78 /* 79 * This is the threshold cache occupancy in bytes at which we will consider an 80 * RMID available for re-allocation. 81 */ 82 unsigned int resctrl_rmid_realloc_threshold; 83 84 /* 85 * This is the maximum value for the reallocation threshold, in bytes. 86 */ 87 unsigned int resctrl_rmid_realloc_limit; 88 89 /* 90 * x86 and arm64 differ in their handling of monitoring. 91 * x86's RMID are independent numbers, there is only one source of traffic 92 * with an RMID value of '1'. 93 * arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of 94 * traffic with a PMG value of '1', one for each CLOSID, meaning the RMID 95 * value is no longer unique. 96 * To account for this, resctrl uses an index. On x86 this is just the RMID, 97 * on arm64 it encodes the CLOSID and RMID. This gives a unique number. 98 * 99 * The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code 100 * must accept an attempt to read every index. 101 */ 102 static inline struct rmid_entry *__rmid_entry(u32 idx) 103 { 104 struct rmid_entry *entry; 105 u32 closid, rmid; 106 107 entry = &rmid_ptrs[idx]; 108 resctrl_arch_rmid_idx_decode(idx, &closid, &rmid); 109 110 WARN_ON_ONCE(entry->closid != closid); 111 WARN_ON_ONCE(entry->rmid != rmid); 112 113 return entry; 114 } 115 116 static void limbo_release_entry(struct rmid_entry *entry) 117 { 118 lockdep_assert_held(&rdtgroup_mutex); 119 120 rmid_limbo_count--; 121 list_add_tail(&entry->list, &rmid_free_lru); 122 123 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) 124 closid_num_dirty_rmid[entry->closid]--; 125 } 126 127 /* 128 * Check the RMIDs that are marked as busy for this domain. If the 129 * reported LLC occupancy is below the threshold clear the busy bit and 130 * decrement the count. If the busy count gets to zero on an RMID, we 131 * free the RMID 132 */ 133 void __check_limbo(struct rdt_mon_domain *d, bool force_free) 134 { 135 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 136 u32 idx_limit = resctrl_arch_system_num_rmid_idx(); 137 struct rmid_entry *entry; 138 u32 idx, cur_idx = 1; 139 void *arch_mon_ctx; 140 bool rmid_dirty; 141 u64 val = 0; 142 143 arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID); 144 if (IS_ERR(arch_mon_ctx)) { 145 pr_warn_ratelimited("Failed to allocate monitor context: %ld", 146 PTR_ERR(arch_mon_ctx)); 147 return; 148 } 149 150 /* 151 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that 152 * are marked as busy for occupancy < threshold. If the occupancy 153 * is less than the threshold decrement the busy counter of the 154 * RMID and move it to the free list when the counter reaches 0. 155 */ 156 for (;;) { 157 idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx); 158 if (idx >= idx_limit) 159 break; 160 161 entry = __rmid_entry(idx); 162 if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid, 163 QOS_L3_OCCUP_EVENT_ID, &val, 164 arch_mon_ctx)) { 165 rmid_dirty = true; 166 } else { 167 rmid_dirty = (val >= resctrl_rmid_realloc_threshold); 168 169 /* 170 * x86's CLOSID and RMID are independent numbers, so the entry's 171 * CLOSID is an empty CLOSID (X86_RESCTRL_EMPTY_CLOSID). On Arm the 172 * RMID (PMG) extends the CLOSID (PARTID) space with bits that aren't 173 * used to select the configuration. It is thus necessary to track both 174 * CLOSID and RMID because there may be dependencies between them 175 * on some architectures. 176 */ 177 trace_mon_llc_occupancy_limbo(entry->closid, entry->rmid, d->hdr.id, val); 178 } 179 180 if (force_free || !rmid_dirty) { 181 clear_bit(idx, d->rmid_busy_llc); 182 if (!--entry->busy) 183 limbo_release_entry(entry); 184 } 185 cur_idx = idx + 1; 186 } 187 188 resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx); 189 } 190 191 bool has_busy_rmid(struct rdt_mon_domain *d) 192 { 193 u32 idx_limit = resctrl_arch_system_num_rmid_idx(); 194 195 return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit; 196 } 197 198 static struct rmid_entry *resctrl_find_free_rmid(u32 closid) 199 { 200 struct rmid_entry *itr; 201 u32 itr_idx, cmp_idx; 202 203 if (list_empty(&rmid_free_lru)) 204 return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC); 205 206 list_for_each_entry(itr, &rmid_free_lru, list) { 207 /* 208 * Get the index of this free RMID, and the index it would need 209 * to be if it were used with this CLOSID. 210 * If the CLOSID is irrelevant on this architecture, the two 211 * index values are always the same on every entry and thus the 212 * very first entry will be returned. 213 */ 214 itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid); 215 cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid); 216 217 if (itr_idx == cmp_idx) 218 return itr; 219 } 220 221 return ERR_PTR(-ENOSPC); 222 } 223 224 /** 225 * resctrl_find_cleanest_closid() - Find a CLOSID where all the associated 226 * RMID are clean, or the CLOSID that has 227 * the most clean RMID. 228 * 229 * MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID 230 * may not be able to allocate clean RMID. To avoid this the allocator will 231 * choose the CLOSID with the most clean RMID. 232 * 233 * When the CLOSID and RMID are independent numbers, the first free CLOSID will 234 * be returned. 235 */ 236 int resctrl_find_cleanest_closid(void) 237 { 238 u32 cleanest_closid = ~0; 239 int i = 0; 240 241 lockdep_assert_held(&rdtgroup_mutex); 242 243 if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) 244 return -EIO; 245 246 for (i = 0; i < closids_supported(); i++) { 247 int num_dirty; 248 249 if (closid_allocated(i)) 250 continue; 251 252 num_dirty = closid_num_dirty_rmid[i]; 253 if (num_dirty == 0) 254 return i; 255 256 if (cleanest_closid == ~0) 257 cleanest_closid = i; 258 259 if (num_dirty < closid_num_dirty_rmid[cleanest_closid]) 260 cleanest_closid = i; 261 } 262 263 if (cleanest_closid == ~0) 264 return -ENOSPC; 265 266 return cleanest_closid; 267 } 268 269 /* 270 * For MPAM the RMID value is not unique, and has to be considered with 271 * the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which 272 * allows all domains to be managed by a single free list. 273 * Each domain also has a rmid_busy_llc to reduce the work of the limbo handler. 274 */ 275 int alloc_rmid(u32 closid) 276 { 277 struct rmid_entry *entry; 278 279 lockdep_assert_held(&rdtgroup_mutex); 280 281 entry = resctrl_find_free_rmid(closid); 282 if (IS_ERR(entry)) 283 return PTR_ERR(entry); 284 285 list_del(&entry->list); 286 return entry->rmid; 287 } 288 289 static void add_rmid_to_limbo(struct rmid_entry *entry) 290 { 291 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 292 struct rdt_mon_domain *d; 293 u32 idx; 294 295 lockdep_assert_held(&rdtgroup_mutex); 296 297 /* Walking r->domains, ensure it can't race with cpuhp */ 298 lockdep_assert_cpus_held(); 299 300 idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid); 301 302 entry->busy = 0; 303 list_for_each_entry(d, &r->mon_domains, hdr.list) { 304 /* 305 * For the first limbo RMID in the domain, 306 * setup up the limbo worker. 307 */ 308 if (!has_busy_rmid(d)) 309 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL, 310 RESCTRL_PICK_ANY_CPU); 311 set_bit(idx, d->rmid_busy_llc); 312 entry->busy++; 313 } 314 315 rmid_limbo_count++; 316 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) 317 closid_num_dirty_rmid[entry->closid]++; 318 } 319 320 void free_rmid(u32 closid, u32 rmid) 321 { 322 u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid); 323 struct rmid_entry *entry; 324 325 lockdep_assert_held(&rdtgroup_mutex); 326 327 /* 328 * Do not allow the default rmid to be free'd. Comparing by index 329 * allows architectures that ignore the closid parameter to avoid an 330 * unnecessary check. 331 */ 332 if (!resctrl_arch_mon_capable() || 333 idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID, 334 RESCTRL_RESERVED_RMID)) 335 return; 336 337 entry = __rmid_entry(idx); 338 339 if (resctrl_arch_is_llc_occupancy_enabled()) 340 add_rmid_to_limbo(entry); 341 else 342 list_add_tail(&entry->list, &rmid_free_lru); 343 } 344 345 static struct mbm_state *get_mbm_state(struct rdt_mon_domain *d, u32 closid, 346 u32 rmid, enum resctrl_event_id evtid) 347 { 348 u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid); 349 350 switch (evtid) { 351 case QOS_L3_MBM_TOTAL_EVENT_ID: 352 return &d->mbm_total[idx]; 353 case QOS_L3_MBM_LOCAL_EVENT_ID: 354 return &d->mbm_local[idx]; 355 default: 356 return NULL; 357 } 358 } 359 360 static int __mon_event_count(u32 closid, u32 rmid, struct rmid_read *rr) 361 { 362 int cpu = smp_processor_id(); 363 struct rdt_mon_domain *d; 364 struct mbm_state *m; 365 int err, ret; 366 u64 tval = 0; 367 368 if (rr->first) { 369 resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid); 370 m = get_mbm_state(rr->d, closid, rmid, rr->evtid); 371 if (m) 372 memset(m, 0, sizeof(struct mbm_state)); 373 return 0; 374 } 375 376 if (rr->d) { 377 /* Reading a single domain, must be on a CPU in that domain. */ 378 if (!cpumask_test_cpu(cpu, &rr->d->hdr.cpu_mask)) 379 return -EINVAL; 380 rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid, 381 rr->evtid, &tval, rr->arch_mon_ctx); 382 if (rr->err) 383 return rr->err; 384 385 rr->val += tval; 386 387 return 0; 388 } 389 390 /* Summing domains that share a cache, must be on a CPU for that cache. */ 391 if (!cpumask_test_cpu(cpu, &rr->ci->shared_cpu_map)) 392 return -EINVAL; 393 394 /* 395 * Legacy files must report the sum of an event across all 396 * domains that share the same L3 cache instance. 397 * Report success if a read from any domain succeeds, -EINVAL 398 * (translated to "Unavailable" for user space) if reading from 399 * all domains fail for any reason. 400 */ 401 ret = -EINVAL; 402 list_for_each_entry(d, &rr->r->mon_domains, hdr.list) { 403 if (d->ci->id != rr->ci->id) 404 continue; 405 err = resctrl_arch_rmid_read(rr->r, d, closid, rmid, 406 rr->evtid, &tval, rr->arch_mon_ctx); 407 if (!err) { 408 rr->val += tval; 409 ret = 0; 410 } 411 } 412 413 if (ret) 414 rr->err = ret; 415 416 return ret; 417 } 418 419 /* 420 * mbm_bw_count() - Update bw count from values previously read by 421 * __mon_event_count(). 422 * @closid: The closid used to identify the cached mbm_state. 423 * @rmid: The rmid used to identify the cached mbm_state. 424 * @rr: The struct rmid_read populated by __mon_event_count(). 425 * 426 * Supporting function to calculate the memory bandwidth 427 * and delta bandwidth in MBps. The chunks value previously read by 428 * __mon_event_count() is compared with the chunks value from the previous 429 * invocation. This must be called once per second to maintain values in MBps. 430 */ 431 static void mbm_bw_count(u32 closid, u32 rmid, struct rmid_read *rr) 432 { 433 u64 cur_bw, bytes, cur_bytes; 434 struct mbm_state *m; 435 436 m = get_mbm_state(rr->d, closid, rmid, rr->evtid); 437 if (WARN_ON_ONCE(!m)) 438 return; 439 440 cur_bytes = rr->val; 441 bytes = cur_bytes - m->prev_bw_bytes; 442 m->prev_bw_bytes = cur_bytes; 443 444 cur_bw = bytes / SZ_1M; 445 446 m->prev_bw = cur_bw; 447 } 448 449 /* 450 * This is scheduled by mon_event_read() to read the CQM/MBM counters 451 * on a domain. 452 */ 453 void mon_event_count(void *info) 454 { 455 struct rdtgroup *rdtgrp, *entry; 456 struct rmid_read *rr = info; 457 struct list_head *head; 458 int ret; 459 460 rdtgrp = rr->rgrp; 461 462 ret = __mon_event_count(rdtgrp->closid, rdtgrp->mon.rmid, rr); 463 464 /* 465 * For Ctrl groups read data from child monitor groups and 466 * add them together. Count events which are read successfully. 467 * Discard the rmid_read's reporting errors. 468 */ 469 head = &rdtgrp->mon.crdtgrp_list; 470 471 if (rdtgrp->type == RDTCTRL_GROUP) { 472 list_for_each_entry(entry, head, mon.crdtgrp_list) { 473 if (__mon_event_count(entry->closid, entry->mon.rmid, 474 rr) == 0) 475 ret = 0; 476 } 477 } 478 479 /* 480 * __mon_event_count() calls for newly created monitor groups may 481 * report -EINVAL/Unavailable if the monitor hasn't seen any traffic. 482 * Discard error if any of the monitor event reads succeeded. 483 */ 484 if (ret == 0) 485 rr->err = 0; 486 } 487 488 static struct rdt_ctrl_domain *get_ctrl_domain_from_cpu(int cpu, 489 struct rdt_resource *r) 490 { 491 struct rdt_ctrl_domain *d; 492 493 lockdep_assert_cpus_held(); 494 495 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 496 /* Find the domain that contains this CPU */ 497 if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask)) 498 return d; 499 } 500 501 return NULL; 502 } 503 504 /* 505 * Feedback loop for MBA software controller (mba_sc) 506 * 507 * mba_sc is a feedback loop where we periodically read MBM counters and 508 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so 509 * that: 510 * 511 * current bandwidth(cur_bw) < user specified bandwidth(user_bw) 512 * 513 * This uses the MBM counters to measure the bandwidth and MBA throttle 514 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the 515 * fact that resctrl rdtgroups have both monitoring and control. 516 * 517 * The frequency of the checks is 1s and we just tag along the MBM overflow 518 * timer. Having 1s interval makes the calculation of bandwidth simpler. 519 * 520 * Although MBA's goal is to restrict the bandwidth to a maximum, there may 521 * be a need to increase the bandwidth to avoid unnecessarily restricting 522 * the L2 <-> L3 traffic. 523 * 524 * Since MBA controls the L2 external bandwidth where as MBM measures the 525 * L3 external bandwidth the following sequence could lead to such a 526 * situation. 527 * 528 * Consider an rdtgroup which had high L3 <-> memory traffic in initial 529 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but 530 * after some time rdtgroup has mostly L2 <-> L3 traffic. 531 * 532 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its 533 * throttle MSRs already have low percentage values. To avoid 534 * unnecessarily restricting such rdtgroups, we also increase the bandwidth. 535 */ 536 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_mon_domain *dom_mbm) 537 { 538 u32 closid, rmid, cur_msr_val, new_msr_val; 539 struct mbm_state *pmbm_data, *cmbm_data; 540 struct rdt_ctrl_domain *dom_mba; 541 enum resctrl_event_id evt_id; 542 struct rdt_resource *r_mba; 543 struct list_head *head; 544 struct rdtgroup *entry; 545 u32 cur_bw, user_bw; 546 547 r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA); 548 evt_id = rgrp->mba_mbps_event; 549 550 closid = rgrp->closid; 551 rmid = rgrp->mon.rmid; 552 pmbm_data = get_mbm_state(dom_mbm, closid, rmid, evt_id); 553 if (WARN_ON_ONCE(!pmbm_data)) 554 return; 555 556 dom_mba = get_ctrl_domain_from_cpu(smp_processor_id(), r_mba); 557 if (!dom_mba) { 558 pr_warn_once("Failure to get domain for MBA update\n"); 559 return; 560 } 561 562 cur_bw = pmbm_data->prev_bw; 563 user_bw = dom_mba->mbps_val[closid]; 564 565 /* MBA resource doesn't support CDP */ 566 cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE); 567 568 /* 569 * For Ctrl groups read data from child monitor groups. 570 */ 571 head = &rgrp->mon.crdtgrp_list; 572 list_for_each_entry(entry, head, mon.crdtgrp_list) { 573 cmbm_data = get_mbm_state(dom_mbm, entry->closid, entry->mon.rmid, evt_id); 574 if (WARN_ON_ONCE(!cmbm_data)) 575 return; 576 cur_bw += cmbm_data->prev_bw; 577 } 578 579 /* 580 * Scale up/down the bandwidth linearly for the ctrl group. The 581 * bandwidth step is the bandwidth granularity specified by the 582 * hardware. 583 * Always increase throttling if current bandwidth is above the 584 * target set by user. 585 * But avoid thrashing up and down on every poll by checking 586 * whether a decrease in throttling is likely to push the group 587 * back over target. E.g. if currently throttling to 30% of bandwidth 588 * on a system with 10% granularity steps, check whether moving to 589 * 40% would go past the limit by multiplying current bandwidth by 590 * "(30 + 10) / 30". 591 */ 592 if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) { 593 new_msr_val = cur_msr_val - r_mba->membw.bw_gran; 594 } else if (cur_msr_val < MAX_MBA_BW && 595 (user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) { 596 new_msr_val = cur_msr_val + r_mba->membw.bw_gran; 597 } else { 598 return; 599 } 600 601 resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val); 602 } 603 604 static void mbm_update_one_event(struct rdt_resource *r, struct rdt_mon_domain *d, 605 u32 closid, u32 rmid, enum resctrl_event_id evtid) 606 { 607 struct rmid_read rr = {0}; 608 609 rr.r = r; 610 rr.d = d; 611 rr.evtid = evtid; 612 rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid); 613 if (IS_ERR(rr.arch_mon_ctx)) { 614 pr_warn_ratelimited("Failed to allocate monitor context: %ld", 615 PTR_ERR(rr.arch_mon_ctx)); 616 return; 617 } 618 619 __mon_event_count(closid, rmid, &rr); 620 621 /* 622 * If the software controller is enabled, compute the 623 * bandwidth for this event id. 624 */ 625 if (is_mba_sc(NULL)) 626 mbm_bw_count(closid, rmid, &rr); 627 628 resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx); 629 } 630 631 static void mbm_update(struct rdt_resource *r, struct rdt_mon_domain *d, 632 u32 closid, u32 rmid) 633 { 634 /* 635 * This is protected from concurrent reads from user as both 636 * the user and overflow handler hold the global mutex. 637 */ 638 if (resctrl_arch_is_mbm_total_enabled()) 639 mbm_update_one_event(r, d, closid, rmid, QOS_L3_MBM_TOTAL_EVENT_ID); 640 641 if (resctrl_arch_is_mbm_local_enabled()) 642 mbm_update_one_event(r, d, closid, rmid, QOS_L3_MBM_LOCAL_EVENT_ID); 643 } 644 645 /* 646 * Handler to scan the limbo list and move the RMIDs 647 * to free list whose occupancy < threshold_occupancy. 648 */ 649 void cqm_handle_limbo(struct work_struct *work) 650 { 651 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL); 652 struct rdt_mon_domain *d; 653 654 cpus_read_lock(); 655 mutex_lock(&rdtgroup_mutex); 656 657 d = container_of(work, struct rdt_mon_domain, cqm_limbo.work); 658 659 __check_limbo(d, false); 660 661 if (has_busy_rmid(d)) { 662 d->cqm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask, 663 RESCTRL_PICK_ANY_CPU); 664 schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo, 665 delay); 666 } 667 668 mutex_unlock(&rdtgroup_mutex); 669 cpus_read_unlock(); 670 } 671 672 /** 673 * cqm_setup_limbo_handler() - Schedule the limbo handler to run for this 674 * domain. 675 * @dom: The domain the limbo handler should run for. 676 * @delay_ms: How far in the future the handler should run. 677 * @exclude_cpu: Which CPU the handler should not run on, 678 * RESCTRL_PICK_ANY_CPU to pick any CPU. 679 */ 680 void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms, 681 int exclude_cpu) 682 { 683 unsigned long delay = msecs_to_jiffies(delay_ms); 684 int cpu; 685 686 cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu); 687 dom->cqm_work_cpu = cpu; 688 689 if (cpu < nr_cpu_ids) 690 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay); 691 } 692 693 void mbm_handle_overflow(struct work_struct *work) 694 { 695 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL); 696 struct rdtgroup *prgrp, *crgrp; 697 struct rdt_mon_domain *d; 698 struct list_head *head; 699 struct rdt_resource *r; 700 701 cpus_read_lock(); 702 mutex_lock(&rdtgroup_mutex); 703 704 /* 705 * If the filesystem has been unmounted this work no longer needs to 706 * run. 707 */ 708 if (!resctrl_mounted || !resctrl_arch_mon_capable()) 709 goto out_unlock; 710 711 r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 712 d = container_of(work, struct rdt_mon_domain, mbm_over.work); 713 714 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 715 mbm_update(r, d, prgrp->closid, prgrp->mon.rmid); 716 717 head = &prgrp->mon.crdtgrp_list; 718 list_for_each_entry(crgrp, head, mon.crdtgrp_list) 719 mbm_update(r, d, crgrp->closid, crgrp->mon.rmid); 720 721 if (is_mba_sc(NULL)) 722 update_mba_bw(prgrp, d); 723 } 724 725 /* 726 * Re-check for housekeeping CPUs. This allows the overflow handler to 727 * move off a nohz_full CPU quickly. 728 */ 729 d->mbm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask, 730 RESCTRL_PICK_ANY_CPU); 731 schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay); 732 733 out_unlock: 734 mutex_unlock(&rdtgroup_mutex); 735 cpus_read_unlock(); 736 } 737 738 /** 739 * mbm_setup_overflow_handler() - Schedule the overflow handler to run for this 740 * domain. 741 * @dom: The domain the overflow handler should run for. 742 * @delay_ms: How far in the future the handler should run. 743 * @exclude_cpu: Which CPU the handler should not run on, 744 * RESCTRL_PICK_ANY_CPU to pick any CPU. 745 */ 746 void mbm_setup_overflow_handler(struct rdt_mon_domain *dom, unsigned long delay_ms, 747 int exclude_cpu) 748 { 749 unsigned long delay = msecs_to_jiffies(delay_ms); 750 int cpu; 751 752 /* 753 * When a domain comes online there is no guarantee the filesystem is 754 * mounted. If not, there is no need to catch counter overflow. 755 */ 756 if (!resctrl_mounted || !resctrl_arch_mon_capable()) 757 return; 758 cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu); 759 dom->mbm_work_cpu = cpu; 760 761 if (cpu < nr_cpu_ids) 762 schedule_delayed_work_on(cpu, &dom->mbm_over, delay); 763 } 764 765 static int dom_data_init(struct rdt_resource *r) 766 { 767 u32 idx_limit = resctrl_arch_system_num_rmid_idx(); 768 u32 num_closid = resctrl_arch_get_num_closid(r); 769 struct rmid_entry *entry = NULL; 770 int err = 0, i; 771 u32 idx; 772 773 mutex_lock(&rdtgroup_mutex); 774 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { 775 u32 *tmp; 776 777 /* 778 * If the architecture hasn't provided a sanitised value here, 779 * this may result in larger arrays than necessary. Resctrl will 780 * use a smaller system wide value based on the resources in 781 * use. 782 */ 783 tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL); 784 if (!tmp) { 785 err = -ENOMEM; 786 goto out_unlock; 787 } 788 789 closid_num_dirty_rmid = tmp; 790 } 791 792 rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL); 793 if (!rmid_ptrs) { 794 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { 795 kfree(closid_num_dirty_rmid); 796 closid_num_dirty_rmid = NULL; 797 } 798 err = -ENOMEM; 799 goto out_unlock; 800 } 801 802 for (i = 0; i < idx_limit; i++) { 803 entry = &rmid_ptrs[i]; 804 INIT_LIST_HEAD(&entry->list); 805 806 resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid); 807 list_add_tail(&entry->list, &rmid_free_lru); 808 } 809 810 /* 811 * RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and 812 * are always allocated. These are used for the rdtgroup_default 813 * control group, which will be setup later in resctrl_init(). 814 */ 815 idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID, 816 RESCTRL_RESERVED_RMID); 817 entry = __rmid_entry(idx); 818 list_del(&entry->list); 819 820 out_unlock: 821 mutex_unlock(&rdtgroup_mutex); 822 823 return err; 824 } 825 826 static void dom_data_exit(struct rdt_resource *r) 827 { 828 mutex_lock(&rdtgroup_mutex); 829 830 if (!r->mon_capable) 831 goto out_unlock; 832 833 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { 834 kfree(closid_num_dirty_rmid); 835 closid_num_dirty_rmid = NULL; 836 } 837 838 kfree(rmid_ptrs); 839 rmid_ptrs = NULL; 840 841 out_unlock: 842 mutex_unlock(&rdtgroup_mutex); 843 } 844 845 static struct mon_evt llc_occupancy_event = { 846 .name = "llc_occupancy", 847 .evtid = QOS_L3_OCCUP_EVENT_ID, 848 }; 849 850 static struct mon_evt mbm_total_event = { 851 .name = "mbm_total_bytes", 852 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID, 853 }; 854 855 static struct mon_evt mbm_local_event = { 856 .name = "mbm_local_bytes", 857 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID, 858 }; 859 860 /* 861 * Initialize the event list for the resource. 862 * 863 * Note that MBM events are also part of RDT_RESOURCE_L3 resource 864 * because as per the SDM the total and local memory bandwidth 865 * are enumerated as part of L3 monitoring. 866 */ 867 static void l3_mon_evt_init(struct rdt_resource *r) 868 { 869 INIT_LIST_HEAD(&r->evt_list); 870 871 if (resctrl_arch_is_llc_occupancy_enabled()) 872 list_add_tail(&llc_occupancy_event.list, &r->evt_list); 873 if (resctrl_arch_is_mbm_total_enabled()) 874 list_add_tail(&mbm_total_event.list, &r->evt_list); 875 if (resctrl_arch_is_mbm_local_enabled()) 876 list_add_tail(&mbm_local_event.list, &r->evt_list); 877 } 878 879 /** 880 * resctrl_mon_resource_init() - Initialise global monitoring structures. 881 * 882 * Allocate and initialise global monitor resources that do not belong to a 883 * specific domain. i.e. the rmid_ptrs[] used for the limbo and free lists. 884 * Called once during boot after the struct rdt_resource's have been configured 885 * but before the filesystem is mounted. 886 * Resctrl's cpuhp callbacks may be called before this point to bring a domain 887 * online. 888 * 889 * Returns 0 for success, or -ENOMEM. 890 */ 891 int resctrl_mon_resource_init(void) 892 { 893 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 894 int ret; 895 896 if (!r->mon_capable) 897 return 0; 898 899 ret = dom_data_init(r); 900 if (ret) 901 return ret; 902 903 l3_mon_evt_init(r); 904 905 if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_TOTAL_EVENT_ID)) { 906 mbm_total_event.configurable = true; 907 resctrl_file_fflags_init("mbm_total_bytes_config", 908 RFTYPE_MON_INFO | RFTYPE_RES_CACHE); 909 } 910 if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_LOCAL_EVENT_ID)) { 911 mbm_local_event.configurable = true; 912 resctrl_file_fflags_init("mbm_local_bytes_config", 913 RFTYPE_MON_INFO | RFTYPE_RES_CACHE); 914 } 915 916 if (resctrl_arch_is_mbm_local_enabled()) 917 mba_mbps_default_event = QOS_L3_MBM_LOCAL_EVENT_ID; 918 else if (resctrl_arch_is_mbm_total_enabled()) 919 mba_mbps_default_event = QOS_L3_MBM_TOTAL_EVENT_ID; 920 921 return 0; 922 } 923 924 void resctrl_mon_resource_exit(void) 925 { 926 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 927 928 dom_data_exit(r); 929 } 930