1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright 2004-2011 Red Hat, Inc.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24 
25 /**
26  * gfs2_update_stats - Update time based stats
27  * @s: The stats to update (local or global)
28  * @index: The index inside @s
29  * @sample: New data to include
30  */
31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 				     s64 sample)
33 {
34 	/*
35 	 * @delta is the difference between the current rtt sample and the
36 	 * running average srtt. We add 1/8 of that to the srtt in order to
37 	 * update the current srtt estimate. The variance estimate is a bit
38 	 * more complicated. We subtract the current variance estimate from
39 	 * the abs value of the @delta and add 1/4 of that to the running
40 	 * total.  That's equivalent to 3/4 of the current variance
41 	 * estimate plus 1/4 of the abs of @delta.
42 	 *
43 	 * Note that the index points at the array entry containing the
44 	 * smoothed mean value, and the variance is always in the following
45 	 * entry
46 	 *
47 	 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 	 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 	 * case, they are not scaled fixed point.
50 	 */
51 
52 	s64 delta = sample - s->stats[index];
53 	s->stats[index] += (delta >> 3);
54 	index++;
55 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56 }
57 
58 /**
59  * gfs2_update_reply_times - Update locking statistics
60  * @gl: The glock to update
61  *
62  * This assumes that gl->gl_dstamp has been set earlier.
63  *
64  * The rtt (lock round trip time) is an estimate of the time
65  * taken to perform a dlm lock request. We update it on each
66  * reply from the dlm.
67  *
68  * The blocking flag is set on the glock for all dlm requests
69  * which may potentially block due to lock requests from other nodes.
70  * DLM requests where the current lock state is exclusive, the
71  * requested state is null (or unlocked) or where the TRY or
72  * TRY_1CB flags are set are classified as non-blocking. All
73  * other DLM requests are counted as (potentially) blocking.
74  */
75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76 {
77 	struct gfs2_pcpu_lkstats *lks;
78 	const unsigned gltype = gl->gl_name.ln_type;
79 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 	s64 rtt;
82 
83 	preempt_disable();
84 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
87 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
88 	preempt_enable();
89 
90 	trace_gfs2_glock_lock_time(gl, rtt);
91 }
92 
93 /**
94  * gfs2_update_request_times - Update locking statistics
95  * @gl: The glock to update
96  *
97  * The irt (lock inter-request times) measures the average time
98  * between requests to the dlm. It is updated immediately before
99  * each dlm call.
100  */
101 
102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103 {
104 	struct gfs2_pcpu_lkstats *lks;
105 	const unsigned gltype = gl->gl_name.ln_type;
106 	ktime_t dstamp;
107 	s64 irt;
108 
109 	preempt_disable();
110 	dstamp = gl->gl_dstamp;
111 	gl->gl_dstamp = ktime_get_real();
112 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
115 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
116 	preempt_enable();
117 }
118 
119 static void gdlm_ast(void *arg)
120 {
121 	struct gfs2_glock *gl = arg;
122 	unsigned ret = gl->gl_state;
123 
124 	/* If the glock is dead, we only react to a dlm_unlock() reply. */
125 	if (__lockref_is_dead(&gl->gl_lockref) &&
126 	    gl->gl_lksb.sb_status != -DLM_EUNLOCK)
127 		return;
128 
129 	gfs2_update_reply_times(gl);
130 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
131 
132 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
133 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
134 
135 	switch (gl->gl_lksb.sb_status) {
136 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
137 		if (gl->gl_ops->go_unlocked)
138 			gl->gl_ops->go_unlocked(gl);
139 		gfs2_glock_free(gl);
140 		return;
141 	case -DLM_ECANCEL: /* Cancel while getting lock */
142 		ret |= LM_OUT_CANCELED;
143 		goto out;
144 	case -EAGAIN: /* Try lock fails */
145 	case -EDEADLK: /* Deadlock detected */
146 		goto out;
147 	case -ETIMEDOUT: /* Canceled due to timeout */
148 		ret |= LM_OUT_ERROR;
149 		goto out;
150 	case 0: /* Success */
151 		break;
152 	default: /* Something unexpected */
153 		BUG();
154 	}
155 
156 	ret = gl->gl_req;
157 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
158 		if (gl->gl_req == LM_ST_SHARED)
159 			ret = LM_ST_DEFERRED;
160 		else if (gl->gl_req == LM_ST_DEFERRED)
161 			ret = LM_ST_SHARED;
162 		else
163 			BUG();
164 	}
165 
166 	/*
167 	 * The GLF_INITIAL flag is initially set for new glocks.  Upon the
168 	 * first successful new (non-conversion) request, we clear this flag to
169 	 * indicate that a DLM lock exists and that gl->gl_lksb.sb_lkid is the
170 	 * identifier to use for identifying it.
171 	 *
172 	 * Any failed initial requests do not create a DLM lock, so we ignore
173 	 * the gl->gl_lksb.sb_lkid values that come with such requests.
174 	 */
175 
176 	clear_bit(GLF_INITIAL, &gl->gl_flags);
177 	gfs2_glock_complete(gl, ret);
178 	return;
179 out:
180 	if (test_bit(GLF_INITIAL, &gl->gl_flags))
181 		gl->gl_lksb.sb_lkid = 0;
182 	gfs2_glock_complete(gl, ret);
183 }
184 
185 static void gdlm_bast(void *arg, int mode)
186 {
187 	struct gfs2_glock *gl = arg;
188 
189 	if (__lockref_is_dead(&gl->gl_lockref))
190 		return;
191 
192 	switch (mode) {
193 	case DLM_LOCK_EX:
194 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
195 		break;
196 	case DLM_LOCK_CW:
197 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
198 		break;
199 	case DLM_LOCK_PR:
200 		gfs2_glock_cb(gl, LM_ST_SHARED);
201 		break;
202 	default:
203 		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
204 		BUG();
205 	}
206 }
207 
208 /* convert gfs lock-state to dlm lock-mode */
209 
210 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
211 {
212 	switch (lmstate) {
213 	case LM_ST_UNLOCKED:
214 		return DLM_LOCK_NL;
215 	case LM_ST_EXCLUSIVE:
216 		return DLM_LOCK_EX;
217 	case LM_ST_DEFERRED:
218 		return DLM_LOCK_CW;
219 	case LM_ST_SHARED:
220 		return DLM_LOCK_PR;
221 	}
222 	fs_err(sdp, "unknown LM state %d\n", lmstate);
223 	BUG();
224 	return -1;
225 }
226 
227 /* Taken from fs/dlm/lock.c. */
228 
229 static bool middle_conversion(int cur, int req)
230 {
231 	return (cur == DLM_LOCK_PR && req == DLM_LOCK_CW) ||
232 	       (cur == DLM_LOCK_CW && req == DLM_LOCK_PR);
233 }
234 
235 static bool down_conversion(int cur, int req)
236 {
237 	return !middle_conversion(cur, req) && req < cur;
238 }
239 
240 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
241 		      const int cur, const int req)
242 {
243 	u32 lkf = 0;
244 
245 	if (gl->gl_lksb.sb_lvbptr)
246 		lkf |= DLM_LKF_VALBLK;
247 
248 	if (gfs_flags & LM_FLAG_TRY)
249 		lkf |= DLM_LKF_NOQUEUE;
250 
251 	if (gfs_flags & LM_FLAG_TRY_1CB) {
252 		lkf |= DLM_LKF_NOQUEUE;
253 		lkf |= DLM_LKF_NOQUEUEBAST;
254 	}
255 
256 	if (gfs_flags & LM_FLAG_ANY) {
257 		if (req == DLM_LOCK_PR)
258 			lkf |= DLM_LKF_ALTCW;
259 		else if (req == DLM_LOCK_CW)
260 			lkf |= DLM_LKF_ALTPR;
261 		else
262 			BUG();
263 	}
264 
265 	if (!test_bit(GLF_INITIAL, &gl->gl_flags)) {
266 		lkf |= DLM_LKF_CONVERT;
267 
268 		/*
269 		 * The DLM_LKF_QUECVT flag needs to be set for "first come,
270 		 * first served" semantics, but it must only be set for
271 		 * "upward" lock conversions or else DLM will reject the
272 		 * request as invalid.
273 		 */
274 		if (!down_conversion(cur, req))
275 			lkf |= DLM_LKF_QUECVT;
276 	}
277 
278 	return lkf;
279 }
280 
281 static void gfs2_reverse_hex(char *c, u64 value)
282 {
283 	*c = '0';
284 	while (value) {
285 		*c-- = hex_asc[value & 0x0f];
286 		value >>= 4;
287 	}
288 }
289 
290 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
291 		     unsigned int flags)
292 {
293 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
294 	int cur, req;
295 	u32 lkf;
296 	char strname[GDLM_STRNAME_BYTES] = "";
297 	int error;
298 
299 	cur = make_mode(gl->gl_name.ln_sbd, gl->gl_state);
300 	req = make_mode(gl->gl_name.ln_sbd, req_state);
301 	lkf = make_flags(gl, flags, cur, req);
302 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
303 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
304 	if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
305 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
306 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
307 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
308 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
309 		gl->gl_dstamp = ktime_get_real();
310 	} else {
311 		gfs2_update_request_times(gl);
312 	}
313 	/*
314 	 * Submit the actual lock request.
315 	 */
316 
317 again:
318 	error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
319 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
320 	if (error == -EBUSY) {
321 		msleep(20);
322 		goto again;
323 	}
324 	return error;
325 }
326 
327 static void gdlm_put_lock(struct gfs2_glock *gl)
328 {
329 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
330 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
331 	uint32_t flags = 0;
332 	int error;
333 
334 	BUG_ON(!__lockref_is_dead(&gl->gl_lockref));
335 
336 	if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
337 		gfs2_glock_free(gl);
338 		return;
339 	}
340 
341 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
342 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
343 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
344 	gfs2_update_request_times(gl);
345 
346 	/* don't want to call dlm if we've unmounted the lock protocol */
347 	if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
348 		gfs2_glock_free(gl);
349 		return;
350 	}
351 
352 	/*
353 	 * When the lockspace is released, all remaining glocks will be
354 	 * unlocked automatically.  This is more efficient than unlocking them
355 	 * individually, but when the lock is held in DLM_LOCK_EX or
356 	 * DLM_LOCK_PW mode, the lock value block (LVB) would be lost.
357 	 */
358 
359 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
360 	    (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) {
361 		gfs2_glock_free_later(gl);
362 		return;
363 	}
364 
365 	if (gl->gl_lksb.sb_lvbptr)
366 		flags |= DLM_LKF_VALBLK;
367 
368 again:
369 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, flags,
370 			   NULL, gl);
371 	if (error == -EBUSY) {
372 		msleep(20);
373 		goto again;
374 	}
375 
376 	if (error) {
377 		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
378 		       gl->gl_name.ln_type,
379 		       (unsigned long long)gl->gl_name.ln_number, error);
380 	}
381 }
382 
383 static void gdlm_cancel(struct gfs2_glock *gl)
384 {
385 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
386 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
387 }
388 
389 /*
390  * dlm/gfs2 recovery coordination using dlm_recover callbacks
391  *
392  *  0. gfs2 checks for another cluster node withdraw, needing journal replay
393  *  1. dlm_controld sees lockspace members change
394  *  2. dlm_controld blocks dlm-kernel locking activity
395  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
396  *  4. dlm_controld starts and finishes its own user level recovery
397  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
398  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
399  *  7. dlm_recoverd does its own lock recovery
400  *  8. dlm_recoverd unblocks dlm-kernel locking activity
401  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
402  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
403  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
404  * 12. gfs2_recover dequeues and recovers journals of failed nodes
405  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
406  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
407  * 15. gfs2_control unblocks normal locking when all journals are recovered
408  *
409  * - failures during recovery
410  *
411  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
412  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
413  * recovering for a prior failure.  gfs2_control needs a way to detect
414  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
415  * the recover_block and recover_start values.
416  *
417  * recover_done() provides a new lockspace generation number each time it
418  * is called (step 9).  This generation number is saved as recover_start.
419  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
420  * recover_block = recover_start.  So, while recover_block is equal to
421  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
422  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
423  *
424  * - more specific gfs2 steps in sequence above
425  *
426  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
427  *  6. recover_slot records any failed jids (maybe none)
428  *  9. recover_done sets recover_start = new generation number
429  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
430  * 12. gfs2_recover does journal recoveries for failed jids identified above
431  * 14. gfs2_control clears control_lock lvb bits for recovered jids
432  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
433  *     again) then do nothing, otherwise if recover_start > recover_block
434  *     then clear BLOCK_LOCKS.
435  *
436  * - parallel recovery steps across all nodes
437  *
438  * All nodes attempt to update the control_lock lvb with the new generation
439  * number and jid bits, but only the first to get the control_lock EX will
440  * do so; others will see that it's already done (lvb already contains new
441  * generation number.)
442  *
443  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
444  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
445  * . One node gets control_lock first and writes the lvb, others see it's done
446  * . All nodes attempt to recover jids for which they see control_lock bits set
447  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
448  * . All nodes will eventually see all lvb bits clear and unblock locks
449  *
450  * - is there a problem with clearing an lvb bit that should be set
451  *   and missing a journal recovery?
452  *
453  * 1. jid fails
454  * 2. lvb bit set for step 1
455  * 3. jid recovered for step 1
456  * 4. jid taken again (new mount)
457  * 5. jid fails (for step 4)
458  * 6. lvb bit set for step 5 (will already be set)
459  * 7. lvb bit cleared for step 3
460  *
461  * This is not a problem because the failure in step 5 does not
462  * require recovery, because the mount in step 4 could not have
463  * progressed far enough to unblock locks and access the fs.  The
464  * control_mount() function waits for all recoveries to be complete
465  * for the latest lockspace generation before ever unblocking locks
466  * and returning.  The mount in step 4 waits until the recovery in
467  * step 1 is done.
468  *
469  * - special case of first mounter: first node to mount the fs
470  *
471  * The first node to mount a gfs2 fs needs to check all the journals
472  * and recover any that need recovery before other nodes are allowed
473  * to mount the fs.  (Others may begin mounting, but they must wait
474  * for the first mounter to be done before taking locks on the fs
475  * or accessing the fs.)  This has two parts:
476  *
477  * 1. The mounted_lock tells a node it's the first to mount the fs.
478  * Each node holds the mounted_lock in PR while it's mounted.
479  * Each node tries to acquire the mounted_lock in EX when it mounts.
480  * If a node is granted the mounted_lock EX it means there are no
481  * other mounted nodes (no PR locks exist), and it is the first mounter.
482  * The mounted_lock is demoted to PR when first recovery is done, so
483  * others will fail to get an EX lock, but will get a PR lock.
484  *
485  * 2. The control_lock blocks others in control_mount() while the first
486  * mounter is doing first mount recovery of all journals.
487  * A mounting node needs to acquire control_lock in EX mode before
488  * it can proceed.  The first mounter holds control_lock in EX while doing
489  * the first mount recovery, blocking mounts from other nodes, then demotes
490  * control_lock to NL when it's done (others_may_mount/first_done),
491  * allowing other nodes to continue mounting.
492  *
493  * first mounter:
494  * control_lock EX/NOQUEUE success
495  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
496  * set first=1
497  * do first mounter recovery
498  * mounted_lock EX->PR
499  * control_lock EX->NL, write lvb generation
500  *
501  * other mounter:
502  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
503  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
504  * mounted_lock PR/NOQUEUE success
505  * read lvb generation
506  * control_lock EX->NL
507  * set first=0
508  *
509  * - mount during recovery
510  *
511  * If a node mounts while others are doing recovery (not first mounter),
512  * the mounting node will get its initial recover_done() callback without
513  * having seen any previous failures/callbacks.
514  *
515  * It must wait for all recoveries preceding its mount to be finished
516  * before it unblocks locks.  It does this by repeating the "other mounter"
517  * steps above until the lvb generation number is >= its mount generation
518  * number (from initial recover_done) and all lvb bits are clear.
519  *
520  * - control_lock lvb format
521  *
522  * 4 bytes generation number: the latest dlm lockspace generation number
523  * from recover_done callback.  Indicates the jid bitmap has been updated
524  * to reflect all slot failures through that generation.
525  * 4 bytes unused.
526  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
527  * that jid N needs recovery.
528  */
529 
530 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
531 
532 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
533 			     char *lvb_bits)
534 {
535 	__le32 gen;
536 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
537 	memcpy(&gen, lvb_bits, sizeof(__le32));
538 	*lvb_gen = le32_to_cpu(gen);
539 }
540 
541 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
542 			      char *lvb_bits)
543 {
544 	__le32 gen;
545 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
546 	gen = cpu_to_le32(lvb_gen);
547 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
548 }
549 
550 static int all_jid_bits_clear(char *lvb)
551 {
552 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
553 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
554 }
555 
556 static void sync_wait_cb(void *arg)
557 {
558 	struct lm_lockstruct *ls = arg;
559 	complete(&ls->ls_sync_wait);
560 }
561 
562 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
563 {
564 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
565 	int error;
566 
567 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
568 	if (error) {
569 		fs_err(sdp, "%s lkid %x error %d\n",
570 		       name, lksb->sb_lkid, error);
571 		return error;
572 	}
573 
574 	wait_for_completion(&ls->ls_sync_wait);
575 
576 	if (lksb->sb_status != -DLM_EUNLOCK) {
577 		fs_err(sdp, "%s lkid %x status %d\n",
578 		       name, lksb->sb_lkid, lksb->sb_status);
579 		return -1;
580 	}
581 	return 0;
582 }
583 
584 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
585 		     unsigned int num, struct dlm_lksb *lksb, char *name)
586 {
587 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
588 	char strname[GDLM_STRNAME_BYTES];
589 	int error, status;
590 
591 	memset(strname, 0, GDLM_STRNAME_BYTES);
592 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
593 
594 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
595 			 strname, GDLM_STRNAME_BYTES - 1,
596 			 0, sync_wait_cb, ls, NULL);
597 	if (error) {
598 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
599 		       name, lksb->sb_lkid, flags, mode, error);
600 		return error;
601 	}
602 
603 	wait_for_completion(&ls->ls_sync_wait);
604 
605 	status = lksb->sb_status;
606 
607 	if (status && status != -EAGAIN) {
608 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
609 		       name, lksb->sb_lkid, flags, mode, status);
610 	}
611 
612 	return status;
613 }
614 
615 static int mounted_unlock(struct gfs2_sbd *sdp)
616 {
617 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
618 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
619 }
620 
621 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
622 {
623 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
624 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
625 			 &ls->ls_mounted_lksb, "mounted_lock");
626 }
627 
628 static int control_unlock(struct gfs2_sbd *sdp)
629 {
630 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
631 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
632 }
633 
634 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
635 {
636 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
637 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
638 			 &ls->ls_control_lksb, "control_lock");
639 }
640 
641 /**
642  * remote_withdraw - react to a node withdrawing from the file system
643  * @sdp: The superblock
644  */
645 static void remote_withdraw(struct gfs2_sbd *sdp)
646 {
647 	struct gfs2_jdesc *jd;
648 	int ret = 0, count = 0;
649 
650 	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
651 		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
652 			continue;
653 		ret = gfs2_recover_journal(jd, true);
654 		if (ret)
655 			break;
656 		count++;
657 	}
658 
659 	/* Now drop the additional reference we acquired */
660 	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
661 }
662 
663 static void gfs2_control_func(struct work_struct *work)
664 {
665 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
666 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
667 	uint32_t block_gen, start_gen, lvb_gen, flags;
668 	int recover_set = 0;
669 	int write_lvb = 0;
670 	int recover_size;
671 	int i, error;
672 
673 	/* First check for other nodes that may have done a withdraw. */
674 	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
675 		remote_withdraw(sdp);
676 		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
677 		return;
678 	}
679 
680 	spin_lock(&ls->ls_recover_spin);
681 	/*
682 	 * No MOUNT_DONE means we're still mounting; control_mount()
683 	 * will set this flag, after which this thread will take over
684 	 * all further clearing of BLOCK_LOCKS.
685 	 *
686 	 * FIRST_MOUNT means this node is doing first mounter recovery,
687 	 * for which recovery control is handled by
688 	 * control_mount()/control_first_done(), not this thread.
689 	 */
690 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
691 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
692 		spin_unlock(&ls->ls_recover_spin);
693 		return;
694 	}
695 	block_gen = ls->ls_recover_block;
696 	start_gen = ls->ls_recover_start;
697 	spin_unlock(&ls->ls_recover_spin);
698 
699 	/*
700 	 * Equal block_gen and start_gen implies we are between
701 	 * recover_prep and recover_done callbacks, which means
702 	 * dlm recovery is in progress and dlm locking is blocked.
703 	 * There's no point trying to do any work until recover_done.
704 	 */
705 
706 	if (block_gen == start_gen)
707 		return;
708 
709 	/*
710 	 * Propagate recover_submit[] and recover_result[] to lvb:
711 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
712 	 * gfs2_recover adds to recover_result[] journal recovery results
713 	 *
714 	 * set lvb bit for jids in recover_submit[] if the lvb has not
715 	 * yet been updated for the generation of the failure
716 	 *
717 	 * clear lvb bit for jids in recover_result[] if the result of
718 	 * the journal recovery is SUCCESS
719 	 */
720 
721 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
722 	if (error) {
723 		fs_err(sdp, "control lock EX error %d\n", error);
724 		return;
725 	}
726 
727 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
728 
729 	spin_lock(&ls->ls_recover_spin);
730 	if (block_gen != ls->ls_recover_block ||
731 	    start_gen != ls->ls_recover_start) {
732 		fs_info(sdp, "recover generation %u block1 %u %u\n",
733 			start_gen, block_gen, ls->ls_recover_block);
734 		spin_unlock(&ls->ls_recover_spin);
735 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
736 		return;
737 	}
738 
739 	recover_size = ls->ls_recover_size;
740 
741 	if (lvb_gen <= start_gen) {
742 		/*
743 		 * Clear lvb bits for jids we've successfully recovered.
744 		 * Because all nodes attempt to recover failed journals,
745 		 * a journal can be recovered multiple times successfully
746 		 * in succession.  Only the first will really do recovery,
747 		 * the others find it clean, but still report a successful
748 		 * recovery.  So, another node may have already recovered
749 		 * the jid and cleared the lvb bit for it.
750 		 */
751 		for (i = 0; i < recover_size; i++) {
752 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
753 				continue;
754 
755 			ls->ls_recover_result[i] = 0;
756 
757 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
758 				continue;
759 
760 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
761 			write_lvb = 1;
762 		}
763 	}
764 
765 	if (lvb_gen == start_gen) {
766 		/*
767 		 * Failed slots before start_gen are already set in lvb.
768 		 */
769 		for (i = 0; i < recover_size; i++) {
770 			if (!ls->ls_recover_submit[i])
771 				continue;
772 			if (ls->ls_recover_submit[i] < lvb_gen)
773 				ls->ls_recover_submit[i] = 0;
774 		}
775 	} else if (lvb_gen < start_gen) {
776 		/*
777 		 * Failed slots before start_gen are not yet set in lvb.
778 		 */
779 		for (i = 0; i < recover_size; i++) {
780 			if (!ls->ls_recover_submit[i])
781 				continue;
782 			if (ls->ls_recover_submit[i] < start_gen) {
783 				ls->ls_recover_submit[i] = 0;
784 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
785 			}
786 		}
787 		/* even if there are no bits to set, we need to write the
788 		   latest generation to the lvb */
789 		write_lvb = 1;
790 	} else {
791 		/*
792 		 * we should be getting a recover_done() for lvb_gen soon
793 		 */
794 	}
795 	spin_unlock(&ls->ls_recover_spin);
796 
797 	if (write_lvb) {
798 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
799 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
800 	} else {
801 		flags = DLM_LKF_CONVERT;
802 	}
803 
804 	error = control_lock(sdp, DLM_LOCK_NL, flags);
805 	if (error) {
806 		fs_err(sdp, "control lock NL error %d\n", error);
807 		return;
808 	}
809 
810 	/*
811 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
812 	 * and clear a jid bit in the lvb if the recovery is a success.
813 	 * Eventually all journals will be recovered, all jid bits will
814 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
815 	 */
816 
817 	for (i = 0; i < recover_size; i++) {
818 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
819 			fs_info(sdp, "recover generation %u jid %d\n",
820 				start_gen, i);
821 			gfs2_recover_set(sdp, i);
822 			recover_set++;
823 		}
824 	}
825 	if (recover_set)
826 		return;
827 
828 	/*
829 	 * No more jid bits set in lvb, all recovery is done, unblock locks
830 	 * (unless a new recover_prep callback has occured blocking locks
831 	 * again while working above)
832 	 */
833 
834 	spin_lock(&ls->ls_recover_spin);
835 	if (ls->ls_recover_block == block_gen &&
836 	    ls->ls_recover_start == start_gen) {
837 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
838 		spin_unlock(&ls->ls_recover_spin);
839 		fs_info(sdp, "recover generation %u done\n", start_gen);
840 		gfs2_glock_thaw(sdp);
841 	} else {
842 		fs_info(sdp, "recover generation %u block2 %u %u\n",
843 			start_gen, block_gen, ls->ls_recover_block);
844 		spin_unlock(&ls->ls_recover_spin);
845 	}
846 }
847 
848 static int control_mount(struct gfs2_sbd *sdp)
849 {
850 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
851 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
852 	int mounted_mode;
853 	int retries = 0;
854 	int error;
855 
856 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
857 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
858 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
859 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
860 	init_completion(&ls->ls_sync_wait);
861 
862 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
863 
864 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
865 	if (error) {
866 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
867 		return error;
868 	}
869 
870 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
871 	if (error) {
872 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
873 		control_unlock(sdp);
874 		return error;
875 	}
876 	mounted_mode = DLM_LOCK_NL;
877 
878 restart:
879 	if (retries++ && signal_pending(current)) {
880 		error = -EINTR;
881 		goto fail;
882 	}
883 
884 	/*
885 	 * We always start with both locks in NL. control_lock is
886 	 * demoted to NL below so we don't need to do it here.
887 	 */
888 
889 	if (mounted_mode != DLM_LOCK_NL) {
890 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
891 		if (error)
892 			goto fail;
893 		mounted_mode = DLM_LOCK_NL;
894 	}
895 
896 	/*
897 	 * Other nodes need to do some work in dlm recovery and gfs2_control
898 	 * before the recover_done and control_lock will be ready for us below.
899 	 * A delay here is not required but often avoids having to retry.
900 	 */
901 
902 	msleep_interruptible(500);
903 
904 	/*
905 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
906 	 * control_lock lvb keeps track of any pending journal recoveries.
907 	 * mounted_lock indicates if any other nodes have the fs mounted.
908 	 */
909 
910 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
911 	if (error == -EAGAIN) {
912 		goto restart;
913 	} else if (error) {
914 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
915 		goto fail;
916 	}
917 
918 	/**
919 	 * If we're a spectator, we don't want to take the lock in EX because
920 	 * we cannot do the first-mount responsibility it implies: recovery.
921 	 */
922 	if (sdp->sd_args.ar_spectator)
923 		goto locks_done;
924 
925 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
926 	if (!error) {
927 		mounted_mode = DLM_LOCK_EX;
928 		goto locks_done;
929 	} else if (error != -EAGAIN) {
930 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
931 		goto fail;
932 	}
933 
934 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
935 	if (!error) {
936 		mounted_mode = DLM_LOCK_PR;
937 		goto locks_done;
938 	} else {
939 		/* not even -EAGAIN should happen here */
940 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
941 		goto fail;
942 	}
943 
944 locks_done:
945 	/*
946 	 * If we got both locks above in EX, then we're the first mounter.
947 	 * If not, then we need to wait for the control_lock lvb to be
948 	 * updated by other mounted nodes to reflect our mount generation.
949 	 *
950 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
951 	 * but in cases where all existing nodes leave/fail before mounting
952 	 * nodes finish control_mount, then all nodes will be mounting and
953 	 * lvb_gen will be non-zero.
954 	 */
955 
956 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
957 
958 	if (lvb_gen == 0xFFFFFFFF) {
959 		/* special value to force mount attempts to fail */
960 		fs_err(sdp, "control_mount control_lock disabled\n");
961 		error = -EINVAL;
962 		goto fail;
963 	}
964 
965 	if (mounted_mode == DLM_LOCK_EX) {
966 		/* first mounter, keep both EX while doing first recovery */
967 		spin_lock(&ls->ls_recover_spin);
968 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
969 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
970 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
971 		spin_unlock(&ls->ls_recover_spin);
972 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
973 		return 0;
974 	}
975 
976 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
977 	if (error)
978 		goto fail;
979 
980 	/*
981 	 * We are not first mounter, now we need to wait for the control_lock
982 	 * lvb generation to be >= the generation from our first recover_done
983 	 * and all lvb bits to be clear (no pending journal recoveries.)
984 	 */
985 
986 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
987 		/* journals need recovery, wait until all are clear */
988 		fs_info(sdp, "control_mount wait for journal recovery\n");
989 		goto restart;
990 	}
991 
992 	spin_lock(&ls->ls_recover_spin);
993 	block_gen = ls->ls_recover_block;
994 	start_gen = ls->ls_recover_start;
995 	mount_gen = ls->ls_recover_mount;
996 
997 	if (lvb_gen < mount_gen) {
998 		/* wait for mounted nodes to update control_lock lvb to our
999 		   generation, which might include new recovery bits set */
1000 		if (sdp->sd_args.ar_spectator) {
1001 			fs_info(sdp, "Recovery is required. Waiting for a "
1002 				"non-spectator to mount.\n");
1003 			spin_unlock(&ls->ls_recover_spin);
1004 			msleep_interruptible(1000);
1005 		} else {
1006 			fs_info(sdp, "control_mount wait1 block %u start %u "
1007 				"mount %u lvb %u flags %lx\n", block_gen,
1008 				start_gen, mount_gen, lvb_gen,
1009 				ls->ls_recover_flags);
1010 			spin_unlock(&ls->ls_recover_spin);
1011 		}
1012 		goto restart;
1013 	}
1014 
1015 	if (lvb_gen != start_gen) {
1016 		/* wait for mounted nodes to update control_lock lvb to the
1017 		   latest recovery generation */
1018 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
1019 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1020 			lvb_gen, ls->ls_recover_flags);
1021 		spin_unlock(&ls->ls_recover_spin);
1022 		goto restart;
1023 	}
1024 
1025 	if (block_gen == start_gen) {
1026 		/* dlm recovery in progress, wait for it to finish */
1027 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
1028 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1029 			lvb_gen, ls->ls_recover_flags);
1030 		spin_unlock(&ls->ls_recover_spin);
1031 		goto restart;
1032 	}
1033 
1034 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1035 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
1036 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1037 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1038 	spin_unlock(&ls->ls_recover_spin);
1039 	return 0;
1040 
1041 fail:
1042 	mounted_unlock(sdp);
1043 	control_unlock(sdp);
1044 	return error;
1045 }
1046 
1047 static int control_first_done(struct gfs2_sbd *sdp)
1048 {
1049 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1050 	uint32_t start_gen, block_gen;
1051 	int error;
1052 
1053 restart:
1054 	spin_lock(&ls->ls_recover_spin);
1055 	start_gen = ls->ls_recover_start;
1056 	block_gen = ls->ls_recover_block;
1057 
1058 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1059 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1060 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1061 		/* sanity check, should not happen */
1062 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1063 		       start_gen, block_gen, ls->ls_recover_flags);
1064 		spin_unlock(&ls->ls_recover_spin);
1065 		control_unlock(sdp);
1066 		return -1;
1067 	}
1068 
1069 	if (start_gen == block_gen) {
1070 		/*
1071 		 * Wait for the end of a dlm recovery cycle to switch from
1072 		 * first mounter recovery.  We can ignore any recover_slot
1073 		 * callbacks between the recover_prep and next recover_done
1074 		 * because we are still the first mounter and any failed nodes
1075 		 * have not fully mounted, so they don't need recovery.
1076 		 */
1077 		spin_unlock(&ls->ls_recover_spin);
1078 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1079 
1080 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1081 			    TASK_UNINTERRUPTIBLE);
1082 		goto restart;
1083 	}
1084 
1085 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1086 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1087 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1088 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1089 	spin_unlock(&ls->ls_recover_spin);
1090 
1091 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1092 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1093 
1094 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1095 	if (error)
1096 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1097 
1098 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1099 	if (error)
1100 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1101 
1102 	return error;
1103 }
1104 
1105 /*
1106  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1107  * to accommodate the largest slot number.  (NB dlm slot numbers start at 1,
1108  * gfs2 jids start at 0, so jid = slot - 1)
1109  */
1110 
1111 #define RECOVER_SIZE_INC 16
1112 
1113 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1114 			    int num_slots)
1115 {
1116 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1117 	uint32_t *submit = NULL;
1118 	uint32_t *result = NULL;
1119 	uint32_t old_size, new_size;
1120 	int i, max_jid;
1121 
1122 	if (!ls->ls_lvb_bits) {
1123 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1124 		if (!ls->ls_lvb_bits)
1125 			return -ENOMEM;
1126 	}
1127 
1128 	max_jid = 0;
1129 	for (i = 0; i < num_slots; i++) {
1130 		if (max_jid < slots[i].slot - 1)
1131 			max_jid = slots[i].slot - 1;
1132 	}
1133 
1134 	old_size = ls->ls_recover_size;
1135 	new_size = old_size;
1136 	while (new_size < max_jid + 1)
1137 		new_size += RECOVER_SIZE_INC;
1138 	if (new_size == old_size)
1139 		return 0;
1140 
1141 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1142 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1143 	if (!submit || !result) {
1144 		kfree(submit);
1145 		kfree(result);
1146 		return -ENOMEM;
1147 	}
1148 
1149 	spin_lock(&ls->ls_recover_spin);
1150 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1151 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1152 	kfree(ls->ls_recover_submit);
1153 	kfree(ls->ls_recover_result);
1154 	ls->ls_recover_submit = submit;
1155 	ls->ls_recover_result = result;
1156 	ls->ls_recover_size = new_size;
1157 	spin_unlock(&ls->ls_recover_spin);
1158 	return 0;
1159 }
1160 
1161 static void free_recover_size(struct lm_lockstruct *ls)
1162 {
1163 	kfree(ls->ls_lvb_bits);
1164 	kfree(ls->ls_recover_submit);
1165 	kfree(ls->ls_recover_result);
1166 	ls->ls_recover_submit = NULL;
1167 	ls->ls_recover_result = NULL;
1168 	ls->ls_recover_size = 0;
1169 	ls->ls_lvb_bits = NULL;
1170 }
1171 
1172 /* dlm calls before it does lock recovery */
1173 
1174 static void gdlm_recover_prep(void *arg)
1175 {
1176 	struct gfs2_sbd *sdp = arg;
1177 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1178 
1179 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1180 		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1181 		return;
1182 	}
1183 	spin_lock(&ls->ls_recover_spin);
1184 	ls->ls_recover_block = ls->ls_recover_start;
1185 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1186 
1187 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1188 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1189 		spin_unlock(&ls->ls_recover_spin);
1190 		return;
1191 	}
1192 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1193 	spin_unlock(&ls->ls_recover_spin);
1194 }
1195 
1196 /* dlm calls after recover_prep has been completed on all lockspace members;
1197    identifies slot/jid of failed member */
1198 
1199 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1200 {
1201 	struct gfs2_sbd *sdp = arg;
1202 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1203 	int jid = slot->slot - 1;
1204 
1205 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1206 		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1207 		       jid);
1208 		return;
1209 	}
1210 	spin_lock(&ls->ls_recover_spin);
1211 	if (ls->ls_recover_size < jid + 1) {
1212 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1213 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1214 		spin_unlock(&ls->ls_recover_spin);
1215 		return;
1216 	}
1217 
1218 	if (ls->ls_recover_submit[jid]) {
1219 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1220 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1221 	}
1222 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1223 	spin_unlock(&ls->ls_recover_spin);
1224 }
1225 
1226 /* dlm calls after recover_slot and after it completes lock recovery */
1227 
1228 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1229 			      int our_slot, uint32_t generation)
1230 {
1231 	struct gfs2_sbd *sdp = arg;
1232 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1233 
1234 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1235 		fs_err(sdp, "recover_done ignored due to withdraw.\n");
1236 		return;
1237 	}
1238 	/* ensure the ls jid arrays are large enough */
1239 	set_recover_size(sdp, slots, num_slots);
1240 
1241 	spin_lock(&ls->ls_recover_spin);
1242 	ls->ls_recover_start = generation;
1243 
1244 	if (!ls->ls_recover_mount) {
1245 		ls->ls_recover_mount = generation;
1246 		ls->ls_jid = our_slot - 1;
1247 	}
1248 
1249 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1250 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1251 
1252 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1253 	smp_mb__after_atomic();
1254 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1255 	spin_unlock(&ls->ls_recover_spin);
1256 }
1257 
1258 /* gfs2_recover thread has a journal recovery result */
1259 
1260 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1261 				 unsigned int result)
1262 {
1263 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1264 
1265 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1266 		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1267 		       jid);
1268 		return;
1269 	}
1270 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1271 		return;
1272 
1273 	/* don't care about the recovery of own journal during mount */
1274 	if (jid == ls->ls_jid)
1275 		return;
1276 
1277 	spin_lock(&ls->ls_recover_spin);
1278 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1279 		spin_unlock(&ls->ls_recover_spin);
1280 		return;
1281 	}
1282 	if (ls->ls_recover_size < jid + 1) {
1283 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1284 		       jid, ls->ls_recover_size);
1285 		spin_unlock(&ls->ls_recover_spin);
1286 		return;
1287 	}
1288 
1289 	fs_info(sdp, "recover jid %d result %s\n", jid,
1290 		result == LM_RD_GAVEUP ? "busy" : "success");
1291 
1292 	ls->ls_recover_result[jid] = result;
1293 
1294 	/* GAVEUP means another node is recovering the journal; delay our
1295 	   next attempt to recover it, to give the other node a chance to
1296 	   finish before trying again */
1297 
1298 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1299 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1300 				   result == LM_RD_GAVEUP ? HZ : 0);
1301 	spin_unlock(&ls->ls_recover_spin);
1302 }
1303 
1304 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1305 	.recover_prep = gdlm_recover_prep,
1306 	.recover_slot = gdlm_recover_slot,
1307 	.recover_done = gdlm_recover_done,
1308 };
1309 
1310 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1311 {
1312 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1313 	char cluster[GFS2_LOCKNAME_LEN];
1314 	const char *fsname;
1315 	uint32_t flags;
1316 	int error, ops_result;
1317 
1318 	/*
1319 	 * initialize everything
1320 	 */
1321 
1322 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1323 	spin_lock_init(&ls->ls_recover_spin);
1324 	ls->ls_recover_flags = 0;
1325 	ls->ls_recover_mount = 0;
1326 	ls->ls_recover_start = 0;
1327 	ls->ls_recover_block = 0;
1328 	ls->ls_recover_size = 0;
1329 	ls->ls_recover_submit = NULL;
1330 	ls->ls_recover_result = NULL;
1331 	ls->ls_lvb_bits = NULL;
1332 
1333 	error = set_recover_size(sdp, NULL, 0);
1334 	if (error)
1335 		goto fail;
1336 
1337 	/*
1338 	 * prepare dlm_new_lockspace args
1339 	 */
1340 
1341 	fsname = strchr(table, ':');
1342 	if (!fsname) {
1343 		fs_info(sdp, "no fsname found\n");
1344 		error = -EINVAL;
1345 		goto fail_free;
1346 	}
1347 	memset(cluster, 0, sizeof(cluster));
1348 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1349 	fsname++;
1350 
1351 	flags = DLM_LSFL_NEWEXCL;
1352 
1353 	/*
1354 	 * create/join lockspace
1355 	 */
1356 
1357 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1358 				  &gdlm_lockspace_ops, sdp, &ops_result,
1359 				  &ls->ls_dlm);
1360 	if (error) {
1361 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1362 		goto fail_free;
1363 	}
1364 
1365 	if (ops_result < 0) {
1366 		/*
1367 		 * dlm does not support ops callbacks,
1368 		 * old dlm_controld/gfs_controld are used, try without ops.
1369 		 */
1370 		fs_info(sdp, "dlm lockspace ops not used\n");
1371 		free_recover_size(ls);
1372 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1373 		return 0;
1374 	}
1375 
1376 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1377 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1378 		error = -EINVAL;
1379 		goto fail_release;
1380 	}
1381 
1382 	/*
1383 	 * control_mount() uses control_lock to determine first mounter,
1384 	 * and for later mounts, waits for any recoveries to be cleared.
1385 	 */
1386 
1387 	error = control_mount(sdp);
1388 	if (error) {
1389 		fs_err(sdp, "mount control error %d\n", error);
1390 		goto fail_release;
1391 	}
1392 
1393 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1394 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1395 	smp_mb__after_atomic();
1396 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1397 	return 0;
1398 
1399 fail_release:
1400 	dlm_release_lockspace(ls->ls_dlm, 2);
1401 fail_free:
1402 	free_recover_size(ls);
1403 fail:
1404 	return error;
1405 }
1406 
1407 static void gdlm_first_done(struct gfs2_sbd *sdp)
1408 {
1409 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1410 	int error;
1411 
1412 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1413 		return;
1414 
1415 	error = control_first_done(sdp);
1416 	if (error)
1417 		fs_err(sdp, "mount first_done error %d\n", error);
1418 }
1419 
1420 static void gdlm_unmount(struct gfs2_sbd *sdp)
1421 {
1422 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1423 
1424 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1425 		goto release;
1426 
1427 	/* wait for gfs2_control_wq to be done with this mount */
1428 
1429 	spin_lock(&ls->ls_recover_spin);
1430 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1431 	spin_unlock(&ls->ls_recover_spin);
1432 	flush_delayed_work(&sdp->sd_control_work);
1433 
1434 	/* mounted_lock and control_lock will be purged in dlm recovery */
1435 release:
1436 	if (ls->ls_dlm) {
1437 		dlm_release_lockspace(ls->ls_dlm, 2);
1438 		ls->ls_dlm = NULL;
1439 	}
1440 
1441 	free_recover_size(ls);
1442 }
1443 
1444 static const match_table_t dlm_tokens = {
1445 	{ Opt_jid, "jid=%d"},
1446 	{ Opt_id, "id=%d"},
1447 	{ Opt_first, "first=%d"},
1448 	{ Opt_nodir, "nodir=%d"},
1449 	{ Opt_err, NULL },
1450 };
1451 
1452 const struct lm_lockops gfs2_dlm_ops = {
1453 	.lm_proto_name = "lock_dlm",
1454 	.lm_mount = gdlm_mount,
1455 	.lm_first_done = gdlm_first_done,
1456 	.lm_recovery_result = gdlm_recovery_result,
1457 	.lm_unmount = gdlm_unmount,
1458 	.lm_put_lock = gdlm_put_lock,
1459 	.lm_lock = gdlm_lock,
1460 	.lm_cancel = gdlm_cancel,
1461 	.lm_tokens = &dlm_tokens,
1462 };
1463 
1464