1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright 2004-2011 Red Hat, Inc. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/fs.h> 10 #include <linux/dlm.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/delay.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/sched/signal.h> 16 17 #include "incore.h" 18 #include "glock.h" 19 #include "glops.h" 20 #include "recovery.h" 21 #include "util.h" 22 #include "sys.h" 23 #include "trace_gfs2.h" 24 25 /** 26 * gfs2_update_stats - Update time based stats 27 * @s: The stats to update (local or global) 28 * @index: The index inside @s 29 * @sample: New data to include 30 */ 31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 32 s64 sample) 33 { 34 /* 35 * @delta is the difference between the current rtt sample and the 36 * running average srtt. We add 1/8 of that to the srtt in order to 37 * update the current srtt estimate. The variance estimate is a bit 38 * more complicated. We subtract the current variance estimate from 39 * the abs value of the @delta and add 1/4 of that to the running 40 * total. That's equivalent to 3/4 of the current variance 41 * estimate plus 1/4 of the abs of @delta. 42 * 43 * Note that the index points at the array entry containing the 44 * smoothed mean value, and the variance is always in the following 45 * entry 46 * 47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 48 * All times are in units of integer nanoseconds. Unlike the TCP/IP 49 * case, they are not scaled fixed point. 50 */ 51 52 s64 delta = sample - s->stats[index]; 53 s->stats[index] += (delta >> 3); 54 index++; 55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2; 56 } 57 58 /** 59 * gfs2_update_reply_times - Update locking statistics 60 * @gl: The glock to update 61 * 62 * This assumes that gl->gl_dstamp has been set earlier. 63 * 64 * The rtt (lock round trip time) is an estimate of the time 65 * taken to perform a dlm lock request. We update it on each 66 * reply from the dlm. 67 * 68 * The blocking flag is set on the glock for all dlm requests 69 * which may potentially block due to lock requests from other nodes. 70 * DLM requests where the current lock state is exclusive, the 71 * requested state is null (or unlocked) or where the TRY or 72 * TRY_1CB flags are set are classified as non-blocking. All 73 * other DLM requests are counted as (potentially) blocking. 74 */ 75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 76 { 77 struct gfs2_pcpu_lkstats *lks; 78 const unsigned gltype = gl->gl_name.ln_type; 79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 81 s64 rtt; 82 83 preempt_disable(); 84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 86 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 87 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 88 preempt_enable(); 89 90 trace_gfs2_glock_lock_time(gl, rtt); 91 } 92 93 /** 94 * gfs2_update_request_times - Update locking statistics 95 * @gl: The glock to update 96 * 97 * The irt (lock inter-request times) measures the average time 98 * between requests to the dlm. It is updated immediately before 99 * each dlm call. 100 */ 101 102 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 103 { 104 struct gfs2_pcpu_lkstats *lks; 105 const unsigned gltype = gl->gl_name.ln_type; 106 ktime_t dstamp; 107 s64 irt; 108 109 preempt_disable(); 110 dstamp = gl->gl_dstamp; 111 gl->gl_dstamp = ktime_get_real(); 112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 114 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 115 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 116 preempt_enable(); 117 } 118 119 static void gdlm_ast(void *arg) 120 { 121 struct gfs2_glock *gl = arg; 122 unsigned ret = gl->gl_state; 123 124 /* If the glock is dead, we only react to a dlm_unlock() reply. */ 125 if (__lockref_is_dead(&gl->gl_lockref) && 126 gl->gl_lksb.sb_status != -DLM_EUNLOCK) 127 return; 128 129 gfs2_update_reply_times(gl); 130 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 131 132 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 133 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 134 135 switch (gl->gl_lksb.sb_status) { 136 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 137 if (gl->gl_ops->go_unlocked) 138 gl->gl_ops->go_unlocked(gl); 139 gfs2_glock_free(gl); 140 return; 141 case -DLM_ECANCEL: /* Cancel while getting lock */ 142 ret |= LM_OUT_CANCELED; 143 goto out; 144 case -EAGAIN: /* Try lock fails */ 145 case -EDEADLK: /* Deadlock detected */ 146 goto out; 147 case -ETIMEDOUT: /* Canceled due to timeout */ 148 ret |= LM_OUT_ERROR; 149 goto out; 150 case 0: /* Success */ 151 break; 152 default: /* Something unexpected */ 153 BUG(); 154 } 155 156 ret = gl->gl_req; 157 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 158 if (gl->gl_req == LM_ST_SHARED) 159 ret = LM_ST_DEFERRED; 160 else if (gl->gl_req == LM_ST_DEFERRED) 161 ret = LM_ST_SHARED; 162 else 163 BUG(); 164 } 165 166 /* 167 * The GLF_INITIAL flag is initially set for new glocks. Upon the 168 * first successful new (non-conversion) request, we clear this flag to 169 * indicate that a DLM lock exists and that gl->gl_lksb.sb_lkid is the 170 * identifier to use for identifying it. 171 * 172 * Any failed initial requests do not create a DLM lock, so we ignore 173 * the gl->gl_lksb.sb_lkid values that come with such requests. 174 */ 175 176 clear_bit(GLF_INITIAL, &gl->gl_flags); 177 gfs2_glock_complete(gl, ret); 178 return; 179 out: 180 if (test_bit(GLF_INITIAL, &gl->gl_flags)) 181 gl->gl_lksb.sb_lkid = 0; 182 gfs2_glock_complete(gl, ret); 183 } 184 185 static void gdlm_bast(void *arg, int mode) 186 { 187 struct gfs2_glock *gl = arg; 188 189 if (__lockref_is_dead(&gl->gl_lockref)) 190 return; 191 192 switch (mode) { 193 case DLM_LOCK_EX: 194 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 195 break; 196 case DLM_LOCK_CW: 197 gfs2_glock_cb(gl, LM_ST_DEFERRED); 198 break; 199 case DLM_LOCK_PR: 200 gfs2_glock_cb(gl, LM_ST_SHARED); 201 break; 202 default: 203 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode); 204 BUG(); 205 } 206 } 207 208 /* convert gfs lock-state to dlm lock-mode */ 209 210 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate) 211 { 212 switch (lmstate) { 213 case LM_ST_UNLOCKED: 214 return DLM_LOCK_NL; 215 case LM_ST_EXCLUSIVE: 216 return DLM_LOCK_EX; 217 case LM_ST_DEFERRED: 218 return DLM_LOCK_CW; 219 case LM_ST_SHARED: 220 return DLM_LOCK_PR; 221 } 222 fs_err(sdp, "unknown LM state %d\n", lmstate); 223 BUG(); 224 return -1; 225 } 226 227 /* Taken from fs/dlm/lock.c. */ 228 229 static bool middle_conversion(int cur, int req) 230 { 231 return (cur == DLM_LOCK_PR && req == DLM_LOCK_CW) || 232 (cur == DLM_LOCK_CW && req == DLM_LOCK_PR); 233 } 234 235 static bool down_conversion(int cur, int req) 236 { 237 return !middle_conversion(cur, req) && req < cur; 238 } 239 240 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 241 const int cur, const int req) 242 { 243 u32 lkf = 0; 244 245 if (gl->gl_lksb.sb_lvbptr) 246 lkf |= DLM_LKF_VALBLK; 247 248 if (gfs_flags & LM_FLAG_TRY) 249 lkf |= DLM_LKF_NOQUEUE; 250 251 if (gfs_flags & LM_FLAG_TRY_1CB) { 252 lkf |= DLM_LKF_NOQUEUE; 253 lkf |= DLM_LKF_NOQUEUEBAST; 254 } 255 256 if (gfs_flags & LM_FLAG_ANY) { 257 if (req == DLM_LOCK_PR) 258 lkf |= DLM_LKF_ALTCW; 259 else if (req == DLM_LOCK_CW) 260 lkf |= DLM_LKF_ALTPR; 261 else 262 BUG(); 263 } 264 265 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) { 266 lkf |= DLM_LKF_CONVERT; 267 268 /* 269 * The DLM_LKF_QUECVT flag needs to be set for "first come, 270 * first served" semantics, but it must only be set for 271 * "upward" lock conversions or else DLM will reject the 272 * request as invalid. 273 */ 274 if (!down_conversion(cur, req)) 275 lkf |= DLM_LKF_QUECVT; 276 } 277 278 return lkf; 279 } 280 281 static void gfs2_reverse_hex(char *c, u64 value) 282 { 283 *c = '0'; 284 while (value) { 285 *c-- = hex_asc[value & 0x0f]; 286 value >>= 4; 287 } 288 } 289 290 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 291 unsigned int flags) 292 { 293 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 294 int cur, req; 295 u32 lkf; 296 char strname[GDLM_STRNAME_BYTES] = ""; 297 int error; 298 299 cur = make_mode(gl->gl_name.ln_sbd, gl->gl_state); 300 req = make_mode(gl->gl_name.ln_sbd, req_state); 301 lkf = make_flags(gl, flags, cur, req); 302 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 303 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 304 if (test_bit(GLF_INITIAL, &gl->gl_flags)) { 305 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 306 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 307 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 308 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 309 gl->gl_dstamp = ktime_get_real(); 310 } else { 311 gfs2_update_request_times(gl); 312 } 313 /* 314 * Submit the actual lock request. 315 */ 316 317 again: 318 error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 319 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 320 if (error == -EBUSY) { 321 msleep(20); 322 goto again; 323 } 324 return error; 325 } 326 327 static void gdlm_put_lock(struct gfs2_glock *gl) 328 { 329 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 330 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 331 uint32_t flags = 0; 332 int error; 333 334 BUG_ON(!__lockref_is_dead(&gl->gl_lockref)); 335 336 if (test_bit(GLF_INITIAL, &gl->gl_flags)) { 337 gfs2_glock_free(gl); 338 return; 339 } 340 341 clear_bit(GLF_BLOCKING, &gl->gl_flags); 342 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 343 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 344 gfs2_update_request_times(gl); 345 346 /* don't want to call dlm if we've unmounted the lock protocol */ 347 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) { 348 gfs2_glock_free(gl); 349 return; 350 } 351 352 /* 353 * When the lockspace is released, all remaining glocks will be 354 * unlocked automatically. This is more efficient than unlocking them 355 * individually, but when the lock is held in DLM_LOCK_EX or 356 * DLM_LOCK_PW mode, the lock value block (LVB) would be lost. 357 */ 358 359 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 360 (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) { 361 gfs2_glock_free_later(gl); 362 return; 363 } 364 365 if (gl->gl_lksb.sb_lvbptr) 366 flags |= DLM_LKF_VALBLK; 367 368 again: 369 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, flags, 370 NULL, gl); 371 if (error == -EBUSY) { 372 msleep(20); 373 goto again; 374 } 375 376 if (error) { 377 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n", 378 gl->gl_name.ln_type, 379 (unsigned long long)gl->gl_name.ln_number, error); 380 } 381 } 382 383 static void gdlm_cancel(struct gfs2_glock *gl) 384 { 385 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 386 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 387 } 388 389 /* 390 * dlm/gfs2 recovery coordination using dlm_recover callbacks 391 * 392 * 0. gfs2 checks for another cluster node withdraw, needing journal replay 393 * 1. dlm_controld sees lockspace members change 394 * 2. dlm_controld blocks dlm-kernel locking activity 395 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 396 * 4. dlm_controld starts and finishes its own user level recovery 397 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 398 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 399 * 7. dlm_recoverd does its own lock recovery 400 * 8. dlm_recoverd unblocks dlm-kernel locking activity 401 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 402 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 403 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 404 * 12. gfs2_recover dequeues and recovers journals of failed nodes 405 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 406 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 407 * 15. gfs2_control unblocks normal locking when all journals are recovered 408 * 409 * - failures during recovery 410 * 411 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 412 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 413 * recovering for a prior failure. gfs2_control needs a way to detect 414 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 415 * the recover_block and recover_start values. 416 * 417 * recover_done() provides a new lockspace generation number each time it 418 * is called (step 9). This generation number is saved as recover_start. 419 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 420 * recover_block = recover_start. So, while recover_block is equal to 421 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 422 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 423 * 424 * - more specific gfs2 steps in sequence above 425 * 426 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 427 * 6. recover_slot records any failed jids (maybe none) 428 * 9. recover_done sets recover_start = new generation number 429 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 430 * 12. gfs2_recover does journal recoveries for failed jids identified above 431 * 14. gfs2_control clears control_lock lvb bits for recovered jids 432 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 433 * again) then do nothing, otherwise if recover_start > recover_block 434 * then clear BLOCK_LOCKS. 435 * 436 * - parallel recovery steps across all nodes 437 * 438 * All nodes attempt to update the control_lock lvb with the new generation 439 * number and jid bits, but only the first to get the control_lock EX will 440 * do so; others will see that it's already done (lvb already contains new 441 * generation number.) 442 * 443 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 444 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 445 * . One node gets control_lock first and writes the lvb, others see it's done 446 * . All nodes attempt to recover jids for which they see control_lock bits set 447 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 448 * . All nodes will eventually see all lvb bits clear and unblock locks 449 * 450 * - is there a problem with clearing an lvb bit that should be set 451 * and missing a journal recovery? 452 * 453 * 1. jid fails 454 * 2. lvb bit set for step 1 455 * 3. jid recovered for step 1 456 * 4. jid taken again (new mount) 457 * 5. jid fails (for step 4) 458 * 6. lvb bit set for step 5 (will already be set) 459 * 7. lvb bit cleared for step 3 460 * 461 * This is not a problem because the failure in step 5 does not 462 * require recovery, because the mount in step 4 could not have 463 * progressed far enough to unblock locks and access the fs. The 464 * control_mount() function waits for all recoveries to be complete 465 * for the latest lockspace generation before ever unblocking locks 466 * and returning. The mount in step 4 waits until the recovery in 467 * step 1 is done. 468 * 469 * - special case of first mounter: first node to mount the fs 470 * 471 * The first node to mount a gfs2 fs needs to check all the journals 472 * and recover any that need recovery before other nodes are allowed 473 * to mount the fs. (Others may begin mounting, but they must wait 474 * for the first mounter to be done before taking locks on the fs 475 * or accessing the fs.) This has two parts: 476 * 477 * 1. The mounted_lock tells a node it's the first to mount the fs. 478 * Each node holds the mounted_lock in PR while it's mounted. 479 * Each node tries to acquire the mounted_lock in EX when it mounts. 480 * If a node is granted the mounted_lock EX it means there are no 481 * other mounted nodes (no PR locks exist), and it is the first mounter. 482 * The mounted_lock is demoted to PR when first recovery is done, so 483 * others will fail to get an EX lock, but will get a PR lock. 484 * 485 * 2. The control_lock blocks others in control_mount() while the first 486 * mounter is doing first mount recovery of all journals. 487 * A mounting node needs to acquire control_lock in EX mode before 488 * it can proceed. The first mounter holds control_lock in EX while doing 489 * the first mount recovery, blocking mounts from other nodes, then demotes 490 * control_lock to NL when it's done (others_may_mount/first_done), 491 * allowing other nodes to continue mounting. 492 * 493 * first mounter: 494 * control_lock EX/NOQUEUE success 495 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 496 * set first=1 497 * do first mounter recovery 498 * mounted_lock EX->PR 499 * control_lock EX->NL, write lvb generation 500 * 501 * other mounter: 502 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 503 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 504 * mounted_lock PR/NOQUEUE success 505 * read lvb generation 506 * control_lock EX->NL 507 * set first=0 508 * 509 * - mount during recovery 510 * 511 * If a node mounts while others are doing recovery (not first mounter), 512 * the mounting node will get its initial recover_done() callback without 513 * having seen any previous failures/callbacks. 514 * 515 * It must wait for all recoveries preceding its mount to be finished 516 * before it unblocks locks. It does this by repeating the "other mounter" 517 * steps above until the lvb generation number is >= its mount generation 518 * number (from initial recover_done) and all lvb bits are clear. 519 * 520 * - control_lock lvb format 521 * 522 * 4 bytes generation number: the latest dlm lockspace generation number 523 * from recover_done callback. Indicates the jid bitmap has been updated 524 * to reflect all slot failures through that generation. 525 * 4 bytes unused. 526 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 527 * that jid N needs recovery. 528 */ 529 530 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 531 532 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 533 char *lvb_bits) 534 { 535 __le32 gen; 536 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 537 memcpy(&gen, lvb_bits, sizeof(__le32)); 538 *lvb_gen = le32_to_cpu(gen); 539 } 540 541 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 542 char *lvb_bits) 543 { 544 __le32 gen; 545 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 546 gen = cpu_to_le32(lvb_gen); 547 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 548 } 549 550 static int all_jid_bits_clear(char *lvb) 551 { 552 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 553 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 554 } 555 556 static void sync_wait_cb(void *arg) 557 { 558 struct lm_lockstruct *ls = arg; 559 complete(&ls->ls_sync_wait); 560 } 561 562 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 563 { 564 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 565 int error; 566 567 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 568 if (error) { 569 fs_err(sdp, "%s lkid %x error %d\n", 570 name, lksb->sb_lkid, error); 571 return error; 572 } 573 574 wait_for_completion(&ls->ls_sync_wait); 575 576 if (lksb->sb_status != -DLM_EUNLOCK) { 577 fs_err(sdp, "%s lkid %x status %d\n", 578 name, lksb->sb_lkid, lksb->sb_status); 579 return -1; 580 } 581 return 0; 582 } 583 584 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 585 unsigned int num, struct dlm_lksb *lksb, char *name) 586 { 587 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 588 char strname[GDLM_STRNAME_BYTES]; 589 int error, status; 590 591 memset(strname, 0, GDLM_STRNAME_BYTES); 592 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 593 594 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 595 strname, GDLM_STRNAME_BYTES - 1, 596 0, sync_wait_cb, ls, NULL); 597 if (error) { 598 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 599 name, lksb->sb_lkid, flags, mode, error); 600 return error; 601 } 602 603 wait_for_completion(&ls->ls_sync_wait); 604 605 status = lksb->sb_status; 606 607 if (status && status != -EAGAIN) { 608 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 609 name, lksb->sb_lkid, flags, mode, status); 610 } 611 612 return status; 613 } 614 615 static int mounted_unlock(struct gfs2_sbd *sdp) 616 { 617 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 618 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 619 } 620 621 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 622 { 623 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 624 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 625 &ls->ls_mounted_lksb, "mounted_lock"); 626 } 627 628 static int control_unlock(struct gfs2_sbd *sdp) 629 { 630 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 631 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 632 } 633 634 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 635 { 636 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 637 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 638 &ls->ls_control_lksb, "control_lock"); 639 } 640 641 /** 642 * remote_withdraw - react to a node withdrawing from the file system 643 * @sdp: The superblock 644 */ 645 static void remote_withdraw(struct gfs2_sbd *sdp) 646 { 647 struct gfs2_jdesc *jd; 648 int ret = 0, count = 0; 649 650 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) { 651 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid) 652 continue; 653 ret = gfs2_recover_journal(jd, true); 654 if (ret) 655 break; 656 count++; 657 } 658 659 /* Now drop the additional reference we acquired */ 660 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret); 661 } 662 663 static void gfs2_control_func(struct work_struct *work) 664 { 665 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 666 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 667 uint32_t block_gen, start_gen, lvb_gen, flags; 668 int recover_set = 0; 669 int write_lvb = 0; 670 int recover_size; 671 int i, error; 672 673 /* First check for other nodes that may have done a withdraw. */ 674 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) { 675 remote_withdraw(sdp); 676 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags); 677 return; 678 } 679 680 spin_lock(&ls->ls_recover_spin); 681 /* 682 * No MOUNT_DONE means we're still mounting; control_mount() 683 * will set this flag, after which this thread will take over 684 * all further clearing of BLOCK_LOCKS. 685 * 686 * FIRST_MOUNT means this node is doing first mounter recovery, 687 * for which recovery control is handled by 688 * control_mount()/control_first_done(), not this thread. 689 */ 690 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 691 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 692 spin_unlock(&ls->ls_recover_spin); 693 return; 694 } 695 block_gen = ls->ls_recover_block; 696 start_gen = ls->ls_recover_start; 697 spin_unlock(&ls->ls_recover_spin); 698 699 /* 700 * Equal block_gen and start_gen implies we are between 701 * recover_prep and recover_done callbacks, which means 702 * dlm recovery is in progress and dlm locking is blocked. 703 * There's no point trying to do any work until recover_done. 704 */ 705 706 if (block_gen == start_gen) 707 return; 708 709 /* 710 * Propagate recover_submit[] and recover_result[] to lvb: 711 * dlm_recoverd adds to recover_submit[] jids needing recovery 712 * gfs2_recover adds to recover_result[] journal recovery results 713 * 714 * set lvb bit for jids in recover_submit[] if the lvb has not 715 * yet been updated for the generation of the failure 716 * 717 * clear lvb bit for jids in recover_result[] if the result of 718 * the journal recovery is SUCCESS 719 */ 720 721 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 722 if (error) { 723 fs_err(sdp, "control lock EX error %d\n", error); 724 return; 725 } 726 727 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 728 729 spin_lock(&ls->ls_recover_spin); 730 if (block_gen != ls->ls_recover_block || 731 start_gen != ls->ls_recover_start) { 732 fs_info(sdp, "recover generation %u block1 %u %u\n", 733 start_gen, block_gen, ls->ls_recover_block); 734 spin_unlock(&ls->ls_recover_spin); 735 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 736 return; 737 } 738 739 recover_size = ls->ls_recover_size; 740 741 if (lvb_gen <= start_gen) { 742 /* 743 * Clear lvb bits for jids we've successfully recovered. 744 * Because all nodes attempt to recover failed journals, 745 * a journal can be recovered multiple times successfully 746 * in succession. Only the first will really do recovery, 747 * the others find it clean, but still report a successful 748 * recovery. So, another node may have already recovered 749 * the jid and cleared the lvb bit for it. 750 */ 751 for (i = 0; i < recover_size; i++) { 752 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 753 continue; 754 755 ls->ls_recover_result[i] = 0; 756 757 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 758 continue; 759 760 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 761 write_lvb = 1; 762 } 763 } 764 765 if (lvb_gen == start_gen) { 766 /* 767 * Failed slots before start_gen are already set in lvb. 768 */ 769 for (i = 0; i < recover_size; i++) { 770 if (!ls->ls_recover_submit[i]) 771 continue; 772 if (ls->ls_recover_submit[i] < lvb_gen) 773 ls->ls_recover_submit[i] = 0; 774 } 775 } else if (lvb_gen < start_gen) { 776 /* 777 * Failed slots before start_gen are not yet set in lvb. 778 */ 779 for (i = 0; i < recover_size; i++) { 780 if (!ls->ls_recover_submit[i]) 781 continue; 782 if (ls->ls_recover_submit[i] < start_gen) { 783 ls->ls_recover_submit[i] = 0; 784 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 785 } 786 } 787 /* even if there are no bits to set, we need to write the 788 latest generation to the lvb */ 789 write_lvb = 1; 790 } else { 791 /* 792 * we should be getting a recover_done() for lvb_gen soon 793 */ 794 } 795 spin_unlock(&ls->ls_recover_spin); 796 797 if (write_lvb) { 798 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 799 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 800 } else { 801 flags = DLM_LKF_CONVERT; 802 } 803 804 error = control_lock(sdp, DLM_LOCK_NL, flags); 805 if (error) { 806 fs_err(sdp, "control lock NL error %d\n", error); 807 return; 808 } 809 810 /* 811 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 812 * and clear a jid bit in the lvb if the recovery is a success. 813 * Eventually all journals will be recovered, all jid bits will 814 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 815 */ 816 817 for (i = 0; i < recover_size; i++) { 818 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 819 fs_info(sdp, "recover generation %u jid %d\n", 820 start_gen, i); 821 gfs2_recover_set(sdp, i); 822 recover_set++; 823 } 824 } 825 if (recover_set) 826 return; 827 828 /* 829 * No more jid bits set in lvb, all recovery is done, unblock locks 830 * (unless a new recover_prep callback has occured blocking locks 831 * again while working above) 832 */ 833 834 spin_lock(&ls->ls_recover_spin); 835 if (ls->ls_recover_block == block_gen && 836 ls->ls_recover_start == start_gen) { 837 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 838 spin_unlock(&ls->ls_recover_spin); 839 fs_info(sdp, "recover generation %u done\n", start_gen); 840 gfs2_glock_thaw(sdp); 841 } else { 842 fs_info(sdp, "recover generation %u block2 %u %u\n", 843 start_gen, block_gen, ls->ls_recover_block); 844 spin_unlock(&ls->ls_recover_spin); 845 } 846 } 847 848 static int control_mount(struct gfs2_sbd *sdp) 849 { 850 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 851 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 852 int mounted_mode; 853 int retries = 0; 854 int error; 855 856 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 857 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 858 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 859 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 860 init_completion(&ls->ls_sync_wait); 861 862 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 863 864 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 865 if (error) { 866 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 867 return error; 868 } 869 870 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 871 if (error) { 872 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 873 control_unlock(sdp); 874 return error; 875 } 876 mounted_mode = DLM_LOCK_NL; 877 878 restart: 879 if (retries++ && signal_pending(current)) { 880 error = -EINTR; 881 goto fail; 882 } 883 884 /* 885 * We always start with both locks in NL. control_lock is 886 * demoted to NL below so we don't need to do it here. 887 */ 888 889 if (mounted_mode != DLM_LOCK_NL) { 890 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 891 if (error) 892 goto fail; 893 mounted_mode = DLM_LOCK_NL; 894 } 895 896 /* 897 * Other nodes need to do some work in dlm recovery and gfs2_control 898 * before the recover_done and control_lock will be ready for us below. 899 * A delay here is not required but often avoids having to retry. 900 */ 901 902 msleep_interruptible(500); 903 904 /* 905 * Acquire control_lock in EX and mounted_lock in either EX or PR. 906 * control_lock lvb keeps track of any pending journal recoveries. 907 * mounted_lock indicates if any other nodes have the fs mounted. 908 */ 909 910 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 911 if (error == -EAGAIN) { 912 goto restart; 913 } else if (error) { 914 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 915 goto fail; 916 } 917 918 /** 919 * If we're a spectator, we don't want to take the lock in EX because 920 * we cannot do the first-mount responsibility it implies: recovery. 921 */ 922 if (sdp->sd_args.ar_spectator) 923 goto locks_done; 924 925 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 926 if (!error) { 927 mounted_mode = DLM_LOCK_EX; 928 goto locks_done; 929 } else if (error != -EAGAIN) { 930 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 931 goto fail; 932 } 933 934 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 935 if (!error) { 936 mounted_mode = DLM_LOCK_PR; 937 goto locks_done; 938 } else { 939 /* not even -EAGAIN should happen here */ 940 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 941 goto fail; 942 } 943 944 locks_done: 945 /* 946 * If we got both locks above in EX, then we're the first mounter. 947 * If not, then we need to wait for the control_lock lvb to be 948 * updated by other mounted nodes to reflect our mount generation. 949 * 950 * In simple first mounter cases, first mounter will see zero lvb_gen, 951 * but in cases where all existing nodes leave/fail before mounting 952 * nodes finish control_mount, then all nodes will be mounting and 953 * lvb_gen will be non-zero. 954 */ 955 956 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 957 958 if (lvb_gen == 0xFFFFFFFF) { 959 /* special value to force mount attempts to fail */ 960 fs_err(sdp, "control_mount control_lock disabled\n"); 961 error = -EINVAL; 962 goto fail; 963 } 964 965 if (mounted_mode == DLM_LOCK_EX) { 966 /* first mounter, keep both EX while doing first recovery */ 967 spin_lock(&ls->ls_recover_spin); 968 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 969 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 970 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 971 spin_unlock(&ls->ls_recover_spin); 972 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 973 return 0; 974 } 975 976 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 977 if (error) 978 goto fail; 979 980 /* 981 * We are not first mounter, now we need to wait for the control_lock 982 * lvb generation to be >= the generation from our first recover_done 983 * and all lvb bits to be clear (no pending journal recoveries.) 984 */ 985 986 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 987 /* journals need recovery, wait until all are clear */ 988 fs_info(sdp, "control_mount wait for journal recovery\n"); 989 goto restart; 990 } 991 992 spin_lock(&ls->ls_recover_spin); 993 block_gen = ls->ls_recover_block; 994 start_gen = ls->ls_recover_start; 995 mount_gen = ls->ls_recover_mount; 996 997 if (lvb_gen < mount_gen) { 998 /* wait for mounted nodes to update control_lock lvb to our 999 generation, which might include new recovery bits set */ 1000 if (sdp->sd_args.ar_spectator) { 1001 fs_info(sdp, "Recovery is required. Waiting for a " 1002 "non-spectator to mount.\n"); 1003 spin_unlock(&ls->ls_recover_spin); 1004 msleep_interruptible(1000); 1005 } else { 1006 fs_info(sdp, "control_mount wait1 block %u start %u " 1007 "mount %u lvb %u flags %lx\n", block_gen, 1008 start_gen, mount_gen, lvb_gen, 1009 ls->ls_recover_flags); 1010 spin_unlock(&ls->ls_recover_spin); 1011 } 1012 goto restart; 1013 } 1014 1015 if (lvb_gen != start_gen) { 1016 /* wait for mounted nodes to update control_lock lvb to the 1017 latest recovery generation */ 1018 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 1019 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 1020 lvb_gen, ls->ls_recover_flags); 1021 spin_unlock(&ls->ls_recover_spin); 1022 goto restart; 1023 } 1024 1025 if (block_gen == start_gen) { 1026 /* dlm recovery in progress, wait for it to finish */ 1027 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 1028 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 1029 lvb_gen, ls->ls_recover_flags); 1030 spin_unlock(&ls->ls_recover_spin); 1031 goto restart; 1032 } 1033 1034 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1035 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 1036 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1037 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1038 spin_unlock(&ls->ls_recover_spin); 1039 return 0; 1040 1041 fail: 1042 mounted_unlock(sdp); 1043 control_unlock(sdp); 1044 return error; 1045 } 1046 1047 static int control_first_done(struct gfs2_sbd *sdp) 1048 { 1049 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1050 uint32_t start_gen, block_gen; 1051 int error; 1052 1053 restart: 1054 spin_lock(&ls->ls_recover_spin); 1055 start_gen = ls->ls_recover_start; 1056 block_gen = ls->ls_recover_block; 1057 1058 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 1059 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1060 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1061 /* sanity check, should not happen */ 1062 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 1063 start_gen, block_gen, ls->ls_recover_flags); 1064 spin_unlock(&ls->ls_recover_spin); 1065 control_unlock(sdp); 1066 return -1; 1067 } 1068 1069 if (start_gen == block_gen) { 1070 /* 1071 * Wait for the end of a dlm recovery cycle to switch from 1072 * first mounter recovery. We can ignore any recover_slot 1073 * callbacks between the recover_prep and next recover_done 1074 * because we are still the first mounter and any failed nodes 1075 * have not fully mounted, so they don't need recovery. 1076 */ 1077 spin_unlock(&ls->ls_recover_spin); 1078 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 1079 1080 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 1081 TASK_UNINTERRUPTIBLE); 1082 goto restart; 1083 } 1084 1085 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1086 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 1087 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1088 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1089 spin_unlock(&ls->ls_recover_spin); 1090 1091 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 1092 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 1093 1094 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 1095 if (error) 1096 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 1097 1098 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 1099 if (error) 1100 fs_err(sdp, "control_first_done control NL error %d\n", error); 1101 1102 return error; 1103 } 1104 1105 /* 1106 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1107 * to accommodate the largest slot number. (NB dlm slot numbers start at 1, 1108 * gfs2 jids start at 0, so jid = slot - 1) 1109 */ 1110 1111 #define RECOVER_SIZE_INC 16 1112 1113 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1114 int num_slots) 1115 { 1116 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1117 uint32_t *submit = NULL; 1118 uint32_t *result = NULL; 1119 uint32_t old_size, new_size; 1120 int i, max_jid; 1121 1122 if (!ls->ls_lvb_bits) { 1123 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1124 if (!ls->ls_lvb_bits) 1125 return -ENOMEM; 1126 } 1127 1128 max_jid = 0; 1129 for (i = 0; i < num_slots; i++) { 1130 if (max_jid < slots[i].slot - 1) 1131 max_jid = slots[i].slot - 1; 1132 } 1133 1134 old_size = ls->ls_recover_size; 1135 new_size = old_size; 1136 while (new_size < max_jid + 1) 1137 new_size += RECOVER_SIZE_INC; 1138 if (new_size == old_size) 1139 return 0; 1140 1141 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1142 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1143 if (!submit || !result) { 1144 kfree(submit); 1145 kfree(result); 1146 return -ENOMEM; 1147 } 1148 1149 spin_lock(&ls->ls_recover_spin); 1150 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1151 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1152 kfree(ls->ls_recover_submit); 1153 kfree(ls->ls_recover_result); 1154 ls->ls_recover_submit = submit; 1155 ls->ls_recover_result = result; 1156 ls->ls_recover_size = new_size; 1157 spin_unlock(&ls->ls_recover_spin); 1158 return 0; 1159 } 1160 1161 static void free_recover_size(struct lm_lockstruct *ls) 1162 { 1163 kfree(ls->ls_lvb_bits); 1164 kfree(ls->ls_recover_submit); 1165 kfree(ls->ls_recover_result); 1166 ls->ls_recover_submit = NULL; 1167 ls->ls_recover_result = NULL; 1168 ls->ls_recover_size = 0; 1169 ls->ls_lvb_bits = NULL; 1170 } 1171 1172 /* dlm calls before it does lock recovery */ 1173 1174 static void gdlm_recover_prep(void *arg) 1175 { 1176 struct gfs2_sbd *sdp = arg; 1177 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1178 1179 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1180 fs_err(sdp, "recover_prep ignored due to withdraw.\n"); 1181 return; 1182 } 1183 spin_lock(&ls->ls_recover_spin); 1184 ls->ls_recover_block = ls->ls_recover_start; 1185 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1186 1187 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1188 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1189 spin_unlock(&ls->ls_recover_spin); 1190 return; 1191 } 1192 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1193 spin_unlock(&ls->ls_recover_spin); 1194 } 1195 1196 /* dlm calls after recover_prep has been completed on all lockspace members; 1197 identifies slot/jid of failed member */ 1198 1199 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1200 { 1201 struct gfs2_sbd *sdp = arg; 1202 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1203 int jid = slot->slot - 1; 1204 1205 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1206 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n", 1207 jid); 1208 return; 1209 } 1210 spin_lock(&ls->ls_recover_spin); 1211 if (ls->ls_recover_size < jid + 1) { 1212 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n", 1213 jid, ls->ls_recover_block, ls->ls_recover_size); 1214 spin_unlock(&ls->ls_recover_spin); 1215 return; 1216 } 1217 1218 if (ls->ls_recover_submit[jid]) { 1219 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1220 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1221 } 1222 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1223 spin_unlock(&ls->ls_recover_spin); 1224 } 1225 1226 /* dlm calls after recover_slot and after it completes lock recovery */ 1227 1228 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1229 int our_slot, uint32_t generation) 1230 { 1231 struct gfs2_sbd *sdp = arg; 1232 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1233 1234 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1235 fs_err(sdp, "recover_done ignored due to withdraw.\n"); 1236 return; 1237 } 1238 /* ensure the ls jid arrays are large enough */ 1239 set_recover_size(sdp, slots, num_slots); 1240 1241 spin_lock(&ls->ls_recover_spin); 1242 ls->ls_recover_start = generation; 1243 1244 if (!ls->ls_recover_mount) { 1245 ls->ls_recover_mount = generation; 1246 ls->ls_jid = our_slot - 1; 1247 } 1248 1249 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1250 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1251 1252 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1253 smp_mb__after_atomic(); 1254 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1255 spin_unlock(&ls->ls_recover_spin); 1256 } 1257 1258 /* gfs2_recover thread has a journal recovery result */ 1259 1260 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1261 unsigned int result) 1262 { 1263 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1264 1265 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1266 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n", 1267 jid); 1268 return; 1269 } 1270 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1271 return; 1272 1273 /* don't care about the recovery of own journal during mount */ 1274 if (jid == ls->ls_jid) 1275 return; 1276 1277 spin_lock(&ls->ls_recover_spin); 1278 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1279 spin_unlock(&ls->ls_recover_spin); 1280 return; 1281 } 1282 if (ls->ls_recover_size < jid + 1) { 1283 fs_err(sdp, "recovery_result jid %d short size %d\n", 1284 jid, ls->ls_recover_size); 1285 spin_unlock(&ls->ls_recover_spin); 1286 return; 1287 } 1288 1289 fs_info(sdp, "recover jid %d result %s\n", jid, 1290 result == LM_RD_GAVEUP ? "busy" : "success"); 1291 1292 ls->ls_recover_result[jid] = result; 1293 1294 /* GAVEUP means another node is recovering the journal; delay our 1295 next attempt to recover it, to give the other node a chance to 1296 finish before trying again */ 1297 1298 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1299 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1300 result == LM_RD_GAVEUP ? HZ : 0); 1301 spin_unlock(&ls->ls_recover_spin); 1302 } 1303 1304 static const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1305 .recover_prep = gdlm_recover_prep, 1306 .recover_slot = gdlm_recover_slot, 1307 .recover_done = gdlm_recover_done, 1308 }; 1309 1310 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1311 { 1312 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1313 char cluster[GFS2_LOCKNAME_LEN]; 1314 const char *fsname; 1315 uint32_t flags; 1316 int error, ops_result; 1317 1318 /* 1319 * initialize everything 1320 */ 1321 1322 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1323 spin_lock_init(&ls->ls_recover_spin); 1324 ls->ls_recover_flags = 0; 1325 ls->ls_recover_mount = 0; 1326 ls->ls_recover_start = 0; 1327 ls->ls_recover_block = 0; 1328 ls->ls_recover_size = 0; 1329 ls->ls_recover_submit = NULL; 1330 ls->ls_recover_result = NULL; 1331 ls->ls_lvb_bits = NULL; 1332 1333 error = set_recover_size(sdp, NULL, 0); 1334 if (error) 1335 goto fail; 1336 1337 /* 1338 * prepare dlm_new_lockspace args 1339 */ 1340 1341 fsname = strchr(table, ':'); 1342 if (!fsname) { 1343 fs_info(sdp, "no fsname found\n"); 1344 error = -EINVAL; 1345 goto fail_free; 1346 } 1347 memset(cluster, 0, sizeof(cluster)); 1348 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1349 fsname++; 1350 1351 flags = DLM_LSFL_NEWEXCL; 1352 1353 /* 1354 * create/join lockspace 1355 */ 1356 1357 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1358 &gdlm_lockspace_ops, sdp, &ops_result, 1359 &ls->ls_dlm); 1360 if (error) { 1361 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1362 goto fail_free; 1363 } 1364 1365 if (ops_result < 0) { 1366 /* 1367 * dlm does not support ops callbacks, 1368 * old dlm_controld/gfs_controld are used, try without ops. 1369 */ 1370 fs_info(sdp, "dlm lockspace ops not used\n"); 1371 free_recover_size(ls); 1372 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1373 return 0; 1374 } 1375 1376 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1377 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1378 error = -EINVAL; 1379 goto fail_release; 1380 } 1381 1382 /* 1383 * control_mount() uses control_lock to determine first mounter, 1384 * and for later mounts, waits for any recoveries to be cleared. 1385 */ 1386 1387 error = control_mount(sdp); 1388 if (error) { 1389 fs_err(sdp, "mount control error %d\n", error); 1390 goto fail_release; 1391 } 1392 1393 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1394 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1395 smp_mb__after_atomic(); 1396 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1397 return 0; 1398 1399 fail_release: 1400 dlm_release_lockspace(ls->ls_dlm, 2); 1401 fail_free: 1402 free_recover_size(ls); 1403 fail: 1404 return error; 1405 } 1406 1407 static void gdlm_first_done(struct gfs2_sbd *sdp) 1408 { 1409 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1410 int error; 1411 1412 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1413 return; 1414 1415 error = control_first_done(sdp); 1416 if (error) 1417 fs_err(sdp, "mount first_done error %d\n", error); 1418 } 1419 1420 static void gdlm_unmount(struct gfs2_sbd *sdp) 1421 { 1422 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1423 1424 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1425 goto release; 1426 1427 /* wait for gfs2_control_wq to be done with this mount */ 1428 1429 spin_lock(&ls->ls_recover_spin); 1430 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1431 spin_unlock(&ls->ls_recover_spin); 1432 flush_delayed_work(&sdp->sd_control_work); 1433 1434 /* mounted_lock and control_lock will be purged in dlm recovery */ 1435 release: 1436 if (ls->ls_dlm) { 1437 dlm_release_lockspace(ls->ls_dlm, 2); 1438 ls->ls_dlm = NULL; 1439 } 1440 1441 free_recover_size(ls); 1442 } 1443 1444 static const match_table_t dlm_tokens = { 1445 { Opt_jid, "jid=%d"}, 1446 { Opt_id, "id=%d"}, 1447 { Opt_first, "first=%d"}, 1448 { Opt_nodir, "nodir=%d"}, 1449 { Opt_err, NULL }, 1450 }; 1451 1452 const struct lm_lockops gfs2_dlm_ops = { 1453 .lm_proto_name = "lock_dlm", 1454 .lm_mount = gdlm_mount, 1455 .lm_first_done = gdlm_first_done, 1456 .lm_recovery_result = gdlm_recovery_result, 1457 .lm_unmount = gdlm_unmount, 1458 .lm_put_lock = gdlm_put_lock, 1459 .lm_lock = gdlm_lock, 1460 .lm_cancel = gdlm_cancel, 1461 .lm_tokens = &dlm_tokens, 1462 }; 1463 1464