1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/rmap.h> 35 #include <linux/namei.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 #include <linux/workqueue.h> 39 #include <linux/kernel.h> 40 #include <linux/printk.h> 41 #include <linux/slab.h> 42 #include <linux/bitops.h> 43 #include <linux/iomap.h> 44 #include <linux/iversion.h> 45 46 #include "ext4_jbd2.h" 47 #include "xattr.h" 48 #include "acl.h" 49 #include "truncate.h" 50 51 #include <trace/events/ext4.h> 52 53 static void ext4_journalled_zero_new_buffers(handle_t *handle, 54 struct inode *inode, 55 struct folio *folio, 56 unsigned from, unsigned to); 57 58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 59 struct ext4_inode_info *ei) 60 { 61 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 62 __u32 csum; 63 __u16 dummy_csum = 0; 64 int offset = offsetof(struct ext4_inode, i_checksum_lo); 65 unsigned int csum_size = sizeof(dummy_csum); 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 68 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 69 offset += csum_size; 70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 71 EXT4_GOOD_OLD_INODE_SIZE - offset); 72 73 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 74 offset = offsetof(struct ext4_inode, i_checksum_hi); 75 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 76 EXT4_GOOD_OLD_INODE_SIZE, 77 offset - EXT4_GOOD_OLD_INODE_SIZE); 78 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 79 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 80 csum_size); 81 offset += csum_size; 82 } 83 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 84 EXT4_INODE_SIZE(inode->i_sb) - offset); 85 } 86 87 return csum; 88 } 89 90 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 91 struct ext4_inode_info *ei) 92 { 93 __u32 provided, calculated; 94 95 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 96 cpu_to_le32(EXT4_OS_LINUX) || 97 !ext4_has_feature_metadata_csum(inode->i_sb)) 98 return 1; 99 100 provided = le16_to_cpu(raw->i_checksum_lo); 101 calculated = ext4_inode_csum(inode, raw, ei); 102 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 103 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 104 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 105 else 106 calculated &= 0xFFFF; 107 108 return provided == calculated; 109 } 110 111 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 112 struct ext4_inode_info *ei) 113 { 114 __u32 csum; 115 116 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 117 cpu_to_le32(EXT4_OS_LINUX) || 118 !ext4_has_feature_metadata_csum(inode->i_sb)) 119 return; 120 121 csum = ext4_inode_csum(inode, raw, ei); 122 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 123 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 124 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 125 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 126 } 127 128 static inline int ext4_begin_ordered_truncate(struct inode *inode, 129 loff_t new_size) 130 { 131 trace_ext4_begin_ordered_truncate(inode, new_size); 132 /* 133 * If jinode is zero, then we never opened the file for 134 * writing, so there's no need to call 135 * jbd2_journal_begin_ordered_truncate() since there's no 136 * outstanding writes we need to flush. 137 */ 138 if (!EXT4_I(inode)->jinode) 139 return 0; 140 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 141 EXT4_I(inode)->jinode, 142 new_size); 143 } 144 145 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 146 int pextents); 147 148 /* 149 * Test whether an inode is a fast symlink. 150 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 151 */ 152 int ext4_inode_is_fast_symlink(struct inode *inode) 153 { 154 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 155 int ea_blocks = EXT4_I(inode)->i_file_acl ? 156 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 157 158 if (ext4_has_inline_data(inode)) 159 return 0; 160 161 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 162 } 163 return S_ISLNK(inode->i_mode) && inode->i_size && 164 (inode->i_size < EXT4_N_BLOCKS * 4); 165 } 166 167 /* 168 * Called at the last iput() if i_nlink is zero. 169 */ 170 void ext4_evict_inode(struct inode *inode) 171 { 172 handle_t *handle; 173 int err; 174 /* 175 * Credits for final inode cleanup and freeing: 176 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 177 * (xattr block freeing), bitmap, group descriptor (inode freeing) 178 */ 179 int extra_credits = 6; 180 struct ext4_xattr_inode_array *ea_inode_array = NULL; 181 bool freeze_protected = false; 182 183 trace_ext4_evict_inode(inode); 184 185 dax_break_layout_final(inode); 186 187 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 188 ext4_evict_ea_inode(inode); 189 if (inode->i_nlink) { 190 truncate_inode_pages_final(&inode->i_data); 191 192 goto no_delete; 193 } 194 195 if (is_bad_inode(inode)) 196 goto no_delete; 197 dquot_initialize(inode); 198 199 if (ext4_should_order_data(inode)) 200 ext4_begin_ordered_truncate(inode, 0); 201 truncate_inode_pages_final(&inode->i_data); 202 203 /* 204 * For inodes with journalled data, transaction commit could have 205 * dirtied the inode. And for inodes with dioread_nolock, unwritten 206 * extents converting worker could merge extents and also have dirtied 207 * the inode. Flush worker is ignoring it because of I_FREEING flag but 208 * we still need to remove the inode from the writeback lists. 209 */ 210 if (!list_empty_careful(&inode->i_io_list)) 211 inode_io_list_del(inode); 212 213 /* 214 * Protect us against freezing - iput() caller didn't have to have any 215 * protection against it. When we are in a running transaction though, 216 * we are already protected against freezing and we cannot grab further 217 * protection due to lock ordering constraints. 218 */ 219 if (!ext4_journal_current_handle()) { 220 sb_start_intwrite(inode->i_sb); 221 freeze_protected = true; 222 } 223 224 if (!IS_NOQUOTA(inode)) 225 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 226 227 /* 228 * Block bitmap, group descriptor, and inode are accounted in both 229 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 230 */ 231 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 232 ext4_blocks_for_truncate(inode) + extra_credits - 3); 233 if (IS_ERR(handle)) { 234 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 235 /* 236 * If we're going to skip the normal cleanup, we still need to 237 * make sure that the in-core orphan linked list is properly 238 * cleaned up. 239 */ 240 ext4_orphan_del(NULL, inode); 241 if (freeze_protected) 242 sb_end_intwrite(inode->i_sb); 243 goto no_delete; 244 } 245 246 if (IS_SYNC(inode)) 247 ext4_handle_sync(handle); 248 249 /* 250 * Set inode->i_size to 0 before calling ext4_truncate(). We need 251 * special handling of symlinks here because i_size is used to 252 * determine whether ext4_inode_info->i_data contains symlink data or 253 * block mappings. Setting i_size to 0 will remove its fast symlink 254 * status. Erase i_data so that it becomes a valid empty block map. 255 */ 256 if (ext4_inode_is_fast_symlink(inode)) 257 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 258 inode->i_size = 0; 259 err = ext4_mark_inode_dirty(handle, inode); 260 if (err) { 261 ext4_warning(inode->i_sb, 262 "couldn't mark inode dirty (err %d)", err); 263 goto stop_handle; 264 } 265 if (inode->i_blocks) { 266 err = ext4_truncate(inode); 267 if (err) { 268 ext4_error_err(inode->i_sb, -err, 269 "couldn't truncate inode %lu (err %d)", 270 inode->i_ino, err); 271 goto stop_handle; 272 } 273 } 274 275 /* Remove xattr references. */ 276 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 277 extra_credits); 278 if (err) { 279 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 280 stop_handle: 281 ext4_journal_stop(handle); 282 ext4_orphan_del(NULL, inode); 283 if (freeze_protected) 284 sb_end_intwrite(inode->i_sb); 285 ext4_xattr_inode_array_free(ea_inode_array); 286 goto no_delete; 287 } 288 289 /* 290 * Kill off the orphan record which ext4_truncate created. 291 * AKPM: I think this can be inside the above `if'. 292 * Note that ext4_orphan_del() has to be able to cope with the 293 * deletion of a non-existent orphan - this is because we don't 294 * know if ext4_truncate() actually created an orphan record. 295 * (Well, we could do this if we need to, but heck - it works) 296 */ 297 ext4_orphan_del(handle, inode); 298 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 299 300 /* 301 * One subtle ordering requirement: if anything has gone wrong 302 * (transaction abort, IO errors, whatever), then we can still 303 * do these next steps (the fs will already have been marked as 304 * having errors), but we can't free the inode if the mark_dirty 305 * fails. 306 */ 307 if (ext4_mark_inode_dirty(handle, inode)) 308 /* If that failed, just do the required in-core inode clear. */ 309 ext4_clear_inode(inode); 310 else 311 ext4_free_inode(handle, inode); 312 ext4_journal_stop(handle); 313 if (freeze_protected) 314 sb_end_intwrite(inode->i_sb); 315 ext4_xattr_inode_array_free(ea_inode_array); 316 return; 317 no_delete: 318 /* 319 * Check out some where else accidentally dirty the evicting inode, 320 * which may probably cause inode use-after-free issues later. 321 */ 322 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 323 324 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 325 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 326 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 327 } 328 329 #ifdef CONFIG_QUOTA 330 qsize_t *ext4_get_reserved_space(struct inode *inode) 331 { 332 return &EXT4_I(inode)->i_reserved_quota; 333 } 334 #endif 335 336 /* 337 * Called with i_data_sem down, which is important since we can call 338 * ext4_discard_preallocations() from here. 339 */ 340 void ext4_da_update_reserve_space(struct inode *inode, 341 int used, int quota_claim) 342 { 343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 344 struct ext4_inode_info *ei = EXT4_I(inode); 345 346 spin_lock(&ei->i_block_reservation_lock); 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 348 if (unlikely(used > ei->i_reserved_data_blocks)) { 349 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 350 "with only %d reserved data blocks", 351 __func__, inode->i_ino, used, 352 ei->i_reserved_data_blocks); 353 WARN_ON(1); 354 used = ei->i_reserved_data_blocks; 355 } 356 357 /* Update per-inode reservations */ 358 ei->i_reserved_data_blocks -= used; 359 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 360 361 spin_unlock(&ei->i_block_reservation_lock); 362 363 /* Update quota subsystem for data blocks */ 364 if (quota_claim) 365 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 366 else { 367 /* 368 * We did fallocate with an offset that is already delayed 369 * allocated. So on delayed allocated writeback we should 370 * not re-claim the quota for fallocated blocks. 371 */ 372 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 373 } 374 375 /* 376 * If we have done all the pending block allocations and if 377 * there aren't any writers on the inode, we can discard the 378 * inode's preallocations. 379 */ 380 if ((ei->i_reserved_data_blocks == 0) && 381 !inode_is_open_for_write(inode)) 382 ext4_discard_preallocations(inode); 383 } 384 385 static int __check_block_validity(struct inode *inode, const char *func, 386 unsigned int line, 387 struct ext4_map_blocks *map) 388 { 389 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 390 391 if (journal && inode == journal->j_inode) 392 return 0; 393 394 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 395 ext4_error_inode(inode, func, line, map->m_pblk, 396 "lblock %lu mapped to illegal pblock %llu " 397 "(length %d)", (unsigned long) map->m_lblk, 398 map->m_pblk, map->m_len); 399 return -EFSCORRUPTED; 400 } 401 return 0; 402 } 403 404 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 405 ext4_lblk_t len) 406 { 407 int ret; 408 409 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 410 return fscrypt_zeroout_range(inode, lblk, pblk, len); 411 412 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 413 if (ret > 0) 414 ret = 0; 415 416 return ret; 417 } 418 419 #define check_block_validity(inode, map) \ 420 __check_block_validity((inode), __func__, __LINE__, (map)) 421 422 #ifdef ES_AGGRESSIVE_TEST 423 static void ext4_map_blocks_es_recheck(handle_t *handle, 424 struct inode *inode, 425 struct ext4_map_blocks *es_map, 426 struct ext4_map_blocks *map, 427 int flags) 428 { 429 int retval; 430 431 map->m_flags = 0; 432 /* 433 * There is a race window that the result is not the same. 434 * e.g. xfstests #223 when dioread_nolock enables. The reason 435 * is that we lookup a block mapping in extent status tree with 436 * out taking i_data_sem. So at the time the unwritten extent 437 * could be converted. 438 */ 439 down_read(&EXT4_I(inode)->i_data_sem); 440 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 441 retval = ext4_ext_map_blocks(handle, inode, map, 0); 442 } else { 443 retval = ext4_ind_map_blocks(handle, inode, map, 0); 444 } 445 up_read((&EXT4_I(inode)->i_data_sem)); 446 447 /* 448 * We don't check m_len because extent will be collpased in status 449 * tree. So the m_len might not equal. 450 */ 451 if (es_map->m_lblk != map->m_lblk || 452 es_map->m_flags != map->m_flags || 453 es_map->m_pblk != map->m_pblk) { 454 printk("ES cache assertion failed for inode: %lu " 455 "es_cached ex [%d/%d/%llu/%x] != " 456 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 457 inode->i_ino, es_map->m_lblk, es_map->m_len, 458 es_map->m_pblk, es_map->m_flags, map->m_lblk, 459 map->m_len, map->m_pblk, map->m_flags, 460 retval, flags); 461 } 462 } 463 #endif /* ES_AGGRESSIVE_TEST */ 464 465 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode, 466 struct ext4_map_blocks *map) 467 { 468 unsigned int status; 469 int retval; 470 471 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 472 retval = ext4_ext_map_blocks(handle, inode, map, 0); 473 else 474 retval = ext4_ind_map_blocks(handle, inode, map, 0); 475 476 if (retval <= 0) 477 return retval; 478 479 if (unlikely(retval != map->m_len)) { 480 ext4_warning(inode->i_sb, 481 "ES len assertion failed for inode " 482 "%lu: retval %d != map->m_len %d", 483 inode->i_ino, retval, map->m_len); 484 WARN_ON(1); 485 } 486 487 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 488 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 489 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 490 map->m_pblk, status, false); 491 return retval; 492 } 493 494 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode, 495 struct ext4_map_blocks *map, int flags) 496 { 497 struct extent_status es; 498 unsigned int status; 499 int err, retval = 0; 500 501 /* 502 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE 503 * indicates that the blocks and quotas has already been 504 * checked when the data was copied into the page cache. 505 */ 506 if (map->m_flags & EXT4_MAP_DELAYED) 507 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 508 509 /* 510 * Here we clear m_flags because after allocating an new extent, 511 * it will be set again. 512 */ 513 map->m_flags &= ~EXT4_MAP_FLAGS; 514 515 /* 516 * We need to check for EXT4 here because migrate could have 517 * changed the inode type in between. 518 */ 519 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 520 retval = ext4_ext_map_blocks(handle, inode, map, flags); 521 } else { 522 retval = ext4_ind_map_blocks(handle, inode, map, flags); 523 524 /* 525 * We allocated new blocks which will result in i_data's 526 * format changing. Force the migrate to fail by clearing 527 * migrate flags. 528 */ 529 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) 530 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 531 } 532 if (retval <= 0) 533 return retval; 534 535 if (unlikely(retval != map->m_len)) { 536 ext4_warning(inode->i_sb, 537 "ES len assertion failed for inode %lu: " 538 "retval %d != map->m_len %d", 539 inode->i_ino, retval, map->m_len); 540 WARN_ON(1); 541 } 542 543 /* 544 * We have to zeroout blocks before inserting them into extent 545 * status tree. Otherwise someone could look them up there and 546 * use them before they are really zeroed. We also have to 547 * unmap metadata before zeroing as otherwise writeback can 548 * overwrite zeros with stale data from block device. 549 */ 550 if (flags & EXT4_GET_BLOCKS_ZERO && 551 map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) { 552 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk, 553 map->m_len); 554 if (err) 555 return err; 556 } 557 558 /* 559 * If the extent has been zeroed out, we don't need to update 560 * extent status tree. 561 */ 562 if (flags & EXT4_GET_BLOCKS_PRE_IO && 563 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 564 if (ext4_es_is_written(&es)) 565 return retval; 566 } 567 568 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 569 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 570 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk, 571 status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE); 572 573 return retval; 574 } 575 576 /* 577 * The ext4_map_blocks() function tries to look up the requested blocks, 578 * and returns if the blocks are already mapped. 579 * 580 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 581 * and store the allocated blocks in the result buffer head and mark it 582 * mapped. 583 * 584 * If file type is extents based, it will call ext4_ext_map_blocks(), 585 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 586 * based files 587 * 588 * On success, it returns the number of blocks being mapped or allocated. 589 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are 590 * pre-allocated and unwritten, the resulting @map is marked as unwritten. 591 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped. 592 * 593 * It returns 0 if plain look up failed (blocks have not been allocated), in 594 * that case, @map is returned as unmapped but we still do fill map->m_len to 595 * indicate the length of a hole starting at map->m_lblk. 596 * 597 * It returns the error in case of allocation failure. 598 */ 599 int ext4_map_blocks(handle_t *handle, struct inode *inode, 600 struct ext4_map_blocks *map, int flags) 601 { 602 struct extent_status es; 603 int retval; 604 int ret = 0; 605 #ifdef ES_AGGRESSIVE_TEST 606 struct ext4_map_blocks orig_map; 607 608 memcpy(&orig_map, map, sizeof(*map)); 609 #endif 610 611 map->m_flags = 0; 612 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 613 flags, map->m_len, (unsigned long) map->m_lblk); 614 615 /* 616 * ext4_map_blocks returns an int, and m_len is an unsigned int 617 */ 618 if (unlikely(map->m_len > INT_MAX)) 619 map->m_len = INT_MAX; 620 621 /* We can handle the block number less than EXT_MAX_BLOCKS */ 622 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 623 return -EFSCORRUPTED; 624 625 /* Lookup extent status tree firstly */ 626 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 627 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 628 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 629 map->m_pblk = ext4_es_pblock(&es) + 630 map->m_lblk - es.es_lblk; 631 map->m_flags |= ext4_es_is_written(&es) ? 632 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 633 retval = es.es_len - (map->m_lblk - es.es_lblk); 634 if (retval > map->m_len) 635 retval = map->m_len; 636 map->m_len = retval; 637 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 638 map->m_pblk = 0; 639 map->m_flags |= ext4_es_is_delayed(&es) ? 640 EXT4_MAP_DELAYED : 0; 641 retval = es.es_len - (map->m_lblk - es.es_lblk); 642 if (retval > map->m_len) 643 retval = map->m_len; 644 map->m_len = retval; 645 retval = 0; 646 } else { 647 BUG(); 648 } 649 650 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 651 return retval; 652 #ifdef ES_AGGRESSIVE_TEST 653 ext4_map_blocks_es_recheck(handle, inode, map, 654 &orig_map, flags); 655 #endif 656 goto found; 657 } 658 /* 659 * In the query cache no-wait mode, nothing we can do more if we 660 * cannot find extent in the cache. 661 */ 662 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 663 return 0; 664 665 /* 666 * Try to see if we can get the block without requesting a new 667 * file system block. 668 */ 669 down_read(&EXT4_I(inode)->i_data_sem); 670 retval = ext4_map_query_blocks(handle, inode, map); 671 up_read((&EXT4_I(inode)->i_data_sem)); 672 673 found: 674 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 675 ret = check_block_validity(inode, map); 676 if (ret != 0) 677 return ret; 678 } 679 680 /* If it is only a block(s) look up */ 681 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 682 return retval; 683 684 /* 685 * Returns if the blocks have already allocated 686 * 687 * Note that if blocks have been preallocated 688 * ext4_ext_map_blocks() returns with buffer head unmapped 689 */ 690 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 691 /* 692 * If we need to convert extent to unwritten 693 * we continue and do the actual work in 694 * ext4_ext_map_blocks() 695 */ 696 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 697 return retval; 698 699 /* 700 * New blocks allocate and/or writing to unwritten extent 701 * will possibly result in updating i_data, so we take 702 * the write lock of i_data_sem, and call get_block() 703 * with create == 1 flag. 704 */ 705 down_write(&EXT4_I(inode)->i_data_sem); 706 retval = ext4_map_create_blocks(handle, inode, map, flags); 707 up_write((&EXT4_I(inode)->i_data_sem)); 708 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 709 ret = check_block_validity(inode, map); 710 if (ret != 0) 711 return ret; 712 713 /* 714 * Inodes with freshly allocated blocks where contents will be 715 * visible after transaction commit must be on transaction's 716 * ordered data list. 717 */ 718 if (map->m_flags & EXT4_MAP_NEW && 719 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 720 !(flags & EXT4_GET_BLOCKS_ZERO) && 721 !ext4_is_quota_file(inode) && 722 ext4_should_order_data(inode)) { 723 loff_t start_byte = 724 (loff_t)map->m_lblk << inode->i_blkbits; 725 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 726 727 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 728 ret = ext4_jbd2_inode_add_wait(handle, inode, 729 start_byte, length); 730 else 731 ret = ext4_jbd2_inode_add_write(handle, inode, 732 start_byte, length); 733 if (ret) 734 return ret; 735 } 736 } 737 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 738 map->m_flags & EXT4_MAP_MAPPED)) 739 ext4_fc_track_range(handle, inode, map->m_lblk, 740 map->m_lblk + map->m_len - 1); 741 if (retval < 0) 742 ext_debug(inode, "failed with err %d\n", retval); 743 return retval; 744 } 745 746 /* 747 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 748 * we have to be careful as someone else may be manipulating b_state as well. 749 */ 750 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 751 { 752 unsigned long old_state; 753 unsigned long new_state; 754 755 flags &= EXT4_MAP_FLAGS; 756 757 /* Dummy buffer_head? Set non-atomically. */ 758 if (!bh->b_folio) { 759 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 760 return; 761 } 762 /* 763 * Someone else may be modifying b_state. Be careful! This is ugly but 764 * once we get rid of using bh as a container for mapping information 765 * to pass to / from get_block functions, this can go away. 766 */ 767 old_state = READ_ONCE(bh->b_state); 768 do { 769 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 770 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 771 } 772 773 static int _ext4_get_block(struct inode *inode, sector_t iblock, 774 struct buffer_head *bh, int flags) 775 { 776 struct ext4_map_blocks map; 777 int ret = 0; 778 779 if (ext4_has_inline_data(inode)) 780 return -ERANGE; 781 782 map.m_lblk = iblock; 783 map.m_len = bh->b_size >> inode->i_blkbits; 784 785 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 786 flags); 787 if (ret > 0) { 788 map_bh(bh, inode->i_sb, map.m_pblk); 789 ext4_update_bh_state(bh, map.m_flags); 790 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 791 ret = 0; 792 } else if (ret == 0) { 793 /* hole case, need to fill in bh->b_size */ 794 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 795 } 796 return ret; 797 } 798 799 int ext4_get_block(struct inode *inode, sector_t iblock, 800 struct buffer_head *bh, int create) 801 { 802 return _ext4_get_block(inode, iblock, bh, 803 create ? EXT4_GET_BLOCKS_CREATE : 0); 804 } 805 806 /* 807 * Get block function used when preparing for buffered write if we require 808 * creating an unwritten extent if blocks haven't been allocated. The extent 809 * will be converted to written after the IO is complete. 810 */ 811 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 812 struct buffer_head *bh_result, int create) 813 { 814 int ret = 0; 815 816 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 817 inode->i_ino, create); 818 ret = _ext4_get_block(inode, iblock, bh_result, 819 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 820 821 /* 822 * If the buffer is marked unwritten, mark it as new to make sure it is 823 * zeroed out correctly in case of partial writes. Otherwise, there is 824 * a chance of stale data getting exposed. 825 */ 826 if (ret == 0 && buffer_unwritten(bh_result)) 827 set_buffer_new(bh_result); 828 829 return ret; 830 } 831 832 /* Maximum number of blocks we map for direct IO at once. */ 833 #define DIO_MAX_BLOCKS 4096 834 835 /* 836 * `handle' can be NULL if create is zero 837 */ 838 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 839 ext4_lblk_t block, int map_flags) 840 { 841 struct ext4_map_blocks map; 842 struct buffer_head *bh; 843 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 844 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 845 int err; 846 847 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 848 || handle != NULL || create == 0); 849 ASSERT(create == 0 || !nowait); 850 851 map.m_lblk = block; 852 map.m_len = 1; 853 err = ext4_map_blocks(handle, inode, &map, map_flags); 854 855 if (err == 0) 856 return create ? ERR_PTR(-ENOSPC) : NULL; 857 if (err < 0) 858 return ERR_PTR(err); 859 860 if (nowait) 861 return sb_find_get_block(inode->i_sb, map.m_pblk); 862 863 /* 864 * Since bh could introduce extra ref count such as referred by 865 * journal_head etc. Try to avoid using __GFP_MOVABLE here 866 * as it may fail the migration when journal_head remains. 867 */ 868 bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk, 869 inode->i_sb->s_blocksize); 870 871 if (unlikely(!bh)) 872 return ERR_PTR(-ENOMEM); 873 if (map.m_flags & EXT4_MAP_NEW) { 874 ASSERT(create != 0); 875 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 876 || (handle != NULL)); 877 878 /* 879 * Now that we do not always journal data, we should 880 * keep in mind whether this should always journal the 881 * new buffer as metadata. For now, regular file 882 * writes use ext4_get_block instead, so it's not a 883 * problem. 884 */ 885 lock_buffer(bh); 886 BUFFER_TRACE(bh, "call get_create_access"); 887 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 888 EXT4_JTR_NONE); 889 if (unlikely(err)) { 890 unlock_buffer(bh); 891 goto errout; 892 } 893 if (!buffer_uptodate(bh)) { 894 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 895 set_buffer_uptodate(bh); 896 } 897 unlock_buffer(bh); 898 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 899 err = ext4_handle_dirty_metadata(handle, inode, bh); 900 if (unlikely(err)) 901 goto errout; 902 } else 903 BUFFER_TRACE(bh, "not a new buffer"); 904 return bh; 905 errout: 906 brelse(bh); 907 return ERR_PTR(err); 908 } 909 910 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 911 ext4_lblk_t block, int map_flags) 912 { 913 struct buffer_head *bh; 914 int ret; 915 916 bh = ext4_getblk(handle, inode, block, map_flags); 917 if (IS_ERR(bh)) 918 return bh; 919 if (!bh || ext4_buffer_uptodate(bh)) 920 return bh; 921 922 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 923 if (ret) { 924 put_bh(bh); 925 return ERR_PTR(ret); 926 } 927 return bh; 928 } 929 930 /* Read a contiguous batch of blocks. */ 931 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 932 bool wait, struct buffer_head **bhs) 933 { 934 int i, err; 935 936 for (i = 0; i < bh_count; i++) { 937 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 938 if (IS_ERR(bhs[i])) { 939 err = PTR_ERR(bhs[i]); 940 bh_count = i; 941 goto out_brelse; 942 } 943 } 944 945 for (i = 0; i < bh_count; i++) 946 /* Note that NULL bhs[i] is valid because of holes. */ 947 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 948 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 949 950 if (!wait) 951 return 0; 952 953 for (i = 0; i < bh_count; i++) 954 if (bhs[i]) 955 wait_on_buffer(bhs[i]); 956 957 for (i = 0; i < bh_count; i++) { 958 if (bhs[i] && !buffer_uptodate(bhs[i])) { 959 err = -EIO; 960 goto out_brelse; 961 } 962 } 963 return 0; 964 965 out_brelse: 966 for (i = 0; i < bh_count; i++) { 967 brelse(bhs[i]); 968 bhs[i] = NULL; 969 } 970 return err; 971 } 972 973 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 974 struct buffer_head *head, 975 unsigned from, 976 unsigned to, 977 int *partial, 978 int (*fn)(handle_t *handle, struct inode *inode, 979 struct buffer_head *bh)) 980 { 981 struct buffer_head *bh; 982 unsigned block_start, block_end; 983 unsigned blocksize = head->b_size; 984 int err, ret = 0; 985 struct buffer_head *next; 986 987 for (bh = head, block_start = 0; 988 ret == 0 && (bh != head || !block_start); 989 block_start = block_end, bh = next) { 990 next = bh->b_this_page; 991 block_end = block_start + blocksize; 992 if (block_end <= from || block_start >= to) { 993 if (partial && !buffer_uptodate(bh)) 994 *partial = 1; 995 continue; 996 } 997 err = (*fn)(handle, inode, bh); 998 if (!ret) 999 ret = err; 1000 } 1001 return ret; 1002 } 1003 1004 /* 1005 * Helper for handling dirtying of journalled data. We also mark the folio as 1006 * dirty so that writeback code knows about this page (and inode) contains 1007 * dirty data. ext4_writepages() then commits appropriate transaction to 1008 * make data stable. 1009 */ 1010 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 1011 { 1012 folio_mark_dirty(bh->b_folio); 1013 return ext4_handle_dirty_metadata(handle, NULL, bh); 1014 } 1015 1016 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1017 struct buffer_head *bh) 1018 { 1019 if (!buffer_mapped(bh) || buffer_freed(bh)) 1020 return 0; 1021 BUFFER_TRACE(bh, "get write access"); 1022 return ext4_journal_get_write_access(handle, inode->i_sb, bh, 1023 EXT4_JTR_NONE); 1024 } 1025 1026 int ext4_block_write_begin(handle_t *handle, struct folio *folio, 1027 loff_t pos, unsigned len, 1028 get_block_t *get_block) 1029 { 1030 unsigned from = pos & (PAGE_SIZE - 1); 1031 unsigned to = from + len; 1032 struct inode *inode = folio->mapping->host; 1033 unsigned block_start, block_end; 1034 sector_t block; 1035 int err = 0; 1036 unsigned blocksize = inode->i_sb->s_blocksize; 1037 unsigned bbits; 1038 struct buffer_head *bh, *head, *wait[2]; 1039 int nr_wait = 0; 1040 int i; 1041 bool should_journal_data = ext4_should_journal_data(inode); 1042 1043 BUG_ON(!folio_test_locked(folio)); 1044 BUG_ON(from > PAGE_SIZE); 1045 BUG_ON(to > PAGE_SIZE); 1046 BUG_ON(from > to); 1047 1048 head = folio_buffers(folio); 1049 if (!head) 1050 head = create_empty_buffers(folio, blocksize, 0); 1051 bbits = ilog2(blocksize); 1052 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1053 1054 for (bh = head, block_start = 0; bh != head || !block_start; 1055 block++, block_start = block_end, bh = bh->b_this_page) { 1056 block_end = block_start + blocksize; 1057 if (block_end <= from || block_start >= to) { 1058 if (folio_test_uptodate(folio)) { 1059 set_buffer_uptodate(bh); 1060 } 1061 continue; 1062 } 1063 if (buffer_new(bh)) 1064 clear_buffer_new(bh); 1065 if (!buffer_mapped(bh)) { 1066 WARN_ON(bh->b_size != blocksize); 1067 err = get_block(inode, block, bh, 1); 1068 if (err) 1069 break; 1070 if (buffer_new(bh)) { 1071 /* 1072 * We may be zeroing partial buffers or all new 1073 * buffers in case of failure. Prepare JBD2 for 1074 * that. 1075 */ 1076 if (should_journal_data) 1077 do_journal_get_write_access(handle, 1078 inode, bh); 1079 if (folio_test_uptodate(folio)) { 1080 /* 1081 * Unlike __block_write_begin() we leave 1082 * dirtying of new uptodate buffers to 1083 * ->write_end() time or 1084 * folio_zero_new_buffers(). 1085 */ 1086 set_buffer_uptodate(bh); 1087 continue; 1088 } 1089 if (block_end > to || block_start < from) 1090 folio_zero_segments(folio, to, 1091 block_end, 1092 block_start, from); 1093 continue; 1094 } 1095 } 1096 if (folio_test_uptodate(folio)) { 1097 set_buffer_uptodate(bh); 1098 continue; 1099 } 1100 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1101 !buffer_unwritten(bh) && 1102 (block_start < from || block_end > to)) { 1103 ext4_read_bh_lock(bh, 0, false); 1104 wait[nr_wait++] = bh; 1105 } 1106 } 1107 /* 1108 * If we issued read requests, let them complete. 1109 */ 1110 for (i = 0; i < nr_wait; i++) { 1111 wait_on_buffer(wait[i]); 1112 if (!buffer_uptodate(wait[i])) 1113 err = -EIO; 1114 } 1115 if (unlikely(err)) { 1116 if (should_journal_data) 1117 ext4_journalled_zero_new_buffers(handle, inode, folio, 1118 from, to); 1119 else 1120 folio_zero_new_buffers(folio, from, to); 1121 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1122 for (i = 0; i < nr_wait; i++) { 1123 int err2; 1124 1125 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1126 blocksize, bh_offset(wait[i])); 1127 if (err2) { 1128 clear_buffer_uptodate(wait[i]); 1129 err = err2; 1130 } 1131 } 1132 } 1133 1134 return err; 1135 } 1136 1137 /* 1138 * To preserve ordering, it is essential that the hole instantiation and 1139 * the data write be encapsulated in a single transaction. We cannot 1140 * close off a transaction and start a new one between the ext4_get_block() 1141 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1142 * ext4_write_begin() is the right place. 1143 */ 1144 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1145 loff_t pos, unsigned len, 1146 struct folio **foliop, void **fsdata) 1147 { 1148 struct inode *inode = mapping->host; 1149 int ret, needed_blocks; 1150 handle_t *handle; 1151 int retries = 0; 1152 struct folio *folio; 1153 pgoff_t index; 1154 unsigned from, to; 1155 1156 ret = ext4_emergency_state(inode->i_sb); 1157 if (unlikely(ret)) 1158 return ret; 1159 1160 trace_ext4_write_begin(inode, pos, len); 1161 /* 1162 * Reserve one block more for addition to orphan list in case 1163 * we allocate blocks but write fails for some reason 1164 */ 1165 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1166 index = pos >> PAGE_SHIFT; 1167 from = pos & (PAGE_SIZE - 1); 1168 to = from + len; 1169 1170 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1171 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1172 foliop); 1173 if (ret < 0) 1174 return ret; 1175 if (ret == 1) 1176 return 0; 1177 } 1178 1179 /* 1180 * __filemap_get_folio() can take a long time if the 1181 * system is thrashing due to memory pressure, or if the folio 1182 * is being written back. So grab it first before we start 1183 * the transaction handle. This also allows us to allocate 1184 * the folio (if needed) without using GFP_NOFS. 1185 */ 1186 retry_grab: 1187 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1188 mapping_gfp_mask(mapping)); 1189 if (IS_ERR(folio)) 1190 return PTR_ERR(folio); 1191 /* 1192 * The same as page allocation, we prealloc buffer heads before 1193 * starting the handle. 1194 */ 1195 if (!folio_buffers(folio)) 1196 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0); 1197 1198 folio_unlock(folio); 1199 1200 retry_journal: 1201 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1202 if (IS_ERR(handle)) { 1203 folio_put(folio); 1204 return PTR_ERR(handle); 1205 } 1206 1207 folio_lock(folio); 1208 if (folio->mapping != mapping) { 1209 /* The folio got truncated from under us */ 1210 folio_unlock(folio); 1211 folio_put(folio); 1212 ext4_journal_stop(handle); 1213 goto retry_grab; 1214 } 1215 /* In case writeback began while the folio was unlocked */ 1216 folio_wait_stable(folio); 1217 1218 if (ext4_should_dioread_nolock(inode)) 1219 ret = ext4_block_write_begin(handle, folio, pos, len, 1220 ext4_get_block_unwritten); 1221 else 1222 ret = ext4_block_write_begin(handle, folio, pos, len, 1223 ext4_get_block); 1224 if (!ret && ext4_should_journal_data(inode)) { 1225 ret = ext4_walk_page_buffers(handle, inode, 1226 folio_buffers(folio), from, to, 1227 NULL, do_journal_get_write_access); 1228 } 1229 1230 if (ret) { 1231 bool extended = (pos + len > inode->i_size) && 1232 !ext4_verity_in_progress(inode); 1233 1234 folio_unlock(folio); 1235 /* 1236 * ext4_block_write_begin may have instantiated a few blocks 1237 * outside i_size. Trim these off again. Don't need 1238 * i_size_read because we hold i_rwsem. 1239 * 1240 * Add inode to orphan list in case we crash before 1241 * truncate finishes 1242 */ 1243 if (extended && ext4_can_truncate(inode)) 1244 ext4_orphan_add(handle, inode); 1245 1246 ext4_journal_stop(handle); 1247 if (extended) { 1248 ext4_truncate_failed_write(inode); 1249 /* 1250 * If truncate failed early the inode might 1251 * still be on the orphan list; we need to 1252 * make sure the inode is removed from the 1253 * orphan list in that case. 1254 */ 1255 if (inode->i_nlink) 1256 ext4_orphan_del(NULL, inode); 1257 } 1258 1259 if (ret == -ENOSPC && 1260 ext4_should_retry_alloc(inode->i_sb, &retries)) 1261 goto retry_journal; 1262 folio_put(folio); 1263 return ret; 1264 } 1265 *foliop = folio; 1266 return ret; 1267 } 1268 1269 /* For write_end() in data=journal mode */ 1270 static int write_end_fn(handle_t *handle, struct inode *inode, 1271 struct buffer_head *bh) 1272 { 1273 int ret; 1274 if (!buffer_mapped(bh) || buffer_freed(bh)) 1275 return 0; 1276 set_buffer_uptodate(bh); 1277 ret = ext4_dirty_journalled_data(handle, bh); 1278 clear_buffer_meta(bh); 1279 clear_buffer_prio(bh); 1280 return ret; 1281 } 1282 1283 /* 1284 * We need to pick up the new inode size which generic_commit_write gave us 1285 * `file' can be NULL - eg, when called from page_symlink(). 1286 * 1287 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata 1288 * buffers are managed internally. 1289 */ 1290 static int ext4_write_end(struct file *file, 1291 struct address_space *mapping, 1292 loff_t pos, unsigned len, unsigned copied, 1293 struct folio *folio, void *fsdata) 1294 { 1295 handle_t *handle = ext4_journal_current_handle(); 1296 struct inode *inode = mapping->host; 1297 loff_t old_size = inode->i_size; 1298 int ret = 0, ret2; 1299 int i_size_changed = 0; 1300 bool verity = ext4_verity_in_progress(inode); 1301 1302 trace_ext4_write_end(inode, pos, len, copied); 1303 1304 if (ext4_has_inline_data(inode) && 1305 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1306 return ext4_write_inline_data_end(inode, pos, len, copied, 1307 folio); 1308 1309 copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata); 1310 /* 1311 * it's important to update i_size while still holding folio lock: 1312 * page writeout could otherwise come in and zero beyond i_size. 1313 * 1314 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1315 * blocks are being written past EOF, so skip the i_size update. 1316 */ 1317 if (!verity) 1318 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1319 folio_unlock(folio); 1320 folio_put(folio); 1321 1322 if (old_size < pos && !verity) { 1323 pagecache_isize_extended(inode, old_size, pos); 1324 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1325 } 1326 /* 1327 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1328 * makes the holding time of folio lock longer. Second, it forces lock 1329 * ordering of folio lock and transaction start for journaling 1330 * filesystems. 1331 */ 1332 if (i_size_changed) 1333 ret = ext4_mark_inode_dirty(handle, inode); 1334 1335 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1336 /* if we have allocated more blocks and copied 1337 * less. We will have blocks allocated outside 1338 * inode->i_size. So truncate them 1339 */ 1340 ext4_orphan_add(handle, inode); 1341 1342 ret2 = ext4_journal_stop(handle); 1343 if (!ret) 1344 ret = ret2; 1345 1346 if (pos + len > inode->i_size && !verity) { 1347 ext4_truncate_failed_write(inode); 1348 /* 1349 * If truncate failed early the inode might still be 1350 * on the orphan list; we need to make sure the inode 1351 * is removed from the orphan list in that case. 1352 */ 1353 if (inode->i_nlink) 1354 ext4_orphan_del(NULL, inode); 1355 } 1356 1357 return ret ? ret : copied; 1358 } 1359 1360 /* 1361 * This is a private version of folio_zero_new_buffers() which doesn't 1362 * set the buffer to be dirty, since in data=journalled mode we need 1363 * to call ext4_dirty_journalled_data() instead. 1364 */ 1365 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1366 struct inode *inode, 1367 struct folio *folio, 1368 unsigned from, unsigned to) 1369 { 1370 unsigned int block_start = 0, block_end; 1371 struct buffer_head *head, *bh; 1372 1373 bh = head = folio_buffers(folio); 1374 do { 1375 block_end = block_start + bh->b_size; 1376 if (buffer_new(bh)) { 1377 if (block_end > from && block_start < to) { 1378 if (!folio_test_uptodate(folio)) { 1379 unsigned start, size; 1380 1381 start = max(from, block_start); 1382 size = min(to, block_end) - start; 1383 1384 folio_zero_range(folio, start, size); 1385 } 1386 clear_buffer_new(bh); 1387 write_end_fn(handle, inode, bh); 1388 } 1389 } 1390 block_start = block_end; 1391 bh = bh->b_this_page; 1392 } while (bh != head); 1393 } 1394 1395 static int ext4_journalled_write_end(struct file *file, 1396 struct address_space *mapping, 1397 loff_t pos, unsigned len, unsigned copied, 1398 struct folio *folio, void *fsdata) 1399 { 1400 handle_t *handle = ext4_journal_current_handle(); 1401 struct inode *inode = mapping->host; 1402 loff_t old_size = inode->i_size; 1403 int ret = 0, ret2; 1404 int partial = 0; 1405 unsigned from, to; 1406 int size_changed = 0; 1407 bool verity = ext4_verity_in_progress(inode); 1408 1409 trace_ext4_journalled_write_end(inode, pos, len, copied); 1410 from = pos & (PAGE_SIZE - 1); 1411 to = from + len; 1412 1413 BUG_ON(!ext4_handle_valid(handle)); 1414 1415 if (ext4_has_inline_data(inode)) 1416 return ext4_write_inline_data_end(inode, pos, len, copied, 1417 folio); 1418 1419 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1420 copied = 0; 1421 ext4_journalled_zero_new_buffers(handle, inode, folio, 1422 from, to); 1423 } else { 1424 if (unlikely(copied < len)) 1425 ext4_journalled_zero_new_buffers(handle, inode, folio, 1426 from + copied, to); 1427 ret = ext4_walk_page_buffers(handle, inode, 1428 folio_buffers(folio), 1429 from, from + copied, &partial, 1430 write_end_fn); 1431 if (!partial) 1432 folio_mark_uptodate(folio); 1433 } 1434 if (!verity) 1435 size_changed = ext4_update_inode_size(inode, pos + copied); 1436 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1437 folio_unlock(folio); 1438 folio_put(folio); 1439 1440 if (old_size < pos && !verity) { 1441 pagecache_isize_extended(inode, old_size, pos); 1442 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1443 } 1444 1445 if (size_changed) { 1446 ret2 = ext4_mark_inode_dirty(handle, inode); 1447 if (!ret) 1448 ret = ret2; 1449 } 1450 1451 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1452 /* if we have allocated more blocks and copied 1453 * less. We will have blocks allocated outside 1454 * inode->i_size. So truncate them 1455 */ 1456 ext4_orphan_add(handle, inode); 1457 1458 ret2 = ext4_journal_stop(handle); 1459 if (!ret) 1460 ret = ret2; 1461 if (pos + len > inode->i_size && !verity) { 1462 ext4_truncate_failed_write(inode); 1463 /* 1464 * If truncate failed early the inode might still be 1465 * on the orphan list; we need to make sure the inode 1466 * is removed from the orphan list in that case. 1467 */ 1468 if (inode->i_nlink) 1469 ext4_orphan_del(NULL, inode); 1470 } 1471 1472 return ret ? ret : copied; 1473 } 1474 1475 /* 1476 * Reserve space for 'nr_resv' clusters 1477 */ 1478 static int ext4_da_reserve_space(struct inode *inode, int nr_resv) 1479 { 1480 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1481 struct ext4_inode_info *ei = EXT4_I(inode); 1482 int ret; 1483 1484 /* 1485 * We will charge metadata quota at writeout time; this saves 1486 * us from metadata over-estimation, though we may go over by 1487 * a small amount in the end. Here we just reserve for data. 1488 */ 1489 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv)); 1490 if (ret) 1491 return ret; 1492 1493 spin_lock(&ei->i_block_reservation_lock); 1494 if (ext4_claim_free_clusters(sbi, nr_resv, 0)) { 1495 spin_unlock(&ei->i_block_reservation_lock); 1496 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv)); 1497 return -ENOSPC; 1498 } 1499 ei->i_reserved_data_blocks += nr_resv; 1500 trace_ext4_da_reserve_space(inode, nr_resv); 1501 spin_unlock(&ei->i_block_reservation_lock); 1502 1503 return 0; /* success */ 1504 } 1505 1506 void ext4_da_release_space(struct inode *inode, int to_free) 1507 { 1508 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1509 struct ext4_inode_info *ei = EXT4_I(inode); 1510 1511 if (!to_free) 1512 return; /* Nothing to release, exit */ 1513 1514 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1515 1516 trace_ext4_da_release_space(inode, to_free); 1517 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1518 /* 1519 * if there aren't enough reserved blocks, then the 1520 * counter is messed up somewhere. Since this 1521 * function is called from invalidate page, it's 1522 * harmless to return without any action. 1523 */ 1524 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1525 "ino %lu, to_free %d with only %d reserved " 1526 "data blocks", inode->i_ino, to_free, 1527 ei->i_reserved_data_blocks); 1528 WARN_ON(1); 1529 to_free = ei->i_reserved_data_blocks; 1530 } 1531 ei->i_reserved_data_blocks -= to_free; 1532 1533 /* update fs dirty data blocks counter */ 1534 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1535 1536 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1537 1538 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1539 } 1540 1541 /* 1542 * Delayed allocation stuff 1543 */ 1544 1545 struct mpage_da_data { 1546 /* These are input fields for ext4_do_writepages() */ 1547 struct inode *inode; 1548 struct writeback_control *wbc; 1549 unsigned int can_map:1; /* Can writepages call map blocks? */ 1550 1551 /* These are internal state of ext4_do_writepages() */ 1552 pgoff_t first_page; /* The first page to write */ 1553 pgoff_t next_page; /* Current page to examine */ 1554 pgoff_t last_page; /* Last page to examine */ 1555 /* 1556 * Extent to map - this can be after first_page because that can be 1557 * fully mapped. We somewhat abuse m_flags to store whether the extent 1558 * is delalloc or unwritten. 1559 */ 1560 struct ext4_map_blocks map; 1561 struct ext4_io_submit io_submit; /* IO submission data */ 1562 unsigned int do_map:1; 1563 unsigned int scanned_until_end:1; 1564 unsigned int journalled_more_data:1; 1565 }; 1566 1567 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1568 bool invalidate) 1569 { 1570 unsigned nr, i; 1571 pgoff_t index, end; 1572 struct folio_batch fbatch; 1573 struct inode *inode = mpd->inode; 1574 struct address_space *mapping = inode->i_mapping; 1575 1576 /* This is necessary when next_page == 0. */ 1577 if (mpd->first_page >= mpd->next_page) 1578 return; 1579 1580 mpd->scanned_until_end = 0; 1581 index = mpd->first_page; 1582 end = mpd->next_page - 1; 1583 if (invalidate) { 1584 ext4_lblk_t start, last; 1585 start = index << (PAGE_SHIFT - inode->i_blkbits); 1586 last = end << (PAGE_SHIFT - inode->i_blkbits); 1587 1588 /* 1589 * avoid racing with extent status tree scans made by 1590 * ext4_insert_delayed_block() 1591 */ 1592 down_write(&EXT4_I(inode)->i_data_sem); 1593 ext4_es_remove_extent(inode, start, last - start + 1); 1594 up_write(&EXT4_I(inode)->i_data_sem); 1595 } 1596 1597 folio_batch_init(&fbatch); 1598 while (index <= end) { 1599 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1600 if (nr == 0) 1601 break; 1602 for (i = 0; i < nr; i++) { 1603 struct folio *folio = fbatch.folios[i]; 1604 1605 if (folio->index < mpd->first_page) 1606 continue; 1607 if (folio_next_index(folio) - 1 > end) 1608 continue; 1609 BUG_ON(!folio_test_locked(folio)); 1610 BUG_ON(folio_test_writeback(folio)); 1611 if (invalidate) { 1612 if (folio_mapped(folio)) 1613 folio_clear_dirty_for_io(folio); 1614 block_invalidate_folio(folio, 0, 1615 folio_size(folio)); 1616 folio_clear_uptodate(folio); 1617 } 1618 folio_unlock(folio); 1619 } 1620 folio_batch_release(&fbatch); 1621 } 1622 } 1623 1624 static void ext4_print_free_blocks(struct inode *inode) 1625 { 1626 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1627 struct super_block *sb = inode->i_sb; 1628 struct ext4_inode_info *ei = EXT4_I(inode); 1629 1630 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1631 EXT4_C2B(EXT4_SB(inode->i_sb), 1632 ext4_count_free_clusters(sb))); 1633 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1634 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1635 (long long) EXT4_C2B(EXT4_SB(sb), 1636 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1637 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1638 (long long) EXT4_C2B(EXT4_SB(sb), 1639 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1640 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1641 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1642 ei->i_reserved_data_blocks); 1643 return; 1644 } 1645 1646 /* 1647 * Check whether the cluster containing lblk has been allocated or has 1648 * delalloc reservation. 1649 * 1650 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc 1651 * reservation, 2 if it's already been allocated, negative error code on 1652 * failure. 1653 */ 1654 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk) 1655 { 1656 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1657 int ret; 1658 1659 /* Has delalloc reservation? */ 1660 if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk)) 1661 return 1; 1662 1663 /* Already been allocated? */ 1664 if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk)) 1665 return 2; 1666 ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); 1667 if (ret < 0) 1668 return ret; 1669 if (ret > 0) 1670 return 2; 1671 1672 return 0; 1673 } 1674 1675 /* 1676 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents 1677 * status tree, incrementing the reserved 1678 * cluster/block count or making pending 1679 * reservations where needed 1680 * 1681 * @inode - file containing the newly added block 1682 * @lblk - start logical block to be added 1683 * @len - length of blocks to be added 1684 * 1685 * Returns 0 on success, negative error code on failure. 1686 */ 1687 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk, 1688 ext4_lblk_t len) 1689 { 1690 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1691 int ret; 1692 bool lclu_allocated = false; 1693 bool end_allocated = false; 1694 ext4_lblk_t resv_clu; 1695 ext4_lblk_t end = lblk + len - 1; 1696 1697 /* 1698 * If the cluster containing lblk or end is shared with a delayed, 1699 * written, or unwritten extent in a bigalloc file system, it's 1700 * already been accounted for and does not need to be reserved. 1701 * A pending reservation must be made for the cluster if it's 1702 * shared with a written or unwritten extent and doesn't already 1703 * have one. Written and unwritten extents can be purged from the 1704 * extents status tree if the system is under memory pressure, so 1705 * it's necessary to examine the extent tree if a search of the 1706 * extents status tree doesn't get a match. 1707 */ 1708 if (sbi->s_cluster_ratio == 1) { 1709 ret = ext4_da_reserve_space(inode, len); 1710 if (ret != 0) /* ENOSPC */ 1711 return ret; 1712 } else { /* bigalloc */ 1713 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1; 1714 1715 ret = ext4_clu_alloc_state(inode, lblk); 1716 if (ret < 0) 1717 return ret; 1718 if (ret > 0) { 1719 resv_clu--; 1720 lclu_allocated = (ret == 2); 1721 } 1722 1723 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) { 1724 ret = ext4_clu_alloc_state(inode, end); 1725 if (ret < 0) 1726 return ret; 1727 if (ret > 0) { 1728 resv_clu--; 1729 end_allocated = (ret == 2); 1730 } 1731 } 1732 1733 if (resv_clu) { 1734 ret = ext4_da_reserve_space(inode, resv_clu); 1735 if (ret != 0) /* ENOSPC */ 1736 return ret; 1737 } 1738 } 1739 1740 ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated, 1741 end_allocated); 1742 return 0; 1743 } 1744 1745 /* 1746 * Looks up the requested blocks and sets the delalloc extent map. 1747 * First try to look up for the extent entry that contains the requested 1748 * blocks in the extent status tree without i_data_sem, then try to look 1749 * up for the ondisk extent mapping with i_data_sem in read mode, 1750 * finally hold i_data_sem in write mode, looks up again and add a 1751 * delalloc extent entry if it still couldn't find any extent. Pass out 1752 * the mapped extent through @map and return 0 on success. 1753 */ 1754 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map) 1755 { 1756 struct extent_status es; 1757 int retval; 1758 #ifdef ES_AGGRESSIVE_TEST 1759 struct ext4_map_blocks orig_map; 1760 1761 memcpy(&orig_map, map, sizeof(*map)); 1762 #endif 1763 1764 map->m_flags = 0; 1765 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1766 (unsigned long) map->m_lblk); 1767 1768 /* Lookup extent status tree firstly */ 1769 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1770 map->m_len = min_t(unsigned int, map->m_len, 1771 es.es_len - (map->m_lblk - es.es_lblk)); 1772 1773 if (ext4_es_is_hole(&es)) 1774 goto add_delayed; 1775 1776 found: 1777 /* 1778 * Delayed extent could be allocated by fallocate. 1779 * So we need to check it. 1780 */ 1781 if (ext4_es_is_delayed(&es)) { 1782 map->m_flags |= EXT4_MAP_DELAYED; 1783 return 0; 1784 } 1785 1786 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk; 1787 if (ext4_es_is_written(&es)) 1788 map->m_flags |= EXT4_MAP_MAPPED; 1789 else if (ext4_es_is_unwritten(&es)) 1790 map->m_flags |= EXT4_MAP_UNWRITTEN; 1791 else 1792 BUG(); 1793 1794 #ifdef ES_AGGRESSIVE_TEST 1795 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1796 #endif 1797 return 0; 1798 } 1799 1800 /* 1801 * Try to see if we can get the block without requesting a new 1802 * file system block. 1803 */ 1804 down_read(&EXT4_I(inode)->i_data_sem); 1805 if (ext4_has_inline_data(inode)) 1806 retval = 0; 1807 else 1808 retval = ext4_map_query_blocks(NULL, inode, map); 1809 up_read(&EXT4_I(inode)->i_data_sem); 1810 if (retval) 1811 return retval < 0 ? retval : 0; 1812 1813 add_delayed: 1814 down_write(&EXT4_I(inode)->i_data_sem); 1815 /* 1816 * Page fault path (ext4_page_mkwrite does not take i_rwsem) 1817 * and fallocate path (no folio lock) can race. Make sure we 1818 * lookup the extent status tree here again while i_data_sem 1819 * is held in write mode, before inserting a new da entry in 1820 * the extent status tree. 1821 */ 1822 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1823 map->m_len = min_t(unsigned int, map->m_len, 1824 es.es_len - (map->m_lblk - es.es_lblk)); 1825 1826 if (!ext4_es_is_hole(&es)) { 1827 up_write(&EXT4_I(inode)->i_data_sem); 1828 goto found; 1829 } 1830 } else if (!ext4_has_inline_data(inode)) { 1831 retval = ext4_map_query_blocks(NULL, inode, map); 1832 if (retval) { 1833 up_write(&EXT4_I(inode)->i_data_sem); 1834 return retval < 0 ? retval : 0; 1835 } 1836 } 1837 1838 map->m_flags |= EXT4_MAP_DELAYED; 1839 retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len); 1840 up_write(&EXT4_I(inode)->i_data_sem); 1841 1842 return retval; 1843 } 1844 1845 /* 1846 * This is a special get_block_t callback which is used by 1847 * ext4_da_write_begin(). It will either return mapped block or 1848 * reserve space for a single block. 1849 * 1850 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1851 * We also have b_blocknr = -1 and b_bdev initialized properly 1852 * 1853 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1854 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1855 * initialized properly. 1856 */ 1857 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1858 struct buffer_head *bh, int create) 1859 { 1860 struct ext4_map_blocks map; 1861 sector_t invalid_block = ~((sector_t) 0xffff); 1862 int ret = 0; 1863 1864 BUG_ON(create == 0); 1865 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1866 1867 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1868 invalid_block = ~0; 1869 1870 map.m_lblk = iblock; 1871 map.m_len = 1; 1872 1873 /* 1874 * first, we need to know whether the block is allocated already 1875 * preallocated blocks are unmapped but should treated 1876 * the same as allocated blocks. 1877 */ 1878 ret = ext4_da_map_blocks(inode, &map); 1879 if (ret < 0) 1880 return ret; 1881 1882 if (map.m_flags & EXT4_MAP_DELAYED) { 1883 map_bh(bh, inode->i_sb, invalid_block); 1884 set_buffer_new(bh); 1885 set_buffer_delay(bh); 1886 return 0; 1887 } 1888 1889 map_bh(bh, inode->i_sb, map.m_pblk); 1890 ext4_update_bh_state(bh, map.m_flags); 1891 1892 if (buffer_unwritten(bh)) { 1893 /* A delayed write to unwritten bh should be marked 1894 * new and mapped. Mapped ensures that we don't do 1895 * get_block multiple times when we write to the same 1896 * offset and new ensures that we do proper zero out 1897 * for partial write. 1898 */ 1899 set_buffer_new(bh); 1900 set_buffer_mapped(bh); 1901 } 1902 return 0; 1903 } 1904 1905 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1906 { 1907 mpd->first_page += folio_nr_pages(folio); 1908 folio_unlock(folio); 1909 } 1910 1911 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1912 { 1913 size_t len; 1914 loff_t size; 1915 int err; 1916 1917 BUG_ON(folio->index != mpd->first_page); 1918 folio_clear_dirty_for_io(folio); 1919 /* 1920 * We have to be very careful here! Nothing protects writeback path 1921 * against i_size changes and the page can be writeably mapped into 1922 * page tables. So an application can be growing i_size and writing 1923 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1924 * write-protects our page in page tables and the page cannot get 1925 * written to again until we release folio lock. So only after 1926 * folio_clear_dirty_for_io() we are safe to sample i_size for 1927 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1928 * on the barrier provided by folio_test_clear_dirty() in 1929 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1930 * after page tables are updated. 1931 */ 1932 size = i_size_read(mpd->inode); 1933 len = folio_size(folio); 1934 if (folio_pos(folio) + len > size && 1935 !ext4_verity_in_progress(mpd->inode)) 1936 len = size & (len - 1); 1937 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1938 if (!err) 1939 mpd->wbc->nr_to_write--; 1940 1941 return err; 1942 } 1943 1944 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1945 1946 /* 1947 * mballoc gives us at most this number of blocks... 1948 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1949 * The rest of mballoc seems to handle chunks up to full group size. 1950 */ 1951 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1952 1953 /* 1954 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1955 * 1956 * @mpd - extent of blocks 1957 * @lblk - logical number of the block in the file 1958 * @bh - buffer head we want to add to the extent 1959 * 1960 * The function is used to collect contig. blocks in the same state. If the 1961 * buffer doesn't require mapping for writeback and we haven't started the 1962 * extent of buffers to map yet, the function returns 'true' immediately - the 1963 * caller can write the buffer right away. Otherwise the function returns true 1964 * if the block has been added to the extent, false if the block couldn't be 1965 * added. 1966 */ 1967 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1968 struct buffer_head *bh) 1969 { 1970 struct ext4_map_blocks *map = &mpd->map; 1971 1972 /* Buffer that doesn't need mapping for writeback? */ 1973 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1974 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1975 /* So far no extent to map => we write the buffer right away */ 1976 if (map->m_len == 0) 1977 return true; 1978 return false; 1979 } 1980 1981 /* First block in the extent? */ 1982 if (map->m_len == 0) { 1983 /* We cannot map unless handle is started... */ 1984 if (!mpd->do_map) 1985 return false; 1986 map->m_lblk = lblk; 1987 map->m_len = 1; 1988 map->m_flags = bh->b_state & BH_FLAGS; 1989 return true; 1990 } 1991 1992 /* Don't go larger than mballoc is willing to allocate */ 1993 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1994 return false; 1995 1996 /* Can we merge the block to our big extent? */ 1997 if (lblk == map->m_lblk + map->m_len && 1998 (bh->b_state & BH_FLAGS) == map->m_flags) { 1999 map->m_len++; 2000 return true; 2001 } 2002 return false; 2003 } 2004 2005 /* 2006 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2007 * 2008 * @mpd - extent of blocks for mapping 2009 * @head - the first buffer in the page 2010 * @bh - buffer we should start processing from 2011 * @lblk - logical number of the block in the file corresponding to @bh 2012 * 2013 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2014 * the page for IO if all buffers in this page were mapped and there's no 2015 * accumulated extent of buffers to map or add buffers in the page to the 2016 * extent of buffers to map. The function returns 1 if the caller can continue 2017 * by processing the next page, 0 if it should stop adding buffers to the 2018 * extent to map because we cannot extend it anymore. It can also return value 2019 * < 0 in case of error during IO submission. 2020 */ 2021 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2022 struct buffer_head *head, 2023 struct buffer_head *bh, 2024 ext4_lblk_t lblk) 2025 { 2026 struct inode *inode = mpd->inode; 2027 int err; 2028 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2029 >> inode->i_blkbits; 2030 2031 if (ext4_verity_in_progress(inode)) 2032 blocks = EXT_MAX_BLOCKS; 2033 2034 do { 2035 BUG_ON(buffer_locked(bh)); 2036 2037 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2038 /* Found extent to map? */ 2039 if (mpd->map.m_len) 2040 return 0; 2041 /* Buffer needs mapping and handle is not started? */ 2042 if (!mpd->do_map) 2043 return 0; 2044 /* Everything mapped so far and we hit EOF */ 2045 break; 2046 } 2047 } while (lblk++, (bh = bh->b_this_page) != head); 2048 /* So far everything mapped? Submit the page for IO. */ 2049 if (mpd->map.m_len == 0) { 2050 err = mpage_submit_folio(mpd, head->b_folio); 2051 if (err < 0) 2052 return err; 2053 mpage_folio_done(mpd, head->b_folio); 2054 } 2055 if (lblk >= blocks) { 2056 mpd->scanned_until_end = 1; 2057 return 0; 2058 } 2059 return 1; 2060 } 2061 2062 /* 2063 * mpage_process_folio - update folio buffers corresponding to changed extent 2064 * and may submit fully mapped page for IO 2065 * @mpd: description of extent to map, on return next extent to map 2066 * @folio: Contains these buffers. 2067 * @m_lblk: logical block mapping. 2068 * @m_pblk: corresponding physical mapping. 2069 * @map_bh: determines on return whether this page requires any further 2070 * mapping or not. 2071 * 2072 * Scan given folio buffers corresponding to changed extent and update buffer 2073 * state according to new extent state. 2074 * We map delalloc buffers to their physical location, clear unwritten bits. 2075 * If the given folio is not fully mapped, we update @mpd to the next extent in 2076 * the given folio that needs mapping & return @map_bh as true. 2077 */ 2078 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2079 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2080 bool *map_bh) 2081 { 2082 struct buffer_head *head, *bh; 2083 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2084 ext4_lblk_t lblk = *m_lblk; 2085 ext4_fsblk_t pblock = *m_pblk; 2086 int err = 0; 2087 int blkbits = mpd->inode->i_blkbits; 2088 ssize_t io_end_size = 0; 2089 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2090 2091 bh = head = folio_buffers(folio); 2092 do { 2093 if (lblk < mpd->map.m_lblk) 2094 continue; 2095 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2096 /* 2097 * Buffer after end of mapped extent. 2098 * Find next buffer in the folio to map. 2099 */ 2100 mpd->map.m_len = 0; 2101 mpd->map.m_flags = 0; 2102 io_end_vec->size += io_end_size; 2103 2104 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2105 if (err > 0) 2106 err = 0; 2107 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2108 io_end_vec = ext4_alloc_io_end_vec(io_end); 2109 if (IS_ERR(io_end_vec)) { 2110 err = PTR_ERR(io_end_vec); 2111 goto out; 2112 } 2113 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2114 } 2115 *map_bh = true; 2116 goto out; 2117 } 2118 if (buffer_delay(bh)) { 2119 clear_buffer_delay(bh); 2120 bh->b_blocknr = pblock++; 2121 } 2122 clear_buffer_unwritten(bh); 2123 io_end_size += (1 << blkbits); 2124 } while (lblk++, (bh = bh->b_this_page) != head); 2125 2126 io_end_vec->size += io_end_size; 2127 *map_bh = false; 2128 out: 2129 *m_lblk = lblk; 2130 *m_pblk = pblock; 2131 return err; 2132 } 2133 2134 /* 2135 * mpage_map_buffers - update buffers corresponding to changed extent and 2136 * submit fully mapped pages for IO 2137 * 2138 * @mpd - description of extent to map, on return next extent to map 2139 * 2140 * Scan buffers corresponding to changed extent (we expect corresponding pages 2141 * to be already locked) and update buffer state according to new extent state. 2142 * We map delalloc buffers to their physical location, clear unwritten bits, 2143 * and mark buffers as uninit when we perform writes to unwritten extents 2144 * and do extent conversion after IO is finished. If the last page is not fully 2145 * mapped, we update @map to the next extent in the last page that needs 2146 * mapping. Otherwise we submit the page for IO. 2147 */ 2148 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2149 { 2150 struct folio_batch fbatch; 2151 unsigned nr, i; 2152 struct inode *inode = mpd->inode; 2153 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2154 pgoff_t start, end; 2155 ext4_lblk_t lblk; 2156 ext4_fsblk_t pblock; 2157 int err; 2158 bool map_bh = false; 2159 2160 start = mpd->map.m_lblk >> bpp_bits; 2161 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2162 lblk = start << bpp_bits; 2163 pblock = mpd->map.m_pblk; 2164 2165 folio_batch_init(&fbatch); 2166 while (start <= end) { 2167 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2168 if (nr == 0) 2169 break; 2170 for (i = 0; i < nr; i++) { 2171 struct folio *folio = fbatch.folios[i]; 2172 2173 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2174 &map_bh); 2175 /* 2176 * If map_bh is true, means page may require further bh 2177 * mapping, or maybe the page was submitted for IO. 2178 * So we return to call further extent mapping. 2179 */ 2180 if (err < 0 || map_bh) 2181 goto out; 2182 /* Page fully mapped - let IO run! */ 2183 err = mpage_submit_folio(mpd, folio); 2184 if (err < 0) 2185 goto out; 2186 mpage_folio_done(mpd, folio); 2187 } 2188 folio_batch_release(&fbatch); 2189 } 2190 /* Extent fully mapped and matches with page boundary. We are done. */ 2191 mpd->map.m_len = 0; 2192 mpd->map.m_flags = 0; 2193 return 0; 2194 out: 2195 folio_batch_release(&fbatch); 2196 return err; 2197 } 2198 2199 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2200 { 2201 struct inode *inode = mpd->inode; 2202 struct ext4_map_blocks *map = &mpd->map; 2203 int get_blocks_flags; 2204 int err, dioread_nolock; 2205 2206 trace_ext4_da_write_pages_extent(inode, map); 2207 /* 2208 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2209 * to convert an unwritten extent to be initialized (in the case 2210 * where we have written into one or more preallocated blocks). It is 2211 * possible that we're going to need more metadata blocks than 2212 * previously reserved. However we must not fail because we're in 2213 * writeback and there is nothing we can do about it so it might result 2214 * in data loss. So use reserved blocks to allocate metadata if 2215 * possible. 2216 */ 2217 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2218 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2219 EXT4_GET_BLOCKS_IO_SUBMIT; 2220 dioread_nolock = ext4_should_dioread_nolock(inode); 2221 if (dioread_nolock) 2222 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2223 2224 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2225 if (err < 0) 2226 return err; 2227 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2228 if (!mpd->io_submit.io_end->handle && 2229 ext4_handle_valid(handle)) { 2230 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2231 handle->h_rsv_handle = NULL; 2232 } 2233 ext4_set_io_unwritten_flag(mpd->io_submit.io_end); 2234 } 2235 2236 BUG_ON(map->m_len == 0); 2237 return 0; 2238 } 2239 2240 /* 2241 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2242 * mpd->len and submit pages underlying it for IO 2243 * 2244 * @handle - handle for journal operations 2245 * @mpd - extent to map 2246 * @give_up_on_write - we set this to true iff there is a fatal error and there 2247 * is no hope of writing the data. The caller should discard 2248 * dirty pages to avoid infinite loops. 2249 * 2250 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2251 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2252 * them to initialized or split the described range from larger unwritten 2253 * extent. Note that we need not map all the described range since allocation 2254 * can return less blocks or the range is covered by more unwritten extents. We 2255 * cannot map more because we are limited by reserved transaction credits. On 2256 * the other hand we always make sure that the last touched page is fully 2257 * mapped so that it can be written out (and thus forward progress is 2258 * guaranteed). After mapping we submit all mapped pages for IO. 2259 */ 2260 static int mpage_map_and_submit_extent(handle_t *handle, 2261 struct mpage_da_data *mpd, 2262 bool *give_up_on_write) 2263 { 2264 struct inode *inode = mpd->inode; 2265 struct ext4_map_blocks *map = &mpd->map; 2266 int err; 2267 loff_t disksize; 2268 int progress = 0; 2269 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2270 struct ext4_io_end_vec *io_end_vec; 2271 2272 io_end_vec = ext4_alloc_io_end_vec(io_end); 2273 if (IS_ERR(io_end_vec)) 2274 return PTR_ERR(io_end_vec); 2275 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2276 do { 2277 err = mpage_map_one_extent(handle, mpd); 2278 if (err < 0) { 2279 struct super_block *sb = inode->i_sb; 2280 2281 if (ext4_emergency_state(sb)) 2282 goto invalidate_dirty_pages; 2283 /* 2284 * Let the uper layers retry transient errors. 2285 * In the case of ENOSPC, if ext4_count_free_blocks() 2286 * is non-zero, a commit should free up blocks. 2287 */ 2288 if ((err == -ENOMEM) || 2289 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2290 if (progress) 2291 goto update_disksize; 2292 return err; 2293 } 2294 ext4_msg(sb, KERN_CRIT, 2295 "Delayed block allocation failed for " 2296 "inode %lu at logical offset %llu with" 2297 " max blocks %u with error %d", 2298 inode->i_ino, 2299 (unsigned long long)map->m_lblk, 2300 (unsigned)map->m_len, -err); 2301 ext4_msg(sb, KERN_CRIT, 2302 "This should not happen!! Data will " 2303 "be lost\n"); 2304 if (err == -ENOSPC) 2305 ext4_print_free_blocks(inode); 2306 invalidate_dirty_pages: 2307 *give_up_on_write = true; 2308 return err; 2309 } 2310 progress = 1; 2311 /* 2312 * Update buffer state, submit mapped pages, and get us new 2313 * extent to map 2314 */ 2315 err = mpage_map_and_submit_buffers(mpd); 2316 if (err < 0) 2317 goto update_disksize; 2318 } while (map->m_len); 2319 2320 update_disksize: 2321 /* 2322 * Update on-disk size after IO is submitted. Races with 2323 * truncate are avoided by checking i_size under i_data_sem. 2324 */ 2325 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2326 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2327 int err2; 2328 loff_t i_size; 2329 2330 down_write(&EXT4_I(inode)->i_data_sem); 2331 i_size = i_size_read(inode); 2332 if (disksize > i_size) 2333 disksize = i_size; 2334 if (disksize > EXT4_I(inode)->i_disksize) 2335 EXT4_I(inode)->i_disksize = disksize; 2336 up_write(&EXT4_I(inode)->i_data_sem); 2337 err2 = ext4_mark_inode_dirty(handle, inode); 2338 if (err2) { 2339 ext4_error_err(inode->i_sb, -err2, 2340 "Failed to mark inode %lu dirty", 2341 inode->i_ino); 2342 } 2343 if (!err) 2344 err = err2; 2345 } 2346 return err; 2347 } 2348 2349 /* 2350 * Calculate the total number of credits to reserve for one writepages 2351 * iteration. This is called from ext4_writepages(). We map an extent of 2352 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2353 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2354 * bpp - 1 blocks in bpp different extents. 2355 */ 2356 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2357 { 2358 int bpp = ext4_journal_blocks_per_page(inode); 2359 2360 return ext4_meta_trans_blocks(inode, 2361 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2362 } 2363 2364 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2365 size_t len) 2366 { 2367 struct buffer_head *page_bufs = folio_buffers(folio); 2368 struct inode *inode = folio->mapping->host; 2369 int ret, err; 2370 2371 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2372 NULL, do_journal_get_write_access); 2373 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2374 NULL, write_end_fn); 2375 if (ret == 0) 2376 ret = err; 2377 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2378 if (ret == 0) 2379 ret = err; 2380 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2381 2382 return ret; 2383 } 2384 2385 static int mpage_journal_page_buffers(handle_t *handle, 2386 struct mpage_da_data *mpd, 2387 struct folio *folio) 2388 { 2389 struct inode *inode = mpd->inode; 2390 loff_t size = i_size_read(inode); 2391 size_t len = folio_size(folio); 2392 2393 folio_clear_checked(folio); 2394 mpd->wbc->nr_to_write--; 2395 2396 if (folio_pos(folio) + len > size && 2397 !ext4_verity_in_progress(inode)) 2398 len = size & (len - 1); 2399 2400 return ext4_journal_folio_buffers(handle, folio, len); 2401 } 2402 2403 /* 2404 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2405 * needing mapping, submit mapped pages 2406 * 2407 * @mpd - where to look for pages 2408 * 2409 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2410 * IO immediately. If we cannot map blocks, we submit just already mapped 2411 * buffers in the page for IO and keep page dirty. When we can map blocks and 2412 * we find a page which isn't mapped we start accumulating extent of buffers 2413 * underlying these pages that needs mapping (formed by either delayed or 2414 * unwritten buffers). We also lock the pages containing these buffers. The 2415 * extent found is returned in @mpd structure (starting at mpd->lblk with 2416 * length mpd->len blocks). 2417 * 2418 * Note that this function can attach bios to one io_end structure which are 2419 * neither logically nor physically contiguous. Although it may seem as an 2420 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2421 * case as we need to track IO to all buffers underlying a page in one io_end. 2422 */ 2423 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2424 { 2425 struct address_space *mapping = mpd->inode->i_mapping; 2426 struct folio_batch fbatch; 2427 unsigned int nr_folios; 2428 pgoff_t index = mpd->first_page; 2429 pgoff_t end = mpd->last_page; 2430 xa_mark_t tag; 2431 int i, err = 0; 2432 int blkbits = mpd->inode->i_blkbits; 2433 ext4_lblk_t lblk; 2434 struct buffer_head *head; 2435 handle_t *handle = NULL; 2436 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2437 2438 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2439 tag = PAGECACHE_TAG_TOWRITE; 2440 else 2441 tag = PAGECACHE_TAG_DIRTY; 2442 2443 mpd->map.m_len = 0; 2444 mpd->next_page = index; 2445 if (ext4_should_journal_data(mpd->inode)) { 2446 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2447 bpp); 2448 if (IS_ERR(handle)) 2449 return PTR_ERR(handle); 2450 } 2451 folio_batch_init(&fbatch); 2452 while (index <= end) { 2453 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2454 tag, &fbatch); 2455 if (nr_folios == 0) 2456 break; 2457 2458 for (i = 0; i < nr_folios; i++) { 2459 struct folio *folio = fbatch.folios[i]; 2460 2461 /* 2462 * Accumulated enough dirty pages? This doesn't apply 2463 * to WB_SYNC_ALL mode. For integrity sync we have to 2464 * keep going because someone may be concurrently 2465 * dirtying pages, and we might have synced a lot of 2466 * newly appeared dirty pages, but have not synced all 2467 * of the old dirty pages. 2468 */ 2469 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2470 mpd->wbc->nr_to_write <= 2471 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2472 goto out; 2473 2474 /* If we can't merge this page, we are done. */ 2475 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2476 goto out; 2477 2478 if (handle) { 2479 err = ext4_journal_ensure_credits(handle, bpp, 2480 0); 2481 if (err < 0) 2482 goto out; 2483 } 2484 2485 folio_lock(folio); 2486 /* 2487 * If the page is no longer dirty, or its mapping no 2488 * longer corresponds to inode we are writing (which 2489 * means it has been truncated or invalidated), or the 2490 * page is already under writeback and we are not doing 2491 * a data integrity writeback, skip the page 2492 */ 2493 if (!folio_test_dirty(folio) || 2494 (folio_test_writeback(folio) && 2495 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2496 unlikely(folio->mapping != mapping)) { 2497 folio_unlock(folio); 2498 continue; 2499 } 2500 2501 folio_wait_writeback(folio); 2502 BUG_ON(folio_test_writeback(folio)); 2503 2504 /* 2505 * Should never happen but for buggy code in 2506 * other subsystems that call 2507 * set_page_dirty() without properly warning 2508 * the file system first. See [1] for more 2509 * information. 2510 * 2511 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2512 */ 2513 if (!folio_buffers(folio)) { 2514 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2515 folio_clear_dirty(folio); 2516 folio_unlock(folio); 2517 continue; 2518 } 2519 2520 if (mpd->map.m_len == 0) 2521 mpd->first_page = folio->index; 2522 mpd->next_page = folio_next_index(folio); 2523 /* 2524 * Writeout when we cannot modify metadata is simple. 2525 * Just submit the page. For data=journal mode we 2526 * first handle writeout of the page for checkpoint and 2527 * only after that handle delayed page dirtying. This 2528 * makes sure current data is checkpointed to the final 2529 * location before possibly journalling it again which 2530 * is desirable when the page is frequently dirtied 2531 * through a pin. 2532 */ 2533 if (!mpd->can_map) { 2534 err = mpage_submit_folio(mpd, folio); 2535 if (err < 0) 2536 goto out; 2537 /* Pending dirtying of journalled data? */ 2538 if (folio_test_checked(folio)) { 2539 err = mpage_journal_page_buffers(handle, 2540 mpd, folio); 2541 if (err < 0) 2542 goto out; 2543 mpd->journalled_more_data = 1; 2544 } 2545 mpage_folio_done(mpd, folio); 2546 } else { 2547 /* Add all dirty buffers to mpd */ 2548 lblk = ((ext4_lblk_t)folio->index) << 2549 (PAGE_SHIFT - blkbits); 2550 head = folio_buffers(folio); 2551 err = mpage_process_page_bufs(mpd, head, head, 2552 lblk); 2553 if (err <= 0) 2554 goto out; 2555 err = 0; 2556 } 2557 } 2558 folio_batch_release(&fbatch); 2559 cond_resched(); 2560 } 2561 mpd->scanned_until_end = 1; 2562 if (handle) 2563 ext4_journal_stop(handle); 2564 return 0; 2565 out: 2566 folio_batch_release(&fbatch); 2567 if (handle) 2568 ext4_journal_stop(handle); 2569 return err; 2570 } 2571 2572 static int ext4_do_writepages(struct mpage_da_data *mpd) 2573 { 2574 struct writeback_control *wbc = mpd->wbc; 2575 pgoff_t writeback_index = 0; 2576 long nr_to_write = wbc->nr_to_write; 2577 int range_whole = 0; 2578 int cycled = 1; 2579 handle_t *handle = NULL; 2580 struct inode *inode = mpd->inode; 2581 struct address_space *mapping = inode->i_mapping; 2582 int needed_blocks, rsv_blocks = 0, ret = 0; 2583 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2584 struct blk_plug plug; 2585 bool give_up_on_write = false; 2586 2587 trace_ext4_writepages(inode, wbc); 2588 2589 /* 2590 * No pages to write? This is mainly a kludge to avoid starting 2591 * a transaction for special inodes like journal inode on last iput() 2592 * because that could violate lock ordering on umount 2593 */ 2594 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2595 goto out_writepages; 2596 2597 /* 2598 * If the filesystem has aborted, it is read-only, so return 2599 * right away instead of dumping stack traces later on that 2600 * will obscure the real source of the problem. We test 2601 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2602 * the latter could be true if the filesystem is mounted 2603 * read-only, and in that case, ext4_writepages should 2604 * *never* be called, so if that ever happens, we would want 2605 * the stack trace. 2606 */ 2607 ret = ext4_emergency_state(mapping->host->i_sb); 2608 if (unlikely(ret)) 2609 goto out_writepages; 2610 2611 /* 2612 * If we have inline data and arrive here, it means that 2613 * we will soon create the block for the 1st page, so 2614 * we'd better clear the inline data here. 2615 */ 2616 if (ext4_has_inline_data(inode)) { 2617 /* Just inode will be modified... */ 2618 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2619 if (IS_ERR(handle)) { 2620 ret = PTR_ERR(handle); 2621 goto out_writepages; 2622 } 2623 BUG_ON(ext4_test_inode_state(inode, 2624 EXT4_STATE_MAY_INLINE_DATA)); 2625 ext4_destroy_inline_data(handle, inode); 2626 ext4_journal_stop(handle); 2627 } 2628 2629 /* 2630 * data=journal mode does not do delalloc so we just need to writeout / 2631 * journal already mapped buffers. On the other hand we need to commit 2632 * transaction to make data stable. We expect all the data to be 2633 * already in the journal (the only exception are DMA pinned pages 2634 * dirtied behind our back) so we commit transaction here and run the 2635 * writeback loop to checkpoint them. The checkpointing is not actually 2636 * necessary to make data persistent *but* quite a few places (extent 2637 * shifting operations, fsverity, ...) depend on being able to drop 2638 * pagecache pages after calling filemap_write_and_wait() and for that 2639 * checkpointing needs to happen. 2640 */ 2641 if (ext4_should_journal_data(inode)) { 2642 mpd->can_map = 0; 2643 if (wbc->sync_mode == WB_SYNC_ALL) 2644 ext4_fc_commit(sbi->s_journal, 2645 EXT4_I(inode)->i_datasync_tid); 2646 } 2647 mpd->journalled_more_data = 0; 2648 2649 if (ext4_should_dioread_nolock(inode)) { 2650 /* 2651 * We may need to convert up to one extent per block in 2652 * the page and we may dirty the inode. 2653 */ 2654 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2655 PAGE_SIZE >> inode->i_blkbits); 2656 } 2657 2658 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2659 range_whole = 1; 2660 2661 if (wbc->range_cyclic) { 2662 writeback_index = mapping->writeback_index; 2663 if (writeback_index) 2664 cycled = 0; 2665 mpd->first_page = writeback_index; 2666 mpd->last_page = -1; 2667 } else { 2668 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2669 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2670 } 2671 2672 ext4_io_submit_init(&mpd->io_submit, wbc); 2673 retry: 2674 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2675 tag_pages_for_writeback(mapping, mpd->first_page, 2676 mpd->last_page); 2677 blk_start_plug(&plug); 2678 2679 /* 2680 * First writeback pages that don't need mapping - we can avoid 2681 * starting a transaction unnecessarily and also avoid being blocked 2682 * in the block layer on device congestion while having transaction 2683 * started. 2684 */ 2685 mpd->do_map = 0; 2686 mpd->scanned_until_end = 0; 2687 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2688 if (!mpd->io_submit.io_end) { 2689 ret = -ENOMEM; 2690 goto unplug; 2691 } 2692 ret = mpage_prepare_extent_to_map(mpd); 2693 /* Unlock pages we didn't use */ 2694 mpage_release_unused_pages(mpd, false); 2695 /* Submit prepared bio */ 2696 ext4_io_submit(&mpd->io_submit); 2697 ext4_put_io_end_defer(mpd->io_submit.io_end); 2698 mpd->io_submit.io_end = NULL; 2699 if (ret < 0) 2700 goto unplug; 2701 2702 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2703 /* For each extent of pages we use new io_end */ 2704 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2705 if (!mpd->io_submit.io_end) { 2706 ret = -ENOMEM; 2707 break; 2708 } 2709 2710 WARN_ON_ONCE(!mpd->can_map); 2711 /* 2712 * We have two constraints: We find one extent to map and we 2713 * must always write out whole page (makes a difference when 2714 * blocksize < pagesize) so that we don't block on IO when we 2715 * try to write out the rest of the page. Journalled mode is 2716 * not supported by delalloc. 2717 */ 2718 BUG_ON(ext4_should_journal_data(inode)); 2719 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2720 2721 /* start a new transaction */ 2722 handle = ext4_journal_start_with_reserve(inode, 2723 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2724 if (IS_ERR(handle)) { 2725 ret = PTR_ERR(handle); 2726 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2727 "%ld pages, ino %lu; err %d", __func__, 2728 wbc->nr_to_write, inode->i_ino, ret); 2729 /* Release allocated io_end */ 2730 ext4_put_io_end(mpd->io_submit.io_end); 2731 mpd->io_submit.io_end = NULL; 2732 break; 2733 } 2734 mpd->do_map = 1; 2735 2736 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2737 ret = mpage_prepare_extent_to_map(mpd); 2738 if (!ret && mpd->map.m_len) 2739 ret = mpage_map_and_submit_extent(handle, mpd, 2740 &give_up_on_write); 2741 /* 2742 * Caution: If the handle is synchronous, 2743 * ext4_journal_stop() can wait for transaction commit 2744 * to finish which may depend on writeback of pages to 2745 * complete or on page lock to be released. In that 2746 * case, we have to wait until after we have 2747 * submitted all the IO, released page locks we hold, 2748 * and dropped io_end reference (for extent conversion 2749 * to be able to complete) before stopping the handle. 2750 */ 2751 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2752 ext4_journal_stop(handle); 2753 handle = NULL; 2754 mpd->do_map = 0; 2755 } 2756 /* Unlock pages we didn't use */ 2757 mpage_release_unused_pages(mpd, give_up_on_write); 2758 /* Submit prepared bio */ 2759 ext4_io_submit(&mpd->io_submit); 2760 2761 /* 2762 * Drop our io_end reference we got from init. We have 2763 * to be careful and use deferred io_end finishing if 2764 * we are still holding the transaction as we can 2765 * release the last reference to io_end which may end 2766 * up doing unwritten extent conversion. 2767 */ 2768 if (handle) { 2769 ext4_put_io_end_defer(mpd->io_submit.io_end); 2770 ext4_journal_stop(handle); 2771 } else 2772 ext4_put_io_end(mpd->io_submit.io_end); 2773 mpd->io_submit.io_end = NULL; 2774 2775 if (ret == -ENOSPC && sbi->s_journal) { 2776 /* 2777 * Commit the transaction which would 2778 * free blocks released in the transaction 2779 * and try again 2780 */ 2781 jbd2_journal_force_commit_nested(sbi->s_journal); 2782 ret = 0; 2783 continue; 2784 } 2785 /* Fatal error - ENOMEM, EIO... */ 2786 if (ret) 2787 break; 2788 } 2789 unplug: 2790 blk_finish_plug(&plug); 2791 if (!ret && !cycled && wbc->nr_to_write > 0) { 2792 cycled = 1; 2793 mpd->last_page = writeback_index - 1; 2794 mpd->first_page = 0; 2795 goto retry; 2796 } 2797 2798 /* Update index */ 2799 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2800 /* 2801 * Set the writeback_index so that range_cyclic 2802 * mode will write it back later 2803 */ 2804 mapping->writeback_index = mpd->first_page; 2805 2806 out_writepages: 2807 trace_ext4_writepages_result(inode, wbc, ret, 2808 nr_to_write - wbc->nr_to_write); 2809 return ret; 2810 } 2811 2812 static int ext4_writepages(struct address_space *mapping, 2813 struct writeback_control *wbc) 2814 { 2815 struct super_block *sb = mapping->host->i_sb; 2816 struct mpage_da_data mpd = { 2817 .inode = mapping->host, 2818 .wbc = wbc, 2819 .can_map = 1, 2820 }; 2821 int ret; 2822 int alloc_ctx; 2823 2824 ret = ext4_emergency_state(sb); 2825 if (unlikely(ret)) 2826 return ret; 2827 2828 alloc_ctx = ext4_writepages_down_read(sb); 2829 ret = ext4_do_writepages(&mpd); 2830 /* 2831 * For data=journal writeback we could have come across pages marked 2832 * for delayed dirtying (PageChecked) which were just added to the 2833 * running transaction. Try once more to get them to stable storage. 2834 */ 2835 if (!ret && mpd.journalled_more_data) 2836 ret = ext4_do_writepages(&mpd); 2837 ext4_writepages_up_read(sb, alloc_ctx); 2838 2839 return ret; 2840 } 2841 2842 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2843 { 2844 struct writeback_control wbc = { 2845 .sync_mode = WB_SYNC_ALL, 2846 .nr_to_write = LONG_MAX, 2847 .range_start = jinode->i_dirty_start, 2848 .range_end = jinode->i_dirty_end, 2849 }; 2850 struct mpage_da_data mpd = { 2851 .inode = jinode->i_vfs_inode, 2852 .wbc = &wbc, 2853 .can_map = 0, 2854 }; 2855 return ext4_do_writepages(&mpd); 2856 } 2857 2858 static int ext4_dax_writepages(struct address_space *mapping, 2859 struct writeback_control *wbc) 2860 { 2861 int ret; 2862 long nr_to_write = wbc->nr_to_write; 2863 struct inode *inode = mapping->host; 2864 int alloc_ctx; 2865 2866 ret = ext4_emergency_state(inode->i_sb); 2867 if (unlikely(ret)) 2868 return ret; 2869 2870 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2871 trace_ext4_writepages(inode, wbc); 2872 2873 ret = dax_writeback_mapping_range(mapping, 2874 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2875 trace_ext4_writepages_result(inode, wbc, ret, 2876 nr_to_write - wbc->nr_to_write); 2877 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2878 return ret; 2879 } 2880 2881 static int ext4_nonda_switch(struct super_block *sb) 2882 { 2883 s64 free_clusters, dirty_clusters; 2884 struct ext4_sb_info *sbi = EXT4_SB(sb); 2885 2886 /* 2887 * switch to non delalloc mode if we are running low 2888 * on free block. The free block accounting via percpu 2889 * counters can get slightly wrong with percpu_counter_batch getting 2890 * accumulated on each CPU without updating global counters 2891 * Delalloc need an accurate free block accounting. So switch 2892 * to non delalloc when we are near to error range. 2893 */ 2894 free_clusters = 2895 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2896 dirty_clusters = 2897 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2898 /* 2899 * Start pushing delalloc when 1/2 of free blocks are dirty. 2900 */ 2901 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2902 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2903 2904 if (2 * free_clusters < 3 * dirty_clusters || 2905 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2906 /* 2907 * free block count is less than 150% of dirty blocks 2908 * or free blocks is less than watermark 2909 */ 2910 return 1; 2911 } 2912 return 0; 2913 } 2914 2915 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2916 loff_t pos, unsigned len, 2917 struct folio **foliop, void **fsdata) 2918 { 2919 int ret, retries = 0; 2920 struct folio *folio; 2921 pgoff_t index; 2922 struct inode *inode = mapping->host; 2923 2924 ret = ext4_emergency_state(inode->i_sb); 2925 if (unlikely(ret)) 2926 return ret; 2927 2928 index = pos >> PAGE_SHIFT; 2929 2930 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2931 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2932 return ext4_write_begin(file, mapping, pos, 2933 len, foliop, fsdata); 2934 } 2935 *fsdata = (void *)0; 2936 trace_ext4_da_write_begin(inode, pos, len); 2937 2938 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2939 ret = ext4_generic_write_inline_data(mapping, inode, pos, len, 2940 foliop, fsdata, true); 2941 if (ret < 0) 2942 return ret; 2943 if (ret == 1) 2944 return 0; 2945 } 2946 2947 retry: 2948 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2949 mapping_gfp_mask(mapping)); 2950 if (IS_ERR(folio)) 2951 return PTR_ERR(folio); 2952 2953 ret = ext4_block_write_begin(NULL, folio, pos, len, 2954 ext4_da_get_block_prep); 2955 if (ret < 0) { 2956 folio_unlock(folio); 2957 folio_put(folio); 2958 /* 2959 * block_write_begin may have instantiated a few blocks 2960 * outside i_size. Trim these off again. Don't need 2961 * i_size_read because we hold inode lock. 2962 */ 2963 if (pos + len > inode->i_size) 2964 ext4_truncate_failed_write(inode); 2965 2966 if (ret == -ENOSPC && 2967 ext4_should_retry_alloc(inode->i_sb, &retries)) 2968 goto retry; 2969 return ret; 2970 } 2971 2972 *foliop = folio; 2973 return ret; 2974 } 2975 2976 /* 2977 * Check if we should update i_disksize 2978 * when write to the end of file but not require block allocation 2979 */ 2980 static int ext4_da_should_update_i_disksize(struct folio *folio, 2981 unsigned long offset) 2982 { 2983 struct buffer_head *bh; 2984 struct inode *inode = folio->mapping->host; 2985 unsigned int idx; 2986 int i; 2987 2988 bh = folio_buffers(folio); 2989 idx = offset >> inode->i_blkbits; 2990 2991 for (i = 0; i < idx; i++) 2992 bh = bh->b_this_page; 2993 2994 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2995 return 0; 2996 return 1; 2997 } 2998 2999 static int ext4_da_do_write_end(struct address_space *mapping, 3000 loff_t pos, unsigned len, unsigned copied, 3001 struct folio *folio) 3002 { 3003 struct inode *inode = mapping->host; 3004 loff_t old_size = inode->i_size; 3005 bool disksize_changed = false; 3006 loff_t new_i_size, zero_len = 0; 3007 handle_t *handle; 3008 3009 if (unlikely(!folio_buffers(folio))) { 3010 folio_unlock(folio); 3011 folio_put(folio); 3012 return -EIO; 3013 } 3014 /* 3015 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 3016 * flag, which all that's needed to trigger page writeback. 3017 */ 3018 copied = block_write_end(NULL, mapping, pos, len, copied, 3019 folio, NULL); 3020 new_i_size = pos + copied; 3021 3022 /* 3023 * It's important to update i_size while still holding folio lock, 3024 * because folio writeout could otherwise come in and zero beyond 3025 * i_size. 3026 * 3027 * Since we are holding inode lock, we are sure i_disksize <= 3028 * i_size. We also know that if i_disksize < i_size, there are 3029 * delalloc writes pending in the range up to i_size. If the end of 3030 * the current write is <= i_size, there's no need to touch 3031 * i_disksize since writeback will push i_disksize up to i_size 3032 * eventually. If the end of the current write is > i_size and 3033 * inside an allocated block which ext4_da_should_update_i_disksize() 3034 * checked, we need to update i_disksize here as certain 3035 * ext4_writepages() paths not allocating blocks and update i_disksize. 3036 */ 3037 if (new_i_size > inode->i_size) { 3038 unsigned long end; 3039 3040 i_size_write(inode, new_i_size); 3041 end = (new_i_size - 1) & (PAGE_SIZE - 1); 3042 if (copied && ext4_da_should_update_i_disksize(folio, end)) { 3043 ext4_update_i_disksize(inode, new_i_size); 3044 disksize_changed = true; 3045 } 3046 } 3047 3048 folio_unlock(folio); 3049 folio_put(folio); 3050 3051 if (pos > old_size) { 3052 pagecache_isize_extended(inode, old_size, pos); 3053 zero_len = pos - old_size; 3054 } 3055 3056 if (!disksize_changed && !zero_len) 3057 return copied; 3058 3059 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3060 if (IS_ERR(handle)) 3061 return PTR_ERR(handle); 3062 if (zero_len) 3063 ext4_zero_partial_blocks(handle, inode, old_size, zero_len); 3064 ext4_mark_inode_dirty(handle, inode); 3065 ext4_journal_stop(handle); 3066 3067 return copied; 3068 } 3069 3070 static int ext4_da_write_end(struct file *file, 3071 struct address_space *mapping, 3072 loff_t pos, unsigned len, unsigned copied, 3073 struct folio *folio, void *fsdata) 3074 { 3075 struct inode *inode = mapping->host; 3076 int write_mode = (int)(unsigned long)fsdata; 3077 3078 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3079 return ext4_write_end(file, mapping, pos, 3080 len, copied, folio, fsdata); 3081 3082 trace_ext4_da_write_end(inode, pos, len, copied); 3083 3084 if (write_mode != CONVERT_INLINE_DATA && 3085 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3086 ext4_has_inline_data(inode)) 3087 return ext4_write_inline_data_end(inode, pos, len, copied, 3088 folio); 3089 3090 if (unlikely(copied < len) && !folio_test_uptodate(folio)) 3091 copied = 0; 3092 3093 return ext4_da_do_write_end(mapping, pos, len, copied, folio); 3094 } 3095 3096 /* 3097 * Force all delayed allocation blocks to be allocated for a given inode. 3098 */ 3099 int ext4_alloc_da_blocks(struct inode *inode) 3100 { 3101 trace_ext4_alloc_da_blocks(inode); 3102 3103 if (!EXT4_I(inode)->i_reserved_data_blocks) 3104 return 0; 3105 3106 /* 3107 * We do something simple for now. The filemap_flush() will 3108 * also start triggering a write of the data blocks, which is 3109 * not strictly speaking necessary (and for users of 3110 * laptop_mode, not even desirable). However, to do otherwise 3111 * would require replicating code paths in: 3112 * 3113 * ext4_writepages() -> 3114 * write_cache_pages() ---> (via passed in callback function) 3115 * __mpage_da_writepage() --> 3116 * mpage_add_bh_to_extent() 3117 * mpage_da_map_blocks() 3118 * 3119 * The problem is that write_cache_pages(), located in 3120 * mm/page-writeback.c, marks pages clean in preparation for 3121 * doing I/O, which is not desirable if we're not planning on 3122 * doing I/O at all. 3123 * 3124 * We could call write_cache_pages(), and then redirty all of 3125 * the pages by calling redirty_page_for_writepage() but that 3126 * would be ugly in the extreme. So instead we would need to 3127 * replicate parts of the code in the above functions, 3128 * simplifying them because we wouldn't actually intend to 3129 * write out the pages, but rather only collect contiguous 3130 * logical block extents, call the multi-block allocator, and 3131 * then update the buffer heads with the block allocations. 3132 * 3133 * For now, though, we'll cheat by calling filemap_flush(), 3134 * which will map the blocks, and start the I/O, but not 3135 * actually wait for the I/O to complete. 3136 */ 3137 return filemap_flush(inode->i_mapping); 3138 } 3139 3140 /* 3141 * bmap() is special. It gets used by applications such as lilo and by 3142 * the swapper to find the on-disk block of a specific piece of data. 3143 * 3144 * Naturally, this is dangerous if the block concerned is still in the 3145 * journal. If somebody makes a swapfile on an ext4 data-journaling 3146 * filesystem and enables swap, then they may get a nasty shock when the 3147 * data getting swapped to that swapfile suddenly gets overwritten by 3148 * the original zero's written out previously to the journal and 3149 * awaiting writeback in the kernel's buffer cache. 3150 * 3151 * So, if we see any bmap calls here on a modified, data-journaled file, 3152 * take extra steps to flush any blocks which might be in the cache. 3153 */ 3154 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3155 { 3156 struct inode *inode = mapping->host; 3157 sector_t ret = 0; 3158 3159 inode_lock_shared(inode); 3160 /* 3161 * We can get here for an inline file via the FIBMAP ioctl 3162 */ 3163 if (ext4_has_inline_data(inode)) 3164 goto out; 3165 3166 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3167 (test_opt(inode->i_sb, DELALLOC) || 3168 ext4_should_journal_data(inode))) { 3169 /* 3170 * With delalloc or journalled data we want to sync the file so 3171 * that we can make sure we allocate blocks for file and data 3172 * is in place for the user to see it 3173 */ 3174 filemap_write_and_wait(mapping); 3175 } 3176 3177 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3178 3179 out: 3180 inode_unlock_shared(inode); 3181 return ret; 3182 } 3183 3184 static int ext4_read_folio(struct file *file, struct folio *folio) 3185 { 3186 int ret = -EAGAIN; 3187 struct inode *inode = folio->mapping->host; 3188 3189 trace_ext4_read_folio(inode, folio); 3190 3191 if (ext4_has_inline_data(inode)) 3192 ret = ext4_readpage_inline(inode, folio); 3193 3194 if (ret == -EAGAIN) 3195 return ext4_mpage_readpages(inode, NULL, folio); 3196 3197 return ret; 3198 } 3199 3200 static void ext4_readahead(struct readahead_control *rac) 3201 { 3202 struct inode *inode = rac->mapping->host; 3203 3204 /* If the file has inline data, no need to do readahead. */ 3205 if (ext4_has_inline_data(inode)) 3206 return; 3207 3208 ext4_mpage_readpages(inode, rac, NULL); 3209 } 3210 3211 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3212 size_t length) 3213 { 3214 trace_ext4_invalidate_folio(folio, offset, length); 3215 3216 /* No journalling happens on data buffers when this function is used */ 3217 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3218 3219 block_invalidate_folio(folio, offset, length); 3220 } 3221 3222 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3223 size_t offset, size_t length) 3224 { 3225 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3226 3227 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3228 3229 /* 3230 * If it's a full truncate we just forget about the pending dirtying 3231 */ 3232 if (offset == 0 && length == folio_size(folio)) 3233 folio_clear_checked(folio); 3234 3235 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3236 } 3237 3238 /* Wrapper for aops... */ 3239 static void ext4_journalled_invalidate_folio(struct folio *folio, 3240 size_t offset, 3241 size_t length) 3242 { 3243 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3244 } 3245 3246 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3247 { 3248 struct inode *inode = folio->mapping->host; 3249 journal_t *journal = EXT4_JOURNAL(inode); 3250 3251 trace_ext4_release_folio(inode, folio); 3252 3253 /* Page has dirty journalled data -> cannot release */ 3254 if (folio_test_checked(folio)) 3255 return false; 3256 if (journal) 3257 return jbd2_journal_try_to_free_buffers(journal, folio); 3258 else 3259 return try_to_free_buffers(folio); 3260 } 3261 3262 static bool ext4_inode_datasync_dirty(struct inode *inode) 3263 { 3264 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3265 3266 if (journal) { 3267 if (jbd2_transaction_committed(journal, 3268 EXT4_I(inode)->i_datasync_tid)) 3269 return false; 3270 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3271 return !list_empty(&EXT4_I(inode)->i_fc_list); 3272 return true; 3273 } 3274 3275 /* Any metadata buffers to write? */ 3276 if (!list_empty(&inode->i_mapping->i_private_list)) 3277 return true; 3278 return inode->i_state & I_DIRTY_DATASYNC; 3279 } 3280 3281 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3282 struct ext4_map_blocks *map, loff_t offset, 3283 loff_t length, unsigned int flags) 3284 { 3285 u8 blkbits = inode->i_blkbits; 3286 3287 /* 3288 * Writes that span EOF might trigger an I/O size update on completion, 3289 * so consider them to be dirty for the purpose of O_DSYNC, even if 3290 * there is no other metadata changes being made or are pending. 3291 */ 3292 iomap->flags = 0; 3293 if (ext4_inode_datasync_dirty(inode) || 3294 offset + length > i_size_read(inode)) 3295 iomap->flags |= IOMAP_F_DIRTY; 3296 3297 if (map->m_flags & EXT4_MAP_NEW) 3298 iomap->flags |= IOMAP_F_NEW; 3299 3300 /* HW-offload atomics are always used */ 3301 if (flags & IOMAP_ATOMIC) 3302 iomap->flags |= IOMAP_F_ATOMIC_BIO; 3303 3304 if (flags & IOMAP_DAX) 3305 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3306 else 3307 iomap->bdev = inode->i_sb->s_bdev; 3308 iomap->offset = (u64) map->m_lblk << blkbits; 3309 iomap->length = (u64) map->m_len << blkbits; 3310 3311 if ((map->m_flags & EXT4_MAP_MAPPED) && 3312 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3313 iomap->flags |= IOMAP_F_MERGED; 3314 3315 /* 3316 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3317 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3318 * set. In order for any allocated unwritten extents to be converted 3319 * into written extents correctly within the ->end_io() handler, we 3320 * need to ensure that the iomap->type is set appropriately. Hence, the 3321 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3322 * been set first. 3323 */ 3324 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3325 iomap->type = IOMAP_UNWRITTEN; 3326 iomap->addr = (u64) map->m_pblk << blkbits; 3327 if (flags & IOMAP_DAX) 3328 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3329 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3330 iomap->type = IOMAP_MAPPED; 3331 iomap->addr = (u64) map->m_pblk << blkbits; 3332 if (flags & IOMAP_DAX) 3333 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3334 } else if (map->m_flags & EXT4_MAP_DELAYED) { 3335 iomap->type = IOMAP_DELALLOC; 3336 iomap->addr = IOMAP_NULL_ADDR; 3337 } else { 3338 iomap->type = IOMAP_HOLE; 3339 iomap->addr = IOMAP_NULL_ADDR; 3340 } 3341 } 3342 3343 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3344 unsigned int flags) 3345 { 3346 handle_t *handle; 3347 u8 blkbits = inode->i_blkbits; 3348 int ret, dio_credits, m_flags = 0, retries = 0; 3349 3350 /* 3351 * Trim the mapping request to the maximum value that we can map at 3352 * once for direct I/O. 3353 */ 3354 if (map->m_len > DIO_MAX_BLOCKS) 3355 map->m_len = DIO_MAX_BLOCKS; 3356 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3357 3358 retry: 3359 /* 3360 * Either we allocate blocks and then don't get an unwritten extent, so 3361 * in that case we have reserved enough credits. Or, the blocks are 3362 * already allocated and unwritten. In that case, the extent conversion 3363 * fits into the credits as well. 3364 */ 3365 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3366 if (IS_ERR(handle)) 3367 return PTR_ERR(handle); 3368 3369 /* 3370 * DAX and direct I/O are the only two operations that are currently 3371 * supported with IOMAP_WRITE. 3372 */ 3373 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3374 if (flags & IOMAP_DAX) 3375 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3376 /* 3377 * We use i_size instead of i_disksize here because delalloc writeback 3378 * can complete at any point during the I/O and subsequently push the 3379 * i_disksize out to i_size. This could be beyond where direct I/O is 3380 * happening and thus expose allocated blocks to direct I/O reads. 3381 */ 3382 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3383 m_flags = EXT4_GET_BLOCKS_CREATE; 3384 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3385 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3386 3387 ret = ext4_map_blocks(handle, inode, map, m_flags); 3388 3389 /* 3390 * We cannot fill holes in indirect tree based inodes as that could 3391 * expose stale data in the case of a crash. Use the magic error code 3392 * to fallback to buffered I/O. 3393 */ 3394 if (!m_flags && !ret) 3395 ret = -ENOTBLK; 3396 3397 ext4_journal_stop(handle); 3398 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3399 goto retry; 3400 3401 return ret; 3402 } 3403 3404 3405 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3406 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3407 { 3408 int ret; 3409 struct ext4_map_blocks map; 3410 u8 blkbits = inode->i_blkbits; 3411 3412 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3413 return -EINVAL; 3414 3415 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3416 return -ERANGE; 3417 3418 /* 3419 * Calculate the first and last logical blocks respectively. 3420 */ 3421 map.m_lblk = offset >> blkbits; 3422 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3423 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3424 3425 if (flags & IOMAP_WRITE) { 3426 /* 3427 * We check here if the blocks are already allocated, then we 3428 * don't need to start a journal txn and we can directly return 3429 * the mapping information. This could boost performance 3430 * especially in multi-threaded overwrite requests. 3431 */ 3432 if (offset + length <= i_size_read(inode)) { 3433 ret = ext4_map_blocks(NULL, inode, &map, 0); 3434 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3435 goto out; 3436 } 3437 ret = ext4_iomap_alloc(inode, &map, flags); 3438 } else { 3439 ret = ext4_map_blocks(NULL, inode, &map, 0); 3440 } 3441 3442 if (ret < 0) 3443 return ret; 3444 out: 3445 /* 3446 * When inline encryption is enabled, sometimes I/O to an encrypted file 3447 * has to be broken up to guarantee DUN contiguity. Handle this by 3448 * limiting the length of the mapping returned. 3449 */ 3450 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3451 3452 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3453 3454 return 0; 3455 } 3456 3457 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3458 loff_t length, unsigned flags, struct iomap *iomap, 3459 struct iomap *srcmap) 3460 { 3461 int ret; 3462 3463 /* 3464 * Even for writes we don't need to allocate blocks, so just pretend 3465 * we are reading to save overhead of starting a transaction. 3466 */ 3467 flags &= ~IOMAP_WRITE; 3468 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3469 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3470 return ret; 3471 } 3472 3473 static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written) 3474 { 3475 /* must be a directio to fall back to buffered */ 3476 if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != 3477 (IOMAP_WRITE | IOMAP_DIRECT)) 3478 return false; 3479 3480 /* atomic writes are all-or-nothing */ 3481 if (flags & IOMAP_ATOMIC) 3482 return false; 3483 3484 /* can only try again if we wrote nothing */ 3485 return written == 0; 3486 } 3487 3488 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3489 ssize_t written, unsigned flags, struct iomap *iomap) 3490 { 3491 /* 3492 * Check to see whether an error occurred while writing out the data to 3493 * the allocated blocks. If so, return the magic error code for 3494 * non-atomic write so that we fallback to buffered I/O and attempt to 3495 * complete the remainder of the I/O. 3496 * For non-atomic writes, any blocks that may have been 3497 * allocated in preparation for the direct I/O will be reused during 3498 * buffered I/O. For atomic write, we never fallback to buffered-io. 3499 */ 3500 if (ext4_want_directio_fallback(flags, written)) 3501 return -ENOTBLK; 3502 3503 return 0; 3504 } 3505 3506 const struct iomap_ops ext4_iomap_ops = { 3507 .iomap_begin = ext4_iomap_begin, 3508 .iomap_end = ext4_iomap_end, 3509 }; 3510 3511 const struct iomap_ops ext4_iomap_overwrite_ops = { 3512 .iomap_begin = ext4_iomap_overwrite_begin, 3513 .iomap_end = ext4_iomap_end, 3514 }; 3515 3516 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3517 loff_t length, unsigned int flags, 3518 struct iomap *iomap, struct iomap *srcmap) 3519 { 3520 int ret; 3521 struct ext4_map_blocks map; 3522 u8 blkbits = inode->i_blkbits; 3523 3524 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3525 return -EINVAL; 3526 3527 if (ext4_has_inline_data(inode)) { 3528 ret = ext4_inline_data_iomap(inode, iomap); 3529 if (ret != -EAGAIN) { 3530 if (ret == 0 && offset >= iomap->length) 3531 ret = -ENOENT; 3532 return ret; 3533 } 3534 } 3535 3536 /* 3537 * Calculate the first and last logical block respectively. 3538 */ 3539 map.m_lblk = offset >> blkbits; 3540 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3541 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3542 3543 /* 3544 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3545 * So handle it here itself instead of querying ext4_map_blocks(). 3546 * Since ext4_map_blocks() will warn about it and will return 3547 * -EIO error. 3548 */ 3549 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3550 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3551 3552 if (offset >= sbi->s_bitmap_maxbytes) { 3553 map.m_flags = 0; 3554 goto set_iomap; 3555 } 3556 } 3557 3558 ret = ext4_map_blocks(NULL, inode, &map, 0); 3559 if (ret < 0) 3560 return ret; 3561 set_iomap: 3562 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3563 3564 return 0; 3565 } 3566 3567 const struct iomap_ops ext4_iomap_report_ops = { 3568 .iomap_begin = ext4_iomap_begin_report, 3569 }; 3570 3571 /* 3572 * For data=journal mode, folio should be marked dirty only when it was 3573 * writeably mapped. When that happens, it was already attached to the 3574 * transaction and marked as jbddirty (we take care of this in 3575 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3576 * so we should have nothing to do here, except for the case when someone 3577 * had the page pinned and dirtied the page through this pin (e.g. by doing 3578 * direct IO to it). In that case we'd need to attach buffers here to the 3579 * transaction but we cannot due to lock ordering. We cannot just dirty the 3580 * folio and leave attached buffers clean, because the buffers' dirty state is 3581 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3582 * the journalling code will explode. So what we do is to mark the folio 3583 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3584 * to the transaction appropriately. 3585 */ 3586 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3587 struct folio *folio) 3588 { 3589 WARN_ON_ONCE(!folio_buffers(folio)); 3590 if (folio_maybe_dma_pinned(folio)) 3591 folio_set_checked(folio); 3592 return filemap_dirty_folio(mapping, folio); 3593 } 3594 3595 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3596 { 3597 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3598 WARN_ON_ONCE(!folio_buffers(folio)); 3599 return block_dirty_folio(mapping, folio); 3600 } 3601 3602 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3603 struct file *file, sector_t *span) 3604 { 3605 return iomap_swapfile_activate(sis, file, span, 3606 &ext4_iomap_report_ops); 3607 } 3608 3609 static const struct address_space_operations ext4_aops = { 3610 .read_folio = ext4_read_folio, 3611 .readahead = ext4_readahead, 3612 .writepages = ext4_writepages, 3613 .write_begin = ext4_write_begin, 3614 .write_end = ext4_write_end, 3615 .dirty_folio = ext4_dirty_folio, 3616 .bmap = ext4_bmap, 3617 .invalidate_folio = ext4_invalidate_folio, 3618 .release_folio = ext4_release_folio, 3619 .migrate_folio = buffer_migrate_folio, 3620 .is_partially_uptodate = block_is_partially_uptodate, 3621 .error_remove_folio = generic_error_remove_folio, 3622 .swap_activate = ext4_iomap_swap_activate, 3623 }; 3624 3625 static const struct address_space_operations ext4_journalled_aops = { 3626 .read_folio = ext4_read_folio, 3627 .readahead = ext4_readahead, 3628 .writepages = ext4_writepages, 3629 .write_begin = ext4_write_begin, 3630 .write_end = ext4_journalled_write_end, 3631 .dirty_folio = ext4_journalled_dirty_folio, 3632 .bmap = ext4_bmap, 3633 .invalidate_folio = ext4_journalled_invalidate_folio, 3634 .release_folio = ext4_release_folio, 3635 .migrate_folio = buffer_migrate_folio_norefs, 3636 .is_partially_uptodate = block_is_partially_uptodate, 3637 .error_remove_folio = generic_error_remove_folio, 3638 .swap_activate = ext4_iomap_swap_activate, 3639 }; 3640 3641 static const struct address_space_operations ext4_da_aops = { 3642 .read_folio = ext4_read_folio, 3643 .readahead = ext4_readahead, 3644 .writepages = ext4_writepages, 3645 .write_begin = ext4_da_write_begin, 3646 .write_end = ext4_da_write_end, 3647 .dirty_folio = ext4_dirty_folio, 3648 .bmap = ext4_bmap, 3649 .invalidate_folio = ext4_invalidate_folio, 3650 .release_folio = ext4_release_folio, 3651 .migrate_folio = buffer_migrate_folio, 3652 .is_partially_uptodate = block_is_partially_uptodate, 3653 .error_remove_folio = generic_error_remove_folio, 3654 .swap_activate = ext4_iomap_swap_activate, 3655 }; 3656 3657 static const struct address_space_operations ext4_dax_aops = { 3658 .writepages = ext4_dax_writepages, 3659 .dirty_folio = noop_dirty_folio, 3660 .bmap = ext4_bmap, 3661 .swap_activate = ext4_iomap_swap_activate, 3662 }; 3663 3664 void ext4_set_aops(struct inode *inode) 3665 { 3666 switch (ext4_inode_journal_mode(inode)) { 3667 case EXT4_INODE_ORDERED_DATA_MODE: 3668 case EXT4_INODE_WRITEBACK_DATA_MODE: 3669 break; 3670 case EXT4_INODE_JOURNAL_DATA_MODE: 3671 inode->i_mapping->a_ops = &ext4_journalled_aops; 3672 return; 3673 default: 3674 BUG(); 3675 } 3676 if (IS_DAX(inode)) 3677 inode->i_mapping->a_ops = &ext4_dax_aops; 3678 else if (test_opt(inode->i_sb, DELALLOC)) 3679 inode->i_mapping->a_ops = &ext4_da_aops; 3680 else 3681 inode->i_mapping->a_ops = &ext4_aops; 3682 } 3683 3684 /* 3685 * Here we can't skip an unwritten buffer even though it usually reads zero 3686 * because it might have data in pagecache (eg, if called from ext4_zero_range, 3687 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a 3688 * racing writeback can come later and flush the stale pagecache to disk. 3689 */ 3690 static int __ext4_block_zero_page_range(handle_t *handle, 3691 struct address_space *mapping, loff_t from, loff_t length) 3692 { 3693 ext4_fsblk_t index = from >> PAGE_SHIFT; 3694 unsigned offset = from & (PAGE_SIZE-1); 3695 unsigned blocksize, pos; 3696 ext4_lblk_t iblock; 3697 struct inode *inode = mapping->host; 3698 struct buffer_head *bh; 3699 struct folio *folio; 3700 int err = 0; 3701 3702 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3703 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3704 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3705 if (IS_ERR(folio)) 3706 return PTR_ERR(folio); 3707 3708 blocksize = inode->i_sb->s_blocksize; 3709 3710 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3711 3712 bh = folio_buffers(folio); 3713 if (!bh) 3714 bh = create_empty_buffers(folio, blocksize, 0); 3715 3716 /* Find the buffer that contains "offset" */ 3717 pos = blocksize; 3718 while (offset >= pos) { 3719 bh = bh->b_this_page; 3720 iblock++; 3721 pos += blocksize; 3722 } 3723 if (buffer_freed(bh)) { 3724 BUFFER_TRACE(bh, "freed: skip"); 3725 goto unlock; 3726 } 3727 if (!buffer_mapped(bh)) { 3728 BUFFER_TRACE(bh, "unmapped"); 3729 ext4_get_block(inode, iblock, bh, 0); 3730 /* unmapped? It's a hole - nothing to do */ 3731 if (!buffer_mapped(bh)) { 3732 BUFFER_TRACE(bh, "still unmapped"); 3733 goto unlock; 3734 } 3735 } 3736 3737 /* Ok, it's mapped. Make sure it's up-to-date */ 3738 if (folio_test_uptodate(folio)) 3739 set_buffer_uptodate(bh); 3740 3741 if (!buffer_uptodate(bh)) { 3742 err = ext4_read_bh_lock(bh, 0, true); 3743 if (err) 3744 goto unlock; 3745 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3746 /* We expect the key to be set. */ 3747 BUG_ON(!fscrypt_has_encryption_key(inode)); 3748 err = fscrypt_decrypt_pagecache_blocks(folio, 3749 blocksize, 3750 bh_offset(bh)); 3751 if (err) { 3752 clear_buffer_uptodate(bh); 3753 goto unlock; 3754 } 3755 } 3756 } 3757 if (ext4_should_journal_data(inode)) { 3758 BUFFER_TRACE(bh, "get write access"); 3759 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3760 EXT4_JTR_NONE); 3761 if (err) 3762 goto unlock; 3763 } 3764 folio_zero_range(folio, offset, length); 3765 BUFFER_TRACE(bh, "zeroed end of block"); 3766 3767 if (ext4_should_journal_data(inode)) { 3768 err = ext4_dirty_journalled_data(handle, bh); 3769 } else { 3770 err = 0; 3771 mark_buffer_dirty(bh); 3772 if (ext4_should_order_data(inode)) 3773 err = ext4_jbd2_inode_add_write(handle, inode, from, 3774 length); 3775 } 3776 3777 unlock: 3778 folio_unlock(folio); 3779 folio_put(folio); 3780 return err; 3781 } 3782 3783 /* 3784 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3785 * starting from file offset 'from'. The range to be zero'd must 3786 * be contained with in one block. If the specified range exceeds 3787 * the end of the block it will be shortened to end of the block 3788 * that corresponds to 'from' 3789 */ 3790 static int ext4_block_zero_page_range(handle_t *handle, 3791 struct address_space *mapping, loff_t from, loff_t length) 3792 { 3793 struct inode *inode = mapping->host; 3794 unsigned offset = from & (PAGE_SIZE-1); 3795 unsigned blocksize = inode->i_sb->s_blocksize; 3796 unsigned max = blocksize - (offset & (blocksize - 1)); 3797 3798 /* 3799 * correct length if it does not fall between 3800 * 'from' and the end of the block 3801 */ 3802 if (length > max || length < 0) 3803 length = max; 3804 3805 if (IS_DAX(inode)) { 3806 return dax_zero_range(inode, from, length, NULL, 3807 &ext4_iomap_ops); 3808 } 3809 return __ext4_block_zero_page_range(handle, mapping, from, length); 3810 } 3811 3812 /* 3813 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3814 * up to the end of the block which corresponds to `from'. 3815 * This required during truncate. We need to physically zero the tail end 3816 * of that block so it doesn't yield old data if the file is later grown. 3817 */ 3818 static int ext4_block_truncate_page(handle_t *handle, 3819 struct address_space *mapping, loff_t from) 3820 { 3821 unsigned offset = from & (PAGE_SIZE-1); 3822 unsigned length; 3823 unsigned blocksize; 3824 struct inode *inode = mapping->host; 3825 3826 /* If we are processing an encrypted inode during orphan list handling */ 3827 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3828 return 0; 3829 3830 blocksize = inode->i_sb->s_blocksize; 3831 length = blocksize - (offset & (blocksize - 1)); 3832 3833 return ext4_block_zero_page_range(handle, mapping, from, length); 3834 } 3835 3836 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3837 loff_t lstart, loff_t length) 3838 { 3839 struct super_block *sb = inode->i_sb; 3840 struct address_space *mapping = inode->i_mapping; 3841 unsigned partial_start, partial_end; 3842 ext4_fsblk_t start, end; 3843 loff_t byte_end = (lstart + length - 1); 3844 int err = 0; 3845 3846 partial_start = lstart & (sb->s_blocksize - 1); 3847 partial_end = byte_end & (sb->s_blocksize - 1); 3848 3849 start = lstart >> sb->s_blocksize_bits; 3850 end = byte_end >> sb->s_blocksize_bits; 3851 3852 /* Handle partial zero within the single block */ 3853 if (start == end && 3854 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3855 err = ext4_block_zero_page_range(handle, mapping, 3856 lstart, length); 3857 return err; 3858 } 3859 /* Handle partial zero out on the start of the range */ 3860 if (partial_start) { 3861 err = ext4_block_zero_page_range(handle, mapping, 3862 lstart, sb->s_blocksize); 3863 if (err) 3864 return err; 3865 } 3866 /* Handle partial zero out on the end of the range */ 3867 if (partial_end != sb->s_blocksize - 1) 3868 err = ext4_block_zero_page_range(handle, mapping, 3869 byte_end - partial_end, 3870 partial_end + 1); 3871 return err; 3872 } 3873 3874 int ext4_can_truncate(struct inode *inode) 3875 { 3876 if (S_ISREG(inode->i_mode)) 3877 return 1; 3878 if (S_ISDIR(inode->i_mode)) 3879 return 1; 3880 if (S_ISLNK(inode->i_mode)) 3881 return !ext4_inode_is_fast_symlink(inode); 3882 return 0; 3883 } 3884 3885 /* 3886 * We have to make sure i_disksize gets properly updated before we truncate 3887 * page cache due to hole punching or zero range. Otherwise i_disksize update 3888 * can get lost as it may have been postponed to submission of writeback but 3889 * that will never happen after we truncate page cache. 3890 */ 3891 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3892 loff_t len) 3893 { 3894 handle_t *handle; 3895 int ret; 3896 3897 loff_t size = i_size_read(inode); 3898 3899 WARN_ON(!inode_is_locked(inode)); 3900 if (offset > size || offset + len < size) 3901 return 0; 3902 3903 if (EXT4_I(inode)->i_disksize >= size) 3904 return 0; 3905 3906 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3907 if (IS_ERR(handle)) 3908 return PTR_ERR(handle); 3909 ext4_update_i_disksize(inode, size); 3910 ret = ext4_mark_inode_dirty(handle, inode); 3911 ext4_journal_stop(handle); 3912 3913 return ret; 3914 } 3915 3916 static inline void ext4_truncate_folio(struct inode *inode, 3917 loff_t start, loff_t end) 3918 { 3919 unsigned long blocksize = i_blocksize(inode); 3920 struct folio *folio; 3921 3922 /* Nothing to be done if no complete block needs to be truncated. */ 3923 if (round_up(start, blocksize) >= round_down(end, blocksize)) 3924 return; 3925 3926 folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT); 3927 if (IS_ERR(folio)) 3928 return; 3929 3930 if (folio_mkclean(folio)) 3931 folio_mark_dirty(folio); 3932 folio_unlock(folio); 3933 folio_put(folio); 3934 } 3935 3936 int ext4_truncate_page_cache_block_range(struct inode *inode, 3937 loff_t start, loff_t end) 3938 { 3939 unsigned long blocksize = i_blocksize(inode); 3940 int ret; 3941 3942 /* 3943 * For journalled data we need to write (and checkpoint) pages 3944 * before discarding page cache to avoid inconsitent data on disk 3945 * in case of crash before freeing or unwritten converting trans 3946 * is committed. 3947 */ 3948 if (ext4_should_journal_data(inode)) { 3949 ret = filemap_write_and_wait_range(inode->i_mapping, start, 3950 end - 1); 3951 if (ret) 3952 return ret; 3953 goto truncate_pagecache; 3954 } 3955 3956 /* 3957 * If the block size is less than the page size, the file's mapped 3958 * blocks within one page could be freed or converted to unwritten. 3959 * So it's necessary to remove writable userspace mappings, and then 3960 * ext4_page_mkwrite() can be called during subsequent write access 3961 * to these partial folios. 3962 */ 3963 if (!IS_ALIGNED(start | end, PAGE_SIZE) && 3964 blocksize < PAGE_SIZE && start < inode->i_size) { 3965 loff_t page_boundary = round_up(start, PAGE_SIZE); 3966 3967 ext4_truncate_folio(inode, start, min(page_boundary, end)); 3968 if (end > page_boundary) 3969 ext4_truncate_folio(inode, 3970 round_down(end, PAGE_SIZE), end); 3971 } 3972 3973 truncate_pagecache: 3974 truncate_pagecache_range(inode, start, end - 1); 3975 return 0; 3976 } 3977 3978 static void ext4_wait_dax_page(struct inode *inode) 3979 { 3980 filemap_invalidate_unlock(inode->i_mapping); 3981 schedule(); 3982 filemap_invalidate_lock(inode->i_mapping); 3983 } 3984 3985 int ext4_break_layouts(struct inode *inode) 3986 { 3987 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3988 return -EINVAL; 3989 3990 return dax_break_layout_inode(inode, ext4_wait_dax_page); 3991 } 3992 3993 /* 3994 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3995 * associated with the given offset and length 3996 * 3997 * @inode: File inode 3998 * @offset: The offset where the hole will begin 3999 * @len: The length of the hole 4000 * 4001 * Returns: 0 on success or negative on failure 4002 */ 4003 4004 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 4005 { 4006 struct inode *inode = file_inode(file); 4007 struct super_block *sb = inode->i_sb; 4008 ext4_lblk_t start_lblk, end_lblk; 4009 loff_t max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize; 4010 loff_t end = offset + length; 4011 handle_t *handle; 4012 unsigned int credits; 4013 int ret; 4014 4015 trace_ext4_punch_hole(inode, offset, length, 0); 4016 WARN_ON_ONCE(!inode_is_locked(inode)); 4017 4018 /* No need to punch hole beyond i_size */ 4019 if (offset >= inode->i_size) 4020 return 0; 4021 4022 /* 4023 * If the hole extends beyond i_size, set the hole to end after 4024 * the page that contains i_size, and also make sure that the hole 4025 * within one block before last range. 4026 */ 4027 if (end > inode->i_size) 4028 end = round_up(inode->i_size, PAGE_SIZE); 4029 if (end > max_end) 4030 end = max_end; 4031 length = end - offset; 4032 4033 /* 4034 * Attach jinode to inode for jbd2 if we do any zeroing of partial 4035 * block. 4036 */ 4037 if (!IS_ALIGNED(offset | end, sb->s_blocksize)) { 4038 ret = ext4_inode_attach_jinode(inode); 4039 if (ret < 0) 4040 return ret; 4041 } 4042 4043 4044 ret = ext4_update_disksize_before_punch(inode, offset, length); 4045 if (ret) 4046 return ret; 4047 4048 /* Now release the pages and zero block aligned part of pages*/ 4049 ret = ext4_truncate_page_cache_block_range(inode, offset, end); 4050 if (ret) 4051 return ret; 4052 4053 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4054 credits = ext4_writepage_trans_blocks(inode); 4055 else 4056 credits = ext4_blocks_for_truncate(inode); 4057 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4058 if (IS_ERR(handle)) { 4059 ret = PTR_ERR(handle); 4060 ext4_std_error(sb, ret); 4061 return ret; 4062 } 4063 4064 ret = ext4_zero_partial_blocks(handle, inode, offset, length); 4065 if (ret) 4066 goto out_handle; 4067 4068 /* If there are blocks to remove, do it */ 4069 start_lblk = EXT4_B_TO_LBLK(inode, offset); 4070 end_lblk = end >> inode->i_blkbits; 4071 4072 if (end_lblk > start_lblk) { 4073 ext4_lblk_t hole_len = end_lblk - start_lblk; 4074 4075 down_write(&EXT4_I(inode)->i_data_sem); 4076 ext4_discard_preallocations(inode); 4077 4078 ext4_es_remove_extent(inode, start_lblk, hole_len); 4079 4080 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4081 ret = ext4_ext_remove_space(inode, start_lblk, 4082 end_lblk - 1); 4083 else 4084 ret = ext4_ind_remove_space(handle, inode, start_lblk, 4085 end_lblk); 4086 if (ret) { 4087 up_write(&EXT4_I(inode)->i_data_sem); 4088 goto out_handle; 4089 } 4090 4091 ext4_es_insert_extent(inode, start_lblk, hole_len, ~0, 4092 EXTENT_STATUS_HOLE, 0); 4093 up_write(&EXT4_I(inode)->i_data_sem); 4094 } 4095 ext4_fc_track_range(handle, inode, start_lblk, end_lblk); 4096 4097 ret = ext4_mark_inode_dirty(handle, inode); 4098 if (unlikely(ret)) 4099 goto out_handle; 4100 4101 ext4_update_inode_fsync_trans(handle, inode, 1); 4102 if (IS_SYNC(inode)) 4103 ext4_handle_sync(handle); 4104 out_handle: 4105 ext4_journal_stop(handle); 4106 return ret; 4107 } 4108 4109 int ext4_inode_attach_jinode(struct inode *inode) 4110 { 4111 struct ext4_inode_info *ei = EXT4_I(inode); 4112 struct jbd2_inode *jinode; 4113 4114 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4115 return 0; 4116 4117 jinode = jbd2_alloc_inode(GFP_KERNEL); 4118 spin_lock(&inode->i_lock); 4119 if (!ei->jinode) { 4120 if (!jinode) { 4121 spin_unlock(&inode->i_lock); 4122 return -ENOMEM; 4123 } 4124 ei->jinode = jinode; 4125 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4126 jinode = NULL; 4127 } 4128 spin_unlock(&inode->i_lock); 4129 if (unlikely(jinode != NULL)) 4130 jbd2_free_inode(jinode); 4131 return 0; 4132 } 4133 4134 /* 4135 * ext4_truncate() 4136 * 4137 * We block out ext4_get_block() block instantiations across the entire 4138 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4139 * simultaneously on behalf of the same inode. 4140 * 4141 * As we work through the truncate and commit bits of it to the journal there 4142 * is one core, guiding principle: the file's tree must always be consistent on 4143 * disk. We must be able to restart the truncate after a crash. 4144 * 4145 * The file's tree may be transiently inconsistent in memory (although it 4146 * probably isn't), but whenever we close off and commit a journal transaction, 4147 * the contents of (the filesystem + the journal) must be consistent and 4148 * restartable. It's pretty simple, really: bottom up, right to left (although 4149 * left-to-right works OK too). 4150 * 4151 * Note that at recovery time, journal replay occurs *before* the restart of 4152 * truncate against the orphan inode list. 4153 * 4154 * The committed inode has the new, desired i_size (which is the same as 4155 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4156 * that this inode's truncate did not complete and it will again call 4157 * ext4_truncate() to have another go. So there will be instantiated blocks 4158 * to the right of the truncation point in a crashed ext4 filesystem. But 4159 * that's fine - as long as they are linked from the inode, the post-crash 4160 * ext4_truncate() run will find them and release them. 4161 */ 4162 int ext4_truncate(struct inode *inode) 4163 { 4164 struct ext4_inode_info *ei = EXT4_I(inode); 4165 unsigned int credits; 4166 int err = 0, err2; 4167 handle_t *handle; 4168 struct address_space *mapping = inode->i_mapping; 4169 4170 /* 4171 * There is a possibility that we're either freeing the inode 4172 * or it's a completely new inode. In those cases we might not 4173 * have i_rwsem locked because it's not necessary. 4174 */ 4175 if (!(inode->i_state & (I_NEW|I_FREEING))) 4176 WARN_ON(!inode_is_locked(inode)); 4177 trace_ext4_truncate_enter(inode); 4178 4179 if (!ext4_can_truncate(inode)) 4180 goto out_trace; 4181 4182 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4183 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4184 4185 if (ext4_has_inline_data(inode)) { 4186 int has_inline = 1; 4187 4188 err = ext4_inline_data_truncate(inode, &has_inline); 4189 if (err || has_inline) 4190 goto out_trace; 4191 } 4192 4193 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4194 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4195 err = ext4_inode_attach_jinode(inode); 4196 if (err) 4197 goto out_trace; 4198 } 4199 4200 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4201 credits = ext4_writepage_trans_blocks(inode); 4202 else 4203 credits = ext4_blocks_for_truncate(inode); 4204 4205 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4206 if (IS_ERR(handle)) { 4207 err = PTR_ERR(handle); 4208 goto out_trace; 4209 } 4210 4211 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4212 ext4_block_truncate_page(handle, mapping, inode->i_size); 4213 4214 /* 4215 * We add the inode to the orphan list, so that if this 4216 * truncate spans multiple transactions, and we crash, we will 4217 * resume the truncate when the filesystem recovers. It also 4218 * marks the inode dirty, to catch the new size. 4219 * 4220 * Implication: the file must always be in a sane, consistent 4221 * truncatable state while each transaction commits. 4222 */ 4223 err = ext4_orphan_add(handle, inode); 4224 if (err) 4225 goto out_stop; 4226 4227 down_write(&EXT4_I(inode)->i_data_sem); 4228 4229 ext4_discard_preallocations(inode); 4230 4231 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4232 err = ext4_ext_truncate(handle, inode); 4233 else 4234 ext4_ind_truncate(handle, inode); 4235 4236 up_write(&ei->i_data_sem); 4237 if (err) 4238 goto out_stop; 4239 4240 if (IS_SYNC(inode)) 4241 ext4_handle_sync(handle); 4242 4243 out_stop: 4244 /* 4245 * If this was a simple ftruncate() and the file will remain alive, 4246 * then we need to clear up the orphan record which we created above. 4247 * However, if this was a real unlink then we were called by 4248 * ext4_evict_inode(), and we allow that function to clean up the 4249 * orphan info for us. 4250 */ 4251 if (inode->i_nlink) 4252 ext4_orphan_del(handle, inode); 4253 4254 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4255 err2 = ext4_mark_inode_dirty(handle, inode); 4256 if (unlikely(err2 && !err)) 4257 err = err2; 4258 ext4_journal_stop(handle); 4259 4260 out_trace: 4261 trace_ext4_truncate_exit(inode); 4262 return err; 4263 } 4264 4265 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4266 { 4267 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4268 return inode_peek_iversion_raw(inode); 4269 else 4270 return inode_peek_iversion(inode); 4271 } 4272 4273 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4274 struct ext4_inode_info *ei) 4275 { 4276 struct inode *inode = &(ei->vfs_inode); 4277 u64 i_blocks = READ_ONCE(inode->i_blocks); 4278 struct super_block *sb = inode->i_sb; 4279 4280 if (i_blocks <= ~0U) { 4281 /* 4282 * i_blocks can be represented in a 32 bit variable 4283 * as multiple of 512 bytes 4284 */ 4285 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4286 raw_inode->i_blocks_high = 0; 4287 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4288 return 0; 4289 } 4290 4291 /* 4292 * This should never happen since sb->s_maxbytes should not have 4293 * allowed this, sb->s_maxbytes was set according to the huge_file 4294 * feature in ext4_fill_super(). 4295 */ 4296 if (!ext4_has_feature_huge_file(sb)) 4297 return -EFSCORRUPTED; 4298 4299 if (i_blocks <= 0xffffffffffffULL) { 4300 /* 4301 * i_blocks can be represented in a 48 bit variable 4302 * as multiple of 512 bytes 4303 */ 4304 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4305 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4306 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4307 } else { 4308 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4309 /* i_block is stored in file system block size */ 4310 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4311 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4312 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4313 } 4314 return 0; 4315 } 4316 4317 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4318 { 4319 struct ext4_inode_info *ei = EXT4_I(inode); 4320 uid_t i_uid; 4321 gid_t i_gid; 4322 projid_t i_projid; 4323 int block; 4324 int err; 4325 4326 err = ext4_inode_blocks_set(raw_inode, ei); 4327 4328 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4329 i_uid = i_uid_read(inode); 4330 i_gid = i_gid_read(inode); 4331 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4332 if (!(test_opt(inode->i_sb, NO_UID32))) { 4333 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4334 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4335 /* 4336 * Fix up interoperability with old kernels. Otherwise, 4337 * old inodes get re-used with the upper 16 bits of the 4338 * uid/gid intact. 4339 */ 4340 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4341 raw_inode->i_uid_high = 0; 4342 raw_inode->i_gid_high = 0; 4343 } else { 4344 raw_inode->i_uid_high = 4345 cpu_to_le16(high_16_bits(i_uid)); 4346 raw_inode->i_gid_high = 4347 cpu_to_le16(high_16_bits(i_gid)); 4348 } 4349 } else { 4350 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4351 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4352 raw_inode->i_uid_high = 0; 4353 raw_inode->i_gid_high = 0; 4354 } 4355 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4356 4357 EXT4_INODE_SET_CTIME(inode, raw_inode); 4358 EXT4_INODE_SET_MTIME(inode, raw_inode); 4359 EXT4_INODE_SET_ATIME(inode, raw_inode); 4360 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4361 4362 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4363 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4364 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4365 raw_inode->i_file_acl_high = 4366 cpu_to_le16(ei->i_file_acl >> 32); 4367 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4368 ext4_isize_set(raw_inode, ei->i_disksize); 4369 4370 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4371 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4372 if (old_valid_dev(inode->i_rdev)) { 4373 raw_inode->i_block[0] = 4374 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4375 raw_inode->i_block[1] = 0; 4376 } else { 4377 raw_inode->i_block[0] = 0; 4378 raw_inode->i_block[1] = 4379 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4380 raw_inode->i_block[2] = 0; 4381 } 4382 } else if (!ext4_has_inline_data(inode)) { 4383 for (block = 0; block < EXT4_N_BLOCKS; block++) 4384 raw_inode->i_block[block] = ei->i_data[block]; 4385 } 4386 4387 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4388 u64 ivers = ext4_inode_peek_iversion(inode); 4389 4390 raw_inode->i_disk_version = cpu_to_le32(ivers); 4391 if (ei->i_extra_isize) { 4392 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4393 raw_inode->i_version_hi = 4394 cpu_to_le32(ivers >> 32); 4395 raw_inode->i_extra_isize = 4396 cpu_to_le16(ei->i_extra_isize); 4397 } 4398 } 4399 4400 if (i_projid != EXT4_DEF_PROJID && 4401 !ext4_has_feature_project(inode->i_sb)) 4402 err = err ?: -EFSCORRUPTED; 4403 4404 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4405 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4406 raw_inode->i_projid = cpu_to_le32(i_projid); 4407 4408 ext4_inode_csum_set(inode, raw_inode, ei); 4409 return err; 4410 } 4411 4412 /* 4413 * ext4_get_inode_loc returns with an extra refcount against the inode's 4414 * underlying buffer_head on success. If we pass 'inode' and it does not 4415 * have in-inode xattr, we have all inode data in memory that is needed 4416 * to recreate the on-disk version of this inode. 4417 */ 4418 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4419 struct inode *inode, struct ext4_iloc *iloc, 4420 ext4_fsblk_t *ret_block) 4421 { 4422 struct ext4_group_desc *gdp; 4423 struct buffer_head *bh; 4424 ext4_fsblk_t block; 4425 struct blk_plug plug; 4426 int inodes_per_block, inode_offset; 4427 4428 iloc->bh = NULL; 4429 if (ino < EXT4_ROOT_INO || 4430 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4431 return -EFSCORRUPTED; 4432 4433 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4434 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4435 if (!gdp) 4436 return -EIO; 4437 4438 /* 4439 * Figure out the offset within the block group inode table 4440 */ 4441 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4442 inode_offset = ((ino - 1) % 4443 EXT4_INODES_PER_GROUP(sb)); 4444 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4445 4446 block = ext4_inode_table(sb, gdp); 4447 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4448 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4449 ext4_error(sb, "Invalid inode table block %llu in " 4450 "block_group %u", block, iloc->block_group); 4451 return -EFSCORRUPTED; 4452 } 4453 block += (inode_offset / inodes_per_block); 4454 4455 bh = sb_getblk(sb, block); 4456 if (unlikely(!bh)) 4457 return -ENOMEM; 4458 if (ext4_buffer_uptodate(bh)) 4459 goto has_buffer; 4460 4461 lock_buffer(bh); 4462 if (ext4_buffer_uptodate(bh)) { 4463 /* Someone brought it uptodate while we waited */ 4464 unlock_buffer(bh); 4465 goto has_buffer; 4466 } 4467 4468 /* 4469 * If we have all information of the inode in memory and this 4470 * is the only valid inode in the block, we need not read the 4471 * block. 4472 */ 4473 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4474 struct buffer_head *bitmap_bh; 4475 int i, start; 4476 4477 start = inode_offset & ~(inodes_per_block - 1); 4478 4479 /* Is the inode bitmap in cache? */ 4480 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4481 if (unlikely(!bitmap_bh)) 4482 goto make_io; 4483 4484 /* 4485 * If the inode bitmap isn't in cache then the 4486 * optimisation may end up performing two reads instead 4487 * of one, so skip it. 4488 */ 4489 if (!buffer_uptodate(bitmap_bh)) { 4490 brelse(bitmap_bh); 4491 goto make_io; 4492 } 4493 for (i = start; i < start + inodes_per_block; i++) { 4494 if (i == inode_offset) 4495 continue; 4496 if (ext4_test_bit(i, bitmap_bh->b_data)) 4497 break; 4498 } 4499 brelse(bitmap_bh); 4500 if (i == start + inodes_per_block) { 4501 struct ext4_inode *raw_inode = 4502 (struct ext4_inode *) (bh->b_data + iloc->offset); 4503 4504 /* all other inodes are free, so skip I/O */ 4505 memset(bh->b_data, 0, bh->b_size); 4506 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4507 ext4_fill_raw_inode(inode, raw_inode); 4508 set_buffer_uptodate(bh); 4509 unlock_buffer(bh); 4510 goto has_buffer; 4511 } 4512 } 4513 4514 make_io: 4515 /* 4516 * If we need to do any I/O, try to pre-readahead extra 4517 * blocks from the inode table. 4518 */ 4519 blk_start_plug(&plug); 4520 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4521 ext4_fsblk_t b, end, table; 4522 unsigned num; 4523 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4524 4525 table = ext4_inode_table(sb, gdp); 4526 /* s_inode_readahead_blks is always a power of 2 */ 4527 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4528 if (table > b) 4529 b = table; 4530 end = b + ra_blks; 4531 num = EXT4_INODES_PER_GROUP(sb); 4532 if (ext4_has_group_desc_csum(sb)) 4533 num -= ext4_itable_unused_count(sb, gdp); 4534 table += num / inodes_per_block; 4535 if (end > table) 4536 end = table; 4537 while (b <= end) 4538 ext4_sb_breadahead_unmovable(sb, b++); 4539 } 4540 4541 /* 4542 * There are other valid inodes in the buffer, this inode 4543 * has in-inode xattrs, or we don't have this inode in memory. 4544 * Read the block from disk. 4545 */ 4546 trace_ext4_load_inode(sb, ino); 4547 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL, 4548 ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)); 4549 blk_finish_plug(&plug); 4550 wait_on_buffer(bh); 4551 if (!buffer_uptodate(bh)) { 4552 if (ret_block) 4553 *ret_block = block; 4554 brelse(bh); 4555 return -EIO; 4556 } 4557 has_buffer: 4558 iloc->bh = bh; 4559 return 0; 4560 } 4561 4562 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4563 struct ext4_iloc *iloc) 4564 { 4565 ext4_fsblk_t err_blk = 0; 4566 int ret; 4567 4568 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4569 &err_blk); 4570 4571 if (ret == -EIO) 4572 ext4_error_inode_block(inode, err_blk, EIO, 4573 "unable to read itable block"); 4574 4575 return ret; 4576 } 4577 4578 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4579 { 4580 ext4_fsblk_t err_blk = 0; 4581 int ret; 4582 4583 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4584 &err_blk); 4585 4586 if (ret == -EIO) 4587 ext4_error_inode_block(inode, err_blk, EIO, 4588 "unable to read itable block"); 4589 4590 return ret; 4591 } 4592 4593 4594 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4595 struct ext4_iloc *iloc) 4596 { 4597 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4598 } 4599 4600 static bool ext4_should_enable_dax(struct inode *inode) 4601 { 4602 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4603 4604 if (test_opt2(inode->i_sb, DAX_NEVER)) 4605 return false; 4606 if (!S_ISREG(inode->i_mode)) 4607 return false; 4608 if (ext4_should_journal_data(inode)) 4609 return false; 4610 if (ext4_has_inline_data(inode)) 4611 return false; 4612 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4613 return false; 4614 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4615 return false; 4616 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4617 return false; 4618 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4619 return true; 4620 4621 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4622 } 4623 4624 void ext4_set_inode_flags(struct inode *inode, bool init) 4625 { 4626 unsigned int flags = EXT4_I(inode)->i_flags; 4627 unsigned int new_fl = 0; 4628 4629 WARN_ON_ONCE(IS_DAX(inode) && init); 4630 4631 if (flags & EXT4_SYNC_FL) 4632 new_fl |= S_SYNC; 4633 if (flags & EXT4_APPEND_FL) 4634 new_fl |= S_APPEND; 4635 if (flags & EXT4_IMMUTABLE_FL) 4636 new_fl |= S_IMMUTABLE; 4637 if (flags & EXT4_NOATIME_FL) 4638 new_fl |= S_NOATIME; 4639 if (flags & EXT4_DIRSYNC_FL) 4640 new_fl |= S_DIRSYNC; 4641 4642 /* Because of the way inode_set_flags() works we must preserve S_DAX 4643 * here if already set. */ 4644 new_fl |= (inode->i_flags & S_DAX); 4645 if (init && ext4_should_enable_dax(inode)) 4646 new_fl |= S_DAX; 4647 4648 if (flags & EXT4_ENCRYPT_FL) 4649 new_fl |= S_ENCRYPTED; 4650 if (flags & EXT4_CASEFOLD_FL) 4651 new_fl |= S_CASEFOLD; 4652 if (flags & EXT4_VERITY_FL) 4653 new_fl |= S_VERITY; 4654 inode_set_flags(inode, new_fl, 4655 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4656 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4657 } 4658 4659 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4660 struct ext4_inode_info *ei) 4661 { 4662 blkcnt_t i_blocks ; 4663 struct inode *inode = &(ei->vfs_inode); 4664 struct super_block *sb = inode->i_sb; 4665 4666 if (ext4_has_feature_huge_file(sb)) { 4667 /* we are using combined 48 bit field */ 4668 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4669 le32_to_cpu(raw_inode->i_blocks_lo); 4670 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4671 /* i_blocks represent file system block size */ 4672 return i_blocks << (inode->i_blkbits - 9); 4673 } else { 4674 return i_blocks; 4675 } 4676 } else { 4677 return le32_to_cpu(raw_inode->i_blocks_lo); 4678 } 4679 } 4680 4681 static inline int ext4_iget_extra_inode(struct inode *inode, 4682 struct ext4_inode *raw_inode, 4683 struct ext4_inode_info *ei) 4684 { 4685 __le32 *magic = (void *)raw_inode + 4686 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4687 4688 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4689 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4690 int err; 4691 4692 err = xattr_check_inode(inode, IHDR(inode, raw_inode), 4693 ITAIL(inode, raw_inode)); 4694 if (err) 4695 return err; 4696 4697 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4698 err = ext4_find_inline_data_nolock(inode); 4699 if (!err && ext4_has_inline_data(inode)) 4700 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4701 return err; 4702 } else 4703 EXT4_I(inode)->i_inline_off = 0; 4704 return 0; 4705 } 4706 4707 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4708 { 4709 if (!ext4_has_feature_project(inode->i_sb)) 4710 return -EOPNOTSUPP; 4711 *projid = EXT4_I(inode)->i_projid; 4712 return 0; 4713 } 4714 4715 /* 4716 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4717 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4718 * set. 4719 */ 4720 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4721 { 4722 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4723 inode_set_iversion_raw(inode, val); 4724 else 4725 inode_set_iversion_queried(inode, val); 4726 } 4727 4728 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags, 4729 const char *function, unsigned int line) 4730 { 4731 const char *err_str; 4732 4733 if (flags & EXT4_IGET_EA_INODE) { 4734 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 4735 err_str = "missing EA_INODE flag"; 4736 goto error; 4737 } 4738 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4739 EXT4_I(inode)->i_file_acl) { 4740 err_str = "ea_inode with extended attributes"; 4741 goto error; 4742 } 4743 } else { 4744 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 4745 /* 4746 * open_by_handle_at() could provide an old inode number 4747 * that has since been reused for an ea_inode; this does 4748 * not indicate filesystem corruption 4749 */ 4750 if (flags & EXT4_IGET_HANDLE) 4751 return -ESTALE; 4752 err_str = "unexpected EA_INODE flag"; 4753 goto error; 4754 } 4755 } 4756 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) { 4757 err_str = "unexpected bad inode w/o EXT4_IGET_BAD"; 4758 goto error; 4759 } 4760 return 0; 4761 4762 error: 4763 ext4_error_inode(inode, function, line, 0, err_str); 4764 return -EFSCORRUPTED; 4765 } 4766 4767 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4768 ext4_iget_flags flags, const char *function, 4769 unsigned int line) 4770 { 4771 struct ext4_iloc iloc; 4772 struct ext4_inode *raw_inode; 4773 struct ext4_inode_info *ei; 4774 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4775 struct inode *inode; 4776 journal_t *journal = EXT4_SB(sb)->s_journal; 4777 long ret; 4778 loff_t size; 4779 int block; 4780 uid_t i_uid; 4781 gid_t i_gid; 4782 projid_t i_projid; 4783 4784 if ((!(flags & EXT4_IGET_SPECIAL) && 4785 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4786 ino == le32_to_cpu(es->s_usr_quota_inum) || 4787 ino == le32_to_cpu(es->s_grp_quota_inum) || 4788 ino == le32_to_cpu(es->s_prj_quota_inum) || 4789 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4790 (ino < EXT4_ROOT_INO) || 4791 (ino > le32_to_cpu(es->s_inodes_count))) { 4792 if (flags & EXT4_IGET_HANDLE) 4793 return ERR_PTR(-ESTALE); 4794 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4795 "inode #%lu: comm %s: iget: illegal inode #", 4796 ino, current->comm); 4797 return ERR_PTR(-EFSCORRUPTED); 4798 } 4799 4800 inode = iget_locked(sb, ino); 4801 if (!inode) 4802 return ERR_PTR(-ENOMEM); 4803 if (!(inode->i_state & I_NEW)) { 4804 ret = check_igot_inode(inode, flags, function, line); 4805 if (ret) { 4806 iput(inode); 4807 return ERR_PTR(ret); 4808 } 4809 return inode; 4810 } 4811 4812 ei = EXT4_I(inode); 4813 iloc.bh = NULL; 4814 4815 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4816 if (ret < 0) 4817 goto bad_inode; 4818 raw_inode = ext4_raw_inode(&iloc); 4819 4820 if ((flags & EXT4_IGET_HANDLE) && 4821 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4822 ret = -ESTALE; 4823 goto bad_inode; 4824 } 4825 4826 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4827 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4828 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4829 EXT4_INODE_SIZE(inode->i_sb) || 4830 (ei->i_extra_isize & 3)) { 4831 ext4_error_inode(inode, function, line, 0, 4832 "iget: bad extra_isize %u " 4833 "(inode size %u)", 4834 ei->i_extra_isize, 4835 EXT4_INODE_SIZE(inode->i_sb)); 4836 ret = -EFSCORRUPTED; 4837 goto bad_inode; 4838 } 4839 } else 4840 ei->i_extra_isize = 0; 4841 4842 /* Precompute checksum seed for inode metadata */ 4843 if (ext4_has_feature_metadata_csum(sb)) { 4844 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4845 __u32 csum; 4846 __le32 inum = cpu_to_le32(inode->i_ino); 4847 __le32 gen = raw_inode->i_generation; 4848 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4849 sizeof(inum)); 4850 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4851 sizeof(gen)); 4852 } 4853 4854 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4855 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4856 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4857 ext4_error_inode_err(inode, function, line, 0, 4858 EFSBADCRC, "iget: checksum invalid"); 4859 ret = -EFSBADCRC; 4860 goto bad_inode; 4861 } 4862 4863 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4864 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4865 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4866 if (ext4_has_feature_project(sb) && 4867 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4868 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4869 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4870 else 4871 i_projid = EXT4_DEF_PROJID; 4872 4873 if (!(test_opt(inode->i_sb, NO_UID32))) { 4874 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4875 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4876 } 4877 i_uid_write(inode, i_uid); 4878 i_gid_write(inode, i_gid); 4879 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4880 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4881 4882 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4883 ei->i_inline_off = 0; 4884 ei->i_dir_start_lookup = 0; 4885 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4886 /* We now have enough fields to check if the inode was active or not. 4887 * This is needed because nfsd might try to access dead inodes 4888 * the test is that same one that e2fsck uses 4889 * NeilBrown 1999oct15 4890 */ 4891 if (inode->i_nlink == 0) { 4892 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4893 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4894 ino != EXT4_BOOT_LOADER_INO) { 4895 /* this inode is deleted or unallocated */ 4896 if (flags & EXT4_IGET_SPECIAL) { 4897 ext4_error_inode(inode, function, line, 0, 4898 "iget: special inode unallocated"); 4899 ret = -EFSCORRUPTED; 4900 } else 4901 ret = -ESTALE; 4902 goto bad_inode; 4903 } 4904 /* The only unlinked inodes we let through here have 4905 * valid i_mode and are being read by the orphan 4906 * recovery code: that's fine, we're about to complete 4907 * the process of deleting those. 4908 * OR it is the EXT4_BOOT_LOADER_INO which is 4909 * not initialized on a new filesystem. */ 4910 } 4911 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4912 ext4_set_inode_flags(inode, true); 4913 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4914 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4915 if (ext4_has_feature_64bit(sb)) 4916 ei->i_file_acl |= 4917 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4918 inode->i_size = ext4_isize(sb, raw_inode); 4919 if ((size = i_size_read(inode)) < 0) { 4920 ext4_error_inode(inode, function, line, 0, 4921 "iget: bad i_size value: %lld", size); 4922 ret = -EFSCORRUPTED; 4923 goto bad_inode; 4924 } 4925 /* 4926 * If dir_index is not enabled but there's dir with INDEX flag set, 4927 * we'd normally treat htree data as empty space. But with metadata 4928 * checksumming that corrupts checksums so forbid that. 4929 */ 4930 if (!ext4_has_feature_dir_index(sb) && 4931 ext4_has_feature_metadata_csum(sb) && 4932 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4933 ext4_error_inode(inode, function, line, 0, 4934 "iget: Dir with htree data on filesystem without dir_index feature."); 4935 ret = -EFSCORRUPTED; 4936 goto bad_inode; 4937 } 4938 ei->i_disksize = inode->i_size; 4939 #ifdef CONFIG_QUOTA 4940 ei->i_reserved_quota = 0; 4941 #endif 4942 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4943 ei->i_block_group = iloc.block_group; 4944 ei->i_last_alloc_group = ~0; 4945 /* 4946 * NOTE! The in-memory inode i_data array is in little-endian order 4947 * even on big-endian machines: we do NOT byteswap the block numbers! 4948 */ 4949 for (block = 0; block < EXT4_N_BLOCKS; block++) 4950 ei->i_data[block] = raw_inode->i_block[block]; 4951 INIT_LIST_HEAD(&ei->i_orphan); 4952 ext4_fc_init_inode(&ei->vfs_inode); 4953 4954 /* 4955 * Set transaction id's of transactions that have to be committed 4956 * to finish f[data]sync. We set them to currently running transaction 4957 * as we cannot be sure that the inode or some of its metadata isn't 4958 * part of the transaction - the inode could have been reclaimed and 4959 * now it is reread from disk. 4960 */ 4961 if (journal) { 4962 transaction_t *transaction; 4963 tid_t tid; 4964 4965 read_lock(&journal->j_state_lock); 4966 if (journal->j_running_transaction) 4967 transaction = journal->j_running_transaction; 4968 else 4969 transaction = journal->j_committing_transaction; 4970 if (transaction) 4971 tid = transaction->t_tid; 4972 else 4973 tid = journal->j_commit_sequence; 4974 read_unlock(&journal->j_state_lock); 4975 ei->i_sync_tid = tid; 4976 ei->i_datasync_tid = tid; 4977 } 4978 4979 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4980 if (ei->i_extra_isize == 0) { 4981 /* The extra space is currently unused. Use it. */ 4982 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4983 ei->i_extra_isize = sizeof(struct ext4_inode) - 4984 EXT4_GOOD_OLD_INODE_SIZE; 4985 } else { 4986 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4987 if (ret) 4988 goto bad_inode; 4989 } 4990 } 4991 4992 EXT4_INODE_GET_CTIME(inode, raw_inode); 4993 EXT4_INODE_GET_ATIME(inode, raw_inode); 4994 EXT4_INODE_GET_MTIME(inode, raw_inode); 4995 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4996 4997 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4998 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4999 5000 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5001 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5002 ivers |= 5003 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5004 } 5005 ext4_inode_set_iversion_queried(inode, ivers); 5006 } 5007 5008 ret = 0; 5009 if (ei->i_file_acl && 5010 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 5011 ext4_error_inode(inode, function, line, 0, 5012 "iget: bad extended attribute block %llu", 5013 ei->i_file_acl); 5014 ret = -EFSCORRUPTED; 5015 goto bad_inode; 5016 } else if (!ext4_has_inline_data(inode)) { 5017 /* validate the block references in the inode */ 5018 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 5019 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5020 (S_ISLNK(inode->i_mode) && 5021 !ext4_inode_is_fast_symlink(inode)))) { 5022 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5023 ret = ext4_ext_check_inode(inode); 5024 else 5025 ret = ext4_ind_check_inode(inode); 5026 } 5027 } 5028 if (ret) 5029 goto bad_inode; 5030 5031 if (S_ISREG(inode->i_mode)) { 5032 inode->i_op = &ext4_file_inode_operations; 5033 inode->i_fop = &ext4_file_operations; 5034 ext4_set_aops(inode); 5035 } else if (S_ISDIR(inode->i_mode)) { 5036 inode->i_op = &ext4_dir_inode_operations; 5037 inode->i_fop = &ext4_dir_operations; 5038 } else if (S_ISLNK(inode->i_mode)) { 5039 /* VFS does not allow setting these so must be corruption */ 5040 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5041 ext4_error_inode(inode, function, line, 0, 5042 "iget: immutable or append flags " 5043 "not allowed on symlinks"); 5044 ret = -EFSCORRUPTED; 5045 goto bad_inode; 5046 } 5047 if (IS_ENCRYPTED(inode)) { 5048 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5049 } else if (ext4_inode_is_fast_symlink(inode)) { 5050 inode->i_op = &ext4_fast_symlink_inode_operations; 5051 if (inode->i_size == 0 || 5052 inode->i_size >= sizeof(ei->i_data) || 5053 strnlen((char *)ei->i_data, inode->i_size + 1) != 5054 inode->i_size) { 5055 ext4_error_inode(inode, function, line, 0, 5056 "invalid fast symlink length %llu", 5057 (unsigned long long)inode->i_size); 5058 ret = -EFSCORRUPTED; 5059 goto bad_inode; 5060 } 5061 inode_set_cached_link(inode, (char *)ei->i_data, 5062 inode->i_size); 5063 } else { 5064 inode->i_op = &ext4_symlink_inode_operations; 5065 } 5066 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5067 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5068 inode->i_op = &ext4_special_inode_operations; 5069 if (raw_inode->i_block[0]) 5070 init_special_inode(inode, inode->i_mode, 5071 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5072 else 5073 init_special_inode(inode, inode->i_mode, 5074 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5075 } else if (ino == EXT4_BOOT_LOADER_INO) { 5076 make_bad_inode(inode); 5077 } else { 5078 ret = -EFSCORRUPTED; 5079 ext4_error_inode(inode, function, line, 0, 5080 "iget: bogus i_mode (%o)", inode->i_mode); 5081 goto bad_inode; 5082 } 5083 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 5084 ext4_error_inode(inode, function, line, 0, 5085 "casefold flag without casefold feature"); 5086 ret = -EFSCORRUPTED; 5087 goto bad_inode; 5088 } 5089 ret = check_igot_inode(inode, flags, function, line); 5090 /* 5091 * -ESTALE here means there is nothing inherently wrong with the inode, 5092 * it's just not an inode we can return for an fhandle lookup. 5093 */ 5094 if (ret == -ESTALE) { 5095 brelse(iloc.bh); 5096 unlock_new_inode(inode); 5097 iput(inode); 5098 return ERR_PTR(-ESTALE); 5099 } 5100 if (ret) 5101 goto bad_inode; 5102 brelse(iloc.bh); 5103 5104 unlock_new_inode(inode); 5105 return inode; 5106 5107 bad_inode: 5108 brelse(iloc.bh); 5109 iget_failed(inode); 5110 return ERR_PTR(ret); 5111 } 5112 5113 static void __ext4_update_other_inode_time(struct super_block *sb, 5114 unsigned long orig_ino, 5115 unsigned long ino, 5116 struct ext4_inode *raw_inode) 5117 { 5118 struct inode *inode; 5119 5120 inode = find_inode_by_ino_rcu(sb, ino); 5121 if (!inode) 5122 return; 5123 5124 if (!inode_is_dirtytime_only(inode)) 5125 return; 5126 5127 spin_lock(&inode->i_lock); 5128 if (inode_is_dirtytime_only(inode)) { 5129 struct ext4_inode_info *ei = EXT4_I(inode); 5130 5131 inode->i_state &= ~I_DIRTY_TIME; 5132 spin_unlock(&inode->i_lock); 5133 5134 spin_lock(&ei->i_raw_lock); 5135 EXT4_INODE_SET_CTIME(inode, raw_inode); 5136 EXT4_INODE_SET_MTIME(inode, raw_inode); 5137 EXT4_INODE_SET_ATIME(inode, raw_inode); 5138 ext4_inode_csum_set(inode, raw_inode, ei); 5139 spin_unlock(&ei->i_raw_lock); 5140 trace_ext4_other_inode_update_time(inode, orig_ino); 5141 return; 5142 } 5143 spin_unlock(&inode->i_lock); 5144 } 5145 5146 /* 5147 * Opportunistically update the other time fields for other inodes in 5148 * the same inode table block. 5149 */ 5150 static void ext4_update_other_inodes_time(struct super_block *sb, 5151 unsigned long orig_ino, char *buf) 5152 { 5153 unsigned long ino; 5154 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5155 int inode_size = EXT4_INODE_SIZE(sb); 5156 5157 /* 5158 * Calculate the first inode in the inode table block. Inode 5159 * numbers are one-based. That is, the first inode in a block 5160 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5161 */ 5162 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5163 rcu_read_lock(); 5164 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5165 if (ino == orig_ino) 5166 continue; 5167 __ext4_update_other_inode_time(sb, orig_ino, ino, 5168 (struct ext4_inode *)buf); 5169 } 5170 rcu_read_unlock(); 5171 } 5172 5173 /* 5174 * Post the struct inode info into an on-disk inode location in the 5175 * buffer-cache. This gobbles the caller's reference to the 5176 * buffer_head in the inode location struct. 5177 * 5178 * The caller must have write access to iloc->bh. 5179 */ 5180 static int ext4_do_update_inode(handle_t *handle, 5181 struct inode *inode, 5182 struct ext4_iloc *iloc) 5183 { 5184 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5185 struct ext4_inode_info *ei = EXT4_I(inode); 5186 struct buffer_head *bh = iloc->bh; 5187 struct super_block *sb = inode->i_sb; 5188 int err; 5189 int need_datasync = 0, set_large_file = 0; 5190 5191 spin_lock(&ei->i_raw_lock); 5192 5193 /* 5194 * For fields not tracked in the in-memory inode, initialise them 5195 * to zero for new inodes. 5196 */ 5197 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5198 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5199 5200 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5201 need_datasync = 1; 5202 if (ei->i_disksize > 0x7fffffffULL) { 5203 if (!ext4_has_feature_large_file(sb) || 5204 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5205 set_large_file = 1; 5206 } 5207 5208 err = ext4_fill_raw_inode(inode, raw_inode); 5209 spin_unlock(&ei->i_raw_lock); 5210 if (err) { 5211 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5212 goto out_brelse; 5213 } 5214 5215 if (inode->i_sb->s_flags & SB_LAZYTIME) 5216 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5217 bh->b_data); 5218 5219 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5220 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5221 if (err) 5222 goto out_error; 5223 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5224 if (set_large_file) { 5225 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5226 err = ext4_journal_get_write_access(handle, sb, 5227 EXT4_SB(sb)->s_sbh, 5228 EXT4_JTR_NONE); 5229 if (err) 5230 goto out_error; 5231 lock_buffer(EXT4_SB(sb)->s_sbh); 5232 ext4_set_feature_large_file(sb); 5233 ext4_superblock_csum_set(sb); 5234 unlock_buffer(EXT4_SB(sb)->s_sbh); 5235 ext4_handle_sync(handle); 5236 err = ext4_handle_dirty_metadata(handle, NULL, 5237 EXT4_SB(sb)->s_sbh); 5238 } 5239 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5240 out_error: 5241 ext4_std_error(inode->i_sb, err); 5242 out_brelse: 5243 brelse(bh); 5244 return err; 5245 } 5246 5247 /* 5248 * ext4_write_inode() 5249 * 5250 * We are called from a few places: 5251 * 5252 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5253 * Here, there will be no transaction running. We wait for any running 5254 * transaction to commit. 5255 * 5256 * - Within flush work (sys_sync(), kupdate and such). 5257 * We wait on commit, if told to. 5258 * 5259 * - Within iput_final() -> write_inode_now() 5260 * We wait on commit, if told to. 5261 * 5262 * In all cases it is actually safe for us to return without doing anything, 5263 * because the inode has been copied into a raw inode buffer in 5264 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5265 * writeback. 5266 * 5267 * Note that we are absolutely dependent upon all inode dirtiers doing the 5268 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5269 * which we are interested. 5270 * 5271 * It would be a bug for them to not do this. The code: 5272 * 5273 * mark_inode_dirty(inode) 5274 * stuff(); 5275 * inode->i_size = expr; 5276 * 5277 * is in error because write_inode() could occur while `stuff()' is running, 5278 * and the new i_size will be lost. Plus the inode will no longer be on the 5279 * superblock's dirty inode list. 5280 */ 5281 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5282 { 5283 int err; 5284 5285 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5286 return 0; 5287 5288 err = ext4_emergency_state(inode->i_sb); 5289 if (unlikely(err)) 5290 return err; 5291 5292 if (EXT4_SB(inode->i_sb)->s_journal) { 5293 if (ext4_journal_current_handle()) { 5294 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5295 dump_stack(); 5296 return -EIO; 5297 } 5298 5299 /* 5300 * No need to force transaction in WB_SYNC_NONE mode. Also 5301 * ext4_sync_fs() will force the commit after everything is 5302 * written. 5303 */ 5304 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5305 return 0; 5306 5307 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5308 EXT4_I(inode)->i_sync_tid); 5309 } else { 5310 struct ext4_iloc iloc; 5311 5312 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5313 if (err) 5314 return err; 5315 /* 5316 * sync(2) will flush the whole buffer cache. No need to do 5317 * it here separately for each inode. 5318 */ 5319 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5320 sync_dirty_buffer(iloc.bh); 5321 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5322 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5323 "IO error syncing inode"); 5324 err = -EIO; 5325 } 5326 brelse(iloc.bh); 5327 } 5328 return err; 5329 } 5330 5331 /* 5332 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5333 * buffers that are attached to a folio straddling i_size and are undergoing 5334 * commit. In that case we have to wait for commit to finish and try again. 5335 */ 5336 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5337 { 5338 unsigned offset; 5339 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5340 tid_t commit_tid; 5341 int ret; 5342 bool has_transaction; 5343 5344 offset = inode->i_size & (PAGE_SIZE - 1); 5345 /* 5346 * If the folio is fully truncated, we don't need to wait for any commit 5347 * (and we even should not as __ext4_journalled_invalidate_folio() may 5348 * strip all buffers from the folio but keep the folio dirty which can then 5349 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5350 * buffers). Also we don't need to wait for any commit if all buffers in 5351 * the folio remain valid. This is most beneficial for the common case of 5352 * blocksize == PAGESIZE. 5353 */ 5354 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5355 return; 5356 while (1) { 5357 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5358 inode->i_size >> PAGE_SHIFT); 5359 if (IS_ERR(folio)) 5360 return; 5361 ret = __ext4_journalled_invalidate_folio(folio, offset, 5362 folio_size(folio) - offset); 5363 folio_unlock(folio); 5364 folio_put(folio); 5365 if (ret != -EBUSY) 5366 return; 5367 has_transaction = false; 5368 read_lock(&journal->j_state_lock); 5369 if (journal->j_committing_transaction) { 5370 commit_tid = journal->j_committing_transaction->t_tid; 5371 has_transaction = true; 5372 } 5373 read_unlock(&journal->j_state_lock); 5374 if (has_transaction) 5375 jbd2_log_wait_commit(journal, commit_tid); 5376 } 5377 } 5378 5379 /* 5380 * ext4_setattr() 5381 * 5382 * Called from notify_change. 5383 * 5384 * We want to trap VFS attempts to truncate the file as soon as 5385 * possible. In particular, we want to make sure that when the VFS 5386 * shrinks i_size, we put the inode on the orphan list and modify 5387 * i_disksize immediately, so that during the subsequent flushing of 5388 * dirty pages and freeing of disk blocks, we can guarantee that any 5389 * commit will leave the blocks being flushed in an unused state on 5390 * disk. (On recovery, the inode will get truncated and the blocks will 5391 * be freed, so we have a strong guarantee that no future commit will 5392 * leave these blocks visible to the user.) 5393 * 5394 * Another thing we have to assure is that if we are in ordered mode 5395 * and inode is still attached to the committing transaction, we must 5396 * we start writeout of all the dirty pages which are being truncated. 5397 * This way we are sure that all the data written in the previous 5398 * transaction are already on disk (truncate waits for pages under 5399 * writeback). 5400 * 5401 * Called with inode->i_rwsem down. 5402 */ 5403 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5404 struct iattr *attr) 5405 { 5406 struct inode *inode = d_inode(dentry); 5407 int error, rc = 0; 5408 int orphan = 0; 5409 const unsigned int ia_valid = attr->ia_valid; 5410 bool inc_ivers = true; 5411 5412 error = ext4_emergency_state(inode->i_sb); 5413 if (unlikely(error)) 5414 return error; 5415 5416 if (unlikely(IS_IMMUTABLE(inode))) 5417 return -EPERM; 5418 5419 if (unlikely(IS_APPEND(inode) && 5420 (ia_valid & (ATTR_MODE | ATTR_UID | 5421 ATTR_GID | ATTR_TIMES_SET)))) 5422 return -EPERM; 5423 5424 error = setattr_prepare(idmap, dentry, attr); 5425 if (error) 5426 return error; 5427 5428 error = fscrypt_prepare_setattr(dentry, attr); 5429 if (error) 5430 return error; 5431 5432 error = fsverity_prepare_setattr(dentry, attr); 5433 if (error) 5434 return error; 5435 5436 if (is_quota_modification(idmap, inode, attr)) { 5437 error = dquot_initialize(inode); 5438 if (error) 5439 return error; 5440 } 5441 5442 if (i_uid_needs_update(idmap, attr, inode) || 5443 i_gid_needs_update(idmap, attr, inode)) { 5444 handle_t *handle; 5445 5446 /* (user+group)*(old+new) structure, inode write (sb, 5447 * inode block, ? - but truncate inode update has it) */ 5448 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5449 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5450 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5451 if (IS_ERR(handle)) { 5452 error = PTR_ERR(handle); 5453 goto err_out; 5454 } 5455 5456 /* dquot_transfer() calls back ext4_get_inode_usage() which 5457 * counts xattr inode references. 5458 */ 5459 down_read(&EXT4_I(inode)->xattr_sem); 5460 error = dquot_transfer(idmap, inode, attr); 5461 up_read(&EXT4_I(inode)->xattr_sem); 5462 5463 if (error) { 5464 ext4_journal_stop(handle); 5465 return error; 5466 } 5467 /* Update corresponding info in inode so that everything is in 5468 * one transaction */ 5469 i_uid_update(idmap, attr, inode); 5470 i_gid_update(idmap, attr, inode); 5471 error = ext4_mark_inode_dirty(handle, inode); 5472 ext4_journal_stop(handle); 5473 if (unlikely(error)) { 5474 return error; 5475 } 5476 } 5477 5478 if (attr->ia_valid & ATTR_SIZE) { 5479 handle_t *handle; 5480 loff_t oldsize = inode->i_size; 5481 loff_t old_disksize; 5482 int shrink = (attr->ia_size < inode->i_size); 5483 5484 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5485 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5486 5487 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5488 return -EFBIG; 5489 } 5490 } 5491 if (!S_ISREG(inode->i_mode)) { 5492 return -EINVAL; 5493 } 5494 5495 if (attr->ia_size == inode->i_size) 5496 inc_ivers = false; 5497 5498 if (shrink) { 5499 if (ext4_should_order_data(inode)) { 5500 error = ext4_begin_ordered_truncate(inode, 5501 attr->ia_size); 5502 if (error) 5503 goto err_out; 5504 } 5505 /* 5506 * Blocks are going to be removed from the inode. Wait 5507 * for dio in flight. 5508 */ 5509 inode_dio_wait(inode); 5510 } 5511 5512 filemap_invalidate_lock(inode->i_mapping); 5513 5514 rc = ext4_break_layouts(inode); 5515 if (rc) { 5516 filemap_invalidate_unlock(inode->i_mapping); 5517 goto err_out; 5518 } 5519 5520 if (attr->ia_size != inode->i_size) { 5521 /* attach jbd2 jinode for EOF folio tail zeroing */ 5522 if (attr->ia_size & (inode->i_sb->s_blocksize - 1) || 5523 oldsize & (inode->i_sb->s_blocksize - 1)) { 5524 error = ext4_inode_attach_jinode(inode); 5525 if (error) 5526 goto out_mmap_sem; 5527 } 5528 5529 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5530 if (IS_ERR(handle)) { 5531 error = PTR_ERR(handle); 5532 goto out_mmap_sem; 5533 } 5534 if (ext4_handle_valid(handle) && shrink) { 5535 error = ext4_orphan_add(handle, inode); 5536 orphan = 1; 5537 } 5538 /* 5539 * Update c/mtime and tail zero the EOF folio on 5540 * truncate up. ext4_truncate() handles the shrink case 5541 * below. 5542 */ 5543 if (!shrink) { 5544 inode_set_mtime_to_ts(inode, 5545 inode_set_ctime_current(inode)); 5546 if (oldsize & (inode->i_sb->s_blocksize - 1)) 5547 ext4_block_truncate_page(handle, 5548 inode->i_mapping, oldsize); 5549 } 5550 5551 if (shrink) 5552 ext4_fc_track_range(handle, inode, 5553 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5554 inode->i_sb->s_blocksize_bits, 5555 EXT_MAX_BLOCKS - 1); 5556 else 5557 ext4_fc_track_range( 5558 handle, inode, 5559 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5560 inode->i_sb->s_blocksize_bits, 5561 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5562 inode->i_sb->s_blocksize_bits); 5563 5564 down_write(&EXT4_I(inode)->i_data_sem); 5565 old_disksize = EXT4_I(inode)->i_disksize; 5566 EXT4_I(inode)->i_disksize = attr->ia_size; 5567 rc = ext4_mark_inode_dirty(handle, inode); 5568 if (!error) 5569 error = rc; 5570 /* 5571 * We have to update i_size under i_data_sem together 5572 * with i_disksize to avoid races with writeback code 5573 * running ext4_wb_update_i_disksize(). 5574 */ 5575 if (!error) 5576 i_size_write(inode, attr->ia_size); 5577 else 5578 EXT4_I(inode)->i_disksize = old_disksize; 5579 up_write(&EXT4_I(inode)->i_data_sem); 5580 ext4_journal_stop(handle); 5581 if (error) 5582 goto out_mmap_sem; 5583 if (!shrink) { 5584 pagecache_isize_extended(inode, oldsize, 5585 inode->i_size); 5586 } else if (ext4_should_journal_data(inode)) { 5587 ext4_wait_for_tail_page_commit(inode); 5588 } 5589 } 5590 5591 /* 5592 * Truncate pagecache after we've waited for commit 5593 * in data=journal mode to make pages freeable. 5594 */ 5595 truncate_pagecache(inode, inode->i_size); 5596 /* 5597 * Call ext4_truncate() even if i_size didn't change to 5598 * truncate possible preallocated blocks. 5599 */ 5600 if (attr->ia_size <= oldsize) { 5601 rc = ext4_truncate(inode); 5602 if (rc) 5603 error = rc; 5604 } 5605 out_mmap_sem: 5606 filemap_invalidate_unlock(inode->i_mapping); 5607 } 5608 5609 if (!error) { 5610 if (inc_ivers) 5611 inode_inc_iversion(inode); 5612 setattr_copy(idmap, inode, attr); 5613 mark_inode_dirty(inode); 5614 } 5615 5616 /* 5617 * If the call to ext4_truncate failed to get a transaction handle at 5618 * all, we need to clean up the in-core orphan list manually. 5619 */ 5620 if (orphan && inode->i_nlink) 5621 ext4_orphan_del(NULL, inode); 5622 5623 if (!error && (ia_valid & ATTR_MODE)) 5624 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5625 5626 err_out: 5627 if (error) 5628 ext4_std_error(inode->i_sb, error); 5629 if (!error) 5630 error = rc; 5631 return error; 5632 } 5633 5634 u32 ext4_dio_alignment(struct inode *inode) 5635 { 5636 if (fsverity_active(inode)) 5637 return 0; 5638 if (ext4_should_journal_data(inode)) 5639 return 0; 5640 if (ext4_has_inline_data(inode)) 5641 return 0; 5642 if (IS_ENCRYPTED(inode)) { 5643 if (!fscrypt_dio_supported(inode)) 5644 return 0; 5645 return i_blocksize(inode); 5646 } 5647 return 1; /* use the iomap defaults */ 5648 } 5649 5650 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5651 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5652 { 5653 struct inode *inode = d_inode(path->dentry); 5654 struct ext4_inode *raw_inode; 5655 struct ext4_inode_info *ei = EXT4_I(inode); 5656 unsigned int flags; 5657 5658 if ((request_mask & STATX_BTIME) && 5659 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5660 stat->result_mask |= STATX_BTIME; 5661 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5662 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5663 } 5664 5665 /* 5666 * Return the DIO alignment restrictions if requested. We only return 5667 * this information when requested, since on encrypted files it might 5668 * take a fair bit of work to get if the file wasn't opened recently. 5669 */ 5670 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5671 u32 dio_align = ext4_dio_alignment(inode); 5672 5673 stat->result_mask |= STATX_DIOALIGN; 5674 if (dio_align == 1) { 5675 struct block_device *bdev = inode->i_sb->s_bdev; 5676 5677 /* iomap defaults */ 5678 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5679 stat->dio_offset_align = bdev_logical_block_size(bdev); 5680 } else { 5681 stat->dio_mem_align = dio_align; 5682 stat->dio_offset_align = dio_align; 5683 } 5684 } 5685 5686 if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) { 5687 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5688 unsigned int awu_min = 0, awu_max = 0; 5689 5690 if (ext4_inode_can_atomic_write(inode)) { 5691 awu_min = sbi->s_awu_min; 5692 awu_max = sbi->s_awu_max; 5693 } 5694 5695 generic_fill_statx_atomic_writes(stat, awu_min, awu_max); 5696 } 5697 5698 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5699 if (flags & EXT4_APPEND_FL) 5700 stat->attributes |= STATX_ATTR_APPEND; 5701 if (flags & EXT4_COMPR_FL) 5702 stat->attributes |= STATX_ATTR_COMPRESSED; 5703 if (flags & EXT4_ENCRYPT_FL) 5704 stat->attributes |= STATX_ATTR_ENCRYPTED; 5705 if (flags & EXT4_IMMUTABLE_FL) 5706 stat->attributes |= STATX_ATTR_IMMUTABLE; 5707 if (flags & EXT4_NODUMP_FL) 5708 stat->attributes |= STATX_ATTR_NODUMP; 5709 if (flags & EXT4_VERITY_FL) 5710 stat->attributes |= STATX_ATTR_VERITY; 5711 5712 stat->attributes_mask |= (STATX_ATTR_APPEND | 5713 STATX_ATTR_COMPRESSED | 5714 STATX_ATTR_ENCRYPTED | 5715 STATX_ATTR_IMMUTABLE | 5716 STATX_ATTR_NODUMP | 5717 STATX_ATTR_VERITY); 5718 5719 generic_fillattr(idmap, request_mask, inode, stat); 5720 return 0; 5721 } 5722 5723 int ext4_file_getattr(struct mnt_idmap *idmap, 5724 const struct path *path, struct kstat *stat, 5725 u32 request_mask, unsigned int query_flags) 5726 { 5727 struct inode *inode = d_inode(path->dentry); 5728 u64 delalloc_blocks; 5729 5730 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5731 5732 /* 5733 * If there is inline data in the inode, the inode will normally not 5734 * have data blocks allocated (it may have an external xattr block). 5735 * Report at least one sector for such files, so tools like tar, rsync, 5736 * others don't incorrectly think the file is completely sparse. 5737 */ 5738 if (unlikely(ext4_has_inline_data(inode))) 5739 stat->blocks += (stat->size + 511) >> 9; 5740 5741 /* 5742 * We can't update i_blocks if the block allocation is delayed 5743 * otherwise in the case of system crash before the real block 5744 * allocation is done, we will have i_blocks inconsistent with 5745 * on-disk file blocks. 5746 * We always keep i_blocks updated together with real 5747 * allocation. But to not confuse with user, stat 5748 * will return the blocks that include the delayed allocation 5749 * blocks for this file. 5750 */ 5751 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5752 EXT4_I(inode)->i_reserved_data_blocks); 5753 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5754 return 0; 5755 } 5756 5757 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5758 int pextents) 5759 { 5760 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5761 return ext4_ind_trans_blocks(inode, lblocks); 5762 return ext4_ext_index_trans_blocks(inode, pextents); 5763 } 5764 5765 /* 5766 * Account for index blocks, block groups bitmaps and block group 5767 * descriptor blocks if modify datablocks and index blocks 5768 * worse case, the indexs blocks spread over different block groups 5769 * 5770 * If datablocks are discontiguous, they are possible to spread over 5771 * different block groups too. If they are contiguous, with flexbg, 5772 * they could still across block group boundary. 5773 * 5774 * Also account for superblock, inode, quota and xattr blocks 5775 */ 5776 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5777 int pextents) 5778 { 5779 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5780 int gdpblocks; 5781 int idxblocks; 5782 int ret; 5783 5784 /* 5785 * How many index blocks need to touch to map @lblocks logical blocks 5786 * to @pextents physical extents? 5787 */ 5788 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5789 5790 ret = idxblocks; 5791 5792 /* 5793 * Now let's see how many group bitmaps and group descriptors need 5794 * to account 5795 */ 5796 groups = idxblocks + pextents; 5797 gdpblocks = groups; 5798 if (groups > ngroups) 5799 groups = ngroups; 5800 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5801 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5802 5803 /* bitmaps and block group descriptor blocks */ 5804 ret += groups + gdpblocks; 5805 5806 /* Blocks for super block, inode, quota and xattr blocks */ 5807 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5808 5809 return ret; 5810 } 5811 5812 /* 5813 * Calculate the total number of credits to reserve to fit 5814 * the modification of a single pages into a single transaction, 5815 * which may include multiple chunks of block allocations. 5816 * 5817 * This could be called via ext4_write_begin() 5818 * 5819 * We need to consider the worse case, when 5820 * one new block per extent. 5821 */ 5822 int ext4_writepage_trans_blocks(struct inode *inode) 5823 { 5824 int bpp = ext4_journal_blocks_per_page(inode); 5825 int ret; 5826 5827 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5828 5829 /* Account for data blocks for journalled mode */ 5830 if (ext4_should_journal_data(inode)) 5831 ret += bpp; 5832 return ret; 5833 } 5834 5835 /* 5836 * Calculate the journal credits for a chunk of data modification. 5837 * 5838 * This is called from DIO, fallocate or whoever calling 5839 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5840 * 5841 * journal buffers for data blocks are not included here, as DIO 5842 * and fallocate do no need to journal data buffers. 5843 */ 5844 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5845 { 5846 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5847 } 5848 5849 /* 5850 * The caller must have previously called ext4_reserve_inode_write(). 5851 * Give this, we know that the caller already has write access to iloc->bh. 5852 */ 5853 int ext4_mark_iloc_dirty(handle_t *handle, 5854 struct inode *inode, struct ext4_iloc *iloc) 5855 { 5856 int err = 0; 5857 5858 err = ext4_emergency_state(inode->i_sb); 5859 if (unlikely(err)) { 5860 put_bh(iloc->bh); 5861 return err; 5862 } 5863 ext4_fc_track_inode(handle, inode); 5864 5865 /* the do_update_inode consumes one bh->b_count */ 5866 get_bh(iloc->bh); 5867 5868 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5869 err = ext4_do_update_inode(handle, inode, iloc); 5870 put_bh(iloc->bh); 5871 return err; 5872 } 5873 5874 /* 5875 * On success, We end up with an outstanding reference count against 5876 * iloc->bh. This _must_ be cleaned up later. 5877 */ 5878 5879 int 5880 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5881 struct ext4_iloc *iloc) 5882 { 5883 int err; 5884 5885 err = ext4_emergency_state(inode->i_sb); 5886 if (unlikely(err)) 5887 return err; 5888 5889 err = ext4_get_inode_loc(inode, iloc); 5890 if (!err) { 5891 BUFFER_TRACE(iloc->bh, "get_write_access"); 5892 err = ext4_journal_get_write_access(handle, inode->i_sb, 5893 iloc->bh, EXT4_JTR_NONE); 5894 if (err) { 5895 brelse(iloc->bh); 5896 iloc->bh = NULL; 5897 } 5898 } 5899 ext4_std_error(inode->i_sb, err); 5900 return err; 5901 } 5902 5903 static int __ext4_expand_extra_isize(struct inode *inode, 5904 unsigned int new_extra_isize, 5905 struct ext4_iloc *iloc, 5906 handle_t *handle, int *no_expand) 5907 { 5908 struct ext4_inode *raw_inode; 5909 struct ext4_xattr_ibody_header *header; 5910 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5911 struct ext4_inode_info *ei = EXT4_I(inode); 5912 int error; 5913 5914 /* this was checked at iget time, but double check for good measure */ 5915 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5916 (ei->i_extra_isize & 3)) { 5917 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5918 ei->i_extra_isize, 5919 EXT4_INODE_SIZE(inode->i_sb)); 5920 return -EFSCORRUPTED; 5921 } 5922 if ((new_extra_isize < ei->i_extra_isize) || 5923 (new_extra_isize < 4) || 5924 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5925 return -EINVAL; /* Should never happen */ 5926 5927 raw_inode = ext4_raw_inode(iloc); 5928 5929 header = IHDR(inode, raw_inode); 5930 5931 /* No extended attributes present */ 5932 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5933 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5934 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5935 EXT4_I(inode)->i_extra_isize, 0, 5936 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5937 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5938 return 0; 5939 } 5940 5941 /* 5942 * We may need to allocate external xattr block so we need quotas 5943 * initialized. Here we can be called with various locks held so we 5944 * cannot affort to initialize quotas ourselves. So just bail. 5945 */ 5946 if (dquot_initialize_needed(inode)) 5947 return -EAGAIN; 5948 5949 /* try to expand with EAs present */ 5950 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5951 raw_inode, handle); 5952 if (error) { 5953 /* 5954 * Inode size expansion failed; don't try again 5955 */ 5956 *no_expand = 1; 5957 } 5958 5959 return error; 5960 } 5961 5962 /* 5963 * Expand an inode by new_extra_isize bytes. 5964 * Returns 0 on success or negative error number on failure. 5965 */ 5966 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5967 unsigned int new_extra_isize, 5968 struct ext4_iloc iloc, 5969 handle_t *handle) 5970 { 5971 int no_expand; 5972 int error; 5973 5974 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5975 return -EOVERFLOW; 5976 5977 /* 5978 * In nojournal mode, we can immediately attempt to expand 5979 * the inode. When journaled, we first need to obtain extra 5980 * buffer credits since we may write into the EA block 5981 * with this same handle. If journal_extend fails, then it will 5982 * only result in a minor loss of functionality for that inode. 5983 * If this is felt to be critical, then e2fsck should be run to 5984 * force a large enough s_min_extra_isize. 5985 */ 5986 if (ext4_journal_extend(handle, 5987 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5988 return -ENOSPC; 5989 5990 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5991 return -EBUSY; 5992 5993 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5994 handle, &no_expand); 5995 ext4_write_unlock_xattr(inode, &no_expand); 5996 5997 return error; 5998 } 5999 6000 int ext4_expand_extra_isize(struct inode *inode, 6001 unsigned int new_extra_isize, 6002 struct ext4_iloc *iloc) 6003 { 6004 handle_t *handle; 6005 int no_expand; 6006 int error, rc; 6007 6008 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 6009 brelse(iloc->bh); 6010 return -EOVERFLOW; 6011 } 6012 6013 handle = ext4_journal_start(inode, EXT4_HT_INODE, 6014 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 6015 if (IS_ERR(handle)) { 6016 error = PTR_ERR(handle); 6017 brelse(iloc->bh); 6018 return error; 6019 } 6020 6021 ext4_write_lock_xattr(inode, &no_expand); 6022 6023 BUFFER_TRACE(iloc->bh, "get_write_access"); 6024 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 6025 EXT4_JTR_NONE); 6026 if (error) { 6027 brelse(iloc->bh); 6028 goto out_unlock; 6029 } 6030 6031 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6032 handle, &no_expand); 6033 6034 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6035 if (!error) 6036 error = rc; 6037 6038 out_unlock: 6039 ext4_write_unlock_xattr(inode, &no_expand); 6040 ext4_journal_stop(handle); 6041 return error; 6042 } 6043 6044 /* 6045 * What we do here is to mark the in-core inode as clean with respect to inode 6046 * dirtiness (it may still be data-dirty). 6047 * This means that the in-core inode may be reaped by prune_icache 6048 * without having to perform any I/O. This is a very good thing, 6049 * because *any* task may call prune_icache - even ones which 6050 * have a transaction open against a different journal. 6051 * 6052 * Is this cheating? Not really. Sure, we haven't written the 6053 * inode out, but prune_icache isn't a user-visible syncing function. 6054 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6055 * we start and wait on commits. 6056 */ 6057 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 6058 const char *func, unsigned int line) 6059 { 6060 struct ext4_iloc iloc; 6061 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6062 int err; 6063 6064 might_sleep(); 6065 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6066 err = ext4_reserve_inode_write(handle, inode, &iloc); 6067 if (err) 6068 goto out; 6069 6070 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6071 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6072 iloc, handle); 6073 6074 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 6075 out: 6076 if (unlikely(err)) 6077 ext4_error_inode_err(inode, func, line, 0, err, 6078 "mark_inode_dirty error"); 6079 return err; 6080 } 6081 6082 /* 6083 * ext4_dirty_inode() is called from __mark_inode_dirty() 6084 * 6085 * We're really interested in the case where a file is being extended. 6086 * i_size has been changed by generic_commit_write() and we thus need 6087 * to include the updated inode in the current transaction. 6088 * 6089 * Also, dquot_alloc_block() will always dirty the inode when blocks 6090 * are allocated to the file. 6091 * 6092 * If the inode is marked synchronous, we don't honour that here - doing 6093 * so would cause a commit on atime updates, which we don't bother doing. 6094 * We handle synchronous inodes at the highest possible level. 6095 */ 6096 void ext4_dirty_inode(struct inode *inode, int flags) 6097 { 6098 handle_t *handle; 6099 6100 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6101 if (IS_ERR(handle)) 6102 return; 6103 ext4_mark_inode_dirty(handle, inode); 6104 ext4_journal_stop(handle); 6105 } 6106 6107 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6108 { 6109 journal_t *journal; 6110 handle_t *handle; 6111 int err; 6112 int alloc_ctx; 6113 6114 /* 6115 * We have to be very careful here: changing a data block's 6116 * journaling status dynamically is dangerous. If we write a 6117 * data block to the journal, change the status and then delete 6118 * that block, we risk forgetting to revoke the old log record 6119 * from the journal and so a subsequent replay can corrupt data. 6120 * So, first we make sure that the journal is empty and that 6121 * nobody is changing anything. 6122 */ 6123 6124 journal = EXT4_JOURNAL(inode); 6125 if (!journal) 6126 return 0; 6127 if (is_journal_aborted(journal)) 6128 return -EROFS; 6129 6130 /* Wait for all existing dio workers */ 6131 inode_dio_wait(inode); 6132 6133 /* 6134 * Before flushing the journal and switching inode's aops, we have 6135 * to flush all dirty data the inode has. There can be outstanding 6136 * delayed allocations, there can be unwritten extents created by 6137 * fallocate or buffered writes in dioread_nolock mode covered by 6138 * dirty data which can be converted only after flushing the dirty 6139 * data (and journalled aops don't know how to handle these cases). 6140 */ 6141 if (val) { 6142 filemap_invalidate_lock(inode->i_mapping); 6143 err = filemap_write_and_wait(inode->i_mapping); 6144 if (err < 0) { 6145 filemap_invalidate_unlock(inode->i_mapping); 6146 return err; 6147 } 6148 } 6149 6150 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6151 jbd2_journal_lock_updates(journal); 6152 6153 /* 6154 * OK, there are no updates running now, and all cached data is 6155 * synced to disk. We are now in a completely consistent state 6156 * which doesn't have anything in the journal, and we know that 6157 * no filesystem updates are running, so it is safe to modify 6158 * the inode's in-core data-journaling state flag now. 6159 */ 6160 6161 if (val) 6162 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6163 else { 6164 err = jbd2_journal_flush(journal, 0); 6165 if (err < 0) { 6166 jbd2_journal_unlock_updates(journal); 6167 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6168 return err; 6169 } 6170 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6171 } 6172 ext4_set_aops(inode); 6173 6174 jbd2_journal_unlock_updates(journal); 6175 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6176 6177 if (val) 6178 filemap_invalidate_unlock(inode->i_mapping); 6179 6180 /* Finally we can mark the inode as dirty. */ 6181 6182 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6183 if (IS_ERR(handle)) 6184 return PTR_ERR(handle); 6185 6186 ext4_fc_mark_ineligible(inode->i_sb, 6187 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6188 err = ext4_mark_inode_dirty(handle, inode); 6189 ext4_handle_sync(handle); 6190 ext4_journal_stop(handle); 6191 ext4_std_error(inode->i_sb, err); 6192 6193 return err; 6194 } 6195 6196 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6197 struct buffer_head *bh) 6198 { 6199 return !buffer_mapped(bh); 6200 } 6201 6202 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6203 { 6204 struct vm_area_struct *vma = vmf->vma; 6205 struct folio *folio = page_folio(vmf->page); 6206 loff_t size; 6207 unsigned long len; 6208 int err; 6209 vm_fault_t ret; 6210 struct file *file = vma->vm_file; 6211 struct inode *inode = file_inode(file); 6212 struct address_space *mapping = inode->i_mapping; 6213 handle_t *handle; 6214 get_block_t *get_block; 6215 int retries = 0; 6216 6217 if (unlikely(IS_IMMUTABLE(inode))) 6218 return VM_FAULT_SIGBUS; 6219 6220 sb_start_pagefault(inode->i_sb); 6221 file_update_time(vma->vm_file); 6222 6223 filemap_invalidate_lock_shared(mapping); 6224 6225 err = ext4_convert_inline_data(inode); 6226 if (err) 6227 goto out_ret; 6228 6229 /* 6230 * On data journalling we skip straight to the transaction handle: 6231 * there's no delalloc; page truncated will be checked later; the 6232 * early return w/ all buffers mapped (calculates size/len) can't 6233 * be used; and there's no dioread_nolock, so only ext4_get_block. 6234 */ 6235 if (ext4_should_journal_data(inode)) 6236 goto retry_alloc; 6237 6238 /* Delalloc case is easy... */ 6239 if (test_opt(inode->i_sb, DELALLOC) && 6240 !ext4_nonda_switch(inode->i_sb)) { 6241 do { 6242 err = block_page_mkwrite(vma, vmf, 6243 ext4_da_get_block_prep); 6244 } while (err == -ENOSPC && 6245 ext4_should_retry_alloc(inode->i_sb, &retries)); 6246 goto out_ret; 6247 } 6248 6249 folio_lock(folio); 6250 size = i_size_read(inode); 6251 /* Page got truncated from under us? */ 6252 if (folio->mapping != mapping || folio_pos(folio) > size) { 6253 folio_unlock(folio); 6254 ret = VM_FAULT_NOPAGE; 6255 goto out; 6256 } 6257 6258 len = folio_size(folio); 6259 if (folio_pos(folio) + len > size) 6260 len = size - folio_pos(folio); 6261 /* 6262 * Return if we have all the buffers mapped. This avoids the need to do 6263 * journal_start/journal_stop which can block and take a long time 6264 * 6265 * This cannot be done for data journalling, as we have to add the 6266 * inode to the transaction's list to writeprotect pages on commit. 6267 */ 6268 if (folio_buffers(folio)) { 6269 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6270 0, len, NULL, 6271 ext4_bh_unmapped)) { 6272 /* Wait so that we don't change page under IO */ 6273 folio_wait_stable(folio); 6274 ret = VM_FAULT_LOCKED; 6275 goto out; 6276 } 6277 } 6278 folio_unlock(folio); 6279 /* OK, we need to fill the hole... */ 6280 if (ext4_should_dioread_nolock(inode)) 6281 get_block = ext4_get_block_unwritten; 6282 else 6283 get_block = ext4_get_block; 6284 retry_alloc: 6285 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6286 ext4_writepage_trans_blocks(inode)); 6287 if (IS_ERR(handle)) { 6288 ret = VM_FAULT_SIGBUS; 6289 goto out; 6290 } 6291 /* 6292 * Data journalling can't use block_page_mkwrite() because it 6293 * will set_buffer_dirty() before do_journal_get_write_access() 6294 * thus might hit warning messages for dirty metadata buffers. 6295 */ 6296 if (!ext4_should_journal_data(inode)) { 6297 err = block_page_mkwrite(vma, vmf, get_block); 6298 } else { 6299 folio_lock(folio); 6300 size = i_size_read(inode); 6301 /* Page got truncated from under us? */ 6302 if (folio->mapping != mapping || folio_pos(folio) > size) { 6303 ret = VM_FAULT_NOPAGE; 6304 goto out_error; 6305 } 6306 6307 len = folio_size(folio); 6308 if (folio_pos(folio) + len > size) 6309 len = size - folio_pos(folio); 6310 6311 err = ext4_block_write_begin(handle, folio, 0, len, 6312 ext4_get_block); 6313 if (!err) { 6314 ret = VM_FAULT_SIGBUS; 6315 if (ext4_journal_folio_buffers(handle, folio, len)) 6316 goto out_error; 6317 } else { 6318 folio_unlock(folio); 6319 } 6320 } 6321 ext4_journal_stop(handle); 6322 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6323 goto retry_alloc; 6324 out_ret: 6325 ret = vmf_fs_error(err); 6326 out: 6327 filemap_invalidate_unlock_shared(mapping); 6328 sb_end_pagefault(inode->i_sb); 6329 return ret; 6330 out_error: 6331 folio_unlock(folio); 6332 ext4_journal_stop(handle); 6333 goto out; 6334 } 6335