1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Network filesystem high-level buffered read support. 3 * 4 * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/export.h> 9 #include <linux/task_io_accounting_ops.h> 10 #include "internal.h" 11 12 static void netfs_cache_expand_readahead(struct netfs_io_request *rreq, 13 unsigned long long *_start, 14 unsigned long long *_len, 15 unsigned long long i_size) 16 { 17 struct netfs_cache_resources *cres = &rreq->cache_resources; 18 19 if (cres->ops && cres->ops->expand_readahead) 20 cres->ops->expand_readahead(cres, _start, _len, i_size); 21 } 22 23 static void netfs_rreq_expand(struct netfs_io_request *rreq, 24 struct readahead_control *ractl) 25 { 26 /* Give the cache a chance to change the request parameters. The 27 * resultant request must contain the original region. 28 */ 29 netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size); 30 31 /* Give the netfs a chance to change the request parameters. The 32 * resultant request must contain the original region. 33 */ 34 if (rreq->netfs_ops->expand_readahead) 35 rreq->netfs_ops->expand_readahead(rreq); 36 37 /* Expand the request if the cache wants it to start earlier. Note 38 * that the expansion may get further extended if the VM wishes to 39 * insert THPs and the preferred start and/or end wind up in the middle 40 * of THPs. 41 * 42 * If this is the case, however, the THP size should be an integer 43 * multiple of the cache granule size, so we get a whole number of 44 * granules to deal with. 45 */ 46 if (rreq->start != readahead_pos(ractl) || 47 rreq->len != readahead_length(ractl)) { 48 readahead_expand(ractl, rreq->start, rreq->len); 49 rreq->start = readahead_pos(ractl); 50 rreq->len = readahead_length(ractl); 51 52 trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl), 53 netfs_read_trace_expanded); 54 } 55 } 56 57 /* 58 * Begin an operation, and fetch the stored zero point value from the cookie if 59 * available. 60 */ 61 static int netfs_begin_cache_read(struct netfs_io_request *rreq, struct netfs_inode *ctx) 62 { 63 return fscache_begin_read_operation(&rreq->cache_resources, netfs_i_cookie(ctx)); 64 } 65 66 /* 67 * netfs_prepare_read_iterator - Prepare the subreq iterator for I/O 68 * @subreq: The subrequest to be set up 69 * 70 * Prepare the I/O iterator representing the read buffer on a subrequest for 71 * the filesystem to use for I/O (it can be passed directly to a socket). This 72 * is intended to be called from the ->issue_read() method once the filesystem 73 * has trimmed the request to the size it wants. 74 * 75 * Returns the limited size if successful and -ENOMEM if insufficient memory 76 * available. 77 * 78 * [!] NOTE: This must be run in the same thread as ->issue_read() was called 79 * in as we access the readahead_control struct. 80 */ 81 static ssize_t netfs_prepare_read_iterator(struct netfs_io_subrequest *subreq, 82 struct readahead_control *ractl) 83 { 84 struct netfs_io_request *rreq = subreq->rreq; 85 size_t rsize = subreq->len; 86 87 if (subreq->source == NETFS_DOWNLOAD_FROM_SERVER) 88 rsize = umin(rsize, rreq->io_streams[0].sreq_max_len); 89 90 if (ractl) { 91 /* If we don't have sufficient folios in the rolling buffer, 92 * extract a folioq's worth from the readahead region at a time 93 * into the buffer. Note that this acquires a ref on each page 94 * that we will need to release later - but we don't want to do 95 * that until after we've started the I/O. 96 */ 97 struct folio_batch put_batch; 98 99 folio_batch_init(&put_batch); 100 while (rreq->submitted < subreq->start + rsize) { 101 ssize_t added; 102 103 added = rolling_buffer_load_from_ra(&rreq->buffer, ractl, 104 &put_batch); 105 if (added < 0) 106 return added; 107 rreq->submitted += added; 108 } 109 folio_batch_release(&put_batch); 110 } 111 112 subreq->len = rsize; 113 if (unlikely(rreq->io_streams[0].sreq_max_segs)) { 114 size_t limit = netfs_limit_iter(&rreq->buffer.iter, 0, rsize, 115 rreq->io_streams[0].sreq_max_segs); 116 117 if (limit < rsize) { 118 subreq->len = limit; 119 trace_netfs_sreq(subreq, netfs_sreq_trace_limited); 120 } 121 } 122 123 subreq->io_iter = rreq->buffer.iter; 124 125 iov_iter_truncate(&subreq->io_iter, subreq->len); 126 rolling_buffer_advance(&rreq->buffer, subreq->len); 127 return subreq->len; 128 } 129 130 static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_request *rreq, 131 struct netfs_io_subrequest *subreq, 132 loff_t i_size) 133 { 134 struct netfs_cache_resources *cres = &rreq->cache_resources; 135 enum netfs_io_source source; 136 137 if (!cres->ops) 138 return NETFS_DOWNLOAD_FROM_SERVER; 139 source = cres->ops->prepare_read(subreq, i_size); 140 trace_netfs_sreq(subreq, netfs_sreq_trace_prepare); 141 return source; 142 143 } 144 145 /* 146 * Issue a read against the cache. 147 * - Eats the caller's ref on subreq. 148 */ 149 static void netfs_read_cache_to_pagecache(struct netfs_io_request *rreq, 150 struct netfs_io_subrequest *subreq) 151 { 152 struct netfs_cache_resources *cres = &rreq->cache_resources; 153 154 netfs_stat(&netfs_n_rh_read); 155 cres->ops->read(cres, subreq->start, &subreq->io_iter, NETFS_READ_HOLE_IGNORE, 156 netfs_cache_read_terminated, subreq); 157 } 158 159 static void netfs_queue_read(struct netfs_io_request *rreq, 160 struct netfs_io_subrequest *subreq, 161 bool last_subreq) 162 { 163 struct netfs_io_stream *stream = &rreq->io_streams[0]; 164 165 __set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags); 166 167 /* We add to the end of the list whilst the collector may be walking 168 * the list. The collector only goes nextwards and uses the lock to 169 * remove entries off of the front. 170 */ 171 spin_lock(&rreq->lock); 172 list_add_tail(&subreq->rreq_link, &stream->subrequests); 173 if (list_is_first(&subreq->rreq_link, &stream->subrequests)) { 174 stream->front = subreq; 175 if (!stream->active) { 176 stream->collected_to = stream->front->start; 177 /* Store list pointers before active flag */ 178 smp_store_release(&stream->active, true); 179 } 180 } 181 182 if (last_subreq) { 183 smp_wmb(); /* Write lists before ALL_QUEUED. */ 184 set_bit(NETFS_RREQ_ALL_QUEUED, &rreq->flags); 185 } 186 187 spin_unlock(&rreq->lock); 188 } 189 190 static void netfs_issue_read(struct netfs_io_request *rreq, 191 struct netfs_io_subrequest *subreq) 192 { 193 switch (subreq->source) { 194 case NETFS_DOWNLOAD_FROM_SERVER: 195 rreq->netfs_ops->issue_read(subreq); 196 break; 197 case NETFS_READ_FROM_CACHE: 198 netfs_read_cache_to_pagecache(rreq, subreq); 199 break; 200 default: 201 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); 202 subreq->error = 0; 203 iov_iter_zero(subreq->len, &subreq->io_iter); 204 subreq->transferred = subreq->len; 205 netfs_read_subreq_terminated(subreq); 206 break; 207 } 208 } 209 210 /* 211 * Perform a read to the pagecache from a series of sources of different types, 212 * slicing up the region to be read according to available cache blocks and 213 * network rsize. 214 */ 215 static void netfs_read_to_pagecache(struct netfs_io_request *rreq, 216 struct readahead_control *ractl) 217 { 218 struct netfs_inode *ictx = netfs_inode(rreq->inode); 219 unsigned long long start = rreq->start; 220 ssize_t size = rreq->len; 221 int ret = 0; 222 223 do { 224 struct netfs_io_subrequest *subreq; 225 enum netfs_io_source source = NETFS_SOURCE_UNKNOWN; 226 ssize_t slice; 227 228 subreq = netfs_alloc_subrequest(rreq); 229 if (!subreq) { 230 ret = -ENOMEM; 231 break; 232 } 233 234 subreq->start = start; 235 subreq->len = size; 236 237 source = netfs_cache_prepare_read(rreq, subreq, rreq->i_size); 238 subreq->source = source; 239 if (source == NETFS_DOWNLOAD_FROM_SERVER) { 240 unsigned long long zp = umin(ictx->zero_point, rreq->i_size); 241 size_t len = subreq->len; 242 243 if (unlikely(rreq->origin == NETFS_READ_SINGLE)) 244 zp = rreq->i_size; 245 if (subreq->start >= zp) { 246 subreq->source = source = NETFS_FILL_WITH_ZEROES; 247 goto fill_with_zeroes; 248 } 249 250 if (len > zp - subreq->start) 251 len = zp - subreq->start; 252 if (len == 0) { 253 pr_err("ZERO-LEN READ: R=%08x[%x] l=%zx/%zx s=%llx z=%llx i=%llx", 254 rreq->debug_id, subreq->debug_index, 255 subreq->len, size, 256 subreq->start, ictx->zero_point, rreq->i_size); 257 break; 258 } 259 subreq->len = len; 260 261 netfs_stat(&netfs_n_rh_download); 262 if (rreq->netfs_ops->prepare_read) { 263 ret = rreq->netfs_ops->prepare_read(subreq); 264 if (ret < 0) { 265 subreq->error = ret; 266 /* Not queued - release both refs. */ 267 netfs_put_subrequest(subreq, 268 netfs_sreq_trace_put_cancel); 269 netfs_put_subrequest(subreq, 270 netfs_sreq_trace_put_cancel); 271 break; 272 } 273 trace_netfs_sreq(subreq, netfs_sreq_trace_prepare); 274 } 275 goto issue; 276 } 277 278 fill_with_zeroes: 279 if (source == NETFS_FILL_WITH_ZEROES) { 280 subreq->source = NETFS_FILL_WITH_ZEROES; 281 trace_netfs_sreq(subreq, netfs_sreq_trace_submit); 282 netfs_stat(&netfs_n_rh_zero); 283 goto issue; 284 } 285 286 if (source == NETFS_READ_FROM_CACHE) { 287 trace_netfs_sreq(subreq, netfs_sreq_trace_submit); 288 goto issue; 289 } 290 291 pr_err("Unexpected read source %u\n", source); 292 WARN_ON_ONCE(1); 293 break; 294 295 issue: 296 slice = netfs_prepare_read_iterator(subreq, ractl); 297 if (slice < 0) { 298 ret = slice; 299 subreq->error = ret; 300 trace_netfs_sreq(subreq, netfs_sreq_trace_cancel); 301 /* Not queued - release both refs. */ 302 netfs_put_subrequest(subreq, netfs_sreq_trace_put_cancel); 303 netfs_put_subrequest(subreq, netfs_sreq_trace_put_cancel); 304 break; 305 } 306 size -= slice; 307 start += slice; 308 309 netfs_queue_read(rreq, subreq, size <= 0); 310 netfs_issue_read(rreq, subreq); 311 cond_resched(); 312 } while (size > 0); 313 314 if (unlikely(size > 0)) { 315 smp_wmb(); /* Write lists before ALL_QUEUED. */ 316 set_bit(NETFS_RREQ_ALL_QUEUED, &rreq->flags); 317 netfs_wake_collector(rreq); 318 } 319 320 /* Defer error return as we may need to wait for outstanding I/O. */ 321 cmpxchg(&rreq->error, 0, ret); 322 } 323 324 /** 325 * netfs_readahead - Helper to manage a read request 326 * @ractl: The description of the readahead request 327 * 328 * Fulfil a readahead request by drawing data from the cache if possible, or 329 * the netfs if not. Space beyond the EOF is zero-filled. Multiple I/O 330 * requests from different sources will get munged together. If necessary, the 331 * readahead window can be expanded in either direction to a more convenient 332 * alighment for RPC efficiency or to make storage in the cache feasible. 333 * 334 * The calling netfs must initialise a netfs context contiguous to the vfs 335 * inode before calling this. 336 * 337 * This is usable whether or not caching is enabled. 338 */ 339 void netfs_readahead(struct readahead_control *ractl) 340 { 341 struct netfs_io_request *rreq; 342 struct netfs_inode *ictx = netfs_inode(ractl->mapping->host); 343 unsigned long long start = readahead_pos(ractl); 344 size_t size = readahead_length(ractl); 345 int ret; 346 347 rreq = netfs_alloc_request(ractl->mapping, ractl->file, start, size, 348 NETFS_READAHEAD); 349 if (IS_ERR(rreq)) 350 return; 351 352 __set_bit(NETFS_RREQ_OFFLOAD_COLLECTION, &rreq->flags); 353 354 ret = netfs_begin_cache_read(rreq, ictx); 355 if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) 356 goto cleanup_free; 357 358 netfs_stat(&netfs_n_rh_readahead); 359 trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl), 360 netfs_read_trace_readahead); 361 362 netfs_rreq_expand(rreq, ractl); 363 364 rreq->submitted = rreq->start; 365 if (rolling_buffer_init(&rreq->buffer, rreq->debug_id, ITER_DEST) < 0) 366 goto cleanup_free; 367 netfs_read_to_pagecache(rreq, ractl); 368 369 return netfs_put_request(rreq, netfs_rreq_trace_put_return); 370 371 cleanup_free: 372 return netfs_put_request(rreq, netfs_rreq_trace_put_failed); 373 } 374 EXPORT_SYMBOL(netfs_readahead); 375 376 /* 377 * Create a rolling buffer with a single occupying folio. 378 */ 379 static int netfs_create_singular_buffer(struct netfs_io_request *rreq, struct folio *folio, 380 unsigned int rollbuf_flags) 381 { 382 ssize_t added; 383 384 if (rolling_buffer_init(&rreq->buffer, rreq->debug_id, ITER_DEST) < 0) 385 return -ENOMEM; 386 387 added = rolling_buffer_append(&rreq->buffer, folio, rollbuf_flags); 388 if (added < 0) 389 return added; 390 rreq->submitted = rreq->start + added; 391 return 0; 392 } 393 394 /* 395 * Read into gaps in a folio partially filled by a streaming write. 396 */ 397 static int netfs_read_gaps(struct file *file, struct folio *folio) 398 { 399 struct netfs_io_request *rreq; 400 struct address_space *mapping = folio->mapping; 401 struct netfs_folio *finfo = netfs_folio_info(folio); 402 struct netfs_inode *ctx = netfs_inode(mapping->host); 403 struct folio *sink = NULL; 404 struct bio_vec *bvec; 405 unsigned int from = finfo->dirty_offset; 406 unsigned int to = from + finfo->dirty_len; 407 unsigned int off = 0, i = 0; 408 size_t flen = folio_size(folio); 409 size_t nr_bvec = flen / PAGE_SIZE + 2; 410 size_t part; 411 int ret; 412 413 _enter("%lx", folio->index); 414 415 rreq = netfs_alloc_request(mapping, file, folio_pos(folio), flen, NETFS_READ_GAPS); 416 if (IS_ERR(rreq)) { 417 ret = PTR_ERR(rreq); 418 goto alloc_error; 419 } 420 421 ret = netfs_begin_cache_read(rreq, ctx); 422 if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) 423 goto discard; 424 425 netfs_stat(&netfs_n_rh_read_folio); 426 trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_read_gaps); 427 428 /* Fiddle the buffer so that a gap at the beginning and/or a gap at the 429 * end get copied to, but the middle is discarded. 430 */ 431 ret = -ENOMEM; 432 bvec = kmalloc_array(nr_bvec, sizeof(*bvec), GFP_KERNEL); 433 if (!bvec) 434 goto discard; 435 436 sink = folio_alloc(GFP_KERNEL, 0); 437 if (!sink) { 438 kfree(bvec); 439 goto discard; 440 } 441 442 trace_netfs_folio(folio, netfs_folio_trace_read_gaps); 443 444 rreq->direct_bv = bvec; 445 rreq->direct_bv_count = nr_bvec; 446 if (from > 0) { 447 bvec_set_folio(&bvec[i++], folio, from, 0); 448 off = from; 449 } 450 while (off < to) { 451 part = min_t(size_t, to - off, PAGE_SIZE); 452 bvec_set_folio(&bvec[i++], sink, part, 0); 453 off += part; 454 } 455 if (to < flen) 456 bvec_set_folio(&bvec[i++], folio, flen - to, to); 457 iov_iter_bvec(&rreq->buffer.iter, ITER_DEST, bvec, i, rreq->len); 458 rreq->submitted = rreq->start + flen; 459 460 netfs_read_to_pagecache(rreq, NULL); 461 462 if (sink) 463 folio_put(sink); 464 465 ret = netfs_wait_for_read(rreq); 466 if (ret >= 0) { 467 flush_dcache_folio(folio); 468 folio_mark_uptodate(folio); 469 } 470 folio_unlock(folio); 471 netfs_put_request(rreq, netfs_rreq_trace_put_return); 472 return ret < 0 ? ret : 0; 473 474 discard: 475 netfs_put_request(rreq, netfs_rreq_trace_put_discard); 476 alloc_error: 477 folio_unlock(folio); 478 return ret; 479 } 480 481 /** 482 * netfs_read_folio - Helper to manage a read_folio request 483 * @file: The file to read from 484 * @folio: The folio to read 485 * 486 * Fulfil a read_folio request by drawing data from the cache if 487 * possible, or the netfs if not. Space beyond the EOF is zero-filled. 488 * Multiple I/O requests from different sources will get munged together. 489 * 490 * The calling netfs must initialise a netfs context contiguous to the vfs 491 * inode before calling this. 492 * 493 * This is usable whether or not caching is enabled. 494 */ 495 int netfs_read_folio(struct file *file, struct folio *folio) 496 { 497 struct address_space *mapping = folio->mapping; 498 struct netfs_io_request *rreq; 499 struct netfs_inode *ctx = netfs_inode(mapping->host); 500 int ret; 501 502 if (folio_test_dirty(folio)) { 503 trace_netfs_folio(folio, netfs_folio_trace_read_gaps); 504 return netfs_read_gaps(file, folio); 505 } 506 507 _enter("%lx", folio->index); 508 509 rreq = netfs_alloc_request(mapping, file, 510 folio_pos(folio), folio_size(folio), 511 NETFS_READPAGE); 512 if (IS_ERR(rreq)) { 513 ret = PTR_ERR(rreq); 514 goto alloc_error; 515 } 516 517 ret = netfs_begin_cache_read(rreq, ctx); 518 if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) 519 goto discard; 520 521 netfs_stat(&netfs_n_rh_read_folio); 522 trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage); 523 524 /* Set up the output buffer */ 525 ret = netfs_create_singular_buffer(rreq, folio, 0); 526 if (ret < 0) 527 goto discard; 528 529 netfs_read_to_pagecache(rreq, NULL); 530 ret = netfs_wait_for_read(rreq); 531 netfs_put_request(rreq, netfs_rreq_trace_put_return); 532 return ret < 0 ? ret : 0; 533 534 discard: 535 netfs_put_request(rreq, netfs_rreq_trace_put_discard); 536 alloc_error: 537 folio_unlock(folio); 538 return ret; 539 } 540 EXPORT_SYMBOL(netfs_read_folio); 541 542 /* 543 * Prepare a folio for writing without reading first 544 * @folio: The folio being prepared 545 * @pos: starting position for the write 546 * @len: length of write 547 * @always_fill: T if the folio should always be completely filled/cleared 548 * 549 * In some cases, write_begin doesn't need to read at all: 550 * - full folio write 551 * - write that lies in a folio that is completely beyond EOF 552 * - write that covers the folio from start to EOF or beyond it 553 * 554 * If any of these criteria are met, then zero out the unwritten parts 555 * of the folio and return true. Otherwise, return false. 556 */ 557 static bool netfs_skip_folio_read(struct folio *folio, loff_t pos, size_t len, 558 bool always_fill) 559 { 560 struct inode *inode = folio_inode(folio); 561 loff_t i_size = i_size_read(inode); 562 size_t offset = offset_in_folio(folio, pos); 563 size_t plen = folio_size(folio); 564 565 if (unlikely(always_fill)) { 566 if (pos - offset + len <= i_size) 567 return false; /* Page entirely before EOF */ 568 folio_zero_segment(folio, 0, plen); 569 folio_mark_uptodate(folio); 570 return true; 571 } 572 573 /* Full folio write */ 574 if (offset == 0 && len >= plen) 575 return true; 576 577 /* Page entirely beyond the end of the file */ 578 if (pos - offset >= i_size) 579 goto zero_out; 580 581 /* Write that covers from the start of the folio to EOF or beyond */ 582 if (offset == 0 && (pos + len) >= i_size) 583 goto zero_out; 584 585 return false; 586 zero_out: 587 folio_zero_segments(folio, 0, offset, offset + len, plen); 588 return true; 589 } 590 591 /** 592 * netfs_write_begin - Helper to prepare for writing [DEPRECATED] 593 * @ctx: The netfs context 594 * @file: The file to read from 595 * @mapping: The mapping to read from 596 * @pos: File position at which the write will begin 597 * @len: The length of the write (may extend beyond the end of the folio chosen) 598 * @_folio: Where to put the resultant folio 599 * @_fsdata: Place for the netfs to store a cookie 600 * 601 * Pre-read data for a write-begin request by drawing data from the cache if 602 * possible, or the netfs if not. Space beyond the EOF is zero-filled. 603 * Multiple I/O requests from different sources will get munged together. 604 * 605 * The calling netfs must provide a table of operations, only one of which, 606 * issue_read, is mandatory. 607 * 608 * The check_write_begin() operation can be provided to check for and flush 609 * conflicting writes once the folio is grabbed and locked. It is passed a 610 * pointer to the fsdata cookie that gets returned to the VM to be passed to 611 * write_end. It is permitted to sleep. It should return 0 if the request 612 * should go ahead or it may return an error. It may also unlock and put the 613 * folio, provided it sets ``*foliop`` to NULL, in which case a return of 0 614 * will cause the folio to be re-got and the process to be retried. 615 * 616 * The calling netfs must initialise a netfs context contiguous to the vfs 617 * inode before calling this. 618 * 619 * This is usable whether or not caching is enabled. 620 * 621 * Note that this should be considered deprecated and netfs_perform_write() 622 * used instead. 623 */ 624 int netfs_write_begin(struct netfs_inode *ctx, 625 struct file *file, struct address_space *mapping, 626 loff_t pos, unsigned int len, struct folio **_folio, 627 void **_fsdata) 628 { 629 struct netfs_io_request *rreq; 630 struct folio *folio; 631 pgoff_t index = pos >> PAGE_SHIFT; 632 int ret; 633 634 retry: 635 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 636 mapping_gfp_mask(mapping)); 637 if (IS_ERR(folio)) 638 return PTR_ERR(folio); 639 640 if (ctx->ops->check_write_begin) { 641 /* Allow the netfs (eg. ceph) to flush conflicts. */ 642 ret = ctx->ops->check_write_begin(file, pos, len, &folio, _fsdata); 643 if (ret < 0) { 644 trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin); 645 goto error; 646 } 647 if (!folio) 648 goto retry; 649 } 650 651 if (folio_test_uptodate(folio)) 652 goto have_folio; 653 654 /* If the folio is beyond the EOF, we want to clear it - unless it's 655 * within the cache granule containing the EOF, in which case we need 656 * to preload the granule. 657 */ 658 if (!netfs_is_cache_enabled(ctx) && 659 netfs_skip_folio_read(folio, pos, len, false)) { 660 netfs_stat(&netfs_n_rh_write_zskip); 661 goto have_folio_no_wait; 662 } 663 664 rreq = netfs_alloc_request(mapping, file, 665 folio_pos(folio), folio_size(folio), 666 NETFS_READ_FOR_WRITE); 667 if (IS_ERR(rreq)) { 668 ret = PTR_ERR(rreq); 669 goto error; 670 } 671 rreq->no_unlock_folio = folio->index; 672 __set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags); 673 674 ret = netfs_begin_cache_read(rreq, ctx); 675 if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) 676 goto error_put; 677 678 netfs_stat(&netfs_n_rh_write_begin); 679 trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin); 680 681 /* Set up the output buffer */ 682 ret = netfs_create_singular_buffer(rreq, folio, 0); 683 if (ret < 0) 684 goto error_put; 685 686 netfs_read_to_pagecache(rreq, NULL); 687 ret = netfs_wait_for_read(rreq); 688 if (ret < 0) 689 goto error; 690 netfs_put_request(rreq, netfs_rreq_trace_put_return); 691 692 have_folio: 693 ret = folio_wait_private_2_killable(folio); 694 if (ret < 0) 695 goto error; 696 have_folio_no_wait: 697 *_folio = folio; 698 _leave(" = 0"); 699 return 0; 700 701 error_put: 702 netfs_put_request(rreq, netfs_rreq_trace_put_failed); 703 error: 704 if (folio) { 705 folio_unlock(folio); 706 folio_put(folio); 707 } 708 _leave(" = %d", ret); 709 return ret; 710 } 711 EXPORT_SYMBOL(netfs_write_begin); 712 713 /* 714 * Preload the data into a folio we're proposing to write into. 715 */ 716 int netfs_prefetch_for_write(struct file *file, struct folio *folio, 717 size_t offset, size_t len) 718 { 719 struct netfs_io_request *rreq; 720 struct address_space *mapping = folio->mapping; 721 struct netfs_inode *ctx = netfs_inode(mapping->host); 722 unsigned long long start = folio_pos(folio); 723 size_t flen = folio_size(folio); 724 int ret; 725 726 _enter("%zx @%llx", flen, start); 727 728 ret = -ENOMEM; 729 730 rreq = netfs_alloc_request(mapping, file, start, flen, 731 NETFS_READ_FOR_WRITE); 732 if (IS_ERR(rreq)) { 733 ret = PTR_ERR(rreq); 734 goto error; 735 } 736 737 rreq->no_unlock_folio = folio->index; 738 __set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags); 739 ret = netfs_begin_cache_read(rreq, ctx); 740 if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) 741 goto error_put; 742 743 netfs_stat(&netfs_n_rh_write_begin); 744 trace_netfs_read(rreq, start, flen, netfs_read_trace_prefetch_for_write); 745 746 /* Set up the output buffer */ 747 ret = netfs_create_singular_buffer(rreq, folio, NETFS_ROLLBUF_PAGECACHE_MARK); 748 if (ret < 0) 749 goto error_put; 750 751 netfs_read_to_pagecache(rreq, NULL); 752 ret = netfs_wait_for_read(rreq); 753 netfs_put_request(rreq, netfs_rreq_trace_put_return); 754 return ret < 0 ? ret : 0; 755 756 error_put: 757 netfs_put_request(rreq, netfs_rreq_trace_put_discard); 758 error: 759 _leave(" = %d", ret); 760 return ret; 761 } 762 763 /** 764 * netfs_buffered_read_iter - Filesystem buffered I/O read routine 765 * @iocb: kernel I/O control block 766 * @iter: destination for the data read 767 * 768 * This is the ->read_iter() routine for all filesystems that can use the page 769 * cache directly. 770 * 771 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be 772 * returned when no data can be read without waiting for I/O requests to 773 * complete; it doesn't prevent readahead. 774 * 775 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests 776 * shall be made for the read or for readahead. When no data can be read, 777 * -EAGAIN shall be returned. When readahead would be triggered, a partial, 778 * possibly empty read shall be returned. 779 * 780 * Return: 781 * * number of bytes copied, even for partial reads 782 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 783 */ 784 ssize_t netfs_buffered_read_iter(struct kiocb *iocb, struct iov_iter *iter) 785 { 786 struct inode *inode = file_inode(iocb->ki_filp); 787 struct netfs_inode *ictx = netfs_inode(inode); 788 ssize_t ret; 789 790 if (WARN_ON_ONCE((iocb->ki_flags & IOCB_DIRECT) || 791 test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))) 792 return -EINVAL; 793 794 ret = netfs_start_io_read(inode); 795 if (ret == 0) { 796 ret = filemap_read(iocb, iter, 0); 797 netfs_end_io_read(inode); 798 } 799 return ret; 800 } 801 EXPORT_SYMBOL(netfs_buffered_read_iter); 802 803 /** 804 * netfs_file_read_iter - Generic filesystem read routine 805 * @iocb: kernel I/O control block 806 * @iter: destination for the data read 807 * 808 * This is the ->read_iter() routine for all filesystems that can use the page 809 * cache directly. 810 * 811 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be 812 * returned when no data can be read without waiting for I/O requests to 813 * complete; it doesn't prevent readahead. 814 * 815 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests 816 * shall be made for the read or for readahead. When no data can be read, 817 * -EAGAIN shall be returned. When readahead would be triggered, a partial, 818 * possibly empty read shall be returned. 819 * 820 * Return: 821 * * number of bytes copied, even for partial reads 822 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 823 */ 824 ssize_t netfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 825 { 826 struct netfs_inode *ictx = netfs_inode(iocb->ki_filp->f_mapping->host); 827 828 if ((iocb->ki_flags & IOCB_DIRECT) || 829 test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags)) 830 return netfs_unbuffered_read_iter(iocb, iter); 831 832 return netfs_buffered_read_iter(iocb, iter); 833 } 834 EXPORT_SYMBOL(netfs_file_read_iter); 835