1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/proc/vmcore.c Interface for accessing the crash 4 * dump from the system's previous life. 5 * Heavily borrowed from fs/proc/kcore.c 6 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) 7 * Copyright (C) IBM Corporation, 2004. All rights reserved 8 * 9 */ 10 11 #define pr_fmt(fmt) "vmcore: " fmt 12 13 #include <linux/mm.h> 14 #include <linux/kcore.h> 15 #include <linux/user.h> 16 #include <linux/elf.h> 17 #include <linux/elfcore.h> 18 #include <linux/export.h> 19 #include <linux/slab.h> 20 #include <linux/highmem.h> 21 #include <linux/printk.h> 22 #include <linux/memblock.h> 23 #include <linux/init.h> 24 #include <linux/crash_dump.h> 25 #include <linux/list.h> 26 #include <linux/moduleparam.h> 27 #include <linux/mutex.h> 28 #include <linux/vmalloc.h> 29 #include <linux/pagemap.h> 30 #include <linux/uio.h> 31 #include <linux/cc_platform.h> 32 #include <asm/io.h> 33 #include "internal.h" 34 35 /* List representing chunks of contiguous memory areas and their offsets in 36 * vmcore file. 37 */ 38 static LIST_HEAD(vmcore_list); 39 40 /* Stores the pointer to the buffer containing kernel elf core headers. */ 41 static char *elfcorebuf; 42 static size_t elfcorebuf_sz; 43 static size_t elfcorebuf_sz_orig; 44 45 static char *elfnotes_buf; 46 static size_t elfnotes_sz; 47 /* Size of all notes minus the device dump notes */ 48 static size_t elfnotes_orig_sz; 49 50 /* Total size of vmcore file. */ 51 static u64 vmcore_size; 52 53 static struct proc_dir_entry *proc_vmcore; 54 55 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 56 struct vmcoredd_node { 57 struct list_head list; /* List of dumps */ 58 void *buf; /* Buffer containing device's dump */ 59 unsigned int size; /* Size of the buffer */ 60 }; 61 62 /* Device Dump list and mutex to synchronize access to list */ 63 static LIST_HEAD(vmcoredd_list); 64 65 static bool vmcoredd_disabled; 66 core_param(novmcoredd, vmcoredd_disabled, bool, 0); 67 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 68 69 /* Device Dump Size */ 70 static size_t vmcoredd_orig_sz; 71 72 static DEFINE_MUTEX(vmcore_mutex); 73 74 DEFINE_STATIC_SRCU(vmcore_cb_srcu); 75 /* List of registered vmcore callbacks. */ 76 static LIST_HEAD(vmcore_cb_list); 77 /* Whether the vmcore has been opened once. */ 78 static bool vmcore_opened; 79 /* Whether the vmcore is currently open. */ 80 static unsigned int vmcore_open; 81 82 static void vmcore_process_device_ram(struct vmcore_cb *cb); 83 84 void register_vmcore_cb(struct vmcore_cb *cb) 85 { 86 INIT_LIST_HEAD(&cb->next); 87 mutex_lock(&vmcore_mutex); 88 list_add_tail(&cb->next, &vmcore_cb_list); 89 /* 90 * Registering a vmcore callback after the vmcore was opened is 91 * very unusual (e.g., manual driver loading). 92 */ 93 if (vmcore_opened) 94 pr_warn_once("Unexpected vmcore callback registration\n"); 95 if (!vmcore_open && cb->get_device_ram) 96 vmcore_process_device_ram(cb); 97 mutex_unlock(&vmcore_mutex); 98 } 99 EXPORT_SYMBOL_GPL(register_vmcore_cb); 100 101 void unregister_vmcore_cb(struct vmcore_cb *cb) 102 { 103 mutex_lock(&vmcore_mutex); 104 list_del_rcu(&cb->next); 105 /* 106 * Unregistering a vmcore callback after the vmcore was opened is 107 * very unusual (e.g., forced driver removal), but we cannot stop 108 * unregistering. 109 */ 110 if (vmcore_opened) 111 pr_warn_once("Unexpected vmcore callback unregistration\n"); 112 mutex_unlock(&vmcore_mutex); 113 114 synchronize_srcu(&vmcore_cb_srcu); 115 } 116 EXPORT_SYMBOL_GPL(unregister_vmcore_cb); 117 118 static bool pfn_is_ram(unsigned long pfn) 119 { 120 struct vmcore_cb *cb; 121 bool ret = true; 122 123 list_for_each_entry_srcu(cb, &vmcore_cb_list, next, 124 srcu_read_lock_held(&vmcore_cb_srcu)) { 125 if (unlikely(!cb->pfn_is_ram)) 126 continue; 127 ret = cb->pfn_is_ram(cb, pfn); 128 if (!ret) 129 break; 130 } 131 132 return ret; 133 } 134 135 static int open_vmcore(struct inode *inode, struct file *file) 136 { 137 mutex_lock(&vmcore_mutex); 138 vmcore_opened = true; 139 if (vmcore_open + 1 == 0) { 140 mutex_unlock(&vmcore_mutex); 141 return -EBUSY; 142 } 143 vmcore_open++; 144 mutex_unlock(&vmcore_mutex); 145 146 return 0; 147 } 148 149 static int release_vmcore(struct inode *inode, struct file *file) 150 { 151 mutex_lock(&vmcore_mutex); 152 vmcore_open--; 153 mutex_unlock(&vmcore_mutex); 154 155 return 0; 156 } 157 158 /* Reads a page from the oldmem device from given offset. */ 159 ssize_t read_from_oldmem(struct iov_iter *iter, size_t count, 160 u64 *ppos, bool encrypted) 161 { 162 unsigned long pfn, offset; 163 ssize_t nr_bytes; 164 ssize_t read = 0, tmp; 165 int idx; 166 167 if (!count) 168 return 0; 169 170 offset = (unsigned long)(*ppos % PAGE_SIZE); 171 pfn = (unsigned long)(*ppos / PAGE_SIZE); 172 173 idx = srcu_read_lock(&vmcore_cb_srcu); 174 do { 175 if (count > (PAGE_SIZE - offset)) 176 nr_bytes = PAGE_SIZE - offset; 177 else 178 nr_bytes = count; 179 180 /* If pfn is not ram, return zeros for sparse dump files */ 181 if (!pfn_is_ram(pfn)) { 182 tmp = iov_iter_zero(nr_bytes, iter); 183 } else { 184 if (encrypted) 185 tmp = copy_oldmem_page_encrypted(iter, pfn, 186 nr_bytes, 187 offset); 188 else 189 tmp = copy_oldmem_page(iter, pfn, nr_bytes, 190 offset); 191 } 192 if (tmp < nr_bytes) { 193 srcu_read_unlock(&vmcore_cb_srcu, idx); 194 return -EFAULT; 195 } 196 197 *ppos += nr_bytes; 198 count -= nr_bytes; 199 read += nr_bytes; 200 ++pfn; 201 offset = 0; 202 } while (count); 203 srcu_read_unlock(&vmcore_cb_srcu, idx); 204 205 return read; 206 } 207 208 /* 209 * Architectures may override this function to allocate ELF header in 2nd kernel 210 */ 211 int __weak elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size) 212 { 213 return 0; 214 } 215 216 /* 217 * Architectures may override this function to free header 218 */ 219 void __weak elfcorehdr_free(unsigned long long addr) 220 {} 221 222 /* 223 * Architectures may override this function to read from ELF header 224 */ 225 ssize_t __weak elfcorehdr_read(char *buf, size_t count, u64 *ppos) 226 { 227 struct kvec kvec = { .iov_base = buf, .iov_len = count }; 228 struct iov_iter iter; 229 230 iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count); 231 232 return read_from_oldmem(&iter, count, ppos, false); 233 } 234 235 /* 236 * Architectures may override this function to read from notes sections 237 */ 238 ssize_t __weak elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos) 239 { 240 struct kvec kvec = { .iov_base = buf, .iov_len = count }; 241 struct iov_iter iter; 242 243 iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count); 244 245 return read_from_oldmem(&iter, count, ppos, 246 cc_platform_has(CC_ATTR_MEM_ENCRYPT)); 247 } 248 249 /* 250 * Architectures may override this function to map oldmem 251 */ 252 int __weak remap_oldmem_pfn_range(struct vm_area_struct *vma, 253 unsigned long from, unsigned long pfn, 254 unsigned long size, pgprot_t prot) 255 { 256 prot = pgprot_encrypted(prot); 257 return remap_pfn_range(vma, from, pfn, size, prot); 258 } 259 260 /* 261 * Architectures which support memory encryption override this. 262 */ 263 ssize_t __weak copy_oldmem_page_encrypted(struct iov_iter *iter, 264 unsigned long pfn, size_t csize, unsigned long offset) 265 { 266 return copy_oldmem_page(iter, pfn, csize, offset); 267 } 268 269 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 270 static int vmcoredd_copy_dumps(struct iov_iter *iter, u64 start, size_t size) 271 { 272 struct vmcoredd_node *dump; 273 u64 offset = 0; 274 size_t tsz; 275 char *buf; 276 277 list_for_each_entry(dump, &vmcoredd_list, list) { 278 if (start < offset + dump->size) { 279 tsz = min(offset + (u64)dump->size - start, (u64)size); 280 buf = dump->buf + start - offset; 281 if (copy_to_iter(buf, tsz, iter) < tsz) 282 return -EFAULT; 283 284 size -= tsz; 285 start += tsz; 286 287 /* Leave now if buffer filled already */ 288 if (!size) 289 return 0; 290 } 291 offset += dump->size; 292 } 293 294 return 0; 295 } 296 297 #ifdef CONFIG_MMU 298 static int vmcoredd_mmap_dumps(struct vm_area_struct *vma, unsigned long dst, 299 u64 start, size_t size) 300 { 301 struct vmcoredd_node *dump; 302 u64 offset = 0; 303 size_t tsz; 304 char *buf; 305 306 list_for_each_entry(dump, &vmcoredd_list, list) { 307 if (start < offset + dump->size) { 308 tsz = min(offset + (u64)dump->size - start, (u64)size); 309 buf = dump->buf + start - offset; 310 if (remap_vmalloc_range_partial(vma, dst, buf, 0, 311 tsz)) 312 return -EFAULT; 313 314 size -= tsz; 315 start += tsz; 316 dst += tsz; 317 318 /* Leave now if buffer filled already */ 319 if (!size) 320 return 0; 321 } 322 offset += dump->size; 323 } 324 325 return 0; 326 } 327 #endif /* CONFIG_MMU */ 328 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 329 330 /* Read from the ELF header and then the crash dump. On error, negative value is 331 * returned otherwise number of bytes read are returned. 332 */ 333 static ssize_t __read_vmcore(struct iov_iter *iter, loff_t *fpos) 334 { 335 struct vmcore_range *m = NULL; 336 ssize_t acc = 0, tmp; 337 size_t tsz; 338 u64 start; 339 340 if (!iov_iter_count(iter) || *fpos >= vmcore_size) 341 return 0; 342 343 iov_iter_truncate(iter, vmcore_size - *fpos); 344 345 /* Read ELF core header */ 346 if (*fpos < elfcorebuf_sz) { 347 tsz = min(elfcorebuf_sz - (size_t)*fpos, iov_iter_count(iter)); 348 if (copy_to_iter(elfcorebuf + *fpos, tsz, iter) < tsz) 349 return -EFAULT; 350 *fpos += tsz; 351 acc += tsz; 352 353 /* leave now if filled buffer already */ 354 if (!iov_iter_count(iter)) 355 return acc; 356 } 357 358 /* Read ELF note segment */ 359 if (*fpos < elfcorebuf_sz + elfnotes_sz) { 360 void *kaddr; 361 362 /* We add device dumps before other elf notes because the 363 * other elf notes may not fill the elf notes buffer 364 * completely and we will end up with zero-filled data 365 * between the elf notes and the device dumps. Tools will 366 * then try to decode this zero-filled data as valid notes 367 * and we don't want that. Hence, adding device dumps before 368 * the other elf notes ensure that zero-filled data can be 369 * avoided. 370 */ 371 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 372 /* Read device dumps */ 373 if (*fpos < elfcorebuf_sz + vmcoredd_orig_sz) { 374 tsz = min(elfcorebuf_sz + vmcoredd_orig_sz - 375 (size_t)*fpos, iov_iter_count(iter)); 376 start = *fpos - elfcorebuf_sz; 377 if (vmcoredd_copy_dumps(iter, start, tsz)) 378 return -EFAULT; 379 380 *fpos += tsz; 381 acc += tsz; 382 383 /* leave now if filled buffer already */ 384 if (!iov_iter_count(iter)) 385 return acc; 386 } 387 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 388 389 /* Read remaining elf notes */ 390 tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)*fpos, 391 iov_iter_count(iter)); 392 kaddr = elfnotes_buf + *fpos - elfcorebuf_sz - vmcoredd_orig_sz; 393 if (copy_to_iter(kaddr, tsz, iter) < tsz) 394 return -EFAULT; 395 396 *fpos += tsz; 397 acc += tsz; 398 399 /* leave now if filled buffer already */ 400 if (!iov_iter_count(iter)) 401 return acc; 402 403 cond_resched(); 404 } 405 406 list_for_each_entry(m, &vmcore_list, list) { 407 if (*fpos < m->offset + m->size) { 408 tsz = (size_t)min_t(unsigned long long, 409 m->offset + m->size - *fpos, 410 iov_iter_count(iter)); 411 start = m->paddr + *fpos - m->offset; 412 tmp = read_from_oldmem(iter, tsz, &start, 413 cc_platform_has(CC_ATTR_MEM_ENCRYPT)); 414 if (tmp < 0) 415 return tmp; 416 *fpos += tsz; 417 acc += tsz; 418 419 /* leave now if filled buffer already */ 420 if (!iov_iter_count(iter)) 421 return acc; 422 } 423 424 cond_resched(); 425 } 426 427 return acc; 428 } 429 430 static ssize_t read_vmcore(struct kiocb *iocb, struct iov_iter *iter) 431 { 432 return __read_vmcore(iter, &iocb->ki_pos); 433 } 434 435 /** 436 * vmcore_alloc_buf - allocate buffer in vmalloc memory 437 * @size: size of buffer 438 * 439 * If CONFIG_MMU is defined, use vmalloc_user() to allow users to mmap 440 * the buffer to user-space by means of remap_vmalloc_range(). 441 * 442 * If CONFIG_MMU is not defined, use vzalloc() since mmap_vmcore() is 443 * disabled and there's no need to allow users to mmap the buffer. 444 */ 445 static inline char *vmcore_alloc_buf(size_t size) 446 { 447 #ifdef CONFIG_MMU 448 return vmalloc_user(size); 449 #else 450 return vzalloc(size); 451 #endif 452 } 453 454 /* 455 * Disable mmap_vmcore() if CONFIG_MMU is not defined. MMU is 456 * essential for mmap_vmcore() in order to map physically 457 * non-contiguous objects (ELF header, ELF note segment and memory 458 * regions in the 1st kernel pointed to by PT_LOAD entries) into 459 * virtually contiguous user-space in ELF layout. 460 */ 461 #ifdef CONFIG_MMU 462 463 /* 464 * The vmcore fault handler uses the page cache and fills data using the 465 * standard __read_vmcore() function. 466 * 467 * On s390 the fault handler is used for memory regions that can't be mapped 468 * directly with remap_pfn_range(). 469 */ 470 static vm_fault_t mmap_vmcore_fault(struct vm_fault *vmf) 471 { 472 #ifdef CONFIG_S390 473 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 474 pgoff_t index = vmf->pgoff; 475 struct iov_iter iter; 476 struct kvec kvec; 477 struct page *page; 478 loff_t offset; 479 int rc; 480 481 page = find_or_create_page(mapping, index, GFP_KERNEL); 482 if (!page) 483 return VM_FAULT_OOM; 484 if (!PageUptodate(page)) { 485 offset = (loff_t) index << PAGE_SHIFT; 486 kvec.iov_base = page_address(page); 487 kvec.iov_len = PAGE_SIZE; 488 iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, PAGE_SIZE); 489 490 rc = __read_vmcore(&iter, &offset); 491 if (rc < 0) { 492 unlock_page(page); 493 put_page(page); 494 return vmf_error(rc); 495 } 496 SetPageUptodate(page); 497 } 498 unlock_page(page); 499 vmf->page = page; 500 return 0; 501 #else 502 return VM_FAULT_SIGBUS; 503 #endif 504 } 505 506 static const struct vm_operations_struct vmcore_mmap_ops = { 507 .fault = mmap_vmcore_fault, 508 }; 509 510 /* 511 * remap_oldmem_pfn_checked - do remap_oldmem_pfn_range replacing all pages 512 * reported as not being ram with the zero page. 513 * 514 * @vma: vm_area_struct describing requested mapping 515 * @from: start remapping from 516 * @pfn: page frame number to start remapping to 517 * @size: remapping size 518 * @prot: protection bits 519 * 520 * Returns zero on success, -EAGAIN on failure. 521 */ 522 static int remap_oldmem_pfn_checked(struct vm_area_struct *vma, 523 unsigned long from, unsigned long pfn, 524 unsigned long size, pgprot_t prot) 525 { 526 unsigned long map_size; 527 unsigned long pos_start, pos_end, pos; 528 unsigned long zeropage_pfn = my_zero_pfn(0); 529 size_t len = 0; 530 531 pos_start = pfn; 532 pos_end = pfn + (size >> PAGE_SHIFT); 533 534 for (pos = pos_start; pos < pos_end; ++pos) { 535 if (!pfn_is_ram(pos)) { 536 /* 537 * We hit a page which is not ram. Remap the continuous 538 * region between pos_start and pos-1 and replace 539 * the non-ram page at pos with the zero page. 540 */ 541 if (pos > pos_start) { 542 /* Remap continuous region */ 543 map_size = (pos - pos_start) << PAGE_SHIFT; 544 if (remap_oldmem_pfn_range(vma, from + len, 545 pos_start, map_size, 546 prot)) 547 goto fail; 548 len += map_size; 549 } 550 /* Remap the zero page */ 551 if (remap_oldmem_pfn_range(vma, from + len, 552 zeropage_pfn, 553 PAGE_SIZE, prot)) 554 goto fail; 555 len += PAGE_SIZE; 556 pos_start = pos + 1; 557 } 558 } 559 if (pos > pos_start) { 560 /* Remap the rest */ 561 map_size = (pos - pos_start) << PAGE_SHIFT; 562 if (remap_oldmem_pfn_range(vma, from + len, pos_start, 563 map_size, prot)) 564 goto fail; 565 } 566 return 0; 567 fail: 568 do_munmap(vma->vm_mm, from, len, NULL); 569 return -EAGAIN; 570 } 571 572 static int vmcore_remap_oldmem_pfn(struct vm_area_struct *vma, 573 unsigned long from, unsigned long pfn, 574 unsigned long size, pgprot_t prot) 575 { 576 int ret, idx; 577 578 /* 579 * Check if a callback was registered to avoid looping over all 580 * pages without a reason. 581 */ 582 idx = srcu_read_lock(&vmcore_cb_srcu); 583 if (!list_empty(&vmcore_cb_list)) 584 ret = remap_oldmem_pfn_checked(vma, from, pfn, size, prot); 585 else 586 ret = remap_oldmem_pfn_range(vma, from, pfn, size, prot); 587 srcu_read_unlock(&vmcore_cb_srcu, idx); 588 return ret; 589 } 590 591 static int mmap_vmcore(struct file *file, struct vm_area_struct *vma) 592 { 593 size_t size = vma->vm_end - vma->vm_start; 594 u64 start, end, len, tsz; 595 struct vmcore_range *m; 596 597 start = (u64)vma->vm_pgoff << PAGE_SHIFT; 598 end = start + size; 599 600 if (size > vmcore_size || end > vmcore_size) 601 return -EINVAL; 602 603 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 604 return -EPERM; 605 606 vm_flags_mod(vma, VM_MIXEDMAP, VM_MAYWRITE | VM_MAYEXEC); 607 vma->vm_ops = &vmcore_mmap_ops; 608 609 len = 0; 610 611 if (start < elfcorebuf_sz) { 612 u64 pfn; 613 614 tsz = min(elfcorebuf_sz - (size_t)start, size); 615 pfn = __pa(elfcorebuf + start) >> PAGE_SHIFT; 616 if (remap_pfn_range(vma, vma->vm_start, pfn, tsz, 617 vma->vm_page_prot)) 618 return -EAGAIN; 619 size -= tsz; 620 start += tsz; 621 len += tsz; 622 623 if (size == 0) 624 return 0; 625 } 626 627 if (start < elfcorebuf_sz + elfnotes_sz) { 628 void *kaddr; 629 630 /* We add device dumps before other elf notes because the 631 * other elf notes may not fill the elf notes buffer 632 * completely and we will end up with zero-filled data 633 * between the elf notes and the device dumps. Tools will 634 * then try to decode this zero-filled data as valid notes 635 * and we don't want that. Hence, adding device dumps before 636 * the other elf notes ensure that zero-filled data can be 637 * avoided. This also ensures that the device dumps and 638 * other elf notes can be properly mmaped at page aligned 639 * address. 640 */ 641 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 642 /* Read device dumps */ 643 if (start < elfcorebuf_sz + vmcoredd_orig_sz) { 644 u64 start_off; 645 646 tsz = min(elfcorebuf_sz + vmcoredd_orig_sz - 647 (size_t)start, size); 648 start_off = start - elfcorebuf_sz; 649 if (vmcoredd_mmap_dumps(vma, vma->vm_start + len, 650 start_off, tsz)) 651 goto fail; 652 653 size -= tsz; 654 start += tsz; 655 len += tsz; 656 657 /* leave now if filled buffer already */ 658 if (!size) 659 return 0; 660 } 661 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 662 663 /* Read remaining elf notes */ 664 tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)start, size); 665 kaddr = elfnotes_buf + start - elfcorebuf_sz - vmcoredd_orig_sz; 666 if (remap_vmalloc_range_partial(vma, vma->vm_start + len, 667 kaddr, 0, tsz)) 668 goto fail; 669 670 size -= tsz; 671 start += tsz; 672 len += tsz; 673 674 if (size == 0) 675 return 0; 676 } 677 678 list_for_each_entry(m, &vmcore_list, list) { 679 if (start < m->offset + m->size) { 680 u64 paddr = 0; 681 682 tsz = (size_t)min_t(unsigned long long, 683 m->offset + m->size - start, size); 684 paddr = m->paddr + start - m->offset; 685 if (vmcore_remap_oldmem_pfn(vma, vma->vm_start + len, 686 paddr >> PAGE_SHIFT, tsz, 687 vma->vm_page_prot)) 688 goto fail; 689 size -= tsz; 690 start += tsz; 691 len += tsz; 692 693 if (size == 0) 694 return 0; 695 } 696 } 697 698 return 0; 699 fail: 700 do_munmap(vma->vm_mm, vma->vm_start, len, NULL); 701 return -EAGAIN; 702 } 703 #else 704 static int mmap_vmcore(struct file *file, struct vm_area_struct *vma) 705 { 706 return -ENOSYS; 707 } 708 #endif 709 710 static const struct proc_ops vmcore_proc_ops = { 711 .proc_open = open_vmcore, 712 .proc_release = release_vmcore, 713 .proc_read_iter = read_vmcore, 714 .proc_lseek = default_llseek, 715 .proc_mmap = mmap_vmcore, 716 }; 717 718 static u64 get_vmcore_size(size_t elfsz, size_t elfnotesegsz, 719 struct list_head *vc_list) 720 { 721 struct vmcore_range *m; 722 u64 size; 723 724 size = elfsz + elfnotesegsz; 725 list_for_each_entry(m, vc_list, list) { 726 size += m->size; 727 } 728 return size; 729 } 730 731 /** 732 * update_note_header_size_elf64 - update p_memsz member of each PT_NOTE entry 733 * 734 * @ehdr_ptr: ELF header 735 * 736 * This function updates p_memsz member of each PT_NOTE entry in the 737 * program header table pointed to by @ehdr_ptr to real size of ELF 738 * note segment. 739 */ 740 static int __init update_note_header_size_elf64(const Elf64_Ehdr *ehdr_ptr) 741 { 742 int i, rc=0; 743 Elf64_Phdr *phdr_ptr; 744 Elf64_Nhdr *nhdr_ptr; 745 746 phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1); 747 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 748 void *notes_section; 749 u64 offset, max_sz, sz, real_sz = 0; 750 if (phdr_ptr->p_type != PT_NOTE) 751 continue; 752 max_sz = phdr_ptr->p_memsz; 753 offset = phdr_ptr->p_offset; 754 notes_section = kmalloc(max_sz, GFP_KERNEL); 755 if (!notes_section) 756 return -ENOMEM; 757 rc = elfcorehdr_read_notes(notes_section, max_sz, &offset); 758 if (rc < 0) { 759 kfree(notes_section); 760 return rc; 761 } 762 nhdr_ptr = notes_section; 763 while (nhdr_ptr->n_namesz != 0) { 764 sz = sizeof(Elf64_Nhdr) + 765 (((u64)nhdr_ptr->n_namesz + 3) & ~3) + 766 (((u64)nhdr_ptr->n_descsz + 3) & ~3); 767 if ((real_sz + sz) > max_sz) { 768 pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n", 769 nhdr_ptr->n_namesz, nhdr_ptr->n_descsz); 770 break; 771 } 772 real_sz += sz; 773 nhdr_ptr = (Elf64_Nhdr*)((char*)nhdr_ptr + sz); 774 } 775 kfree(notes_section); 776 phdr_ptr->p_memsz = real_sz; 777 if (real_sz == 0) { 778 pr_warn("Warning: Zero PT_NOTE entries found\n"); 779 } 780 } 781 782 return 0; 783 } 784 785 /** 786 * get_note_number_and_size_elf64 - get the number of PT_NOTE program 787 * headers and sum of real size of their ELF note segment headers and 788 * data. 789 * 790 * @ehdr_ptr: ELF header 791 * @nr_ptnote: buffer for the number of PT_NOTE program headers 792 * @sz_ptnote: buffer for size of unique PT_NOTE program header 793 * 794 * This function is used to merge multiple PT_NOTE program headers 795 * into a unique single one. The resulting unique entry will have 796 * @sz_ptnote in its phdr->p_mem. 797 * 798 * It is assumed that program headers with PT_NOTE type pointed to by 799 * @ehdr_ptr has already been updated by update_note_header_size_elf64 800 * and each of PT_NOTE program headers has actual ELF note segment 801 * size in its p_memsz member. 802 */ 803 static int __init get_note_number_and_size_elf64(const Elf64_Ehdr *ehdr_ptr, 804 int *nr_ptnote, u64 *sz_ptnote) 805 { 806 int i; 807 Elf64_Phdr *phdr_ptr; 808 809 *nr_ptnote = *sz_ptnote = 0; 810 811 phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1); 812 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 813 if (phdr_ptr->p_type != PT_NOTE) 814 continue; 815 *nr_ptnote += 1; 816 *sz_ptnote += phdr_ptr->p_memsz; 817 } 818 819 return 0; 820 } 821 822 /** 823 * copy_notes_elf64 - copy ELF note segments in a given buffer 824 * 825 * @ehdr_ptr: ELF header 826 * @notes_buf: buffer into which ELF note segments are copied 827 * 828 * This function is used to copy ELF note segment in the 1st kernel 829 * into the buffer @notes_buf in the 2nd kernel. It is assumed that 830 * size of the buffer @notes_buf is equal to or larger than sum of the 831 * real ELF note segment headers and data. 832 * 833 * It is assumed that program headers with PT_NOTE type pointed to by 834 * @ehdr_ptr has already been updated by update_note_header_size_elf64 835 * and each of PT_NOTE program headers has actual ELF note segment 836 * size in its p_memsz member. 837 */ 838 static int __init copy_notes_elf64(const Elf64_Ehdr *ehdr_ptr, char *notes_buf) 839 { 840 int i, rc=0; 841 Elf64_Phdr *phdr_ptr; 842 843 phdr_ptr = (Elf64_Phdr*)(ehdr_ptr + 1); 844 845 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 846 u64 offset; 847 if (phdr_ptr->p_type != PT_NOTE) 848 continue; 849 offset = phdr_ptr->p_offset; 850 rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz, 851 &offset); 852 if (rc < 0) 853 return rc; 854 notes_buf += phdr_ptr->p_memsz; 855 } 856 857 return 0; 858 } 859 860 /* Merges all the PT_NOTE headers into one. */ 861 static int __init merge_note_headers_elf64(char *elfptr, size_t *elfsz, 862 char **notes_buf, size_t *notes_sz) 863 { 864 int i, nr_ptnote=0, rc=0; 865 char *tmp; 866 Elf64_Ehdr *ehdr_ptr; 867 Elf64_Phdr phdr; 868 u64 phdr_sz = 0, note_off; 869 870 ehdr_ptr = (Elf64_Ehdr *)elfptr; 871 872 rc = update_note_header_size_elf64(ehdr_ptr); 873 if (rc < 0) 874 return rc; 875 876 rc = get_note_number_and_size_elf64(ehdr_ptr, &nr_ptnote, &phdr_sz); 877 if (rc < 0) 878 return rc; 879 880 *notes_sz = roundup(phdr_sz, PAGE_SIZE); 881 *notes_buf = vmcore_alloc_buf(*notes_sz); 882 if (!*notes_buf) 883 return -ENOMEM; 884 885 rc = copy_notes_elf64(ehdr_ptr, *notes_buf); 886 if (rc < 0) 887 return rc; 888 889 /* Prepare merged PT_NOTE program header. */ 890 phdr.p_type = PT_NOTE; 891 phdr.p_flags = 0; 892 note_off = sizeof(Elf64_Ehdr) + 893 (ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf64_Phdr); 894 phdr.p_offset = roundup(note_off, PAGE_SIZE); 895 phdr.p_vaddr = phdr.p_paddr = 0; 896 phdr.p_filesz = phdr.p_memsz = phdr_sz; 897 phdr.p_align = 4; 898 899 /* Add merged PT_NOTE program header*/ 900 tmp = elfptr + sizeof(Elf64_Ehdr); 901 memcpy(tmp, &phdr, sizeof(phdr)); 902 tmp += sizeof(phdr); 903 904 /* Remove unwanted PT_NOTE program headers. */ 905 i = (nr_ptnote - 1) * sizeof(Elf64_Phdr); 906 *elfsz = *elfsz - i; 907 memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf64_Ehdr)-sizeof(Elf64_Phdr))); 908 memset(elfptr + *elfsz, 0, i); 909 *elfsz = roundup(*elfsz, PAGE_SIZE); 910 911 /* Modify e_phnum to reflect merged headers. */ 912 ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1; 913 914 /* Store the size of all notes. We need this to update the note 915 * header when the device dumps will be added. 916 */ 917 elfnotes_orig_sz = phdr.p_memsz; 918 919 return 0; 920 } 921 922 /** 923 * update_note_header_size_elf32 - update p_memsz member of each PT_NOTE entry 924 * 925 * @ehdr_ptr: ELF header 926 * 927 * This function updates p_memsz member of each PT_NOTE entry in the 928 * program header table pointed to by @ehdr_ptr to real size of ELF 929 * note segment. 930 */ 931 static int __init update_note_header_size_elf32(const Elf32_Ehdr *ehdr_ptr) 932 { 933 int i, rc=0; 934 Elf32_Phdr *phdr_ptr; 935 Elf32_Nhdr *nhdr_ptr; 936 937 phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1); 938 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 939 void *notes_section; 940 u64 offset, max_sz, sz, real_sz = 0; 941 if (phdr_ptr->p_type != PT_NOTE) 942 continue; 943 max_sz = phdr_ptr->p_memsz; 944 offset = phdr_ptr->p_offset; 945 notes_section = kmalloc(max_sz, GFP_KERNEL); 946 if (!notes_section) 947 return -ENOMEM; 948 rc = elfcorehdr_read_notes(notes_section, max_sz, &offset); 949 if (rc < 0) { 950 kfree(notes_section); 951 return rc; 952 } 953 nhdr_ptr = notes_section; 954 while (nhdr_ptr->n_namesz != 0) { 955 sz = sizeof(Elf32_Nhdr) + 956 (((u64)nhdr_ptr->n_namesz + 3) & ~3) + 957 (((u64)nhdr_ptr->n_descsz + 3) & ~3); 958 if ((real_sz + sz) > max_sz) { 959 pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n", 960 nhdr_ptr->n_namesz, nhdr_ptr->n_descsz); 961 break; 962 } 963 real_sz += sz; 964 nhdr_ptr = (Elf32_Nhdr*)((char*)nhdr_ptr + sz); 965 } 966 kfree(notes_section); 967 phdr_ptr->p_memsz = real_sz; 968 if (real_sz == 0) { 969 pr_warn("Warning: Zero PT_NOTE entries found\n"); 970 } 971 } 972 973 return 0; 974 } 975 976 /** 977 * get_note_number_and_size_elf32 - get the number of PT_NOTE program 978 * headers and sum of real size of their ELF note segment headers and 979 * data. 980 * 981 * @ehdr_ptr: ELF header 982 * @nr_ptnote: buffer for the number of PT_NOTE program headers 983 * @sz_ptnote: buffer for size of unique PT_NOTE program header 984 * 985 * This function is used to merge multiple PT_NOTE program headers 986 * into a unique single one. The resulting unique entry will have 987 * @sz_ptnote in its phdr->p_mem. 988 * 989 * It is assumed that program headers with PT_NOTE type pointed to by 990 * @ehdr_ptr has already been updated by update_note_header_size_elf32 991 * and each of PT_NOTE program headers has actual ELF note segment 992 * size in its p_memsz member. 993 */ 994 static int __init get_note_number_and_size_elf32(const Elf32_Ehdr *ehdr_ptr, 995 int *nr_ptnote, u64 *sz_ptnote) 996 { 997 int i; 998 Elf32_Phdr *phdr_ptr; 999 1000 *nr_ptnote = *sz_ptnote = 0; 1001 1002 phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1); 1003 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1004 if (phdr_ptr->p_type != PT_NOTE) 1005 continue; 1006 *nr_ptnote += 1; 1007 *sz_ptnote += phdr_ptr->p_memsz; 1008 } 1009 1010 return 0; 1011 } 1012 1013 /** 1014 * copy_notes_elf32 - copy ELF note segments in a given buffer 1015 * 1016 * @ehdr_ptr: ELF header 1017 * @notes_buf: buffer into which ELF note segments are copied 1018 * 1019 * This function is used to copy ELF note segment in the 1st kernel 1020 * into the buffer @notes_buf in the 2nd kernel. It is assumed that 1021 * size of the buffer @notes_buf is equal to or larger than sum of the 1022 * real ELF note segment headers and data. 1023 * 1024 * It is assumed that program headers with PT_NOTE type pointed to by 1025 * @ehdr_ptr has already been updated by update_note_header_size_elf32 1026 * and each of PT_NOTE program headers has actual ELF note segment 1027 * size in its p_memsz member. 1028 */ 1029 static int __init copy_notes_elf32(const Elf32_Ehdr *ehdr_ptr, char *notes_buf) 1030 { 1031 int i, rc=0; 1032 Elf32_Phdr *phdr_ptr; 1033 1034 phdr_ptr = (Elf32_Phdr*)(ehdr_ptr + 1); 1035 1036 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1037 u64 offset; 1038 if (phdr_ptr->p_type != PT_NOTE) 1039 continue; 1040 offset = phdr_ptr->p_offset; 1041 rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz, 1042 &offset); 1043 if (rc < 0) 1044 return rc; 1045 notes_buf += phdr_ptr->p_memsz; 1046 } 1047 1048 return 0; 1049 } 1050 1051 /* Merges all the PT_NOTE headers into one. */ 1052 static int __init merge_note_headers_elf32(char *elfptr, size_t *elfsz, 1053 char **notes_buf, size_t *notes_sz) 1054 { 1055 int i, nr_ptnote=0, rc=0; 1056 char *tmp; 1057 Elf32_Ehdr *ehdr_ptr; 1058 Elf32_Phdr phdr; 1059 u64 phdr_sz = 0, note_off; 1060 1061 ehdr_ptr = (Elf32_Ehdr *)elfptr; 1062 1063 rc = update_note_header_size_elf32(ehdr_ptr); 1064 if (rc < 0) 1065 return rc; 1066 1067 rc = get_note_number_and_size_elf32(ehdr_ptr, &nr_ptnote, &phdr_sz); 1068 if (rc < 0) 1069 return rc; 1070 1071 *notes_sz = roundup(phdr_sz, PAGE_SIZE); 1072 *notes_buf = vmcore_alloc_buf(*notes_sz); 1073 if (!*notes_buf) 1074 return -ENOMEM; 1075 1076 rc = copy_notes_elf32(ehdr_ptr, *notes_buf); 1077 if (rc < 0) 1078 return rc; 1079 1080 /* Prepare merged PT_NOTE program header. */ 1081 phdr.p_type = PT_NOTE; 1082 phdr.p_flags = 0; 1083 note_off = sizeof(Elf32_Ehdr) + 1084 (ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf32_Phdr); 1085 phdr.p_offset = roundup(note_off, PAGE_SIZE); 1086 phdr.p_vaddr = phdr.p_paddr = 0; 1087 phdr.p_filesz = phdr.p_memsz = phdr_sz; 1088 phdr.p_align = 4; 1089 1090 /* Add merged PT_NOTE program header*/ 1091 tmp = elfptr + sizeof(Elf32_Ehdr); 1092 memcpy(tmp, &phdr, sizeof(phdr)); 1093 tmp += sizeof(phdr); 1094 1095 /* Remove unwanted PT_NOTE program headers. */ 1096 i = (nr_ptnote - 1) * sizeof(Elf32_Phdr); 1097 *elfsz = *elfsz - i; 1098 memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf32_Ehdr)-sizeof(Elf32_Phdr))); 1099 memset(elfptr + *elfsz, 0, i); 1100 *elfsz = roundup(*elfsz, PAGE_SIZE); 1101 1102 /* Modify e_phnum to reflect merged headers. */ 1103 ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1; 1104 1105 /* Store the size of all notes. We need this to update the note 1106 * header when the device dumps will be added. 1107 */ 1108 elfnotes_orig_sz = phdr.p_memsz; 1109 1110 return 0; 1111 } 1112 1113 /* Add memory chunks represented by program headers to vmcore list. Also update 1114 * the new offset fields of exported program headers. */ 1115 static int __init process_ptload_program_headers_elf64(char *elfptr, 1116 size_t elfsz, 1117 size_t elfnotes_sz, 1118 struct list_head *vc_list) 1119 { 1120 int i; 1121 Elf64_Ehdr *ehdr_ptr; 1122 Elf64_Phdr *phdr_ptr; 1123 loff_t vmcore_off; 1124 1125 ehdr_ptr = (Elf64_Ehdr *)elfptr; 1126 phdr_ptr = (Elf64_Phdr*)(elfptr + sizeof(Elf64_Ehdr)); /* PT_NOTE hdr */ 1127 1128 /* Skip ELF header, program headers and ELF note segment. */ 1129 vmcore_off = elfsz + elfnotes_sz; 1130 1131 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1132 u64 paddr, start, end, size; 1133 1134 if (phdr_ptr->p_type != PT_LOAD) 1135 continue; 1136 1137 paddr = phdr_ptr->p_offset; 1138 start = rounddown(paddr, PAGE_SIZE); 1139 end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE); 1140 size = end - start; 1141 1142 if (vmcore_alloc_add_range(vc_list, start, size)) 1143 return -ENOMEM; 1144 1145 /* Update the program header offset. */ 1146 phdr_ptr->p_offset = vmcore_off + (paddr - start); 1147 vmcore_off = vmcore_off + size; 1148 } 1149 return 0; 1150 } 1151 1152 static int __init process_ptload_program_headers_elf32(char *elfptr, 1153 size_t elfsz, 1154 size_t elfnotes_sz, 1155 struct list_head *vc_list) 1156 { 1157 int i; 1158 Elf32_Ehdr *ehdr_ptr; 1159 Elf32_Phdr *phdr_ptr; 1160 loff_t vmcore_off; 1161 1162 ehdr_ptr = (Elf32_Ehdr *)elfptr; 1163 phdr_ptr = (Elf32_Phdr*)(elfptr + sizeof(Elf32_Ehdr)); /* PT_NOTE hdr */ 1164 1165 /* Skip ELF header, program headers and ELF note segment. */ 1166 vmcore_off = elfsz + elfnotes_sz; 1167 1168 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1169 u64 paddr, start, end, size; 1170 1171 if (phdr_ptr->p_type != PT_LOAD) 1172 continue; 1173 1174 paddr = phdr_ptr->p_offset; 1175 start = rounddown(paddr, PAGE_SIZE); 1176 end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE); 1177 size = end - start; 1178 1179 if (vmcore_alloc_add_range(vc_list, start, size)) 1180 return -ENOMEM; 1181 1182 /* Update the program header offset */ 1183 phdr_ptr->p_offset = vmcore_off + (paddr - start); 1184 vmcore_off = vmcore_off + size; 1185 } 1186 return 0; 1187 } 1188 1189 /* Sets offset fields of vmcore elements. */ 1190 static void set_vmcore_list_offsets(size_t elfsz, size_t elfnotes_sz, 1191 struct list_head *vc_list) 1192 { 1193 struct vmcore_range *m; 1194 loff_t vmcore_off; 1195 1196 /* Skip ELF header, program headers and ELF note segment. */ 1197 vmcore_off = elfsz + elfnotes_sz; 1198 1199 list_for_each_entry(m, vc_list, list) { 1200 m->offset = vmcore_off; 1201 vmcore_off += m->size; 1202 } 1203 } 1204 1205 static void free_elfcorebuf(void) 1206 { 1207 free_pages((unsigned long)elfcorebuf, get_order(elfcorebuf_sz_orig)); 1208 elfcorebuf = NULL; 1209 vfree(elfnotes_buf); 1210 elfnotes_buf = NULL; 1211 } 1212 1213 static int __init parse_crash_elf64_headers(void) 1214 { 1215 int rc=0; 1216 Elf64_Ehdr ehdr; 1217 u64 addr; 1218 1219 addr = elfcorehdr_addr; 1220 1221 /* Read ELF header */ 1222 rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf64_Ehdr), &addr); 1223 if (rc < 0) 1224 return rc; 1225 1226 /* Do some basic Verification. */ 1227 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 || 1228 (ehdr.e_type != ET_CORE) || 1229 !vmcore_elf64_check_arch(&ehdr) || 1230 ehdr.e_ident[EI_CLASS] != ELFCLASS64 || 1231 ehdr.e_ident[EI_VERSION] != EV_CURRENT || 1232 ehdr.e_version != EV_CURRENT || 1233 ehdr.e_ehsize != sizeof(Elf64_Ehdr) || 1234 ehdr.e_phentsize != sizeof(Elf64_Phdr) || 1235 ehdr.e_phnum == 0) { 1236 pr_warn("Warning: Core image elf header is not sane\n"); 1237 return -EINVAL; 1238 } 1239 1240 /* Read in all elf headers. */ 1241 elfcorebuf_sz_orig = sizeof(Elf64_Ehdr) + 1242 ehdr.e_phnum * sizeof(Elf64_Phdr); 1243 elfcorebuf_sz = elfcorebuf_sz_orig; 1244 elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1245 get_order(elfcorebuf_sz_orig)); 1246 if (!elfcorebuf) 1247 return -ENOMEM; 1248 addr = elfcorehdr_addr; 1249 rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr); 1250 if (rc < 0) 1251 goto fail; 1252 1253 /* Merge all PT_NOTE headers into one. */ 1254 rc = merge_note_headers_elf64(elfcorebuf, &elfcorebuf_sz, 1255 &elfnotes_buf, &elfnotes_sz); 1256 if (rc) 1257 goto fail; 1258 rc = process_ptload_program_headers_elf64(elfcorebuf, elfcorebuf_sz, 1259 elfnotes_sz, &vmcore_list); 1260 if (rc) 1261 goto fail; 1262 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1263 return 0; 1264 fail: 1265 free_elfcorebuf(); 1266 return rc; 1267 } 1268 1269 static int __init parse_crash_elf32_headers(void) 1270 { 1271 int rc=0; 1272 Elf32_Ehdr ehdr; 1273 u64 addr; 1274 1275 addr = elfcorehdr_addr; 1276 1277 /* Read ELF header */ 1278 rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf32_Ehdr), &addr); 1279 if (rc < 0) 1280 return rc; 1281 1282 /* Do some basic Verification. */ 1283 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 || 1284 (ehdr.e_type != ET_CORE) || 1285 !vmcore_elf32_check_arch(&ehdr) || 1286 ehdr.e_ident[EI_CLASS] != ELFCLASS32|| 1287 ehdr.e_ident[EI_VERSION] != EV_CURRENT || 1288 ehdr.e_version != EV_CURRENT || 1289 ehdr.e_ehsize != sizeof(Elf32_Ehdr) || 1290 ehdr.e_phentsize != sizeof(Elf32_Phdr) || 1291 ehdr.e_phnum == 0) { 1292 pr_warn("Warning: Core image elf header is not sane\n"); 1293 return -EINVAL; 1294 } 1295 1296 /* Read in all elf headers. */ 1297 elfcorebuf_sz_orig = sizeof(Elf32_Ehdr) + ehdr.e_phnum * sizeof(Elf32_Phdr); 1298 elfcorebuf_sz = elfcorebuf_sz_orig; 1299 elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1300 get_order(elfcorebuf_sz_orig)); 1301 if (!elfcorebuf) 1302 return -ENOMEM; 1303 addr = elfcorehdr_addr; 1304 rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr); 1305 if (rc < 0) 1306 goto fail; 1307 1308 /* Merge all PT_NOTE headers into one. */ 1309 rc = merge_note_headers_elf32(elfcorebuf, &elfcorebuf_sz, 1310 &elfnotes_buf, &elfnotes_sz); 1311 if (rc) 1312 goto fail; 1313 rc = process_ptload_program_headers_elf32(elfcorebuf, elfcorebuf_sz, 1314 elfnotes_sz, &vmcore_list); 1315 if (rc) 1316 goto fail; 1317 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1318 return 0; 1319 fail: 1320 free_elfcorebuf(); 1321 return rc; 1322 } 1323 1324 static int __init parse_crash_elf_headers(void) 1325 { 1326 unsigned char e_ident[EI_NIDENT]; 1327 u64 addr; 1328 int rc=0; 1329 1330 addr = elfcorehdr_addr; 1331 rc = elfcorehdr_read(e_ident, EI_NIDENT, &addr); 1332 if (rc < 0) 1333 return rc; 1334 if (memcmp(e_ident, ELFMAG, SELFMAG) != 0) { 1335 pr_warn("Warning: Core image elf header not found\n"); 1336 return -EINVAL; 1337 } 1338 1339 if (e_ident[EI_CLASS] == ELFCLASS64) { 1340 rc = parse_crash_elf64_headers(); 1341 if (rc) 1342 return rc; 1343 } else if (e_ident[EI_CLASS] == ELFCLASS32) { 1344 rc = parse_crash_elf32_headers(); 1345 if (rc) 1346 return rc; 1347 } else { 1348 pr_warn("Warning: Core image elf header is not sane\n"); 1349 return -EINVAL; 1350 } 1351 1352 /* Determine vmcore size. */ 1353 vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz, 1354 &vmcore_list); 1355 1356 return 0; 1357 } 1358 1359 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 1360 /** 1361 * vmcoredd_write_header - Write vmcore device dump header at the 1362 * beginning of the dump's buffer. 1363 * @buf: Output buffer where the note is written 1364 * @data: Dump info 1365 * @size: Size of the dump 1366 * 1367 * Fills beginning of the dump's buffer with vmcore device dump header. 1368 */ 1369 static void vmcoredd_write_header(void *buf, struct vmcoredd_data *data, 1370 u32 size) 1371 { 1372 struct vmcoredd_header *vdd_hdr = (struct vmcoredd_header *)buf; 1373 1374 vdd_hdr->n_namesz = sizeof(vdd_hdr->name); 1375 vdd_hdr->n_descsz = size + sizeof(vdd_hdr->dump_name); 1376 vdd_hdr->n_type = NT_VMCOREDD; 1377 1378 strscpy_pad(vdd_hdr->name, VMCOREDD_NOTE_NAME); 1379 strscpy_pad(vdd_hdr->dump_name, data->dump_name); 1380 } 1381 1382 /** 1383 * vmcoredd_update_program_headers - Update all ELF program headers 1384 * @elfptr: Pointer to elf header 1385 * @elfnotesz: Size of elf notes aligned to page size 1386 * @vmcoreddsz: Size of device dumps to be added to elf note header 1387 * 1388 * Determine type of ELF header (Elf64 or Elf32) and update the elf note size. 1389 * Also update the offsets of all the program headers after the elf note header. 1390 */ 1391 static void vmcoredd_update_program_headers(char *elfptr, size_t elfnotesz, 1392 size_t vmcoreddsz) 1393 { 1394 unsigned char *e_ident = (unsigned char *)elfptr; 1395 u64 start, end, size; 1396 loff_t vmcore_off; 1397 u32 i; 1398 1399 vmcore_off = elfcorebuf_sz + elfnotesz; 1400 1401 if (e_ident[EI_CLASS] == ELFCLASS64) { 1402 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)elfptr; 1403 Elf64_Phdr *phdr = (Elf64_Phdr *)(elfptr + sizeof(Elf64_Ehdr)); 1404 1405 /* Update all program headers */ 1406 for (i = 0; i < ehdr->e_phnum; i++, phdr++) { 1407 if (phdr->p_type == PT_NOTE) { 1408 /* Update note size */ 1409 phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz; 1410 phdr->p_filesz = phdr->p_memsz; 1411 continue; 1412 } 1413 1414 start = rounddown(phdr->p_offset, PAGE_SIZE); 1415 end = roundup(phdr->p_offset + phdr->p_memsz, 1416 PAGE_SIZE); 1417 size = end - start; 1418 phdr->p_offset = vmcore_off + (phdr->p_offset - start); 1419 vmcore_off += size; 1420 } 1421 } else { 1422 Elf32_Ehdr *ehdr = (Elf32_Ehdr *)elfptr; 1423 Elf32_Phdr *phdr = (Elf32_Phdr *)(elfptr + sizeof(Elf32_Ehdr)); 1424 1425 /* Update all program headers */ 1426 for (i = 0; i < ehdr->e_phnum; i++, phdr++) { 1427 if (phdr->p_type == PT_NOTE) { 1428 /* Update note size */ 1429 phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz; 1430 phdr->p_filesz = phdr->p_memsz; 1431 continue; 1432 } 1433 1434 start = rounddown(phdr->p_offset, PAGE_SIZE); 1435 end = roundup(phdr->p_offset + phdr->p_memsz, 1436 PAGE_SIZE); 1437 size = end - start; 1438 phdr->p_offset = vmcore_off + (phdr->p_offset - start); 1439 vmcore_off += size; 1440 } 1441 } 1442 } 1443 1444 /** 1445 * vmcoredd_update_size - Update the total size of the device dumps and update 1446 * ELF header 1447 * @dump_size: Size of the current device dump to be added to total size 1448 * 1449 * Update the total size of all the device dumps and update the ELF program 1450 * headers. Calculate the new offsets for the vmcore list and update the 1451 * total vmcore size. 1452 */ 1453 static void vmcoredd_update_size(size_t dump_size) 1454 { 1455 vmcoredd_orig_sz += dump_size; 1456 elfnotes_sz = roundup(elfnotes_orig_sz, PAGE_SIZE) + vmcoredd_orig_sz; 1457 vmcoredd_update_program_headers(elfcorebuf, elfnotes_sz, 1458 vmcoredd_orig_sz); 1459 1460 /* Update vmcore list offsets */ 1461 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1462 1463 vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz, 1464 &vmcore_list); 1465 proc_vmcore->size = vmcore_size; 1466 } 1467 1468 /** 1469 * vmcore_add_device_dump - Add a buffer containing device dump to vmcore 1470 * @data: dump info. 1471 * 1472 * Allocate a buffer and invoke the calling driver's dump collect routine. 1473 * Write ELF note at the beginning of the buffer to indicate vmcore device 1474 * dump and add the dump to global list. 1475 */ 1476 int vmcore_add_device_dump(struct vmcoredd_data *data) 1477 { 1478 struct vmcoredd_node *dump; 1479 void *buf = NULL; 1480 size_t data_size; 1481 int ret; 1482 1483 if (vmcoredd_disabled) { 1484 pr_err_once("Device dump is disabled\n"); 1485 return -EINVAL; 1486 } 1487 1488 if (!data || !strlen(data->dump_name) || 1489 !data->vmcoredd_callback || !data->size) 1490 return -EINVAL; 1491 1492 dump = vzalloc(sizeof(*dump)); 1493 if (!dump) { 1494 ret = -ENOMEM; 1495 goto out_err; 1496 } 1497 1498 /* Keep size of the buffer page aligned so that it can be mmaped */ 1499 data_size = roundup(sizeof(struct vmcoredd_header) + data->size, 1500 PAGE_SIZE); 1501 1502 /* Allocate buffer for driver's to write their dumps */ 1503 buf = vmcore_alloc_buf(data_size); 1504 if (!buf) { 1505 ret = -ENOMEM; 1506 goto out_err; 1507 } 1508 1509 vmcoredd_write_header(buf, data, data_size - 1510 sizeof(struct vmcoredd_header)); 1511 1512 /* Invoke the driver's dump collection routing */ 1513 ret = data->vmcoredd_callback(data, buf + 1514 sizeof(struct vmcoredd_header)); 1515 if (ret) 1516 goto out_err; 1517 1518 dump->buf = buf; 1519 dump->size = data_size; 1520 1521 /* Add the dump to driver sysfs list and update the elfcore hdr */ 1522 mutex_lock(&vmcore_mutex); 1523 if (vmcore_opened) 1524 pr_warn_once("Unexpected adding of device dump\n"); 1525 if (vmcore_open) { 1526 ret = -EBUSY; 1527 goto unlock; 1528 } 1529 1530 list_add_tail(&dump->list, &vmcoredd_list); 1531 vmcoredd_update_size(data_size); 1532 mutex_unlock(&vmcore_mutex); 1533 return 0; 1534 1535 unlock: 1536 mutex_unlock(&vmcore_mutex); 1537 1538 out_err: 1539 vfree(buf); 1540 vfree(dump); 1541 1542 return ret; 1543 } 1544 EXPORT_SYMBOL(vmcore_add_device_dump); 1545 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 1546 1547 #ifdef CONFIG_PROC_VMCORE_DEVICE_RAM 1548 static int vmcore_realloc_elfcore_buffer_elf64(size_t new_size) 1549 { 1550 char *elfcorebuf_new; 1551 1552 if (WARN_ON_ONCE(new_size < elfcorebuf_sz)) 1553 return -EINVAL; 1554 if (get_order(elfcorebuf_sz_orig) == get_order(new_size)) { 1555 elfcorebuf_sz_orig = new_size; 1556 return 0; 1557 } 1558 1559 elfcorebuf_new = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1560 get_order(new_size)); 1561 if (!elfcorebuf_new) 1562 return -ENOMEM; 1563 memcpy(elfcorebuf_new, elfcorebuf, elfcorebuf_sz); 1564 free_pages((unsigned long)elfcorebuf, get_order(elfcorebuf_sz_orig)); 1565 elfcorebuf = elfcorebuf_new; 1566 elfcorebuf_sz_orig = new_size; 1567 return 0; 1568 } 1569 1570 static void vmcore_reset_offsets_elf64(void) 1571 { 1572 Elf64_Phdr *phdr_start = (Elf64_Phdr *)(elfcorebuf + sizeof(Elf64_Ehdr)); 1573 loff_t vmcore_off = elfcorebuf_sz + elfnotes_sz; 1574 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)elfcorebuf; 1575 Elf64_Phdr *phdr; 1576 int i; 1577 1578 for (i = 0, phdr = phdr_start; i < ehdr->e_phnum; i++, phdr++) { 1579 u64 start, end; 1580 1581 /* 1582 * After merge_note_headers_elf64() we should only have a single 1583 * PT_NOTE entry that starts immediately after elfcorebuf_sz. 1584 */ 1585 if (phdr->p_type == PT_NOTE) { 1586 phdr->p_offset = elfcorebuf_sz; 1587 continue; 1588 } 1589 1590 start = rounddown(phdr->p_offset, PAGE_SIZE); 1591 end = roundup(phdr->p_offset + phdr->p_memsz, PAGE_SIZE); 1592 phdr->p_offset = vmcore_off + (phdr->p_offset - start); 1593 vmcore_off = vmcore_off + end - start; 1594 } 1595 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1596 } 1597 1598 static int vmcore_add_device_ram_elf64(struct list_head *list, size_t count) 1599 { 1600 Elf64_Phdr *phdr_start = (Elf64_Phdr *)(elfcorebuf + sizeof(Elf64_Ehdr)); 1601 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)elfcorebuf; 1602 struct vmcore_range *cur; 1603 Elf64_Phdr *phdr; 1604 size_t new_size; 1605 int rc; 1606 1607 if ((Elf32_Half)(ehdr->e_phnum + count) != ehdr->e_phnum + count) { 1608 pr_err("too many device ram ranges\n"); 1609 return -ENOSPC; 1610 } 1611 1612 /* elfcorebuf_sz must always cover full pages. */ 1613 new_size = sizeof(Elf64_Ehdr) + 1614 (ehdr->e_phnum + count) * sizeof(Elf64_Phdr); 1615 new_size = roundup(new_size, PAGE_SIZE); 1616 1617 /* 1618 * Make sure we have sufficient space to include the new PT_LOAD 1619 * entries. 1620 */ 1621 rc = vmcore_realloc_elfcore_buffer_elf64(new_size); 1622 if (rc) { 1623 pr_err("resizing elfcore failed\n"); 1624 return rc; 1625 } 1626 1627 /* Modify our used elfcore buffer size to cover the new entries. */ 1628 elfcorebuf_sz = new_size; 1629 1630 /* Fill the added PT_LOAD entries. */ 1631 phdr = phdr_start + ehdr->e_phnum; 1632 list_for_each_entry(cur, list, list) { 1633 WARN_ON_ONCE(!IS_ALIGNED(cur->paddr | cur->size, PAGE_SIZE)); 1634 elfcorehdr_fill_device_ram_ptload_elf64(phdr, cur->paddr, cur->size); 1635 1636 /* p_offset will be adjusted later. */ 1637 phdr++; 1638 ehdr->e_phnum++; 1639 } 1640 list_splice_tail(list, &vmcore_list); 1641 1642 /* We changed elfcorebuf_sz and added new entries; reset all offsets. */ 1643 vmcore_reset_offsets_elf64(); 1644 1645 /* Finally, recalculate the total vmcore size. */ 1646 vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz, 1647 &vmcore_list); 1648 proc_vmcore->size = vmcore_size; 1649 return 0; 1650 } 1651 1652 static void vmcore_process_device_ram(struct vmcore_cb *cb) 1653 { 1654 unsigned char *e_ident = (unsigned char *)elfcorebuf; 1655 struct vmcore_range *first, *m; 1656 LIST_HEAD(list); 1657 int count; 1658 1659 /* We only support Elf64 dumps for now. */ 1660 if (WARN_ON_ONCE(e_ident[EI_CLASS] != ELFCLASS64)) { 1661 pr_err("device ram ranges only support Elf64\n"); 1662 return; 1663 } 1664 1665 if (cb->get_device_ram(cb, &list)) { 1666 pr_err("obtaining device ram ranges failed\n"); 1667 return; 1668 } 1669 count = list_count_nodes(&list); 1670 if (!count) 1671 return; 1672 1673 /* 1674 * For some reason these ranges are already know? Might happen 1675 * with unusual register->unregister->register sequences; we'll simply 1676 * sanity check using the first range. 1677 */ 1678 first = list_first_entry(&list, struct vmcore_range, list); 1679 list_for_each_entry(m, &vmcore_list, list) { 1680 unsigned long long m_end = m->paddr + m->size; 1681 unsigned long long first_end = first->paddr + first->size; 1682 1683 if (first->paddr < m_end && m->paddr < first_end) 1684 goto out_free; 1685 } 1686 1687 /* If adding the mem nodes succeeds, they must not be freed. */ 1688 if (!vmcore_add_device_ram_elf64(&list, count)) 1689 return; 1690 out_free: 1691 vmcore_free_ranges(&list); 1692 } 1693 #else /* !CONFIG_PROC_VMCORE_DEVICE_RAM */ 1694 static void vmcore_process_device_ram(struct vmcore_cb *cb) 1695 { 1696 } 1697 #endif /* CONFIG_PROC_VMCORE_DEVICE_RAM */ 1698 1699 /* Free all dumps in vmcore device dump list */ 1700 static void vmcore_free_device_dumps(void) 1701 { 1702 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 1703 mutex_lock(&vmcore_mutex); 1704 while (!list_empty(&vmcoredd_list)) { 1705 struct vmcoredd_node *dump; 1706 1707 dump = list_first_entry(&vmcoredd_list, struct vmcoredd_node, 1708 list); 1709 list_del(&dump->list); 1710 vfree(dump->buf); 1711 vfree(dump); 1712 } 1713 mutex_unlock(&vmcore_mutex); 1714 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 1715 } 1716 1717 /* Init function for vmcore module. */ 1718 static int __init vmcore_init(void) 1719 { 1720 int rc = 0; 1721 1722 /* Allow architectures to allocate ELF header in 2nd kernel */ 1723 rc = elfcorehdr_alloc(&elfcorehdr_addr, &elfcorehdr_size); 1724 if (rc) 1725 return rc; 1726 /* 1727 * If elfcorehdr= has been passed in cmdline or created in 2nd kernel, 1728 * then capture the dump. 1729 */ 1730 if (!(is_vmcore_usable())) 1731 return rc; 1732 rc = parse_crash_elf_headers(); 1733 if (rc) { 1734 elfcorehdr_free(elfcorehdr_addr); 1735 pr_warn("not initialized\n"); 1736 return rc; 1737 } 1738 elfcorehdr_free(elfcorehdr_addr); 1739 elfcorehdr_addr = ELFCORE_ADDR_ERR; 1740 1741 proc_vmcore = proc_create("vmcore", S_IRUSR, NULL, &vmcore_proc_ops); 1742 if (proc_vmcore) 1743 proc_vmcore->size = vmcore_size; 1744 return 0; 1745 } 1746 fs_initcall(vmcore_init); 1747 1748 /* Cleanup function for vmcore module. */ 1749 void vmcore_cleanup(void) 1750 { 1751 if (proc_vmcore) { 1752 proc_remove(proc_vmcore); 1753 proc_vmcore = NULL; 1754 } 1755 1756 vmcore_free_ranges(&vmcore_list); 1757 free_elfcorebuf(); 1758 1759 /* clear vmcore device dump list */ 1760 vmcore_free_device_dumps(); 1761 } 1762