1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/hugetlbfs.h> 44 45 static const struct address_space_operations hugetlbfs_aops; 46 static const struct file_operations hugetlbfs_file_operations; 47 static const struct inode_operations hugetlbfs_dir_inode_operations; 48 static const struct inode_operations hugetlbfs_inode_operations; 49 50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 51 52 struct hugetlbfs_fs_context { 53 struct hstate *hstate; 54 unsigned long long max_size_opt; 55 unsigned long long min_size_opt; 56 long max_hpages; 57 long nr_inodes; 58 long min_hpages; 59 enum hugetlbfs_size_type max_val_type; 60 enum hugetlbfs_size_type min_val_type; 61 kuid_t uid; 62 kgid_t gid; 63 umode_t mode; 64 }; 65 66 int sysctl_hugetlb_shm_group; 67 68 enum hugetlb_param { 69 Opt_gid, 70 Opt_min_size, 71 Opt_mode, 72 Opt_nr_inodes, 73 Opt_pagesize, 74 Opt_size, 75 Opt_uid, 76 }; 77 78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 79 fsparam_gid ("gid", Opt_gid), 80 fsparam_string("min_size", Opt_min_size), 81 fsparam_u32oct("mode", Opt_mode), 82 fsparam_string("nr_inodes", Opt_nr_inodes), 83 fsparam_string("pagesize", Opt_pagesize), 84 fsparam_string("size", Opt_size), 85 fsparam_uid ("uid", Opt_uid), 86 {} 87 }; 88 89 /* 90 * Mask used when checking the page offset value passed in via system 91 * calls. This value will be converted to a loff_t which is signed. 92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 93 * value. The extra bit (- 1 in the shift value) is to take the sign 94 * bit into account. 95 */ 96 #define PGOFF_LOFFT_MAX \ 97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 98 99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 100 { 101 struct inode *inode = file_inode(file); 102 loff_t len, vma_len; 103 int ret; 104 struct hstate *h = hstate_file(file); 105 vm_flags_t vm_flags; 106 107 /* 108 * vma address alignment (but not the pgoff alignment) has 109 * already been checked by prepare_hugepage_range. If you add 110 * any error returns here, do so after setting VM_HUGETLB, so 111 * is_vm_hugetlb_page tests below unmap_region go the right 112 * way when do_mmap unwinds (may be important on powerpc 113 * and ia64). 114 */ 115 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); 116 vma->vm_ops = &hugetlb_vm_ops; 117 118 /* 119 * page based offset in vm_pgoff could be sufficiently large to 120 * overflow a loff_t when converted to byte offset. This can 121 * only happen on architectures where sizeof(loff_t) == 122 * sizeof(unsigned long). So, only check in those instances. 123 */ 124 if (sizeof(unsigned long) == sizeof(loff_t)) { 125 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 126 return -EINVAL; 127 } 128 129 /* must be huge page aligned */ 130 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 131 return -EINVAL; 132 133 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 134 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 135 /* check for overflow */ 136 if (len < vma_len) 137 return -EINVAL; 138 139 inode_lock(inode); 140 file_accessed(file); 141 142 ret = -ENOMEM; 143 144 vm_flags = vma->vm_flags; 145 /* 146 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip 147 * reserving here. Note: only for SHM hugetlbfs file, the inode 148 * flag S_PRIVATE is set. 149 */ 150 if (inode->i_flags & S_PRIVATE) 151 vm_flags |= VM_NORESERVE; 152 153 if (!hugetlb_reserve_pages(inode, 154 vma->vm_pgoff >> huge_page_order(h), 155 len >> huge_page_shift(h), vma, 156 vm_flags)) 157 goto out; 158 159 ret = 0; 160 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 161 i_size_write(inode, len); 162 out: 163 inode_unlock(inode); 164 165 return ret; 166 } 167 168 /* 169 * Called under mmap_write_lock(mm). 170 */ 171 172 unsigned long 173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 174 unsigned long len, unsigned long pgoff, 175 unsigned long flags) 176 { 177 unsigned long addr0 = 0; 178 struct hstate *h = hstate_file(file); 179 180 if (len & ~huge_page_mask(h)) 181 return -EINVAL; 182 if (flags & MAP_FIXED) { 183 if (addr & ~huge_page_mask(h)) 184 return -EINVAL; 185 if (prepare_hugepage_range(file, addr, len)) 186 return -EINVAL; 187 } 188 if (addr) 189 addr0 = ALIGN(addr, huge_page_size(h)); 190 191 return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff, 192 flags, 0); 193 } 194 195 /* 196 * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset. 197 * Returns the maximum number of bytes one can read without touching the 1st raw 198 * HWPOISON page. 199 * 200 * The implementation borrows the iteration logic from copy_page_to_iter*. 201 */ 202 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset, 203 size_t bytes) 204 { 205 struct page *page; 206 size_t n = 0; 207 size_t res = 0; 208 209 /* First page to start the loop. */ 210 page = folio_page(folio, offset / PAGE_SIZE); 211 offset %= PAGE_SIZE; 212 while (1) { 213 if (is_raw_hwpoison_page_in_hugepage(page)) 214 break; 215 216 /* Safe to read n bytes without touching HWPOISON subpage. */ 217 n = min(bytes, (size_t)PAGE_SIZE - offset); 218 res += n; 219 bytes -= n; 220 if (!bytes || !n) 221 break; 222 offset += n; 223 if (offset == PAGE_SIZE) { 224 page = nth_page(page, 1); 225 offset = 0; 226 } 227 } 228 229 return res; 230 } 231 232 /* 233 * Support for read() - Find the page attached to f_mapping and copy out the 234 * data. This provides functionality similar to filemap_read(). 235 */ 236 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 237 { 238 struct file *file = iocb->ki_filp; 239 struct hstate *h = hstate_file(file); 240 struct address_space *mapping = file->f_mapping; 241 struct inode *inode = mapping->host; 242 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 243 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 244 unsigned long end_index; 245 loff_t isize; 246 ssize_t retval = 0; 247 248 while (iov_iter_count(to)) { 249 struct folio *folio; 250 size_t nr, copied, want; 251 252 /* nr is the maximum number of bytes to copy from this page */ 253 nr = huge_page_size(h); 254 isize = i_size_read(inode); 255 if (!isize) 256 break; 257 end_index = (isize - 1) >> huge_page_shift(h); 258 if (index > end_index) 259 break; 260 if (index == end_index) { 261 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 262 if (nr <= offset) 263 break; 264 } 265 nr = nr - offset; 266 267 /* Find the folio */ 268 folio = filemap_lock_hugetlb_folio(h, mapping, index); 269 if (IS_ERR(folio)) { 270 /* 271 * We have a HOLE, zero out the user-buffer for the 272 * length of the hole or request. 273 */ 274 copied = iov_iter_zero(nr, to); 275 } else { 276 folio_unlock(folio); 277 278 if (!folio_test_hwpoison(folio)) 279 want = nr; 280 else { 281 /* 282 * Adjust how many bytes safe to read without 283 * touching the 1st raw HWPOISON page after 284 * offset. 285 */ 286 want = adjust_range_hwpoison(folio, offset, nr); 287 if (want == 0) { 288 folio_put(folio); 289 retval = -EIO; 290 break; 291 } 292 } 293 294 /* 295 * We have the folio, copy it to user space buffer. 296 */ 297 copied = copy_folio_to_iter(folio, offset, want, to); 298 folio_put(folio); 299 } 300 offset += copied; 301 retval += copied; 302 if (copied != nr && iov_iter_count(to)) { 303 if (!retval) 304 retval = -EFAULT; 305 break; 306 } 307 index += offset >> huge_page_shift(h); 308 offset &= ~huge_page_mask(h); 309 } 310 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 311 return retval; 312 } 313 314 static int hugetlbfs_write_begin(struct file *file, 315 struct address_space *mapping, 316 loff_t pos, unsigned len, 317 struct folio **foliop, void **fsdata) 318 { 319 return -EINVAL; 320 } 321 322 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 323 loff_t pos, unsigned len, unsigned copied, 324 struct folio *folio, void *fsdata) 325 { 326 BUG(); 327 return -EINVAL; 328 } 329 330 static void hugetlb_delete_from_page_cache(struct folio *folio) 331 { 332 folio_clear_dirty(folio); 333 folio_clear_uptodate(folio); 334 filemap_remove_folio(folio); 335 } 336 337 /* 338 * Called with i_mmap_rwsem held for inode based vma maps. This makes 339 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 340 * mutex for the page in the mapping. So, we can not race with page being 341 * faulted into the vma. 342 */ 343 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma, 344 unsigned long addr, unsigned long pfn) 345 { 346 pte_t *ptep, pte; 347 348 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 349 if (!ptep) 350 return false; 351 352 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 353 if (huge_pte_none(pte) || !pte_present(pte)) 354 return false; 355 356 if (pte_pfn(pte) == pfn) 357 return true; 358 359 return false; 360 } 361 362 /* 363 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 364 * No, because the interval tree returns us only those vmas 365 * which overlap the truncated area starting at pgoff, 366 * and no vma on a 32-bit arch can span beyond the 4GB. 367 */ 368 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 369 { 370 unsigned long offset = 0; 371 372 if (vma->vm_pgoff < start) 373 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 374 375 return vma->vm_start + offset; 376 } 377 378 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 379 { 380 unsigned long t_end; 381 382 if (!end) 383 return vma->vm_end; 384 385 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 386 if (t_end > vma->vm_end) 387 t_end = vma->vm_end; 388 return t_end; 389 } 390 391 /* 392 * Called with hugetlb fault mutex held. Therefore, no more mappings to 393 * this folio can be created while executing the routine. 394 */ 395 static void hugetlb_unmap_file_folio(struct hstate *h, 396 struct address_space *mapping, 397 struct folio *folio, pgoff_t index) 398 { 399 struct rb_root_cached *root = &mapping->i_mmap; 400 struct hugetlb_vma_lock *vma_lock; 401 unsigned long pfn = folio_pfn(folio); 402 struct vm_area_struct *vma; 403 unsigned long v_start; 404 unsigned long v_end; 405 pgoff_t start, end; 406 407 start = index * pages_per_huge_page(h); 408 end = (index + 1) * pages_per_huge_page(h); 409 410 i_mmap_lock_write(mapping); 411 retry: 412 vma_lock = NULL; 413 vma_interval_tree_foreach(vma, root, start, end - 1) { 414 v_start = vma_offset_start(vma, start); 415 v_end = vma_offset_end(vma, end); 416 417 if (!hugetlb_vma_maps_pfn(vma, v_start, pfn)) 418 continue; 419 420 if (!hugetlb_vma_trylock_write(vma)) { 421 vma_lock = vma->vm_private_data; 422 /* 423 * If we can not get vma lock, we need to drop 424 * immap_sema and take locks in order. First, 425 * take a ref on the vma_lock structure so that 426 * we can be guaranteed it will not go away when 427 * dropping immap_sema. 428 */ 429 kref_get(&vma_lock->refs); 430 break; 431 } 432 433 unmap_hugepage_range(vma, v_start, v_end, NULL, 434 ZAP_FLAG_DROP_MARKER); 435 hugetlb_vma_unlock_write(vma); 436 } 437 438 i_mmap_unlock_write(mapping); 439 440 if (vma_lock) { 441 /* 442 * Wait on vma_lock. We know it is still valid as we have 443 * a reference. We must 'open code' vma locking as we do 444 * not know if vma_lock is still attached to vma. 445 */ 446 down_write(&vma_lock->rw_sema); 447 i_mmap_lock_write(mapping); 448 449 vma = vma_lock->vma; 450 if (!vma) { 451 /* 452 * If lock is no longer attached to vma, then just 453 * unlock, drop our reference and retry looking for 454 * other vmas. 455 */ 456 up_write(&vma_lock->rw_sema); 457 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 458 goto retry; 459 } 460 461 /* 462 * vma_lock is still attached to vma. Check to see if vma 463 * still maps page and if so, unmap. 464 */ 465 v_start = vma_offset_start(vma, start); 466 v_end = vma_offset_end(vma, end); 467 if (hugetlb_vma_maps_pfn(vma, v_start, pfn)) 468 unmap_hugepage_range(vma, v_start, v_end, NULL, 469 ZAP_FLAG_DROP_MARKER); 470 471 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 472 hugetlb_vma_unlock_write(vma); 473 474 goto retry; 475 } 476 } 477 478 static void 479 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 480 zap_flags_t zap_flags) 481 { 482 struct vm_area_struct *vma; 483 484 /* 485 * end == 0 indicates that the entire range after start should be 486 * unmapped. Note, end is exclusive, whereas the interval tree takes 487 * an inclusive "last". 488 */ 489 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 490 unsigned long v_start; 491 unsigned long v_end; 492 493 if (!hugetlb_vma_trylock_write(vma)) 494 continue; 495 496 v_start = vma_offset_start(vma, start); 497 v_end = vma_offset_end(vma, end); 498 499 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 500 501 /* 502 * Note that vma lock only exists for shared/non-private 503 * vmas. Therefore, lock is not held when calling 504 * unmap_hugepage_range for private vmas. 505 */ 506 hugetlb_vma_unlock_write(vma); 507 } 508 } 509 510 /* 511 * Called with hugetlb fault mutex held. 512 * Returns true if page was actually removed, false otherwise. 513 */ 514 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 515 struct address_space *mapping, 516 struct folio *folio, pgoff_t index, 517 bool truncate_op) 518 { 519 bool ret = false; 520 521 /* 522 * If folio is mapped, it was faulted in after being 523 * unmapped in caller. Unmap (again) while holding 524 * the fault mutex. The mutex will prevent faults 525 * until we finish removing the folio. 526 */ 527 if (unlikely(folio_mapped(folio))) 528 hugetlb_unmap_file_folio(h, mapping, folio, index); 529 530 folio_lock(folio); 531 /* 532 * We must remove the folio from page cache before removing 533 * the region/ reserve map (hugetlb_unreserve_pages). In 534 * rare out of memory conditions, removal of the region/reserve 535 * map could fail. Correspondingly, the subpool and global 536 * reserve usage count can need to be adjusted. 537 */ 538 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 539 hugetlb_delete_from_page_cache(folio); 540 ret = true; 541 if (!truncate_op) { 542 if (unlikely(hugetlb_unreserve_pages(inode, index, 543 index + 1, 1))) 544 hugetlb_fix_reserve_counts(inode); 545 } 546 547 folio_unlock(folio); 548 return ret; 549 } 550 551 /* 552 * remove_inode_hugepages handles two distinct cases: truncation and hole 553 * punch. There are subtle differences in operation for each case. 554 * 555 * truncation is indicated by end of range being LLONG_MAX 556 * In this case, we first scan the range and release found pages. 557 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 558 * maps and global counts. Page faults can race with truncation. 559 * During faults, hugetlb_no_page() checks i_size before page allocation, 560 * and again after obtaining page table lock. It will 'back out' 561 * allocations in the truncated range. 562 * hole punch is indicated if end is not LLONG_MAX 563 * In the hole punch case we scan the range and release found pages. 564 * Only when releasing a page is the associated region/reserve map 565 * deleted. The region/reserve map for ranges without associated 566 * pages are not modified. Page faults can race with hole punch. 567 * This is indicated if we find a mapped page. 568 * Note: If the passed end of range value is beyond the end of file, but 569 * not LLONG_MAX this routine still performs a hole punch operation. 570 */ 571 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 572 loff_t lend) 573 { 574 struct hstate *h = hstate_inode(inode); 575 struct address_space *mapping = &inode->i_data; 576 const pgoff_t end = lend >> PAGE_SHIFT; 577 struct folio_batch fbatch; 578 pgoff_t next, index; 579 int i, freed = 0; 580 bool truncate_op = (lend == LLONG_MAX); 581 582 folio_batch_init(&fbatch); 583 next = lstart >> PAGE_SHIFT; 584 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 585 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 586 struct folio *folio = fbatch.folios[i]; 587 u32 hash = 0; 588 589 index = folio->index >> huge_page_order(h); 590 hash = hugetlb_fault_mutex_hash(mapping, index); 591 mutex_lock(&hugetlb_fault_mutex_table[hash]); 592 593 /* 594 * Remove folio that was part of folio_batch. 595 */ 596 if (remove_inode_single_folio(h, inode, mapping, folio, 597 index, truncate_op)) 598 freed++; 599 600 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 601 } 602 folio_batch_release(&fbatch); 603 cond_resched(); 604 } 605 606 if (truncate_op) 607 (void)hugetlb_unreserve_pages(inode, 608 lstart >> huge_page_shift(h), 609 LONG_MAX, freed); 610 } 611 612 static void hugetlbfs_evict_inode(struct inode *inode) 613 { 614 struct resv_map *resv_map; 615 616 trace_hugetlbfs_evict_inode(inode); 617 remove_inode_hugepages(inode, 0, LLONG_MAX); 618 619 /* 620 * Get the resv_map from the address space embedded in the inode. 621 * This is the address space which points to any resv_map allocated 622 * at inode creation time. If this is a device special inode, 623 * i_mapping may not point to the original address space. 624 */ 625 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; 626 /* Only regular and link inodes have associated reserve maps */ 627 if (resv_map) 628 resv_map_release(&resv_map->refs); 629 clear_inode(inode); 630 } 631 632 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 633 { 634 pgoff_t pgoff; 635 struct address_space *mapping = inode->i_mapping; 636 struct hstate *h = hstate_inode(inode); 637 638 BUG_ON(offset & ~huge_page_mask(h)); 639 pgoff = offset >> PAGE_SHIFT; 640 641 i_size_write(inode, offset); 642 i_mmap_lock_write(mapping); 643 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 644 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 645 ZAP_FLAG_DROP_MARKER); 646 i_mmap_unlock_write(mapping); 647 remove_inode_hugepages(inode, offset, LLONG_MAX); 648 } 649 650 static void hugetlbfs_zero_partial_page(struct hstate *h, 651 struct address_space *mapping, 652 loff_t start, 653 loff_t end) 654 { 655 pgoff_t idx = start >> huge_page_shift(h); 656 struct folio *folio; 657 658 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 659 if (IS_ERR(folio)) 660 return; 661 662 start = start & ~huge_page_mask(h); 663 end = end & ~huge_page_mask(h); 664 if (!end) 665 end = huge_page_size(h); 666 667 folio_zero_segment(folio, (size_t)start, (size_t)end); 668 669 folio_unlock(folio); 670 folio_put(folio); 671 } 672 673 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 674 { 675 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 676 struct address_space *mapping = inode->i_mapping; 677 struct hstate *h = hstate_inode(inode); 678 loff_t hpage_size = huge_page_size(h); 679 loff_t hole_start, hole_end; 680 681 /* 682 * hole_start and hole_end indicate the full pages within the hole. 683 */ 684 hole_start = round_up(offset, hpage_size); 685 hole_end = round_down(offset + len, hpage_size); 686 687 inode_lock(inode); 688 689 /* protected by i_rwsem */ 690 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 691 inode_unlock(inode); 692 return -EPERM; 693 } 694 695 i_mmap_lock_write(mapping); 696 697 /* If range starts before first full page, zero partial page. */ 698 if (offset < hole_start) 699 hugetlbfs_zero_partial_page(h, mapping, 700 offset, min(offset + len, hole_start)); 701 702 /* Unmap users of full pages in the hole. */ 703 if (hole_end > hole_start) { 704 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 705 hugetlb_vmdelete_list(&mapping->i_mmap, 706 hole_start >> PAGE_SHIFT, 707 hole_end >> PAGE_SHIFT, 0); 708 } 709 710 /* If range extends beyond last full page, zero partial page. */ 711 if ((offset + len) > hole_end && (offset + len) > hole_start) 712 hugetlbfs_zero_partial_page(h, mapping, 713 hole_end, offset + len); 714 715 i_mmap_unlock_write(mapping); 716 717 /* Remove full pages from the file. */ 718 if (hole_end > hole_start) 719 remove_inode_hugepages(inode, hole_start, hole_end); 720 721 inode_unlock(inode); 722 723 return 0; 724 } 725 726 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 727 loff_t len) 728 { 729 struct inode *inode = file_inode(file); 730 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 731 struct address_space *mapping = inode->i_mapping; 732 struct hstate *h = hstate_inode(inode); 733 struct vm_area_struct pseudo_vma; 734 struct mm_struct *mm = current->mm; 735 loff_t hpage_size = huge_page_size(h); 736 unsigned long hpage_shift = huge_page_shift(h); 737 pgoff_t start, index, end; 738 int error; 739 u32 hash; 740 741 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 742 return -EOPNOTSUPP; 743 744 if (mode & FALLOC_FL_PUNCH_HOLE) { 745 error = hugetlbfs_punch_hole(inode, offset, len); 746 goto out_nolock; 747 } 748 749 /* 750 * Default preallocate case. 751 * For this range, start is rounded down and end is rounded up 752 * as well as being converted to page offsets. 753 */ 754 start = offset >> hpage_shift; 755 end = (offset + len + hpage_size - 1) >> hpage_shift; 756 757 inode_lock(inode); 758 759 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 760 error = inode_newsize_ok(inode, offset + len); 761 if (error) 762 goto out; 763 764 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 765 error = -EPERM; 766 goto out; 767 } 768 769 /* 770 * Initialize a pseudo vma as this is required by the huge page 771 * allocation routines. 772 */ 773 vma_init(&pseudo_vma, mm); 774 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 775 pseudo_vma.vm_file = file; 776 777 for (index = start; index < end; index++) { 778 /* 779 * This is supposed to be the vaddr where the page is being 780 * faulted in, but we have no vaddr here. 781 */ 782 struct folio *folio; 783 unsigned long addr; 784 785 cond_resched(); 786 787 /* 788 * fallocate(2) manpage permits EINTR; we may have been 789 * interrupted because we are using up too much memory. 790 */ 791 if (signal_pending(current)) { 792 error = -EINTR; 793 break; 794 } 795 796 /* addr is the offset within the file (zero based) */ 797 addr = index * hpage_size; 798 799 /* mutex taken here, fault path and hole punch */ 800 hash = hugetlb_fault_mutex_hash(mapping, index); 801 mutex_lock(&hugetlb_fault_mutex_table[hash]); 802 803 /* See if already present in mapping to avoid alloc/free */ 804 folio = filemap_get_folio(mapping, index << huge_page_order(h)); 805 if (!IS_ERR(folio)) { 806 folio_put(folio); 807 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 808 continue; 809 } 810 811 /* 812 * Allocate folio without setting the avoid_reserve argument. 813 * There certainly are no reserves associated with the 814 * pseudo_vma. However, there could be shared mappings with 815 * reserves for the file at the inode level. If we fallocate 816 * folios in these areas, we need to consume the reserves 817 * to keep reservation accounting consistent. 818 */ 819 folio = alloc_hugetlb_folio(&pseudo_vma, addr, false); 820 if (IS_ERR(folio)) { 821 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 822 error = PTR_ERR(folio); 823 goto out; 824 } 825 folio_zero_user(folio, addr); 826 __folio_mark_uptodate(folio); 827 error = hugetlb_add_to_page_cache(folio, mapping, index); 828 if (unlikely(error)) { 829 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 830 folio_put(folio); 831 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 832 goto out; 833 } 834 835 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 836 837 folio_set_hugetlb_migratable(folio); 838 /* 839 * folio_unlock because locked by hugetlb_add_to_page_cache() 840 * folio_put() due to reference from alloc_hugetlb_folio() 841 */ 842 folio_unlock(folio); 843 folio_put(folio); 844 } 845 846 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 847 i_size_write(inode, offset + len); 848 inode_set_ctime_current(inode); 849 out: 850 inode_unlock(inode); 851 852 out_nolock: 853 trace_hugetlbfs_fallocate(inode, mode, offset, len, error); 854 return error; 855 } 856 857 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 858 struct dentry *dentry, struct iattr *attr) 859 { 860 struct inode *inode = d_inode(dentry); 861 struct hstate *h = hstate_inode(inode); 862 int error; 863 unsigned int ia_valid = attr->ia_valid; 864 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 865 866 error = setattr_prepare(idmap, dentry, attr); 867 if (error) 868 return error; 869 870 trace_hugetlbfs_setattr(inode, dentry, attr); 871 872 if (ia_valid & ATTR_SIZE) { 873 loff_t oldsize = inode->i_size; 874 loff_t newsize = attr->ia_size; 875 876 if (newsize & ~huge_page_mask(h)) 877 return -EINVAL; 878 /* protected by i_rwsem */ 879 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 880 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 881 return -EPERM; 882 hugetlb_vmtruncate(inode, newsize); 883 } 884 885 setattr_copy(idmap, inode, attr); 886 mark_inode_dirty(inode); 887 return 0; 888 } 889 890 static struct inode *hugetlbfs_get_root(struct super_block *sb, 891 struct hugetlbfs_fs_context *ctx) 892 { 893 struct inode *inode; 894 895 inode = new_inode(sb); 896 if (inode) { 897 inode->i_ino = get_next_ino(); 898 inode->i_mode = S_IFDIR | ctx->mode; 899 inode->i_uid = ctx->uid; 900 inode->i_gid = ctx->gid; 901 simple_inode_init_ts(inode); 902 inode->i_op = &hugetlbfs_dir_inode_operations; 903 inode->i_fop = &simple_dir_operations; 904 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 905 inc_nlink(inode); 906 lockdep_annotate_inode_mutex_key(inode); 907 } 908 return inode; 909 } 910 911 /* 912 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 913 * be taken from reclaim -- unlike regular filesystems. This needs an 914 * annotation because huge_pmd_share() does an allocation under hugetlb's 915 * i_mmap_rwsem. 916 */ 917 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 918 919 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 920 struct mnt_idmap *idmap, 921 struct inode *dir, 922 umode_t mode, dev_t dev) 923 { 924 struct inode *inode; 925 struct resv_map *resv_map = NULL; 926 927 /* 928 * Reserve maps are only needed for inodes that can have associated 929 * page allocations. 930 */ 931 if (S_ISREG(mode) || S_ISLNK(mode)) { 932 resv_map = resv_map_alloc(); 933 if (!resv_map) 934 return NULL; 935 } 936 937 inode = new_inode(sb); 938 if (inode) { 939 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 940 941 inode->i_ino = get_next_ino(); 942 inode_init_owner(idmap, inode, dir, mode); 943 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 944 &hugetlbfs_i_mmap_rwsem_key); 945 inode->i_mapping->a_ops = &hugetlbfs_aops; 946 simple_inode_init_ts(inode); 947 inode->i_mapping->i_private_data = resv_map; 948 info->seals = F_SEAL_SEAL; 949 switch (mode & S_IFMT) { 950 default: 951 init_special_inode(inode, mode, dev); 952 break; 953 case S_IFREG: 954 inode->i_op = &hugetlbfs_inode_operations; 955 inode->i_fop = &hugetlbfs_file_operations; 956 break; 957 case S_IFDIR: 958 inode->i_op = &hugetlbfs_dir_inode_operations; 959 inode->i_fop = &simple_dir_operations; 960 961 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 962 inc_nlink(inode); 963 break; 964 case S_IFLNK: 965 inode->i_op = &page_symlink_inode_operations; 966 inode_nohighmem(inode); 967 break; 968 } 969 lockdep_annotate_inode_mutex_key(inode); 970 trace_hugetlbfs_alloc_inode(inode, dir, mode); 971 } else { 972 if (resv_map) 973 kref_put(&resv_map->refs, resv_map_release); 974 } 975 976 return inode; 977 } 978 979 /* 980 * File creation. Allocate an inode, and we're done.. 981 */ 982 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 983 struct dentry *dentry, umode_t mode, dev_t dev) 984 { 985 struct inode *inode; 986 987 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev); 988 if (!inode) 989 return -ENOSPC; 990 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 991 d_instantiate(dentry, inode); 992 dget(dentry);/* Extra count - pin the dentry in core */ 993 return 0; 994 } 995 996 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 997 struct dentry *dentry, umode_t mode) 998 { 999 int retval = hugetlbfs_mknod(idmap, dir, dentry, 1000 mode | S_IFDIR, 0); 1001 if (!retval) 1002 inc_nlink(dir); 1003 return ERR_PTR(retval); 1004 } 1005 1006 static int hugetlbfs_create(struct mnt_idmap *idmap, 1007 struct inode *dir, struct dentry *dentry, 1008 umode_t mode, bool excl) 1009 { 1010 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 1011 } 1012 1013 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1014 struct inode *dir, struct file *file, 1015 umode_t mode) 1016 { 1017 struct inode *inode; 1018 1019 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0); 1020 if (!inode) 1021 return -ENOSPC; 1022 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1023 d_tmpfile(file, inode); 1024 return finish_open_simple(file, 0); 1025 } 1026 1027 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1028 struct inode *dir, struct dentry *dentry, 1029 const char *symname) 1030 { 1031 const umode_t mode = S_IFLNK|S_IRWXUGO; 1032 struct inode *inode; 1033 int error = -ENOSPC; 1034 1035 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0); 1036 if (inode) { 1037 int l = strlen(symname)+1; 1038 error = page_symlink(inode, symname, l); 1039 if (!error) { 1040 d_instantiate(dentry, inode); 1041 dget(dentry); 1042 } else 1043 iput(inode); 1044 } 1045 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1046 1047 return error; 1048 } 1049 1050 #ifdef CONFIG_MIGRATION 1051 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1052 struct folio *dst, struct folio *src, 1053 enum migrate_mode mode) 1054 { 1055 int rc; 1056 1057 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1058 if (rc != MIGRATEPAGE_SUCCESS) 1059 return rc; 1060 1061 if (hugetlb_folio_subpool(src)) { 1062 hugetlb_set_folio_subpool(dst, 1063 hugetlb_folio_subpool(src)); 1064 hugetlb_set_folio_subpool(src, NULL); 1065 } 1066 1067 folio_migrate_flags(dst, src); 1068 1069 return MIGRATEPAGE_SUCCESS; 1070 } 1071 #else 1072 #define hugetlbfs_migrate_folio NULL 1073 #endif 1074 1075 static int hugetlbfs_error_remove_folio(struct address_space *mapping, 1076 struct folio *folio) 1077 { 1078 return 0; 1079 } 1080 1081 /* 1082 * Display the mount options in /proc/mounts. 1083 */ 1084 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1085 { 1086 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1087 struct hugepage_subpool *spool = sbinfo->spool; 1088 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1089 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1090 char mod; 1091 1092 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1093 seq_printf(m, ",uid=%u", 1094 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1095 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1096 seq_printf(m, ",gid=%u", 1097 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1098 if (sbinfo->mode != 0755) 1099 seq_printf(m, ",mode=%o", sbinfo->mode); 1100 if (sbinfo->max_inodes != -1) 1101 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1102 1103 hpage_size /= 1024; 1104 mod = 'K'; 1105 if (hpage_size >= 1024) { 1106 hpage_size /= 1024; 1107 mod = 'M'; 1108 } 1109 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1110 if (spool) { 1111 if (spool->max_hpages != -1) 1112 seq_printf(m, ",size=%llu", 1113 (unsigned long long)spool->max_hpages << hpage_shift); 1114 if (spool->min_hpages != -1) 1115 seq_printf(m, ",min_size=%llu", 1116 (unsigned long long)spool->min_hpages << hpage_shift); 1117 } 1118 return 0; 1119 } 1120 1121 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1122 { 1123 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1124 struct hstate *h = hstate_inode(d_inode(dentry)); 1125 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 1126 1127 buf->f_fsid = u64_to_fsid(id); 1128 buf->f_type = HUGETLBFS_MAGIC; 1129 buf->f_bsize = huge_page_size(h); 1130 if (sbinfo) { 1131 spin_lock(&sbinfo->stat_lock); 1132 /* If no limits set, just report 0 or -1 for max/free/used 1133 * blocks, like simple_statfs() */ 1134 if (sbinfo->spool) { 1135 long free_pages; 1136 1137 spin_lock_irq(&sbinfo->spool->lock); 1138 buf->f_blocks = sbinfo->spool->max_hpages; 1139 free_pages = sbinfo->spool->max_hpages 1140 - sbinfo->spool->used_hpages; 1141 buf->f_bavail = buf->f_bfree = free_pages; 1142 spin_unlock_irq(&sbinfo->spool->lock); 1143 buf->f_files = sbinfo->max_inodes; 1144 buf->f_ffree = sbinfo->free_inodes; 1145 } 1146 spin_unlock(&sbinfo->stat_lock); 1147 } 1148 buf->f_namelen = NAME_MAX; 1149 return 0; 1150 } 1151 1152 static void hugetlbfs_put_super(struct super_block *sb) 1153 { 1154 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1155 1156 if (sbi) { 1157 sb->s_fs_info = NULL; 1158 1159 if (sbi->spool) 1160 hugepage_put_subpool(sbi->spool); 1161 1162 kfree(sbi); 1163 } 1164 } 1165 1166 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1167 { 1168 if (sbinfo->free_inodes >= 0) { 1169 spin_lock(&sbinfo->stat_lock); 1170 if (unlikely(!sbinfo->free_inodes)) { 1171 spin_unlock(&sbinfo->stat_lock); 1172 return 0; 1173 } 1174 sbinfo->free_inodes--; 1175 spin_unlock(&sbinfo->stat_lock); 1176 } 1177 1178 return 1; 1179 } 1180 1181 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1182 { 1183 if (sbinfo->free_inodes >= 0) { 1184 spin_lock(&sbinfo->stat_lock); 1185 sbinfo->free_inodes++; 1186 spin_unlock(&sbinfo->stat_lock); 1187 } 1188 } 1189 1190 1191 static struct kmem_cache *hugetlbfs_inode_cachep; 1192 1193 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1194 { 1195 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1196 struct hugetlbfs_inode_info *p; 1197 1198 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1199 return NULL; 1200 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1201 if (unlikely(!p)) { 1202 hugetlbfs_inc_free_inodes(sbinfo); 1203 return NULL; 1204 } 1205 return &p->vfs_inode; 1206 } 1207 1208 static void hugetlbfs_free_inode(struct inode *inode) 1209 { 1210 trace_hugetlbfs_free_inode(inode); 1211 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1212 } 1213 1214 static void hugetlbfs_destroy_inode(struct inode *inode) 1215 { 1216 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1217 } 1218 1219 static const struct address_space_operations hugetlbfs_aops = { 1220 .write_begin = hugetlbfs_write_begin, 1221 .write_end = hugetlbfs_write_end, 1222 .dirty_folio = noop_dirty_folio, 1223 .migrate_folio = hugetlbfs_migrate_folio, 1224 .error_remove_folio = hugetlbfs_error_remove_folio, 1225 }; 1226 1227 1228 static void init_once(void *foo) 1229 { 1230 struct hugetlbfs_inode_info *ei = foo; 1231 1232 inode_init_once(&ei->vfs_inode); 1233 } 1234 1235 static const struct file_operations hugetlbfs_file_operations = { 1236 .read_iter = hugetlbfs_read_iter, 1237 .mmap = hugetlbfs_file_mmap, 1238 .fsync = noop_fsync, 1239 .get_unmapped_area = hugetlb_get_unmapped_area, 1240 .llseek = default_llseek, 1241 .fallocate = hugetlbfs_fallocate, 1242 .fop_flags = FOP_HUGE_PAGES, 1243 }; 1244 1245 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1246 .create = hugetlbfs_create, 1247 .lookup = simple_lookup, 1248 .link = simple_link, 1249 .unlink = simple_unlink, 1250 .symlink = hugetlbfs_symlink, 1251 .mkdir = hugetlbfs_mkdir, 1252 .rmdir = simple_rmdir, 1253 .mknod = hugetlbfs_mknod, 1254 .rename = simple_rename, 1255 .setattr = hugetlbfs_setattr, 1256 .tmpfile = hugetlbfs_tmpfile, 1257 }; 1258 1259 static const struct inode_operations hugetlbfs_inode_operations = { 1260 .setattr = hugetlbfs_setattr, 1261 }; 1262 1263 static const struct super_operations hugetlbfs_ops = { 1264 .alloc_inode = hugetlbfs_alloc_inode, 1265 .free_inode = hugetlbfs_free_inode, 1266 .destroy_inode = hugetlbfs_destroy_inode, 1267 .evict_inode = hugetlbfs_evict_inode, 1268 .statfs = hugetlbfs_statfs, 1269 .put_super = hugetlbfs_put_super, 1270 .show_options = hugetlbfs_show_options, 1271 }; 1272 1273 /* 1274 * Convert size option passed from command line to number of huge pages 1275 * in the pool specified by hstate. Size option could be in bytes 1276 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1277 */ 1278 static long 1279 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1280 enum hugetlbfs_size_type val_type) 1281 { 1282 if (val_type == NO_SIZE) 1283 return -1; 1284 1285 if (val_type == SIZE_PERCENT) { 1286 size_opt <<= huge_page_shift(h); 1287 size_opt *= h->max_huge_pages; 1288 do_div(size_opt, 100); 1289 } 1290 1291 size_opt >>= huge_page_shift(h); 1292 return size_opt; 1293 } 1294 1295 /* 1296 * Parse one mount parameter. 1297 */ 1298 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1299 { 1300 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1301 struct fs_parse_result result; 1302 struct hstate *h; 1303 char *rest; 1304 unsigned long ps; 1305 int opt; 1306 1307 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1308 if (opt < 0) 1309 return opt; 1310 1311 switch (opt) { 1312 case Opt_uid: 1313 ctx->uid = result.uid; 1314 return 0; 1315 1316 case Opt_gid: 1317 ctx->gid = result.gid; 1318 return 0; 1319 1320 case Opt_mode: 1321 ctx->mode = result.uint_32 & 01777U; 1322 return 0; 1323 1324 case Opt_size: 1325 /* memparse() will accept a K/M/G without a digit */ 1326 if (!param->string || !isdigit(param->string[0])) 1327 goto bad_val; 1328 ctx->max_size_opt = memparse(param->string, &rest); 1329 ctx->max_val_type = SIZE_STD; 1330 if (*rest == '%') 1331 ctx->max_val_type = SIZE_PERCENT; 1332 return 0; 1333 1334 case Opt_nr_inodes: 1335 /* memparse() will accept a K/M/G without a digit */ 1336 if (!param->string || !isdigit(param->string[0])) 1337 goto bad_val; 1338 ctx->nr_inodes = memparse(param->string, &rest); 1339 return 0; 1340 1341 case Opt_pagesize: 1342 ps = memparse(param->string, &rest); 1343 h = size_to_hstate(ps); 1344 if (!h) { 1345 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1346 return -EINVAL; 1347 } 1348 ctx->hstate = h; 1349 return 0; 1350 1351 case Opt_min_size: 1352 /* memparse() will accept a K/M/G without a digit */ 1353 if (!param->string || !isdigit(param->string[0])) 1354 goto bad_val; 1355 ctx->min_size_opt = memparse(param->string, &rest); 1356 ctx->min_val_type = SIZE_STD; 1357 if (*rest == '%') 1358 ctx->min_val_type = SIZE_PERCENT; 1359 return 0; 1360 1361 default: 1362 return -EINVAL; 1363 } 1364 1365 bad_val: 1366 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1367 param->string, param->key); 1368 } 1369 1370 /* 1371 * Validate the parsed options. 1372 */ 1373 static int hugetlbfs_validate(struct fs_context *fc) 1374 { 1375 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1376 1377 /* 1378 * Use huge page pool size (in hstate) to convert the size 1379 * options to number of huge pages. If NO_SIZE, -1 is returned. 1380 */ 1381 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1382 ctx->max_size_opt, 1383 ctx->max_val_type); 1384 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1385 ctx->min_size_opt, 1386 ctx->min_val_type); 1387 1388 /* 1389 * If max_size was specified, then min_size must be smaller 1390 */ 1391 if (ctx->max_val_type > NO_SIZE && 1392 ctx->min_hpages > ctx->max_hpages) { 1393 pr_err("Minimum size can not be greater than maximum size\n"); 1394 return -EINVAL; 1395 } 1396 1397 return 0; 1398 } 1399 1400 static int 1401 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1402 { 1403 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1404 struct hugetlbfs_sb_info *sbinfo; 1405 1406 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1407 if (!sbinfo) 1408 return -ENOMEM; 1409 sb->s_fs_info = sbinfo; 1410 spin_lock_init(&sbinfo->stat_lock); 1411 sbinfo->hstate = ctx->hstate; 1412 sbinfo->max_inodes = ctx->nr_inodes; 1413 sbinfo->free_inodes = ctx->nr_inodes; 1414 sbinfo->spool = NULL; 1415 sbinfo->uid = ctx->uid; 1416 sbinfo->gid = ctx->gid; 1417 sbinfo->mode = ctx->mode; 1418 1419 /* 1420 * Allocate and initialize subpool if maximum or minimum size is 1421 * specified. Any needed reservations (for minimum size) are taken 1422 * when the subpool is created. 1423 */ 1424 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1425 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1426 ctx->max_hpages, 1427 ctx->min_hpages); 1428 if (!sbinfo->spool) 1429 goto out_free; 1430 } 1431 sb->s_maxbytes = MAX_LFS_FILESIZE; 1432 sb->s_blocksize = huge_page_size(ctx->hstate); 1433 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1434 sb->s_magic = HUGETLBFS_MAGIC; 1435 sb->s_op = &hugetlbfs_ops; 1436 sb->s_time_gran = 1; 1437 1438 /* 1439 * Due to the special and limited functionality of hugetlbfs, it does 1440 * not work well as a stacking filesystem. 1441 */ 1442 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1443 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1444 if (!sb->s_root) 1445 goto out_free; 1446 return 0; 1447 out_free: 1448 kfree(sbinfo->spool); 1449 kfree(sbinfo); 1450 return -ENOMEM; 1451 } 1452 1453 static int hugetlbfs_get_tree(struct fs_context *fc) 1454 { 1455 int err = hugetlbfs_validate(fc); 1456 if (err) 1457 return err; 1458 return get_tree_nodev(fc, hugetlbfs_fill_super); 1459 } 1460 1461 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1462 { 1463 kfree(fc->fs_private); 1464 } 1465 1466 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1467 .free = hugetlbfs_fs_context_free, 1468 .parse_param = hugetlbfs_parse_param, 1469 .get_tree = hugetlbfs_get_tree, 1470 }; 1471 1472 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1473 { 1474 struct hugetlbfs_fs_context *ctx; 1475 1476 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1477 if (!ctx) 1478 return -ENOMEM; 1479 1480 ctx->max_hpages = -1; /* No limit on size by default */ 1481 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1482 ctx->uid = current_fsuid(); 1483 ctx->gid = current_fsgid(); 1484 ctx->mode = 0755; 1485 ctx->hstate = &default_hstate; 1486 ctx->min_hpages = -1; /* No default minimum size */ 1487 ctx->max_val_type = NO_SIZE; 1488 ctx->min_val_type = NO_SIZE; 1489 fc->fs_private = ctx; 1490 fc->ops = &hugetlbfs_fs_context_ops; 1491 return 0; 1492 } 1493 1494 static struct file_system_type hugetlbfs_fs_type = { 1495 .name = "hugetlbfs", 1496 .init_fs_context = hugetlbfs_init_fs_context, 1497 .parameters = hugetlb_fs_parameters, 1498 .kill_sb = kill_litter_super, 1499 .fs_flags = FS_ALLOW_IDMAP, 1500 }; 1501 1502 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1503 1504 static int can_do_hugetlb_shm(void) 1505 { 1506 kgid_t shm_group; 1507 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1508 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1509 } 1510 1511 static int get_hstate_idx(int page_size_log) 1512 { 1513 struct hstate *h = hstate_sizelog(page_size_log); 1514 1515 if (!h) 1516 return -1; 1517 return hstate_index(h); 1518 } 1519 1520 /* 1521 * Note that size should be aligned to proper hugepage size in caller side, 1522 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1523 */ 1524 struct file *hugetlb_file_setup(const char *name, size_t size, 1525 vm_flags_t acctflag, int creat_flags, 1526 int page_size_log) 1527 { 1528 struct inode *inode; 1529 struct vfsmount *mnt; 1530 int hstate_idx; 1531 struct file *file; 1532 1533 hstate_idx = get_hstate_idx(page_size_log); 1534 if (hstate_idx < 0) 1535 return ERR_PTR(-ENODEV); 1536 1537 mnt = hugetlbfs_vfsmount[hstate_idx]; 1538 if (!mnt) 1539 return ERR_PTR(-ENOENT); 1540 1541 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1542 struct ucounts *ucounts = current_ucounts(); 1543 1544 if (user_shm_lock(size, ucounts)) { 1545 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1546 current->comm, current->pid); 1547 user_shm_unlock(size, ucounts); 1548 } 1549 return ERR_PTR(-EPERM); 1550 } 1551 1552 file = ERR_PTR(-ENOSPC); 1553 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */ 1554 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL, 1555 S_IFREG | S_IRWXUGO, 0); 1556 if (!inode) 1557 goto out; 1558 if (creat_flags == HUGETLB_SHMFS_INODE) 1559 inode->i_flags |= S_PRIVATE; 1560 1561 inode->i_size = size; 1562 clear_nlink(inode); 1563 1564 if (!hugetlb_reserve_pages(inode, 0, 1565 size >> huge_page_shift(hstate_inode(inode)), NULL, 1566 acctflag)) 1567 file = ERR_PTR(-ENOMEM); 1568 else 1569 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1570 &hugetlbfs_file_operations); 1571 if (!IS_ERR(file)) 1572 return file; 1573 1574 iput(inode); 1575 out: 1576 return file; 1577 } 1578 1579 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1580 { 1581 struct fs_context *fc; 1582 struct vfsmount *mnt; 1583 1584 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1585 if (IS_ERR(fc)) { 1586 mnt = ERR_CAST(fc); 1587 } else { 1588 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1589 ctx->hstate = h; 1590 mnt = fc_mount(fc); 1591 put_fs_context(fc); 1592 } 1593 if (IS_ERR(mnt)) 1594 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1595 huge_page_size(h) / SZ_1K); 1596 return mnt; 1597 } 1598 1599 static int __init init_hugetlbfs_fs(void) 1600 { 1601 struct vfsmount *mnt; 1602 struct hstate *h; 1603 int error; 1604 int i; 1605 1606 if (!hugepages_supported()) { 1607 pr_info("disabling because there are no supported hugepage sizes\n"); 1608 return -ENOTSUPP; 1609 } 1610 1611 error = -ENOMEM; 1612 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1613 sizeof(struct hugetlbfs_inode_info), 1614 0, SLAB_ACCOUNT, init_once); 1615 if (hugetlbfs_inode_cachep == NULL) 1616 goto out; 1617 1618 error = register_filesystem(&hugetlbfs_fs_type); 1619 if (error) 1620 goto out_free; 1621 1622 /* default hstate mount is required */ 1623 mnt = mount_one_hugetlbfs(&default_hstate); 1624 if (IS_ERR(mnt)) { 1625 error = PTR_ERR(mnt); 1626 goto out_unreg; 1627 } 1628 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1629 1630 /* other hstates are optional */ 1631 i = 0; 1632 for_each_hstate(h) { 1633 if (i == default_hstate_idx) { 1634 i++; 1635 continue; 1636 } 1637 1638 mnt = mount_one_hugetlbfs(h); 1639 if (IS_ERR(mnt)) 1640 hugetlbfs_vfsmount[i] = NULL; 1641 else 1642 hugetlbfs_vfsmount[i] = mnt; 1643 i++; 1644 } 1645 1646 return 0; 1647 1648 out_unreg: 1649 (void)unregister_filesystem(&hugetlbfs_fs_type); 1650 out_free: 1651 kmem_cache_destroy(hugetlbfs_inode_cachep); 1652 out: 1653 return error; 1654 } 1655 fs_initcall(init_hugetlbfs_fs) 1656