1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_folio - unstuff a stuffed inode into a block cached by a folio
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @folio: The folio.
51  *
52  * Returns: errno
53  */
54 static int gfs2_unstuffer_folio(struct gfs2_inode *ip, struct buffer_head *dibh,
55 			       u64 block, struct folio *folio)
56 {
57 	struct inode *inode = &ip->i_inode;
58 
59 	if (!folio_test_uptodate(folio)) {
60 		void *kaddr = kmap_local_folio(folio, 0);
61 		u64 dsize = i_size_read(inode);
62 
63 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
64 		memset(kaddr + dsize, 0, folio_size(folio) - dsize);
65 		kunmap_local(kaddr);
66 
67 		folio_mark_uptodate(folio);
68 	}
69 
70 	if (gfs2_is_jdata(ip)) {
71 		struct buffer_head *bh = folio_buffers(folio);
72 
73 		if (!bh)
74 			bh = create_empty_buffers(folio,
75 				BIT(inode->i_blkbits), BIT(BH_Uptodate));
76 
77 		if (!buffer_mapped(bh))
78 			map_bh(bh, inode->i_sb, block);
79 
80 		set_buffer_uptodate(bh);
81 		gfs2_trans_add_data(ip->i_gl, bh);
82 	} else {
83 		folio_mark_dirty(folio);
84 		gfs2_ordered_add_inode(ip);
85 	}
86 
87 	return 0;
88 }
89 
90 static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct folio *folio)
91 {
92 	struct buffer_head *bh, *dibh;
93 	struct gfs2_dinode *di;
94 	u64 block = 0;
95 	int isdir = gfs2_is_dir(ip);
96 	int error;
97 
98 	error = gfs2_meta_inode_buffer(ip, &dibh);
99 	if (error)
100 		return error;
101 
102 	if (i_size_read(&ip->i_inode)) {
103 		/* Get a free block, fill it with the stuffed data,
104 		   and write it out to disk */
105 
106 		unsigned int n = 1;
107 		error = gfs2_alloc_blocks(ip, &block, &n, 0);
108 		if (error)
109 			goto out_brelse;
110 		if (isdir) {
111 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
112 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
113 			if (error)
114 				goto out_brelse;
115 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
116 					      dibh, sizeof(struct gfs2_dinode));
117 			brelse(bh);
118 		} else {
119 			error = gfs2_unstuffer_folio(ip, dibh, block, folio);
120 			if (error)
121 				goto out_brelse;
122 		}
123 	}
124 
125 	/*  Set up the pointer to the new block  */
126 
127 	gfs2_trans_add_meta(ip->i_gl, dibh);
128 	di = (struct gfs2_dinode *)dibh->b_data;
129 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
130 
131 	if (i_size_read(&ip->i_inode)) {
132 		*(__be64 *)(di + 1) = cpu_to_be64(block);
133 		gfs2_add_inode_blocks(&ip->i_inode, 1);
134 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
135 	}
136 
137 	ip->i_height = 1;
138 	di->di_height = cpu_to_be16(1);
139 
140 out_brelse:
141 	brelse(dibh);
142 	return error;
143 }
144 
145 /**
146  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
147  * @ip: The GFS2 inode to unstuff
148  *
149  * This routine unstuffs a dinode and returns it to a "normal" state such
150  * that the height can be grown in the traditional way.
151  *
152  * Returns: errno
153  */
154 
155 int gfs2_unstuff_dinode(struct gfs2_inode *ip)
156 {
157 	struct inode *inode = &ip->i_inode;
158 	struct folio *folio;
159 	int error;
160 
161 	down_write(&ip->i_rw_mutex);
162 	folio = filemap_grab_folio(inode->i_mapping, 0);
163 	error = PTR_ERR(folio);
164 	if (IS_ERR(folio))
165 		goto out;
166 	error = __gfs2_unstuff_inode(ip, folio);
167 	folio_unlock(folio);
168 	folio_put(folio);
169 out:
170 	up_write(&ip->i_rw_mutex);
171 	return error;
172 }
173 
174 /**
175  * find_metapath - Find path through the metadata tree
176  * @sdp: The superblock
177  * @block: The disk block to look up
178  * @mp: The metapath to return the result in
179  * @height: The pre-calculated height of the metadata tree
180  *
181  *   This routine returns a struct metapath structure that defines a path
182  *   through the metadata of inode "ip" to get to block "block".
183  *
184  *   Example:
185  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
186  *   filesystem with a blocksize of 4096.
187  *
188  *   find_metapath() would return a struct metapath structure set to:
189  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
190  *
191  *   That means that in order to get to the block containing the byte at
192  *   offset 101342453, we would load the indirect block pointed to by pointer
193  *   0 in the dinode.  We would then load the indirect block pointed to by
194  *   pointer 48 in that indirect block.  We would then load the data block
195  *   pointed to by pointer 165 in that indirect block.
196  *
197  *             ----------------------------------------
198  *             | Dinode |                             |
199  *             |        |                            4|
200  *             |        |0 1 2 3 4 5                 9|
201  *             |        |                            6|
202  *             ----------------------------------------
203  *                       |
204  *                       |
205  *                       V
206  *             ----------------------------------------
207  *             | Indirect Block                       |
208  *             |                                     5|
209  *             |            4 4 4 4 4 5 5            1|
210  *             |0           5 6 7 8 9 0 1            2|
211  *             ----------------------------------------
212  *                                |
213  *                                |
214  *                                V
215  *             ----------------------------------------
216  *             | Indirect Block                       |
217  *             |                         1 1 1 1 1   5|
218  *             |                         6 6 6 6 6   1|
219  *             |0                        3 4 5 6 7   2|
220  *             ----------------------------------------
221  *                                           |
222  *                                           |
223  *                                           V
224  *             ----------------------------------------
225  *             | Data block containing offset         |
226  *             |            101342453                 |
227  *             |                                      |
228  *             |                                      |
229  *             ----------------------------------------
230  *
231  */
232 
233 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
234 			  struct metapath *mp, unsigned int height)
235 {
236 	unsigned int i;
237 
238 	mp->mp_fheight = height;
239 	for (i = height; i--;)
240 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
241 }
242 
243 static inline unsigned int metapath_branch_start(const struct metapath *mp)
244 {
245 	if (mp->mp_list[0] == 0)
246 		return 2;
247 	return 1;
248 }
249 
250 /**
251  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
252  * @height: The metadata height (0 = dinode)
253  * @mp: The metapath
254  */
255 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
256 {
257 	struct buffer_head *bh = mp->mp_bh[height];
258 	if (height == 0)
259 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
260 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
261 }
262 
263 /**
264  * metapointer - Return pointer to start of metadata in a buffer
265  * @height: The metadata height (0 = dinode)
266  * @mp: The metapath
267  *
268  * Return a pointer to the block number of the next height of the metadata
269  * tree given a buffer containing the pointer to the current height of the
270  * metadata tree.
271  */
272 
273 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
274 {
275 	__be64 *p = metaptr1(height, mp);
276 	return p + mp->mp_list[height];
277 }
278 
279 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
280 {
281 	const struct buffer_head *bh = mp->mp_bh[height];
282 	return (const __be64 *)(bh->b_data + bh->b_size);
283 }
284 
285 static void clone_metapath(struct metapath *clone, struct metapath *mp)
286 {
287 	unsigned int hgt;
288 
289 	*clone = *mp;
290 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
291 		get_bh(clone->mp_bh[hgt]);
292 }
293 
294 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
295 {
296 	const __be64 *t;
297 
298 	for (t = start; t < end; t++) {
299 		struct buffer_head *rabh;
300 
301 		if (!*t)
302 			continue;
303 
304 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
305 		if (trylock_buffer(rabh)) {
306 			if (!buffer_uptodate(rabh)) {
307 				rabh->b_end_io = end_buffer_read_sync;
308 				submit_bh(REQ_OP_READ | REQ_RAHEAD | REQ_META |
309 					  REQ_PRIO, rabh);
310 				continue;
311 			}
312 			unlock_buffer(rabh);
313 		}
314 		brelse(rabh);
315 	}
316 }
317 
318 static inline struct buffer_head *
319 metapath_dibh(struct metapath *mp)
320 {
321 	return mp->mp_bh[0];
322 }
323 
324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
325 			     unsigned int x, unsigned int h)
326 {
327 	for (; x < h; x++) {
328 		__be64 *ptr = metapointer(x, mp);
329 		u64 dblock = be64_to_cpu(*ptr);
330 		int ret;
331 
332 		if (!dblock)
333 			break;
334 		ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]);
335 		if (ret)
336 			return ret;
337 	}
338 	mp->mp_aheight = x + 1;
339 	return 0;
340 }
341 
342 /**
343  * lookup_metapath - Walk the metadata tree to a specific point
344  * @ip: The inode
345  * @mp: The metapath
346  *
347  * Assumes that the inode's buffer has already been looked up and
348  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
349  * by find_metapath().
350  *
351  * If this function encounters part of the tree which has not been
352  * allocated, it returns the current height of the tree at the point
353  * at which it found the unallocated block. Blocks which are found are
354  * added to the mp->mp_bh[] list.
355  *
356  * Returns: error
357  */
358 
359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
360 {
361 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
362 }
363 
364 /**
365  * fillup_metapath - fill up buffers for the metadata path to a specific height
366  * @ip: The inode
367  * @mp: The metapath
368  * @h: The height to which it should be mapped
369  *
370  * Similar to lookup_metapath, but does lookups for a range of heights
371  *
372  * Returns: error or the number of buffers filled
373  */
374 
375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
376 {
377 	unsigned int x = 0;
378 	int ret;
379 
380 	if (h) {
381 		/* find the first buffer we need to look up. */
382 		for (x = h - 1; x > 0; x--) {
383 			if (mp->mp_bh[x])
384 				break;
385 		}
386 	}
387 	ret = __fillup_metapath(ip, mp, x, h);
388 	if (ret)
389 		return ret;
390 	return mp->mp_aheight - x - 1;
391 }
392 
393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
394 {
395 	sector_t factor = 1, block = 0;
396 	int hgt;
397 
398 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
399 		if (hgt < mp->mp_aheight)
400 			block += mp->mp_list[hgt] * factor;
401 		factor *= sdp->sd_inptrs;
402 	}
403 	return block;
404 }
405 
406 static void release_metapath(struct metapath *mp)
407 {
408 	int i;
409 
410 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
411 		if (mp->mp_bh[i] == NULL)
412 			break;
413 		brelse(mp->mp_bh[i]);
414 		mp->mp_bh[i] = NULL;
415 	}
416 }
417 
418 /**
419  * gfs2_extent_length - Returns length of an extent of blocks
420  * @bh: The metadata block
421  * @ptr: Current position in @bh
422  * @eob: Set to 1 if we hit "end of block"
423  *
424  * Returns: The length of the extent (minimum of one block)
425  */
426 
427 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, int *eob)
428 {
429 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
430 	const __be64 *first = ptr;
431 	u64 d = be64_to_cpu(*ptr);
432 
433 	*eob = 0;
434 	do {
435 		ptr++;
436 		if (ptr >= end)
437 			break;
438 		d++;
439 	} while(be64_to_cpu(*ptr) == d);
440 	if (ptr >= end)
441 		*eob = 1;
442 	return ptr - first;
443 }
444 
445 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
446 
447 /*
448  * gfs2_metadata_walker - walk an indirect block
449  * @mp: Metapath to indirect block
450  * @ptrs: Number of pointers to look at
451  *
452  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
453  * indirect block to follow.
454  */
455 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
456 						   unsigned int ptrs);
457 
458 /*
459  * gfs2_walk_metadata - walk a tree of indirect blocks
460  * @inode: The inode
461  * @mp: Starting point of walk
462  * @max_len: Maximum number of blocks to walk
463  * @walker: Called during the walk
464  *
465  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
466  * past the end of metadata, and a negative error code otherwise.
467  */
468 
469 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
470 		u64 max_len, gfs2_metadata_walker walker)
471 {
472 	struct gfs2_inode *ip = GFS2_I(inode);
473 	struct gfs2_sbd *sdp = GFS2_SB(inode);
474 	u64 factor = 1;
475 	unsigned int hgt;
476 	int ret;
477 
478 	/*
479 	 * The walk starts in the lowest allocated indirect block, which may be
480 	 * before the position indicated by @mp.  Adjust @max_len accordingly
481 	 * to avoid a short walk.
482 	 */
483 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
484 		max_len += mp->mp_list[hgt] * factor;
485 		mp->mp_list[hgt] = 0;
486 		factor *= sdp->sd_inptrs;
487 	}
488 
489 	for (;;) {
490 		u16 start = mp->mp_list[hgt];
491 		enum walker_status status;
492 		unsigned int ptrs;
493 		u64 len;
494 
495 		/* Walk indirect block. */
496 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
497 		len = ptrs * factor;
498 		if (len > max_len)
499 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
500 		status = walker(mp, ptrs);
501 		switch (status) {
502 		case WALK_STOP:
503 			return 1;
504 		case WALK_FOLLOW:
505 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
506 			ptrs = mp->mp_list[hgt] - start;
507 			len = ptrs * factor;
508 			break;
509 		case WALK_CONTINUE:
510 			break;
511 		}
512 		if (len >= max_len)
513 			break;
514 		max_len -= len;
515 		if (status == WALK_FOLLOW)
516 			goto fill_up_metapath;
517 
518 lower_metapath:
519 		/* Decrease height of metapath. */
520 		brelse(mp->mp_bh[hgt]);
521 		mp->mp_bh[hgt] = NULL;
522 		mp->mp_list[hgt] = 0;
523 		if (!hgt)
524 			break;
525 		hgt--;
526 		factor *= sdp->sd_inptrs;
527 
528 		/* Advance in metadata tree. */
529 		(mp->mp_list[hgt])++;
530 		if (hgt) {
531 			if (mp->mp_list[hgt] >= sdp->sd_inptrs)
532 				goto lower_metapath;
533 		} else {
534 			if (mp->mp_list[hgt] >= sdp->sd_diptrs)
535 				break;
536 		}
537 
538 fill_up_metapath:
539 		/* Increase height of metapath. */
540 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
541 		if (ret < 0)
542 			return ret;
543 		hgt += ret;
544 		for (; ret; ret--)
545 			do_div(factor, sdp->sd_inptrs);
546 		mp->mp_aheight = hgt + 1;
547 	}
548 	return 0;
549 }
550 
551 static enum walker_status gfs2_hole_walker(struct metapath *mp,
552 					   unsigned int ptrs)
553 {
554 	const __be64 *start, *ptr, *end;
555 	unsigned int hgt;
556 
557 	hgt = mp->mp_aheight - 1;
558 	start = metapointer(hgt, mp);
559 	end = start + ptrs;
560 
561 	for (ptr = start; ptr < end; ptr++) {
562 		if (*ptr) {
563 			mp->mp_list[hgt] += ptr - start;
564 			if (mp->mp_aheight == mp->mp_fheight)
565 				return WALK_STOP;
566 			return WALK_FOLLOW;
567 		}
568 	}
569 	return WALK_CONTINUE;
570 }
571 
572 /**
573  * gfs2_hole_size - figure out the size of a hole
574  * @inode: The inode
575  * @lblock: The logical starting block number
576  * @len: How far to look (in blocks)
577  * @mp: The metapath at lblock
578  * @iomap: The iomap to store the hole size in
579  *
580  * This function modifies @mp.
581  *
582  * Returns: errno on error
583  */
584 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
585 			  struct metapath *mp, struct iomap *iomap)
586 {
587 	struct metapath clone;
588 	u64 hole_size;
589 	int ret;
590 
591 	clone_metapath(&clone, mp);
592 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
593 	if (ret < 0)
594 		goto out;
595 
596 	if (ret == 1)
597 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
598 	else
599 		hole_size = len;
600 	iomap->length = hole_size << inode->i_blkbits;
601 	ret = 0;
602 
603 out:
604 	release_metapath(&clone);
605 	return ret;
606 }
607 
608 static inline void gfs2_indirect_init(struct metapath *mp,
609 				      struct gfs2_glock *gl, unsigned int i,
610 				      unsigned offset, u64 bn)
611 {
612 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
613 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
614 				 sizeof(struct gfs2_dinode)));
615 	BUG_ON(i < 1);
616 	BUG_ON(mp->mp_bh[i] != NULL);
617 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
618 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
619 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
620 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
621 	ptr += offset;
622 	*ptr = cpu_to_be64(bn);
623 }
624 
625 enum alloc_state {
626 	ALLOC_DATA = 0,
627 	ALLOC_GROW_DEPTH = 1,
628 	ALLOC_GROW_HEIGHT = 2,
629 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
630 };
631 
632 /**
633  * __gfs2_iomap_alloc - Build a metadata tree of the requested height
634  * @inode: The GFS2 inode
635  * @iomap: The iomap structure
636  * @mp: The metapath, with proper height information calculated
637  *
638  * In this routine we may have to alloc:
639  *   i) Indirect blocks to grow the metadata tree height
640  *  ii) Indirect blocks to fill in lower part of the metadata tree
641  * iii) Data blocks
642  *
643  * This function is called after __gfs2_iomap_get, which works out the
644  * total number of blocks which we need via gfs2_alloc_size.
645  *
646  * We then do the actual allocation asking for an extent at a time (if
647  * enough contiguous free blocks are available, there will only be one
648  * allocation request per call) and uses the state machine to initialise
649  * the blocks in order.
650  *
651  * Right now, this function will allocate at most one indirect block
652  * worth of data -- with a default block size of 4K, that's slightly
653  * less than 2M.  If this limitation is ever removed to allow huge
654  * allocations, we would probably still want to limit the iomap size we
655  * return to avoid stalling other tasks during huge writes; the next
656  * iomap iteration would then find the blocks already allocated.
657  *
658  * Returns: errno on error
659  */
660 
661 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
662 			      struct metapath *mp)
663 {
664 	struct gfs2_inode *ip = GFS2_I(inode);
665 	struct gfs2_sbd *sdp = GFS2_SB(inode);
666 	struct buffer_head *dibh = metapath_dibh(mp);
667 	u64 bn;
668 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
669 	size_t dblks = iomap->length >> inode->i_blkbits;
670 	const unsigned end_of_metadata = mp->mp_fheight - 1;
671 	int ret;
672 	enum alloc_state state;
673 	__be64 *ptr;
674 	__be64 zero_bn = 0;
675 
676 	BUG_ON(mp->mp_aheight < 1);
677 	BUG_ON(dibh == NULL);
678 	BUG_ON(dblks < 1);
679 
680 	gfs2_trans_add_meta(ip->i_gl, dibh);
681 
682 	down_write(&ip->i_rw_mutex);
683 
684 	if (mp->mp_fheight == mp->mp_aheight) {
685 		/* Bottom indirect block exists */
686 		state = ALLOC_DATA;
687 	} else {
688 		/* Need to allocate indirect blocks */
689 		if (mp->mp_fheight == ip->i_height) {
690 			/* Writing into existing tree, extend tree down */
691 			iblks = mp->mp_fheight - mp->mp_aheight;
692 			state = ALLOC_GROW_DEPTH;
693 		} else {
694 			/* Building up tree height */
695 			state = ALLOC_GROW_HEIGHT;
696 			iblks = mp->mp_fheight - ip->i_height;
697 			branch_start = metapath_branch_start(mp);
698 			iblks += (mp->mp_fheight - branch_start);
699 		}
700 	}
701 
702 	/* start of the second part of the function (state machine) */
703 
704 	blks = dblks + iblks;
705 	i = mp->mp_aheight;
706 	do {
707 		n = blks - alloced;
708 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0);
709 		if (ret)
710 			goto out;
711 		alloced += n;
712 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
713 			gfs2_trans_remove_revoke(sdp, bn, n);
714 		switch (state) {
715 		/* Growing height of tree */
716 		case ALLOC_GROW_HEIGHT:
717 			if (i == 1) {
718 				ptr = (__be64 *)(dibh->b_data +
719 						 sizeof(struct gfs2_dinode));
720 				zero_bn = *ptr;
721 			}
722 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
723 			     i++, n--)
724 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
725 			if (i - 1 == mp->mp_fheight - ip->i_height) {
726 				i--;
727 				gfs2_buffer_copy_tail(mp->mp_bh[i],
728 						sizeof(struct gfs2_meta_header),
729 						dibh, sizeof(struct gfs2_dinode));
730 				gfs2_buffer_clear_tail(dibh,
731 						sizeof(struct gfs2_dinode) +
732 						sizeof(__be64));
733 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
734 					sizeof(struct gfs2_meta_header));
735 				*ptr = zero_bn;
736 				state = ALLOC_GROW_DEPTH;
737 				for(i = branch_start; i < mp->mp_fheight; i++) {
738 					if (mp->mp_bh[i] == NULL)
739 						break;
740 					brelse(mp->mp_bh[i]);
741 					mp->mp_bh[i] = NULL;
742 				}
743 				i = branch_start;
744 			}
745 			if (n == 0)
746 				break;
747 			fallthrough;	/* To branching from existing tree */
748 		case ALLOC_GROW_DEPTH:
749 			if (i > 1 && i < mp->mp_fheight)
750 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
751 			for (; i < mp->mp_fheight && n > 0; i++, n--)
752 				gfs2_indirect_init(mp, ip->i_gl, i,
753 						   mp->mp_list[i-1], bn++);
754 			if (i == mp->mp_fheight)
755 				state = ALLOC_DATA;
756 			if (n == 0)
757 				break;
758 			fallthrough;	/* To tree complete, adding data blocks */
759 		case ALLOC_DATA:
760 			BUG_ON(n > dblks);
761 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
762 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
763 			dblks = n;
764 			ptr = metapointer(end_of_metadata, mp);
765 			iomap->addr = bn << inode->i_blkbits;
766 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
767 			while (n-- > 0)
768 				*ptr++ = cpu_to_be64(bn++);
769 			break;
770 		}
771 	} while (iomap->addr == IOMAP_NULL_ADDR);
772 
773 	iomap->type = IOMAP_MAPPED;
774 	iomap->length = (u64)dblks << inode->i_blkbits;
775 	ip->i_height = mp->mp_fheight;
776 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
777 	gfs2_dinode_out(ip, dibh->b_data);
778 out:
779 	up_write(&ip->i_rw_mutex);
780 	return ret;
781 }
782 
783 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
784 
785 /**
786  * gfs2_alloc_size - Compute the maximum allocation size
787  * @inode: The inode
788  * @mp: The metapath
789  * @size: Requested size in blocks
790  *
791  * Compute the maximum size of the next allocation at @mp.
792  *
793  * Returns: size in blocks
794  */
795 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
796 {
797 	struct gfs2_inode *ip = GFS2_I(inode);
798 	struct gfs2_sbd *sdp = GFS2_SB(inode);
799 	const __be64 *first, *ptr, *end;
800 
801 	/*
802 	 * For writes to stuffed files, this function is called twice via
803 	 * __gfs2_iomap_get, before and after unstuffing. The size we return the
804 	 * first time needs to be large enough to get the reservation and
805 	 * allocation sizes right.  The size we return the second time must
806 	 * be exact or else __gfs2_iomap_alloc won't do the right thing.
807 	 */
808 
809 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
810 		unsigned int maxsize = mp->mp_fheight > 1 ?
811 			sdp->sd_inptrs : sdp->sd_diptrs;
812 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
813 		if (size > maxsize)
814 			size = maxsize;
815 		return size;
816 	}
817 
818 	first = metapointer(ip->i_height - 1, mp);
819 	end = metaend(ip->i_height - 1, mp);
820 	if (end - first > size)
821 		end = first + size;
822 	for (ptr = first; ptr < end; ptr++) {
823 		if (*ptr)
824 			break;
825 	}
826 	return ptr - first;
827 }
828 
829 /**
830  * __gfs2_iomap_get - Map blocks from an inode to disk blocks
831  * @inode: The inode
832  * @pos: Starting position in bytes
833  * @length: Length to map, in bytes
834  * @flags: iomap flags
835  * @iomap: The iomap structure
836  * @mp: The metapath
837  *
838  * Returns: errno
839  */
840 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
841 			    unsigned flags, struct iomap *iomap,
842 			    struct metapath *mp)
843 {
844 	struct gfs2_inode *ip = GFS2_I(inode);
845 	struct gfs2_sbd *sdp = GFS2_SB(inode);
846 	loff_t size = i_size_read(inode);
847 	__be64 *ptr;
848 	sector_t lblock;
849 	sector_t lblock_stop;
850 	int ret;
851 	int eob;
852 	u64 len;
853 	struct buffer_head *dibh = NULL, *bh;
854 	u8 height;
855 
856 	if (!length)
857 		return -EINVAL;
858 
859 	down_read(&ip->i_rw_mutex);
860 
861 	ret = gfs2_meta_inode_buffer(ip, &dibh);
862 	if (ret)
863 		goto unlock;
864 	mp->mp_bh[0] = dibh;
865 
866 	if (gfs2_is_stuffed(ip)) {
867 		if (flags & IOMAP_WRITE) {
868 			loff_t max_size = gfs2_max_stuffed_size(ip);
869 
870 			if (pos + length > max_size)
871 				goto unstuff;
872 			iomap->length = max_size;
873 		} else {
874 			if (pos >= size) {
875 				if (flags & IOMAP_REPORT) {
876 					ret = -ENOENT;
877 					goto unlock;
878 				} else {
879 					iomap->offset = pos;
880 					iomap->length = length;
881 					goto hole_found;
882 				}
883 			}
884 			iomap->length = size;
885 		}
886 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
887 			      sizeof(struct gfs2_dinode);
888 		iomap->type = IOMAP_INLINE;
889 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
890 		goto out;
891 	}
892 
893 unstuff:
894 	lblock = pos >> inode->i_blkbits;
895 	iomap->offset = lblock << inode->i_blkbits;
896 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
897 	len = lblock_stop - lblock + 1;
898 	iomap->length = len << inode->i_blkbits;
899 
900 	height = ip->i_height;
901 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
902 		height++;
903 	find_metapath(sdp, lblock, mp, height);
904 	if (height > ip->i_height || gfs2_is_stuffed(ip))
905 		goto do_alloc;
906 
907 	ret = lookup_metapath(ip, mp);
908 	if (ret)
909 		goto unlock;
910 
911 	if (mp->mp_aheight != ip->i_height)
912 		goto do_alloc;
913 
914 	ptr = metapointer(ip->i_height - 1, mp);
915 	if (*ptr == 0)
916 		goto do_alloc;
917 
918 	bh = mp->mp_bh[ip->i_height - 1];
919 	len = gfs2_extent_length(bh, ptr, &eob);
920 
921 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
922 	iomap->length = len << inode->i_blkbits;
923 	iomap->type = IOMAP_MAPPED;
924 	iomap->flags |= IOMAP_F_MERGED;
925 	if (eob)
926 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
927 
928 out:
929 	iomap->bdev = inode->i_sb->s_bdev;
930 unlock:
931 	up_read(&ip->i_rw_mutex);
932 	return ret;
933 
934 do_alloc:
935 	if (flags & IOMAP_REPORT) {
936 		if (pos >= size)
937 			ret = -ENOENT;
938 		else if (height == ip->i_height)
939 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
940 		else
941 			iomap->length = size - iomap->offset;
942 	} else if (flags & IOMAP_WRITE) {
943 		u64 alloc_size;
944 
945 		if (flags & IOMAP_DIRECT)
946 			goto out;  /* (see gfs2_file_direct_write) */
947 
948 		len = gfs2_alloc_size(inode, mp, len);
949 		alloc_size = len << inode->i_blkbits;
950 		if (alloc_size < iomap->length)
951 			iomap->length = alloc_size;
952 	} else {
953 		if (pos < size && height == ip->i_height)
954 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
955 	}
956 hole_found:
957 	iomap->addr = IOMAP_NULL_ADDR;
958 	iomap->type = IOMAP_HOLE;
959 	goto out;
960 }
961 
962 static struct folio *
963 gfs2_iomap_get_folio(struct iomap_iter *iter, loff_t pos, unsigned len)
964 {
965 	struct inode *inode = iter->inode;
966 	unsigned int blockmask = i_blocksize(inode) - 1;
967 	struct gfs2_sbd *sdp = GFS2_SB(inode);
968 	unsigned int blocks;
969 	struct folio *folio;
970 	int status;
971 
972 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
973 	status = gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
974 	if (status)
975 		return ERR_PTR(status);
976 
977 	folio = iomap_get_folio(iter, pos, len);
978 	if (IS_ERR(folio))
979 		gfs2_trans_end(sdp);
980 	return folio;
981 }
982 
983 static void gfs2_iomap_put_folio(struct inode *inode, loff_t pos,
984 				 unsigned copied, struct folio *folio)
985 {
986 	struct gfs2_trans *tr = current->journal_info;
987 	struct gfs2_inode *ip = GFS2_I(inode);
988 	struct gfs2_sbd *sdp = GFS2_SB(inode);
989 
990 	if (!gfs2_is_stuffed(ip))
991 		gfs2_trans_add_databufs(ip->i_gl, folio,
992 					offset_in_folio(folio, pos),
993 					copied);
994 
995 	folio_unlock(folio);
996 	folio_put(folio);
997 
998 	if (tr->tr_num_buf_new)
999 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1000 
1001 	gfs2_trans_end(sdp);
1002 }
1003 
1004 static const struct iomap_folio_ops gfs2_iomap_folio_ops = {
1005 	.get_folio = gfs2_iomap_get_folio,
1006 	.put_folio = gfs2_iomap_put_folio,
1007 };
1008 
1009 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1010 				  loff_t length, unsigned flags,
1011 				  struct iomap *iomap,
1012 				  struct metapath *mp)
1013 {
1014 	struct gfs2_inode *ip = GFS2_I(inode);
1015 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1016 	bool unstuff;
1017 	int ret;
1018 
1019 	unstuff = gfs2_is_stuffed(ip) &&
1020 		  pos + length > gfs2_max_stuffed_size(ip);
1021 
1022 	if (unstuff || iomap->type == IOMAP_HOLE) {
1023 		unsigned int data_blocks, ind_blocks;
1024 		struct gfs2_alloc_parms ap = {};
1025 		unsigned int rblocks;
1026 		struct gfs2_trans *tr;
1027 
1028 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1029 				       &ind_blocks);
1030 		ap.target = data_blocks + ind_blocks;
1031 		ret = gfs2_quota_lock_check(ip, &ap);
1032 		if (ret)
1033 			return ret;
1034 
1035 		ret = gfs2_inplace_reserve(ip, &ap);
1036 		if (ret)
1037 			goto out_qunlock;
1038 
1039 		rblocks = RES_DINODE + ind_blocks;
1040 		if (gfs2_is_jdata(ip))
1041 			rblocks += data_blocks;
1042 		if (ind_blocks || data_blocks)
1043 			rblocks += RES_STATFS + RES_QUOTA;
1044 		if (inode == sdp->sd_rindex)
1045 			rblocks += 2 * RES_STATFS;
1046 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1047 
1048 		ret = gfs2_trans_begin(sdp, rblocks,
1049 				       iomap->length >> inode->i_blkbits);
1050 		if (ret)
1051 			goto out_trans_fail;
1052 
1053 		if (unstuff) {
1054 			ret = gfs2_unstuff_dinode(ip);
1055 			if (ret)
1056 				goto out_trans_end;
1057 			release_metapath(mp);
1058 			ret = __gfs2_iomap_get(inode, iomap->offset,
1059 					       iomap->length, flags, iomap, mp);
1060 			if (ret)
1061 				goto out_trans_end;
1062 		}
1063 
1064 		if (iomap->type == IOMAP_HOLE) {
1065 			ret = __gfs2_iomap_alloc(inode, iomap, mp);
1066 			if (ret) {
1067 				gfs2_trans_end(sdp);
1068 				gfs2_inplace_release(ip);
1069 				punch_hole(ip, iomap->offset, iomap->length);
1070 				goto out_qunlock;
1071 			}
1072 		}
1073 
1074 		tr = current->journal_info;
1075 		if (tr->tr_num_buf_new)
1076 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1077 
1078 		gfs2_trans_end(sdp);
1079 	}
1080 
1081 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1082 		iomap->folio_ops = &gfs2_iomap_folio_ops;
1083 	return 0;
1084 
1085 out_trans_end:
1086 	gfs2_trans_end(sdp);
1087 out_trans_fail:
1088 	gfs2_inplace_release(ip);
1089 out_qunlock:
1090 	gfs2_quota_unlock(ip);
1091 	return ret;
1092 }
1093 
1094 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1095 			    unsigned flags, struct iomap *iomap,
1096 			    struct iomap *srcmap)
1097 {
1098 	struct gfs2_inode *ip = GFS2_I(inode);
1099 	struct metapath mp = { .mp_aheight = 1, };
1100 	int ret;
1101 
1102 	if (gfs2_is_jdata(ip))
1103 		iomap->flags |= IOMAP_F_BUFFER_HEAD;
1104 
1105 	trace_gfs2_iomap_start(ip, pos, length, flags);
1106 	ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1107 	if (ret)
1108 		goto out_unlock;
1109 
1110 	switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1111 	case IOMAP_WRITE:
1112 		if (flags & IOMAP_DIRECT) {
1113 			/*
1114 			 * Silently fall back to buffered I/O for stuffed files
1115 			 * or if we've got a hole (see gfs2_file_direct_write).
1116 			 */
1117 			if (iomap->type != IOMAP_MAPPED)
1118 				ret = -ENOTBLK;
1119 			goto out_unlock;
1120 		}
1121 		break;
1122 	case IOMAP_ZERO:
1123 		if (iomap->type == IOMAP_HOLE)
1124 			goto out_unlock;
1125 		break;
1126 	default:
1127 		goto out_unlock;
1128 	}
1129 
1130 	ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1131 
1132 out_unlock:
1133 	release_metapath(&mp);
1134 	trace_gfs2_iomap_end(ip, iomap, ret);
1135 	return ret;
1136 }
1137 
1138 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1139 			  ssize_t written, unsigned flags, struct iomap *iomap)
1140 {
1141 	struct gfs2_inode *ip = GFS2_I(inode);
1142 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1143 
1144 	switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1145 	case IOMAP_WRITE:
1146 		if (flags & IOMAP_DIRECT)
1147 			return 0;
1148 		break;
1149 	case IOMAP_ZERO:
1150 		 if (iomap->type == IOMAP_HOLE)
1151 			 return 0;
1152 		 break;
1153 	default:
1154 		 return 0;
1155 	}
1156 
1157 	if (!gfs2_is_stuffed(ip))
1158 		gfs2_ordered_add_inode(ip);
1159 
1160 	if (inode == sdp->sd_rindex)
1161 		adjust_fs_space(inode);
1162 
1163 	gfs2_inplace_release(ip);
1164 
1165 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1166 		gfs2_quota_unlock(ip);
1167 
1168 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1169 		/* Deallocate blocks that were just allocated. */
1170 		loff_t hstart = round_up(pos + written, i_blocksize(inode));
1171 		loff_t hend = iomap->offset + iomap->length;
1172 
1173 		if (hstart < hend) {
1174 			truncate_pagecache_range(inode, hstart, hend - 1);
1175 			punch_hole(ip, hstart, hend - hstart);
1176 		}
1177 	}
1178 
1179 	if (unlikely(!written))
1180 		return 0;
1181 
1182 	if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1183 		mark_inode_dirty(inode);
1184 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1185 	return 0;
1186 }
1187 
1188 const struct iomap_ops gfs2_iomap_ops = {
1189 	.iomap_begin = gfs2_iomap_begin,
1190 	.iomap_end = gfs2_iomap_end,
1191 };
1192 
1193 /**
1194  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1195  * @inode: The inode
1196  * @lblock: The logical block number
1197  * @bh_map: The bh to be mapped
1198  * @create: True if its ok to alloc blocks to satify the request
1199  *
1200  * The size of the requested mapping is defined in bh_map->b_size.
1201  *
1202  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1203  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1204  * bh_map->b_size to indicate the size of the mapping when @lblock and
1205  * successive blocks are mapped, up to the requested size.
1206  *
1207  * Sets buffer_boundary() if a read of metadata will be required
1208  * before the next block can be mapped. Sets buffer_new() if new
1209  * blocks were allocated.
1210  *
1211  * Returns: errno
1212  */
1213 
1214 int gfs2_block_map(struct inode *inode, sector_t lblock,
1215 		   struct buffer_head *bh_map, int create)
1216 {
1217 	struct gfs2_inode *ip = GFS2_I(inode);
1218 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1219 	loff_t length = bh_map->b_size;
1220 	struct iomap iomap = { };
1221 	int ret;
1222 
1223 	clear_buffer_mapped(bh_map);
1224 	clear_buffer_new(bh_map);
1225 	clear_buffer_boundary(bh_map);
1226 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1227 
1228 	if (!create)
1229 		ret = gfs2_iomap_get(inode, pos, length, &iomap);
1230 	else
1231 		ret = gfs2_iomap_alloc(inode, pos, length, &iomap);
1232 	if (ret)
1233 		goto out;
1234 
1235 	if (iomap.length > bh_map->b_size) {
1236 		iomap.length = bh_map->b_size;
1237 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1238 	}
1239 	if (iomap.addr != IOMAP_NULL_ADDR)
1240 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1241 	bh_map->b_size = iomap.length;
1242 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1243 		set_buffer_boundary(bh_map);
1244 	if (iomap.flags & IOMAP_F_NEW)
1245 		set_buffer_new(bh_map);
1246 
1247 out:
1248 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1249 	return ret;
1250 }
1251 
1252 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock,
1253 		    unsigned int *extlen)
1254 {
1255 	unsigned int blkbits = inode->i_blkbits;
1256 	struct iomap iomap = { };
1257 	unsigned int len;
1258 	int ret;
1259 
1260 	ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits,
1261 			     &iomap);
1262 	if (ret)
1263 		return ret;
1264 	if (iomap.type != IOMAP_MAPPED)
1265 		return -EIO;
1266 	*dblock = iomap.addr >> blkbits;
1267 	len = iomap.length >> blkbits;
1268 	if (len < *extlen)
1269 		*extlen = len;
1270 	return 0;
1271 }
1272 
1273 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock,
1274 		      unsigned int *extlen, bool *new)
1275 {
1276 	unsigned int blkbits = inode->i_blkbits;
1277 	struct iomap iomap = { };
1278 	unsigned int len;
1279 	int ret;
1280 
1281 	ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits,
1282 			       &iomap);
1283 	if (ret)
1284 		return ret;
1285 	if (iomap.type != IOMAP_MAPPED)
1286 		return -EIO;
1287 	*dblock = iomap.addr >> blkbits;
1288 	len = iomap.length >> blkbits;
1289 	if (len < *extlen)
1290 		*extlen = len;
1291 	*new = iomap.flags & IOMAP_F_NEW;
1292 	return 0;
1293 }
1294 
1295 /*
1296  * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1297  * uses iomap write to perform its actions, which begin their own transactions
1298  * (iomap_begin, get_folio, etc.)
1299  */
1300 static int gfs2_block_zero_range(struct inode *inode, loff_t from, loff_t length)
1301 {
1302 	BUG_ON(current->journal_info);
1303 	if (from >= inode->i_size)
1304 		return 0;
1305 	length = min(length, inode->i_size - from);
1306 	return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops,
1307 			NULL);
1308 }
1309 
1310 #define GFS2_JTRUNC_REVOKES 8192
1311 
1312 /**
1313  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1314  * @inode: The inode being truncated
1315  * @oldsize: The original (larger) size
1316  * @newsize: The new smaller size
1317  *
1318  * With jdata files, we have to journal a revoke for each block which is
1319  * truncated. As a result, we need to split this into separate transactions
1320  * if the number of pages being truncated gets too large.
1321  */
1322 
1323 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1324 {
1325 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1326 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1327 	u64 chunk;
1328 	int error;
1329 
1330 	while (oldsize != newsize) {
1331 		struct gfs2_trans *tr;
1332 		unsigned int offs;
1333 
1334 		chunk = oldsize - newsize;
1335 		if (chunk > max_chunk)
1336 			chunk = max_chunk;
1337 
1338 		offs = oldsize & ~PAGE_MASK;
1339 		if (offs && chunk > PAGE_SIZE)
1340 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1341 
1342 		truncate_pagecache(inode, oldsize - chunk);
1343 		oldsize -= chunk;
1344 
1345 		tr = current->journal_info;
1346 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1347 			continue;
1348 
1349 		gfs2_trans_end(sdp);
1350 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1351 		if (error)
1352 			return error;
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 static int trunc_start(struct inode *inode, u64 newsize)
1359 {
1360 	struct gfs2_inode *ip = GFS2_I(inode);
1361 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1362 	struct buffer_head *dibh = NULL;
1363 	int journaled = gfs2_is_jdata(ip);
1364 	u64 oldsize = inode->i_size;
1365 	int error;
1366 
1367 	if (!gfs2_is_stuffed(ip)) {
1368 		unsigned int blocksize = i_blocksize(inode);
1369 		unsigned int offs = newsize & (blocksize - 1);
1370 		if (offs) {
1371 			error = gfs2_block_zero_range(inode, newsize,
1372 						      blocksize - offs);
1373 			if (error)
1374 				return error;
1375 		}
1376 	}
1377 	if (journaled)
1378 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1379 	else
1380 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1381 	if (error)
1382 		return error;
1383 
1384 	error = gfs2_meta_inode_buffer(ip, &dibh);
1385 	if (error)
1386 		goto out;
1387 
1388 	gfs2_trans_add_meta(ip->i_gl, dibh);
1389 
1390 	if (gfs2_is_stuffed(ip))
1391 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1392 	else
1393 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1394 
1395 	i_size_write(inode, newsize);
1396 	inode_set_mtime_to_ts(&ip->i_inode, inode_set_ctime_current(&ip->i_inode));
1397 	gfs2_dinode_out(ip, dibh->b_data);
1398 
1399 	if (journaled)
1400 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1401 	else
1402 		truncate_pagecache(inode, newsize);
1403 
1404 out:
1405 	brelse(dibh);
1406 	if (current->journal_info)
1407 		gfs2_trans_end(sdp);
1408 	return error;
1409 }
1410 
1411 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
1412 		   struct iomap *iomap)
1413 {
1414 	struct metapath mp = { .mp_aheight = 1, };
1415 	int ret;
1416 
1417 	ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp);
1418 	release_metapath(&mp);
1419 	return ret;
1420 }
1421 
1422 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length,
1423 		     struct iomap *iomap)
1424 {
1425 	struct metapath mp = { .mp_aheight = 1, };
1426 	int ret;
1427 
1428 	ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1429 	if (!ret && iomap->type == IOMAP_HOLE)
1430 		ret = __gfs2_iomap_alloc(inode, iomap, &mp);
1431 	release_metapath(&mp);
1432 	return ret;
1433 }
1434 
1435 /**
1436  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1437  * @ip: inode
1438  * @rd_gh: holder of resource group glock
1439  * @bh: buffer head to sweep
1440  * @start: starting point in bh
1441  * @end: end point in bh
1442  * @meta: true if bh points to metadata (rather than data)
1443  * @btotal: place to keep count of total blocks freed
1444  *
1445  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1446  * free, and free them all. However, we do it one rgrp at a time. If this
1447  * block has references to multiple rgrps, we break it into individual
1448  * transactions. This allows other processes to use the rgrps while we're
1449  * focused on a single one, for better concurrency / performance.
1450  * At every transaction boundary, we rewrite the inode into the journal.
1451  * That way the bitmaps are kept consistent with the inode and we can recover
1452  * if we're interrupted by power-outages.
1453  *
1454  * Returns: 0, or return code if an error occurred.
1455  *          *btotal has the total number of blocks freed
1456  */
1457 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1458 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1459 			      bool meta, u32 *btotal)
1460 {
1461 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1462 	struct gfs2_rgrpd *rgd;
1463 	struct gfs2_trans *tr;
1464 	__be64 *p;
1465 	int blks_outside_rgrp;
1466 	u64 bn, bstart, isize_blks;
1467 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1468 	int ret = 0;
1469 	bool buf_in_tr = false; /* buffer was added to transaction */
1470 
1471 more_rgrps:
1472 	rgd = NULL;
1473 	if (gfs2_holder_initialized(rd_gh)) {
1474 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1475 		gfs2_assert_withdraw(sdp,
1476 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1477 	}
1478 	blks_outside_rgrp = 0;
1479 	bstart = 0;
1480 	blen = 0;
1481 
1482 	for (p = start; p < end; p++) {
1483 		if (!*p)
1484 			continue;
1485 		bn = be64_to_cpu(*p);
1486 
1487 		if (rgd) {
1488 			if (!rgrp_contains_block(rgd, bn)) {
1489 				blks_outside_rgrp++;
1490 				continue;
1491 			}
1492 		} else {
1493 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1494 			if (unlikely(!rgd)) {
1495 				ret = -EIO;
1496 				goto out;
1497 			}
1498 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1499 						 LM_FLAG_NODE_SCOPE, rd_gh);
1500 			if (ret)
1501 				goto out;
1502 
1503 			/* Must be done with the rgrp glock held: */
1504 			if (gfs2_rs_active(&ip->i_res) &&
1505 			    rgd == ip->i_res.rs_rgd)
1506 				gfs2_rs_deltree(&ip->i_res);
1507 		}
1508 
1509 		/* The size of our transactions will be unknown until we
1510 		   actually process all the metadata blocks that relate to
1511 		   the rgrp. So we estimate. We know it can't be more than
1512 		   the dinode's i_blocks and we don't want to exceed the
1513 		   journal flush threshold, sd_log_thresh2. */
1514 		if (current->journal_info == NULL) {
1515 			unsigned int jblocks_rqsted, revokes;
1516 
1517 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1518 				RES_INDIRECT;
1519 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1520 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1521 				jblocks_rqsted +=
1522 					atomic_read(&sdp->sd_log_thresh2);
1523 			else
1524 				jblocks_rqsted += isize_blks;
1525 			revokes = jblocks_rqsted;
1526 			if (meta)
1527 				revokes += end - start;
1528 			else if (ip->i_depth)
1529 				revokes += sdp->sd_inptrs;
1530 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1531 			if (ret)
1532 				goto out_unlock;
1533 			down_write(&ip->i_rw_mutex);
1534 		}
1535 		/* check if we will exceed the transaction blocks requested */
1536 		tr = current->journal_info;
1537 		if (tr->tr_num_buf_new + RES_STATFS +
1538 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1539 			/* We set blks_outside_rgrp to ensure the loop will
1540 			   be repeated for the same rgrp, but with a new
1541 			   transaction. */
1542 			blks_outside_rgrp++;
1543 			/* This next part is tricky. If the buffer was added
1544 			   to the transaction, we've already set some block
1545 			   pointers to 0, so we better follow through and free
1546 			   them, or we will introduce corruption (so break).
1547 			   This may be impossible, or at least rare, but I
1548 			   decided to cover the case regardless.
1549 
1550 			   If the buffer was not added to the transaction
1551 			   (this call), doing so would exceed our transaction
1552 			   size, so we need to end the transaction and start a
1553 			   new one (so goto). */
1554 
1555 			if (buf_in_tr)
1556 				break;
1557 			goto out_unlock;
1558 		}
1559 
1560 		gfs2_trans_add_meta(ip->i_gl, bh);
1561 		buf_in_tr = true;
1562 		*p = 0;
1563 		if (bstart + blen == bn) {
1564 			blen++;
1565 			continue;
1566 		}
1567 		if (bstart) {
1568 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1569 			(*btotal) += blen;
1570 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1571 		}
1572 		bstart = bn;
1573 		blen = 1;
1574 	}
1575 	if (bstart) {
1576 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1577 		(*btotal) += blen;
1578 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1579 	}
1580 out_unlock:
1581 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1582 					    outside the rgrp we just processed,
1583 					    do it all over again. */
1584 		if (current->journal_info) {
1585 			struct buffer_head *dibh;
1586 
1587 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1588 			if (ret)
1589 				goto out;
1590 
1591 			/* Every transaction boundary, we rewrite the dinode
1592 			   to keep its di_blocks current in case of failure. */
1593 			inode_set_mtime_to_ts(&ip->i_inode, inode_set_ctime_current(&ip->i_inode));
1594 			gfs2_trans_add_meta(ip->i_gl, dibh);
1595 			gfs2_dinode_out(ip, dibh->b_data);
1596 			brelse(dibh);
1597 			up_write(&ip->i_rw_mutex);
1598 			gfs2_trans_end(sdp);
1599 			buf_in_tr = false;
1600 		}
1601 		gfs2_glock_dq_uninit(rd_gh);
1602 		cond_resched();
1603 		goto more_rgrps;
1604 	}
1605 out:
1606 	return ret;
1607 }
1608 
1609 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1610 {
1611 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1612 		return false;
1613 	return true;
1614 }
1615 
1616 /**
1617  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1618  * @sdp: The superblock
1619  * @mp: starting metapath
1620  * @h: desired height to search
1621  * @end_list: See punch_hole().
1622  * @end_aligned: See punch_hole().
1623  *
1624  * Assumes the metapath is valid (with buffers) out to height h.
1625  * Returns: true if a non-null pointer was found in the metapath buffer
1626  *          false if all remaining pointers are NULL in the buffer
1627  */
1628 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1629 			     unsigned int h,
1630 			     __u16 *end_list, unsigned int end_aligned)
1631 {
1632 	struct buffer_head *bh = mp->mp_bh[h];
1633 	__be64 *first, *ptr, *end;
1634 
1635 	first = metaptr1(h, mp);
1636 	ptr = first + mp->mp_list[h];
1637 	end = (__be64 *)(bh->b_data + bh->b_size);
1638 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1639 		bool keep_end = h < end_aligned;
1640 		end = first + end_list[h] + keep_end;
1641 	}
1642 
1643 	while (ptr < end) {
1644 		if (*ptr) { /* if we have a non-null pointer */
1645 			mp->mp_list[h] = ptr - first;
1646 			h++;
1647 			if (h < GFS2_MAX_META_HEIGHT)
1648 				mp->mp_list[h] = 0;
1649 			return true;
1650 		}
1651 		ptr++;
1652 	}
1653 	return false;
1654 }
1655 
1656 enum dealloc_states {
1657 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1658 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1659 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1660 	DEALLOC_DONE = 3,       /* process complete */
1661 };
1662 
1663 static inline void
1664 metapointer_range(struct metapath *mp, int height,
1665 		  __u16 *start_list, unsigned int start_aligned,
1666 		  __u16 *end_list, unsigned int end_aligned,
1667 		  __be64 **start, __be64 **end)
1668 {
1669 	struct buffer_head *bh = mp->mp_bh[height];
1670 	__be64 *first;
1671 
1672 	first = metaptr1(height, mp);
1673 	*start = first;
1674 	if (mp_eq_to_hgt(mp, start_list, height)) {
1675 		bool keep_start = height < start_aligned;
1676 		*start = first + start_list[height] + keep_start;
1677 	}
1678 	*end = (__be64 *)(bh->b_data + bh->b_size);
1679 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1680 		bool keep_end = height < end_aligned;
1681 		*end = first + end_list[height] + keep_end;
1682 	}
1683 }
1684 
1685 static inline bool walk_done(struct gfs2_sbd *sdp,
1686 			     struct metapath *mp, int height,
1687 			     __u16 *end_list, unsigned int end_aligned)
1688 {
1689 	__u16 end;
1690 
1691 	if (end_list) {
1692 		bool keep_end = height < end_aligned;
1693 		if (!mp_eq_to_hgt(mp, end_list, height))
1694 			return false;
1695 		end = end_list[height] + keep_end;
1696 	} else
1697 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1698 	return mp->mp_list[height] >= end;
1699 }
1700 
1701 /**
1702  * punch_hole - deallocate blocks in a file
1703  * @ip: inode to truncate
1704  * @offset: the start of the hole
1705  * @length: the size of the hole (or 0 for truncate)
1706  *
1707  * Punch a hole into a file or truncate a file at a given position.  This
1708  * function operates in whole blocks (@offset and @length are rounded
1709  * accordingly); partially filled blocks must be cleared otherwise.
1710  *
1711  * This function works from the bottom up, and from the right to the left. In
1712  * other words, it strips off the highest layer (data) before stripping any of
1713  * the metadata. Doing it this way is best in case the operation is interrupted
1714  * by power failure, etc.  The dinode is rewritten in every transaction to
1715  * guarantee integrity.
1716  */
1717 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1718 {
1719 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1720 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1721 	struct metapath mp = {};
1722 	struct buffer_head *dibh, *bh;
1723 	struct gfs2_holder rd_gh;
1724 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1725 	unsigned int bsize = 1 << bsize_shift;
1726 	u64 lblock = (offset + bsize - 1) >> bsize_shift;
1727 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1728 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1729 	unsigned int start_aligned, end_aligned;
1730 	unsigned int strip_h = ip->i_height - 1;
1731 	u32 btotal = 0;
1732 	int ret, state;
1733 	int mp_h; /* metapath buffers are read in to this height */
1734 	u64 prev_bnr = 0;
1735 	__be64 *start, *end;
1736 
1737 	if (offset + bsize - 1 >= maxsize) {
1738 		/*
1739 		 * The starting point lies beyond the allocated metadata;
1740 		 * there are no blocks to deallocate.
1741 		 */
1742 		return 0;
1743 	}
1744 
1745 	/*
1746 	 * The start position of the hole is defined by lblock, start_list, and
1747 	 * start_aligned.  The end position of the hole is defined by lend,
1748 	 * end_list, and end_aligned.
1749 	 *
1750 	 * start_aligned and end_aligned define down to which height the start
1751 	 * and end positions are aligned to the metadata tree (i.e., the
1752 	 * position is a multiple of the metadata granularity at the height
1753 	 * above).  This determines at which heights additional meta pointers
1754 	 * needs to be preserved for the remaining data.
1755 	 */
1756 
1757 	if (length) {
1758 		u64 end_offset = offset + length;
1759 		u64 lend;
1760 
1761 		/*
1762 		 * Clip the end at the maximum file size for the given height:
1763 		 * that's how far the metadata goes; files bigger than that
1764 		 * will have additional layers of indirection.
1765 		 */
1766 		if (end_offset > maxsize)
1767 			end_offset = maxsize;
1768 		lend = end_offset >> bsize_shift;
1769 
1770 		if (lblock >= lend)
1771 			return 0;
1772 
1773 		find_metapath(sdp, lend, &mp, ip->i_height);
1774 		end_list = __end_list;
1775 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1776 
1777 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1778 			if (end_list[mp_h])
1779 				break;
1780 		}
1781 		end_aligned = mp_h;
1782 	}
1783 
1784 	find_metapath(sdp, lblock, &mp, ip->i_height);
1785 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1786 
1787 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1788 		if (start_list[mp_h])
1789 			break;
1790 	}
1791 	start_aligned = mp_h;
1792 
1793 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1794 	if (ret)
1795 		return ret;
1796 
1797 	mp.mp_bh[0] = dibh;
1798 	ret = lookup_metapath(ip, &mp);
1799 	if (ret)
1800 		goto out_metapath;
1801 
1802 	/* issue read-ahead on metadata */
1803 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1804 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1805 				  end_list, end_aligned, &start, &end);
1806 		gfs2_metapath_ra(ip->i_gl, start, end);
1807 	}
1808 
1809 	if (mp.mp_aheight == ip->i_height)
1810 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1811 	else
1812 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1813 
1814 	ret = gfs2_rindex_update(sdp);
1815 	if (ret)
1816 		goto out_metapath;
1817 
1818 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1819 	if (ret)
1820 		goto out_metapath;
1821 	gfs2_holder_mark_uninitialized(&rd_gh);
1822 
1823 	mp_h = strip_h;
1824 
1825 	while (state != DEALLOC_DONE) {
1826 		switch (state) {
1827 		/* Truncate a full metapath at the given strip height.
1828 		 * Note that strip_h == mp_h in order to be in this state. */
1829 		case DEALLOC_MP_FULL:
1830 			bh = mp.mp_bh[mp_h];
1831 			gfs2_assert_withdraw(sdp, bh);
1832 			if (gfs2_assert_withdraw(sdp,
1833 						 prev_bnr != bh->b_blocknr)) {
1834 				fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u, "
1835 					 "s_h:%u, mp_h:%u\n",
1836 				       (unsigned long long)ip->i_no_addr,
1837 				       prev_bnr, ip->i_height, strip_h, mp_h);
1838 			}
1839 			prev_bnr = bh->b_blocknr;
1840 
1841 			if (gfs2_metatype_check(sdp, bh,
1842 						(mp_h ? GFS2_METATYPE_IN :
1843 							GFS2_METATYPE_DI))) {
1844 				ret = -EIO;
1845 				goto out;
1846 			}
1847 
1848 			/*
1849 			 * Below, passing end_aligned as 0 gives us the
1850 			 * metapointer range excluding the end point: the end
1851 			 * point is the first metapath we must not deallocate!
1852 			 */
1853 
1854 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1855 					  end_list, 0 /* end_aligned */,
1856 					  &start, &end);
1857 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1858 						 start, end,
1859 						 mp_h != ip->i_height - 1,
1860 						 &btotal);
1861 
1862 			/* If we hit an error or just swept dinode buffer,
1863 			   just exit. */
1864 			if (ret || !mp_h) {
1865 				state = DEALLOC_DONE;
1866 				break;
1867 			}
1868 			state = DEALLOC_MP_LOWER;
1869 			break;
1870 
1871 		/* lower the metapath strip height */
1872 		case DEALLOC_MP_LOWER:
1873 			/* We're done with the current buffer, so release it,
1874 			   unless it's the dinode buffer. Then back up to the
1875 			   previous pointer. */
1876 			if (mp_h) {
1877 				brelse(mp.mp_bh[mp_h]);
1878 				mp.mp_bh[mp_h] = NULL;
1879 			}
1880 			/* If we can't get any lower in height, we've stripped
1881 			   off all we can. Next step is to back up and start
1882 			   stripping the previous level of metadata. */
1883 			if (mp_h == 0) {
1884 				strip_h--;
1885 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1886 				mp_h = strip_h;
1887 				state = DEALLOC_FILL_MP;
1888 				break;
1889 			}
1890 			mp.mp_list[mp_h] = 0;
1891 			mp_h--; /* search one metadata height down */
1892 			mp.mp_list[mp_h]++;
1893 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1894 				break;
1895 			/* Here we've found a part of the metapath that is not
1896 			 * allocated. We need to search at that height for the
1897 			 * next non-null pointer. */
1898 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1899 				state = DEALLOC_FILL_MP;
1900 				mp_h++;
1901 			}
1902 			/* No more non-null pointers at this height. Back up
1903 			   to the previous height and try again. */
1904 			break; /* loop around in the same state */
1905 
1906 		/* Fill the metapath with buffers to the given height. */
1907 		case DEALLOC_FILL_MP:
1908 			/* Fill the buffers out to the current height. */
1909 			ret = fillup_metapath(ip, &mp, mp_h);
1910 			if (ret < 0)
1911 				goto out;
1912 
1913 			/* On the first pass, issue read-ahead on metadata. */
1914 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1915 				unsigned int height = mp.mp_aheight - 1;
1916 
1917 				/* No read-ahead for data blocks. */
1918 				if (mp.mp_aheight - 1 == strip_h)
1919 					height--;
1920 
1921 				for (; height >= mp.mp_aheight - ret; height--) {
1922 					metapointer_range(&mp, height,
1923 							  start_list, start_aligned,
1924 							  end_list, end_aligned,
1925 							  &start, &end);
1926 					gfs2_metapath_ra(ip->i_gl, start, end);
1927 				}
1928 			}
1929 
1930 			/* If buffers found for the entire strip height */
1931 			if (mp.mp_aheight - 1 == strip_h) {
1932 				state = DEALLOC_MP_FULL;
1933 				break;
1934 			}
1935 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1936 				mp_h = mp.mp_aheight - 1;
1937 
1938 			/* If we find a non-null block pointer, crawl a bit
1939 			   higher up in the metapath and try again, otherwise
1940 			   we need to look lower for a new starting point. */
1941 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1942 				mp_h++;
1943 			else
1944 				state = DEALLOC_MP_LOWER;
1945 			break;
1946 		}
1947 	}
1948 
1949 	if (btotal) {
1950 		if (current->journal_info == NULL) {
1951 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1952 					       RES_QUOTA, 0);
1953 			if (ret)
1954 				goto out;
1955 			down_write(&ip->i_rw_mutex);
1956 		}
1957 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1958 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1959 				  ip->i_inode.i_gid);
1960 		inode_set_mtime_to_ts(&ip->i_inode, inode_set_ctime_current(&ip->i_inode));
1961 		gfs2_trans_add_meta(ip->i_gl, dibh);
1962 		gfs2_dinode_out(ip, dibh->b_data);
1963 		up_write(&ip->i_rw_mutex);
1964 		gfs2_trans_end(sdp);
1965 	}
1966 
1967 out:
1968 	if (gfs2_holder_initialized(&rd_gh))
1969 		gfs2_glock_dq_uninit(&rd_gh);
1970 	if (current->journal_info) {
1971 		up_write(&ip->i_rw_mutex);
1972 		gfs2_trans_end(sdp);
1973 		cond_resched();
1974 	}
1975 	gfs2_quota_unhold(ip);
1976 out_metapath:
1977 	release_metapath(&mp);
1978 	return ret;
1979 }
1980 
1981 static int trunc_end(struct gfs2_inode *ip)
1982 {
1983 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1984 	struct buffer_head *dibh;
1985 	int error;
1986 
1987 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1988 	if (error)
1989 		return error;
1990 
1991 	down_write(&ip->i_rw_mutex);
1992 
1993 	error = gfs2_meta_inode_buffer(ip, &dibh);
1994 	if (error)
1995 		goto out;
1996 
1997 	if (!i_size_read(&ip->i_inode)) {
1998 		ip->i_height = 0;
1999 		ip->i_goal = ip->i_no_addr;
2000 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
2001 		gfs2_ordered_del_inode(ip);
2002 	}
2003 	inode_set_mtime_to_ts(&ip->i_inode, inode_set_ctime_current(&ip->i_inode));
2004 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
2005 
2006 	gfs2_trans_add_meta(ip->i_gl, dibh);
2007 	gfs2_dinode_out(ip, dibh->b_data);
2008 	brelse(dibh);
2009 
2010 out:
2011 	up_write(&ip->i_rw_mutex);
2012 	gfs2_trans_end(sdp);
2013 	return error;
2014 }
2015 
2016 /**
2017  * do_shrink - make a file smaller
2018  * @inode: the inode
2019  * @newsize: the size to make the file
2020  *
2021  * Called with an exclusive lock on @inode. The @size must
2022  * be equal to or smaller than the current inode size.
2023  *
2024  * Returns: errno
2025  */
2026 
2027 static int do_shrink(struct inode *inode, u64 newsize)
2028 {
2029 	struct gfs2_inode *ip = GFS2_I(inode);
2030 	int error;
2031 
2032 	error = trunc_start(inode, newsize);
2033 	if (error < 0)
2034 		return error;
2035 	if (gfs2_is_stuffed(ip))
2036 		return 0;
2037 
2038 	error = punch_hole(ip, newsize, 0);
2039 	if (error == 0)
2040 		error = trunc_end(ip);
2041 
2042 	return error;
2043 }
2044 
2045 /**
2046  * do_grow - Touch and update inode size
2047  * @inode: The inode
2048  * @size: The new size
2049  *
2050  * This function updates the timestamps on the inode and
2051  * may also increase the size of the inode. This function
2052  * must not be called with @size any smaller than the current
2053  * inode size.
2054  *
2055  * Although it is not strictly required to unstuff files here,
2056  * earlier versions of GFS2 have a bug in the stuffed file reading
2057  * code which will result in a buffer overrun if the size is larger
2058  * than the max stuffed file size. In order to prevent this from
2059  * occurring, such files are unstuffed, but in other cases we can
2060  * just update the inode size directly.
2061  *
2062  * Returns: 0 on success, or -ve on error
2063  */
2064 
2065 static int do_grow(struct inode *inode, u64 size)
2066 {
2067 	struct gfs2_inode *ip = GFS2_I(inode);
2068 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2069 	struct gfs2_alloc_parms ap = { .target = 1, };
2070 	struct buffer_head *dibh;
2071 	int error;
2072 	int unstuff = 0;
2073 
2074 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2075 		error = gfs2_quota_lock_check(ip, &ap);
2076 		if (error)
2077 			return error;
2078 
2079 		error = gfs2_inplace_reserve(ip, &ap);
2080 		if (error)
2081 			goto do_grow_qunlock;
2082 		unstuff = 1;
2083 	}
2084 
2085 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2086 				 (unstuff &&
2087 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2088 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2089 				  0 : RES_QUOTA), 0);
2090 	if (error)
2091 		goto do_grow_release;
2092 
2093 	if (unstuff) {
2094 		error = gfs2_unstuff_dinode(ip);
2095 		if (error)
2096 			goto do_end_trans;
2097 	}
2098 
2099 	error = gfs2_meta_inode_buffer(ip, &dibh);
2100 	if (error)
2101 		goto do_end_trans;
2102 
2103 	truncate_setsize(inode, size);
2104 	inode_set_mtime_to_ts(&ip->i_inode, inode_set_ctime_current(&ip->i_inode));
2105 	gfs2_trans_add_meta(ip->i_gl, dibh);
2106 	gfs2_dinode_out(ip, dibh->b_data);
2107 	brelse(dibh);
2108 
2109 do_end_trans:
2110 	gfs2_trans_end(sdp);
2111 do_grow_release:
2112 	if (unstuff) {
2113 		gfs2_inplace_release(ip);
2114 do_grow_qunlock:
2115 		gfs2_quota_unlock(ip);
2116 	}
2117 	return error;
2118 }
2119 
2120 /**
2121  * gfs2_setattr_size - make a file a given size
2122  * @inode: the inode
2123  * @newsize: the size to make the file
2124  *
2125  * The file size can grow, shrink, or stay the same size. This
2126  * is called holding i_rwsem and an exclusive glock on the inode
2127  * in question.
2128  *
2129  * Returns: errno
2130  */
2131 
2132 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2133 {
2134 	struct gfs2_inode *ip = GFS2_I(inode);
2135 	int ret;
2136 
2137 	BUG_ON(!S_ISREG(inode->i_mode));
2138 
2139 	ret = inode_newsize_ok(inode, newsize);
2140 	if (ret)
2141 		return ret;
2142 
2143 	inode_dio_wait(inode);
2144 
2145 	ret = gfs2_qa_get(ip);
2146 	if (ret)
2147 		goto out;
2148 
2149 	if (newsize >= inode->i_size) {
2150 		ret = do_grow(inode, newsize);
2151 		goto out;
2152 	}
2153 
2154 	ret = do_shrink(inode, newsize);
2155 out:
2156 	gfs2_rs_delete(ip);
2157 	gfs2_qa_put(ip);
2158 	return ret;
2159 }
2160 
2161 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2162 {
2163 	int error;
2164 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2165 	if (!error)
2166 		error = trunc_end(ip);
2167 	return error;
2168 }
2169 
2170 int gfs2_file_dealloc(struct gfs2_inode *ip)
2171 {
2172 	return punch_hole(ip, 0, 0);
2173 }
2174 
2175 /**
2176  * gfs2_free_journal_extents - Free cached journal bmap info
2177  * @jd: The journal
2178  *
2179  */
2180 
2181 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2182 {
2183 	struct gfs2_journal_extent *jext;
2184 
2185 	while(!list_empty(&jd->extent_list)) {
2186 		jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2187 		list_del(&jext->list);
2188 		kfree(jext);
2189 	}
2190 }
2191 
2192 /**
2193  * gfs2_add_jextent - Add or merge a new extent to extent cache
2194  * @jd: The journal descriptor
2195  * @lblock: The logical block at start of new extent
2196  * @dblock: The physical block at start of new extent
2197  * @blocks: Size of extent in fs blocks
2198  *
2199  * Returns: 0 on success or -ENOMEM
2200  */
2201 
2202 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2203 {
2204 	struct gfs2_journal_extent *jext;
2205 
2206 	if (!list_empty(&jd->extent_list)) {
2207 		jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2208 		if ((jext->dblock + jext->blocks) == dblock) {
2209 			jext->blocks += blocks;
2210 			return 0;
2211 		}
2212 	}
2213 
2214 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2215 	if (jext == NULL)
2216 		return -ENOMEM;
2217 	jext->dblock = dblock;
2218 	jext->lblock = lblock;
2219 	jext->blocks = blocks;
2220 	list_add_tail(&jext->list, &jd->extent_list);
2221 	jd->nr_extents++;
2222 	return 0;
2223 }
2224 
2225 /**
2226  * gfs2_map_journal_extents - Cache journal bmap info
2227  * @sdp: The super block
2228  * @jd: The journal to map
2229  *
2230  * Create a reusable "extent" mapping from all logical
2231  * blocks to all physical blocks for the given journal.  This will save
2232  * us time when writing journal blocks.  Most journals will have only one
2233  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2234  * arranges the journal blocks sequentially to maximize performance.
2235  * So the extent would map the first block for the entire file length.
2236  * However, gfs2_jadd can happen while file activity is happening, so
2237  * those journals may not be sequential.  Less likely is the case where
2238  * the users created their own journals by mounting the metafs and
2239  * laying it out.  But it's still possible.  These journals might have
2240  * several extents.
2241  *
2242  * Returns: 0 on success, or error on failure
2243  */
2244 
2245 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2246 {
2247 	u64 lblock = 0;
2248 	u64 lblock_stop;
2249 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2250 	struct buffer_head bh;
2251 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2252 	u64 size;
2253 	int rc;
2254 	ktime_t start, end;
2255 
2256 	start = ktime_get();
2257 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2258 	size = (lblock_stop - lblock) << shift;
2259 	jd->nr_extents = 0;
2260 	WARN_ON(!list_empty(&jd->extent_list));
2261 
2262 	do {
2263 		bh.b_state = 0;
2264 		bh.b_blocknr = 0;
2265 		bh.b_size = size;
2266 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2267 		if (rc || !buffer_mapped(&bh))
2268 			goto fail;
2269 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2270 		if (rc)
2271 			goto fail;
2272 		size -= bh.b_size;
2273 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2274 	} while(size > 0);
2275 
2276 	end = ktime_get();
2277 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2278 		jd->nr_extents, ktime_ms_delta(end, start));
2279 	return 0;
2280 
2281 fail:
2282 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2283 		rc, jd->jd_jid,
2284 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2285 		jd->nr_extents);
2286 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2287 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2288 		bh.b_state, (unsigned long long)bh.b_size);
2289 	gfs2_free_journal_extents(jd);
2290 	return rc;
2291 }
2292 
2293 /**
2294  * gfs2_write_alloc_required - figure out if a write will require an allocation
2295  * @ip: the file being written to
2296  * @offset: the offset to write to
2297  * @len: the number of bytes being written
2298  *
2299  * Returns: 1 if an alloc is required, 0 otherwise
2300  */
2301 
2302 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2303 			      unsigned int len)
2304 {
2305 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2306 	struct buffer_head bh;
2307 	unsigned int shift;
2308 	u64 lblock, lblock_stop, size;
2309 	u64 end_of_file;
2310 
2311 	if (!len)
2312 		return 0;
2313 
2314 	if (gfs2_is_stuffed(ip)) {
2315 		if (offset + len > gfs2_max_stuffed_size(ip))
2316 			return 1;
2317 		return 0;
2318 	}
2319 
2320 	shift = sdp->sd_sb.sb_bsize_shift;
2321 	BUG_ON(gfs2_is_dir(ip));
2322 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2323 	lblock = offset >> shift;
2324 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2325 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2326 		return 1;
2327 
2328 	size = (lblock_stop - lblock) << shift;
2329 	do {
2330 		bh.b_state = 0;
2331 		bh.b_size = size;
2332 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2333 		if (!buffer_mapped(&bh))
2334 			return 1;
2335 		size -= bh.b_size;
2336 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2337 	} while(size > 0);
2338 
2339 	return 0;
2340 }
2341 
2342 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2343 {
2344 	struct gfs2_inode *ip = GFS2_I(inode);
2345 	struct buffer_head *dibh;
2346 	int error;
2347 
2348 	if (offset >= inode->i_size)
2349 		return 0;
2350 	if (offset + length > inode->i_size)
2351 		length = inode->i_size - offset;
2352 
2353 	error = gfs2_meta_inode_buffer(ip, &dibh);
2354 	if (error)
2355 		return error;
2356 	gfs2_trans_add_meta(ip->i_gl, dibh);
2357 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2358 	       length);
2359 	brelse(dibh);
2360 	return 0;
2361 }
2362 
2363 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2364 					 loff_t length)
2365 {
2366 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2367 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2368 	int error;
2369 
2370 	while (length) {
2371 		struct gfs2_trans *tr;
2372 		loff_t chunk;
2373 		unsigned int offs;
2374 
2375 		chunk = length;
2376 		if (chunk > max_chunk)
2377 			chunk = max_chunk;
2378 
2379 		offs = offset & ~PAGE_MASK;
2380 		if (offs && chunk > PAGE_SIZE)
2381 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2382 
2383 		truncate_pagecache_range(inode, offset, chunk);
2384 		offset += chunk;
2385 		length -= chunk;
2386 
2387 		tr = current->journal_info;
2388 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2389 			continue;
2390 
2391 		gfs2_trans_end(sdp);
2392 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2393 		if (error)
2394 			return error;
2395 	}
2396 	return 0;
2397 }
2398 
2399 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2400 {
2401 	struct inode *inode = file_inode(file);
2402 	struct gfs2_inode *ip = GFS2_I(inode);
2403 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2404 	unsigned int blocksize = i_blocksize(inode);
2405 	loff_t start, end;
2406 	int error;
2407 
2408 	if (!gfs2_is_stuffed(ip)) {
2409 		unsigned int start_off, end_len;
2410 
2411 		start_off = offset & (blocksize - 1);
2412 		end_len = (offset + length) & (blocksize - 1);
2413 		if (start_off) {
2414 			unsigned int len = length;
2415 			if (length > blocksize - start_off)
2416 				len = blocksize - start_off;
2417 			error = gfs2_block_zero_range(inode, offset, len);
2418 			if (error)
2419 				goto out;
2420 			if (start_off + length < blocksize)
2421 				end_len = 0;
2422 		}
2423 		if (end_len) {
2424 			error = gfs2_block_zero_range(inode,
2425 				offset + length - end_len, end_len);
2426 			if (error)
2427 				goto out;
2428 		}
2429 	}
2430 
2431 	start = round_down(offset, blocksize);
2432 	end = round_up(offset + length, blocksize) - 1;
2433 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2434 	if (error)
2435 		return error;
2436 
2437 	if (gfs2_is_jdata(ip))
2438 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2439 					 GFS2_JTRUNC_REVOKES);
2440 	else
2441 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2442 	if (error)
2443 		return error;
2444 
2445 	if (gfs2_is_stuffed(ip)) {
2446 		error = stuffed_zero_range(inode, offset, length);
2447 		if (error)
2448 			goto out;
2449 	}
2450 
2451 	if (gfs2_is_jdata(ip)) {
2452 		BUG_ON(!current->journal_info);
2453 		gfs2_journaled_truncate_range(inode, offset, length);
2454 	} else
2455 		truncate_pagecache_range(inode, offset, offset + length - 1);
2456 
2457 	file_update_time(file);
2458 	mark_inode_dirty(inode);
2459 
2460 	if (current->journal_info)
2461 		gfs2_trans_end(sdp);
2462 
2463 	if (!gfs2_is_stuffed(ip))
2464 		error = punch_hole(ip, offset, length);
2465 
2466 out:
2467 	if (current->journal_info)
2468 		gfs2_trans_end(sdp);
2469 	return error;
2470 }
2471 
2472 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode,
2473 		loff_t offset, unsigned int len)
2474 {
2475 	int ret;
2476 
2477 	if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode))))
2478 		return -EIO;
2479 
2480 	if (offset >= wpc->iomap.offset &&
2481 	    offset < wpc->iomap.offset + wpc->iomap.length)
2482 		return 0;
2483 
2484 	memset(&wpc->iomap, 0, sizeof(wpc->iomap));
2485 	ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap);
2486 	return ret;
2487 }
2488 
2489 const struct iomap_writeback_ops gfs2_writeback_ops = {
2490 	.map_blocks		= gfs2_map_blocks,
2491 };
2492