1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 #include <linux/pidfs.h> 36 37 #include "pnode.h" 38 #include "internal.h" 39 40 /* Maximum number of mounts in a mount namespace */ 41 static unsigned int sysctl_mount_max __read_mostly = 100000; 42 43 static unsigned int m_hash_mask __ro_after_init; 44 static unsigned int m_hash_shift __ro_after_init; 45 static unsigned int mp_hash_mask __ro_after_init; 46 static unsigned int mp_hash_shift __ro_after_init; 47 48 static __initdata unsigned long mhash_entries; 49 static int __init set_mhash_entries(char *str) 50 { 51 if (!str) 52 return 0; 53 mhash_entries = simple_strtoul(str, &str, 0); 54 return 1; 55 } 56 __setup("mhash_entries=", set_mhash_entries); 57 58 static __initdata unsigned long mphash_entries; 59 static int __init set_mphash_entries(char *str) 60 { 61 if (!str) 62 return 0; 63 mphash_entries = simple_strtoul(str, &str, 0); 64 return 1; 65 } 66 __setup("mphash_entries=", set_mphash_entries); 67 68 static u64 event; 69 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC); 70 static DEFINE_IDA(mnt_group_ida); 71 72 /* Don't allow confusion with old 32bit mount ID */ 73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31) 74 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET; 75 76 static struct hlist_head *mount_hashtable __ro_after_init; 77 static struct hlist_head *mountpoint_hashtable __ro_after_init; 78 static struct kmem_cache *mnt_cache __ro_after_init; 79 static DECLARE_RWSEM(namespace_sem); 80 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 82 static DEFINE_SEQLOCK(mnt_ns_tree_lock); 83 84 #ifdef CONFIG_FSNOTIFY 85 LIST_HEAD(notify_list); /* protected by namespace_sem */ 86 #endif 87 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */ 88 static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */ 89 90 enum mount_kattr_flags_t { 91 MOUNT_KATTR_RECURSE = (1 << 0), 92 MOUNT_KATTR_IDMAP_REPLACE = (1 << 1), 93 }; 94 95 struct mount_kattr { 96 unsigned int attr_set; 97 unsigned int attr_clr; 98 unsigned int propagation; 99 unsigned int lookup_flags; 100 enum mount_kattr_flags_t kflags; 101 struct user_namespace *mnt_userns; 102 struct mnt_idmap *mnt_idmap; 103 }; 104 105 /* /sys/fs */ 106 struct kobject *fs_kobj __ro_after_init; 107 EXPORT_SYMBOL_GPL(fs_kobj); 108 109 /* 110 * vfsmount lock may be taken for read to prevent changes to the 111 * vfsmount hash, ie. during mountpoint lookups or walking back 112 * up the tree. 113 * 114 * It should be taken for write in all cases where the vfsmount 115 * tree or hash is modified or when a vfsmount structure is modified. 116 */ 117 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 118 119 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node) 120 { 121 if (!node) 122 return NULL; 123 return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node); 124 } 125 126 static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b) 127 { 128 struct mnt_namespace *ns_a = node_to_mnt_ns(a); 129 struct mnt_namespace *ns_b = node_to_mnt_ns(b); 130 u64 seq_a = ns_a->seq; 131 u64 seq_b = ns_b->seq; 132 133 if (seq_a < seq_b) 134 return -1; 135 if (seq_a > seq_b) 136 return 1; 137 return 0; 138 } 139 140 static inline void mnt_ns_tree_write_lock(void) 141 { 142 write_seqlock(&mnt_ns_tree_lock); 143 } 144 145 static inline void mnt_ns_tree_write_unlock(void) 146 { 147 write_sequnlock(&mnt_ns_tree_lock); 148 } 149 150 static void mnt_ns_tree_add(struct mnt_namespace *ns) 151 { 152 struct rb_node *node, *prev; 153 154 mnt_ns_tree_write_lock(); 155 node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp); 156 /* 157 * If there's no previous entry simply add it after the 158 * head and if there is add it after the previous entry. 159 */ 160 prev = rb_prev(&ns->mnt_ns_tree_node); 161 if (!prev) 162 list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list); 163 else 164 list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list); 165 mnt_ns_tree_write_unlock(); 166 167 WARN_ON_ONCE(node); 168 } 169 170 static void mnt_ns_release(struct mnt_namespace *ns) 171 { 172 /* keep alive for {list,stat}mount() */ 173 if (refcount_dec_and_test(&ns->passive)) { 174 fsnotify_mntns_delete(ns); 175 put_user_ns(ns->user_ns); 176 kfree(ns); 177 } 178 } 179 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T)) 180 181 static void mnt_ns_release_rcu(struct rcu_head *rcu) 182 { 183 mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu)); 184 } 185 186 static void mnt_ns_tree_remove(struct mnt_namespace *ns) 187 { 188 /* remove from global mount namespace list */ 189 if (!is_anon_ns(ns)) { 190 mnt_ns_tree_write_lock(); 191 rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree); 192 list_bidir_del_rcu(&ns->mnt_ns_list); 193 mnt_ns_tree_write_unlock(); 194 } 195 196 call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu); 197 } 198 199 static int mnt_ns_find(const void *key, const struct rb_node *node) 200 { 201 const u64 mnt_ns_id = *(u64 *)key; 202 const struct mnt_namespace *ns = node_to_mnt_ns(node); 203 204 if (mnt_ns_id < ns->seq) 205 return -1; 206 if (mnt_ns_id > ns->seq) 207 return 1; 208 return 0; 209 } 210 211 /* 212 * Lookup a mount namespace by id and take a passive reference count. Taking a 213 * passive reference means the mount namespace can be emptied if e.g., the last 214 * task holding an active reference exits. To access the mounts of the 215 * namespace the @namespace_sem must first be acquired. If the namespace has 216 * already shut down before acquiring @namespace_sem, {list,stat}mount() will 217 * see that the mount rbtree of the namespace is empty. 218 * 219 * Note the lookup is lockless protected by a sequence counter. We only 220 * need to guard against false negatives as false positives aren't 221 * possible. So if we didn't find a mount namespace and the sequence 222 * counter has changed we need to retry. If the sequence counter is 223 * still the same we know the search actually failed. 224 */ 225 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id) 226 { 227 struct mnt_namespace *ns; 228 struct rb_node *node; 229 unsigned int seq; 230 231 guard(rcu)(); 232 do { 233 seq = read_seqbegin(&mnt_ns_tree_lock); 234 node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find); 235 if (node) 236 break; 237 } while (read_seqretry(&mnt_ns_tree_lock, seq)); 238 239 if (!node) 240 return NULL; 241 242 /* 243 * The last reference count is put with RCU delay so we can 244 * unconditonally acquire a reference here. 245 */ 246 ns = node_to_mnt_ns(node); 247 refcount_inc(&ns->passive); 248 return ns; 249 } 250 251 static inline void lock_mount_hash(void) 252 { 253 write_seqlock(&mount_lock); 254 } 255 256 static inline void unlock_mount_hash(void) 257 { 258 write_sequnlock(&mount_lock); 259 } 260 261 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 262 { 263 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 264 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 265 tmp = tmp + (tmp >> m_hash_shift); 266 return &mount_hashtable[tmp & m_hash_mask]; 267 } 268 269 static inline struct hlist_head *mp_hash(struct dentry *dentry) 270 { 271 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 272 tmp = tmp + (tmp >> mp_hash_shift); 273 return &mountpoint_hashtable[tmp & mp_hash_mask]; 274 } 275 276 static int mnt_alloc_id(struct mount *mnt) 277 { 278 int res; 279 280 xa_lock(&mnt_id_xa); 281 res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL); 282 if (!res) 283 mnt->mnt_id_unique = ++mnt_id_ctr; 284 xa_unlock(&mnt_id_xa); 285 return res; 286 } 287 288 static void mnt_free_id(struct mount *mnt) 289 { 290 xa_erase(&mnt_id_xa, mnt->mnt_id); 291 } 292 293 /* 294 * Allocate a new peer group ID 295 */ 296 static int mnt_alloc_group_id(struct mount *mnt) 297 { 298 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 299 300 if (res < 0) 301 return res; 302 mnt->mnt_group_id = res; 303 return 0; 304 } 305 306 /* 307 * Release a peer group ID 308 */ 309 void mnt_release_group_id(struct mount *mnt) 310 { 311 ida_free(&mnt_group_ida, mnt->mnt_group_id); 312 mnt->mnt_group_id = 0; 313 } 314 315 /* 316 * vfsmount lock must be held for read 317 */ 318 static inline void mnt_add_count(struct mount *mnt, int n) 319 { 320 #ifdef CONFIG_SMP 321 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 322 #else 323 preempt_disable(); 324 mnt->mnt_count += n; 325 preempt_enable(); 326 #endif 327 } 328 329 /* 330 * vfsmount lock must be held for write 331 */ 332 int mnt_get_count(struct mount *mnt) 333 { 334 #ifdef CONFIG_SMP 335 int count = 0; 336 int cpu; 337 338 for_each_possible_cpu(cpu) { 339 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 340 } 341 342 return count; 343 #else 344 return mnt->mnt_count; 345 #endif 346 } 347 348 static struct mount *alloc_vfsmnt(const char *name) 349 { 350 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 351 if (mnt) { 352 int err; 353 354 err = mnt_alloc_id(mnt); 355 if (err) 356 goto out_free_cache; 357 358 if (name) { 359 mnt->mnt_devname = kstrdup_const(name, 360 GFP_KERNEL_ACCOUNT); 361 if (!mnt->mnt_devname) 362 goto out_free_id; 363 } 364 365 #ifdef CONFIG_SMP 366 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 367 if (!mnt->mnt_pcp) 368 goto out_free_devname; 369 370 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 371 #else 372 mnt->mnt_count = 1; 373 mnt->mnt_writers = 0; 374 #endif 375 376 INIT_HLIST_NODE(&mnt->mnt_hash); 377 INIT_LIST_HEAD(&mnt->mnt_child); 378 INIT_LIST_HEAD(&mnt->mnt_mounts); 379 INIT_LIST_HEAD(&mnt->mnt_list); 380 INIT_LIST_HEAD(&mnt->mnt_expire); 381 INIT_LIST_HEAD(&mnt->mnt_share); 382 INIT_LIST_HEAD(&mnt->mnt_slave_list); 383 INIT_LIST_HEAD(&mnt->mnt_slave); 384 INIT_HLIST_NODE(&mnt->mnt_mp_list); 385 INIT_LIST_HEAD(&mnt->mnt_umounting); 386 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 387 RB_CLEAR_NODE(&mnt->mnt_node); 388 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 389 } 390 return mnt; 391 392 #ifdef CONFIG_SMP 393 out_free_devname: 394 kfree_const(mnt->mnt_devname); 395 #endif 396 out_free_id: 397 mnt_free_id(mnt); 398 out_free_cache: 399 kmem_cache_free(mnt_cache, mnt); 400 return NULL; 401 } 402 403 /* 404 * Most r/o checks on a fs are for operations that take 405 * discrete amounts of time, like a write() or unlink(). 406 * We must keep track of when those operations start 407 * (for permission checks) and when they end, so that 408 * we can determine when writes are able to occur to 409 * a filesystem. 410 */ 411 /* 412 * __mnt_is_readonly: check whether a mount is read-only 413 * @mnt: the mount to check for its write status 414 * 415 * This shouldn't be used directly ouside of the VFS. 416 * It does not guarantee that the filesystem will stay 417 * r/w, just that it is right *now*. This can not and 418 * should not be used in place of IS_RDONLY(inode). 419 * mnt_want/drop_write() will _keep_ the filesystem 420 * r/w. 421 */ 422 bool __mnt_is_readonly(struct vfsmount *mnt) 423 { 424 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 425 } 426 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 427 428 static inline void mnt_inc_writers(struct mount *mnt) 429 { 430 #ifdef CONFIG_SMP 431 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 432 #else 433 mnt->mnt_writers++; 434 #endif 435 } 436 437 static inline void mnt_dec_writers(struct mount *mnt) 438 { 439 #ifdef CONFIG_SMP 440 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 441 #else 442 mnt->mnt_writers--; 443 #endif 444 } 445 446 static unsigned int mnt_get_writers(struct mount *mnt) 447 { 448 #ifdef CONFIG_SMP 449 unsigned int count = 0; 450 int cpu; 451 452 for_each_possible_cpu(cpu) { 453 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 454 } 455 456 return count; 457 #else 458 return mnt->mnt_writers; 459 #endif 460 } 461 462 static int mnt_is_readonly(struct vfsmount *mnt) 463 { 464 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) 465 return 1; 466 /* 467 * The barrier pairs with the barrier in sb_start_ro_state_change() 468 * making sure if we don't see s_readonly_remount set yet, we also will 469 * not see any superblock / mount flag changes done by remount. 470 * It also pairs with the barrier in sb_end_ro_state_change() 471 * assuring that if we see s_readonly_remount already cleared, we will 472 * see the values of superblock / mount flags updated by remount. 473 */ 474 smp_rmb(); 475 return __mnt_is_readonly(mnt); 476 } 477 478 /* 479 * Most r/o & frozen checks on a fs are for operations that take discrete 480 * amounts of time, like a write() or unlink(). We must keep track of when 481 * those operations start (for permission checks) and when they end, so that we 482 * can determine when writes are able to occur to a filesystem. 483 */ 484 /** 485 * mnt_get_write_access - get write access to a mount without freeze protection 486 * @m: the mount on which to take a write 487 * 488 * This tells the low-level filesystem that a write is about to be performed to 489 * it, and makes sure that writes are allowed (mnt it read-write) before 490 * returning success. This operation does not protect against filesystem being 491 * frozen. When the write operation is finished, mnt_put_write_access() must be 492 * called. This is effectively a refcount. 493 */ 494 int mnt_get_write_access(struct vfsmount *m) 495 { 496 struct mount *mnt = real_mount(m); 497 int ret = 0; 498 499 preempt_disable(); 500 mnt_inc_writers(mnt); 501 /* 502 * The store to mnt_inc_writers must be visible before we pass 503 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 504 * incremented count after it has set MNT_WRITE_HOLD. 505 */ 506 smp_mb(); 507 might_lock(&mount_lock.lock); 508 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { 509 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 510 cpu_relax(); 511 } else { 512 /* 513 * This prevents priority inversion, if the task 514 * setting MNT_WRITE_HOLD got preempted on a remote 515 * CPU, and it prevents life lock if the task setting 516 * MNT_WRITE_HOLD has a lower priority and is bound to 517 * the same CPU as the task that is spinning here. 518 */ 519 preempt_enable(); 520 lock_mount_hash(); 521 unlock_mount_hash(); 522 preempt_disable(); 523 } 524 } 525 /* 526 * The barrier pairs with the barrier sb_start_ro_state_change() making 527 * sure that if we see MNT_WRITE_HOLD cleared, we will also see 528 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in 529 * mnt_is_readonly() and bail in case we are racing with remount 530 * read-only. 531 */ 532 smp_rmb(); 533 if (mnt_is_readonly(m)) { 534 mnt_dec_writers(mnt); 535 ret = -EROFS; 536 } 537 preempt_enable(); 538 539 return ret; 540 } 541 EXPORT_SYMBOL_GPL(mnt_get_write_access); 542 543 /** 544 * mnt_want_write - get write access to a mount 545 * @m: the mount on which to take a write 546 * 547 * This tells the low-level filesystem that a write is about to be performed to 548 * it, and makes sure that writes are allowed (mount is read-write, filesystem 549 * is not frozen) before returning success. When the write operation is 550 * finished, mnt_drop_write() must be called. This is effectively a refcount. 551 */ 552 int mnt_want_write(struct vfsmount *m) 553 { 554 int ret; 555 556 sb_start_write(m->mnt_sb); 557 ret = mnt_get_write_access(m); 558 if (ret) 559 sb_end_write(m->mnt_sb); 560 return ret; 561 } 562 EXPORT_SYMBOL_GPL(mnt_want_write); 563 564 /** 565 * mnt_get_write_access_file - get write access to a file's mount 566 * @file: the file who's mount on which to take a write 567 * 568 * This is like mnt_get_write_access, but if @file is already open for write it 569 * skips incrementing mnt_writers (since the open file already has a reference) 570 * and instead only does the check for emergency r/o remounts. This must be 571 * paired with mnt_put_write_access_file. 572 */ 573 int mnt_get_write_access_file(struct file *file) 574 { 575 if (file->f_mode & FMODE_WRITER) { 576 /* 577 * Superblock may have become readonly while there are still 578 * writable fd's, e.g. due to a fs error with errors=remount-ro 579 */ 580 if (__mnt_is_readonly(file->f_path.mnt)) 581 return -EROFS; 582 return 0; 583 } 584 return mnt_get_write_access(file->f_path.mnt); 585 } 586 587 /** 588 * mnt_want_write_file - get write access to a file's mount 589 * @file: the file who's mount on which to take a write 590 * 591 * This is like mnt_want_write, but if the file is already open for writing it 592 * skips incrementing mnt_writers (since the open file already has a reference) 593 * and instead only does the freeze protection and the check for emergency r/o 594 * remounts. This must be paired with mnt_drop_write_file. 595 */ 596 int mnt_want_write_file(struct file *file) 597 { 598 int ret; 599 600 sb_start_write(file_inode(file)->i_sb); 601 ret = mnt_get_write_access_file(file); 602 if (ret) 603 sb_end_write(file_inode(file)->i_sb); 604 return ret; 605 } 606 EXPORT_SYMBOL_GPL(mnt_want_write_file); 607 608 /** 609 * mnt_put_write_access - give up write access to a mount 610 * @mnt: the mount on which to give up write access 611 * 612 * Tells the low-level filesystem that we are done 613 * performing writes to it. Must be matched with 614 * mnt_get_write_access() call above. 615 */ 616 void mnt_put_write_access(struct vfsmount *mnt) 617 { 618 preempt_disable(); 619 mnt_dec_writers(real_mount(mnt)); 620 preempt_enable(); 621 } 622 EXPORT_SYMBOL_GPL(mnt_put_write_access); 623 624 /** 625 * mnt_drop_write - give up write access to a mount 626 * @mnt: the mount on which to give up write access 627 * 628 * Tells the low-level filesystem that we are done performing writes to it and 629 * also allows filesystem to be frozen again. Must be matched with 630 * mnt_want_write() call above. 631 */ 632 void mnt_drop_write(struct vfsmount *mnt) 633 { 634 mnt_put_write_access(mnt); 635 sb_end_write(mnt->mnt_sb); 636 } 637 EXPORT_SYMBOL_GPL(mnt_drop_write); 638 639 void mnt_put_write_access_file(struct file *file) 640 { 641 if (!(file->f_mode & FMODE_WRITER)) 642 mnt_put_write_access(file->f_path.mnt); 643 } 644 645 void mnt_drop_write_file(struct file *file) 646 { 647 mnt_put_write_access_file(file); 648 sb_end_write(file_inode(file)->i_sb); 649 } 650 EXPORT_SYMBOL(mnt_drop_write_file); 651 652 /** 653 * mnt_hold_writers - prevent write access to the given mount 654 * @mnt: mnt to prevent write access to 655 * 656 * Prevents write access to @mnt if there are no active writers for @mnt. 657 * This function needs to be called and return successfully before changing 658 * properties of @mnt that need to remain stable for callers with write access 659 * to @mnt. 660 * 661 * After this functions has been called successfully callers must pair it with 662 * a call to mnt_unhold_writers() in order to stop preventing write access to 663 * @mnt. 664 * 665 * Context: This function expects lock_mount_hash() to be held serializing 666 * setting MNT_WRITE_HOLD. 667 * Return: On success 0 is returned. 668 * On error, -EBUSY is returned. 669 */ 670 static inline int mnt_hold_writers(struct mount *mnt) 671 { 672 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 673 /* 674 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 675 * should be visible before we do. 676 */ 677 smp_mb(); 678 679 /* 680 * With writers on hold, if this value is zero, then there are 681 * definitely no active writers (although held writers may subsequently 682 * increment the count, they'll have to wait, and decrement it after 683 * seeing MNT_READONLY). 684 * 685 * It is OK to have counter incremented on one CPU and decremented on 686 * another: the sum will add up correctly. The danger would be when we 687 * sum up each counter, if we read a counter before it is incremented, 688 * but then read another CPU's count which it has been subsequently 689 * decremented from -- we would see more decrements than we should. 690 * MNT_WRITE_HOLD protects against this scenario, because 691 * mnt_want_write first increments count, then smp_mb, then spins on 692 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 693 * we're counting up here. 694 */ 695 if (mnt_get_writers(mnt) > 0) 696 return -EBUSY; 697 698 return 0; 699 } 700 701 /** 702 * mnt_unhold_writers - stop preventing write access to the given mount 703 * @mnt: mnt to stop preventing write access to 704 * 705 * Stop preventing write access to @mnt allowing callers to gain write access 706 * to @mnt again. 707 * 708 * This function can only be called after a successful call to 709 * mnt_hold_writers(). 710 * 711 * Context: This function expects lock_mount_hash() to be held. 712 */ 713 static inline void mnt_unhold_writers(struct mount *mnt) 714 { 715 /* 716 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 717 * that become unheld will see MNT_READONLY. 718 */ 719 smp_wmb(); 720 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 721 } 722 723 static int mnt_make_readonly(struct mount *mnt) 724 { 725 int ret; 726 727 ret = mnt_hold_writers(mnt); 728 if (!ret) 729 mnt->mnt.mnt_flags |= MNT_READONLY; 730 mnt_unhold_writers(mnt); 731 return ret; 732 } 733 734 int sb_prepare_remount_readonly(struct super_block *sb) 735 { 736 struct mount *mnt; 737 int err = 0; 738 739 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 740 if (atomic_long_read(&sb->s_remove_count)) 741 return -EBUSY; 742 743 lock_mount_hash(); 744 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 745 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 746 err = mnt_hold_writers(mnt); 747 if (err) 748 break; 749 } 750 } 751 if (!err && atomic_long_read(&sb->s_remove_count)) 752 err = -EBUSY; 753 754 if (!err) 755 sb_start_ro_state_change(sb); 756 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 757 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 758 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 759 } 760 unlock_mount_hash(); 761 762 return err; 763 } 764 765 static void free_vfsmnt(struct mount *mnt) 766 { 767 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 768 kfree_const(mnt->mnt_devname); 769 #ifdef CONFIG_SMP 770 free_percpu(mnt->mnt_pcp); 771 #endif 772 kmem_cache_free(mnt_cache, mnt); 773 } 774 775 static void delayed_free_vfsmnt(struct rcu_head *head) 776 { 777 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 778 } 779 780 /* call under rcu_read_lock */ 781 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 782 { 783 struct mount *mnt; 784 if (read_seqretry(&mount_lock, seq)) 785 return 1; 786 if (bastard == NULL) 787 return 0; 788 mnt = real_mount(bastard); 789 mnt_add_count(mnt, 1); 790 smp_mb(); // see mntput_no_expire() and do_umount() 791 if (likely(!read_seqretry(&mount_lock, seq))) 792 return 0; 793 lock_mount_hash(); 794 if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) { 795 mnt_add_count(mnt, -1); 796 unlock_mount_hash(); 797 return 1; 798 } 799 unlock_mount_hash(); 800 /* caller will mntput() */ 801 return -1; 802 } 803 804 /* call under rcu_read_lock */ 805 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 806 { 807 int res = __legitimize_mnt(bastard, seq); 808 if (likely(!res)) 809 return true; 810 if (unlikely(res < 0)) { 811 rcu_read_unlock(); 812 mntput(bastard); 813 rcu_read_lock(); 814 } 815 return false; 816 } 817 818 /** 819 * __lookup_mnt - find first child mount 820 * @mnt: parent mount 821 * @dentry: mountpoint 822 * 823 * If @mnt has a child mount @c mounted @dentry find and return it. 824 * 825 * Note that the child mount @c need not be unique. There are cases 826 * where shadow mounts are created. For example, during mount 827 * propagation when a source mount @mnt whose root got overmounted by a 828 * mount @o after path lookup but before @namespace_sem could be 829 * acquired gets copied and propagated. So @mnt gets copied including 830 * @o. When @mnt is propagated to a destination mount @d that already 831 * has another mount @n mounted at the same mountpoint then the source 832 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on 833 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt 834 * on @dentry. 835 * 836 * Return: The first child of @mnt mounted @dentry or NULL. 837 */ 838 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 839 { 840 struct hlist_head *head = m_hash(mnt, dentry); 841 struct mount *p; 842 843 hlist_for_each_entry_rcu(p, head, mnt_hash) 844 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 845 return p; 846 return NULL; 847 } 848 849 /* 850 * lookup_mnt - Return the first child mount mounted at path 851 * 852 * "First" means first mounted chronologically. If you create the 853 * following mounts: 854 * 855 * mount /dev/sda1 /mnt 856 * mount /dev/sda2 /mnt 857 * mount /dev/sda3 /mnt 858 * 859 * Then lookup_mnt() on the base /mnt dentry in the root mount will 860 * return successively the root dentry and vfsmount of /dev/sda1, then 861 * /dev/sda2, then /dev/sda3, then NULL. 862 * 863 * lookup_mnt takes a reference to the found vfsmount. 864 */ 865 struct vfsmount *lookup_mnt(const struct path *path) 866 { 867 struct mount *child_mnt; 868 struct vfsmount *m; 869 unsigned seq; 870 871 rcu_read_lock(); 872 do { 873 seq = read_seqbegin(&mount_lock); 874 child_mnt = __lookup_mnt(path->mnt, path->dentry); 875 m = child_mnt ? &child_mnt->mnt : NULL; 876 } while (!legitimize_mnt(m, seq)); 877 rcu_read_unlock(); 878 return m; 879 } 880 881 /* 882 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 883 * current mount namespace. 884 * 885 * The common case is dentries are not mountpoints at all and that 886 * test is handled inline. For the slow case when we are actually 887 * dealing with a mountpoint of some kind, walk through all of the 888 * mounts in the current mount namespace and test to see if the dentry 889 * is a mountpoint. 890 * 891 * The mount_hashtable is not usable in the context because we 892 * need to identify all mounts that may be in the current mount 893 * namespace not just a mount that happens to have some specified 894 * parent mount. 895 */ 896 bool __is_local_mountpoint(struct dentry *dentry) 897 { 898 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 899 struct mount *mnt, *n; 900 bool is_covered = false; 901 902 down_read(&namespace_sem); 903 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 904 is_covered = (mnt->mnt_mountpoint == dentry); 905 if (is_covered) 906 break; 907 } 908 up_read(&namespace_sem); 909 910 return is_covered; 911 } 912 913 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 914 { 915 struct hlist_head *chain = mp_hash(dentry); 916 struct mountpoint *mp; 917 918 hlist_for_each_entry(mp, chain, m_hash) { 919 if (mp->m_dentry == dentry) { 920 mp->m_count++; 921 return mp; 922 } 923 } 924 return NULL; 925 } 926 927 static struct mountpoint *get_mountpoint(struct dentry *dentry) 928 { 929 struct mountpoint *mp, *new = NULL; 930 int ret; 931 932 if (d_mountpoint(dentry)) { 933 /* might be worth a WARN_ON() */ 934 if (d_unlinked(dentry)) 935 return ERR_PTR(-ENOENT); 936 mountpoint: 937 read_seqlock_excl(&mount_lock); 938 mp = lookup_mountpoint(dentry); 939 read_sequnlock_excl(&mount_lock); 940 if (mp) 941 goto done; 942 } 943 944 if (!new) 945 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 946 if (!new) 947 return ERR_PTR(-ENOMEM); 948 949 950 /* Exactly one processes may set d_mounted */ 951 ret = d_set_mounted(dentry); 952 953 /* Someone else set d_mounted? */ 954 if (ret == -EBUSY) 955 goto mountpoint; 956 957 /* The dentry is not available as a mountpoint? */ 958 mp = ERR_PTR(ret); 959 if (ret) 960 goto done; 961 962 /* Add the new mountpoint to the hash table */ 963 read_seqlock_excl(&mount_lock); 964 new->m_dentry = dget(dentry); 965 new->m_count = 1; 966 hlist_add_head(&new->m_hash, mp_hash(dentry)); 967 INIT_HLIST_HEAD(&new->m_list); 968 read_sequnlock_excl(&mount_lock); 969 970 mp = new; 971 new = NULL; 972 done: 973 kfree(new); 974 return mp; 975 } 976 977 /* 978 * vfsmount lock must be held. Additionally, the caller is responsible 979 * for serializing calls for given disposal list. 980 */ 981 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 982 { 983 if (!--mp->m_count) { 984 struct dentry *dentry = mp->m_dentry; 985 BUG_ON(!hlist_empty(&mp->m_list)); 986 spin_lock(&dentry->d_lock); 987 dentry->d_flags &= ~DCACHE_MOUNTED; 988 spin_unlock(&dentry->d_lock); 989 dput_to_list(dentry, list); 990 hlist_del(&mp->m_hash); 991 kfree(mp); 992 } 993 } 994 995 /* called with namespace_lock and vfsmount lock */ 996 static void put_mountpoint(struct mountpoint *mp) 997 { 998 __put_mountpoint(mp, &ex_mountpoints); 999 } 1000 1001 static inline int check_mnt(struct mount *mnt) 1002 { 1003 return mnt->mnt_ns == current->nsproxy->mnt_ns; 1004 } 1005 1006 static inline bool check_anonymous_mnt(struct mount *mnt) 1007 { 1008 u64 seq; 1009 1010 if (!is_anon_ns(mnt->mnt_ns)) 1011 return false; 1012 1013 seq = mnt->mnt_ns->seq_origin; 1014 return !seq || (seq == current->nsproxy->mnt_ns->seq); 1015 } 1016 1017 /* 1018 * vfsmount lock must be held for write 1019 */ 1020 static void touch_mnt_namespace(struct mnt_namespace *ns) 1021 { 1022 if (ns) { 1023 ns->event = ++event; 1024 wake_up_interruptible(&ns->poll); 1025 } 1026 } 1027 1028 /* 1029 * vfsmount lock must be held for write 1030 */ 1031 static void __touch_mnt_namespace(struct mnt_namespace *ns) 1032 { 1033 if (ns && ns->event != event) { 1034 ns->event = event; 1035 wake_up_interruptible(&ns->poll); 1036 } 1037 } 1038 1039 /* 1040 * vfsmount lock must be held for write 1041 */ 1042 static struct mountpoint *unhash_mnt(struct mount *mnt) 1043 { 1044 struct mountpoint *mp; 1045 mnt->mnt_parent = mnt; 1046 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1047 list_del_init(&mnt->mnt_child); 1048 hlist_del_init_rcu(&mnt->mnt_hash); 1049 hlist_del_init(&mnt->mnt_mp_list); 1050 mp = mnt->mnt_mp; 1051 mnt->mnt_mp = NULL; 1052 return mp; 1053 } 1054 1055 /* 1056 * vfsmount lock must be held for write 1057 */ 1058 static void umount_mnt(struct mount *mnt) 1059 { 1060 put_mountpoint(unhash_mnt(mnt)); 1061 } 1062 1063 /* 1064 * vfsmount lock must be held for write 1065 */ 1066 void mnt_set_mountpoint(struct mount *mnt, 1067 struct mountpoint *mp, 1068 struct mount *child_mnt) 1069 { 1070 mp->m_count++; 1071 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 1072 child_mnt->mnt_mountpoint = mp->m_dentry; 1073 child_mnt->mnt_parent = mnt; 1074 child_mnt->mnt_mp = mp; 1075 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 1076 } 1077 1078 /** 1079 * mnt_set_mountpoint_beneath - mount a mount beneath another one 1080 * 1081 * @new_parent: the source mount 1082 * @top_mnt: the mount beneath which @new_parent is mounted 1083 * @new_mp: the new mountpoint of @top_mnt on @new_parent 1084 * 1085 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and 1086 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at 1087 * @new_mp. And mount @new_parent on the old parent and old 1088 * mountpoint of @top_mnt. 1089 * 1090 * Context: This function expects namespace_lock() and lock_mount_hash() 1091 * to have been acquired in that order. 1092 */ 1093 static void mnt_set_mountpoint_beneath(struct mount *new_parent, 1094 struct mount *top_mnt, 1095 struct mountpoint *new_mp) 1096 { 1097 struct mount *old_top_parent = top_mnt->mnt_parent; 1098 struct mountpoint *old_top_mp = top_mnt->mnt_mp; 1099 1100 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent); 1101 mnt_change_mountpoint(new_parent, new_mp, top_mnt); 1102 } 1103 1104 1105 static void __attach_mnt(struct mount *mnt, struct mount *parent) 1106 { 1107 hlist_add_head_rcu(&mnt->mnt_hash, 1108 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 1109 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 1110 } 1111 1112 /** 1113 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's 1114 * list of child mounts 1115 * @parent: the parent 1116 * @mnt: the new mount 1117 * @mp: the new mountpoint 1118 * @beneath: whether to mount @mnt beneath or on top of @parent 1119 * 1120 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt 1121 * to @parent's child mount list and to @mount_hashtable. 1122 * 1123 * If @beneath is true, remove @mnt from its current parent and 1124 * mountpoint and mount it on @mp on @parent, and mount @parent on the 1125 * old parent and old mountpoint of @mnt. Finally, attach @parent to 1126 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts. 1127 * 1128 * Note, when __attach_mnt() is called @mnt->mnt_parent already points 1129 * to the correct parent. 1130 * 1131 * Context: This function expects namespace_lock() and lock_mount_hash() 1132 * to have been acquired in that order. 1133 */ 1134 static void attach_mnt(struct mount *mnt, struct mount *parent, 1135 struct mountpoint *mp, bool beneath) 1136 { 1137 if (beneath) 1138 mnt_set_mountpoint_beneath(mnt, parent, mp); 1139 else 1140 mnt_set_mountpoint(parent, mp, mnt); 1141 /* 1142 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted 1143 * beneath @parent then @mnt will need to be attached to 1144 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent 1145 * isn't the same mount as @parent. 1146 */ 1147 __attach_mnt(mnt, mnt->mnt_parent); 1148 } 1149 1150 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 1151 { 1152 struct mountpoint *old_mp = mnt->mnt_mp; 1153 struct mount *old_parent = mnt->mnt_parent; 1154 1155 list_del_init(&mnt->mnt_child); 1156 hlist_del_init(&mnt->mnt_mp_list); 1157 hlist_del_init_rcu(&mnt->mnt_hash); 1158 1159 attach_mnt(mnt, parent, mp, false); 1160 1161 put_mountpoint(old_mp); 1162 mnt_add_count(old_parent, -1); 1163 } 1164 1165 static inline struct mount *node_to_mount(struct rb_node *node) 1166 { 1167 return node ? rb_entry(node, struct mount, mnt_node) : NULL; 1168 } 1169 1170 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt) 1171 { 1172 struct rb_node **link = &ns->mounts.rb_node; 1173 struct rb_node *parent = NULL; 1174 bool mnt_first_node = true, mnt_last_node = true; 1175 1176 WARN_ON(mnt_ns_attached(mnt)); 1177 mnt->mnt_ns = ns; 1178 while (*link) { 1179 parent = *link; 1180 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) { 1181 link = &parent->rb_left; 1182 mnt_last_node = false; 1183 } else { 1184 link = &parent->rb_right; 1185 mnt_first_node = false; 1186 } 1187 } 1188 1189 if (mnt_last_node) 1190 ns->mnt_last_node = &mnt->mnt_node; 1191 if (mnt_first_node) 1192 ns->mnt_first_node = &mnt->mnt_node; 1193 rb_link_node(&mnt->mnt_node, parent, link); 1194 rb_insert_color(&mnt->mnt_node, &ns->mounts); 1195 1196 mnt_notify_add(mnt); 1197 } 1198 1199 /* 1200 * vfsmount lock must be held for write 1201 */ 1202 static void commit_tree(struct mount *mnt) 1203 { 1204 struct mount *parent = mnt->mnt_parent; 1205 struct mount *m; 1206 LIST_HEAD(head); 1207 struct mnt_namespace *n = parent->mnt_ns; 1208 1209 BUG_ON(parent == mnt); 1210 1211 list_add_tail(&head, &mnt->mnt_list); 1212 while (!list_empty(&head)) { 1213 m = list_first_entry(&head, typeof(*m), mnt_list); 1214 list_del(&m->mnt_list); 1215 1216 mnt_add_to_ns(n, m); 1217 } 1218 n->nr_mounts += n->pending_mounts; 1219 n->pending_mounts = 0; 1220 1221 __attach_mnt(mnt, parent); 1222 touch_mnt_namespace(n); 1223 } 1224 1225 static struct mount *next_mnt(struct mount *p, struct mount *root) 1226 { 1227 struct list_head *next = p->mnt_mounts.next; 1228 if (next == &p->mnt_mounts) { 1229 while (1) { 1230 if (p == root) 1231 return NULL; 1232 next = p->mnt_child.next; 1233 if (next != &p->mnt_parent->mnt_mounts) 1234 break; 1235 p = p->mnt_parent; 1236 } 1237 } 1238 return list_entry(next, struct mount, mnt_child); 1239 } 1240 1241 static struct mount *skip_mnt_tree(struct mount *p) 1242 { 1243 struct list_head *prev = p->mnt_mounts.prev; 1244 while (prev != &p->mnt_mounts) { 1245 p = list_entry(prev, struct mount, mnt_child); 1246 prev = p->mnt_mounts.prev; 1247 } 1248 return p; 1249 } 1250 1251 /** 1252 * vfs_create_mount - Create a mount for a configured superblock 1253 * @fc: The configuration context with the superblock attached 1254 * 1255 * Create a mount to an already configured superblock. If necessary, the 1256 * caller should invoke vfs_get_tree() before calling this. 1257 * 1258 * Note that this does not attach the mount to anything. 1259 */ 1260 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1261 { 1262 struct mount *mnt; 1263 1264 if (!fc->root) 1265 return ERR_PTR(-EINVAL); 1266 1267 mnt = alloc_vfsmnt(fc->source ?: "none"); 1268 if (!mnt) 1269 return ERR_PTR(-ENOMEM); 1270 1271 if (fc->sb_flags & SB_KERNMOUNT) 1272 mnt->mnt.mnt_flags = MNT_INTERNAL; 1273 1274 atomic_inc(&fc->root->d_sb->s_active); 1275 mnt->mnt.mnt_sb = fc->root->d_sb; 1276 mnt->mnt.mnt_root = dget(fc->root); 1277 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1278 mnt->mnt_parent = mnt; 1279 1280 lock_mount_hash(); 1281 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1282 unlock_mount_hash(); 1283 return &mnt->mnt; 1284 } 1285 EXPORT_SYMBOL(vfs_create_mount); 1286 1287 struct vfsmount *fc_mount(struct fs_context *fc) 1288 { 1289 int err = vfs_get_tree(fc); 1290 if (!err) { 1291 up_write(&fc->root->d_sb->s_umount); 1292 return vfs_create_mount(fc); 1293 } 1294 return ERR_PTR(err); 1295 } 1296 EXPORT_SYMBOL(fc_mount); 1297 1298 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1299 int flags, const char *name, 1300 void *data) 1301 { 1302 struct fs_context *fc; 1303 struct vfsmount *mnt; 1304 int ret = 0; 1305 1306 if (!type) 1307 return ERR_PTR(-EINVAL); 1308 1309 fc = fs_context_for_mount(type, flags); 1310 if (IS_ERR(fc)) 1311 return ERR_CAST(fc); 1312 1313 if (name) 1314 ret = vfs_parse_fs_string(fc, "source", 1315 name, strlen(name)); 1316 if (!ret) 1317 ret = parse_monolithic_mount_data(fc, data); 1318 if (!ret) 1319 mnt = fc_mount(fc); 1320 else 1321 mnt = ERR_PTR(ret); 1322 1323 put_fs_context(fc); 1324 return mnt; 1325 } 1326 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1327 1328 struct vfsmount * 1329 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1330 const char *name, void *data) 1331 { 1332 /* Until it is worked out how to pass the user namespace 1333 * through from the parent mount to the submount don't support 1334 * unprivileged mounts with submounts. 1335 */ 1336 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1337 return ERR_PTR(-EPERM); 1338 1339 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1340 } 1341 EXPORT_SYMBOL_GPL(vfs_submount); 1342 1343 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1344 int flag) 1345 { 1346 struct super_block *sb = old->mnt.mnt_sb; 1347 struct mount *mnt; 1348 int err; 1349 1350 mnt = alloc_vfsmnt(old->mnt_devname); 1351 if (!mnt) 1352 return ERR_PTR(-ENOMEM); 1353 1354 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1355 mnt->mnt_group_id = 0; /* not a peer of original */ 1356 else 1357 mnt->mnt_group_id = old->mnt_group_id; 1358 1359 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1360 err = mnt_alloc_group_id(mnt); 1361 if (err) 1362 goto out_free; 1363 } 1364 1365 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1366 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1367 1368 atomic_inc(&sb->s_active); 1369 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1370 1371 mnt->mnt.mnt_sb = sb; 1372 mnt->mnt.mnt_root = dget(root); 1373 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1374 mnt->mnt_parent = mnt; 1375 lock_mount_hash(); 1376 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1377 unlock_mount_hash(); 1378 1379 if ((flag & CL_SLAVE) || 1380 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1381 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1382 mnt->mnt_master = old; 1383 CLEAR_MNT_SHARED(mnt); 1384 } else if (!(flag & CL_PRIVATE)) { 1385 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1386 list_add(&mnt->mnt_share, &old->mnt_share); 1387 if (IS_MNT_SLAVE(old)) 1388 list_add(&mnt->mnt_slave, &old->mnt_slave); 1389 mnt->mnt_master = old->mnt_master; 1390 } else { 1391 CLEAR_MNT_SHARED(mnt); 1392 } 1393 if (flag & CL_MAKE_SHARED) 1394 set_mnt_shared(mnt); 1395 1396 /* stick the duplicate mount on the same expiry list 1397 * as the original if that was on one */ 1398 if (flag & CL_EXPIRE) { 1399 if (!list_empty(&old->mnt_expire)) 1400 list_add(&mnt->mnt_expire, &old->mnt_expire); 1401 } 1402 1403 return mnt; 1404 1405 out_free: 1406 mnt_free_id(mnt); 1407 free_vfsmnt(mnt); 1408 return ERR_PTR(err); 1409 } 1410 1411 static void cleanup_mnt(struct mount *mnt) 1412 { 1413 struct hlist_node *p; 1414 struct mount *m; 1415 /* 1416 * The warning here probably indicates that somebody messed 1417 * up a mnt_want/drop_write() pair. If this happens, the 1418 * filesystem was probably unable to make r/w->r/o transitions. 1419 * The locking used to deal with mnt_count decrement provides barriers, 1420 * so mnt_get_writers() below is safe. 1421 */ 1422 WARN_ON(mnt_get_writers(mnt)); 1423 if (unlikely(mnt->mnt_pins.first)) 1424 mnt_pin_kill(mnt); 1425 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1426 hlist_del(&m->mnt_umount); 1427 mntput(&m->mnt); 1428 } 1429 fsnotify_vfsmount_delete(&mnt->mnt); 1430 dput(mnt->mnt.mnt_root); 1431 deactivate_super(mnt->mnt.mnt_sb); 1432 mnt_free_id(mnt); 1433 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1434 } 1435 1436 static void __cleanup_mnt(struct rcu_head *head) 1437 { 1438 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1439 } 1440 1441 static LLIST_HEAD(delayed_mntput_list); 1442 static void delayed_mntput(struct work_struct *unused) 1443 { 1444 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1445 struct mount *m, *t; 1446 1447 llist_for_each_entry_safe(m, t, node, mnt_llist) 1448 cleanup_mnt(m); 1449 } 1450 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1451 1452 static void mntput_no_expire(struct mount *mnt) 1453 { 1454 LIST_HEAD(list); 1455 int count; 1456 1457 rcu_read_lock(); 1458 if (likely(READ_ONCE(mnt->mnt_ns))) { 1459 /* 1460 * Since we don't do lock_mount_hash() here, 1461 * ->mnt_ns can change under us. However, if it's 1462 * non-NULL, then there's a reference that won't 1463 * be dropped until after an RCU delay done after 1464 * turning ->mnt_ns NULL. So if we observe it 1465 * non-NULL under rcu_read_lock(), the reference 1466 * we are dropping is not the final one. 1467 */ 1468 mnt_add_count(mnt, -1); 1469 rcu_read_unlock(); 1470 return; 1471 } 1472 lock_mount_hash(); 1473 /* 1474 * make sure that if __legitimize_mnt() has not seen us grab 1475 * mount_lock, we'll see their refcount increment here. 1476 */ 1477 smp_mb(); 1478 mnt_add_count(mnt, -1); 1479 count = mnt_get_count(mnt); 1480 if (count != 0) { 1481 WARN_ON(count < 0); 1482 rcu_read_unlock(); 1483 unlock_mount_hash(); 1484 return; 1485 } 1486 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1487 rcu_read_unlock(); 1488 unlock_mount_hash(); 1489 return; 1490 } 1491 mnt->mnt.mnt_flags |= MNT_DOOMED; 1492 rcu_read_unlock(); 1493 1494 list_del(&mnt->mnt_instance); 1495 1496 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1497 struct mount *p, *tmp; 1498 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1499 __put_mountpoint(unhash_mnt(p), &list); 1500 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1501 } 1502 } 1503 unlock_mount_hash(); 1504 shrink_dentry_list(&list); 1505 1506 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1507 struct task_struct *task = current; 1508 if (likely(!(task->flags & PF_KTHREAD))) { 1509 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1510 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1511 return; 1512 } 1513 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1514 schedule_delayed_work(&delayed_mntput_work, 1); 1515 return; 1516 } 1517 cleanup_mnt(mnt); 1518 } 1519 1520 void mntput(struct vfsmount *mnt) 1521 { 1522 if (mnt) { 1523 struct mount *m = real_mount(mnt); 1524 /* avoid cacheline pingpong */ 1525 if (unlikely(m->mnt_expiry_mark)) 1526 WRITE_ONCE(m->mnt_expiry_mark, 0); 1527 mntput_no_expire(m); 1528 } 1529 } 1530 EXPORT_SYMBOL(mntput); 1531 1532 struct vfsmount *mntget(struct vfsmount *mnt) 1533 { 1534 if (mnt) 1535 mnt_add_count(real_mount(mnt), 1); 1536 return mnt; 1537 } 1538 EXPORT_SYMBOL(mntget); 1539 1540 /* 1541 * Make a mount point inaccessible to new lookups. 1542 * Because there may still be current users, the caller MUST WAIT 1543 * for an RCU grace period before destroying the mount point. 1544 */ 1545 void mnt_make_shortterm(struct vfsmount *mnt) 1546 { 1547 if (mnt) 1548 real_mount(mnt)->mnt_ns = NULL; 1549 } 1550 1551 /** 1552 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1553 * @path: path to check 1554 * 1555 * d_mountpoint() can only be used reliably to establish if a dentry is 1556 * not mounted in any namespace and that common case is handled inline. 1557 * d_mountpoint() isn't aware of the possibility there may be multiple 1558 * mounts using a given dentry in a different namespace. This function 1559 * checks if the passed in path is a mountpoint rather than the dentry 1560 * alone. 1561 */ 1562 bool path_is_mountpoint(const struct path *path) 1563 { 1564 unsigned seq; 1565 bool res; 1566 1567 if (!d_mountpoint(path->dentry)) 1568 return false; 1569 1570 rcu_read_lock(); 1571 do { 1572 seq = read_seqbegin(&mount_lock); 1573 res = __path_is_mountpoint(path); 1574 } while (read_seqretry(&mount_lock, seq)); 1575 rcu_read_unlock(); 1576 1577 return res; 1578 } 1579 EXPORT_SYMBOL(path_is_mountpoint); 1580 1581 struct vfsmount *mnt_clone_internal(const struct path *path) 1582 { 1583 struct mount *p; 1584 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1585 if (IS_ERR(p)) 1586 return ERR_CAST(p); 1587 p->mnt.mnt_flags |= MNT_INTERNAL; 1588 return &p->mnt; 1589 } 1590 1591 /* 1592 * Returns the mount which either has the specified mnt_id, or has the next 1593 * smallest id afer the specified one. 1594 */ 1595 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id) 1596 { 1597 struct rb_node *node = ns->mounts.rb_node; 1598 struct mount *ret = NULL; 1599 1600 while (node) { 1601 struct mount *m = node_to_mount(node); 1602 1603 if (mnt_id <= m->mnt_id_unique) { 1604 ret = node_to_mount(node); 1605 if (mnt_id == m->mnt_id_unique) 1606 break; 1607 node = node->rb_left; 1608 } else { 1609 node = node->rb_right; 1610 } 1611 } 1612 return ret; 1613 } 1614 1615 /* 1616 * Returns the mount which either has the specified mnt_id, or has the next 1617 * greater id before the specified one. 1618 */ 1619 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id) 1620 { 1621 struct rb_node *node = ns->mounts.rb_node; 1622 struct mount *ret = NULL; 1623 1624 while (node) { 1625 struct mount *m = node_to_mount(node); 1626 1627 if (mnt_id >= m->mnt_id_unique) { 1628 ret = node_to_mount(node); 1629 if (mnt_id == m->mnt_id_unique) 1630 break; 1631 node = node->rb_right; 1632 } else { 1633 node = node->rb_left; 1634 } 1635 } 1636 return ret; 1637 } 1638 1639 #ifdef CONFIG_PROC_FS 1640 1641 /* iterator; we want it to have access to namespace_sem, thus here... */ 1642 static void *m_start(struct seq_file *m, loff_t *pos) 1643 { 1644 struct proc_mounts *p = m->private; 1645 1646 down_read(&namespace_sem); 1647 1648 return mnt_find_id_at(p->ns, *pos); 1649 } 1650 1651 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1652 { 1653 struct mount *next = NULL, *mnt = v; 1654 struct rb_node *node = rb_next(&mnt->mnt_node); 1655 1656 ++*pos; 1657 if (node) { 1658 next = node_to_mount(node); 1659 *pos = next->mnt_id_unique; 1660 } 1661 return next; 1662 } 1663 1664 static void m_stop(struct seq_file *m, void *v) 1665 { 1666 up_read(&namespace_sem); 1667 } 1668 1669 static int m_show(struct seq_file *m, void *v) 1670 { 1671 struct proc_mounts *p = m->private; 1672 struct mount *r = v; 1673 return p->show(m, &r->mnt); 1674 } 1675 1676 const struct seq_operations mounts_op = { 1677 .start = m_start, 1678 .next = m_next, 1679 .stop = m_stop, 1680 .show = m_show, 1681 }; 1682 1683 #endif /* CONFIG_PROC_FS */ 1684 1685 /** 1686 * may_umount_tree - check if a mount tree is busy 1687 * @m: root of mount tree 1688 * 1689 * This is called to check if a tree of mounts has any 1690 * open files, pwds, chroots or sub mounts that are 1691 * busy. 1692 */ 1693 int may_umount_tree(struct vfsmount *m) 1694 { 1695 struct mount *mnt = real_mount(m); 1696 int actual_refs = 0; 1697 int minimum_refs = 0; 1698 struct mount *p; 1699 BUG_ON(!m); 1700 1701 /* write lock needed for mnt_get_count */ 1702 lock_mount_hash(); 1703 for (p = mnt; p; p = next_mnt(p, mnt)) { 1704 actual_refs += mnt_get_count(p); 1705 minimum_refs += 2; 1706 } 1707 unlock_mount_hash(); 1708 1709 if (actual_refs > minimum_refs) 1710 return 0; 1711 1712 return 1; 1713 } 1714 1715 EXPORT_SYMBOL(may_umount_tree); 1716 1717 /** 1718 * may_umount - check if a mount point is busy 1719 * @mnt: root of mount 1720 * 1721 * This is called to check if a mount point has any 1722 * open files, pwds, chroots or sub mounts. If the 1723 * mount has sub mounts this will return busy 1724 * regardless of whether the sub mounts are busy. 1725 * 1726 * Doesn't take quota and stuff into account. IOW, in some cases it will 1727 * give false negatives. The main reason why it's here is that we need 1728 * a non-destructive way to look for easily umountable filesystems. 1729 */ 1730 int may_umount(struct vfsmount *mnt) 1731 { 1732 int ret = 1; 1733 down_read(&namespace_sem); 1734 lock_mount_hash(); 1735 if (propagate_mount_busy(real_mount(mnt), 2)) 1736 ret = 0; 1737 unlock_mount_hash(); 1738 up_read(&namespace_sem); 1739 return ret; 1740 } 1741 1742 EXPORT_SYMBOL(may_umount); 1743 1744 #ifdef CONFIG_FSNOTIFY 1745 static void mnt_notify(struct mount *p) 1746 { 1747 if (!p->prev_ns && p->mnt_ns) { 1748 fsnotify_mnt_attach(p->mnt_ns, &p->mnt); 1749 } else if (p->prev_ns && !p->mnt_ns) { 1750 fsnotify_mnt_detach(p->prev_ns, &p->mnt); 1751 } else if (p->prev_ns == p->mnt_ns) { 1752 fsnotify_mnt_move(p->mnt_ns, &p->mnt); 1753 } else { 1754 fsnotify_mnt_detach(p->prev_ns, &p->mnt); 1755 fsnotify_mnt_attach(p->mnt_ns, &p->mnt); 1756 } 1757 p->prev_ns = p->mnt_ns; 1758 } 1759 1760 static void notify_mnt_list(void) 1761 { 1762 struct mount *m, *tmp; 1763 /* 1764 * Notify about mounts that were added/reparented/detached/remain 1765 * connected after unmount. 1766 */ 1767 list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) { 1768 mnt_notify(m); 1769 list_del_init(&m->to_notify); 1770 } 1771 } 1772 1773 static bool need_notify_mnt_list(void) 1774 { 1775 return !list_empty(¬ify_list); 1776 } 1777 #else 1778 static void notify_mnt_list(void) 1779 { 1780 } 1781 1782 static bool need_notify_mnt_list(void) 1783 { 1784 return false; 1785 } 1786 #endif 1787 1788 static void namespace_unlock(void) 1789 { 1790 struct hlist_head head; 1791 struct hlist_node *p; 1792 struct mount *m; 1793 LIST_HEAD(list); 1794 1795 hlist_move_list(&unmounted, &head); 1796 list_splice_init(&ex_mountpoints, &list); 1797 1798 if (need_notify_mnt_list()) { 1799 /* 1800 * No point blocking out concurrent readers while notifications 1801 * are sent. This will also allow statmount()/listmount() to run 1802 * concurrently. 1803 */ 1804 downgrade_write(&namespace_sem); 1805 notify_mnt_list(); 1806 up_read(&namespace_sem); 1807 } else { 1808 up_write(&namespace_sem); 1809 } 1810 1811 shrink_dentry_list(&list); 1812 1813 if (likely(hlist_empty(&head))) 1814 return; 1815 1816 synchronize_rcu_expedited(); 1817 1818 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1819 hlist_del(&m->mnt_umount); 1820 mntput(&m->mnt); 1821 } 1822 } 1823 1824 static inline void namespace_lock(void) 1825 { 1826 down_write(&namespace_sem); 1827 } 1828 1829 DEFINE_GUARD(namespace_lock, struct rw_semaphore *, namespace_lock(), namespace_unlock()) 1830 1831 enum umount_tree_flags { 1832 UMOUNT_SYNC = 1, 1833 UMOUNT_PROPAGATE = 2, 1834 UMOUNT_CONNECTED = 4, 1835 }; 1836 1837 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1838 { 1839 /* Leaving mounts connected is only valid for lazy umounts */ 1840 if (how & UMOUNT_SYNC) 1841 return true; 1842 1843 /* A mount without a parent has nothing to be connected to */ 1844 if (!mnt_has_parent(mnt)) 1845 return true; 1846 1847 /* Because the reference counting rules change when mounts are 1848 * unmounted and connected, umounted mounts may not be 1849 * connected to mounted mounts. 1850 */ 1851 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1852 return true; 1853 1854 /* Has it been requested that the mount remain connected? */ 1855 if (how & UMOUNT_CONNECTED) 1856 return false; 1857 1858 /* Is the mount locked such that it needs to remain connected? */ 1859 if (IS_MNT_LOCKED(mnt)) 1860 return false; 1861 1862 /* By default disconnect the mount */ 1863 return true; 1864 } 1865 1866 /* 1867 * mount_lock must be held 1868 * namespace_sem must be held for write 1869 */ 1870 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1871 { 1872 LIST_HEAD(tmp_list); 1873 struct mount *p; 1874 1875 if (how & UMOUNT_PROPAGATE) 1876 propagate_mount_unlock(mnt); 1877 1878 /* Gather the mounts to umount */ 1879 for (p = mnt; p; p = next_mnt(p, mnt)) { 1880 p->mnt.mnt_flags |= MNT_UMOUNT; 1881 if (mnt_ns_attached(p)) 1882 move_from_ns(p, &tmp_list); 1883 else 1884 list_move(&p->mnt_list, &tmp_list); 1885 } 1886 1887 /* Hide the mounts from mnt_mounts */ 1888 list_for_each_entry(p, &tmp_list, mnt_list) { 1889 list_del_init(&p->mnt_child); 1890 } 1891 1892 /* Add propagated mounts to the tmp_list */ 1893 if (how & UMOUNT_PROPAGATE) 1894 propagate_umount(&tmp_list); 1895 1896 while (!list_empty(&tmp_list)) { 1897 struct mnt_namespace *ns; 1898 bool disconnect; 1899 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1900 list_del_init(&p->mnt_expire); 1901 list_del_init(&p->mnt_list); 1902 ns = p->mnt_ns; 1903 if (ns) { 1904 ns->nr_mounts--; 1905 __touch_mnt_namespace(ns); 1906 } 1907 p->mnt_ns = NULL; 1908 if (how & UMOUNT_SYNC) 1909 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1910 1911 disconnect = disconnect_mount(p, how); 1912 if (mnt_has_parent(p)) { 1913 mnt_add_count(p->mnt_parent, -1); 1914 if (!disconnect) { 1915 /* Don't forget about p */ 1916 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1917 } else { 1918 umount_mnt(p); 1919 } 1920 } 1921 change_mnt_propagation(p, MS_PRIVATE); 1922 if (disconnect) 1923 hlist_add_head(&p->mnt_umount, &unmounted); 1924 1925 /* 1926 * At this point p->mnt_ns is NULL, notification will be queued 1927 * only if 1928 * 1929 * - p->prev_ns is non-NULL *and* 1930 * - p->prev_ns->n_fsnotify_marks is non-NULL 1931 * 1932 * This will preclude queuing the mount if this is a cleanup 1933 * after a failed copy_tree() or destruction of an anonymous 1934 * namespace, etc. 1935 */ 1936 mnt_notify_add(p); 1937 } 1938 } 1939 1940 static void shrink_submounts(struct mount *mnt); 1941 1942 static int do_umount_root(struct super_block *sb) 1943 { 1944 int ret = 0; 1945 1946 down_write(&sb->s_umount); 1947 if (!sb_rdonly(sb)) { 1948 struct fs_context *fc; 1949 1950 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1951 SB_RDONLY); 1952 if (IS_ERR(fc)) { 1953 ret = PTR_ERR(fc); 1954 } else { 1955 ret = parse_monolithic_mount_data(fc, NULL); 1956 if (!ret) 1957 ret = reconfigure_super(fc); 1958 put_fs_context(fc); 1959 } 1960 } 1961 up_write(&sb->s_umount); 1962 return ret; 1963 } 1964 1965 static int do_umount(struct mount *mnt, int flags) 1966 { 1967 struct super_block *sb = mnt->mnt.mnt_sb; 1968 int retval; 1969 1970 retval = security_sb_umount(&mnt->mnt, flags); 1971 if (retval) 1972 return retval; 1973 1974 /* 1975 * Allow userspace to request a mountpoint be expired rather than 1976 * unmounting unconditionally. Unmount only happens if: 1977 * (1) the mark is already set (the mark is cleared by mntput()) 1978 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1979 */ 1980 if (flags & MNT_EXPIRE) { 1981 if (&mnt->mnt == current->fs->root.mnt || 1982 flags & (MNT_FORCE | MNT_DETACH)) 1983 return -EINVAL; 1984 1985 /* 1986 * probably don't strictly need the lock here if we examined 1987 * all race cases, but it's a slowpath. 1988 */ 1989 lock_mount_hash(); 1990 if (mnt_get_count(mnt) != 2) { 1991 unlock_mount_hash(); 1992 return -EBUSY; 1993 } 1994 unlock_mount_hash(); 1995 1996 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1997 return -EAGAIN; 1998 } 1999 2000 /* 2001 * If we may have to abort operations to get out of this 2002 * mount, and they will themselves hold resources we must 2003 * allow the fs to do things. In the Unix tradition of 2004 * 'Gee thats tricky lets do it in userspace' the umount_begin 2005 * might fail to complete on the first run through as other tasks 2006 * must return, and the like. Thats for the mount program to worry 2007 * about for the moment. 2008 */ 2009 2010 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 2011 sb->s_op->umount_begin(sb); 2012 } 2013 2014 /* 2015 * No sense to grab the lock for this test, but test itself looks 2016 * somewhat bogus. Suggestions for better replacement? 2017 * Ho-hum... In principle, we might treat that as umount + switch 2018 * to rootfs. GC would eventually take care of the old vfsmount. 2019 * Actually it makes sense, especially if rootfs would contain a 2020 * /reboot - static binary that would close all descriptors and 2021 * call reboot(9). Then init(8) could umount root and exec /reboot. 2022 */ 2023 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 2024 /* 2025 * Special case for "unmounting" root ... 2026 * we just try to remount it readonly. 2027 */ 2028 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 2029 return -EPERM; 2030 return do_umount_root(sb); 2031 } 2032 2033 namespace_lock(); 2034 lock_mount_hash(); 2035 2036 /* Recheck MNT_LOCKED with the locks held */ 2037 retval = -EINVAL; 2038 if (mnt->mnt.mnt_flags & MNT_LOCKED) 2039 goto out; 2040 2041 event++; 2042 if (flags & MNT_DETACH) { 2043 if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list)) 2044 umount_tree(mnt, UMOUNT_PROPAGATE); 2045 retval = 0; 2046 } else { 2047 smp_mb(); // paired with __legitimize_mnt() 2048 shrink_submounts(mnt); 2049 retval = -EBUSY; 2050 if (!propagate_mount_busy(mnt, 2)) { 2051 if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list)) 2052 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2053 retval = 0; 2054 } 2055 } 2056 out: 2057 unlock_mount_hash(); 2058 namespace_unlock(); 2059 return retval; 2060 } 2061 2062 /* 2063 * __detach_mounts - lazily unmount all mounts on the specified dentry 2064 * 2065 * During unlink, rmdir, and d_drop it is possible to loose the path 2066 * to an existing mountpoint, and wind up leaking the mount. 2067 * detach_mounts allows lazily unmounting those mounts instead of 2068 * leaking them. 2069 * 2070 * The caller may hold dentry->d_inode->i_mutex. 2071 */ 2072 void __detach_mounts(struct dentry *dentry) 2073 { 2074 struct mountpoint *mp; 2075 struct mount *mnt; 2076 2077 namespace_lock(); 2078 lock_mount_hash(); 2079 mp = lookup_mountpoint(dentry); 2080 if (!mp) 2081 goto out_unlock; 2082 2083 event++; 2084 while (!hlist_empty(&mp->m_list)) { 2085 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 2086 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 2087 umount_mnt(mnt); 2088 hlist_add_head(&mnt->mnt_umount, &unmounted); 2089 } 2090 else umount_tree(mnt, UMOUNT_CONNECTED); 2091 } 2092 put_mountpoint(mp); 2093 out_unlock: 2094 unlock_mount_hash(); 2095 namespace_unlock(); 2096 } 2097 2098 /* 2099 * Is the caller allowed to modify his namespace? 2100 */ 2101 bool may_mount(void) 2102 { 2103 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 2104 } 2105 2106 static void warn_mandlock(void) 2107 { 2108 pr_warn_once("=======================================================\n" 2109 "WARNING: The mand mount option has been deprecated and\n" 2110 " and is ignored by this kernel. Remove the mand\n" 2111 " option from the mount to silence this warning.\n" 2112 "=======================================================\n"); 2113 } 2114 2115 static int can_umount(const struct path *path, int flags) 2116 { 2117 struct mount *mnt = real_mount(path->mnt); 2118 struct super_block *sb = path->dentry->d_sb; 2119 2120 if (!may_mount()) 2121 return -EPERM; 2122 if (!path_mounted(path)) 2123 return -EINVAL; 2124 if (!check_mnt(mnt)) 2125 return -EINVAL; 2126 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 2127 return -EINVAL; 2128 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 2129 return -EPERM; 2130 return 0; 2131 } 2132 2133 // caller is responsible for flags being sane 2134 int path_umount(struct path *path, int flags) 2135 { 2136 struct mount *mnt = real_mount(path->mnt); 2137 int ret; 2138 2139 ret = can_umount(path, flags); 2140 if (!ret) 2141 ret = do_umount(mnt, flags); 2142 2143 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 2144 dput(path->dentry); 2145 mntput_no_expire(mnt); 2146 return ret; 2147 } 2148 2149 static int ksys_umount(char __user *name, int flags) 2150 { 2151 int lookup_flags = LOOKUP_MOUNTPOINT; 2152 struct path path; 2153 int ret; 2154 2155 // basic validity checks done first 2156 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 2157 return -EINVAL; 2158 2159 if (!(flags & UMOUNT_NOFOLLOW)) 2160 lookup_flags |= LOOKUP_FOLLOW; 2161 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 2162 if (ret) 2163 return ret; 2164 return path_umount(&path, flags); 2165 } 2166 2167 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 2168 { 2169 return ksys_umount(name, flags); 2170 } 2171 2172 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 2173 2174 /* 2175 * The 2.0 compatible umount. No flags. 2176 */ 2177 SYSCALL_DEFINE1(oldumount, char __user *, name) 2178 { 2179 return ksys_umount(name, 0); 2180 } 2181 2182 #endif 2183 2184 static bool is_mnt_ns_file(struct dentry *dentry) 2185 { 2186 struct ns_common *ns; 2187 2188 /* Is this a proxy for a mount namespace? */ 2189 if (dentry->d_op != &ns_dentry_operations) 2190 return false; 2191 2192 ns = d_inode(dentry)->i_private; 2193 2194 return ns->ops == &mntns_operations; 2195 } 2196 2197 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 2198 { 2199 return &mnt->ns; 2200 } 2201 2202 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous) 2203 { 2204 guard(rcu)(); 2205 2206 for (;;) { 2207 struct list_head *list; 2208 2209 if (previous) 2210 list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list)); 2211 else 2212 list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list)); 2213 if (list_is_head(list, &mnt_ns_list)) 2214 return ERR_PTR(-ENOENT); 2215 2216 mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list); 2217 2218 /* 2219 * The last passive reference count is put with RCU 2220 * delay so accessing the mount namespace is not just 2221 * safe but all relevant members are still valid. 2222 */ 2223 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN)) 2224 continue; 2225 2226 /* 2227 * We need an active reference count as we're persisting 2228 * the mount namespace and it might already be on its 2229 * deathbed. 2230 */ 2231 if (!refcount_inc_not_zero(&mntns->ns.count)) 2232 continue; 2233 2234 return mntns; 2235 } 2236 } 2237 2238 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry) 2239 { 2240 if (!is_mnt_ns_file(dentry)) 2241 return NULL; 2242 2243 return to_mnt_ns(get_proc_ns(dentry->d_inode)); 2244 } 2245 2246 static bool mnt_ns_loop(struct dentry *dentry) 2247 { 2248 /* Could bind mounting the mount namespace inode cause a 2249 * mount namespace loop? 2250 */ 2251 struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry); 2252 2253 if (!mnt_ns) 2254 return false; 2255 2256 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 2257 } 2258 2259 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry, 2260 int flag) 2261 { 2262 struct mount *res, *src_parent, *src_root_child, *src_mnt, 2263 *dst_parent, *dst_mnt; 2264 2265 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root)) 2266 return ERR_PTR(-EINVAL); 2267 2268 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 2269 return ERR_PTR(-EINVAL); 2270 2271 res = dst_mnt = clone_mnt(src_root, dentry, flag); 2272 if (IS_ERR(dst_mnt)) 2273 return dst_mnt; 2274 2275 src_parent = src_root; 2276 dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint; 2277 2278 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) { 2279 if (!is_subdir(src_root_child->mnt_mountpoint, dentry)) 2280 continue; 2281 2282 for (src_mnt = src_root_child; src_mnt; 2283 src_mnt = next_mnt(src_mnt, src_root_child)) { 2284 if (!(flag & CL_COPY_UNBINDABLE) && 2285 IS_MNT_UNBINDABLE(src_mnt)) { 2286 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) { 2287 /* Both unbindable and locked. */ 2288 dst_mnt = ERR_PTR(-EPERM); 2289 goto out; 2290 } else { 2291 src_mnt = skip_mnt_tree(src_mnt); 2292 continue; 2293 } 2294 } 2295 if (!(flag & CL_COPY_MNT_NS_FILE) && 2296 is_mnt_ns_file(src_mnt->mnt.mnt_root)) { 2297 src_mnt = skip_mnt_tree(src_mnt); 2298 continue; 2299 } 2300 while (src_parent != src_mnt->mnt_parent) { 2301 src_parent = src_parent->mnt_parent; 2302 dst_mnt = dst_mnt->mnt_parent; 2303 } 2304 2305 src_parent = src_mnt; 2306 dst_parent = dst_mnt; 2307 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag); 2308 if (IS_ERR(dst_mnt)) 2309 goto out; 2310 lock_mount_hash(); 2311 list_add_tail(&dst_mnt->mnt_list, &res->mnt_list); 2312 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false); 2313 unlock_mount_hash(); 2314 } 2315 } 2316 return res; 2317 2318 out: 2319 if (res) { 2320 lock_mount_hash(); 2321 umount_tree(res, UMOUNT_SYNC); 2322 unlock_mount_hash(); 2323 } 2324 return dst_mnt; 2325 } 2326 2327 /* Caller should check returned pointer for errors */ 2328 2329 struct vfsmount *collect_mounts(const struct path *path) 2330 { 2331 struct mount *tree; 2332 namespace_lock(); 2333 if (!check_mnt(real_mount(path->mnt))) 2334 tree = ERR_PTR(-EINVAL); 2335 else 2336 tree = copy_tree(real_mount(path->mnt), path->dentry, 2337 CL_COPY_ALL | CL_PRIVATE); 2338 namespace_unlock(); 2339 if (IS_ERR(tree)) 2340 return ERR_CAST(tree); 2341 return &tree->mnt; 2342 } 2343 2344 static void free_mnt_ns(struct mnt_namespace *); 2345 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 2346 2347 static inline bool must_dissolve(struct mnt_namespace *mnt_ns) 2348 { 2349 /* 2350 * This mount belonged to an anonymous mount namespace 2351 * but was moved to a non-anonymous mount namespace and 2352 * then unmounted. 2353 */ 2354 if (unlikely(!mnt_ns)) 2355 return false; 2356 2357 /* 2358 * This mount belongs to a non-anonymous mount namespace 2359 * and we know that such a mount can never transition to 2360 * an anonymous mount namespace again. 2361 */ 2362 if (!is_anon_ns(mnt_ns)) { 2363 /* 2364 * A detached mount either belongs to an anonymous mount 2365 * namespace or a non-anonymous mount namespace. It 2366 * should never belong to something purely internal. 2367 */ 2368 VFS_WARN_ON_ONCE(mnt_ns == MNT_NS_INTERNAL); 2369 return false; 2370 } 2371 2372 return true; 2373 } 2374 2375 void dissolve_on_fput(struct vfsmount *mnt) 2376 { 2377 struct mnt_namespace *ns; 2378 struct mount *m = real_mount(mnt); 2379 2380 scoped_guard(rcu) { 2381 if (!must_dissolve(READ_ONCE(m->mnt_ns))) 2382 return; 2383 } 2384 2385 scoped_guard(namespace_lock, &namespace_sem) { 2386 ns = m->mnt_ns; 2387 if (!must_dissolve(ns)) 2388 return; 2389 2390 /* 2391 * After must_dissolve() we know that this is a detached 2392 * mount in an anonymous mount namespace. 2393 * 2394 * Now when mnt_has_parent() reports that this mount 2395 * tree has a parent, we know that this anonymous mount 2396 * tree has been moved to another anonymous mount 2397 * namespace. 2398 * 2399 * So when closing this file we cannot unmount the mount 2400 * tree. This will be done when the file referring to 2401 * the root of the anonymous mount namespace will be 2402 * closed (It could already be closed but it would sync 2403 * on @namespace_sem and wait for us to finish.). 2404 */ 2405 if (mnt_has_parent(m)) 2406 return; 2407 2408 lock_mount_hash(); 2409 umount_tree(m, UMOUNT_CONNECTED); 2410 unlock_mount_hash(); 2411 } 2412 2413 /* Make sure we notice when we leak mounts. */ 2414 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns)); 2415 free_mnt_ns(ns); 2416 } 2417 2418 void drop_collected_mounts(struct vfsmount *mnt) 2419 { 2420 namespace_lock(); 2421 lock_mount_hash(); 2422 umount_tree(real_mount(mnt), 0); 2423 unlock_mount_hash(); 2424 namespace_unlock(); 2425 } 2426 2427 bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2428 { 2429 struct mount *child; 2430 2431 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2432 if (!is_subdir(child->mnt_mountpoint, dentry)) 2433 continue; 2434 2435 if (child->mnt.mnt_flags & MNT_LOCKED) 2436 return true; 2437 } 2438 return false; 2439 } 2440 2441 /* 2442 * Check that there aren't references to earlier/same mount namespaces in the 2443 * specified subtree. Such references can act as pins for mount namespaces 2444 * that aren't checked by the mount-cycle checking code, thereby allowing 2445 * cycles to be made. 2446 */ 2447 static bool check_for_nsfs_mounts(struct mount *subtree) 2448 { 2449 struct mount *p; 2450 bool ret = false; 2451 2452 lock_mount_hash(); 2453 for (p = subtree; p; p = next_mnt(p, subtree)) 2454 if (mnt_ns_loop(p->mnt.mnt_root)) 2455 goto out; 2456 2457 ret = true; 2458 out: 2459 unlock_mount_hash(); 2460 return ret; 2461 } 2462 2463 /** 2464 * clone_private_mount - create a private clone of a path 2465 * @path: path to clone 2466 * 2467 * This creates a new vfsmount, which will be the clone of @path. The new mount 2468 * will not be attached anywhere in the namespace and will be private (i.e. 2469 * changes to the originating mount won't be propagated into this). 2470 * 2471 * This assumes caller has called or done the equivalent of may_mount(). 2472 * 2473 * Release with mntput(). 2474 */ 2475 struct vfsmount *clone_private_mount(const struct path *path) 2476 { 2477 struct mount *old_mnt = real_mount(path->mnt); 2478 struct mount *new_mnt; 2479 2480 guard(rwsem_read)(&namespace_sem); 2481 2482 if (IS_MNT_UNBINDABLE(old_mnt)) 2483 return ERR_PTR(-EINVAL); 2484 2485 if (mnt_has_parent(old_mnt)) { 2486 if (!check_mnt(old_mnt)) 2487 return ERR_PTR(-EINVAL); 2488 } else { 2489 if (!is_mounted(&old_mnt->mnt)) 2490 return ERR_PTR(-EINVAL); 2491 2492 /* Make sure this isn't something purely kernel internal. */ 2493 if (!is_anon_ns(old_mnt->mnt_ns)) 2494 return ERR_PTR(-EINVAL); 2495 2496 /* Make sure we don't create mount namespace loops. */ 2497 if (!check_for_nsfs_mounts(old_mnt)) 2498 return ERR_PTR(-EINVAL); 2499 } 2500 2501 if (has_locked_children(old_mnt, path->dentry)) 2502 return ERR_PTR(-EINVAL); 2503 2504 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2505 if (IS_ERR(new_mnt)) 2506 return ERR_PTR(-EINVAL); 2507 2508 /* Longterm mount to be removed by kern_unmount*() */ 2509 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2510 return &new_mnt->mnt; 2511 } 2512 EXPORT_SYMBOL_GPL(clone_private_mount); 2513 2514 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2515 struct vfsmount *root) 2516 { 2517 struct mount *mnt; 2518 int res = f(root, arg); 2519 if (res) 2520 return res; 2521 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2522 res = f(&mnt->mnt, arg); 2523 if (res) 2524 return res; 2525 } 2526 return 0; 2527 } 2528 2529 static void lock_mnt_tree(struct mount *mnt) 2530 { 2531 struct mount *p; 2532 2533 for (p = mnt; p; p = next_mnt(p, mnt)) { 2534 int flags = p->mnt.mnt_flags; 2535 /* Don't allow unprivileged users to change mount flags */ 2536 flags |= MNT_LOCK_ATIME; 2537 2538 if (flags & MNT_READONLY) 2539 flags |= MNT_LOCK_READONLY; 2540 2541 if (flags & MNT_NODEV) 2542 flags |= MNT_LOCK_NODEV; 2543 2544 if (flags & MNT_NOSUID) 2545 flags |= MNT_LOCK_NOSUID; 2546 2547 if (flags & MNT_NOEXEC) 2548 flags |= MNT_LOCK_NOEXEC; 2549 /* Don't allow unprivileged users to reveal what is under a mount */ 2550 if (list_empty(&p->mnt_expire)) 2551 flags |= MNT_LOCKED; 2552 p->mnt.mnt_flags = flags; 2553 } 2554 } 2555 2556 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2557 { 2558 struct mount *p; 2559 2560 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2561 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2562 mnt_release_group_id(p); 2563 } 2564 } 2565 2566 static int invent_group_ids(struct mount *mnt, bool recurse) 2567 { 2568 struct mount *p; 2569 2570 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2571 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2572 int err = mnt_alloc_group_id(p); 2573 if (err) { 2574 cleanup_group_ids(mnt, p); 2575 return err; 2576 } 2577 } 2578 } 2579 2580 return 0; 2581 } 2582 2583 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2584 { 2585 unsigned int max = READ_ONCE(sysctl_mount_max); 2586 unsigned int mounts = 0; 2587 struct mount *p; 2588 2589 if (ns->nr_mounts >= max) 2590 return -ENOSPC; 2591 max -= ns->nr_mounts; 2592 if (ns->pending_mounts >= max) 2593 return -ENOSPC; 2594 max -= ns->pending_mounts; 2595 2596 for (p = mnt; p; p = next_mnt(p, mnt)) 2597 mounts++; 2598 2599 if (mounts > max) 2600 return -ENOSPC; 2601 2602 ns->pending_mounts += mounts; 2603 return 0; 2604 } 2605 2606 enum mnt_tree_flags_t { 2607 MNT_TREE_MOVE = BIT(0), 2608 MNT_TREE_BENEATH = BIT(1), 2609 MNT_TREE_PROPAGATION = BIT(2), 2610 }; 2611 2612 /** 2613 * attach_recursive_mnt - attach a source mount tree 2614 * @source_mnt: mount tree to be attached 2615 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath 2616 * @dest_mp: the mountpoint @source_mnt will be mounted at 2617 * @flags: modify how @source_mnt is supposed to be attached 2618 * 2619 * NOTE: in the table below explains the semantics when a source mount 2620 * of a given type is attached to a destination mount of a given type. 2621 * --------------------------------------------------------------------------- 2622 * | BIND MOUNT OPERATION | 2623 * |************************************************************************** 2624 * | source-->| shared | private | slave | unbindable | 2625 * | dest | | | | | 2626 * | | | | | | | 2627 * | v | | | | | 2628 * |************************************************************************** 2629 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2630 * | | | | | | 2631 * |non-shared| shared (+) | private | slave (*) | invalid | 2632 * *************************************************************************** 2633 * A bind operation clones the source mount and mounts the clone on the 2634 * destination mount. 2635 * 2636 * (++) the cloned mount is propagated to all the mounts in the propagation 2637 * tree of the destination mount and the cloned mount is added to 2638 * the peer group of the source mount. 2639 * (+) the cloned mount is created under the destination mount and is marked 2640 * as shared. The cloned mount is added to the peer group of the source 2641 * mount. 2642 * (+++) the mount is propagated to all the mounts in the propagation tree 2643 * of the destination mount and the cloned mount is made slave 2644 * of the same master as that of the source mount. The cloned mount 2645 * is marked as 'shared and slave'. 2646 * (*) the cloned mount is made a slave of the same master as that of the 2647 * source mount. 2648 * 2649 * --------------------------------------------------------------------------- 2650 * | MOVE MOUNT OPERATION | 2651 * |************************************************************************** 2652 * | source-->| shared | private | slave | unbindable | 2653 * | dest | | | | | 2654 * | | | | | | | 2655 * | v | | | | | 2656 * |************************************************************************** 2657 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2658 * | | | | | | 2659 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2660 * *************************************************************************** 2661 * 2662 * (+) the mount is moved to the destination. And is then propagated to 2663 * all the mounts in the propagation tree of the destination mount. 2664 * (+*) the mount is moved to the destination. 2665 * (+++) the mount is moved to the destination and is then propagated to 2666 * all the mounts belonging to the destination mount's propagation tree. 2667 * the mount is marked as 'shared and slave'. 2668 * (*) the mount continues to be a slave at the new location. 2669 * 2670 * if the source mount is a tree, the operations explained above is 2671 * applied to each mount in the tree. 2672 * Must be called without spinlocks held, since this function can sleep 2673 * in allocations. 2674 * 2675 * Context: The function expects namespace_lock() to be held. 2676 * Return: If @source_mnt was successfully attached 0 is returned. 2677 * Otherwise a negative error code is returned. 2678 */ 2679 static int attach_recursive_mnt(struct mount *source_mnt, 2680 struct mount *top_mnt, 2681 struct mountpoint *dest_mp, 2682 enum mnt_tree_flags_t flags) 2683 { 2684 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2685 HLIST_HEAD(tree_list); 2686 struct mnt_namespace *ns = top_mnt->mnt_ns; 2687 struct mountpoint *smp; 2688 struct mount *child, *dest_mnt, *p; 2689 struct hlist_node *n; 2690 int err = 0; 2691 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH; 2692 2693 /* 2694 * Preallocate a mountpoint in case the new mounts need to be 2695 * mounted beneath mounts on the same mountpoint. 2696 */ 2697 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2698 if (IS_ERR(smp)) 2699 return PTR_ERR(smp); 2700 2701 /* Is there space to add these mounts to the mount namespace? */ 2702 if (!moving) { 2703 err = count_mounts(ns, source_mnt); 2704 if (err) 2705 goto out; 2706 } 2707 2708 if (beneath) 2709 dest_mnt = top_mnt->mnt_parent; 2710 else 2711 dest_mnt = top_mnt; 2712 2713 if (IS_MNT_SHARED(dest_mnt)) { 2714 err = invent_group_ids(source_mnt, true); 2715 if (err) 2716 goto out; 2717 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2718 } 2719 lock_mount_hash(); 2720 if (err) 2721 goto out_cleanup_ids; 2722 2723 if (IS_MNT_SHARED(dest_mnt)) { 2724 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2725 set_mnt_shared(p); 2726 } 2727 2728 if (moving) { 2729 if (beneath) 2730 dest_mp = smp; 2731 unhash_mnt(source_mnt); 2732 attach_mnt(source_mnt, top_mnt, dest_mp, beneath); 2733 mnt_notify_add(source_mnt); 2734 touch_mnt_namespace(source_mnt->mnt_ns); 2735 } else { 2736 if (source_mnt->mnt_ns) { 2737 LIST_HEAD(head); 2738 2739 /* move from anon - the caller will destroy */ 2740 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2741 move_from_ns(p, &head); 2742 list_del_init(&head); 2743 } 2744 if (beneath) 2745 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp); 2746 else 2747 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2748 commit_tree(source_mnt); 2749 } 2750 2751 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2752 struct mount *q; 2753 hlist_del_init(&child->mnt_hash); 2754 q = __lookup_mnt(&child->mnt_parent->mnt, 2755 child->mnt_mountpoint); 2756 if (q) 2757 mnt_change_mountpoint(child, smp, q); 2758 /* Notice when we are propagating across user namespaces */ 2759 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2760 lock_mnt_tree(child); 2761 child->mnt.mnt_flags &= ~MNT_LOCKED; 2762 commit_tree(child); 2763 } 2764 put_mountpoint(smp); 2765 unlock_mount_hash(); 2766 2767 return 0; 2768 2769 out_cleanup_ids: 2770 while (!hlist_empty(&tree_list)) { 2771 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2772 child->mnt_parent->mnt_ns->pending_mounts = 0; 2773 umount_tree(child, UMOUNT_SYNC); 2774 } 2775 unlock_mount_hash(); 2776 cleanup_group_ids(source_mnt, NULL); 2777 out: 2778 ns->pending_mounts = 0; 2779 2780 read_seqlock_excl(&mount_lock); 2781 put_mountpoint(smp); 2782 read_sequnlock_excl(&mount_lock); 2783 2784 return err; 2785 } 2786 2787 /** 2788 * do_lock_mount - lock mount and mountpoint 2789 * @path: target path 2790 * @beneath: whether the intention is to mount beneath @path 2791 * 2792 * Follow the mount stack on @path until the top mount @mnt is found. If 2793 * the initial @path->{mnt,dentry} is a mountpoint lookup the first 2794 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root} 2795 * until nothing is stacked on top of it anymore. 2796 * 2797 * Acquire the inode_lock() on the top mount's ->mnt_root to protect 2798 * against concurrent removal of the new mountpoint from another mount 2799 * namespace. 2800 * 2801 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint 2802 * @mp on @mnt->mnt_parent must be acquired. This protects against a 2803 * concurrent unlink of @mp->mnt_dentry from another mount namespace 2804 * where @mnt doesn't have a child mount mounted @mp. A concurrent 2805 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted 2806 * on top of it for @beneath. 2807 * 2808 * In addition, @beneath needs to make sure that @mnt hasn't been 2809 * unmounted or moved from its current mountpoint in between dropping 2810 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt 2811 * being unmounted would be detected later by e.g., calling 2812 * check_mnt(mnt) in the function it's called from. For the @beneath 2813 * case however, it's useful to detect it directly in do_lock_mount(). 2814 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points 2815 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will 2816 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL. 2817 * 2818 * Return: Either the target mountpoint on the top mount or the top 2819 * mount's mountpoint. 2820 */ 2821 static struct mountpoint *do_lock_mount(struct path *path, bool beneath) 2822 { 2823 struct vfsmount *mnt = path->mnt; 2824 struct dentry *dentry; 2825 struct mountpoint *mp = ERR_PTR(-ENOENT); 2826 struct path under = {}; 2827 2828 for (;;) { 2829 struct mount *m = real_mount(mnt); 2830 2831 if (beneath) { 2832 path_put(&under); 2833 read_seqlock_excl(&mount_lock); 2834 under.mnt = mntget(&m->mnt_parent->mnt); 2835 under.dentry = dget(m->mnt_mountpoint); 2836 read_sequnlock_excl(&mount_lock); 2837 dentry = under.dentry; 2838 } else { 2839 dentry = path->dentry; 2840 } 2841 2842 inode_lock(dentry->d_inode); 2843 namespace_lock(); 2844 2845 if (unlikely(cant_mount(dentry) || !is_mounted(mnt))) 2846 break; // not to be mounted on 2847 2848 if (beneath && unlikely(m->mnt_mountpoint != dentry || 2849 &m->mnt_parent->mnt != under.mnt)) { 2850 namespace_unlock(); 2851 inode_unlock(dentry->d_inode); 2852 continue; // got moved 2853 } 2854 2855 mnt = lookup_mnt(path); 2856 if (unlikely(mnt)) { 2857 namespace_unlock(); 2858 inode_unlock(dentry->d_inode); 2859 path_put(path); 2860 path->mnt = mnt; 2861 path->dentry = dget(mnt->mnt_root); 2862 continue; // got overmounted 2863 } 2864 mp = get_mountpoint(dentry); 2865 if (IS_ERR(mp)) 2866 break; 2867 if (beneath) { 2868 /* 2869 * @under duplicates the references that will stay 2870 * at least until namespace_unlock(), so the path_put() 2871 * below is safe (and OK to do under namespace_lock - 2872 * we are not dropping the final references here). 2873 */ 2874 path_put(&under); 2875 } 2876 return mp; 2877 } 2878 namespace_unlock(); 2879 inode_unlock(dentry->d_inode); 2880 if (beneath) 2881 path_put(&under); 2882 return mp; 2883 } 2884 2885 static inline struct mountpoint *lock_mount(struct path *path) 2886 { 2887 return do_lock_mount(path, false); 2888 } 2889 2890 static void unlock_mount(struct mountpoint *where) 2891 { 2892 inode_unlock(where->m_dentry->d_inode); 2893 read_seqlock_excl(&mount_lock); 2894 put_mountpoint(where); 2895 read_sequnlock_excl(&mount_lock); 2896 namespace_unlock(); 2897 } 2898 2899 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2900 { 2901 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2902 return -EINVAL; 2903 2904 if (d_is_dir(mp->m_dentry) != 2905 d_is_dir(mnt->mnt.mnt_root)) 2906 return -ENOTDIR; 2907 2908 return attach_recursive_mnt(mnt, p, mp, 0); 2909 } 2910 2911 /* 2912 * Sanity check the flags to change_mnt_propagation. 2913 */ 2914 2915 static int flags_to_propagation_type(int ms_flags) 2916 { 2917 int type = ms_flags & ~(MS_REC | MS_SILENT); 2918 2919 /* Fail if any non-propagation flags are set */ 2920 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2921 return 0; 2922 /* Only one propagation flag should be set */ 2923 if (!is_power_of_2(type)) 2924 return 0; 2925 return type; 2926 } 2927 2928 /* 2929 * recursively change the type of the mountpoint. 2930 */ 2931 static int do_change_type(struct path *path, int ms_flags) 2932 { 2933 struct mount *m; 2934 struct mount *mnt = real_mount(path->mnt); 2935 int recurse = ms_flags & MS_REC; 2936 int type; 2937 int err = 0; 2938 2939 if (!path_mounted(path)) 2940 return -EINVAL; 2941 2942 type = flags_to_propagation_type(ms_flags); 2943 if (!type) 2944 return -EINVAL; 2945 2946 namespace_lock(); 2947 if (type == MS_SHARED) { 2948 err = invent_group_ids(mnt, recurse); 2949 if (err) 2950 goto out_unlock; 2951 } 2952 2953 lock_mount_hash(); 2954 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2955 change_mnt_propagation(m, type); 2956 unlock_mount_hash(); 2957 2958 out_unlock: 2959 namespace_unlock(); 2960 return err; 2961 } 2962 2963 /* may_copy_tree() - check if a mount tree can be copied 2964 * @path: path to the mount tree to be copied 2965 * 2966 * This helper checks if the caller may copy the mount tree starting 2967 * from @path->mnt. The caller may copy the mount tree under the 2968 * following circumstances: 2969 * 2970 * (1) The caller is located in the mount namespace of the mount tree. 2971 * This also implies that the mount does not belong to an anonymous 2972 * mount namespace. 2973 * (2) The caller tries to copy an nfs mount referring to a mount 2974 * namespace, i.e., the caller is trying to copy a mount namespace 2975 * entry from nsfs. 2976 * (3) The caller tries to copy a pidfs mount referring to a pidfd. 2977 * (4) The caller is trying to copy a mount tree that belongs to an 2978 * anonymous mount namespace. 2979 * 2980 * For that to be safe, this helper enforces that the origin mount 2981 * namespace the anonymous mount namespace was created from is the 2982 * same as the caller's mount namespace by comparing the sequence 2983 * numbers. 2984 * 2985 * This is not strictly necessary. The current semantics of the new 2986 * mount api enforce that the caller must be located in the same 2987 * mount namespace as the mount tree it interacts with. Using the 2988 * origin sequence number preserves these semantics even for 2989 * anonymous mount namespaces. However, one could envision extending 2990 * the api to directly operate across mount namespace if needed. 2991 * 2992 * The ownership of a non-anonymous mount namespace such as the 2993 * caller's cannot change. 2994 * => We know that the caller's mount namespace is stable. 2995 * 2996 * If the origin sequence number of the anonymous mount namespace is 2997 * the same as the sequence number of the caller's mount namespace. 2998 * => The owning namespaces are the same. 2999 * 3000 * ==> The earlier capability check on the owning namespace of the 3001 * caller's mount namespace ensures that the caller has the 3002 * ability to copy the mount tree. 3003 * 3004 * Returns true if the mount tree can be copied, false otherwise. 3005 */ 3006 static inline bool may_copy_tree(struct path *path) 3007 { 3008 struct mount *mnt = real_mount(path->mnt); 3009 const struct dentry_operations *d_op; 3010 3011 if (check_mnt(mnt)) 3012 return true; 3013 3014 d_op = path->dentry->d_op; 3015 if (d_op == &ns_dentry_operations) 3016 return true; 3017 3018 if (d_op == &pidfs_dentry_operations) 3019 return true; 3020 3021 if (!is_mounted(path->mnt)) 3022 return false; 3023 3024 return check_anonymous_mnt(mnt); 3025 } 3026 3027 3028 static struct mount *__do_loopback(struct path *old_path, int recurse) 3029 { 3030 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 3031 3032 if (IS_MNT_UNBINDABLE(old)) 3033 return mnt; 3034 3035 if (!may_copy_tree(old_path)) 3036 return mnt; 3037 3038 if (!recurse && has_locked_children(old, old_path->dentry)) 3039 return mnt; 3040 3041 if (recurse) 3042 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 3043 else 3044 mnt = clone_mnt(old, old_path->dentry, 0); 3045 3046 if (!IS_ERR(mnt)) 3047 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3048 3049 return mnt; 3050 } 3051 3052 /* 3053 * do loopback mount. 3054 */ 3055 static int do_loopback(struct path *path, const char *old_name, 3056 int recurse) 3057 { 3058 struct path old_path; 3059 struct mount *mnt = NULL, *parent; 3060 struct mountpoint *mp; 3061 int err; 3062 if (!old_name || !*old_name) 3063 return -EINVAL; 3064 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 3065 if (err) 3066 return err; 3067 3068 err = -EINVAL; 3069 if (mnt_ns_loop(old_path.dentry)) 3070 goto out; 3071 3072 mp = lock_mount(path); 3073 if (IS_ERR(mp)) { 3074 err = PTR_ERR(mp); 3075 goto out; 3076 } 3077 3078 parent = real_mount(path->mnt); 3079 if (!check_mnt(parent)) 3080 goto out2; 3081 3082 mnt = __do_loopback(&old_path, recurse); 3083 if (IS_ERR(mnt)) { 3084 err = PTR_ERR(mnt); 3085 goto out2; 3086 } 3087 3088 err = graft_tree(mnt, parent, mp); 3089 if (err) { 3090 lock_mount_hash(); 3091 umount_tree(mnt, UMOUNT_SYNC); 3092 unlock_mount_hash(); 3093 } 3094 out2: 3095 unlock_mount(mp); 3096 out: 3097 path_put(&old_path); 3098 return err; 3099 } 3100 3101 static struct file *open_detached_copy(struct path *path, bool recursive) 3102 { 3103 struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns; 3104 struct user_namespace *user_ns = mnt_ns->user_ns; 3105 struct mount *mnt, *p; 3106 struct file *file; 3107 3108 ns = alloc_mnt_ns(user_ns, true); 3109 if (IS_ERR(ns)) 3110 return ERR_CAST(ns); 3111 3112 namespace_lock(); 3113 3114 /* 3115 * Record the sequence number of the source mount namespace. 3116 * This needs to hold namespace_sem to ensure that the mount 3117 * doesn't get attached. 3118 */ 3119 if (is_mounted(path->mnt)) { 3120 src_mnt_ns = real_mount(path->mnt)->mnt_ns; 3121 if (is_anon_ns(src_mnt_ns)) 3122 ns->seq_origin = src_mnt_ns->seq_origin; 3123 else 3124 ns->seq_origin = src_mnt_ns->seq; 3125 } 3126 3127 mnt = __do_loopback(path, recursive); 3128 if (IS_ERR(mnt)) { 3129 namespace_unlock(); 3130 free_mnt_ns(ns); 3131 return ERR_CAST(mnt); 3132 } 3133 3134 lock_mount_hash(); 3135 for (p = mnt; p; p = next_mnt(p, mnt)) { 3136 mnt_add_to_ns(ns, p); 3137 ns->nr_mounts++; 3138 } 3139 ns->root = mnt; 3140 mntget(&mnt->mnt); 3141 unlock_mount_hash(); 3142 namespace_unlock(); 3143 3144 mntput(path->mnt); 3145 path->mnt = &mnt->mnt; 3146 file = dentry_open(path, O_PATH, current_cred()); 3147 if (IS_ERR(file)) 3148 dissolve_on_fput(path->mnt); 3149 else 3150 file->f_mode |= FMODE_NEED_UNMOUNT; 3151 return file; 3152 } 3153 3154 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags) 3155 { 3156 int ret; 3157 struct path path __free(path_put) = {}; 3158 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 3159 bool detached = flags & OPEN_TREE_CLONE; 3160 3161 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 3162 3163 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 3164 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 3165 OPEN_TREE_CLOEXEC)) 3166 return ERR_PTR(-EINVAL); 3167 3168 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 3169 return ERR_PTR(-EINVAL); 3170 3171 if (flags & AT_NO_AUTOMOUNT) 3172 lookup_flags &= ~LOOKUP_AUTOMOUNT; 3173 if (flags & AT_SYMLINK_NOFOLLOW) 3174 lookup_flags &= ~LOOKUP_FOLLOW; 3175 if (flags & AT_EMPTY_PATH) 3176 lookup_flags |= LOOKUP_EMPTY; 3177 3178 if (detached && !may_mount()) 3179 return ERR_PTR(-EPERM); 3180 3181 ret = user_path_at(dfd, filename, lookup_flags, &path); 3182 if (unlikely(ret)) 3183 return ERR_PTR(ret); 3184 3185 if (detached) 3186 return open_detached_copy(&path, flags & AT_RECURSIVE); 3187 3188 return dentry_open(&path, O_PATH, current_cred()); 3189 } 3190 3191 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 3192 { 3193 int fd; 3194 struct file *file __free(fput) = NULL; 3195 3196 file = vfs_open_tree(dfd, filename, flags); 3197 if (IS_ERR(file)) 3198 return PTR_ERR(file); 3199 3200 fd = get_unused_fd_flags(flags & O_CLOEXEC); 3201 if (fd < 0) 3202 return fd; 3203 3204 fd_install(fd, no_free_ptr(file)); 3205 return fd; 3206 } 3207 3208 /* 3209 * Don't allow locked mount flags to be cleared. 3210 * 3211 * No locks need to be held here while testing the various MNT_LOCK 3212 * flags because those flags can never be cleared once they are set. 3213 */ 3214 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 3215 { 3216 unsigned int fl = mnt->mnt.mnt_flags; 3217 3218 if ((fl & MNT_LOCK_READONLY) && 3219 !(mnt_flags & MNT_READONLY)) 3220 return false; 3221 3222 if ((fl & MNT_LOCK_NODEV) && 3223 !(mnt_flags & MNT_NODEV)) 3224 return false; 3225 3226 if ((fl & MNT_LOCK_NOSUID) && 3227 !(mnt_flags & MNT_NOSUID)) 3228 return false; 3229 3230 if ((fl & MNT_LOCK_NOEXEC) && 3231 !(mnt_flags & MNT_NOEXEC)) 3232 return false; 3233 3234 if ((fl & MNT_LOCK_ATIME) && 3235 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 3236 return false; 3237 3238 return true; 3239 } 3240 3241 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 3242 { 3243 bool readonly_request = (mnt_flags & MNT_READONLY); 3244 3245 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 3246 return 0; 3247 3248 if (readonly_request) 3249 return mnt_make_readonly(mnt); 3250 3251 mnt->mnt.mnt_flags &= ~MNT_READONLY; 3252 return 0; 3253 } 3254 3255 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 3256 { 3257 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 3258 mnt->mnt.mnt_flags = mnt_flags; 3259 touch_mnt_namespace(mnt->mnt_ns); 3260 } 3261 3262 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 3263 { 3264 struct super_block *sb = mnt->mnt_sb; 3265 3266 if (!__mnt_is_readonly(mnt) && 3267 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 3268 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 3269 char *buf, *mntpath; 3270 3271 buf = (char *)__get_free_page(GFP_KERNEL); 3272 if (buf) 3273 mntpath = d_path(mountpoint, buf, PAGE_SIZE); 3274 else 3275 mntpath = ERR_PTR(-ENOMEM); 3276 if (IS_ERR(mntpath)) 3277 mntpath = "(unknown)"; 3278 3279 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", 3280 sb->s_type->name, 3281 is_mounted(mnt) ? "remounted" : "mounted", 3282 mntpath, &sb->s_time_max, 3283 (unsigned long long)sb->s_time_max); 3284 3285 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 3286 if (buf) 3287 free_page((unsigned long)buf); 3288 } 3289 } 3290 3291 /* 3292 * Handle reconfiguration of the mountpoint only without alteration of the 3293 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 3294 * to mount(2). 3295 */ 3296 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 3297 { 3298 struct super_block *sb = path->mnt->mnt_sb; 3299 struct mount *mnt = real_mount(path->mnt); 3300 int ret; 3301 3302 if (!check_mnt(mnt)) 3303 return -EINVAL; 3304 3305 if (!path_mounted(path)) 3306 return -EINVAL; 3307 3308 if (!can_change_locked_flags(mnt, mnt_flags)) 3309 return -EPERM; 3310 3311 /* 3312 * We're only checking whether the superblock is read-only not 3313 * changing it, so only take down_read(&sb->s_umount). 3314 */ 3315 down_read(&sb->s_umount); 3316 lock_mount_hash(); 3317 ret = change_mount_ro_state(mnt, mnt_flags); 3318 if (ret == 0) 3319 set_mount_attributes(mnt, mnt_flags); 3320 unlock_mount_hash(); 3321 up_read(&sb->s_umount); 3322 3323 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3324 3325 return ret; 3326 } 3327 3328 /* 3329 * change filesystem flags. dir should be a physical root of filesystem. 3330 * If you've mounted a non-root directory somewhere and want to do remount 3331 * on it - tough luck. 3332 */ 3333 static int do_remount(struct path *path, int ms_flags, int sb_flags, 3334 int mnt_flags, void *data) 3335 { 3336 int err; 3337 struct super_block *sb = path->mnt->mnt_sb; 3338 struct mount *mnt = real_mount(path->mnt); 3339 struct fs_context *fc; 3340 3341 if (!check_mnt(mnt)) 3342 return -EINVAL; 3343 3344 if (!path_mounted(path)) 3345 return -EINVAL; 3346 3347 if (!can_change_locked_flags(mnt, mnt_flags)) 3348 return -EPERM; 3349 3350 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 3351 if (IS_ERR(fc)) 3352 return PTR_ERR(fc); 3353 3354 /* 3355 * Indicate to the filesystem that the remount request is coming 3356 * from the legacy mount system call. 3357 */ 3358 fc->oldapi = true; 3359 3360 err = parse_monolithic_mount_data(fc, data); 3361 if (!err) { 3362 down_write(&sb->s_umount); 3363 err = -EPERM; 3364 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 3365 err = reconfigure_super(fc); 3366 if (!err) { 3367 lock_mount_hash(); 3368 set_mount_attributes(mnt, mnt_flags); 3369 unlock_mount_hash(); 3370 } 3371 } 3372 up_write(&sb->s_umount); 3373 } 3374 3375 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3376 3377 put_fs_context(fc); 3378 return err; 3379 } 3380 3381 static inline int tree_contains_unbindable(struct mount *mnt) 3382 { 3383 struct mount *p; 3384 for (p = mnt; p; p = next_mnt(p, mnt)) { 3385 if (IS_MNT_UNBINDABLE(p)) 3386 return 1; 3387 } 3388 return 0; 3389 } 3390 3391 static int do_set_group(struct path *from_path, struct path *to_path) 3392 { 3393 struct mount *from, *to; 3394 int err; 3395 3396 from = real_mount(from_path->mnt); 3397 to = real_mount(to_path->mnt); 3398 3399 namespace_lock(); 3400 3401 err = -EINVAL; 3402 /* To and From must be mounted */ 3403 if (!is_mounted(&from->mnt)) 3404 goto out; 3405 if (!is_mounted(&to->mnt)) 3406 goto out; 3407 3408 err = -EPERM; 3409 /* We should be allowed to modify mount namespaces of both mounts */ 3410 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 3411 goto out; 3412 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 3413 goto out; 3414 3415 err = -EINVAL; 3416 /* To and From paths should be mount roots */ 3417 if (!path_mounted(from_path)) 3418 goto out; 3419 if (!path_mounted(to_path)) 3420 goto out; 3421 3422 /* Setting sharing groups is only allowed across same superblock */ 3423 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 3424 goto out; 3425 3426 /* From mount root should be wider than To mount root */ 3427 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 3428 goto out; 3429 3430 /* From mount should not have locked children in place of To's root */ 3431 if (has_locked_children(from, to->mnt.mnt_root)) 3432 goto out; 3433 3434 /* Setting sharing groups is only allowed on private mounts */ 3435 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 3436 goto out; 3437 3438 /* From should not be private */ 3439 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 3440 goto out; 3441 3442 if (IS_MNT_SLAVE(from)) { 3443 struct mount *m = from->mnt_master; 3444 3445 list_add(&to->mnt_slave, &m->mnt_slave_list); 3446 to->mnt_master = m; 3447 } 3448 3449 if (IS_MNT_SHARED(from)) { 3450 to->mnt_group_id = from->mnt_group_id; 3451 list_add(&to->mnt_share, &from->mnt_share); 3452 lock_mount_hash(); 3453 set_mnt_shared(to); 3454 unlock_mount_hash(); 3455 } 3456 3457 err = 0; 3458 out: 3459 namespace_unlock(); 3460 return err; 3461 } 3462 3463 /** 3464 * path_overmounted - check if path is overmounted 3465 * @path: path to check 3466 * 3467 * Check if path is overmounted, i.e., if there's a mount on top of 3468 * @path->mnt with @path->dentry as mountpoint. 3469 * 3470 * Context: This function expects namespace_lock() to be held. 3471 * Return: If path is overmounted true is returned, false if not. 3472 */ 3473 static inline bool path_overmounted(const struct path *path) 3474 { 3475 rcu_read_lock(); 3476 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) { 3477 rcu_read_unlock(); 3478 return true; 3479 } 3480 rcu_read_unlock(); 3481 return false; 3482 } 3483 3484 /** 3485 * can_move_mount_beneath - check that we can mount beneath the top mount 3486 * @from: mount to mount beneath 3487 * @to: mount under which to mount 3488 * @mp: mountpoint of @to 3489 * 3490 * - Make sure that @to->dentry is actually the root of a mount under 3491 * which we can mount another mount. 3492 * - Make sure that nothing can be mounted beneath the caller's current 3493 * root or the rootfs of the namespace. 3494 * - Make sure that the caller can unmount the topmost mount ensuring 3495 * that the caller could reveal the underlying mountpoint. 3496 * - Ensure that nothing has been mounted on top of @from before we 3497 * grabbed @namespace_sem to avoid creating pointless shadow mounts. 3498 * - Prevent mounting beneath a mount if the propagation relationship 3499 * between the source mount, parent mount, and top mount would lead to 3500 * nonsensical mount trees. 3501 * 3502 * Context: This function expects namespace_lock() to be held. 3503 * Return: On success 0, and on error a negative error code is returned. 3504 */ 3505 static int can_move_mount_beneath(const struct path *from, 3506 const struct path *to, 3507 const struct mountpoint *mp) 3508 { 3509 struct mount *mnt_from = real_mount(from->mnt), 3510 *mnt_to = real_mount(to->mnt), 3511 *parent_mnt_to = mnt_to->mnt_parent; 3512 3513 if (!mnt_has_parent(mnt_to)) 3514 return -EINVAL; 3515 3516 if (!path_mounted(to)) 3517 return -EINVAL; 3518 3519 if (IS_MNT_LOCKED(mnt_to)) 3520 return -EINVAL; 3521 3522 /* Avoid creating shadow mounts during mount propagation. */ 3523 if (path_overmounted(from)) 3524 return -EINVAL; 3525 3526 /* 3527 * Mounting beneath the rootfs only makes sense when the 3528 * semantics of pivot_root(".", ".") are used. 3529 */ 3530 if (&mnt_to->mnt == current->fs->root.mnt) 3531 return -EINVAL; 3532 if (parent_mnt_to == current->nsproxy->mnt_ns->root) 3533 return -EINVAL; 3534 3535 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent) 3536 if (p == mnt_to) 3537 return -EINVAL; 3538 3539 /* 3540 * If the parent mount propagates to the child mount this would 3541 * mean mounting @mnt_from on @mnt_to->mnt_parent and then 3542 * propagating a copy @c of @mnt_from on top of @mnt_to. This 3543 * defeats the whole purpose of mounting beneath another mount. 3544 */ 3545 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) 3546 return -EINVAL; 3547 3548 /* 3549 * If @mnt_to->mnt_parent propagates to @mnt_from this would 3550 * mean propagating a copy @c of @mnt_from on top of @mnt_from. 3551 * Afterwards @mnt_from would be mounted on top of 3552 * @mnt_to->mnt_parent and @mnt_to would be unmounted from 3553 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is 3554 * already mounted on @mnt_from, @mnt_to would ultimately be 3555 * remounted on top of @c. Afterwards, @mnt_from would be 3556 * covered by a copy @c of @mnt_from and @c would be covered by 3557 * @mnt_from itself. This defeats the whole purpose of mounting 3558 * @mnt_from beneath @mnt_to. 3559 */ 3560 if (check_mnt(mnt_from) && 3561 propagation_would_overmount(parent_mnt_to, mnt_from, mp)) 3562 return -EINVAL; 3563 3564 return 0; 3565 } 3566 3567 /* may_use_mount() - check if a mount tree can be used 3568 * @mnt: vfsmount to be used 3569 * 3570 * This helper checks if the caller may use the mount tree starting 3571 * from @path->mnt. The caller may use the mount tree under the 3572 * following circumstances: 3573 * 3574 * (1) The caller is located in the mount namespace of the mount tree. 3575 * This also implies that the mount does not belong to an anonymous 3576 * mount namespace. 3577 * (2) The caller is trying to use a mount tree that belongs to an 3578 * anonymous mount namespace. 3579 * 3580 * For that to be safe, this helper enforces that the origin mount 3581 * namespace the anonymous mount namespace was created from is the 3582 * same as the caller's mount namespace by comparing the sequence 3583 * numbers. 3584 * 3585 * The ownership of a non-anonymous mount namespace such as the 3586 * caller's cannot change. 3587 * => We know that the caller's mount namespace is stable. 3588 * 3589 * If the origin sequence number of the anonymous mount namespace is 3590 * the same as the sequence number of the caller's mount namespace. 3591 * => The owning namespaces are the same. 3592 * 3593 * ==> The earlier capability check on the owning namespace of the 3594 * caller's mount namespace ensures that the caller has the 3595 * ability to use the mount tree. 3596 * 3597 * Returns true if the mount tree can be used, false otherwise. 3598 */ 3599 static inline bool may_use_mount(struct mount *mnt) 3600 { 3601 if (check_mnt(mnt)) 3602 return true; 3603 3604 /* 3605 * Make sure that noone unmounted the target path or somehow 3606 * managed to get their hands on something purely kernel 3607 * internal. 3608 */ 3609 if (!is_mounted(&mnt->mnt)) 3610 return false; 3611 3612 return check_anonymous_mnt(mnt); 3613 } 3614 3615 static int do_move_mount(struct path *old_path, 3616 struct path *new_path, enum mnt_tree_flags_t flags) 3617 { 3618 struct mnt_namespace *ns; 3619 struct mount *p; 3620 struct mount *old; 3621 struct mount *parent; 3622 struct mountpoint *mp, *old_mp; 3623 int err; 3624 bool attached, beneath = flags & MNT_TREE_BENEATH; 3625 3626 mp = do_lock_mount(new_path, beneath); 3627 if (IS_ERR(mp)) 3628 return PTR_ERR(mp); 3629 3630 old = real_mount(old_path->mnt); 3631 p = real_mount(new_path->mnt); 3632 parent = old->mnt_parent; 3633 attached = mnt_has_parent(old); 3634 if (attached) 3635 flags |= MNT_TREE_MOVE; 3636 old_mp = old->mnt_mp; 3637 ns = old->mnt_ns; 3638 3639 err = -EINVAL; 3640 if (!may_use_mount(p)) 3641 goto out; 3642 3643 /* The thing moved must be mounted... */ 3644 if (!is_mounted(&old->mnt)) 3645 goto out; 3646 3647 /* ... and either ours or the root of anon namespace */ 3648 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 3649 goto out; 3650 3651 if (is_anon_ns(ns)) { 3652 /* 3653 * Ending up with two files referring to the root of the 3654 * same anonymous mount namespace would cause an error 3655 * as this would mean trying to move the same mount 3656 * twice into the mount tree which would be rejected 3657 * later. But be explicit about it right here. 3658 */ 3659 if ((is_anon_ns(p->mnt_ns) && ns == p->mnt_ns)) 3660 goto out; 3661 3662 /* 3663 * If this is an anonymous mount tree ensure that mount 3664 * propagation can detect mounts that were just 3665 * propagated to the target mount tree so we don't 3666 * propagate onto them. 3667 */ 3668 ns->mntns_flags |= MNTNS_PROPAGATING; 3669 } else if (is_anon_ns(p->mnt_ns)) { 3670 /* 3671 * Don't allow moving an attached mount tree to an 3672 * anonymous mount tree. 3673 */ 3674 goto out; 3675 } 3676 3677 if (old->mnt.mnt_flags & MNT_LOCKED) 3678 goto out; 3679 3680 if (!path_mounted(old_path)) 3681 goto out; 3682 3683 if (d_is_dir(new_path->dentry) != 3684 d_is_dir(old_path->dentry)) 3685 goto out; 3686 /* 3687 * Don't move a mount residing in a shared parent. 3688 */ 3689 if (attached && IS_MNT_SHARED(parent)) 3690 goto out; 3691 3692 if (beneath) { 3693 err = can_move_mount_beneath(old_path, new_path, mp); 3694 if (err) 3695 goto out; 3696 3697 err = -EINVAL; 3698 p = p->mnt_parent; 3699 flags |= MNT_TREE_BENEATH; 3700 } 3701 3702 /* 3703 * Don't move a mount tree containing unbindable mounts to a destination 3704 * mount which is shared. 3705 */ 3706 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 3707 goto out; 3708 err = -ELOOP; 3709 if (!check_for_nsfs_mounts(old)) 3710 goto out; 3711 for (; mnt_has_parent(p); p = p->mnt_parent) 3712 if (p == old) 3713 goto out; 3714 3715 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags); 3716 if (err) 3717 goto out; 3718 3719 /* if the mount is moved, it should no longer be expire 3720 * automatically */ 3721 list_del_init(&old->mnt_expire); 3722 if (attached) 3723 put_mountpoint(old_mp); 3724 out: 3725 if (is_anon_ns(ns)) 3726 ns->mntns_flags &= ~MNTNS_PROPAGATING; 3727 unlock_mount(mp); 3728 if (!err) { 3729 if (attached) { 3730 mntput_no_expire(parent); 3731 } else { 3732 /* Make sure we notice when we leak mounts. */ 3733 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns)); 3734 free_mnt_ns(ns); 3735 } 3736 } 3737 return err; 3738 } 3739 3740 static int do_move_mount_old(struct path *path, const char *old_name) 3741 { 3742 struct path old_path; 3743 int err; 3744 3745 if (!old_name || !*old_name) 3746 return -EINVAL; 3747 3748 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 3749 if (err) 3750 return err; 3751 3752 err = do_move_mount(&old_path, path, 0); 3753 path_put(&old_path); 3754 return err; 3755 } 3756 3757 /* 3758 * add a mount into a namespace's mount tree 3759 */ 3760 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 3761 const struct path *path, int mnt_flags) 3762 { 3763 struct mount *parent = real_mount(path->mnt); 3764 3765 mnt_flags &= ~MNT_INTERNAL_FLAGS; 3766 3767 if (unlikely(!check_mnt(parent))) { 3768 /* that's acceptable only for automounts done in private ns */ 3769 if (!(mnt_flags & MNT_SHRINKABLE)) 3770 return -EINVAL; 3771 /* ... and for those we'd better have mountpoint still alive */ 3772 if (!parent->mnt_ns) 3773 return -EINVAL; 3774 } 3775 3776 /* Refuse the same filesystem on the same mount point */ 3777 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) 3778 return -EBUSY; 3779 3780 if (d_is_symlink(newmnt->mnt.mnt_root)) 3781 return -EINVAL; 3782 3783 newmnt->mnt.mnt_flags = mnt_flags; 3784 return graft_tree(newmnt, parent, mp); 3785 } 3786 3787 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 3788 3789 /* 3790 * Create a new mount using a superblock configuration and request it 3791 * be added to the namespace tree. 3792 */ 3793 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 3794 unsigned int mnt_flags) 3795 { 3796 struct vfsmount *mnt; 3797 struct mountpoint *mp; 3798 struct super_block *sb = fc->root->d_sb; 3799 int error; 3800 3801 error = security_sb_kern_mount(sb); 3802 if (!error && mount_too_revealing(sb, &mnt_flags)) 3803 error = -EPERM; 3804 3805 if (unlikely(error)) { 3806 fc_drop_locked(fc); 3807 return error; 3808 } 3809 3810 up_write(&sb->s_umount); 3811 3812 mnt = vfs_create_mount(fc); 3813 if (IS_ERR(mnt)) 3814 return PTR_ERR(mnt); 3815 3816 mnt_warn_timestamp_expiry(mountpoint, mnt); 3817 3818 mp = lock_mount(mountpoint); 3819 if (IS_ERR(mp)) { 3820 mntput(mnt); 3821 return PTR_ERR(mp); 3822 } 3823 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 3824 unlock_mount(mp); 3825 if (error < 0) 3826 mntput(mnt); 3827 return error; 3828 } 3829 3830 /* 3831 * create a new mount for userspace and request it to be added into the 3832 * namespace's tree 3833 */ 3834 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 3835 int mnt_flags, const char *name, void *data) 3836 { 3837 struct file_system_type *type; 3838 struct fs_context *fc; 3839 const char *subtype = NULL; 3840 int err = 0; 3841 3842 if (!fstype) 3843 return -EINVAL; 3844 3845 type = get_fs_type(fstype); 3846 if (!type) 3847 return -ENODEV; 3848 3849 if (type->fs_flags & FS_HAS_SUBTYPE) { 3850 subtype = strchr(fstype, '.'); 3851 if (subtype) { 3852 subtype++; 3853 if (!*subtype) { 3854 put_filesystem(type); 3855 return -EINVAL; 3856 } 3857 } 3858 } 3859 3860 fc = fs_context_for_mount(type, sb_flags); 3861 put_filesystem(type); 3862 if (IS_ERR(fc)) 3863 return PTR_ERR(fc); 3864 3865 /* 3866 * Indicate to the filesystem that the mount request is coming 3867 * from the legacy mount system call. 3868 */ 3869 fc->oldapi = true; 3870 3871 if (subtype) 3872 err = vfs_parse_fs_string(fc, "subtype", 3873 subtype, strlen(subtype)); 3874 if (!err && name) 3875 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3876 if (!err) 3877 err = parse_monolithic_mount_data(fc, data); 3878 if (!err && !mount_capable(fc)) 3879 err = -EPERM; 3880 if (!err) 3881 err = vfs_get_tree(fc); 3882 if (!err) 3883 err = do_new_mount_fc(fc, path, mnt_flags); 3884 3885 put_fs_context(fc); 3886 return err; 3887 } 3888 3889 int finish_automount(struct vfsmount *m, const struct path *path) 3890 { 3891 struct dentry *dentry = path->dentry; 3892 struct mountpoint *mp; 3893 struct mount *mnt; 3894 int err; 3895 3896 if (!m) 3897 return 0; 3898 if (IS_ERR(m)) 3899 return PTR_ERR(m); 3900 3901 mnt = real_mount(m); 3902 /* The new mount record should have at least 2 refs to prevent it being 3903 * expired before we get a chance to add it 3904 */ 3905 BUG_ON(mnt_get_count(mnt) < 2); 3906 3907 if (m->mnt_sb == path->mnt->mnt_sb && 3908 m->mnt_root == dentry) { 3909 err = -ELOOP; 3910 goto discard; 3911 } 3912 3913 /* 3914 * we don't want to use lock_mount() - in this case finding something 3915 * that overmounts our mountpoint to be means "quitely drop what we've 3916 * got", not "try to mount it on top". 3917 */ 3918 inode_lock(dentry->d_inode); 3919 namespace_lock(); 3920 if (unlikely(cant_mount(dentry))) { 3921 err = -ENOENT; 3922 goto discard_locked; 3923 } 3924 if (path_overmounted(path)) { 3925 err = 0; 3926 goto discard_locked; 3927 } 3928 mp = get_mountpoint(dentry); 3929 if (IS_ERR(mp)) { 3930 err = PTR_ERR(mp); 3931 goto discard_locked; 3932 } 3933 3934 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3935 unlock_mount(mp); 3936 if (unlikely(err)) 3937 goto discard; 3938 mntput(m); 3939 return 0; 3940 3941 discard_locked: 3942 namespace_unlock(); 3943 inode_unlock(dentry->d_inode); 3944 discard: 3945 /* remove m from any expiration list it may be on */ 3946 if (!list_empty(&mnt->mnt_expire)) { 3947 namespace_lock(); 3948 list_del_init(&mnt->mnt_expire); 3949 namespace_unlock(); 3950 } 3951 mntput(m); 3952 mntput(m); 3953 return err; 3954 } 3955 3956 /** 3957 * mnt_set_expiry - Put a mount on an expiration list 3958 * @mnt: The mount to list. 3959 * @expiry_list: The list to add the mount to. 3960 */ 3961 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3962 { 3963 namespace_lock(); 3964 3965 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3966 3967 namespace_unlock(); 3968 } 3969 EXPORT_SYMBOL(mnt_set_expiry); 3970 3971 /* 3972 * process a list of expirable mountpoints with the intent of discarding any 3973 * mountpoints that aren't in use and haven't been touched since last we came 3974 * here 3975 */ 3976 void mark_mounts_for_expiry(struct list_head *mounts) 3977 { 3978 struct mount *mnt, *next; 3979 LIST_HEAD(graveyard); 3980 3981 if (list_empty(mounts)) 3982 return; 3983 3984 namespace_lock(); 3985 lock_mount_hash(); 3986 3987 /* extract from the expiration list every vfsmount that matches the 3988 * following criteria: 3989 * - only referenced by its parent vfsmount 3990 * - still marked for expiry (marked on the last call here; marks are 3991 * cleared by mntput()) 3992 */ 3993 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3994 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3995 propagate_mount_busy(mnt, 1)) 3996 continue; 3997 list_move(&mnt->mnt_expire, &graveyard); 3998 } 3999 while (!list_empty(&graveyard)) { 4000 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 4001 touch_mnt_namespace(mnt->mnt_ns); 4002 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 4003 } 4004 unlock_mount_hash(); 4005 namespace_unlock(); 4006 } 4007 4008 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 4009 4010 /* 4011 * Ripoff of 'select_parent()' 4012 * 4013 * search the list of submounts for a given mountpoint, and move any 4014 * shrinkable submounts to the 'graveyard' list. 4015 */ 4016 static int select_submounts(struct mount *parent, struct list_head *graveyard) 4017 { 4018 struct mount *this_parent = parent; 4019 struct list_head *next; 4020 int found = 0; 4021 4022 repeat: 4023 next = this_parent->mnt_mounts.next; 4024 resume: 4025 while (next != &this_parent->mnt_mounts) { 4026 struct list_head *tmp = next; 4027 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 4028 4029 next = tmp->next; 4030 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 4031 continue; 4032 /* 4033 * Descend a level if the d_mounts list is non-empty. 4034 */ 4035 if (!list_empty(&mnt->mnt_mounts)) { 4036 this_parent = mnt; 4037 goto repeat; 4038 } 4039 4040 if (!propagate_mount_busy(mnt, 1)) { 4041 list_move_tail(&mnt->mnt_expire, graveyard); 4042 found++; 4043 } 4044 } 4045 /* 4046 * All done at this level ... ascend and resume the search 4047 */ 4048 if (this_parent != parent) { 4049 next = this_parent->mnt_child.next; 4050 this_parent = this_parent->mnt_parent; 4051 goto resume; 4052 } 4053 return found; 4054 } 4055 4056 /* 4057 * process a list of expirable mountpoints with the intent of discarding any 4058 * submounts of a specific parent mountpoint 4059 * 4060 * mount_lock must be held for write 4061 */ 4062 static void shrink_submounts(struct mount *mnt) 4063 { 4064 LIST_HEAD(graveyard); 4065 struct mount *m; 4066 4067 /* extract submounts of 'mountpoint' from the expiration list */ 4068 while (select_submounts(mnt, &graveyard)) { 4069 while (!list_empty(&graveyard)) { 4070 m = list_first_entry(&graveyard, struct mount, 4071 mnt_expire); 4072 touch_mnt_namespace(m->mnt_ns); 4073 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 4074 } 4075 } 4076 } 4077 4078 static void *copy_mount_options(const void __user * data) 4079 { 4080 char *copy; 4081 unsigned left, offset; 4082 4083 if (!data) 4084 return NULL; 4085 4086 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 4087 if (!copy) 4088 return ERR_PTR(-ENOMEM); 4089 4090 left = copy_from_user(copy, data, PAGE_SIZE); 4091 4092 /* 4093 * Not all architectures have an exact copy_from_user(). Resort to 4094 * byte at a time. 4095 */ 4096 offset = PAGE_SIZE - left; 4097 while (left) { 4098 char c; 4099 if (get_user(c, (const char __user *)data + offset)) 4100 break; 4101 copy[offset] = c; 4102 left--; 4103 offset++; 4104 } 4105 4106 if (left == PAGE_SIZE) { 4107 kfree(copy); 4108 return ERR_PTR(-EFAULT); 4109 } 4110 4111 return copy; 4112 } 4113 4114 static char *copy_mount_string(const void __user *data) 4115 { 4116 return data ? strndup_user(data, PATH_MAX) : NULL; 4117 } 4118 4119 /* 4120 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 4121 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 4122 * 4123 * data is a (void *) that can point to any structure up to 4124 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 4125 * information (or be NULL). 4126 * 4127 * Pre-0.97 versions of mount() didn't have a flags word. 4128 * When the flags word was introduced its top half was required 4129 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 4130 * Therefore, if this magic number is present, it carries no information 4131 * and must be discarded. 4132 */ 4133 int path_mount(const char *dev_name, struct path *path, 4134 const char *type_page, unsigned long flags, void *data_page) 4135 { 4136 unsigned int mnt_flags = 0, sb_flags; 4137 int ret; 4138 4139 /* Discard magic */ 4140 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 4141 flags &= ~MS_MGC_MSK; 4142 4143 /* Basic sanity checks */ 4144 if (data_page) 4145 ((char *)data_page)[PAGE_SIZE - 1] = 0; 4146 4147 if (flags & MS_NOUSER) 4148 return -EINVAL; 4149 4150 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 4151 if (ret) 4152 return ret; 4153 if (!may_mount()) 4154 return -EPERM; 4155 if (flags & SB_MANDLOCK) 4156 warn_mandlock(); 4157 4158 /* Default to relatime unless overriden */ 4159 if (!(flags & MS_NOATIME)) 4160 mnt_flags |= MNT_RELATIME; 4161 4162 /* Separate the per-mountpoint flags */ 4163 if (flags & MS_NOSUID) 4164 mnt_flags |= MNT_NOSUID; 4165 if (flags & MS_NODEV) 4166 mnt_flags |= MNT_NODEV; 4167 if (flags & MS_NOEXEC) 4168 mnt_flags |= MNT_NOEXEC; 4169 if (flags & MS_NOATIME) 4170 mnt_flags |= MNT_NOATIME; 4171 if (flags & MS_NODIRATIME) 4172 mnt_flags |= MNT_NODIRATIME; 4173 if (flags & MS_STRICTATIME) 4174 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 4175 if (flags & MS_RDONLY) 4176 mnt_flags |= MNT_READONLY; 4177 if (flags & MS_NOSYMFOLLOW) 4178 mnt_flags |= MNT_NOSYMFOLLOW; 4179 4180 /* The default atime for remount is preservation */ 4181 if ((flags & MS_REMOUNT) && 4182 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 4183 MS_STRICTATIME)) == 0)) { 4184 mnt_flags &= ~MNT_ATIME_MASK; 4185 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 4186 } 4187 4188 sb_flags = flags & (SB_RDONLY | 4189 SB_SYNCHRONOUS | 4190 SB_MANDLOCK | 4191 SB_DIRSYNC | 4192 SB_SILENT | 4193 SB_POSIXACL | 4194 SB_LAZYTIME | 4195 SB_I_VERSION); 4196 4197 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 4198 return do_reconfigure_mnt(path, mnt_flags); 4199 if (flags & MS_REMOUNT) 4200 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 4201 if (flags & MS_BIND) 4202 return do_loopback(path, dev_name, flags & MS_REC); 4203 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 4204 return do_change_type(path, flags); 4205 if (flags & MS_MOVE) 4206 return do_move_mount_old(path, dev_name); 4207 4208 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 4209 data_page); 4210 } 4211 4212 int do_mount(const char *dev_name, const char __user *dir_name, 4213 const char *type_page, unsigned long flags, void *data_page) 4214 { 4215 struct path path; 4216 int ret; 4217 4218 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 4219 if (ret) 4220 return ret; 4221 ret = path_mount(dev_name, &path, type_page, flags, data_page); 4222 path_put(&path); 4223 return ret; 4224 } 4225 4226 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 4227 { 4228 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 4229 } 4230 4231 static void dec_mnt_namespaces(struct ucounts *ucounts) 4232 { 4233 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 4234 } 4235 4236 static void free_mnt_ns(struct mnt_namespace *ns) 4237 { 4238 if (!is_anon_ns(ns)) 4239 ns_free_inum(&ns->ns); 4240 dec_mnt_namespaces(ns->ucounts); 4241 mnt_ns_tree_remove(ns); 4242 } 4243 4244 /* 4245 * Assign a sequence number so we can detect when we attempt to bind 4246 * mount a reference to an older mount namespace into the current 4247 * mount namespace, preventing reference counting loops. A 64bit 4248 * number incrementing at 10Ghz will take 12,427 years to wrap which 4249 * is effectively never, so we can ignore the possibility. 4250 */ 4251 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 4252 4253 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 4254 { 4255 struct mnt_namespace *new_ns; 4256 struct ucounts *ucounts; 4257 int ret; 4258 4259 ucounts = inc_mnt_namespaces(user_ns); 4260 if (!ucounts) 4261 return ERR_PTR(-ENOSPC); 4262 4263 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 4264 if (!new_ns) { 4265 dec_mnt_namespaces(ucounts); 4266 return ERR_PTR(-ENOMEM); 4267 } 4268 if (!anon) { 4269 ret = ns_alloc_inum(&new_ns->ns); 4270 if (ret) { 4271 kfree(new_ns); 4272 dec_mnt_namespaces(ucounts); 4273 return ERR_PTR(ret); 4274 } 4275 } 4276 new_ns->ns.ops = &mntns_operations; 4277 if (!anon) 4278 new_ns->seq = atomic64_inc_return(&mnt_ns_seq); 4279 refcount_set(&new_ns->ns.count, 1); 4280 refcount_set(&new_ns->passive, 1); 4281 new_ns->mounts = RB_ROOT; 4282 INIT_LIST_HEAD(&new_ns->mnt_ns_list); 4283 RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node); 4284 init_waitqueue_head(&new_ns->poll); 4285 new_ns->user_ns = get_user_ns(user_ns); 4286 new_ns->ucounts = ucounts; 4287 return new_ns; 4288 } 4289 4290 __latent_entropy 4291 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 4292 struct user_namespace *user_ns, struct fs_struct *new_fs) 4293 { 4294 struct mnt_namespace *new_ns; 4295 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 4296 struct mount *p, *q; 4297 struct mount *old; 4298 struct mount *new; 4299 int copy_flags; 4300 4301 BUG_ON(!ns); 4302 4303 if (likely(!(flags & CLONE_NEWNS))) { 4304 get_mnt_ns(ns); 4305 return ns; 4306 } 4307 4308 old = ns->root; 4309 4310 new_ns = alloc_mnt_ns(user_ns, false); 4311 if (IS_ERR(new_ns)) 4312 return new_ns; 4313 4314 namespace_lock(); 4315 /* First pass: copy the tree topology */ 4316 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 4317 if (user_ns != ns->user_ns) 4318 copy_flags |= CL_SHARED_TO_SLAVE; 4319 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 4320 if (IS_ERR(new)) { 4321 namespace_unlock(); 4322 ns_free_inum(&new_ns->ns); 4323 dec_mnt_namespaces(new_ns->ucounts); 4324 mnt_ns_release(new_ns); 4325 return ERR_CAST(new); 4326 } 4327 if (user_ns != ns->user_ns) { 4328 lock_mount_hash(); 4329 lock_mnt_tree(new); 4330 unlock_mount_hash(); 4331 } 4332 new_ns->root = new; 4333 4334 /* 4335 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 4336 * as belonging to new namespace. We have already acquired a private 4337 * fs_struct, so tsk->fs->lock is not needed. 4338 */ 4339 p = old; 4340 q = new; 4341 while (p) { 4342 mnt_add_to_ns(new_ns, q); 4343 new_ns->nr_mounts++; 4344 if (new_fs) { 4345 if (&p->mnt == new_fs->root.mnt) { 4346 new_fs->root.mnt = mntget(&q->mnt); 4347 rootmnt = &p->mnt; 4348 } 4349 if (&p->mnt == new_fs->pwd.mnt) { 4350 new_fs->pwd.mnt = mntget(&q->mnt); 4351 pwdmnt = &p->mnt; 4352 } 4353 } 4354 p = next_mnt(p, old); 4355 q = next_mnt(q, new); 4356 if (!q) 4357 break; 4358 // an mntns binding we'd skipped? 4359 while (p->mnt.mnt_root != q->mnt.mnt_root) 4360 p = next_mnt(skip_mnt_tree(p), old); 4361 } 4362 namespace_unlock(); 4363 4364 if (rootmnt) 4365 mntput(rootmnt); 4366 if (pwdmnt) 4367 mntput(pwdmnt); 4368 4369 mnt_ns_tree_add(new_ns); 4370 return new_ns; 4371 } 4372 4373 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 4374 { 4375 struct mount *mnt = real_mount(m); 4376 struct mnt_namespace *ns; 4377 struct super_block *s; 4378 struct path path; 4379 int err; 4380 4381 ns = alloc_mnt_ns(&init_user_ns, true); 4382 if (IS_ERR(ns)) { 4383 mntput(m); 4384 return ERR_CAST(ns); 4385 } 4386 ns->root = mnt; 4387 ns->nr_mounts++; 4388 mnt_add_to_ns(ns, mnt); 4389 4390 err = vfs_path_lookup(m->mnt_root, m, 4391 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 4392 4393 put_mnt_ns(ns); 4394 4395 if (err) 4396 return ERR_PTR(err); 4397 4398 /* trade a vfsmount reference for active sb one */ 4399 s = path.mnt->mnt_sb; 4400 atomic_inc(&s->s_active); 4401 mntput(path.mnt); 4402 /* lock the sucker */ 4403 down_write(&s->s_umount); 4404 /* ... and return the root of (sub)tree on it */ 4405 return path.dentry; 4406 } 4407 EXPORT_SYMBOL(mount_subtree); 4408 4409 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 4410 char __user *, type, unsigned long, flags, void __user *, data) 4411 { 4412 int ret; 4413 char *kernel_type; 4414 char *kernel_dev; 4415 void *options; 4416 4417 kernel_type = copy_mount_string(type); 4418 ret = PTR_ERR(kernel_type); 4419 if (IS_ERR(kernel_type)) 4420 goto out_type; 4421 4422 kernel_dev = copy_mount_string(dev_name); 4423 ret = PTR_ERR(kernel_dev); 4424 if (IS_ERR(kernel_dev)) 4425 goto out_dev; 4426 4427 options = copy_mount_options(data); 4428 ret = PTR_ERR(options); 4429 if (IS_ERR(options)) 4430 goto out_data; 4431 4432 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 4433 4434 kfree(options); 4435 out_data: 4436 kfree(kernel_dev); 4437 out_dev: 4438 kfree(kernel_type); 4439 out_type: 4440 return ret; 4441 } 4442 4443 #define FSMOUNT_VALID_FLAGS \ 4444 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 4445 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 4446 MOUNT_ATTR_NOSYMFOLLOW) 4447 4448 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 4449 4450 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 4451 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 4452 4453 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 4454 { 4455 unsigned int mnt_flags = 0; 4456 4457 if (attr_flags & MOUNT_ATTR_RDONLY) 4458 mnt_flags |= MNT_READONLY; 4459 if (attr_flags & MOUNT_ATTR_NOSUID) 4460 mnt_flags |= MNT_NOSUID; 4461 if (attr_flags & MOUNT_ATTR_NODEV) 4462 mnt_flags |= MNT_NODEV; 4463 if (attr_flags & MOUNT_ATTR_NOEXEC) 4464 mnt_flags |= MNT_NOEXEC; 4465 if (attr_flags & MOUNT_ATTR_NODIRATIME) 4466 mnt_flags |= MNT_NODIRATIME; 4467 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 4468 mnt_flags |= MNT_NOSYMFOLLOW; 4469 4470 return mnt_flags; 4471 } 4472 4473 /* 4474 * Create a kernel mount representation for a new, prepared superblock 4475 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 4476 */ 4477 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 4478 unsigned int, attr_flags) 4479 { 4480 struct mnt_namespace *ns; 4481 struct fs_context *fc; 4482 struct file *file; 4483 struct path newmount; 4484 struct mount *mnt; 4485 unsigned int mnt_flags = 0; 4486 long ret; 4487 4488 if (!may_mount()) 4489 return -EPERM; 4490 4491 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 4492 return -EINVAL; 4493 4494 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 4495 return -EINVAL; 4496 4497 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 4498 4499 switch (attr_flags & MOUNT_ATTR__ATIME) { 4500 case MOUNT_ATTR_STRICTATIME: 4501 break; 4502 case MOUNT_ATTR_NOATIME: 4503 mnt_flags |= MNT_NOATIME; 4504 break; 4505 case MOUNT_ATTR_RELATIME: 4506 mnt_flags |= MNT_RELATIME; 4507 break; 4508 default: 4509 return -EINVAL; 4510 } 4511 4512 CLASS(fd, f)(fs_fd); 4513 if (fd_empty(f)) 4514 return -EBADF; 4515 4516 if (fd_file(f)->f_op != &fscontext_fops) 4517 return -EINVAL; 4518 4519 fc = fd_file(f)->private_data; 4520 4521 ret = mutex_lock_interruptible(&fc->uapi_mutex); 4522 if (ret < 0) 4523 return ret; 4524 4525 /* There must be a valid superblock or we can't mount it */ 4526 ret = -EINVAL; 4527 if (!fc->root) 4528 goto err_unlock; 4529 4530 ret = -EPERM; 4531 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 4532 pr_warn("VFS: Mount too revealing\n"); 4533 goto err_unlock; 4534 } 4535 4536 ret = -EBUSY; 4537 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 4538 goto err_unlock; 4539 4540 if (fc->sb_flags & SB_MANDLOCK) 4541 warn_mandlock(); 4542 4543 newmount.mnt = vfs_create_mount(fc); 4544 if (IS_ERR(newmount.mnt)) { 4545 ret = PTR_ERR(newmount.mnt); 4546 goto err_unlock; 4547 } 4548 newmount.dentry = dget(fc->root); 4549 newmount.mnt->mnt_flags = mnt_flags; 4550 4551 /* We've done the mount bit - now move the file context into more or 4552 * less the same state as if we'd done an fspick(). We don't want to 4553 * do any memory allocation or anything like that at this point as we 4554 * don't want to have to handle any errors incurred. 4555 */ 4556 vfs_clean_context(fc); 4557 4558 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 4559 if (IS_ERR(ns)) { 4560 ret = PTR_ERR(ns); 4561 goto err_path; 4562 } 4563 mnt = real_mount(newmount.mnt); 4564 ns->root = mnt; 4565 ns->nr_mounts = 1; 4566 mnt_add_to_ns(ns, mnt); 4567 mntget(newmount.mnt); 4568 4569 /* Attach to an apparent O_PATH fd with a note that we need to unmount 4570 * it, not just simply put it. 4571 */ 4572 file = dentry_open(&newmount, O_PATH, fc->cred); 4573 if (IS_ERR(file)) { 4574 dissolve_on_fput(newmount.mnt); 4575 ret = PTR_ERR(file); 4576 goto err_path; 4577 } 4578 file->f_mode |= FMODE_NEED_UNMOUNT; 4579 4580 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 4581 if (ret >= 0) 4582 fd_install(ret, file); 4583 else 4584 fput(file); 4585 4586 err_path: 4587 path_put(&newmount); 4588 err_unlock: 4589 mutex_unlock(&fc->uapi_mutex); 4590 return ret; 4591 } 4592 4593 static inline int vfs_move_mount(struct path *from_path, struct path *to_path, 4594 enum mnt_tree_flags_t mflags) 4595 { 4596 int ret; 4597 4598 ret = security_move_mount(from_path, to_path); 4599 if (ret) 4600 return ret; 4601 4602 if (mflags & MNT_TREE_PROPAGATION) 4603 return do_set_group(from_path, to_path); 4604 4605 return do_move_mount(from_path, to_path, mflags); 4606 } 4607 4608 /* 4609 * Move a mount from one place to another. In combination with 4610 * fsopen()/fsmount() this is used to install a new mount and in combination 4611 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 4612 * a mount subtree. 4613 * 4614 * Note the flags value is a combination of MOVE_MOUNT_* flags. 4615 */ 4616 SYSCALL_DEFINE5(move_mount, 4617 int, from_dfd, const char __user *, from_pathname, 4618 int, to_dfd, const char __user *, to_pathname, 4619 unsigned int, flags) 4620 { 4621 struct path to_path __free(path_put) = {}; 4622 struct path from_path __free(path_put) = {}; 4623 struct filename *to_name __free(putname) = NULL; 4624 struct filename *from_name __free(putname) = NULL; 4625 unsigned int lflags, uflags; 4626 enum mnt_tree_flags_t mflags = 0; 4627 int ret = 0; 4628 4629 if (!may_mount()) 4630 return -EPERM; 4631 4632 if (flags & ~MOVE_MOUNT__MASK) 4633 return -EINVAL; 4634 4635 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == 4636 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) 4637 return -EINVAL; 4638 4639 if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION; 4640 if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH; 4641 4642 lflags = 0; 4643 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4644 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4645 uflags = 0; 4646 if (flags & MOVE_MOUNT_F_EMPTY_PATH) uflags = AT_EMPTY_PATH; 4647 from_name = getname_maybe_null(from_pathname, uflags); 4648 if (IS_ERR(from_name)) 4649 return PTR_ERR(from_name); 4650 4651 lflags = 0; 4652 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4653 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4654 uflags = 0; 4655 if (flags & MOVE_MOUNT_T_EMPTY_PATH) uflags = AT_EMPTY_PATH; 4656 to_name = getname_maybe_null(to_pathname, uflags); 4657 if (IS_ERR(to_name)) 4658 return PTR_ERR(to_name); 4659 4660 if (!to_name && to_dfd >= 0) { 4661 CLASS(fd_raw, f_to)(to_dfd); 4662 if (fd_empty(f_to)) 4663 return -EBADF; 4664 4665 to_path = fd_file(f_to)->f_path; 4666 path_get(&to_path); 4667 } else { 4668 ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL); 4669 if (ret) 4670 return ret; 4671 } 4672 4673 if (!from_name && from_dfd >= 0) { 4674 CLASS(fd_raw, f_from)(from_dfd); 4675 if (fd_empty(f_from)) 4676 return -EBADF; 4677 4678 return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags); 4679 } 4680 4681 ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL); 4682 if (ret) 4683 return ret; 4684 4685 return vfs_move_mount(&from_path, &to_path, mflags); 4686 } 4687 4688 /* 4689 * Return true if path is reachable from root 4690 * 4691 * namespace_sem or mount_lock is held 4692 */ 4693 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 4694 const struct path *root) 4695 { 4696 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 4697 dentry = mnt->mnt_mountpoint; 4698 mnt = mnt->mnt_parent; 4699 } 4700 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 4701 } 4702 4703 bool path_is_under(const struct path *path1, const struct path *path2) 4704 { 4705 bool res; 4706 read_seqlock_excl(&mount_lock); 4707 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 4708 read_sequnlock_excl(&mount_lock); 4709 return res; 4710 } 4711 EXPORT_SYMBOL(path_is_under); 4712 4713 /* 4714 * pivot_root Semantics: 4715 * Moves the root file system of the current process to the directory put_old, 4716 * makes new_root as the new root file system of the current process, and sets 4717 * root/cwd of all processes which had them on the current root to new_root. 4718 * 4719 * Restrictions: 4720 * The new_root and put_old must be directories, and must not be on the 4721 * same file system as the current process root. The put_old must be 4722 * underneath new_root, i.e. adding a non-zero number of /.. to the string 4723 * pointed to by put_old must yield the same directory as new_root. No other 4724 * file system may be mounted on put_old. After all, new_root is a mountpoint. 4725 * 4726 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 4727 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 4728 * in this situation. 4729 * 4730 * Notes: 4731 * - we don't move root/cwd if they are not at the root (reason: if something 4732 * cared enough to change them, it's probably wrong to force them elsewhere) 4733 * - it's okay to pick a root that isn't the root of a file system, e.g. 4734 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 4735 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 4736 * first. 4737 */ 4738 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 4739 const char __user *, put_old) 4740 { 4741 struct path new, old, root; 4742 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 4743 struct mountpoint *old_mp, *root_mp; 4744 int error; 4745 4746 if (!may_mount()) 4747 return -EPERM; 4748 4749 error = user_path_at(AT_FDCWD, new_root, 4750 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 4751 if (error) 4752 goto out0; 4753 4754 error = user_path_at(AT_FDCWD, put_old, 4755 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 4756 if (error) 4757 goto out1; 4758 4759 error = security_sb_pivotroot(&old, &new); 4760 if (error) 4761 goto out2; 4762 4763 get_fs_root(current->fs, &root); 4764 old_mp = lock_mount(&old); 4765 error = PTR_ERR(old_mp); 4766 if (IS_ERR(old_mp)) 4767 goto out3; 4768 4769 error = -EINVAL; 4770 new_mnt = real_mount(new.mnt); 4771 root_mnt = real_mount(root.mnt); 4772 old_mnt = real_mount(old.mnt); 4773 ex_parent = new_mnt->mnt_parent; 4774 root_parent = root_mnt->mnt_parent; 4775 if (IS_MNT_SHARED(old_mnt) || 4776 IS_MNT_SHARED(ex_parent) || 4777 IS_MNT_SHARED(root_parent)) 4778 goto out4; 4779 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 4780 goto out4; 4781 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 4782 goto out4; 4783 error = -ENOENT; 4784 if (d_unlinked(new.dentry)) 4785 goto out4; 4786 error = -EBUSY; 4787 if (new_mnt == root_mnt || old_mnt == root_mnt) 4788 goto out4; /* loop, on the same file system */ 4789 error = -EINVAL; 4790 if (!path_mounted(&root)) 4791 goto out4; /* not a mountpoint */ 4792 if (!mnt_has_parent(root_mnt)) 4793 goto out4; /* not attached */ 4794 if (!path_mounted(&new)) 4795 goto out4; /* not a mountpoint */ 4796 if (!mnt_has_parent(new_mnt)) 4797 goto out4; /* not attached */ 4798 /* make sure we can reach put_old from new_root */ 4799 if (!is_path_reachable(old_mnt, old.dentry, &new)) 4800 goto out4; 4801 /* make certain new is below the root */ 4802 if (!is_path_reachable(new_mnt, new.dentry, &root)) 4803 goto out4; 4804 lock_mount_hash(); 4805 umount_mnt(new_mnt); 4806 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 4807 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 4808 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 4809 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 4810 } 4811 /* mount old root on put_old */ 4812 attach_mnt(root_mnt, old_mnt, old_mp, false); 4813 /* mount new_root on / */ 4814 attach_mnt(new_mnt, root_parent, root_mp, false); 4815 mnt_add_count(root_parent, -1); 4816 touch_mnt_namespace(current->nsproxy->mnt_ns); 4817 /* A moved mount should not expire automatically */ 4818 list_del_init(&new_mnt->mnt_expire); 4819 put_mountpoint(root_mp); 4820 unlock_mount_hash(); 4821 mnt_notify_add(root_mnt); 4822 mnt_notify_add(new_mnt); 4823 chroot_fs_refs(&root, &new); 4824 error = 0; 4825 out4: 4826 unlock_mount(old_mp); 4827 if (!error) 4828 mntput_no_expire(ex_parent); 4829 out3: 4830 path_put(&root); 4831 out2: 4832 path_put(&old); 4833 out1: 4834 path_put(&new); 4835 out0: 4836 return error; 4837 } 4838 4839 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4840 { 4841 unsigned int flags = mnt->mnt.mnt_flags; 4842 4843 /* flags to clear */ 4844 flags &= ~kattr->attr_clr; 4845 /* flags to raise */ 4846 flags |= kattr->attr_set; 4847 4848 return flags; 4849 } 4850 4851 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4852 { 4853 struct vfsmount *m = &mnt->mnt; 4854 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4855 4856 if (!kattr->mnt_idmap) 4857 return 0; 4858 4859 /* 4860 * Creating an idmapped mount with the filesystem wide idmapping 4861 * doesn't make sense so block that. We don't allow mushy semantics. 4862 */ 4863 if (kattr->mnt_userns == m->mnt_sb->s_user_ns) 4864 return -EINVAL; 4865 4866 /* 4867 * We only allow an mount to change it's idmapping if it has 4868 * never been accessible to userspace. 4869 */ 4870 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m)) 4871 return -EPERM; 4872 4873 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4874 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4875 return -EINVAL; 4876 4877 /* The filesystem has turned off idmapped mounts. */ 4878 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP) 4879 return -EINVAL; 4880 4881 /* We're not controlling the superblock. */ 4882 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4883 return -EPERM; 4884 4885 /* Mount has already been visible in the filesystem hierarchy. */ 4886 if (!is_anon_ns(mnt->mnt_ns)) 4887 return -EINVAL; 4888 4889 return 0; 4890 } 4891 4892 /** 4893 * mnt_allow_writers() - check whether the attribute change allows writers 4894 * @kattr: the new mount attributes 4895 * @mnt: the mount to which @kattr will be applied 4896 * 4897 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4898 * 4899 * Return: true if writers need to be held, false if not 4900 */ 4901 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4902 const struct mount *mnt) 4903 { 4904 return (!(kattr->attr_set & MNT_READONLY) || 4905 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4906 !kattr->mnt_idmap; 4907 } 4908 4909 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4910 { 4911 struct mount *m; 4912 int err; 4913 4914 for (m = mnt; m; m = next_mnt(m, mnt)) { 4915 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4916 err = -EPERM; 4917 break; 4918 } 4919 4920 err = can_idmap_mount(kattr, m); 4921 if (err) 4922 break; 4923 4924 if (!mnt_allow_writers(kattr, m)) { 4925 err = mnt_hold_writers(m); 4926 if (err) 4927 break; 4928 } 4929 4930 if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) 4931 return 0; 4932 } 4933 4934 if (err) { 4935 struct mount *p; 4936 4937 /* 4938 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will 4939 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all 4940 * mounts and needs to take care to include the first mount. 4941 */ 4942 for (p = mnt; p; p = next_mnt(p, mnt)) { 4943 /* If we had to hold writers unblock them. */ 4944 if (p->mnt.mnt_flags & MNT_WRITE_HOLD) 4945 mnt_unhold_writers(p); 4946 4947 /* 4948 * We're done once the first mount we changed got 4949 * MNT_WRITE_HOLD unset. 4950 */ 4951 if (p == m) 4952 break; 4953 } 4954 } 4955 return err; 4956 } 4957 4958 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4959 { 4960 struct mnt_idmap *old_idmap; 4961 4962 if (!kattr->mnt_idmap) 4963 return; 4964 4965 old_idmap = mnt_idmap(&mnt->mnt); 4966 4967 /* Pairs with smp_load_acquire() in mnt_idmap(). */ 4968 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4969 mnt_idmap_put(old_idmap); 4970 } 4971 4972 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4973 { 4974 struct mount *m; 4975 4976 for (m = mnt; m; m = next_mnt(m, mnt)) { 4977 unsigned int flags; 4978 4979 do_idmap_mount(kattr, m); 4980 flags = recalc_flags(kattr, m); 4981 WRITE_ONCE(m->mnt.mnt_flags, flags); 4982 4983 /* If we had to hold writers unblock them. */ 4984 if (m->mnt.mnt_flags & MNT_WRITE_HOLD) 4985 mnt_unhold_writers(m); 4986 4987 if (kattr->propagation) 4988 change_mnt_propagation(m, kattr->propagation); 4989 if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) 4990 break; 4991 } 4992 touch_mnt_namespace(mnt->mnt_ns); 4993 } 4994 4995 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4996 { 4997 struct mount *mnt = real_mount(path->mnt); 4998 int err = 0; 4999 5000 if (!path_mounted(path)) 5001 return -EINVAL; 5002 5003 if (kattr->mnt_userns) { 5004 struct mnt_idmap *mnt_idmap; 5005 5006 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 5007 if (IS_ERR(mnt_idmap)) 5008 return PTR_ERR(mnt_idmap); 5009 kattr->mnt_idmap = mnt_idmap; 5010 } 5011 5012 if (kattr->propagation) { 5013 /* 5014 * Only take namespace_lock() if we're actually changing 5015 * propagation. 5016 */ 5017 namespace_lock(); 5018 if (kattr->propagation == MS_SHARED) { 5019 err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE); 5020 if (err) { 5021 namespace_unlock(); 5022 return err; 5023 } 5024 } 5025 } 5026 5027 err = -EINVAL; 5028 lock_mount_hash(); 5029 5030 /* Ensure that this isn't anything purely vfs internal. */ 5031 if (!is_mounted(&mnt->mnt)) 5032 goto out; 5033 5034 /* 5035 * If this is an attached mount make sure it's located in the callers 5036 * mount namespace. If it's not don't let the caller interact with it. 5037 * 5038 * If this mount doesn't have a parent it's most often simply a 5039 * detached mount with an anonymous mount namespace. IOW, something 5040 * that's simply not attached yet. But there are apparently also users 5041 * that do change mount properties on the rootfs itself. That obviously 5042 * neither has a parent nor is it a detached mount so we cannot 5043 * unconditionally check for detached mounts. 5044 */ 5045 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt)) 5046 goto out; 5047 5048 /* 5049 * First, we get the mount tree in a shape where we can change mount 5050 * properties without failure. If we succeeded to do so we commit all 5051 * changes and if we failed we clean up. 5052 */ 5053 err = mount_setattr_prepare(kattr, mnt); 5054 if (!err) 5055 mount_setattr_commit(kattr, mnt); 5056 5057 out: 5058 unlock_mount_hash(); 5059 5060 if (kattr->propagation) { 5061 if (err) 5062 cleanup_group_ids(mnt, NULL); 5063 namespace_unlock(); 5064 } 5065 5066 return err; 5067 } 5068 5069 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 5070 struct mount_kattr *kattr) 5071 { 5072 struct ns_common *ns; 5073 struct user_namespace *mnt_userns; 5074 5075 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 5076 return 0; 5077 5078 if (attr->attr_clr & MOUNT_ATTR_IDMAP) { 5079 /* 5080 * We can only remove an idmapping if it's never been 5081 * exposed to userspace. 5082 */ 5083 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE)) 5084 return -EINVAL; 5085 5086 /* 5087 * Removal of idmappings is equivalent to setting 5088 * nop_mnt_idmap. 5089 */ 5090 if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) { 5091 kattr->mnt_idmap = &nop_mnt_idmap; 5092 return 0; 5093 } 5094 } 5095 5096 if (attr->userns_fd > INT_MAX) 5097 return -EINVAL; 5098 5099 CLASS(fd, f)(attr->userns_fd); 5100 if (fd_empty(f)) 5101 return -EBADF; 5102 5103 if (!proc_ns_file(fd_file(f))) 5104 return -EINVAL; 5105 5106 ns = get_proc_ns(file_inode(fd_file(f))); 5107 if (ns->ops->type != CLONE_NEWUSER) 5108 return -EINVAL; 5109 5110 /* 5111 * The initial idmapping cannot be used to create an idmapped 5112 * mount. We use the initial idmapping as an indicator of a mount 5113 * that is not idmapped. It can simply be passed into helpers that 5114 * are aware of idmapped mounts as a convenient shortcut. A user 5115 * can just create a dedicated identity mapping to achieve the same 5116 * result. 5117 */ 5118 mnt_userns = container_of(ns, struct user_namespace, ns); 5119 if (mnt_userns == &init_user_ns) 5120 return -EPERM; 5121 5122 /* We're not controlling the target namespace. */ 5123 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) 5124 return -EPERM; 5125 5126 kattr->mnt_userns = get_user_ns(mnt_userns); 5127 return 0; 5128 } 5129 5130 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 5131 struct mount_kattr *kattr) 5132 { 5133 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 5134 return -EINVAL; 5135 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 5136 return -EINVAL; 5137 kattr->propagation = attr->propagation; 5138 5139 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 5140 return -EINVAL; 5141 5142 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 5143 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 5144 5145 /* 5146 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 5147 * users wanting to transition to a different atime setting cannot 5148 * simply specify the atime setting in @attr_set, but must also 5149 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 5150 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 5151 * @attr_clr and that @attr_set can't have any atime bits set if 5152 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 5153 */ 5154 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 5155 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 5156 return -EINVAL; 5157 5158 /* 5159 * Clear all previous time settings as they are mutually 5160 * exclusive. 5161 */ 5162 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 5163 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 5164 case MOUNT_ATTR_RELATIME: 5165 kattr->attr_set |= MNT_RELATIME; 5166 break; 5167 case MOUNT_ATTR_NOATIME: 5168 kattr->attr_set |= MNT_NOATIME; 5169 break; 5170 case MOUNT_ATTR_STRICTATIME: 5171 break; 5172 default: 5173 return -EINVAL; 5174 } 5175 } else { 5176 if (attr->attr_set & MOUNT_ATTR__ATIME) 5177 return -EINVAL; 5178 } 5179 5180 return build_mount_idmapped(attr, usize, kattr); 5181 } 5182 5183 static void finish_mount_kattr(struct mount_kattr *kattr) 5184 { 5185 if (kattr->mnt_userns) { 5186 put_user_ns(kattr->mnt_userns); 5187 kattr->mnt_userns = NULL; 5188 } 5189 5190 if (kattr->mnt_idmap) 5191 mnt_idmap_put(kattr->mnt_idmap); 5192 } 5193 5194 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize, 5195 struct mount_kattr *kattr) 5196 { 5197 int ret; 5198 struct mount_attr attr; 5199 5200 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 5201 5202 if (unlikely(usize > PAGE_SIZE)) 5203 return -E2BIG; 5204 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 5205 return -EINVAL; 5206 5207 if (!may_mount()) 5208 return -EPERM; 5209 5210 ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 5211 if (ret) 5212 return ret; 5213 5214 /* Don't bother walking through the mounts if this is a nop. */ 5215 if (attr.attr_set == 0 && 5216 attr.attr_clr == 0 && 5217 attr.propagation == 0) 5218 return 0; /* Tell caller to not bother. */ 5219 5220 ret = build_mount_kattr(&attr, usize, kattr); 5221 if (ret < 0) 5222 return ret; 5223 5224 return 1; 5225 } 5226 5227 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 5228 unsigned int, flags, struct mount_attr __user *, uattr, 5229 size_t, usize) 5230 { 5231 int err; 5232 struct path target; 5233 struct mount_kattr kattr; 5234 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 5235 5236 if (flags & ~(AT_EMPTY_PATH | 5237 AT_RECURSIVE | 5238 AT_SYMLINK_NOFOLLOW | 5239 AT_NO_AUTOMOUNT)) 5240 return -EINVAL; 5241 5242 if (flags & AT_NO_AUTOMOUNT) 5243 lookup_flags &= ~LOOKUP_AUTOMOUNT; 5244 if (flags & AT_SYMLINK_NOFOLLOW) 5245 lookup_flags &= ~LOOKUP_FOLLOW; 5246 if (flags & AT_EMPTY_PATH) 5247 lookup_flags |= LOOKUP_EMPTY; 5248 5249 kattr = (struct mount_kattr) { 5250 .lookup_flags = lookup_flags, 5251 }; 5252 5253 if (flags & AT_RECURSIVE) 5254 kattr.kflags |= MOUNT_KATTR_RECURSE; 5255 5256 err = wants_mount_setattr(uattr, usize, &kattr); 5257 if (err <= 0) 5258 return err; 5259 5260 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 5261 if (!err) { 5262 err = do_mount_setattr(&target, &kattr); 5263 path_put(&target); 5264 } 5265 finish_mount_kattr(&kattr); 5266 return err; 5267 } 5268 5269 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename, 5270 unsigned, flags, struct mount_attr __user *, uattr, 5271 size_t, usize) 5272 { 5273 struct file __free(fput) *file = NULL; 5274 int fd; 5275 5276 if (!uattr && usize) 5277 return -EINVAL; 5278 5279 file = vfs_open_tree(dfd, filename, flags); 5280 if (IS_ERR(file)) 5281 return PTR_ERR(file); 5282 5283 if (uattr) { 5284 int ret; 5285 struct mount_kattr kattr = {}; 5286 5287 kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE; 5288 if (flags & AT_RECURSIVE) 5289 kattr.kflags |= MOUNT_KATTR_RECURSE; 5290 5291 ret = wants_mount_setattr(uattr, usize, &kattr); 5292 if (ret < 0) 5293 return ret; 5294 5295 if (ret) { 5296 ret = do_mount_setattr(&file->f_path, &kattr); 5297 if (ret) 5298 return ret; 5299 5300 finish_mount_kattr(&kattr); 5301 } 5302 } 5303 5304 fd = get_unused_fd_flags(flags & O_CLOEXEC); 5305 if (fd < 0) 5306 return fd; 5307 5308 fd_install(fd, no_free_ptr(file)); 5309 return fd; 5310 } 5311 5312 int show_path(struct seq_file *m, struct dentry *root) 5313 { 5314 if (root->d_sb->s_op->show_path) 5315 return root->d_sb->s_op->show_path(m, root); 5316 5317 seq_dentry(m, root, " \t\n\\"); 5318 return 0; 5319 } 5320 5321 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns) 5322 { 5323 struct mount *mnt = mnt_find_id_at(ns, id); 5324 5325 if (!mnt || mnt->mnt_id_unique != id) 5326 return NULL; 5327 5328 return &mnt->mnt; 5329 } 5330 5331 struct kstatmount { 5332 struct statmount __user *buf; 5333 size_t bufsize; 5334 struct vfsmount *mnt; 5335 struct mnt_idmap *idmap; 5336 u64 mask; 5337 struct path root; 5338 struct seq_file seq; 5339 5340 /* Must be last --ends in a flexible-array member. */ 5341 struct statmount sm; 5342 }; 5343 5344 static u64 mnt_to_attr_flags(struct vfsmount *mnt) 5345 { 5346 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags); 5347 u64 attr_flags = 0; 5348 5349 if (mnt_flags & MNT_READONLY) 5350 attr_flags |= MOUNT_ATTR_RDONLY; 5351 if (mnt_flags & MNT_NOSUID) 5352 attr_flags |= MOUNT_ATTR_NOSUID; 5353 if (mnt_flags & MNT_NODEV) 5354 attr_flags |= MOUNT_ATTR_NODEV; 5355 if (mnt_flags & MNT_NOEXEC) 5356 attr_flags |= MOUNT_ATTR_NOEXEC; 5357 if (mnt_flags & MNT_NODIRATIME) 5358 attr_flags |= MOUNT_ATTR_NODIRATIME; 5359 if (mnt_flags & MNT_NOSYMFOLLOW) 5360 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW; 5361 5362 if (mnt_flags & MNT_NOATIME) 5363 attr_flags |= MOUNT_ATTR_NOATIME; 5364 else if (mnt_flags & MNT_RELATIME) 5365 attr_flags |= MOUNT_ATTR_RELATIME; 5366 else 5367 attr_flags |= MOUNT_ATTR_STRICTATIME; 5368 5369 if (is_idmapped_mnt(mnt)) 5370 attr_flags |= MOUNT_ATTR_IDMAP; 5371 5372 return attr_flags; 5373 } 5374 5375 static u64 mnt_to_propagation_flags(struct mount *m) 5376 { 5377 u64 propagation = 0; 5378 5379 if (IS_MNT_SHARED(m)) 5380 propagation |= MS_SHARED; 5381 if (IS_MNT_SLAVE(m)) 5382 propagation |= MS_SLAVE; 5383 if (IS_MNT_UNBINDABLE(m)) 5384 propagation |= MS_UNBINDABLE; 5385 if (!propagation) 5386 propagation |= MS_PRIVATE; 5387 5388 return propagation; 5389 } 5390 5391 static void statmount_sb_basic(struct kstatmount *s) 5392 { 5393 struct super_block *sb = s->mnt->mnt_sb; 5394 5395 s->sm.mask |= STATMOUNT_SB_BASIC; 5396 s->sm.sb_dev_major = MAJOR(sb->s_dev); 5397 s->sm.sb_dev_minor = MINOR(sb->s_dev); 5398 s->sm.sb_magic = sb->s_magic; 5399 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME); 5400 } 5401 5402 static void statmount_mnt_basic(struct kstatmount *s) 5403 { 5404 struct mount *m = real_mount(s->mnt); 5405 5406 s->sm.mask |= STATMOUNT_MNT_BASIC; 5407 s->sm.mnt_id = m->mnt_id_unique; 5408 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique; 5409 s->sm.mnt_id_old = m->mnt_id; 5410 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id; 5411 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt); 5412 s->sm.mnt_propagation = mnt_to_propagation_flags(m); 5413 s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0; 5414 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0; 5415 } 5416 5417 static void statmount_propagate_from(struct kstatmount *s) 5418 { 5419 struct mount *m = real_mount(s->mnt); 5420 5421 s->sm.mask |= STATMOUNT_PROPAGATE_FROM; 5422 if (IS_MNT_SLAVE(m)) 5423 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root); 5424 } 5425 5426 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq) 5427 { 5428 int ret; 5429 size_t start = seq->count; 5430 5431 ret = show_path(seq, s->mnt->mnt_root); 5432 if (ret) 5433 return ret; 5434 5435 if (unlikely(seq_has_overflowed(seq))) 5436 return -EAGAIN; 5437 5438 /* 5439 * Unescape the result. It would be better if supplied string was not 5440 * escaped in the first place, but that's a pretty invasive change. 5441 */ 5442 seq->buf[seq->count] = '\0'; 5443 seq->count = start; 5444 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 5445 return 0; 5446 } 5447 5448 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq) 5449 { 5450 struct vfsmount *mnt = s->mnt; 5451 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 5452 int err; 5453 5454 err = seq_path_root(seq, &mnt_path, &s->root, ""); 5455 return err == SEQ_SKIP ? 0 : err; 5456 } 5457 5458 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq) 5459 { 5460 struct super_block *sb = s->mnt->mnt_sb; 5461 5462 seq_puts(seq, sb->s_type->name); 5463 return 0; 5464 } 5465 5466 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq) 5467 { 5468 struct super_block *sb = s->mnt->mnt_sb; 5469 5470 if (sb->s_subtype) 5471 seq_puts(seq, sb->s_subtype); 5472 } 5473 5474 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq) 5475 { 5476 struct super_block *sb = s->mnt->mnt_sb; 5477 struct mount *r = real_mount(s->mnt); 5478 5479 if (sb->s_op->show_devname) { 5480 size_t start = seq->count; 5481 int ret; 5482 5483 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root); 5484 if (ret) 5485 return ret; 5486 5487 if (unlikely(seq_has_overflowed(seq))) 5488 return -EAGAIN; 5489 5490 /* Unescape the result */ 5491 seq->buf[seq->count] = '\0'; 5492 seq->count = start; 5493 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 5494 } else if (r->mnt_devname) { 5495 seq_puts(seq, r->mnt_devname); 5496 } 5497 return 0; 5498 } 5499 5500 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns) 5501 { 5502 s->sm.mask |= STATMOUNT_MNT_NS_ID; 5503 s->sm.mnt_ns_id = ns->seq; 5504 } 5505 5506 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq) 5507 { 5508 struct vfsmount *mnt = s->mnt; 5509 struct super_block *sb = mnt->mnt_sb; 5510 size_t start = seq->count; 5511 int err; 5512 5513 err = security_sb_show_options(seq, sb); 5514 if (err) 5515 return err; 5516 5517 if (sb->s_op->show_options) { 5518 err = sb->s_op->show_options(seq, mnt->mnt_root); 5519 if (err) 5520 return err; 5521 } 5522 5523 if (unlikely(seq_has_overflowed(seq))) 5524 return -EAGAIN; 5525 5526 if (seq->count == start) 5527 return 0; 5528 5529 /* skip leading comma */ 5530 memmove(seq->buf + start, seq->buf + start + 1, 5531 seq->count - start - 1); 5532 seq->count--; 5533 5534 return 0; 5535 } 5536 5537 static inline int statmount_opt_process(struct seq_file *seq, size_t start) 5538 { 5539 char *buf_end, *opt_end, *src, *dst; 5540 int count = 0; 5541 5542 if (unlikely(seq_has_overflowed(seq))) 5543 return -EAGAIN; 5544 5545 buf_end = seq->buf + seq->count; 5546 dst = seq->buf + start; 5547 src = dst + 1; /* skip initial comma */ 5548 5549 if (src >= buf_end) { 5550 seq->count = start; 5551 return 0; 5552 } 5553 5554 *buf_end = '\0'; 5555 for (; src < buf_end; src = opt_end + 1) { 5556 opt_end = strchrnul(src, ','); 5557 *opt_end = '\0'; 5558 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1; 5559 if (WARN_ON_ONCE(++count == INT_MAX)) 5560 return -EOVERFLOW; 5561 } 5562 seq->count = dst - 1 - seq->buf; 5563 return count; 5564 } 5565 5566 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq) 5567 { 5568 struct vfsmount *mnt = s->mnt; 5569 struct super_block *sb = mnt->mnt_sb; 5570 size_t start = seq->count; 5571 int err; 5572 5573 if (!sb->s_op->show_options) 5574 return 0; 5575 5576 err = sb->s_op->show_options(seq, mnt->mnt_root); 5577 if (err) 5578 return err; 5579 5580 err = statmount_opt_process(seq, start); 5581 if (err < 0) 5582 return err; 5583 5584 s->sm.opt_num = err; 5585 return 0; 5586 } 5587 5588 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq) 5589 { 5590 struct vfsmount *mnt = s->mnt; 5591 struct super_block *sb = mnt->mnt_sb; 5592 size_t start = seq->count; 5593 int err; 5594 5595 err = security_sb_show_options(seq, sb); 5596 if (err) 5597 return err; 5598 5599 err = statmount_opt_process(seq, start); 5600 if (err < 0) 5601 return err; 5602 5603 s->sm.opt_sec_num = err; 5604 return 0; 5605 } 5606 5607 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq) 5608 { 5609 int ret; 5610 5611 ret = statmount_mnt_idmap(s->idmap, seq, true); 5612 if (ret < 0) 5613 return ret; 5614 5615 s->sm.mnt_uidmap_num = ret; 5616 /* 5617 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid 5618 * mappings. This allows userspace to distinguish between a 5619 * non-idmapped mount and an idmapped mount where none of the 5620 * individual mappings are valid in the caller's idmapping. 5621 */ 5622 if (is_valid_mnt_idmap(s->idmap)) 5623 s->sm.mask |= STATMOUNT_MNT_UIDMAP; 5624 return 0; 5625 } 5626 5627 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq) 5628 { 5629 int ret; 5630 5631 ret = statmount_mnt_idmap(s->idmap, seq, false); 5632 if (ret < 0) 5633 return ret; 5634 5635 s->sm.mnt_gidmap_num = ret; 5636 /* 5637 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid 5638 * mappings. This allows userspace to distinguish between a 5639 * non-idmapped mount and an idmapped mount where none of the 5640 * individual mappings are valid in the caller's idmapping. 5641 */ 5642 if (is_valid_mnt_idmap(s->idmap)) 5643 s->sm.mask |= STATMOUNT_MNT_GIDMAP; 5644 return 0; 5645 } 5646 5647 static int statmount_string(struct kstatmount *s, u64 flag) 5648 { 5649 int ret = 0; 5650 size_t kbufsize; 5651 struct seq_file *seq = &s->seq; 5652 struct statmount *sm = &s->sm; 5653 u32 start, *offp; 5654 5655 /* Reserve an empty string at the beginning for any unset offsets */ 5656 if (!seq->count) 5657 seq_putc(seq, 0); 5658 5659 start = seq->count; 5660 5661 switch (flag) { 5662 case STATMOUNT_FS_TYPE: 5663 offp = &sm->fs_type; 5664 ret = statmount_fs_type(s, seq); 5665 break; 5666 case STATMOUNT_MNT_ROOT: 5667 offp = &sm->mnt_root; 5668 ret = statmount_mnt_root(s, seq); 5669 break; 5670 case STATMOUNT_MNT_POINT: 5671 offp = &sm->mnt_point; 5672 ret = statmount_mnt_point(s, seq); 5673 break; 5674 case STATMOUNT_MNT_OPTS: 5675 offp = &sm->mnt_opts; 5676 ret = statmount_mnt_opts(s, seq); 5677 break; 5678 case STATMOUNT_OPT_ARRAY: 5679 offp = &sm->opt_array; 5680 ret = statmount_opt_array(s, seq); 5681 break; 5682 case STATMOUNT_OPT_SEC_ARRAY: 5683 offp = &sm->opt_sec_array; 5684 ret = statmount_opt_sec_array(s, seq); 5685 break; 5686 case STATMOUNT_FS_SUBTYPE: 5687 offp = &sm->fs_subtype; 5688 statmount_fs_subtype(s, seq); 5689 break; 5690 case STATMOUNT_SB_SOURCE: 5691 offp = &sm->sb_source; 5692 ret = statmount_sb_source(s, seq); 5693 break; 5694 case STATMOUNT_MNT_UIDMAP: 5695 sm->mnt_uidmap = start; 5696 ret = statmount_mnt_uidmap(s, seq); 5697 break; 5698 case STATMOUNT_MNT_GIDMAP: 5699 sm->mnt_gidmap = start; 5700 ret = statmount_mnt_gidmap(s, seq); 5701 break; 5702 default: 5703 WARN_ON_ONCE(true); 5704 return -EINVAL; 5705 } 5706 5707 /* 5708 * If nothing was emitted, return to avoid setting the flag 5709 * and terminating the buffer. 5710 */ 5711 if (seq->count == start) 5712 return ret; 5713 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize))) 5714 return -EOVERFLOW; 5715 if (kbufsize >= s->bufsize) 5716 return -EOVERFLOW; 5717 5718 /* signal a retry */ 5719 if (unlikely(seq_has_overflowed(seq))) 5720 return -EAGAIN; 5721 5722 if (ret) 5723 return ret; 5724 5725 seq->buf[seq->count++] = '\0'; 5726 sm->mask |= flag; 5727 *offp = start; 5728 return 0; 5729 } 5730 5731 static int copy_statmount_to_user(struct kstatmount *s) 5732 { 5733 struct statmount *sm = &s->sm; 5734 struct seq_file *seq = &s->seq; 5735 char __user *str = ((char __user *)s->buf) + sizeof(*sm); 5736 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm)); 5737 5738 if (seq->count && copy_to_user(str, seq->buf, seq->count)) 5739 return -EFAULT; 5740 5741 /* Return the number of bytes copied to the buffer */ 5742 sm->size = copysize + seq->count; 5743 if (copy_to_user(s->buf, sm, copysize)) 5744 return -EFAULT; 5745 5746 return 0; 5747 } 5748 5749 static struct mount *listmnt_next(struct mount *curr, bool reverse) 5750 { 5751 struct rb_node *node; 5752 5753 if (reverse) 5754 node = rb_prev(&curr->mnt_node); 5755 else 5756 node = rb_next(&curr->mnt_node); 5757 5758 return node_to_mount(node); 5759 } 5760 5761 static int grab_requested_root(struct mnt_namespace *ns, struct path *root) 5762 { 5763 struct mount *first, *child; 5764 5765 rwsem_assert_held(&namespace_sem); 5766 5767 /* We're looking at our own ns, just use get_fs_root. */ 5768 if (ns == current->nsproxy->mnt_ns) { 5769 get_fs_root(current->fs, root); 5770 return 0; 5771 } 5772 5773 /* 5774 * We have to find the first mount in our ns and use that, however it 5775 * may not exist, so handle that properly. 5776 */ 5777 if (mnt_ns_empty(ns)) 5778 return -ENOENT; 5779 5780 first = child = ns->root; 5781 for (;;) { 5782 child = listmnt_next(child, false); 5783 if (!child) 5784 return -ENOENT; 5785 if (child->mnt_parent == first) 5786 break; 5787 } 5788 5789 root->mnt = mntget(&child->mnt); 5790 root->dentry = dget(root->mnt->mnt_root); 5791 return 0; 5792 } 5793 5794 /* This must be updated whenever a new flag is added */ 5795 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \ 5796 STATMOUNT_MNT_BASIC | \ 5797 STATMOUNT_PROPAGATE_FROM | \ 5798 STATMOUNT_MNT_ROOT | \ 5799 STATMOUNT_MNT_POINT | \ 5800 STATMOUNT_FS_TYPE | \ 5801 STATMOUNT_MNT_NS_ID | \ 5802 STATMOUNT_MNT_OPTS | \ 5803 STATMOUNT_FS_SUBTYPE | \ 5804 STATMOUNT_SB_SOURCE | \ 5805 STATMOUNT_OPT_ARRAY | \ 5806 STATMOUNT_OPT_SEC_ARRAY | \ 5807 STATMOUNT_SUPPORTED_MASK) 5808 5809 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id, 5810 struct mnt_namespace *ns) 5811 { 5812 struct path root __free(path_put) = {}; 5813 struct mount *m; 5814 int err; 5815 5816 /* Has the namespace already been emptied? */ 5817 if (mnt_ns_id && mnt_ns_empty(ns)) 5818 return -ENOENT; 5819 5820 s->mnt = lookup_mnt_in_ns(mnt_id, ns); 5821 if (!s->mnt) 5822 return -ENOENT; 5823 5824 err = grab_requested_root(ns, &root); 5825 if (err) 5826 return err; 5827 5828 /* 5829 * Don't trigger audit denials. We just want to determine what 5830 * mounts to show users. 5831 */ 5832 m = real_mount(s->mnt); 5833 if (!is_path_reachable(m, m->mnt.mnt_root, &root) && 5834 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5835 return -EPERM; 5836 5837 err = security_sb_statfs(s->mnt->mnt_root); 5838 if (err) 5839 return err; 5840 5841 s->root = root; 5842 s->idmap = mnt_idmap(s->mnt); 5843 if (s->mask & STATMOUNT_SB_BASIC) 5844 statmount_sb_basic(s); 5845 5846 if (s->mask & STATMOUNT_MNT_BASIC) 5847 statmount_mnt_basic(s); 5848 5849 if (s->mask & STATMOUNT_PROPAGATE_FROM) 5850 statmount_propagate_from(s); 5851 5852 if (s->mask & STATMOUNT_FS_TYPE) 5853 err = statmount_string(s, STATMOUNT_FS_TYPE); 5854 5855 if (!err && s->mask & STATMOUNT_MNT_ROOT) 5856 err = statmount_string(s, STATMOUNT_MNT_ROOT); 5857 5858 if (!err && s->mask & STATMOUNT_MNT_POINT) 5859 err = statmount_string(s, STATMOUNT_MNT_POINT); 5860 5861 if (!err && s->mask & STATMOUNT_MNT_OPTS) 5862 err = statmount_string(s, STATMOUNT_MNT_OPTS); 5863 5864 if (!err && s->mask & STATMOUNT_OPT_ARRAY) 5865 err = statmount_string(s, STATMOUNT_OPT_ARRAY); 5866 5867 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY) 5868 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY); 5869 5870 if (!err && s->mask & STATMOUNT_FS_SUBTYPE) 5871 err = statmount_string(s, STATMOUNT_FS_SUBTYPE); 5872 5873 if (!err && s->mask & STATMOUNT_SB_SOURCE) 5874 err = statmount_string(s, STATMOUNT_SB_SOURCE); 5875 5876 if (!err && s->mask & STATMOUNT_MNT_UIDMAP) 5877 err = statmount_string(s, STATMOUNT_MNT_UIDMAP); 5878 5879 if (!err && s->mask & STATMOUNT_MNT_GIDMAP) 5880 err = statmount_string(s, STATMOUNT_MNT_GIDMAP); 5881 5882 if (!err && s->mask & STATMOUNT_MNT_NS_ID) 5883 statmount_mnt_ns_id(s, ns); 5884 5885 if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) { 5886 s->sm.mask |= STATMOUNT_SUPPORTED_MASK; 5887 s->sm.supported_mask = STATMOUNT_SUPPORTED; 5888 } 5889 5890 if (err) 5891 return err; 5892 5893 /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */ 5894 WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask); 5895 5896 return 0; 5897 } 5898 5899 static inline bool retry_statmount(const long ret, size_t *seq_size) 5900 { 5901 if (likely(ret != -EAGAIN)) 5902 return false; 5903 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size))) 5904 return false; 5905 if (unlikely(*seq_size > MAX_RW_COUNT)) 5906 return false; 5907 return true; 5908 } 5909 5910 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \ 5911 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \ 5912 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \ 5913 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \ 5914 STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP) 5915 5916 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq, 5917 struct statmount __user *buf, size_t bufsize, 5918 size_t seq_size) 5919 { 5920 if (!access_ok(buf, bufsize)) 5921 return -EFAULT; 5922 5923 memset(ks, 0, sizeof(*ks)); 5924 ks->mask = kreq->param; 5925 ks->buf = buf; 5926 ks->bufsize = bufsize; 5927 5928 if (ks->mask & STATMOUNT_STRING_REQ) { 5929 if (bufsize == sizeof(ks->sm)) 5930 return -EOVERFLOW; 5931 5932 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT); 5933 if (!ks->seq.buf) 5934 return -ENOMEM; 5935 5936 ks->seq.size = seq_size; 5937 } 5938 5939 return 0; 5940 } 5941 5942 static int copy_mnt_id_req(const struct mnt_id_req __user *req, 5943 struct mnt_id_req *kreq) 5944 { 5945 int ret; 5946 size_t usize; 5947 5948 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1); 5949 5950 ret = get_user(usize, &req->size); 5951 if (ret) 5952 return -EFAULT; 5953 if (unlikely(usize > PAGE_SIZE)) 5954 return -E2BIG; 5955 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0)) 5956 return -EINVAL; 5957 memset(kreq, 0, sizeof(*kreq)); 5958 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize); 5959 if (ret) 5960 return ret; 5961 if (kreq->spare != 0) 5962 return -EINVAL; 5963 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 5964 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET) 5965 return -EINVAL; 5966 return 0; 5967 } 5968 5969 /* 5970 * If the user requested a specific mount namespace id, look that up and return 5971 * that, or if not simply grab a passive reference on our mount namespace and 5972 * return that. 5973 */ 5974 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq) 5975 { 5976 struct mnt_namespace *mnt_ns; 5977 5978 if (kreq->mnt_ns_id && kreq->spare) 5979 return ERR_PTR(-EINVAL); 5980 5981 if (kreq->mnt_ns_id) 5982 return lookup_mnt_ns(kreq->mnt_ns_id); 5983 5984 if (kreq->spare) { 5985 struct ns_common *ns; 5986 5987 CLASS(fd, f)(kreq->spare); 5988 if (fd_empty(f)) 5989 return ERR_PTR(-EBADF); 5990 5991 if (!proc_ns_file(fd_file(f))) 5992 return ERR_PTR(-EINVAL); 5993 5994 ns = get_proc_ns(file_inode(fd_file(f))); 5995 if (ns->ops->type != CLONE_NEWNS) 5996 return ERR_PTR(-EINVAL); 5997 5998 mnt_ns = to_mnt_ns(ns); 5999 } else { 6000 mnt_ns = current->nsproxy->mnt_ns; 6001 } 6002 6003 refcount_inc(&mnt_ns->passive); 6004 return mnt_ns; 6005 } 6006 6007 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req, 6008 struct statmount __user *, buf, size_t, bufsize, 6009 unsigned int, flags) 6010 { 6011 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 6012 struct kstatmount *ks __free(kfree) = NULL; 6013 struct mnt_id_req kreq; 6014 /* We currently support retrieval of 3 strings. */ 6015 size_t seq_size = 3 * PATH_MAX; 6016 int ret; 6017 6018 if (flags) 6019 return -EINVAL; 6020 6021 ret = copy_mnt_id_req(req, &kreq); 6022 if (ret) 6023 return ret; 6024 6025 ns = grab_requested_mnt_ns(&kreq); 6026 if (!ns) 6027 return -ENOENT; 6028 6029 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 6030 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 6031 return -ENOENT; 6032 6033 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT); 6034 if (!ks) 6035 return -ENOMEM; 6036 6037 retry: 6038 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size); 6039 if (ret) 6040 return ret; 6041 6042 scoped_guard(rwsem_read, &namespace_sem) 6043 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns); 6044 6045 if (!ret) 6046 ret = copy_statmount_to_user(ks); 6047 kvfree(ks->seq.buf); 6048 if (retry_statmount(ret, &seq_size)) 6049 goto retry; 6050 return ret; 6051 } 6052 6053 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id, 6054 u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids, 6055 bool reverse) 6056 { 6057 struct path root __free(path_put) = {}; 6058 struct path orig; 6059 struct mount *r, *first; 6060 ssize_t ret; 6061 6062 rwsem_assert_held(&namespace_sem); 6063 6064 ret = grab_requested_root(ns, &root); 6065 if (ret) 6066 return ret; 6067 6068 if (mnt_parent_id == LSMT_ROOT) { 6069 orig = root; 6070 } else { 6071 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns); 6072 if (!orig.mnt) 6073 return -ENOENT; 6074 orig.dentry = orig.mnt->mnt_root; 6075 } 6076 6077 /* 6078 * Don't trigger audit denials. We just want to determine what 6079 * mounts to show users. 6080 */ 6081 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) && 6082 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 6083 return -EPERM; 6084 6085 ret = security_sb_statfs(orig.dentry); 6086 if (ret) 6087 return ret; 6088 6089 if (!last_mnt_id) { 6090 if (reverse) 6091 first = node_to_mount(ns->mnt_last_node); 6092 else 6093 first = node_to_mount(ns->mnt_first_node); 6094 } else { 6095 if (reverse) 6096 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1); 6097 else 6098 first = mnt_find_id_at(ns, last_mnt_id + 1); 6099 } 6100 6101 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) { 6102 if (r->mnt_id_unique == mnt_parent_id) 6103 continue; 6104 if (!is_path_reachable(r, r->mnt.mnt_root, &orig)) 6105 continue; 6106 *mnt_ids = r->mnt_id_unique; 6107 mnt_ids++; 6108 nr_mnt_ids--; 6109 ret++; 6110 } 6111 return ret; 6112 } 6113 6114 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, 6115 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags) 6116 { 6117 u64 *kmnt_ids __free(kvfree) = NULL; 6118 const size_t maxcount = 1000000; 6119 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 6120 struct mnt_id_req kreq; 6121 u64 last_mnt_id; 6122 ssize_t ret; 6123 6124 if (flags & ~LISTMOUNT_REVERSE) 6125 return -EINVAL; 6126 6127 /* 6128 * If the mount namespace really has more than 1 million mounts the 6129 * caller must iterate over the mount namespace (and reconsider their 6130 * system design...). 6131 */ 6132 if (unlikely(nr_mnt_ids > maxcount)) 6133 return -EOVERFLOW; 6134 6135 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids))) 6136 return -EFAULT; 6137 6138 ret = copy_mnt_id_req(req, &kreq); 6139 if (ret) 6140 return ret; 6141 6142 last_mnt_id = kreq.param; 6143 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 6144 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET) 6145 return -EINVAL; 6146 6147 kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids), 6148 GFP_KERNEL_ACCOUNT); 6149 if (!kmnt_ids) 6150 return -ENOMEM; 6151 6152 ns = grab_requested_mnt_ns(&kreq); 6153 if (!ns) 6154 return -ENOENT; 6155 6156 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 6157 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 6158 return -ENOENT; 6159 6160 scoped_guard(rwsem_read, &namespace_sem) 6161 ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids, 6162 nr_mnt_ids, (flags & LISTMOUNT_REVERSE)); 6163 if (ret <= 0) 6164 return ret; 6165 6166 if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids))) 6167 return -EFAULT; 6168 6169 return ret; 6170 } 6171 6172 static void __init init_mount_tree(void) 6173 { 6174 struct vfsmount *mnt; 6175 struct mount *m; 6176 struct mnt_namespace *ns; 6177 struct path root; 6178 6179 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 6180 if (IS_ERR(mnt)) 6181 panic("Can't create rootfs"); 6182 6183 ns = alloc_mnt_ns(&init_user_ns, false); 6184 if (IS_ERR(ns)) 6185 panic("Can't allocate initial namespace"); 6186 m = real_mount(mnt); 6187 ns->root = m; 6188 ns->nr_mounts = 1; 6189 mnt_add_to_ns(ns, m); 6190 init_task.nsproxy->mnt_ns = ns; 6191 get_mnt_ns(ns); 6192 6193 root.mnt = mnt; 6194 root.dentry = mnt->mnt_root; 6195 mnt->mnt_flags |= MNT_LOCKED; 6196 6197 set_fs_pwd(current->fs, &root); 6198 set_fs_root(current->fs, &root); 6199 6200 mnt_ns_tree_add(ns); 6201 } 6202 6203 void __init mnt_init(void) 6204 { 6205 int err; 6206 6207 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 6208 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 6209 6210 mount_hashtable = alloc_large_system_hash("Mount-cache", 6211 sizeof(struct hlist_head), 6212 mhash_entries, 19, 6213 HASH_ZERO, 6214 &m_hash_shift, &m_hash_mask, 0, 0); 6215 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 6216 sizeof(struct hlist_head), 6217 mphash_entries, 19, 6218 HASH_ZERO, 6219 &mp_hash_shift, &mp_hash_mask, 0, 0); 6220 6221 if (!mount_hashtable || !mountpoint_hashtable) 6222 panic("Failed to allocate mount hash table\n"); 6223 6224 kernfs_init(); 6225 6226 err = sysfs_init(); 6227 if (err) 6228 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 6229 __func__, err); 6230 fs_kobj = kobject_create_and_add("fs", NULL); 6231 if (!fs_kobj) 6232 printk(KERN_WARNING "%s: kobj create error\n", __func__); 6233 shmem_init(); 6234 init_rootfs(); 6235 init_mount_tree(); 6236 } 6237 6238 void put_mnt_ns(struct mnt_namespace *ns) 6239 { 6240 if (!refcount_dec_and_test(&ns->ns.count)) 6241 return; 6242 drop_collected_mounts(&ns->root->mnt); 6243 free_mnt_ns(ns); 6244 } 6245 6246 struct vfsmount *kern_mount(struct file_system_type *type) 6247 { 6248 struct vfsmount *mnt; 6249 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 6250 if (!IS_ERR(mnt)) { 6251 /* 6252 * it is a longterm mount, don't release mnt until 6253 * we unmount before file sys is unregistered 6254 */ 6255 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 6256 } 6257 return mnt; 6258 } 6259 EXPORT_SYMBOL_GPL(kern_mount); 6260 6261 void kern_unmount(struct vfsmount *mnt) 6262 { 6263 /* release long term mount so mount point can be released */ 6264 if (!IS_ERR(mnt)) { 6265 mnt_make_shortterm(mnt); 6266 synchronize_rcu(); /* yecchhh... */ 6267 mntput(mnt); 6268 } 6269 } 6270 EXPORT_SYMBOL(kern_unmount); 6271 6272 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 6273 { 6274 unsigned int i; 6275 6276 for (i = 0; i < num; i++) 6277 mnt_make_shortterm(mnt[i]); 6278 synchronize_rcu_expedited(); 6279 for (i = 0; i < num; i++) 6280 mntput(mnt[i]); 6281 } 6282 EXPORT_SYMBOL(kern_unmount_array); 6283 6284 bool our_mnt(struct vfsmount *mnt) 6285 { 6286 return check_mnt(real_mount(mnt)); 6287 } 6288 6289 bool current_chrooted(void) 6290 { 6291 /* Does the current process have a non-standard root */ 6292 struct path ns_root; 6293 struct path fs_root; 6294 bool chrooted; 6295 6296 /* Find the namespace root */ 6297 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 6298 ns_root.dentry = ns_root.mnt->mnt_root; 6299 path_get(&ns_root); 6300 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 6301 ; 6302 6303 get_fs_root(current->fs, &fs_root); 6304 6305 chrooted = !path_equal(&fs_root, &ns_root); 6306 6307 path_put(&fs_root); 6308 path_put(&ns_root); 6309 6310 return chrooted; 6311 } 6312 6313 static bool mnt_already_visible(struct mnt_namespace *ns, 6314 const struct super_block *sb, 6315 int *new_mnt_flags) 6316 { 6317 int new_flags = *new_mnt_flags; 6318 struct mount *mnt, *n; 6319 bool visible = false; 6320 6321 down_read(&namespace_sem); 6322 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 6323 struct mount *child; 6324 int mnt_flags; 6325 6326 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 6327 continue; 6328 6329 /* This mount is not fully visible if it's root directory 6330 * is not the root directory of the filesystem. 6331 */ 6332 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 6333 continue; 6334 6335 /* A local view of the mount flags */ 6336 mnt_flags = mnt->mnt.mnt_flags; 6337 6338 /* Don't miss readonly hidden in the superblock flags */ 6339 if (sb_rdonly(mnt->mnt.mnt_sb)) 6340 mnt_flags |= MNT_LOCK_READONLY; 6341 6342 /* Verify the mount flags are equal to or more permissive 6343 * than the proposed new mount. 6344 */ 6345 if ((mnt_flags & MNT_LOCK_READONLY) && 6346 !(new_flags & MNT_READONLY)) 6347 continue; 6348 if ((mnt_flags & MNT_LOCK_ATIME) && 6349 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 6350 continue; 6351 6352 /* This mount is not fully visible if there are any 6353 * locked child mounts that cover anything except for 6354 * empty directories. 6355 */ 6356 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 6357 struct inode *inode = child->mnt_mountpoint->d_inode; 6358 /* Only worry about locked mounts */ 6359 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 6360 continue; 6361 /* Is the directory permanently empty? */ 6362 if (!is_empty_dir_inode(inode)) 6363 goto next; 6364 } 6365 /* Preserve the locked attributes */ 6366 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 6367 MNT_LOCK_ATIME); 6368 visible = true; 6369 goto found; 6370 next: ; 6371 } 6372 found: 6373 up_read(&namespace_sem); 6374 return visible; 6375 } 6376 6377 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 6378 { 6379 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 6380 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 6381 unsigned long s_iflags; 6382 6383 if (ns->user_ns == &init_user_ns) 6384 return false; 6385 6386 /* Can this filesystem be too revealing? */ 6387 s_iflags = sb->s_iflags; 6388 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 6389 return false; 6390 6391 if ((s_iflags & required_iflags) != required_iflags) { 6392 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 6393 required_iflags); 6394 return true; 6395 } 6396 6397 return !mnt_already_visible(ns, sb, new_mnt_flags); 6398 } 6399 6400 bool mnt_may_suid(struct vfsmount *mnt) 6401 { 6402 /* 6403 * Foreign mounts (accessed via fchdir or through /proc 6404 * symlinks) are always treated as if they are nosuid. This 6405 * prevents namespaces from trusting potentially unsafe 6406 * suid/sgid bits, file caps, or security labels that originate 6407 * in other namespaces. 6408 */ 6409 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 6410 current_in_userns(mnt->mnt_sb->s_user_ns); 6411 } 6412 6413 static struct ns_common *mntns_get(struct task_struct *task) 6414 { 6415 struct ns_common *ns = NULL; 6416 struct nsproxy *nsproxy; 6417 6418 task_lock(task); 6419 nsproxy = task->nsproxy; 6420 if (nsproxy) { 6421 ns = &nsproxy->mnt_ns->ns; 6422 get_mnt_ns(to_mnt_ns(ns)); 6423 } 6424 task_unlock(task); 6425 6426 return ns; 6427 } 6428 6429 static void mntns_put(struct ns_common *ns) 6430 { 6431 put_mnt_ns(to_mnt_ns(ns)); 6432 } 6433 6434 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 6435 { 6436 struct nsproxy *nsproxy = nsset->nsproxy; 6437 struct fs_struct *fs = nsset->fs; 6438 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 6439 struct user_namespace *user_ns = nsset->cred->user_ns; 6440 struct path root; 6441 int err; 6442 6443 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 6444 !ns_capable(user_ns, CAP_SYS_CHROOT) || 6445 !ns_capable(user_ns, CAP_SYS_ADMIN)) 6446 return -EPERM; 6447 6448 if (is_anon_ns(mnt_ns)) 6449 return -EINVAL; 6450 6451 if (fs->users != 1) 6452 return -EINVAL; 6453 6454 get_mnt_ns(mnt_ns); 6455 old_mnt_ns = nsproxy->mnt_ns; 6456 nsproxy->mnt_ns = mnt_ns; 6457 6458 /* Find the root */ 6459 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 6460 "/", LOOKUP_DOWN, &root); 6461 if (err) { 6462 /* revert to old namespace */ 6463 nsproxy->mnt_ns = old_mnt_ns; 6464 put_mnt_ns(mnt_ns); 6465 return err; 6466 } 6467 6468 put_mnt_ns(old_mnt_ns); 6469 6470 /* Update the pwd and root */ 6471 set_fs_pwd(fs, &root); 6472 set_fs_root(fs, &root); 6473 6474 path_put(&root); 6475 return 0; 6476 } 6477 6478 static struct user_namespace *mntns_owner(struct ns_common *ns) 6479 { 6480 return to_mnt_ns(ns)->user_ns; 6481 } 6482 6483 const struct proc_ns_operations mntns_operations = { 6484 .name = "mnt", 6485 .type = CLONE_NEWNS, 6486 .get = mntns_get, 6487 .put = mntns_put, 6488 .install = mntns_install, 6489 .owner = mntns_owner, 6490 }; 6491 6492 #ifdef CONFIG_SYSCTL 6493 static const struct ctl_table fs_namespace_sysctls[] = { 6494 { 6495 .procname = "mount-max", 6496 .data = &sysctl_mount_max, 6497 .maxlen = sizeof(unsigned int), 6498 .mode = 0644, 6499 .proc_handler = proc_dointvec_minmax, 6500 .extra1 = SYSCTL_ONE, 6501 }, 6502 }; 6503 6504 static int __init init_fs_namespace_sysctls(void) 6505 { 6506 register_sysctl_init("fs", fs_namespace_sysctls); 6507 return 0; 6508 } 6509 fs_initcall(init_fs_namespace_sysctls); 6510 6511 #endif /* CONFIG_SYSCTL */ 6512