1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/compat.h> 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/errno.h> 25 #include <linux/stat.h> 26 #include <linux/fcntl.h> 27 #include <linux/string.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/mm.h> 31 #include <linux/sunrpc/clnt.h> 32 #include <linux/nfs_fs.h> 33 #include <linux/nfs_mount.h> 34 #include <linux/pagemap.h> 35 #include <linux/pagevec.h> 36 #include <linux/namei.h> 37 #include <linux/mount.h> 38 #include <linux/swap.h> 39 #include <linux/sched.h> 40 #include <linux/kmemleak.h> 41 #include <linux/xattr.h> 42 #include <linux/hash.h> 43 44 #include "delegation.h" 45 #include "iostat.h" 46 #include "internal.h" 47 #include "fscache.h" 48 49 #include "nfstrace.h" 50 51 /* #define NFS_DEBUG_VERBOSE 1 */ 52 53 static int nfs_opendir(struct inode *, struct file *); 54 static int nfs_closedir(struct inode *, struct file *); 55 static int nfs_readdir(struct file *, struct dir_context *); 56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 static void nfs_readdir_clear_array(struct folio *); 59 static int nfs_do_create(struct inode *dir, struct dentry *dentry, 60 umode_t mode, int open_flags); 61 62 const struct file_operations nfs_dir_operations = { 63 .llseek = nfs_llseek_dir, 64 .read = generic_read_dir, 65 .iterate_shared = nfs_readdir, 66 .open = nfs_opendir, 67 .release = nfs_closedir, 68 .fsync = nfs_fsync_dir, 69 }; 70 71 const struct address_space_operations nfs_dir_aops = { 72 .free_folio = nfs_readdir_clear_array, 73 }; 74 75 #define NFS_INIT_DTSIZE PAGE_SIZE 76 77 static struct nfs_open_dir_context * 78 alloc_nfs_open_dir_context(struct inode *dir) 79 { 80 struct nfs_inode *nfsi = NFS_I(dir); 81 struct nfs_open_dir_context *ctx; 82 83 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT); 84 if (ctx != NULL) { 85 ctx->attr_gencount = nfsi->attr_gencount; 86 ctx->dtsize = NFS_INIT_DTSIZE; 87 spin_lock(&dir->i_lock); 88 if (list_empty(&nfsi->open_files) && 89 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 90 nfs_set_cache_invalid(dir, 91 NFS_INO_INVALID_DATA | 92 NFS_INO_REVAL_FORCED); 93 list_add_tail_rcu(&ctx->list, &nfsi->open_files); 94 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf)); 95 spin_unlock(&dir->i_lock); 96 return ctx; 97 } 98 return ERR_PTR(-ENOMEM); 99 } 100 101 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 102 { 103 spin_lock(&dir->i_lock); 104 list_del_rcu(&ctx->list); 105 spin_unlock(&dir->i_lock); 106 kfree_rcu(ctx, rcu_head); 107 } 108 109 /* 110 * Open file 111 */ 112 static int 113 nfs_opendir(struct inode *inode, struct file *filp) 114 { 115 int res = 0; 116 struct nfs_open_dir_context *ctx; 117 118 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 119 120 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 121 122 ctx = alloc_nfs_open_dir_context(inode); 123 if (IS_ERR(ctx)) { 124 res = PTR_ERR(ctx); 125 goto out; 126 } 127 filp->private_data = ctx; 128 out: 129 return res; 130 } 131 132 static int 133 nfs_closedir(struct inode *inode, struct file *filp) 134 { 135 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 136 return 0; 137 } 138 139 struct nfs_cache_array_entry { 140 u64 cookie; 141 u64 ino; 142 const char *name; 143 unsigned int name_len; 144 unsigned char d_type; 145 }; 146 147 struct nfs_cache_array { 148 u64 change_attr; 149 u64 last_cookie; 150 unsigned int size; 151 unsigned char folio_full : 1, 152 folio_is_eof : 1, 153 cookies_are_ordered : 1; 154 struct nfs_cache_array_entry array[] __counted_by(size); 155 }; 156 157 struct nfs_readdir_descriptor { 158 struct file *file; 159 struct folio *folio; 160 struct dir_context *ctx; 161 pgoff_t folio_index; 162 pgoff_t folio_index_max; 163 u64 dir_cookie; 164 u64 last_cookie; 165 loff_t current_index; 166 167 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 168 unsigned long dir_verifier; 169 unsigned long timestamp; 170 unsigned long gencount; 171 unsigned long attr_gencount; 172 unsigned int cache_entry_index; 173 unsigned int buffer_fills; 174 unsigned int dtsize; 175 bool clear_cache; 176 bool plus; 177 bool eob; 178 bool eof; 179 }; 180 181 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz) 182 { 183 struct nfs_server *server = NFS_SERVER(file_inode(desc->file)); 184 unsigned int maxsize = server->dtsize; 185 186 if (sz > maxsize) 187 sz = maxsize; 188 if (sz < NFS_MIN_FILE_IO_SIZE) 189 sz = NFS_MIN_FILE_IO_SIZE; 190 desc->dtsize = sz; 191 } 192 193 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc) 194 { 195 nfs_set_dtsize(desc, desc->dtsize >> 1); 196 } 197 198 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc) 199 { 200 nfs_set_dtsize(desc, desc->dtsize << 1); 201 } 202 203 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie, 204 u64 change_attr) 205 { 206 struct nfs_cache_array *array; 207 208 array = kmap_local_folio(folio, 0); 209 array->change_attr = change_attr; 210 array->last_cookie = last_cookie; 211 array->size = 0; 212 array->folio_full = 0; 213 array->folio_is_eof = 0; 214 array->cookies_are_ordered = 1; 215 kunmap_local(array); 216 } 217 218 /* 219 * we are freeing strings created by nfs_add_to_readdir_array() 220 */ 221 static void nfs_readdir_clear_array(struct folio *folio) 222 { 223 struct nfs_cache_array *array; 224 unsigned int i; 225 226 array = kmap_local_folio(folio, 0); 227 for (i = 0; i < array->size; i++) 228 kfree(array->array[i].name); 229 array->size = 0; 230 kunmap_local(array); 231 } 232 233 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie, 234 u64 change_attr) 235 { 236 nfs_readdir_clear_array(folio); 237 nfs_readdir_folio_init_array(folio, last_cookie, change_attr); 238 } 239 240 static struct folio * 241 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags) 242 { 243 struct folio *folio = folio_alloc(gfp_flags, 0); 244 if (folio) 245 nfs_readdir_folio_init_array(folio, last_cookie, 0); 246 return folio; 247 } 248 249 static void nfs_readdir_folio_array_free(struct folio *folio) 250 { 251 if (folio) { 252 nfs_readdir_clear_array(folio); 253 folio_put(folio); 254 } 255 } 256 257 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array) 258 { 259 return array->size == 0 ? array->last_cookie : array->array[0].cookie; 260 } 261 262 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) 263 { 264 array->folio_is_eof = 1; 265 array->folio_full = 1; 266 } 267 268 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) 269 { 270 return array->folio_full; 271 } 272 273 /* 274 * the caller is responsible for freeing qstr.name 275 * when called by nfs_readdir_add_to_array, the strings will be freed in 276 * nfs_clear_readdir_array() 277 */ 278 static const char *nfs_readdir_copy_name(const char *name, unsigned int len) 279 { 280 const char *ret = kmemdup_nul(name, len, GFP_KERNEL); 281 282 /* 283 * Avoid a kmemleak false positive. The pointer to the name is stored 284 * in a page cache page which kmemleak does not scan. 285 */ 286 if (ret != NULL) 287 kmemleak_not_leak(ret); 288 return ret; 289 } 290 291 static size_t nfs_readdir_array_maxentries(void) 292 { 293 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) / 294 sizeof(struct nfs_cache_array_entry); 295 } 296 297 /* 298 * Check that the next array entry lies entirely within the page bounds 299 */ 300 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) 301 { 302 if (array->folio_full) 303 return -ENOSPC; 304 if (array->size == nfs_readdir_array_maxentries()) { 305 array->folio_full = 1; 306 return -ENOSPC; 307 } 308 return 0; 309 } 310 311 static int nfs_readdir_folio_array_append(struct folio *folio, 312 const struct nfs_entry *entry, 313 u64 *cookie) 314 { 315 struct nfs_cache_array *array; 316 struct nfs_cache_array_entry *cache_entry; 317 const char *name; 318 int ret = -ENOMEM; 319 320 name = nfs_readdir_copy_name(entry->name, entry->len); 321 322 array = kmap_local_folio(folio, 0); 323 if (!name) 324 goto out; 325 ret = nfs_readdir_array_can_expand(array); 326 if (ret) { 327 kfree(name); 328 goto out; 329 } 330 331 array->size++; 332 cache_entry = &array->array[array->size - 1]; 333 cache_entry->cookie = array->last_cookie; 334 cache_entry->ino = entry->ino; 335 cache_entry->d_type = entry->d_type; 336 cache_entry->name_len = entry->len; 337 cache_entry->name = name; 338 array->last_cookie = entry->cookie; 339 if (array->last_cookie <= cache_entry->cookie) 340 array->cookies_are_ordered = 0; 341 if (entry->eof != 0) 342 nfs_readdir_array_set_eof(array); 343 out: 344 *cookie = array->last_cookie; 345 kunmap_local(array); 346 return ret; 347 } 348 349 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14) 350 /* 351 * Hash algorithm allowing content addressible access to sequences 352 * of directory cookies. Content is addressed by the value of the 353 * cookie index of the first readdir entry in a page. 354 * 355 * We select only the first 18 bits to avoid issues with excessive 356 * memory use for the page cache XArray. 18 bits should allow the caching 357 * of 262144 pages of sequences of readdir entries. Since each page holds 358 * 127 readdir entries for a typical 64-bit system, that works out to a 359 * cache of ~ 33 million entries per directory. 360 */ 361 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie) 362 { 363 if (cookie == 0) 364 return 0; 365 return hash_64(cookie, 18); 366 } 367 368 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie, 369 u64 change_attr) 370 { 371 struct nfs_cache_array *array = kmap_local_folio(folio, 0); 372 int ret = true; 373 374 if (array->change_attr != change_attr) 375 ret = false; 376 if (nfs_readdir_array_index_cookie(array) != last_cookie) 377 ret = false; 378 kunmap_local(array); 379 return ret; 380 } 381 382 static void nfs_readdir_folio_unlock_and_put(struct folio *folio) 383 { 384 folio_unlock(folio); 385 folio_put(folio); 386 } 387 388 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie, 389 u64 change_attr) 390 { 391 if (folio_test_uptodate(folio)) { 392 if (nfs_readdir_folio_validate(folio, cookie, change_attr)) 393 return; 394 nfs_readdir_clear_array(folio); 395 } 396 nfs_readdir_folio_init_array(folio, cookie, change_attr); 397 folio_mark_uptodate(folio); 398 } 399 400 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping, 401 u64 cookie, u64 change_attr) 402 { 403 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 404 struct folio *folio; 405 406 folio = filemap_grab_folio(mapping, index); 407 if (IS_ERR(folio)) 408 return NULL; 409 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 410 return folio; 411 } 412 413 static u64 nfs_readdir_folio_last_cookie(struct folio *folio) 414 { 415 struct nfs_cache_array *array; 416 u64 ret; 417 418 array = kmap_local_folio(folio, 0); 419 ret = array->last_cookie; 420 kunmap_local(array); 421 return ret; 422 } 423 424 static bool nfs_readdir_folio_needs_filling(struct folio *folio) 425 { 426 struct nfs_cache_array *array; 427 bool ret; 428 429 array = kmap_local_folio(folio, 0); 430 ret = !nfs_readdir_array_is_full(array); 431 kunmap_local(array); 432 return ret; 433 } 434 435 static void nfs_readdir_folio_set_eof(struct folio *folio) 436 { 437 struct nfs_cache_array *array; 438 439 array = kmap_local_folio(folio, 0); 440 nfs_readdir_array_set_eof(array); 441 kunmap_local(array); 442 } 443 444 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping, 445 u64 cookie, u64 change_attr) 446 { 447 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 448 struct folio *folio; 449 450 folio = __filemap_get_folio(mapping, index, 451 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 452 mapping_gfp_mask(mapping)); 453 if (IS_ERR(folio)) 454 return NULL; 455 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 456 if (nfs_readdir_folio_last_cookie(folio) != cookie) 457 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 458 return folio; 459 } 460 461 static inline 462 int is_32bit_api(void) 463 { 464 #ifdef CONFIG_COMPAT 465 return in_compat_syscall(); 466 #else 467 return (BITS_PER_LONG == 32); 468 #endif 469 } 470 471 static 472 bool nfs_readdir_use_cookie(const struct file *filp) 473 { 474 if ((filp->f_mode & FMODE_32BITHASH) || 475 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 476 return false; 477 return true; 478 } 479 480 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array, 481 struct nfs_readdir_descriptor *desc) 482 { 483 if (array->folio_full) { 484 desc->last_cookie = array->last_cookie; 485 desc->current_index += array->size; 486 desc->cache_entry_index = 0; 487 desc->folio_index++; 488 } else 489 desc->last_cookie = nfs_readdir_array_index_cookie(array); 490 } 491 492 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc) 493 { 494 desc->current_index = 0; 495 desc->last_cookie = 0; 496 desc->folio_index = 0; 497 } 498 499 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array, 500 struct nfs_readdir_descriptor *desc) 501 { 502 loff_t diff = desc->ctx->pos - desc->current_index; 503 unsigned int index; 504 505 if (diff < 0) 506 goto out_eof; 507 if (diff >= array->size) { 508 if (array->folio_is_eof) 509 goto out_eof; 510 nfs_readdir_seek_next_array(array, desc); 511 return -EAGAIN; 512 } 513 514 index = (unsigned int)diff; 515 desc->dir_cookie = array->array[index].cookie; 516 desc->cache_entry_index = index; 517 return 0; 518 out_eof: 519 desc->eof = true; 520 return -EBADCOOKIE; 521 } 522 523 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array, 524 u64 cookie) 525 { 526 if (!array->cookies_are_ordered) 527 return true; 528 /* Optimisation for monotonically increasing cookies */ 529 if (cookie >= array->last_cookie) 530 return false; 531 if (array->size && cookie < array->array[0].cookie) 532 return false; 533 return true; 534 } 535 536 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, 537 struct nfs_readdir_descriptor *desc) 538 { 539 unsigned int i; 540 int status = -EAGAIN; 541 542 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie)) 543 goto check_eof; 544 545 for (i = 0; i < array->size; i++) { 546 if (array->array[i].cookie == desc->dir_cookie) { 547 if (nfs_readdir_use_cookie(desc->file)) 548 desc->ctx->pos = desc->dir_cookie; 549 else 550 desc->ctx->pos = desc->current_index + i; 551 desc->cache_entry_index = i; 552 return 0; 553 } 554 } 555 check_eof: 556 if (array->folio_is_eof) { 557 status = -EBADCOOKIE; 558 if (desc->dir_cookie == array->last_cookie) 559 desc->eof = true; 560 } else 561 nfs_readdir_seek_next_array(array, desc); 562 return status; 563 } 564 565 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc) 566 { 567 struct nfs_cache_array *array; 568 int status; 569 570 array = kmap_local_folio(desc->folio, 0); 571 572 if (desc->dir_cookie == 0) 573 status = nfs_readdir_search_for_pos(array, desc); 574 else 575 status = nfs_readdir_search_for_cookie(array, desc); 576 577 kunmap_local(array); 578 return status; 579 } 580 581 /* Fill a page with xdr information before transferring to the cache page */ 582 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, 583 __be32 *verf, u64 cookie, 584 struct page **pages, size_t bufsize, 585 __be32 *verf_res) 586 { 587 struct inode *inode = file_inode(desc->file); 588 struct nfs_readdir_arg arg = { 589 .dentry = file_dentry(desc->file), 590 .cred = desc->file->f_cred, 591 .verf = verf, 592 .cookie = cookie, 593 .pages = pages, 594 .page_len = bufsize, 595 .plus = desc->plus, 596 }; 597 struct nfs_readdir_res res = { 598 .verf = verf_res, 599 }; 600 unsigned long timestamp, gencount; 601 int error; 602 603 again: 604 timestamp = jiffies; 605 gencount = nfs_inc_attr_generation_counter(); 606 desc->dir_verifier = nfs_save_change_attribute(inode); 607 error = NFS_PROTO(inode)->readdir(&arg, &res); 608 if (error < 0) { 609 /* We requested READDIRPLUS, but the server doesn't grok it */ 610 if (error == -ENOTSUPP && desc->plus) { 611 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 612 desc->plus = arg.plus = false; 613 goto again; 614 } 615 goto error; 616 } 617 desc->timestamp = timestamp; 618 desc->gencount = gencount; 619 error: 620 return error; 621 } 622 623 static int xdr_decode(struct nfs_readdir_descriptor *desc, 624 struct nfs_entry *entry, struct xdr_stream *xdr) 625 { 626 struct inode *inode = file_inode(desc->file); 627 int error; 628 629 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 630 if (error) 631 return error; 632 entry->fattr->time_start = desc->timestamp; 633 entry->fattr->gencount = desc->gencount; 634 return 0; 635 } 636 637 /* Match file and dirent using either filehandle or fileid 638 * Note: caller is responsible for checking the fsid 639 */ 640 static 641 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 642 { 643 struct inode *inode; 644 struct nfs_inode *nfsi; 645 646 if (d_really_is_negative(dentry)) 647 return 0; 648 649 inode = d_inode(dentry); 650 if (is_bad_inode(inode) || NFS_STALE(inode)) 651 return 0; 652 653 nfsi = NFS_I(inode); 654 if (entry->fattr->fileid != nfsi->fileid) 655 return 0; 656 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 657 return 0; 658 return 1; 659 } 660 661 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL) 662 663 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx, 664 unsigned int cache_hits, 665 unsigned int cache_misses) 666 { 667 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 668 return false; 669 if (NFS_SERVER(dir)->flags & NFS_MOUNT_FORCE_RDIRPLUS) 670 return true; 671 if (ctx->pos == 0 || 672 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD) 673 return true; 674 return false; 675 } 676 677 /* 678 * This function is called by the getattr code to request the 679 * use of readdirplus to accelerate any future lookups in the same 680 * directory. 681 */ 682 void nfs_readdir_record_entry_cache_hit(struct inode *dir) 683 { 684 struct nfs_inode *nfsi = NFS_I(dir); 685 struct nfs_open_dir_context *ctx; 686 687 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 688 S_ISDIR(dir->i_mode)) { 689 rcu_read_lock(); 690 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 691 atomic_inc(&ctx->cache_hits); 692 rcu_read_unlock(); 693 } 694 } 695 696 /* 697 * This function is mainly for use by nfs_getattr(). 698 * 699 * If this is an 'ls -l', we want to force use of readdirplus. 700 */ 701 void nfs_readdir_record_entry_cache_miss(struct inode *dir) 702 { 703 struct nfs_inode *nfsi = NFS_I(dir); 704 struct nfs_open_dir_context *ctx; 705 706 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 707 S_ISDIR(dir->i_mode)) { 708 rcu_read_lock(); 709 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 710 atomic_inc(&ctx->cache_misses); 711 rcu_read_unlock(); 712 } 713 } 714 715 static void nfs_lookup_advise_force_readdirplus(struct inode *dir, 716 unsigned int flags) 717 { 718 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 719 return; 720 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL)) 721 return; 722 nfs_readdir_record_entry_cache_miss(dir); 723 } 724 725 static 726 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 727 unsigned long dir_verifier) 728 { 729 struct qstr filename = QSTR_INIT(entry->name, entry->len); 730 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 731 struct dentry *dentry; 732 struct dentry *alias; 733 struct inode *inode; 734 int status; 735 736 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 737 return; 738 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 739 return; 740 if (filename.len == 0) 741 return; 742 /* Validate that the name doesn't contain any illegal '\0' */ 743 if (strnlen(filename.name, filename.len) != filename.len) 744 return; 745 /* ...or '/' */ 746 if (strnchr(filename.name, filename.len, '/')) 747 return; 748 if (filename.name[0] == '.') { 749 if (filename.len == 1) 750 return; 751 if (filename.len == 2 && filename.name[1] == '.') 752 return; 753 } 754 filename.hash = full_name_hash(parent, filename.name, filename.len); 755 756 dentry = d_lookup(parent, &filename); 757 again: 758 if (!dentry) { 759 dentry = d_alloc_parallel(parent, &filename, &wq); 760 if (IS_ERR(dentry)) 761 return; 762 } 763 if (!d_in_lookup(dentry)) { 764 /* Is there a mountpoint here? If so, just exit */ 765 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 766 &entry->fattr->fsid)) 767 goto out; 768 if (nfs_same_file(dentry, entry)) { 769 if (!entry->fh->size) 770 goto out; 771 nfs_set_verifier(dentry, dir_verifier); 772 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 773 if (!status) 774 nfs_setsecurity(d_inode(dentry), entry->fattr); 775 trace_nfs_readdir_lookup_revalidate(d_inode(parent), 776 dentry, 0, status); 777 goto out; 778 } else { 779 trace_nfs_readdir_lookup_revalidate_failed( 780 d_inode(parent), dentry, 0); 781 d_invalidate(dentry); 782 dput(dentry); 783 dentry = NULL; 784 goto again; 785 } 786 } 787 if (!entry->fh->size) { 788 d_lookup_done(dentry); 789 goto out; 790 } 791 792 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 793 alias = d_splice_alias(inode, dentry); 794 d_lookup_done(dentry); 795 if (alias) { 796 if (IS_ERR(alias)) 797 goto out; 798 dput(dentry); 799 dentry = alias; 800 } 801 nfs_set_verifier(dentry, dir_verifier); 802 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0); 803 out: 804 dput(dentry); 805 } 806 807 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc, 808 struct nfs_entry *entry, 809 struct xdr_stream *stream) 810 { 811 int ret; 812 813 if (entry->fattr->label) 814 entry->fattr->label->len = NFS4_MAXLABELLEN; 815 ret = xdr_decode(desc, entry, stream); 816 if (ret || !desc->plus) 817 return ret; 818 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier); 819 return 0; 820 } 821 822 /* Perform conversion from xdr to cache array */ 823 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc, 824 struct nfs_entry *entry, 825 struct page **xdr_pages, unsigned int buflen, 826 struct folio **arrays, size_t narrays, 827 u64 change_attr) 828 { 829 struct address_space *mapping = desc->file->f_mapping; 830 struct folio *new, *folio = *arrays; 831 struct xdr_stream stream; 832 struct page *scratch; 833 struct xdr_buf buf; 834 u64 cookie; 835 int status; 836 837 scratch = alloc_page(GFP_KERNEL); 838 if (scratch == NULL) 839 return -ENOMEM; 840 841 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 842 xdr_set_scratch_page(&stream, scratch); 843 844 do { 845 status = nfs_readdir_entry_decode(desc, entry, &stream); 846 if (status != 0) 847 break; 848 849 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 850 if (status != -ENOSPC) 851 continue; 852 853 if (folio->mapping != mapping) { 854 if (!--narrays) 855 break; 856 new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL); 857 if (!new) 858 break; 859 arrays++; 860 *arrays = folio = new; 861 } else { 862 new = nfs_readdir_folio_get_next(mapping, cookie, 863 change_attr); 864 if (!new) 865 break; 866 if (folio != *arrays) 867 nfs_readdir_folio_unlock_and_put(folio); 868 folio = new; 869 } 870 desc->folio_index_max++; 871 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 872 } while (!status && !entry->eof); 873 874 switch (status) { 875 case -EBADCOOKIE: 876 if (!entry->eof) 877 break; 878 nfs_readdir_folio_set_eof(folio); 879 fallthrough; 880 case -EAGAIN: 881 status = 0; 882 break; 883 case -ENOSPC: 884 status = 0; 885 if (!desc->plus) 886 break; 887 while (!nfs_readdir_entry_decode(desc, entry, &stream)) 888 ; 889 } 890 891 if (folio != *arrays) 892 nfs_readdir_folio_unlock_and_put(folio); 893 894 put_page(scratch); 895 return status; 896 } 897 898 static void nfs_readdir_free_pages(struct page **pages, size_t npages) 899 { 900 while (npages--) 901 put_page(pages[npages]); 902 kfree(pages); 903 } 904 905 /* 906 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 907 * to nfs_readdir_free_pages() 908 */ 909 static struct page **nfs_readdir_alloc_pages(size_t npages) 910 { 911 struct page **pages; 912 size_t i; 913 914 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 915 if (!pages) 916 return NULL; 917 for (i = 0; i < npages; i++) { 918 struct page *page = alloc_page(GFP_KERNEL); 919 if (page == NULL) 920 goto out_freepages; 921 pages[i] = page; 922 } 923 return pages; 924 925 out_freepages: 926 nfs_readdir_free_pages(pages, i); 927 return NULL; 928 } 929 930 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc, 931 __be32 *verf_arg, __be32 *verf_res, 932 struct folio **arrays, size_t narrays) 933 { 934 u64 change_attr; 935 struct page **pages; 936 struct folio *folio = *arrays; 937 struct nfs_entry *entry; 938 size_t array_size; 939 struct inode *inode = file_inode(desc->file); 940 unsigned int dtsize = desc->dtsize; 941 unsigned int pglen; 942 int status = -ENOMEM; 943 944 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 945 if (!entry) 946 return -ENOMEM; 947 entry->cookie = nfs_readdir_folio_last_cookie(folio); 948 entry->fh = nfs_alloc_fhandle(); 949 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 950 entry->server = NFS_SERVER(inode); 951 if (entry->fh == NULL || entry->fattr == NULL) 952 goto out; 953 954 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; 955 pages = nfs_readdir_alloc_pages(array_size); 956 if (!pages) 957 goto out; 958 959 change_attr = inode_peek_iversion_raw(inode); 960 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages, 961 dtsize, verf_res); 962 if (status < 0) 963 goto free_pages; 964 965 pglen = status; 966 if (pglen != 0) 967 status = nfs_readdir_folio_filler(desc, entry, pages, pglen, 968 arrays, narrays, change_attr); 969 else 970 nfs_readdir_folio_set_eof(folio); 971 desc->buffer_fills++; 972 973 free_pages: 974 nfs_readdir_free_pages(pages, array_size); 975 out: 976 nfs_free_fattr(entry->fattr); 977 nfs_free_fhandle(entry->fh); 978 kfree(entry); 979 return status; 980 } 981 982 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc) 983 { 984 folio_put(desc->folio); 985 desc->folio = NULL; 986 } 987 988 static void 989 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) 990 { 991 folio_unlock(desc->folio); 992 nfs_readdir_folio_put(desc); 993 } 994 995 static struct folio * 996 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc) 997 { 998 struct address_space *mapping = desc->file->f_mapping; 999 u64 change_attr = inode_peek_iversion_raw(mapping->host); 1000 u64 cookie = desc->last_cookie; 1001 struct folio *folio; 1002 1003 folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr); 1004 if (!folio) 1005 return NULL; 1006 if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio)) 1007 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 1008 return folio; 1009 } 1010 1011 /* 1012 * Returns 0 if desc->dir_cookie was found on page desc->page_index 1013 * and locks the page to prevent removal from the page cache. 1014 */ 1015 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc) 1016 { 1017 struct inode *inode = file_inode(desc->file); 1018 struct nfs_inode *nfsi = NFS_I(inode); 1019 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1020 int res; 1021 1022 desc->folio = nfs_readdir_folio_get_cached(desc); 1023 if (!desc->folio) 1024 return -ENOMEM; 1025 if (nfs_readdir_folio_needs_filling(desc->folio)) { 1026 /* Grow the dtsize if we had to go back for more pages */ 1027 if (desc->folio_index == desc->folio_index_max) 1028 nfs_grow_dtsize(desc); 1029 desc->folio_index_max = desc->folio_index; 1030 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf, 1031 desc->last_cookie, 1032 desc->folio->index, desc->dtsize); 1033 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf, 1034 &desc->folio, 1); 1035 if (res < 0) { 1036 nfs_readdir_folio_unlock_and_put_cached(desc); 1037 trace_nfs_readdir_cache_fill_done(inode, res); 1038 if (res == -EBADCOOKIE || res == -ENOTSYNC) { 1039 invalidate_inode_pages2(desc->file->f_mapping); 1040 nfs_readdir_rewind_search(desc); 1041 trace_nfs_readdir_invalidate_cache_range( 1042 inode, 0, MAX_LFS_FILESIZE); 1043 return -EAGAIN; 1044 } 1045 return res; 1046 } 1047 /* 1048 * Set the cookie verifier if the page cache was empty 1049 */ 1050 if (desc->last_cookie == 0 && 1051 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) { 1052 memcpy(nfsi->cookieverf, verf, 1053 sizeof(nfsi->cookieverf)); 1054 invalidate_inode_pages2_range(desc->file->f_mapping, 1, 1055 -1); 1056 trace_nfs_readdir_invalidate_cache_range( 1057 inode, 1, MAX_LFS_FILESIZE); 1058 } 1059 desc->clear_cache = false; 1060 } 1061 res = nfs_readdir_search_array(desc); 1062 if (res == 0) 1063 return 0; 1064 nfs_readdir_folio_unlock_and_put_cached(desc); 1065 return res; 1066 } 1067 1068 /* Search for desc->dir_cookie from the beginning of the page cache */ 1069 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc) 1070 { 1071 int res; 1072 1073 do { 1074 res = find_and_lock_cache_page(desc); 1075 } while (res == -EAGAIN); 1076 return res; 1077 } 1078 1079 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL) 1080 1081 /* 1082 * Once we've found the start of the dirent within a page: fill 'er up... 1083 */ 1084 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc, 1085 const __be32 *verf) 1086 { 1087 struct file *file = desc->file; 1088 struct nfs_cache_array *array; 1089 unsigned int i; 1090 bool first_emit = !desc->dir_cookie; 1091 1092 array = kmap_local_folio(desc->folio, 0); 1093 for (i = desc->cache_entry_index; i < array->size; i++) { 1094 struct nfs_cache_array_entry *ent; 1095 1096 /* 1097 * nfs_readdir_handle_cache_misses return force clear at 1098 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for 1099 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1 1100 * entries need be emitted here. 1101 */ 1102 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) { 1103 desc->eob = true; 1104 break; 1105 } 1106 1107 ent = &array->array[i]; 1108 if (!dir_emit(desc->ctx, ent->name, ent->name_len, 1109 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 1110 desc->eob = true; 1111 break; 1112 } 1113 memcpy(desc->verf, verf, sizeof(desc->verf)); 1114 if (i == array->size - 1) { 1115 desc->dir_cookie = array->last_cookie; 1116 nfs_readdir_seek_next_array(array, desc); 1117 } else { 1118 desc->dir_cookie = array->array[i + 1].cookie; 1119 desc->last_cookie = array->array[0].cookie; 1120 } 1121 if (nfs_readdir_use_cookie(file)) 1122 desc->ctx->pos = desc->dir_cookie; 1123 else 1124 desc->ctx->pos++; 1125 } 1126 if (array->folio_is_eof) 1127 desc->eof = !desc->eob; 1128 1129 kunmap_local(array); 1130 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", 1131 (unsigned long long)desc->dir_cookie); 1132 } 1133 1134 /* 1135 * If we cannot find a cookie in our cache, we suspect that this is 1136 * because it points to a deleted file, so we ask the server to return 1137 * whatever it thinks is the next entry. We then feed this to filldir. 1138 * If all goes well, we should then be able to find our way round the 1139 * cache on the next call to readdir_search_pagecache(); 1140 * 1141 * NOTE: we cannot add the anonymous page to the pagecache because 1142 * the data it contains might not be page aligned. Besides, 1143 * we should already have a complete representation of the 1144 * directory in the page cache by the time we get here. 1145 */ 1146 static int uncached_readdir(struct nfs_readdir_descriptor *desc) 1147 { 1148 struct folio **arrays; 1149 size_t i, sz = 512; 1150 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1151 int status = -ENOMEM; 1152 1153 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n", 1154 (unsigned long long)desc->dir_cookie); 1155 1156 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL); 1157 if (!arrays) 1158 goto out; 1159 arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL); 1160 if (!arrays[0]) 1161 goto out; 1162 1163 desc->folio_index = 0; 1164 desc->cache_entry_index = 0; 1165 desc->last_cookie = desc->dir_cookie; 1166 desc->folio_index_max = 0; 1167 1168 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie, 1169 -1, desc->dtsize); 1170 1171 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz); 1172 if (status < 0) { 1173 trace_nfs_readdir_uncached_done(file_inode(desc->file), status); 1174 goto out_free; 1175 } 1176 1177 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) { 1178 desc->folio = arrays[i]; 1179 nfs_do_filldir(desc, verf); 1180 } 1181 desc->folio = NULL; 1182 1183 /* 1184 * Grow the dtsize if we have to go back for more pages, 1185 * or shrink it if we're reading too many. 1186 */ 1187 if (!desc->eof) { 1188 if (!desc->eob) 1189 nfs_grow_dtsize(desc); 1190 else if (desc->buffer_fills == 1 && 1191 i < (desc->folio_index_max >> 1)) 1192 nfs_shrink_dtsize(desc); 1193 } 1194 out_free: 1195 for (i = 0; i < sz && arrays[i]; i++) 1196 nfs_readdir_folio_array_free(arrays[i]); 1197 out: 1198 if (!nfs_readdir_use_cookie(desc->file)) 1199 nfs_readdir_rewind_search(desc); 1200 desc->folio_index_max = -1; 1201 kfree(arrays); 1202 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); 1203 return status; 1204 } 1205 1206 static bool nfs_readdir_handle_cache_misses(struct inode *inode, 1207 struct nfs_readdir_descriptor *desc, 1208 unsigned int cache_misses, 1209 bool force_clear) 1210 { 1211 if (desc->ctx->pos == 0 || !desc->plus) 1212 return false; 1213 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear) 1214 return false; 1215 trace_nfs_readdir_force_readdirplus(inode); 1216 return true; 1217 } 1218 1219 /* The file offset position represents the dirent entry number. A 1220 last cookie cache takes care of the common case of reading the 1221 whole directory. 1222 */ 1223 static int nfs_readdir(struct file *file, struct dir_context *ctx) 1224 { 1225 struct dentry *dentry = file_dentry(file); 1226 struct inode *inode = d_inode(dentry); 1227 struct nfs_inode *nfsi = NFS_I(inode); 1228 struct nfs_open_dir_context *dir_ctx = file->private_data; 1229 struct nfs_readdir_descriptor *desc; 1230 unsigned int cache_hits, cache_misses; 1231 bool force_clear; 1232 int res; 1233 1234 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 1235 file, (long long)ctx->pos); 1236 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 1237 1238 /* 1239 * ctx->pos points to the dirent entry number. 1240 * *desc->dir_cookie has the cookie for the next entry. We have 1241 * to either find the entry with the appropriate number or 1242 * revalidate the cookie. 1243 */ 1244 nfs_revalidate_mapping(inode, file->f_mapping); 1245 1246 res = -ENOMEM; 1247 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 1248 if (!desc) 1249 goto out; 1250 desc->file = file; 1251 desc->ctx = ctx; 1252 desc->folio_index_max = -1; 1253 1254 spin_lock(&file->f_lock); 1255 desc->dir_cookie = dir_ctx->dir_cookie; 1256 desc->folio_index = dir_ctx->page_index; 1257 desc->last_cookie = dir_ctx->last_cookie; 1258 desc->attr_gencount = dir_ctx->attr_gencount; 1259 desc->eof = dir_ctx->eof; 1260 nfs_set_dtsize(desc, dir_ctx->dtsize); 1261 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf)); 1262 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0); 1263 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0); 1264 force_clear = dir_ctx->force_clear; 1265 spin_unlock(&file->f_lock); 1266 1267 if (desc->eof) { 1268 res = 0; 1269 goto out_free; 1270 } 1271 1272 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses); 1273 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses, 1274 force_clear); 1275 desc->clear_cache = force_clear; 1276 1277 do { 1278 res = readdir_search_pagecache(desc); 1279 1280 if (res == -EBADCOOKIE) { 1281 res = 0; 1282 /* This means either end of directory */ 1283 if (desc->dir_cookie && !desc->eof) { 1284 /* Or that the server has 'lost' a cookie */ 1285 res = uncached_readdir(desc); 1286 if (res == 0) 1287 continue; 1288 if (res == -EBADCOOKIE || res == -ENOTSYNC) 1289 res = 0; 1290 } 1291 break; 1292 } 1293 if (res == -ETOOSMALL && desc->plus) { 1294 nfs_zap_caches(inode); 1295 desc->plus = false; 1296 desc->eof = false; 1297 continue; 1298 } 1299 if (res < 0) 1300 break; 1301 1302 nfs_do_filldir(desc, nfsi->cookieverf); 1303 nfs_readdir_folio_unlock_and_put_cached(desc); 1304 if (desc->folio_index == desc->folio_index_max) 1305 desc->clear_cache = force_clear; 1306 } while (!desc->eob && !desc->eof); 1307 1308 spin_lock(&file->f_lock); 1309 dir_ctx->dir_cookie = desc->dir_cookie; 1310 dir_ctx->last_cookie = desc->last_cookie; 1311 dir_ctx->attr_gencount = desc->attr_gencount; 1312 dir_ctx->page_index = desc->folio_index; 1313 dir_ctx->force_clear = force_clear; 1314 dir_ctx->eof = desc->eof; 1315 dir_ctx->dtsize = desc->dtsize; 1316 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf)); 1317 spin_unlock(&file->f_lock); 1318 out_free: 1319 kfree(desc); 1320 1321 out: 1322 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 1323 return res; 1324 } 1325 1326 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 1327 { 1328 struct nfs_open_dir_context *dir_ctx = filp->private_data; 1329 1330 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 1331 filp, offset, whence); 1332 1333 switch (whence) { 1334 default: 1335 return -EINVAL; 1336 case SEEK_SET: 1337 if (offset < 0) 1338 return -EINVAL; 1339 spin_lock(&filp->f_lock); 1340 break; 1341 case SEEK_CUR: 1342 if (offset == 0) 1343 return filp->f_pos; 1344 spin_lock(&filp->f_lock); 1345 offset += filp->f_pos; 1346 if (offset < 0) { 1347 spin_unlock(&filp->f_lock); 1348 return -EINVAL; 1349 } 1350 } 1351 if (offset != filp->f_pos) { 1352 filp->f_pos = offset; 1353 dir_ctx->page_index = 0; 1354 if (!nfs_readdir_use_cookie(filp)) { 1355 dir_ctx->dir_cookie = 0; 1356 dir_ctx->last_cookie = 0; 1357 } else { 1358 dir_ctx->dir_cookie = offset; 1359 dir_ctx->last_cookie = offset; 1360 } 1361 dir_ctx->eof = false; 1362 } 1363 spin_unlock(&filp->f_lock); 1364 return offset; 1365 } 1366 1367 /* 1368 * All directory operations under NFS are synchronous, so fsync() 1369 * is a dummy operation. 1370 */ 1371 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1372 int datasync) 1373 { 1374 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1375 1376 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1377 return 0; 1378 } 1379 1380 /** 1381 * nfs_force_lookup_revalidate - Mark the directory as having changed 1382 * @dir: pointer to directory inode 1383 * 1384 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1385 * full lookup on all child dentries of 'dir' whenever a change occurs 1386 * on the server that might have invalidated our dcache. 1387 * 1388 * Note that we reserve bit '0' as a tag to let us know when a dentry 1389 * was revalidated while holding a delegation on its inode. 1390 * 1391 * The caller should be holding dir->i_lock 1392 */ 1393 void nfs_force_lookup_revalidate(struct inode *dir) 1394 { 1395 NFS_I(dir)->cache_change_attribute += 2; 1396 } 1397 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1398 1399 /** 1400 * nfs_verify_change_attribute - Detects NFS remote directory changes 1401 * @dir: pointer to parent directory inode 1402 * @verf: previously saved change attribute 1403 * 1404 * Return "false" if the verifiers doesn't match the change attribute. 1405 * This would usually indicate that the directory contents have changed on 1406 * the server, and that any dentries need revalidating. 1407 */ 1408 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1409 { 1410 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1411 } 1412 1413 static void nfs_set_verifier_delegated(unsigned long *verf) 1414 { 1415 *verf |= 1UL; 1416 } 1417 1418 #if IS_ENABLED(CONFIG_NFS_V4) 1419 static void nfs_unset_verifier_delegated(unsigned long *verf) 1420 { 1421 *verf &= ~1UL; 1422 } 1423 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1424 1425 static bool nfs_test_verifier_delegated(unsigned long verf) 1426 { 1427 return verf & 1; 1428 } 1429 1430 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1431 { 1432 return nfs_test_verifier_delegated(dentry->d_time); 1433 } 1434 1435 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1436 { 1437 struct inode *inode = d_inode(dentry); 1438 struct inode *dir = d_inode_rcu(dentry->d_parent); 1439 1440 if (!dir || !nfs_verify_change_attribute(dir, verf)) 1441 return; 1442 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0)) 1443 nfs_set_verifier_delegated(&verf); 1444 dentry->d_time = verf; 1445 } 1446 1447 /** 1448 * nfs_set_verifier - save a parent directory verifier in the dentry 1449 * @dentry: pointer to dentry 1450 * @verf: verifier to save 1451 * 1452 * Saves the parent directory verifier in @dentry. If the inode has 1453 * a delegation, we also tag the dentry as having been revalidated 1454 * while holding a delegation so that we know we don't have to 1455 * look it up again after a directory change. 1456 */ 1457 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1458 { 1459 1460 spin_lock(&dentry->d_lock); 1461 nfs_set_verifier_locked(dentry, verf); 1462 spin_unlock(&dentry->d_lock); 1463 } 1464 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1465 1466 #if IS_ENABLED(CONFIG_NFS_V4) 1467 /** 1468 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1469 * @inode: pointer to inode 1470 * 1471 * Iterates through the dentries in the inode alias list and clears 1472 * the tag used to indicate that the dentry has been revalidated 1473 * while holding a delegation. 1474 * This function is intended for use when the delegation is being 1475 * returned or revoked. 1476 */ 1477 void nfs_clear_verifier_delegated(struct inode *inode) 1478 { 1479 struct dentry *alias; 1480 1481 if (!inode) 1482 return; 1483 spin_lock(&inode->i_lock); 1484 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1485 spin_lock(&alias->d_lock); 1486 nfs_unset_verifier_delegated(&alias->d_time); 1487 spin_unlock(&alias->d_lock); 1488 } 1489 spin_unlock(&inode->i_lock); 1490 } 1491 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1492 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1493 1494 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry) 1495 { 1496 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) && 1497 d_really_is_negative(dentry)) 1498 return dentry->d_time == inode_peek_iversion_raw(dir); 1499 return nfs_verify_change_attribute(dir, dentry->d_time); 1500 } 1501 1502 /* 1503 * A check for whether or not the parent directory has changed. 1504 * In the case it has, we assume that the dentries are untrustworthy 1505 * and may need to be looked up again. 1506 * If rcu_walk prevents us from performing a full check, return 0. 1507 */ 1508 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1509 int rcu_walk) 1510 { 1511 if (IS_ROOT(dentry)) 1512 return 1; 1513 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1514 return 0; 1515 if (!nfs_dentry_verify_change(dir, dentry)) 1516 return 0; 1517 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1518 if (nfs_mapping_need_revalidate_inode(dir)) { 1519 if (rcu_walk) 1520 return 0; 1521 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1522 return 0; 1523 } 1524 if (!nfs_dentry_verify_change(dir, dentry)) 1525 return 0; 1526 return 1; 1527 } 1528 1529 /* 1530 * Use intent information to check whether or not we're going to do 1531 * an O_EXCL create using this path component. 1532 */ 1533 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1534 { 1535 if (NFS_PROTO(dir)->version == 2) 1536 return 0; 1537 return (flags & (LOOKUP_CREATE | LOOKUP_EXCL)) == 1538 (LOOKUP_CREATE | LOOKUP_EXCL); 1539 } 1540 1541 /* 1542 * Inode and filehandle revalidation for lookups. 1543 * 1544 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1545 * or if the intent information indicates that we're about to open this 1546 * particular file and the "nocto" mount flag is not set. 1547 * 1548 */ 1549 static 1550 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1551 { 1552 struct nfs_server *server = NFS_SERVER(inode); 1553 int ret; 1554 1555 if (IS_AUTOMOUNT(inode)) 1556 return 0; 1557 1558 if (flags & LOOKUP_OPEN) { 1559 switch (inode->i_mode & S_IFMT) { 1560 case S_IFREG: 1561 /* A NFSv4 OPEN will revalidate later */ 1562 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1563 goto out; 1564 fallthrough; 1565 case S_IFDIR: 1566 if (server->flags & NFS_MOUNT_NOCTO) 1567 break; 1568 /* NFS close-to-open cache consistency validation */ 1569 goto out_force; 1570 } 1571 } 1572 1573 /* VFS wants an on-the-wire revalidation */ 1574 if (flags & LOOKUP_REVAL) 1575 goto out_force; 1576 out: 1577 if (inode->i_nlink > 0 || 1578 (inode->i_nlink == 0 && 1579 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags))) 1580 return 0; 1581 else 1582 return -ESTALE; 1583 out_force: 1584 if (flags & LOOKUP_RCU) 1585 return -ECHILD; 1586 ret = __nfs_revalidate_inode(server, inode); 1587 if (ret != 0) 1588 return ret; 1589 goto out; 1590 } 1591 1592 static void nfs_mark_dir_for_revalidate(struct inode *inode) 1593 { 1594 spin_lock(&inode->i_lock); 1595 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); 1596 spin_unlock(&inode->i_lock); 1597 } 1598 1599 /* 1600 * We judge how long we want to trust negative 1601 * dentries by looking at the parent inode mtime. 1602 * 1603 * If parent mtime has changed, we revalidate, else we wait for a 1604 * period corresponding to the parent's attribute cache timeout value. 1605 * 1606 * If LOOKUP_RCU prevents us from performing a full check, return 1 1607 * suggesting a reval is needed. 1608 * 1609 * Note that when creating a new file, or looking up a rename target, 1610 * then it shouldn't be necessary to revalidate a negative dentry. 1611 */ 1612 static inline 1613 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1614 unsigned int flags) 1615 { 1616 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1617 return 0; 1618 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1619 return 1; 1620 /* Case insensitive server? Revalidate negative dentries */ 1621 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1622 return 1; 1623 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1624 } 1625 1626 static int 1627 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1628 struct inode *inode, int error) 1629 { 1630 switch (error) { 1631 case 1: 1632 break; 1633 case -ETIMEDOUT: 1634 if (inode && (IS_ROOT(dentry) || 1635 NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)) 1636 error = 1; 1637 break; 1638 case -ESTALE: 1639 case -ENOENT: 1640 error = 0; 1641 fallthrough; 1642 default: 1643 /* 1644 * We can't d_drop the root of a disconnected tree: 1645 * its d_hash is on the s_anon list and d_drop() would hide 1646 * it from shrink_dcache_for_unmount(), leading to busy 1647 * inodes on unmount and further oopses. 1648 */ 1649 if (inode && IS_ROOT(dentry)) 1650 error = 1; 1651 break; 1652 } 1653 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error); 1654 return error; 1655 } 1656 1657 static int 1658 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1659 unsigned int flags) 1660 { 1661 int ret = 1; 1662 if (nfs_neg_need_reval(dir, dentry, flags)) { 1663 if (flags & LOOKUP_RCU) 1664 return -ECHILD; 1665 ret = 0; 1666 } 1667 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1668 } 1669 1670 static int 1671 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1672 struct inode *inode) 1673 { 1674 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1675 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1676 } 1677 1678 static int nfs_lookup_revalidate_dentry(struct inode *dir, const struct qstr *name, 1679 struct dentry *dentry, 1680 struct inode *inode, unsigned int flags) 1681 { 1682 struct nfs_fh *fhandle; 1683 struct nfs_fattr *fattr; 1684 unsigned long dir_verifier; 1685 int ret; 1686 1687 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1688 1689 ret = -ENOMEM; 1690 fhandle = nfs_alloc_fhandle(); 1691 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 1692 if (fhandle == NULL || fattr == NULL) 1693 goto out; 1694 1695 dir_verifier = nfs_save_change_attribute(dir); 1696 ret = NFS_PROTO(dir)->lookup(dir, dentry, name, fhandle, fattr); 1697 if (ret < 0) 1698 goto out; 1699 1700 /* Request help from readdirplus */ 1701 nfs_lookup_advise_force_readdirplus(dir, flags); 1702 1703 ret = 0; 1704 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1705 goto out; 1706 if (nfs_refresh_inode(inode, fattr) < 0) 1707 goto out; 1708 1709 nfs_setsecurity(inode, fattr); 1710 nfs_set_verifier(dentry, dir_verifier); 1711 1712 ret = 1; 1713 out: 1714 nfs_free_fattr(fattr); 1715 nfs_free_fhandle(fhandle); 1716 1717 /* 1718 * If the lookup failed despite the dentry change attribute being 1719 * a match, then we should revalidate the directory cache. 1720 */ 1721 if (!ret && nfs_dentry_verify_change(dir, dentry)) 1722 nfs_mark_dir_for_revalidate(dir); 1723 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1724 } 1725 1726 /* 1727 * This is called every time the dcache has a lookup hit, 1728 * and we should check whether we can really trust that 1729 * lookup. 1730 * 1731 * NOTE! The hit can be a negative hit too, don't assume 1732 * we have an inode! 1733 * 1734 * If the parent directory is seen to have changed, we throw out the 1735 * cached dentry and do a new lookup. 1736 */ 1737 static int 1738 nfs_do_lookup_revalidate(struct inode *dir, const struct qstr *name, 1739 struct dentry *dentry, unsigned int flags) 1740 { 1741 struct inode *inode; 1742 int error = 0; 1743 1744 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1745 inode = d_inode(dentry); 1746 1747 if (!inode) 1748 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1749 1750 if (is_bad_inode(inode)) { 1751 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1752 __func__, dentry); 1753 goto out_bad; 1754 } 1755 1756 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 && 1757 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1758 goto out_bad; 1759 1760 if (nfs_verifier_is_delegated(dentry)) 1761 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1762 1763 /* Force a full look up iff the parent directory has changed */ 1764 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1765 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1766 error = nfs_lookup_verify_inode(inode, flags); 1767 if (error) { 1768 if (error == -ESTALE) 1769 nfs_mark_dir_for_revalidate(dir); 1770 goto out_bad; 1771 } 1772 goto out_valid; 1773 } 1774 1775 if (flags & LOOKUP_RCU) 1776 return -ECHILD; 1777 1778 if (NFS_STALE(inode)) 1779 goto out_bad; 1780 1781 return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags); 1782 out_valid: 1783 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1784 out_bad: 1785 if (flags & LOOKUP_RCU) 1786 return -ECHILD; 1787 return nfs_lookup_revalidate_done(dir, dentry, inode, error); 1788 } 1789 1790 static int 1791 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1792 { 1793 if (flags & LOOKUP_RCU) { 1794 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED) 1795 return -ECHILD; 1796 } else { 1797 /* Wait for unlink to complete - see unblock_revalidate() */ 1798 wait_var_event(&dentry->d_fsdata, 1799 smp_load_acquire(&dentry->d_fsdata) 1800 != NFS_FSDATA_BLOCKED); 1801 } 1802 return 0; 1803 } 1804 1805 static int nfs_lookup_revalidate(struct inode *dir, const struct qstr *name, 1806 struct dentry *dentry, unsigned int flags) 1807 { 1808 if (__nfs_lookup_revalidate(dentry, flags)) 1809 return -ECHILD; 1810 return nfs_do_lookup_revalidate(dir, name, dentry, flags); 1811 } 1812 1813 static void block_revalidate(struct dentry *dentry) 1814 { 1815 /* old devname - just in case */ 1816 kfree(dentry->d_fsdata); 1817 1818 /* Any new reference that could lead to an open 1819 * will take ->d_lock in lookup_open() -> d_lookup(). 1820 * Holding this lock ensures we cannot race with 1821 * __nfs_lookup_revalidate() and removes and need 1822 * for further barriers. 1823 */ 1824 lockdep_assert_held(&dentry->d_lock); 1825 1826 dentry->d_fsdata = NFS_FSDATA_BLOCKED; 1827 } 1828 1829 static void unblock_revalidate(struct dentry *dentry) 1830 { 1831 /* store_release ensures wait_var_event() sees the update */ 1832 smp_store_release(&dentry->d_fsdata, NULL); 1833 wake_up_var(&dentry->d_fsdata); 1834 } 1835 1836 /* 1837 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1838 * when we don't really care about the dentry name. This is called when a 1839 * pathwalk ends on a dentry that was not found via a normal lookup in the 1840 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1841 * 1842 * In this situation, we just want to verify that the inode itself is OK 1843 * since the dentry might have changed on the server. 1844 */ 1845 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1846 { 1847 struct inode *inode = d_inode(dentry); 1848 int error = 0; 1849 1850 /* 1851 * I believe we can only get a negative dentry here in the case of a 1852 * procfs-style symlink. Just assume it's correct for now, but we may 1853 * eventually need to do something more here. 1854 */ 1855 if (!inode) { 1856 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1857 __func__, dentry); 1858 return 1; 1859 } 1860 1861 if (is_bad_inode(inode)) { 1862 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1863 __func__, dentry); 1864 return 0; 1865 } 1866 1867 error = nfs_lookup_verify_inode(inode, flags); 1868 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1869 __func__, inode->i_ino, error ? "invalid" : "valid"); 1870 return !error; 1871 } 1872 1873 /* 1874 * This is called from dput() when d_count is going to 0. 1875 */ 1876 static int nfs_dentry_delete(const struct dentry *dentry) 1877 { 1878 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1879 dentry, dentry->d_flags); 1880 1881 /* Unhash any dentry with a stale inode */ 1882 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1883 return 1; 1884 1885 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1886 /* Unhash it, so that ->d_iput() would be called */ 1887 return 1; 1888 } 1889 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1890 /* Unhash it, so that ancestors of killed async unlink 1891 * files will be cleaned up during umount */ 1892 return 1; 1893 } 1894 return 0; 1895 1896 } 1897 1898 /* Ensure that we revalidate inode->i_nlink */ 1899 static void nfs_drop_nlink(struct inode *inode) 1900 { 1901 spin_lock(&inode->i_lock); 1902 /* drop the inode if we're reasonably sure this is the last link */ 1903 if (inode->i_nlink > 0) 1904 drop_nlink(inode); 1905 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1906 nfs_set_cache_invalid( 1907 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | 1908 NFS_INO_INVALID_NLINK); 1909 spin_unlock(&inode->i_lock); 1910 } 1911 1912 /* 1913 * Called when the dentry loses inode. 1914 * We use it to clean up silly-renamed files. 1915 */ 1916 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1917 { 1918 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1919 nfs_complete_unlink(dentry, inode); 1920 nfs_drop_nlink(inode); 1921 } 1922 iput(inode); 1923 } 1924 1925 static void nfs_d_release(struct dentry *dentry) 1926 { 1927 /* free cached devname value, if it survived that far */ 1928 if (unlikely(dentry->d_fsdata)) { 1929 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1930 WARN_ON(1); 1931 else 1932 kfree(dentry->d_fsdata); 1933 } 1934 } 1935 1936 const struct dentry_operations nfs_dentry_operations = { 1937 .d_revalidate = nfs_lookup_revalidate, 1938 .d_weak_revalidate = nfs_weak_revalidate, 1939 .d_delete = nfs_dentry_delete, 1940 .d_iput = nfs_dentry_iput, 1941 .d_automount = nfs_d_automount, 1942 .d_release = nfs_d_release, 1943 }; 1944 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1945 1946 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1947 { 1948 struct dentry *res; 1949 struct inode *inode = NULL; 1950 struct nfs_fh *fhandle = NULL; 1951 struct nfs_fattr *fattr = NULL; 1952 unsigned long dir_verifier; 1953 int error; 1954 1955 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1956 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1957 1958 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1959 return ERR_PTR(-ENAMETOOLONG); 1960 1961 /* 1962 * If we're doing an exclusive create, optimize away the lookup 1963 * but don't hash the dentry. 1964 */ 1965 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1966 return NULL; 1967 1968 res = ERR_PTR(-ENOMEM); 1969 fhandle = nfs_alloc_fhandle(); 1970 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir)); 1971 if (fhandle == NULL || fattr == NULL) 1972 goto out; 1973 1974 dir_verifier = nfs_save_change_attribute(dir); 1975 trace_nfs_lookup_enter(dir, dentry, flags); 1976 error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name, 1977 fhandle, fattr); 1978 if (error == -ENOENT) { 1979 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1980 dir_verifier = inode_peek_iversion_raw(dir); 1981 goto no_entry; 1982 } 1983 if (error < 0) { 1984 res = ERR_PTR(error); 1985 goto out; 1986 } 1987 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1988 res = ERR_CAST(inode); 1989 if (IS_ERR(res)) 1990 goto out; 1991 1992 /* Notify readdir to use READDIRPLUS */ 1993 nfs_lookup_advise_force_readdirplus(dir, flags); 1994 1995 no_entry: 1996 res = d_splice_alias(inode, dentry); 1997 if (res != NULL) { 1998 if (IS_ERR(res)) 1999 goto out; 2000 dentry = res; 2001 } 2002 nfs_set_verifier(dentry, dir_verifier); 2003 out: 2004 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res)); 2005 nfs_free_fattr(fattr); 2006 nfs_free_fhandle(fhandle); 2007 return res; 2008 } 2009 EXPORT_SYMBOL_GPL(nfs_lookup); 2010 2011 void nfs_d_prune_case_insensitive_aliases(struct inode *inode) 2012 { 2013 /* Case insensitive server? Revalidate dentries */ 2014 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE)) 2015 d_prune_aliases(inode); 2016 } 2017 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases); 2018 2019 #if IS_ENABLED(CONFIG_NFS_V4) 2020 static int nfs4_lookup_revalidate(struct inode *, const struct qstr *, 2021 struct dentry *, unsigned int); 2022 2023 const struct dentry_operations nfs4_dentry_operations = { 2024 .d_revalidate = nfs4_lookup_revalidate, 2025 .d_weak_revalidate = nfs_weak_revalidate, 2026 .d_delete = nfs_dentry_delete, 2027 .d_iput = nfs_dentry_iput, 2028 .d_automount = nfs_d_automount, 2029 .d_release = nfs_d_release, 2030 }; 2031 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 2032 2033 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 2034 { 2035 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 2036 } 2037 2038 static int do_open(struct inode *inode, struct file *filp) 2039 { 2040 nfs_fscache_open_file(inode, filp); 2041 return 0; 2042 } 2043 2044 static int nfs_finish_open(struct nfs_open_context *ctx, 2045 struct dentry *dentry, 2046 struct file *file, unsigned open_flags) 2047 { 2048 int err; 2049 2050 err = finish_open(file, dentry, do_open); 2051 if (err) 2052 goto out; 2053 if (S_ISREG(file_inode(file)->i_mode)) 2054 nfs_file_set_open_context(file, ctx); 2055 else 2056 err = -EOPENSTALE; 2057 out: 2058 return err; 2059 } 2060 2061 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 2062 struct file *file, unsigned open_flags, 2063 umode_t mode) 2064 { 2065 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2066 struct nfs_open_context *ctx; 2067 struct dentry *res; 2068 struct iattr attr = { .ia_valid = ATTR_OPEN }; 2069 struct inode *inode; 2070 unsigned int lookup_flags = 0; 2071 unsigned long dir_verifier; 2072 bool switched = false; 2073 int created = 0; 2074 int err; 2075 2076 /* Expect a negative dentry */ 2077 BUG_ON(d_inode(dentry)); 2078 2079 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 2080 dir->i_sb->s_id, dir->i_ino, dentry); 2081 2082 err = nfs_check_flags(open_flags); 2083 if (err) 2084 return err; 2085 2086 /* NFS only supports OPEN on regular files */ 2087 if ((open_flags & O_DIRECTORY)) { 2088 if (!d_in_lookup(dentry)) { 2089 /* 2090 * Hashed negative dentry with O_DIRECTORY: dentry was 2091 * revalidated and is fine, no need to perform lookup 2092 * again 2093 */ 2094 return -ENOENT; 2095 } 2096 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 2097 goto no_open; 2098 } 2099 2100 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 2101 return -ENAMETOOLONG; 2102 2103 if (open_flags & O_CREAT) { 2104 struct nfs_server *server = NFS_SERVER(dir); 2105 2106 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 2107 mode &= ~current_umask(); 2108 2109 attr.ia_valid |= ATTR_MODE; 2110 attr.ia_mode = mode; 2111 } 2112 if (open_flags & O_TRUNC) { 2113 attr.ia_valid |= ATTR_SIZE; 2114 attr.ia_size = 0; 2115 } 2116 2117 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 2118 d_drop(dentry); 2119 switched = true; 2120 dentry = d_alloc_parallel(dentry->d_parent, 2121 &dentry->d_name, &wq); 2122 if (IS_ERR(dentry)) 2123 return PTR_ERR(dentry); 2124 if (unlikely(!d_in_lookup(dentry))) 2125 return finish_no_open(file, dentry); 2126 } 2127 2128 ctx = create_nfs_open_context(dentry, open_flags, file); 2129 err = PTR_ERR(ctx); 2130 if (IS_ERR(ctx)) 2131 goto out; 2132 2133 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 2134 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 2135 if (created) 2136 file->f_mode |= FMODE_CREATED; 2137 if (IS_ERR(inode)) { 2138 err = PTR_ERR(inode); 2139 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2140 put_nfs_open_context(ctx); 2141 d_drop(dentry); 2142 switch (err) { 2143 case -ENOENT: 2144 d_splice_alias(NULL, dentry); 2145 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 2146 dir_verifier = inode_peek_iversion_raw(dir); 2147 else 2148 dir_verifier = nfs_save_change_attribute(dir); 2149 nfs_set_verifier(dentry, dir_verifier); 2150 break; 2151 case -EISDIR: 2152 case -ENOTDIR: 2153 goto no_open; 2154 case -ELOOP: 2155 if (!(open_flags & O_NOFOLLOW)) 2156 goto no_open; 2157 break; 2158 /* case -EINVAL: */ 2159 default: 2160 break; 2161 } 2162 goto out; 2163 } 2164 file->f_mode |= FMODE_CAN_ODIRECT; 2165 2166 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 2167 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2168 put_nfs_open_context(ctx); 2169 out: 2170 if (unlikely(switched)) { 2171 d_lookup_done(dentry); 2172 dput(dentry); 2173 } 2174 return err; 2175 2176 no_open: 2177 res = nfs_lookup(dir, dentry, lookup_flags); 2178 if (!res) { 2179 inode = d_inode(dentry); 2180 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2181 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) 2182 res = ERR_PTR(-ENOTDIR); 2183 else if (inode && S_ISREG(inode->i_mode)) 2184 res = ERR_PTR(-EOPENSTALE); 2185 } else if (!IS_ERR(res)) { 2186 inode = d_inode(res); 2187 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2188 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) { 2189 dput(res); 2190 res = ERR_PTR(-ENOTDIR); 2191 } else if (inode && S_ISREG(inode->i_mode)) { 2192 dput(res); 2193 res = ERR_PTR(-EOPENSTALE); 2194 } 2195 } 2196 if (switched) { 2197 d_lookup_done(dentry); 2198 if (!res) 2199 res = dentry; 2200 else 2201 dput(dentry); 2202 } 2203 if (IS_ERR(res)) 2204 return PTR_ERR(res); 2205 return finish_no_open(file, res); 2206 } 2207 EXPORT_SYMBOL_GPL(nfs_atomic_open); 2208 2209 static int 2210 nfs4_lookup_revalidate(struct inode *dir, const struct qstr *name, 2211 struct dentry *dentry, unsigned int flags) 2212 { 2213 struct inode *inode; 2214 2215 if (__nfs_lookup_revalidate(dentry, flags)) 2216 return -ECHILD; 2217 2218 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 2219 2220 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 2221 goto full_reval; 2222 if (d_mountpoint(dentry)) 2223 goto full_reval; 2224 2225 inode = d_inode(dentry); 2226 2227 /* We can't create new files in nfs_open_revalidate(), so we 2228 * optimize away revalidation of negative dentries. 2229 */ 2230 if (inode == NULL) 2231 goto full_reval; 2232 2233 if (nfs_verifier_is_delegated(dentry)) 2234 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 2235 2236 /* NFS only supports OPEN on regular files */ 2237 if (!S_ISREG(inode->i_mode)) 2238 goto full_reval; 2239 2240 /* We cannot do exclusive creation on a positive dentry */ 2241 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 2242 goto reval_dentry; 2243 2244 /* Check if the directory changed */ 2245 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 2246 goto reval_dentry; 2247 2248 /* Let f_op->open() actually open (and revalidate) the file */ 2249 return 1; 2250 reval_dentry: 2251 if (flags & LOOKUP_RCU) 2252 return -ECHILD; 2253 return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags); 2254 2255 full_reval: 2256 return nfs_do_lookup_revalidate(dir, name, dentry, flags); 2257 } 2258 2259 #endif /* CONFIG_NFSV4 */ 2260 2261 int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry, 2262 struct file *file, unsigned int open_flags, 2263 umode_t mode) 2264 { 2265 2266 /* Same as look+open from lookup_open(), but with different O_TRUNC 2267 * handling. 2268 */ 2269 int error = 0; 2270 2271 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 2272 return -ENAMETOOLONG; 2273 2274 if (open_flags & O_CREAT) { 2275 file->f_mode |= FMODE_CREATED; 2276 error = nfs_do_create(dir, dentry, mode, open_flags); 2277 if (error) 2278 return error; 2279 return finish_open(file, dentry, NULL); 2280 } else if (d_in_lookup(dentry)) { 2281 /* The only flags nfs_lookup considers are 2282 * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and 2283 * we want those to be zero so the lookup isn't skipped. 2284 */ 2285 struct dentry *res = nfs_lookup(dir, dentry, 0); 2286 2287 d_lookup_done(dentry); 2288 if (unlikely(res)) { 2289 if (IS_ERR(res)) 2290 return PTR_ERR(res); 2291 return finish_no_open(file, res); 2292 } 2293 } 2294 return finish_no_open(file, NULL); 2295 2296 } 2297 EXPORT_SYMBOL_GPL(nfs_atomic_open_v23); 2298 2299 struct dentry * 2300 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 2301 struct nfs_fattr *fattr) 2302 { 2303 struct dentry *parent = dget_parent(dentry); 2304 struct inode *dir = d_inode(parent); 2305 struct inode *inode; 2306 struct dentry *d; 2307 int error; 2308 2309 d_drop(dentry); 2310 2311 if (fhandle->size == 0) { 2312 error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name, 2313 fhandle, fattr); 2314 if (error) 2315 goto out_error; 2316 } 2317 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2318 if (!(fattr->valid & NFS_ATTR_FATTR)) { 2319 struct nfs_server *server = NFS_SB(dentry->d_sb); 2320 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 2321 fattr, NULL); 2322 if (error < 0) 2323 goto out_error; 2324 } 2325 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 2326 d = d_splice_alias(inode, dentry); 2327 out: 2328 dput(parent); 2329 return d; 2330 out_error: 2331 d = ERR_PTR(error); 2332 goto out; 2333 } 2334 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 2335 2336 /* 2337 * Code common to create, mkdir, and mknod. 2338 */ 2339 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 2340 struct nfs_fattr *fattr) 2341 { 2342 struct dentry *d; 2343 2344 d = nfs_add_or_obtain(dentry, fhandle, fattr); 2345 if (IS_ERR(d)) 2346 return PTR_ERR(d); 2347 2348 /* Callers don't care */ 2349 dput(d); 2350 return 0; 2351 } 2352 EXPORT_SYMBOL_GPL(nfs_instantiate); 2353 2354 /* 2355 * Following a failed create operation, we drop the dentry rather 2356 * than retain a negative dentry. This avoids a problem in the event 2357 * that the operation succeeded on the server, but an error in the 2358 * reply path made it appear to have failed. 2359 */ 2360 static int nfs_do_create(struct inode *dir, struct dentry *dentry, 2361 umode_t mode, int open_flags) 2362 { 2363 struct iattr attr; 2364 int error; 2365 2366 open_flags |= O_CREAT; 2367 2368 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 2369 dir->i_sb->s_id, dir->i_ino, dentry); 2370 2371 attr.ia_mode = mode; 2372 attr.ia_valid = ATTR_MODE; 2373 if (open_flags & O_TRUNC) { 2374 attr.ia_size = 0; 2375 attr.ia_valid |= ATTR_SIZE; 2376 } 2377 2378 trace_nfs_create_enter(dir, dentry, open_flags); 2379 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 2380 trace_nfs_create_exit(dir, dentry, open_flags, error); 2381 if (error != 0) 2382 goto out_err; 2383 return 0; 2384 out_err: 2385 d_drop(dentry); 2386 return error; 2387 } 2388 2389 int nfs_create(struct mnt_idmap *idmap, struct inode *dir, 2390 struct dentry *dentry, umode_t mode, bool excl) 2391 { 2392 return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0); 2393 } 2394 EXPORT_SYMBOL_GPL(nfs_create); 2395 2396 /* 2397 * See comments for nfs_proc_create regarding failed operations. 2398 */ 2399 int 2400 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 2401 struct dentry *dentry, umode_t mode, dev_t rdev) 2402 { 2403 struct iattr attr; 2404 int status; 2405 2406 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 2407 dir->i_sb->s_id, dir->i_ino, dentry); 2408 2409 attr.ia_mode = mode; 2410 attr.ia_valid = ATTR_MODE; 2411 2412 trace_nfs_mknod_enter(dir, dentry); 2413 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 2414 trace_nfs_mknod_exit(dir, dentry, status); 2415 if (status != 0) 2416 goto out_err; 2417 return 0; 2418 out_err: 2419 d_drop(dentry); 2420 return status; 2421 } 2422 EXPORT_SYMBOL_GPL(nfs_mknod); 2423 2424 /* 2425 * See comments for nfs_proc_create regarding failed operations. 2426 */ 2427 struct dentry *nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 2428 struct dentry *dentry, umode_t mode) 2429 { 2430 struct iattr attr; 2431 struct dentry *ret; 2432 2433 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 2434 dir->i_sb->s_id, dir->i_ino, dentry); 2435 2436 attr.ia_valid = ATTR_MODE; 2437 attr.ia_mode = mode | S_IFDIR; 2438 2439 trace_nfs_mkdir_enter(dir, dentry); 2440 ret = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 2441 trace_nfs_mkdir_exit(dir, dentry, PTR_ERR_OR_ZERO(ret)); 2442 return ret; 2443 } 2444 EXPORT_SYMBOL_GPL(nfs_mkdir); 2445 2446 static void nfs_dentry_handle_enoent(struct dentry *dentry) 2447 { 2448 if (simple_positive(dentry)) 2449 d_delete(dentry); 2450 } 2451 2452 static void nfs_dentry_remove_handle_error(struct inode *dir, 2453 struct dentry *dentry, int error) 2454 { 2455 switch (error) { 2456 case -ENOENT: 2457 if (d_really_is_positive(dentry)) 2458 d_delete(dentry); 2459 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2460 break; 2461 case 0: 2462 nfs_d_prune_case_insensitive_aliases(d_inode(dentry)); 2463 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2464 } 2465 } 2466 2467 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2468 { 2469 int error; 2470 2471 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2472 dir->i_sb->s_id, dir->i_ino, dentry); 2473 2474 trace_nfs_rmdir_enter(dir, dentry); 2475 if (d_really_is_positive(dentry)) { 2476 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2477 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2478 /* Ensure the VFS deletes this inode */ 2479 switch (error) { 2480 case 0: 2481 clear_nlink(d_inode(dentry)); 2482 break; 2483 case -ENOENT: 2484 nfs_dentry_handle_enoent(dentry); 2485 } 2486 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2487 } else 2488 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2489 nfs_dentry_remove_handle_error(dir, dentry, error); 2490 trace_nfs_rmdir_exit(dir, dentry, error); 2491 2492 return error; 2493 } 2494 EXPORT_SYMBOL_GPL(nfs_rmdir); 2495 2496 /* 2497 * Remove a file after making sure there are no pending writes, 2498 * and after checking that the file has only one user. 2499 * 2500 * We invalidate the attribute cache and free the inode prior to the operation 2501 * to avoid possible races if the server reuses the inode. 2502 */ 2503 static int nfs_safe_remove(struct dentry *dentry) 2504 { 2505 struct inode *dir = d_inode(dentry->d_parent); 2506 struct inode *inode = d_inode(dentry); 2507 int error = -EBUSY; 2508 2509 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2510 2511 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2512 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2513 error = 0; 2514 goto out; 2515 } 2516 2517 trace_nfs_remove_enter(dir, dentry); 2518 if (inode != NULL) { 2519 error = NFS_PROTO(dir)->remove(dir, dentry); 2520 if (error == 0) 2521 nfs_drop_nlink(inode); 2522 } else 2523 error = NFS_PROTO(dir)->remove(dir, dentry); 2524 if (error == -ENOENT) 2525 nfs_dentry_handle_enoent(dentry); 2526 trace_nfs_remove_exit(dir, dentry, error); 2527 out: 2528 return error; 2529 } 2530 2531 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2532 * belongs to an active ".nfs..." file and we return -EBUSY. 2533 * 2534 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2535 */ 2536 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2537 { 2538 int error; 2539 2540 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2541 dir->i_ino, dentry); 2542 2543 trace_nfs_unlink_enter(dir, dentry); 2544 spin_lock(&dentry->d_lock); 2545 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED, 2546 &NFS_I(d_inode(dentry))->flags)) { 2547 spin_unlock(&dentry->d_lock); 2548 /* Start asynchronous writeout of the inode */ 2549 write_inode_now(d_inode(dentry), 0); 2550 error = nfs_sillyrename(dir, dentry); 2551 goto out; 2552 } 2553 /* We must prevent any concurrent open until the unlink 2554 * completes. ->d_revalidate will wait for ->d_fsdata 2555 * to clear. We set it here to ensure no lookup succeeds until 2556 * the unlink is complete on the server. 2557 */ 2558 error = -ETXTBSY; 2559 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2560 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) { 2561 spin_unlock(&dentry->d_lock); 2562 goto out; 2563 } 2564 block_revalidate(dentry); 2565 2566 spin_unlock(&dentry->d_lock); 2567 error = nfs_safe_remove(dentry); 2568 nfs_dentry_remove_handle_error(dir, dentry, error); 2569 unblock_revalidate(dentry); 2570 out: 2571 trace_nfs_unlink_exit(dir, dentry, error); 2572 return error; 2573 } 2574 EXPORT_SYMBOL_GPL(nfs_unlink); 2575 2576 /* 2577 * To create a symbolic link, most file systems instantiate a new inode, 2578 * add a page to it containing the path, then write it out to the disk 2579 * using prepare_write/commit_write. 2580 * 2581 * Unfortunately the NFS client can't create the in-core inode first 2582 * because it needs a file handle to create an in-core inode (see 2583 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2584 * symlink request has completed on the server. 2585 * 2586 * So instead we allocate a raw page, copy the symname into it, then do 2587 * the SYMLINK request with the page as the buffer. If it succeeds, we 2588 * now have a new file handle and can instantiate an in-core NFS inode 2589 * and move the raw page into its mapping. 2590 */ 2591 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 2592 struct dentry *dentry, const char *symname) 2593 { 2594 struct folio *folio; 2595 char *kaddr; 2596 struct iattr attr; 2597 unsigned int pathlen = strlen(symname); 2598 int error; 2599 2600 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2601 dir->i_ino, dentry, symname); 2602 2603 if (pathlen > PAGE_SIZE) 2604 return -ENAMETOOLONG; 2605 2606 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2607 attr.ia_valid = ATTR_MODE; 2608 2609 folio = folio_alloc(GFP_USER, 0); 2610 if (!folio) 2611 return -ENOMEM; 2612 2613 kaddr = folio_address(folio); 2614 memcpy(kaddr, symname, pathlen); 2615 if (pathlen < PAGE_SIZE) 2616 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2617 2618 trace_nfs_symlink_enter(dir, dentry); 2619 error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr); 2620 trace_nfs_symlink_exit(dir, dentry, error); 2621 if (error != 0) { 2622 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2623 dir->i_sb->s_id, dir->i_ino, 2624 dentry, symname, error); 2625 d_drop(dentry); 2626 folio_put(folio); 2627 return error; 2628 } 2629 2630 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2631 2632 /* 2633 * No big deal if we can't add this page to the page cache here. 2634 * READLINK will get the missing page from the server if needed. 2635 */ 2636 if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0, 2637 GFP_KERNEL) == 0) { 2638 folio_mark_uptodate(folio); 2639 folio_unlock(folio); 2640 } 2641 2642 folio_put(folio); 2643 return 0; 2644 } 2645 EXPORT_SYMBOL_GPL(nfs_symlink); 2646 2647 int 2648 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2649 { 2650 struct inode *inode = d_inode(old_dentry); 2651 int error; 2652 2653 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2654 old_dentry, dentry); 2655 2656 trace_nfs_link_enter(inode, dir, dentry); 2657 d_drop(dentry); 2658 if (S_ISREG(inode->i_mode)) 2659 nfs_sync_inode(inode); 2660 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2661 if (error == 0) { 2662 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2663 ihold(inode); 2664 d_add(dentry, inode); 2665 } 2666 trace_nfs_link_exit(inode, dir, dentry, error); 2667 return error; 2668 } 2669 EXPORT_SYMBOL_GPL(nfs_link); 2670 2671 static void 2672 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data) 2673 { 2674 struct dentry *new_dentry = data->new_dentry; 2675 2676 unblock_revalidate(new_dentry); 2677 } 2678 2679 static bool nfs_rename_is_unsafe_cross_dir(struct dentry *old_dentry, 2680 struct dentry *new_dentry) 2681 { 2682 struct nfs_server *server = NFS_SB(old_dentry->d_sb); 2683 2684 if (old_dentry->d_parent != new_dentry->d_parent) 2685 return false; 2686 if (server->fh_expire_type & NFS_FH_RENAME_UNSAFE) 2687 return !(server->fh_expire_type & NFS_FH_NOEXPIRE_WITH_OPEN); 2688 return true; 2689 } 2690 2691 /* 2692 * RENAME 2693 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2694 * different file handle for the same inode after a rename (e.g. when 2695 * moving to a different directory). A fail-safe method to do so would 2696 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2697 * rename the old file using the sillyrename stuff. This way, the original 2698 * file in old_dir will go away when the last process iput()s the inode. 2699 * 2700 * FIXED. 2701 * 2702 * It actually works quite well. One needs to have the possibility for 2703 * at least one ".nfs..." file in each directory the file ever gets 2704 * moved or linked to which happens automagically with the new 2705 * implementation that only depends on the dcache stuff instead of 2706 * using the inode layer 2707 * 2708 * Unfortunately, things are a little more complicated than indicated 2709 * above. For a cross-directory move, we want to make sure we can get 2710 * rid of the old inode after the operation. This means there must be 2711 * no pending writes (if it's a file), and the use count must be 1. 2712 * If these conditions are met, we can drop the dentries before doing 2713 * the rename. 2714 */ 2715 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir, 2716 struct dentry *old_dentry, struct inode *new_dir, 2717 struct dentry *new_dentry, unsigned int flags) 2718 { 2719 struct inode *old_inode = d_inode(old_dentry); 2720 struct inode *new_inode = d_inode(new_dentry); 2721 struct dentry *dentry = NULL; 2722 struct rpc_task *task; 2723 bool must_unblock = false; 2724 int error = -EBUSY; 2725 2726 if (flags) 2727 return -EINVAL; 2728 2729 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2730 old_dentry, new_dentry, 2731 d_count(new_dentry)); 2732 2733 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2734 /* 2735 * For non-directories, check whether the target is busy and if so, 2736 * make a copy of the dentry and then do a silly-rename. If the 2737 * silly-rename succeeds, the copied dentry is hashed and becomes 2738 * the new target. 2739 */ 2740 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2741 /* We must prevent any concurrent open until the unlink 2742 * completes. ->d_revalidate will wait for ->d_fsdata 2743 * to clear. We set it here to ensure no lookup succeeds until 2744 * the unlink is complete on the server. 2745 */ 2746 error = -ETXTBSY; 2747 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2748 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED)) 2749 goto out; 2750 2751 spin_lock(&new_dentry->d_lock); 2752 if (d_count(new_dentry) > 2) { 2753 int err; 2754 2755 spin_unlock(&new_dentry->d_lock); 2756 2757 /* copy the target dentry's name */ 2758 dentry = d_alloc(new_dentry->d_parent, 2759 &new_dentry->d_name); 2760 if (!dentry) 2761 goto out; 2762 2763 /* silly-rename the existing target ... */ 2764 err = nfs_sillyrename(new_dir, new_dentry); 2765 if (err) 2766 goto out; 2767 2768 new_dentry = dentry; 2769 new_inode = NULL; 2770 } else { 2771 block_revalidate(new_dentry); 2772 must_unblock = true; 2773 spin_unlock(&new_dentry->d_lock); 2774 } 2775 2776 } 2777 2778 if (S_ISREG(old_inode->i_mode) && 2779 nfs_rename_is_unsafe_cross_dir(old_dentry, new_dentry)) 2780 nfs_sync_inode(old_inode); 2781 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, 2782 must_unblock ? nfs_unblock_rename : NULL); 2783 if (IS_ERR(task)) { 2784 if (must_unblock) 2785 unblock_revalidate(new_dentry); 2786 error = PTR_ERR(task); 2787 goto out; 2788 } 2789 2790 error = rpc_wait_for_completion_task(task); 2791 if (error != 0) { 2792 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2793 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2794 smp_wmb(); 2795 } else 2796 error = task->tk_status; 2797 rpc_put_task(task); 2798 /* Ensure the inode attributes are revalidated */ 2799 if (error == 0) { 2800 spin_lock(&old_inode->i_lock); 2801 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2802 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE | 2803 NFS_INO_INVALID_CTIME | 2804 NFS_INO_REVAL_FORCED); 2805 spin_unlock(&old_inode->i_lock); 2806 } 2807 out: 2808 trace_nfs_rename_exit(old_dir, old_dentry, 2809 new_dir, new_dentry, error); 2810 if (!error) { 2811 if (new_inode != NULL) 2812 nfs_drop_nlink(new_inode); 2813 /* 2814 * The d_move() should be here instead of in an async RPC completion 2815 * handler because we need the proper locks to move the dentry. If 2816 * we're interrupted by a signal, the async RPC completion handler 2817 * should mark the directories for revalidation. 2818 */ 2819 d_move(old_dentry, new_dentry); 2820 nfs_set_verifier(old_dentry, 2821 nfs_save_change_attribute(new_dir)); 2822 } else if (error == -ENOENT) 2823 nfs_dentry_handle_enoent(old_dentry); 2824 2825 /* new dentry created? */ 2826 if (dentry) 2827 dput(dentry); 2828 return error; 2829 } 2830 EXPORT_SYMBOL_GPL(nfs_rename); 2831 2832 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2833 static LIST_HEAD(nfs_access_lru_list); 2834 static atomic_long_t nfs_access_nr_entries; 2835 2836 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2837 module_param(nfs_access_max_cachesize, ulong, 0644); 2838 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2839 2840 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2841 { 2842 put_group_info(entry->group_info); 2843 kfree_rcu(entry, rcu_head); 2844 smp_mb__before_atomic(); 2845 atomic_long_dec(&nfs_access_nr_entries); 2846 smp_mb__after_atomic(); 2847 } 2848 2849 static void nfs_access_free_list(struct list_head *head) 2850 { 2851 struct nfs_access_entry *cache; 2852 2853 while (!list_empty(head)) { 2854 cache = list_entry(head->next, struct nfs_access_entry, lru); 2855 list_del(&cache->lru); 2856 nfs_access_free_entry(cache); 2857 } 2858 } 2859 2860 static unsigned long 2861 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2862 { 2863 LIST_HEAD(head); 2864 struct nfs_inode *nfsi, *next; 2865 struct nfs_access_entry *cache; 2866 long freed = 0; 2867 2868 spin_lock(&nfs_access_lru_lock); 2869 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2870 struct inode *inode; 2871 2872 if (nr_to_scan-- == 0) 2873 break; 2874 inode = &nfsi->vfs_inode; 2875 spin_lock(&inode->i_lock); 2876 if (list_empty(&nfsi->access_cache_entry_lru)) 2877 goto remove_lru_entry; 2878 cache = list_entry(nfsi->access_cache_entry_lru.next, 2879 struct nfs_access_entry, lru); 2880 list_move(&cache->lru, &head); 2881 rb_erase(&cache->rb_node, &nfsi->access_cache); 2882 freed++; 2883 if (!list_empty(&nfsi->access_cache_entry_lru)) 2884 list_move_tail(&nfsi->access_cache_inode_lru, 2885 &nfs_access_lru_list); 2886 else { 2887 remove_lru_entry: 2888 list_del_init(&nfsi->access_cache_inode_lru); 2889 smp_mb__before_atomic(); 2890 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2891 smp_mb__after_atomic(); 2892 } 2893 spin_unlock(&inode->i_lock); 2894 } 2895 spin_unlock(&nfs_access_lru_lock); 2896 nfs_access_free_list(&head); 2897 return freed; 2898 } 2899 2900 unsigned long 2901 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2902 { 2903 int nr_to_scan = sc->nr_to_scan; 2904 gfp_t gfp_mask = sc->gfp_mask; 2905 2906 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2907 return SHRINK_STOP; 2908 return nfs_do_access_cache_scan(nr_to_scan); 2909 } 2910 2911 2912 unsigned long 2913 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2914 { 2915 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2916 } 2917 2918 static void 2919 nfs_access_cache_enforce_limit(void) 2920 { 2921 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2922 unsigned long diff; 2923 unsigned int nr_to_scan; 2924 2925 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2926 return; 2927 nr_to_scan = 100; 2928 diff = nr_entries - nfs_access_max_cachesize; 2929 if (diff < nr_to_scan) 2930 nr_to_scan = diff; 2931 nfs_do_access_cache_scan(nr_to_scan); 2932 } 2933 2934 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2935 { 2936 struct rb_root *root_node = &nfsi->access_cache; 2937 struct rb_node *n; 2938 struct nfs_access_entry *entry; 2939 2940 /* Unhook entries from the cache */ 2941 while ((n = rb_first(root_node)) != NULL) { 2942 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2943 rb_erase(n, root_node); 2944 list_move(&entry->lru, head); 2945 } 2946 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2947 } 2948 2949 void nfs_access_zap_cache(struct inode *inode) 2950 { 2951 LIST_HEAD(head); 2952 2953 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2954 return; 2955 /* Remove from global LRU init */ 2956 spin_lock(&nfs_access_lru_lock); 2957 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2958 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2959 2960 spin_lock(&inode->i_lock); 2961 __nfs_access_zap_cache(NFS_I(inode), &head); 2962 spin_unlock(&inode->i_lock); 2963 spin_unlock(&nfs_access_lru_lock); 2964 nfs_access_free_list(&head); 2965 } 2966 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2967 2968 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b) 2969 { 2970 struct group_info *ga, *gb; 2971 int g; 2972 2973 if (uid_lt(a->fsuid, b->fsuid)) 2974 return -1; 2975 if (uid_gt(a->fsuid, b->fsuid)) 2976 return 1; 2977 2978 if (gid_lt(a->fsgid, b->fsgid)) 2979 return -1; 2980 if (gid_gt(a->fsgid, b->fsgid)) 2981 return 1; 2982 2983 ga = a->group_info; 2984 gb = b->group_info; 2985 if (ga == gb) 2986 return 0; 2987 if (ga == NULL) 2988 return -1; 2989 if (gb == NULL) 2990 return 1; 2991 if (ga->ngroups < gb->ngroups) 2992 return -1; 2993 if (ga->ngroups > gb->ngroups) 2994 return 1; 2995 2996 for (g = 0; g < ga->ngroups; g++) { 2997 if (gid_lt(ga->gid[g], gb->gid[g])) 2998 return -1; 2999 if (gid_gt(ga->gid[g], gb->gid[g])) 3000 return 1; 3001 } 3002 return 0; 3003 } 3004 3005 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 3006 { 3007 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 3008 3009 while (n != NULL) { 3010 struct nfs_access_entry *entry = 3011 rb_entry(n, struct nfs_access_entry, rb_node); 3012 int cmp = access_cmp(cred, entry); 3013 3014 if (cmp < 0) 3015 n = n->rb_left; 3016 else if (cmp > 0) 3017 n = n->rb_right; 3018 else 3019 return entry; 3020 } 3021 return NULL; 3022 } 3023 3024 static u64 nfs_access_login_time(const struct task_struct *task, 3025 const struct cred *cred) 3026 { 3027 const struct task_struct *parent; 3028 const struct cred *pcred; 3029 u64 ret; 3030 3031 rcu_read_lock(); 3032 for (;;) { 3033 parent = rcu_dereference(task->real_parent); 3034 pcred = __task_cred(parent); 3035 if (parent == task || cred_fscmp(pcred, cred) != 0) 3036 break; 3037 task = parent; 3038 } 3039 ret = task->start_time; 3040 rcu_read_unlock(); 3041 return ret; 3042 } 3043 3044 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block) 3045 { 3046 struct nfs_inode *nfsi = NFS_I(inode); 3047 u64 login_time = nfs_access_login_time(current, cred); 3048 struct nfs_access_entry *cache; 3049 bool retry = true; 3050 int err; 3051 3052 spin_lock(&inode->i_lock); 3053 for(;;) { 3054 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 3055 goto out_zap; 3056 cache = nfs_access_search_rbtree(inode, cred); 3057 err = -ENOENT; 3058 if (cache == NULL) 3059 goto out; 3060 /* Found an entry, is our attribute cache valid? */ 3061 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 3062 break; 3063 if (!retry) 3064 break; 3065 err = -ECHILD; 3066 if (!may_block) 3067 goto out; 3068 spin_unlock(&inode->i_lock); 3069 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 3070 if (err) 3071 return err; 3072 spin_lock(&inode->i_lock); 3073 retry = false; 3074 } 3075 err = -ENOENT; 3076 if ((s64)(login_time - cache->timestamp) > 0) 3077 goto out; 3078 *mask = cache->mask; 3079 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 3080 err = 0; 3081 out: 3082 spin_unlock(&inode->i_lock); 3083 return err; 3084 out_zap: 3085 spin_unlock(&inode->i_lock); 3086 nfs_access_zap_cache(inode); 3087 return -ENOENT; 3088 } 3089 3090 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask) 3091 { 3092 /* Only check the most recently returned cache entry, 3093 * but do it without locking. 3094 */ 3095 struct nfs_inode *nfsi = NFS_I(inode); 3096 u64 login_time = nfs_access_login_time(current, cred); 3097 struct nfs_access_entry *cache; 3098 int err = -ECHILD; 3099 struct list_head *lh; 3100 3101 rcu_read_lock(); 3102 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 3103 goto out; 3104 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 3105 cache = list_entry(lh, struct nfs_access_entry, lru); 3106 if (lh == &nfsi->access_cache_entry_lru || 3107 access_cmp(cred, cache) != 0) 3108 cache = NULL; 3109 if (cache == NULL) 3110 goto out; 3111 if ((s64)(login_time - cache->timestamp) > 0) 3112 goto out; 3113 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 3114 goto out; 3115 *mask = cache->mask; 3116 err = 0; 3117 out: 3118 rcu_read_unlock(); 3119 return err; 3120 } 3121 3122 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, 3123 u32 *mask, bool may_block) 3124 { 3125 int status; 3126 3127 status = nfs_access_get_cached_rcu(inode, cred, mask); 3128 if (status != 0) 3129 status = nfs_access_get_cached_locked(inode, cred, mask, 3130 may_block); 3131 3132 return status; 3133 } 3134 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 3135 3136 static void nfs_access_add_rbtree(struct inode *inode, 3137 struct nfs_access_entry *set, 3138 const struct cred *cred) 3139 { 3140 struct nfs_inode *nfsi = NFS_I(inode); 3141 struct rb_root *root_node = &nfsi->access_cache; 3142 struct rb_node **p = &root_node->rb_node; 3143 struct rb_node *parent = NULL; 3144 struct nfs_access_entry *entry; 3145 int cmp; 3146 3147 spin_lock(&inode->i_lock); 3148 while (*p != NULL) { 3149 parent = *p; 3150 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 3151 cmp = access_cmp(cred, entry); 3152 3153 if (cmp < 0) 3154 p = &parent->rb_left; 3155 else if (cmp > 0) 3156 p = &parent->rb_right; 3157 else 3158 goto found; 3159 } 3160 rb_link_node(&set->rb_node, parent, p); 3161 rb_insert_color(&set->rb_node, root_node); 3162 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3163 spin_unlock(&inode->i_lock); 3164 return; 3165 found: 3166 rb_replace_node(parent, &set->rb_node, root_node); 3167 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3168 list_del(&entry->lru); 3169 spin_unlock(&inode->i_lock); 3170 nfs_access_free_entry(entry); 3171 } 3172 3173 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set, 3174 const struct cred *cred) 3175 { 3176 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 3177 if (cache == NULL) 3178 return; 3179 RB_CLEAR_NODE(&cache->rb_node); 3180 cache->fsuid = cred->fsuid; 3181 cache->fsgid = cred->fsgid; 3182 cache->group_info = get_group_info(cred->group_info); 3183 cache->mask = set->mask; 3184 cache->timestamp = ktime_get_ns(); 3185 3186 /* The above field assignments must be visible 3187 * before this item appears on the lru. We cannot easily 3188 * use rcu_assign_pointer, so just force the memory barrier. 3189 */ 3190 smp_wmb(); 3191 nfs_access_add_rbtree(inode, cache, cred); 3192 3193 /* Update accounting */ 3194 smp_mb__before_atomic(); 3195 atomic_long_inc(&nfs_access_nr_entries); 3196 smp_mb__after_atomic(); 3197 3198 /* Add inode to global LRU list */ 3199 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 3200 spin_lock(&nfs_access_lru_lock); 3201 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 3202 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 3203 &nfs_access_lru_list); 3204 spin_unlock(&nfs_access_lru_lock); 3205 } 3206 nfs_access_cache_enforce_limit(); 3207 } 3208 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 3209 3210 #define NFS_MAY_READ (NFS_ACCESS_READ) 3211 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3212 NFS_ACCESS_EXTEND | \ 3213 NFS_ACCESS_DELETE) 3214 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3215 NFS_ACCESS_EXTEND) 3216 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 3217 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 3218 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 3219 static int 3220 nfs_access_calc_mask(u32 access_result, umode_t umode) 3221 { 3222 int mask = 0; 3223 3224 if (access_result & NFS_MAY_READ) 3225 mask |= MAY_READ; 3226 if (S_ISDIR(umode)) { 3227 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 3228 mask |= MAY_WRITE; 3229 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 3230 mask |= MAY_EXEC; 3231 } else if (S_ISREG(umode)) { 3232 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 3233 mask |= MAY_WRITE; 3234 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 3235 mask |= MAY_EXEC; 3236 } else if (access_result & NFS_MAY_WRITE) 3237 mask |= MAY_WRITE; 3238 return mask; 3239 } 3240 3241 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 3242 { 3243 entry->mask = access_result; 3244 } 3245 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 3246 3247 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 3248 { 3249 struct nfs_access_entry cache; 3250 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 3251 int cache_mask = -1; 3252 int status; 3253 3254 trace_nfs_access_enter(inode); 3255 3256 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block); 3257 if (status == 0) 3258 goto out_cached; 3259 3260 status = -ECHILD; 3261 if (!may_block) 3262 goto out; 3263 3264 /* 3265 * Determine which access bits we want to ask for... 3266 */ 3267 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND | 3268 nfs_access_xattr_mask(NFS_SERVER(inode)); 3269 if (S_ISDIR(inode->i_mode)) 3270 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 3271 else 3272 cache.mask |= NFS_ACCESS_EXECUTE; 3273 status = NFS_PROTO(inode)->access(inode, &cache, cred); 3274 if (status != 0) { 3275 if (status == -ESTALE) { 3276 if (!S_ISDIR(inode->i_mode)) 3277 nfs_set_inode_stale(inode); 3278 else 3279 nfs_zap_caches(inode); 3280 } 3281 goto out; 3282 } 3283 nfs_access_add_cache(inode, &cache, cred); 3284 out_cached: 3285 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 3286 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 3287 status = -EACCES; 3288 out: 3289 trace_nfs_access_exit(inode, mask, cache_mask, status); 3290 return status; 3291 } 3292 3293 static int nfs_open_permission_mask(int openflags) 3294 { 3295 int mask = 0; 3296 3297 if (openflags & __FMODE_EXEC) { 3298 /* ONLY check exec rights */ 3299 mask = MAY_EXEC; 3300 } else { 3301 if ((openflags & O_ACCMODE) != O_WRONLY) 3302 mask |= MAY_READ; 3303 if ((openflags & O_ACCMODE) != O_RDONLY) 3304 mask |= MAY_WRITE; 3305 } 3306 3307 return mask; 3308 } 3309 3310 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 3311 { 3312 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 3313 } 3314 EXPORT_SYMBOL_GPL(nfs_may_open); 3315 3316 static int nfs_execute_ok(struct inode *inode, int mask) 3317 { 3318 struct nfs_server *server = NFS_SERVER(inode); 3319 int ret = 0; 3320 3321 if (S_ISDIR(inode->i_mode)) 3322 return 0; 3323 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) { 3324 if (mask & MAY_NOT_BLOCK) 3325 return -ECHILD; 3326 ret = __nfs_revalidate_inode(server, inode); 3327 } 3328 if (ret == 0 && !execute_ok(inode)) 3329 ret = -EACCES; 3330 return ret; 3331 } 3332 3333 int nfs_permission(struct mnt_idmap *idmap, 3334 struct inode *inode, 3335 int mask) 3336 { 3337 const struct cred *cred = current_cred(); 3338 int res = 0; 3339 3340 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 3341 3342 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 3343 goto out; 3344 /* Is this sys_access() ? */ 3345 if (mask & (MAY_ACCESS | MAY_CHDIR)) 3346 goto force_lookup; 3347 3348 switch (inode->i_mode & S_IFMT) { 3349 case S_IFLNK: 3350 goto out; 3351 case S_IFREG: 3352 if ((mask & MAY_OPEN) && 3353 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 3354 return 0; 3355 break; 3356 case S_IFDIR: 3357 /* 3358 * Optimize away all write operations, since the server 3359 * will check permissions when we perform the op. 3360 */ 3361 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 3362 goto out; 3363 } 3364 3365 force_lookup: 3366 if (!NFS_PROTO(inode)->access) 3367 goto out_notsup; 3368 3369 res = nfs_do_access(inode, cred, mask); 3370 out: 3371 if (!res && (mask & MAY_EXEC)) 3372 res = nfs_execute_ok(inode, mask); 3373 3374 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 3375 inode->i_sb->s_id, inode->i_ino, mask, res); 3376 return res; 3377 out_notsup: 3378 if (mask & MAY_NOT_BLOCK) 3379 return -ECHILD; 3380 3381 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE | 3382 NFS_INO_INVALID_OTHER); 3383 if (res == 0) 3384 res = generic_permission(&nop_mnt_idmap, inode, mask); 3385 goto out; 3386 } 3387 EXPORT_SYMBOL_GPL(nfs_permission); 3388