1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/rmap.h> 35 #include <linux/namei.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 #include <linux/workqueue.h> 39 #include <linux/kernel.h> 40 #include <linux/printk.h> 41 #include <linux/slab.h> 42 #include <linux/bitops.h> 43 #include <linux/iomap.h> 44 #include <linux/iversion.h> 45 46 #include "ext4_jbd2.h" 47 #include "xattr.h" 48 #include "acl.h" 49 #include "truncate.h" 50 51 #include <trace/events/ext4.h> 52 53 static void ext4_journalled_zero_new_buffers(handle_t *handle, 54 struct inode *inode, 55 struct folio *folio, 56 unsigned from, unsigned to); 57 58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 59 struct ext4_inode_info *ei) 60 { 61 __u32 csum; 62 __u16 dummy_csum = 0; 63 int offset = offsetof(struct ext4_inode, i_checksum_lo); 64 unsigned int csum_size = sizeof(dummy_csum); 65 66 csum = ext4_chksum(ei->i_csum_seed, (__u8 *)raw, offset); 67 csum = ext4_chksum(csum, (__u8 *)&dummy_csum, csum_size); 68 offset += csum_size; 69 csum = ext4_chksum(csum, (__u8 *)raw + offset, 70 EXT4_GOOD_OLD_INODE_SIZE - offset); 71 72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 73 offset = offsetof(struct ext4_inode, i_checksum_hi); 74 csum = ext4_chksum(csum, (__u8 *)raw + EXT4_GOOD_OLD_INODE_SIZE, 75 offset - EXT4_GOOD_OLD_INODE_SIZE); 76 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 77 csum = ext4_chksum(csum, (__u8 *)&dummy_csum, 78 csum_size); 79 offset += csum_size; 80 } 81 csum = ext4_chksum(csum, (__u8 *)raw + offset, 82 EXT4_INODE_SIZE(inode->i_sb) - offset); 83 } 84 85 return csum; 86 } 87 88 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 89 struct ext4_inode_info *ei) 90 { 91 __u32 provided, calculated; 92 93 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 94 cpu_to_le32(EXT4_OS_LINUX) || 95 !ext4_has_feature_metadata_csum(inode->i_sb)) 96 return 1; 97 98 provided = le16_to_cpu(raw->i_checksum_lo); 99 calculated = ext4_inode_csum(inode, raw, ei); 100 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 101 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 102 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 103 else 104 calculated &= 0xFFFF; 105 106 return provided == calculated; 107 } 108 109 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 110 struct ext4_inode_info *ei) 111 { 112 __u32 csum; 113 114 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 115 cpu_to_le32(EXT4_OS_LINUX) || 116 !ext4_has_feature_metadata_csum(inode->i_sb)) 117 return; 118 119 csum = ext4_inode_csum(inode, raw, ei); 120 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 121 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 122 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 123 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 124 } 125 126 static inline int ext4_begin_ordered_truncate(struct inode *inode, 127 loff_t new_size) 128 { 129 trace_ext4_begin_ordered_truncate(inode, new_size); 130 /* 131 * If jinode is zero, then we never opened the file for 132 * writing, so there's no need to call 133 * jbd2_journal_begin_ordered_truncate() since there's no 134 * outstanding writes we need to flush. 135 */ 136 if (!EXT4_I(inode)->jinode) 137 return 0; 138 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 139 EXT4_I(inode)->jinode, 140 new_size); 141 } 142 143 /* 144 * Test whether an inode is a fast symlink. 145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 146 */ 147 int ext4_inode_is_fast_symlink(struct inode *inode) 148 { 149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 152 153 if (ext4_has_inline_data(inode)) 154 return 0; 155 156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 157 } 158 return S_ISLNK(inode->i_mode) && inode->i_size && 159 (inode->i_size < EXT4_N_BLOCKS * 4); 160 } 161 162 /* 163 * Called at the last iput() if i_nlink is zero. 164 */ 165 void ext4_evict_inode(struct inode *inode) 166 { 167 handle_t *handle; 168 int err; 169 /* 170 * Credits for final inode cleanup and freeing: 171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 172 * (xattr block freeing), bitmap, group descriptor (inode freeing) 173 */ 174 int extra_credits = 6; 175 struct ext4_xattr_inode_array *ea_inode_array = NULL; 176 bool freeze_protected = false; 177 178 trace_ext4_evict_inode(inode); 179 180 dax_break_layout_final(inode); 181 182 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 183 ext4_evict_ea_inode(inode); 184 if (inode->i_nlink) { 185 truncate_inode_pages_final(&inode->i_data); 186 187 goto no_delete; 188 } 189 190 if (is_bad_inode(inode)) 191 goto no_delete; 192 dquot_initialize(inode); 193 194 if (ext4_should_order_data(inode)) 195 ext4_begin_ordered_truncate(inode, 0); 196 truncate_inode_pages_final(&inode->i_data); 197 198 /* 199 * For inodes with journalled data, transaction commit could have 200 * dirtied the inode. And for inodes with dioread_nolock, unwritten 201 * extents converting worker could merge extents and also have dirtied 202 * the inode. Flush worker is ignoring it because of I_FREEING flag but 203 * we still need to remove the inode from the writeback lists. 204 */ 205 if (!list_empty_careful(&inode->i_io_list)) 206 inode_io_list_del(inode); 207 208 /* 209 * Protect us against freezing - iput() caller didn't have to have any 210 * protection against it. When we are in a running transaction though, 211 * we are already protected against freezing and we cannot grab further 212 * protection due to lock ordering constraints. 213 */ 214 if (!ext4_journal_current_handle()) { 215 sb_start_intwrite(inode->i_sb); 216 freeze_protected = true; 217 } 218 219 if (!IS_NOQUOTA(inode)) 220 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 221 222 /* 223 * Block bitmap, group descriptor, and inode are accounted in both 224 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 225 */ 226 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 227 ext4_blocks_for_truncate(inode) + extra_credits - 3); 228 if (IS_ERR(handle)) { 229 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 230 /* 231 * If we're going to skip the normal cleanup, we still need to 232 * make sure that the in-core orphan linked list is properly 233 * cleaned up. 234 */ 235 ext4_orphan_del(NULL, inode); 236 if (freeze_protected) 237 sb_end_intwrite(inode->i_sb); 238 goto no_delete; 239 } 240 241 if (IS_SYNC(inode)) 242 ext4_handle_sync(handle); 243 244 /* 245 * Set inode->i_size to 0 before calling ext4_truncate(). We need 246 * special handling of symlinks here because i_size is used to 247 * determine whether ext4_inode_info->i_data contains symlink data or 248 * block mappings. Setting i_size to 0 will remove its fast symlink 249 * status. Erase i_data so that it becomes a valid empty block map. 250 */ 251 if (ext4_inode_is_fast_symlink(inode)) 252 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 253 inode->i_size = 0; 254 err = ext4_mark_inode_dirty(handle, inode); 255 if (err) { 256 ext4_warning(inode->i_sb, 257 "couldn't mark inode dirty (err %d)", err); 258 goto stop_handle; 259 } 260 if (inode->i_blocks) { 261 err = ext4_truncate(inode); 262 if (err) { 263 ext4_error_err(inode->i_sb, -err, 264 "couldn't truncate inode %lu (err %d)", 265 inode->i_ino, err); 266 goto stop_handle; 267 } 268 } 269 270 /* Remove xattr references. */ 271 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 272 extra_credits); 273 if (err) { 274 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 275 stop_handle: 276 ext4_journal_stop(handle); 277 ext4_orphan_del(NULL, inode); 278 if (freeze_protected) 279 sb_end_intwrite(inode->i_sb); 280 ext4_xattr_inode_array_free(ea_inode_array); 281 goto no_delete; 282 } 283 284 /* 285 * Kill off the orphan record which ext4_truncate created. 286 * AKPM: I think this can be inside the above `if'. 287 * Note that ext4_orphan_del() has to be able to cope with the 288 * deletion of a non-existent orphan - this is because we don't 289 * know if ext4_truncate() actually created an orphan record. 290 * (Well, we could do this if we need to, but heck - it works) 291 */ 292 ext4_orphan_del(handle, inode); 293 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 294 295 /* 296 * One subtle ordering requirement: if anything has gone wrong 297 * (transaction abort, IO errors, whatever), then we can still 298 * do these next steps (the fs will already have been marked as 299 * having errors), but we can't free the inode if the mark_dirty 300 * fails. 301 */ 302 if (ext4_mark_inode_dirty(handle, inode)) 303 /* If that failed, just do the required in-core inode clear. */ 304 ext4_clear_inode(inode); 305 else 306 ext4_free_inode(handle, inode); 307 ext4_journal_stop(handle); 308 if (freeze_protected) 309 sb_end_intwrite(inode->i_sb); 310 ext4_xattr_inode_array_free(ea_inode_array); 311 return; 312 no_delete: 313 /* 314 * Check out some where else accidentally dirty the evicting inode, 315 * which may probably cause inode use-after-free issues later. 316 */ 317 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 318 319 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 320 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 321 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 322 } 323 324 #ifdef CONFIG_QUOTA 325 qsize_t *ext4_get_reserved_space(struct inode *inode) 326 { 327 return &EXT4_I(inode)->i_reserved_quota; 328 } 329 #endif 330 331 /* 332 * Called with i_data_sem down, which is important since we can call 333 * ext4_discard_preallocations() from here. 334 */ 335 void ext4_da_update_reserve_space(struct inode *inode, 336 int used, int quota_claim) 337 { 338 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 339 struct ext4_inode_info *ei = EXT4_I(inode); 340 341 spin_lock(&ei->i_block_reservation_lock); 342 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 343 if (unlikely(used > ei->i_reserved_data_blocks)) { 344 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 345 "with only %d reserved data blocks", 346 __func__, inode->i_ino, used, 347 ei->i_reserved_data_blocks); 348 WARN_ON(1); 349 used = ei->i_reserved_data_blocks; 350 } 351 352 /* Update per-inode reservations */ 353 ei->i_reserved_data_blocks -= used; 354 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 355 356 spin_unlock(&ei->i_block_reservation_lock); 357 358 /* Update quota subsystem for data blocks */ 359 if (quota_claim) 360 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 361 else { 362 /* 363 * We did fallocate with an offset that is already delayed 364 * allocated. So on delayed allocated writeback we should 365 * not re-claim the quota for fallocated blocks. 366 */ 367 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 368 } 369 370 /* 371 * If we have done all the pending block allocations and if 372 * there aren't any writers on the inode, we can discard the 373 * inode's preallocations. 374 */ 375 if ((ei->i_reserved_data_blocks == 0) && 376 !inode_is_open_for_write(inode)) 377 ext4_discard_preallocations(inode); 378 } 379 380 static int __check_block_validity(struct inode *inode, const char *func, 381 unsigned int line, 382 struct ext4_map_blocks *map) 383 { 384 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 385 386 if (journal && inode == journal->j_inode) 387 return 0; 388 389 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 390 ext4_error_inode(inode, func, line, map->m_pblk, 391 "lblock %lu mapped to illegal pblock %llu " 392 "(length %d)", (unsigned long) map->m_lblk, 393 map->m_pblk, map->m_len); 394 return -EFSCORRUPTED; 395 } 396 return 0; 397 } 398 399 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 400 ext4_lblk_t len) 401 { 402 int ret; 403 404 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 405 return fscrypt_zeroout_range(inode, lblk, pblk, len); 406 407 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 408 if (ret > 0) 409 ret = 0; 410 411 return ret; 412 } 413 414 /* 415 * For generic regular files, when updating the extent tree, Ext4 should 416 * hold the i_rwsem and invalidate_lock exclusively. This ensures 417 * exclusion against concurrent page faults, as well as reads and writes. 418 */ 419 #ifdef CONFIG_EXT4_DEBUG 420 void ext4_check_map_extents_env(struct inode *inode) 421 { 422 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 423 return; 424 425 if (!S_ISREG(inode->i_mode) || 426 IS_NOQUOTA(inode) || IS_VERITY(inode) || 427 is_special_ino(inode->i_sb, inode->i_ino) || 428 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) || 429 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE) || 430 ext4_verity_in_progress(inode)) 431 return; 432 433 WARN_ON_ONCE(!inode_is_locked(inode) && 434 !rwsem_is_locked(&inode->i_mapping->invalidate_lock)); 435 } 436 #else 437 void ext4_check_map_extents_env(struct inode *inode) {} 438 #endif 439 440 #define check_block_validity(inode, map) \ 441 __check_block_validity((inode), __func__, __LINE__, (map)) 442 443 #ifdef ES_AGGRESSIVE_TEST 444 static void ext4_map_blocks_es_recheck(handle_t *handle, 445 struct inode *inode, 446 struct ext4_map_blocks *es_map, 447 struct ext4_map_blocks *map, 448 int flags) 449 { 450 int retval; 451 452 map->m_flags = 0; 453 /* 454 * There is a race window that the result is not the same. 455 * e.g. xfstests #223 when dioread_nolock enables. The reason 456 * is that we lookup a block mapping in extent status tree with 457 * out taking i_data_sem. So at the time the unwritten extent 458 * could be converted. 459 */ 460 down_read(&EXT4_I(inode)->i_data_sem); 461 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 462 retval = ext4_ext_map_blocks(handle, inode, map, 0); 463 } else { 464 retval = ext4_ind_map_blocks(handle, inode, map, 0); 465 } 466 up_read((&EXT4_I(inode)->i_data_sem)); 467 468 /* 469 * We don't check m_len because extent will be collpased in status 470 * tree. So the m_len might not equal. 471 */ 472 if (es_map->m_lblk != map->m_lblk || 473 es_map->m_flags != map->m_flags || 474 es_map->m_pblk != map->m_pblk) { 475 printk("ES cache assertion failed for inode: %lu " 476 "es_cached ex [%d/%d/%llu/%x] != " 477 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 478 inode->i_ino, es_map->m_lblk, es_map->m_len, 479 es_map->m_pblk, es_map->m_flags, map->m_lblk, 480 map->m_len, map->m_pblk, map->m_flags, 481 retval, flags); 482 } 483 } 484 #endif /* ES_AGGRESSIVE_TEST */ 485 486 static int ext4_map_query_blocks_next_in_leaf(handle_t *handle, 487 struct inode *inode, struct ext4_map_blocks *map, 488 unsigned int orig_mlen) 489 { 490 struct ext4_map_blocks map2; 491 unsigned int status, status2; 492 int retval; 493 494 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 495 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 496 497 WARN_ON_ONCE(!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF)); 498 WARN_ON_ONCE(orig_mlen <= map->m_len); 499 500 /* Prepare map2 for lookup in next leaf block */ 501 map2.m_lblk = map->m_lblk + map->m_len; 502 map2.m_len = orig_mlen - map->m_len; 503 map2.m_flags = 0; 504 retval = ext4_ext_map_blocks(handle, inode, &map2, 0); 505 506 if (retval <= 0) { 507 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 508 map->m_pblk, status, false); 509 return map->m_len; 510 } 511 512 if (unlikely(retval != map2.m_len)) { 513 ext4_warning(inode->i_sb, 514 "ES len assertion failed for inode " 515 "%lu: retval %d != map->m_len %d", 516 inode->i_ino, retval, map2.m_len); 517 WARN_ON(1); 518 } 519 520 status2 = map2.m_flags & EXT4_MAP_UNWRITTEN ? 521 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 522 523 /* 524 * If map2 is contiguous with map, then let's insert it as a single 525 * extent in es cache and return the combined length of both the maps. 526 */ 527 if (map->m_pblk + map->m_len == map2.m_pblk && 528 status == status2) { 529 ext4_es_insert_extent(inode, map->m_lblk, 530 map->m_len + map2.m_len, map->m_pblk, 531 status, false); 532 map->m_len += map2.m_len; 533 } else { 534 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 535 map->m_pblk, status, false); 536 } 537 538 return map->m_len; 539 } 540 541 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode, 542 struct ext4_map_blocks *map, int flags) 543 { 544 unsigned int status; 545 int retval; 546 unsigned int orig_mlen = map->m_len; 547 548 flags &= EXT4_EX_QUERY_FILTER; 549 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 550 retval = ext4_ext_map_blocks(handle, inode, map, flags); 551 else 552 retval = ext4_ind_map_blocks(handle, inode, map, flags); 553 554 if (retval <= 0) 555 return retval; 556 557 if (unlikely(retval != map->m_len)) { 558 ext4_warning(inode->i_sb, 559 "ES len assertion failed for inode " 560 "%lu: retval %d != map->m_len %d", 561 inode->i_ino, retval, map->m_len); 562 WARN_ON(1); 563 } 564 565 /* 566 * No need to query next in leaf: 567 * - if returned extent is not last in leaf or 568 * - if the last in leaf is the full requested range 569 */ 570 if (!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF) || 571 map->m_len == orig_mlen) { 572 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 573 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 574 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 575 map->m_pblk, status, false); 576 return retval; 577 } 578 579 return ext4_map_query_blocks_next_in_leaf(handle, inode, map, 580 orig_mlen); 581 } 582 583 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode, 584 struct ext4_map_blocks *map, int flags) 585 { 586 struct extent_status es; 587 unsigned int status; 588 int err, retval = 0; 589 590 /* 591 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE 592 * indicates that the blocks and quotas has already been 593 * checked when the data was copied into the page cache. 594 */ 595 if (map->m_flags & EXT4_MAP_DELAYED) 596 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 597 598 /* 599 * Here we clear m_flags because after allocating an new extent, 600 * it will be set again. 601 */ 602 map->m_flags &= ~EXT4_MAP_FLAGS; 603 604 /* 605 * We need to check for EXT4 here because migrate could have 606 * changed the inode type in between. 607 */ 608 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 609 retval = ext4_ext_map_blocks(handle, inode, map, flags); 610 } else { 611 retval = ext4_ind_map_blocks(handle, inode, map, flags); 612 613 /* 614 * We allocated new blocks which will result in i_data's 615 * format changing. Force the migrate to fail by clearing 616 * migrate flags. 617 */ 618 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) 619 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 620 } 621 if (retval <= 0) 622 return retval; 623 624 if (unlikely(retval != map->m_len)) { 625 ext4_warning(inode->i_sb, 626 "ES len assertion failed for inode %lu: " 627 "retval %d != map->m_len %d", 628 inode->i_ino, retval, map->m_len); 629 WARN_ON(1); 630 } 631 632 /* 633 * We have to zeroout blocks before inserting them into extent 634 * status tree. Otherwise someone could look them up there and 635 * use them before they are really zeroed. We also have to 636 * unmap metadata before zeroing as otherwise writeback can 637 * overwrite zeros with stale data from block device. 638 */ 639 if (flags & EXT4_GET_BLOCKS_ZERO && 640 map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) { 641 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk, 642 map->m_len); 643 if (err) 644 return err; 645 } 646 647 /* 648 * If the extent has been zeroed out, we don't need to update 649 * extent status tree. 650 */ 651 if (flags & EXT4_GET_BLOCKS_PRE_IO && 652 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 653 if (ext4_es_is_written(&es)) 654 return retval; 655 } 656 657 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 658 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 659 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk, 660 status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE); 661 662 return retval; 663 } 664 665 /* 666 * The ext4_map_blocks() function tries to look up the requested blocks, 667 * and returns if the blocks are already mapped. 668 * 669 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 670 * and store the allocated blocks in the result buffer head and mark it 671 * mapped. 672 * 673 * If file type is extents based, it will call ext4_ext_map_blocks(), 674 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 675 * based files 676 * 677 * On success, it returns the number of blocks being mapped or allocated. 678 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are 679 * pre-allocated and unwritten, the resulting @map is marked as unwritten. 680 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped. 681 * 682 * It returns 0 if plain look up failed (blocks have not been allocated), in 683 * that case, @map is returned as unmapped but we still do fill map->m_len to 684 * indicate the length of a hole starting at map->m_lblk. 685 * 686 * It returns the error in case of allocation failure. 687 */ 688 int ext4_map_blocks(handle_t *handle, struct inode *inode, 689 struct ext4_map_blocks *map, int flags) 690 { 691 struct extent_status es; 692 int retval; 693 int ret = 0; 694 unsigned int orig_mlen = map->m_len; 695 #ifdef ES_AGGRESSIVE_TEST 696 struct ext4_map_blocks orig_map; 697 698 memcpy(&orig_map, map, sizeof(*map)); 699 #endif 700 701 map->m_flags = 0; 702 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 703 flags, map->m_len, (unsigned long) map->m_lblk); 704 705 /* 706 * ext4_map_blocks returns an int, and m_len is an unsigned int 707 */ 708 if (unlikely(map->m_len > INT_MAX)) 709 map->m_len = INT_MAX; 710 711 /* We can handle the block number less than EXT_MAX_BLOCKS */ 712 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 713 return -EFSCORRUPTED; 714 715 /* 716 * Callers from the context of data submission are the only exceptions 717 * for regular files that do not hold the i_rwsem or invalidate_lock. 718 * However, caching unrelated ranges is not permitted. 719 */ 720 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 721 WARN_ON_ONCE(!(flags & EXT4_EX_NOCACHE)); 722 else 723 ext4_check_map_extents_env(inode); 724 725 /* Lookup extent status tree firstly */ 726 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 727 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 728 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 729 map->m_pblk = ext4_es_pblock(&es) + 730 map->m_lblk - es.es_lblk; 731 map->m_flags |= ext4_es_is_written(&es) ? 732 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 733 retval = es.es_len - (map->m_lblk - es.es_lblk); 734 if (retval > map->m_len) 735 retval = map->m_len; 736 map->m_len = retval; 737 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 738 map->m_pblk = 0; 739 map->m_flags |= ext4_es_is_delayed(&es) ? 740 EXT4_MAP_DELAYED : 0; 741 retval = es.es_len - (map->m_lblk - es.es_lblk); 742 if (retval > map->m_len) 743 retval = map->m_len; 744 map->m_len = retval; 745 retval = 0; 746 } else { 747 BUG(); 748 } 749 750 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 751 return retval; 752 #ifdef ES_AGGRESSIVE_TEST 753 ext4_map_blocks_es_recheck(handle, inode, map, 754 &orig_map, flags); 755 #endif 756 if (!(flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) || 757 orig_mlen == map->m_len) 758 goto found; 759 760 if (flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) 761 map->m_len = orig_mlen; 762 } 763 /* 764 * In the query cache no-wait mode, nothing we can do more if we 765 * cannot find extent in the cache. 766 */ 767 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 768 return 0; 769 770 /* 771 * Try to see if we can get the block without requesting a new 772 * file system block. 773 */ 774 down_read(&EXT4_I(inode)->i_data_sem); 775 retval = ext4_map_query_blocks(handle, inode, map, flags); 776 up_read((&EXT4_I(inode)->i_data_sem)); 777 778 found: 779 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 780 ret = check_block_validity(inode, map); 781 if (ret != 0) 782 return ret; 783 } 784 785 /* If it is only a block(s) look up */ 786 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 787 return retval; 788 789 /* 790 * Returns if the blocks have already allocated 791 * 792 * Note that if blocks have been preallocated 793 * ext4_ext_map_blocks() returns with buffer head unmapped 794 */ 795 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 796 /* 797 * If we need to convert extent to unwritten 798 * we continue and do the actual work in 799 * ext4_ext_map_blocks() 800 */ 801 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 802 return retval; 803 804 805 ext4_fc_track_inode(handle, inode); 806 /* 807 * New blocks allocate and/or writing to unwritten extent 808 * will possibly result in updating i_data, so we take 809 * the write lock of i_data_sem, and call get_block() 810 * with create == 1 flag. 811 */ 812 down_write(&EXT4_I(inode)->i_data_sem); 813 retval = ext4_map_create_blocks(handle, inode, map, flags); 814 up_write((&EXT4_I(inode)->i_data_sem)); 815 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 816 ret = check_block_validity(inode, map); 817 if (ret != 0) 818 return ret; 819 820 /* 821 * Inodes with freshly allocated blocks where contents will be 822 * visible after transaction commit must be on transaction's 823 * ordered data list. 824 */ 825 if (map->m_flags & EXT4_MAP_NEW && 826 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 827 !(flags & EXT4_GET_BLOCKS_ZERO) && 828 !ext4_is_quota_file(inode) && 829 ext4_should_order_data(inode)) { 830 loff_t start_byte = 831 (loff_t)map->m_lblk << inode->i_blkbits; 832 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 833 834 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 835 ret = ext4_jbd2_inode_add_wait(handle, inode, 836 start_byte, length); 837 else 838 ret = ext4_jbd2_inode_add_write(handle, inode, 839 start_byte, length); 840 if (ret) 841 return ret; 842 } 843 } 844 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 845 map->m_flags & EXT4_MAP_MAPPED)) 846 ext4_fc_track_range(handle, inode, map->m_lblk, 847 map->m_lblk + map->m_len - 1); 848 if (retval < 0) 849 ext_debug(inode, "failed with err %d\n", retval); 850 return retval; 851 } 852 853 /* 854 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 855 * we have to be careful as someone else may be manipulating b_state as well. 856 */ 857 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 858 { 859 unsigned long old_state; 860 unsigned long new_state; 861 862 flags &= EXT4_MAP_FLAGS; 863 864 /* Dummy buffer_head? Set non-atomically. */ 865 if (!bh->b_folio) { 866 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 867 return; 868 } 869 /* 870 * Someone else may be modifying b_state. Be careful! This is ugly but 871 * once we get rid of using bh as a container for mapping information 872 * to pass to / from get_block functions, this can go away. 873 */ 874 old_state = READ_ONCE(bh->b_state); 875 do { 876 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 877 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 878 } 879 880 static int _ext4_get_block(struct inode *inode, sector_t iblock, 881 struct buffer_head *bh, int flags) 882 { 883 struct ext4_map_blocks map; 884 int ret = 0; 885 886 if (ext4_has_inline_data(inode)) 887 return -ERANGE; 888 889 map.m_lblk = iblock; 890 map.m_len = bh->b_size >> inode->i_blkbits; 891 892 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 893 flags); 894 if (ret > 0) { 895 map_bh(bh, inode->i_sb, map.m_pblk); 896 ext4_update_bh_state(bh, map.m_flags); 897 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 898 ret = 0; 899 } else if (ret == 0) { 900 /* hole case, need to fill in bh->b_size */ 901 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 902 } 903 return ret; 904 } 905 906 int ext4_get_block(struct inode *inode, sector_t iblock, 907 struct buffer_head *bh, int create) 908 { 909 return _ext4_get_block(inode, iblock, bh, 910 create ? EXT4_GET_BLOCKS_CREATE : 0); 911 } 912 913 /* 914 * Get block function used when preparing for buffered write if we require 915 * creating an unwritten extent if blocks haven't been allocated. The extent 916 * will be converted to written after the IO is complete. 917 */ 918 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 919 struct buffer_head *bh_result, int create) 920 { 921 int ret = 0; 922 923 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 924 inode->i_ino, create); 925 ret = _ext4_get_block(inode, iblock, bh_result, 926 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 927 928 /* 929 * If the buffer is marked unwritten, mark it as new to make sure it is 930 * zeroed out correctly in case of partial writes. Otherwise, there is 931 * a chance of stale data getting exposed. 932 */ 933 if (ret == 0 && buffer_unwritten(bh_result)) 934 set_buffer_new(bh_result); 935 936 return ret; 937 } 938 939 /* Maximum number of blocks we map for direct IO at once. */ 940 #define DIO_MAX_BLOCKS 4096 941 942 /* 943 * `handle' can be NULL if create is zero 944 */ 945 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 946 ext4_lblk_t block, int map_flags) 947 { 948 struct ext4_map_blocks map; 949 struct buffer_head *bh; 950 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 951 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 952 int err; 953 954 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 955 || handle != NULL || create == 0); 956 ASSERT(create == 0 || !nowait); 957 958 map.m_lblk = block; 959 map.m_len = 1; 960 err = ext4_map_blocks(handle, inode, &map, map_flags); 961 962 if (err == 0) 963 return create ? ERR_PTR(-ENOSPC) : NULL; 964 if (err < 0) 965 return ERR_PTR(err); 966 967 if (nowait) 968 return sb_find_get_block(inode->i_sb, map.m_pblk); 969 970 /* 971 * Since bh could introduce extra ref count such as referred by 972 * journal_head etc. Try to avoid using __GFP_MOVABLE here 973 * as it may fail the migration when journal_head remains. 974 */ 975 bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk, 976 inode->i_sb->s_blocksize); 977 978 if (unlikely(!bh)) 979 return ERR_PTR(-ENOMEM); 980 if (map.m_flags & EXT4_MAP_NEW) { 981 ASSERT(create != 0); 982 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 983 || (handle != NULL)); 984 985 /* 986 * Now that we do not always journal data, we should 987 * keep in mind whether this should always journal the 988 * new buffer as metadata. For now, regular file 989 * writes use ext4_get_block instead, so it's not a 990 * problem. 991 */ 992 lock_buffer(bh); 993 BUFFER_TRACE(bh, "call get_create_access"); 994 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 995 EXT4_JTR_NONE); 996 if (unlikely(err)) { 997 unlock_buffer(bh); 998 goto errout; 999 } 1000 if (!buffer_uptodate(bh)) { 1001 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1002 set_buffer_uptodate(bh); 1003 } 1004 unlock_buffer(bh); 1005 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1006 err = ext4_handle_dirty_metadata(handle, inode, bh); 1007 if (unlikely(err)) 1008 goto errout; 1009 } else 1010 BUFFER_TRACE(bh, "not a new buffer"); 1011 return bh; 1012 errout: 1013 brelse(bh); 1014 return ERR_PTR(err); 1015 } 1016 1017 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1018 ext4_lblk_t block, int map_flags) 1019 { 1020 struct buffer_head *bh; 1021 int ret; 1022 1023 bh = ext4_getblk(handle, inode, block, map_flags); 1024 if (IS_ERR(bh)) 1025 return bh; 1026 if (!bh || ext4_buffer_uptodate(bh)) 1027 return bh; 1028 1029 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 1030 if (ret) { 1031 put_bh(bh); 1032 return ERR_PTR(ret); 1033 } 1034 return bh; 1035 } 1036 1037 /* Read a contiguous batch of blocks. */ 1038 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1039 bool wait, struct buffer_head **bhs) 1040 { 1041 int i, err; 1042 1043 for (i = 0; i < bh_count; i++) { 1044 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1045 if (IS_ERR(bhs[i])) { 1046 err = PTR_ERR(bhs[i]); 1047 bh_count = i; 1048 goto out_brelse; 1049 } 1050 } 1051 1052 for (i = 0; i < bh_count; i++) 1053 /* Note that NULL bhs[i] is valid because of holes. */ 1054 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 1055 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 1056 1057 if (!wait) 1058 return 0; 1059 1060 for (i = 0; i < bh_count; i++) 1061 if (bhs[i]) 1062 wait_on_buffer(bhs[i]); 1063 1064 for (i = 0; i < bh_count; i++) { 1065 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1066 err = -EIO; 1067 goto out_brelse; 1068 } 1069 } 1070 return 0; 1071 1072 out_brelse: 1073 for (i = 0; i < bh_count; i++) { 1074 brelse(bhs[i]); 1075 bhs[i] = NULL; 1076 } 1077 return err; 1078 } 1079 1080 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 1081 struct buffer_head *head, 1082 unsigned from, 1083 unsigned to, 1084 int *partial, 1085 int (*fn)(handle_t *handle, struct inode *inode, 1086 struct buffer_head *bh)) 1087 { 1088 struct buffer_head *bh; 1089 unsigned block_start, block_end; 1090 unsigned blocksize = head->b_size; 1091 int err, ret = 0; 1092 struct buffer_head *next; 1093 1094 for (bh = head, block_start = 0; 1095 ret == 0 && (bh != head || !block_start); 1096 block_start = block_end, bh = next) { 1097 next = bh->b_this_page; 1098 block_end = block_start + blocksize; 1099 if (block_end <= from || block_start >= to) { 1100 if (partial && !buffer_uptodate(bh)) 1101 *partial = 1; 1102 continue; 1103 } 1104 err = (*fn)(handle, inode, bh); 1105 if (!ret) 1106 ret = err; 1107 } 1108 return ret; 1109 } 1110 1111 /* 1112 * Helper for handling dirtying of journalled data. We also mark the folio as 1113 * dirty so that writeback code knows about this page (and inode) contains 1114 * dirty data. ext4_writepages() then commits appropriate transaction to 1115 * make data stable. 1116 */ 1117 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 1118 { 1119 struct folio *folio = bh->b_folio; 1120 struct inode *inode = folio->mapping->host; 1121 1122 /* only regular files have a_ops */ 1123 if (S_ISREG(inode->i_mode)) 1124 folio_mark_dirty(folio); 1125 return ext4_handle_dirty_metadata(handle, NULL, bh); 1126 } 1127 1128 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1129 struct buffer_head *bh) 1130 { 1131 if (!buffer_mapped(bh) || buffer_freed(bh)) 1132 return 0; 1133 BUFFER_TRACE(bh, "get write access"); 1134 return ext4_journal_get_write_access(handle, inode->i_sb, bh, 1135 EXT4_JTR_NONE); 1136 } 1137 1138 int ext4_block_write_begin(handle_t *handle, struct folio *folio, 1139 loff_t pos, unsigned len, 1140 get_block_t *get_block) 1141 { 1142 unsigned int from = offset_in_folio(folio, pos); 1143 unsigned to = from + len; 1144 struct inode *inode = folio->mapping->host; 1145 unsigned block_start, block_end; 1146 sector_t block; 1147 int err = 0; 1148 unsigned blocksize = inode->i_sb->s_blocksize; 1149 unsigned bbits; 1150 struct buffer_head *bh, *head, *wait[2]; 1151 int nr_wait = 0; 1152 int i; 1153 bool should_journal_data = ext4_should_journal_data(inode); 1154 1155 BUG_ON(!folio_test_locked(folio)); 1156 BUG_ON(to > folio_size(folio)); 1157 BUG_ON(from > to); 1158 1159 head = folio_buffers(folio); 1160 if (!head) 1161 head = create_empty_buffers(folio, blocksize, 0); 1162 bbits = ilog2(blocksize); 1163 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1164 1165 for (bh = head, block_start = 0; bh != head || !block_start; 1166 block++, block_start = block_end, bh = bh->b_this_page) { 1167 block_end = block_start + blocksize; 1168 if (block_end <= from || block_start >= to) { 1169 if (folio_test_uptodate(folio)) { 1170 set_buffer_uptodate(bh); 1171 } 1172 continue; 1173 } 1174 if (buffer_new(bh)) 1175 clear_buffer_new(bh); 1176 if (!buffer_mapped(bh)) { 1177 WARN_ON(bh->b_size != blocksize); 1178 err = get_block(inode, block, bh, 1); 1179 if (err) 1180 break; 1181 if (buffer_new(bh)) { 1182 /* 1183 * We may be zeroing partial buffers or all new 1184 * buffers in case of failure. Prepare JBD2 for 1185 * that. 1186 */ 1187 if (should_journal_data) 1188 do_journal_get_write_access(handle, 1189 inode, bh); 1190 if (folio_test_uptodate(folio)) { 1191 /* 1192 * Unlike __block_write_begin() we leave 1193 * dirtying of new uptodate buffers to 1194 * ->write_end() time or 1195 * folio_zero_new_buffers(). 1196 */ 1197 set_buffer_uptodate(bh); 1198 continue; 1199 } 1200 if (block_end > to || block_start < from) 1201 folio_zero_segments(folio, to, 1202 block_end, 1203 block_start, from); 1204 continue; 1205 } 1206 } 1207 if (folio_test_uptodate(folio)) { 1208 set_buffer_uptodate(bh); 1209 continue; 1210 } 1211 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1212 !buffer_unwritten(bh) && 1213 (block_start < from || block_end > to)) { 1214 ext4_read_bh_lock(bh, 0, false); 1215 wait[nr_wait++] = bh; 1216 } 1217 } 1218 /* 1219 * If we issued read requests, let them complete. 1220 */ 1221 for (i = 0; i < nr_wait; i++) { 1222 wait_on_buffer(wait[i]); 1223 if (!buffer_uptodate(wait[i])) 1224 err = -EIO; 1225 } 1226 if (unlikely(err)) { 1227 if (should_journal_data) 1228 ext4_journalled_zero_new_buffers(handle, inode, folio, 1229 from, to); 1230 else 1231 folio_zero_new_buffers(folio, from, to); 1232 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1233 for (i = 0; i < nr_wait; i++) { 1234 int err2; 1235 1236 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1237 blocksize, bh_offset(wait[i])); 1238 if (err2) { 1239 clear_buffer_uptodate(wait[i]); 1240 err = err2; 1241 } 1242 } 1243 } 1244 1245 return err; 1246 } 1247 1248 /* 1249 * To preserve ordering, it is essential that the hole instantiation and 1250 * the data write be encapsulated in a single transaction. We cannot 1251 * close off a transaction and start a new one between the ext4_get_block() 1252 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1253 * ext4_write_begin() is the right place. 1254 */ 1255 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1256 loff_t pos, unsigned len, 1257 struct folio **foliop, void **fsdata) 1258 { 1259 struct inode *inode = mapping->host; 1260 int ret, needed_blocks; 1261 handle_t *handle; 1262 int retries = 0; 1263 struct folio *folio; 1264 pgoff_t index; 1265 unsigned from, to; 1266 fgf_t fgp = FGP_WRITEBEGIN; 1267 1268 ret = ext4_emergency_state(inode->i_sb); 1269 if (unlikely(ret)) 1270 return ret; 1271 1272 trace_ext4_write_begin(inode, pos, len); 1273 /* 1274 * Reserve one block more for addition to orphan list in case 1275 * we allocate blocks but write fails for some reason 1276 */ 1277 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1278 index = pos >> PAGE_SHIFT; 1279 1280 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1281 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1282 foliop); 1283 if (ret < 0) 1284 return ret; 1285 if (ret == 1) 1286 return 0; 1287 } 1288 1289 /* 1290 * __filemap_get_folio() can take a long time if the 1291 * system is thrashing due to memory pressure, or if the folio 1292 * is being written back. So grab it first before we start 1293 * the transaction handle. This also allows us to allocate 1294 * the folio (if needed) without using GFP_NOFS. 1295 */ 1296 retry_grab: 1297 fgp |= fgf_set_order(len); 1298 folio = __filemap_get_folio(mapping, index, fgp, 1299 mapping_gfp_mask(mapping)); 1300 if (IS_ERR(folio)) 1301 return PTR_ERR(folio); 1302 1303 if (pos + len > folio_pos(folio) + folio_size(folio)) 1304 len = folio_pos(folio) + folio_size(folio) - pos; 1305 1306 from = offset_in_folio(folio, pos); 1307 to = from + len; 1308 1309 /* 1310 * The same as page allocation, we prealloc buffer heads before 1311 * starting the handle. 1312 */ 1313 if (!folio_buffers(folio)) 1314 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0); 1315 1316 folio_unlock(folio); 1317 1318 retry_journal: 1319 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1320 if (IS_ERR(handle)) { 1321 folio_put(folio); 1322 return PTR_ERR(handle); 1323 } 1324 1325 folio_lock(folio); 1326 if (folio->mapping != mapping) { 1327 /* The folio got truncated from under us */ 1328 folio_unlock(folio); 1329 folio_put(folio); 1330 ext4_journal_stop(handle); 1331 goto retry_grab; 1332 } 1333 /* In case writeback began while the folio was unlocked */ 1334 folio_wait_stable(folio); 1335 1336 if (ext4_should_dioread_nolock(inode)) 1337 ret = ext4_block_write_begin(handle, folio, pos, len, 1338 ext4_get_block_unwritten); 1339 else 1340 ret = ext4_block_write_begin(handle, folio, pos, len, 1341 ext4_get_block); 1342 if (!ret && ext4_should_journal_data(inode)) { 1343 ret = ext4_walk_page_buffers(handle, inode, 1344 folio_buffers(folio), from, to, 1345 NULL, do_journal_get_write_access); 1346 } 1347 1348 if (ret) { 1349 bool extended = (pos + len > inode->i_size) && 1350 !ext4_verity_in_progress(inode); 1351 1352 folio_unlock(folio); 1353 /* 1354 * ext4_block_write_begin may have instantiated a few blocks 1355 * outside i_size. Trim these off again. Don't need 1356 * i_size_read because we hold i_rwsem. 1357 * 1358 * Add inode to orphan list in case we crash before 1359 * truncate finishes 1360 */ 1361 if (extended && ext4_can_truncate(inode)) 1362 ext4_orphan_add(handle, inode); 1363 1364 ext4_journal_stop(handle); 1365 if (extended) { 1366 ext4_truncate_failed_write(inode); 1367 /* 1368 * If truncate failed early the inode might 1369 * still be on the orphan list; we need to 1370 * make sure the inode is removed from the 1371 * orphan list in that case. 1372 */ 1373 if (inode->i_nlink) 1374 ext4_orphan_del(NULL, inode); 1375 } 1376 1377 if (ret == -ENOSPC && 1378 ext4_should_retry_alloc(inode->i_sb, &retries)) 1379 goto retry_journal; 1380 folio_put(folio); 1381 return ret; 1382 } 1383 *foliop = folio; 1384 return ret; 1385 } 1386 1387 /* For write_end() in data=journal mode */ 1388 static int write_end_fn(handle_t *handle, struct inode *inode, 1389 struct buffer_head *bh) 1390 { 1391 int ret; 1392 if (!buffer_mapped(bh) || buffer_freed(bh)) 1393 return 0; 1394 set_buffer_uptodate(bh); 1395 ret = ext4_dirty_journalled_data(handle, bh); 1396 clear_buffer_meta(bh); 1397 clear_buffer_prio(bh); 1398 return ret; 1399 } 1400 1401 /* 1402 * We need to pick up the new inode size which generic_commit_write gave us 1403 * `file' can be NULL - eg, when called from page_symlink(). 1404 * 1405 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata 1406 * buffers are managed internally. 1407 */ 1408 static int ext4_write_end(struct file *file, 1409 struct address_space *mapping, 1410 loff_t pos, unsigned len, unsigned copied, 1411 struct folio *folio, void *fsdata) 1412 { 1413 handle_t *handle = ext4_journal_current_handle(); 1414 struct inode *inode = mapping->host; 1415 loff_t old_size = inode->i_size; 1416 int ret = 0, ret2; 1417 int i_size_changed = 0; 1418 bool verity = ext4_verity_in_progress(inode); 1419 1420 trace_ext4_write_end(inode, pos, len, copied); 1421 1422 if (ext4_has_inline_data(inode) && 1423 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1424 return ext4_write_inline_data_end(inode, pos, len, copied, 1425 folio); 1426 1427 copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata); 1428 /* 1429 * it's important to update i_size while still holding folio lock: 1430 * page writeout could otherwise come in and zero beyond i_size. 1431 * 1432 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1433 * blocks are being written past EOF, so skip the i_size update. 1434 */ 1435 if (!verity) 1436 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1437 folio_unlock(folio); 1438 folio_put(folio); 1439 1440 if (old_size < pos && !verity) { 1441 pagecache_isize_extended(inode, old_size, pos); 1442 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1443 } 1444 /* 1445 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1446 * makes the holding time of folio lock longer. Second, it forces lock 1447 * ordering of folio lock and transaction start for journaling 1448 * filesystems. 1449 */ 1450 if (i_size_changed) 1451 ret = ext4_mark_inode_dirty(handle, inode); 1452 1453 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1454 /* if we have allocated more blocks and copied 1455 * less. We will have blocks allocated outside 1456 * inode->i_size. So truncate them 1457 */ 1458 ext4_orphan_add(handle, inode); 1459 1460 ret2 = ext4_journal_stop(handle); 1461 if (!ret) 1462 ret = ret2; 1463 1464 if (pos + len > inode->i_size && !verity) { 1465 ext4_truncate_failed_write(inode); 1466 /* 1467 * If truncate failed early the inode might still be 1468 * on the orphan list; we need to make sure the inode 1469 * is removed from the orphan list in that case. 1470 */ 1471 if (inode->i_nlink) 1472 ext4_orphan_del(NULL, inode); 1473 } 1474 1475 return ret ? ret : copied; 1476 } 1477 1478 /* 1479 * This is a private version of folio_zero_new_buffers() which doesn't 1480 * set the buffer to be dirty, since in data=journalled mode we need 1481 * to call ext4_dirty_journalled_data() instead. 1482 */ 1483 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1484 struct inode *inode, 1485 struct folio *folio, 1486 unsigned from, unsigned to) 1487 { 1488 unsigned int block_start = 0, block_end; 1489 struct buffer_head *head, *bh; 1490 1491 bh = head = folio_buffers(folio); 1492 do { 1493 block_end = block_start + bh->b_size; 1494 if (buffer_new(bh)) { 1495 if (block_end > from && block_start < to) { 1496 if (!folio_test_uptodate(folio)) { 1497 unsigned start, size; 1498 1499 start = max(from, block_start); 1500 size = min(to, block_end) - start; 1501 1502 folio_zero_range(folio, start, size); 1503 } 1504 clear_buffer_new(bh); 1505 write_end_fn(handle, inode, bh); 1506 } 1507 } 1508 block_start = block_end; 1509 bh = bh->b_this_page; 1510 } while (bh != head); 1511 } 1512 1513 static int ext4_journalled_write_end(struct file *file, 1514 struct address_space *mapping, 1515 loff_t pos, unsigned len, unsigned copied, 1516 struct folio *folio, void *fsdata) 1517 { 1518 handle_t *handle = ext4_journal_current_handle(); 1519 struct inode *inode = mapping->host; 1520 loff_t old_size = inode->i_size; 1521 int ret = 0, ret2; 1522 int partial = 0; 1523 unsigned from, to; 1524 int size_changed = 0; 1525 bool verity = ext4_verity_in_progress(inode); 1526 1527 trace_ext4_journalled_write_end(inode, pos, len, copied); 1528 from = pos & (PAGE_SIZE - 1); 1529 to = from + len; 1530 1531 BUG_ON(!ext4_handle_valid(handle)); 1532 1533 if (ext4_has_inline_data(inode)) 1534 return ext4_write_inline_data_end(inode, pos, len, copied, 1535 folio); 1536 1537 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1538 copied = 0; 1539 ext4_journalled_zero_new_buffers(handle, inode, folio, 1540 from, to); 1541 } else { 1542 if (unlikely(copied < len)) 1543 ext4_journalled_zero_new_buffers(handle, inode, folio, 1544 from + copied, to); 1545 ret = ext4_walk_page_buffers(handle, inode, 1546 folio_buffers(folio), 1547 from, from + copied, &partial, 1548 write_end_fn); 1549 if (!partial) 1550 folio_mark_uptodate(folio); 1551 } 1552 if (!verity) 1553 size_changed = ext4_update_inode_size(inode, pos + copied); 1554 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1555 folio_unlock(folio); 1556 folio_put(folio); 1557 1558 if (old_size < pos && !verity) { 1559 pagecache_isize_extended(inode, old_size, pos); 1560 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1561 } 1562 1563 if (size_changed) { 1564 ret2 = ext4_mark_inode_dirty(handle, inode); 1565 if (!ret) 1566 ret = ret2; 1567 } 1568 1569 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1570 /* if we have allocated more blocks and copied 1571 * less. We will have blocks allocated outside 1572 * inode->i_size. So truncate them 1573 */ 1574 ext4_orphan_add(handle, inode); 1575 1576 ret2 = ext4_journal_stop(handle); 1577 if (!ret) 1578 ret = ret2; 1579 if (pos + len > inode->i_size && !verity) { 1580 ext4_truncate_failed_write(inode); 1581 /* 1582 * If truncate failed early the inode might still be 1583 * on the orphan list; we need to make sure the inode 1584 * is removed from the orphan list in that case. 1585 */ 1586 if (inode->i_nlink) 1587 ext4_orphan_del(NULL, inode); 1588 } 1589 1590 return ret ? ret : copied; 1591 } 1592 1593 /* 1594 * Reserve space for 'nr_resv' clusters 1595 */ 1596 static int ext4_da_reserve_space(struct inode *inode, int nr_resv) 1597 { 1598 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1599 struct ext4_inode_info *ei = EXT4_I(inode); 1600 int ret; 1601 1602 /* 1603 * We will charge metadata quota at writeout time; this saves 1604 * us from metadata over-estimation, though we may go over by 1605 * a small amount in the end. Here we just reserve for data. 1606 */ 1607 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv)); 1608 if (ret) 1609 return ret; 1610 1611 spin_lock(&ei->i_block_reservation_lock); 1612 if (ext4_claim_free_clusters(sbi, nr_resv, 0)) { 1613 spin_unlock(&ei->i_block_reservation_lock); 1614 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv)); 1615 return -ENOSPC; 1616 } 1617 ei->i_reserved_data_blocks += nr_resv; 1618 trace_ext4_da_reserve_space(inode, nr_resv); 1619 spin_unlock(&ei->i_block_reservation_lock); 1620 1621 return 0; /* success */ 1622 } 1623 1624 void ext4_da_release_space(struct inode *inode, int to_free) 1625 { 1626 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1627 struct ext4_inode_info *ei = EXT4_I(inode); 1628 1629 if (!to_free) 1630 return; /* Nothing to release, exit */ 1631 1632 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1633 1634 trace_ext4_da_release_space(inode, to_free); 1635 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1636 /* 1637 * if there aren't enough reserved blocks, then the 1638 * counter is messed up somewhere. Since this 1639 * function is called from invalidate page, it's 1640 * harmless to return without any action. 1641 */ 1642 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1643 "ino %lu, to_free %d with only %d reserved " 1644 "data blocks", inode->i_ino, to_free, 1645 ei->i_reserved_data_blocks); 1646 WARN_ON(1); 1647 to_free = ei->i_reserved_data_blocks; 1648 } 1649 ei->i_reserved_data_blocks -= to_free; 1650 1651 /* update fs dirty data blocks counter */ 1652 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1653 1654 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1655 1656 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1657 } 1658 1659 /* 1660 * Delayed allocation stuff 1661 */ 1662 1663 struct mpage_da_data { 1664 /* These are input fields for ext4_do_writepages() */ 1665 struct inode *inode; 1666 struct writeback_control *wbc; 1667 unsigned int can_map:1; /* Can writepages call map blocks? */ 1668 1669 /* These are internal state of ext4_do_writepages() */ 1670 pgoff_t first_page; /* The first page to write */ 1671 pgoff_t next_page; /* Current page to examine */ 1672 pgoff_t last_page; /* Last page to examine */ 1673 /* 1674 * Extent to map - this can be after first_page because that can be 1675 * fully mapped. We somewhat abuse m_flags to store whether the extent 1676 * is delalloc or unwritten. 1677 */ 1678 struct ext4_map_blocks map; 1679 struct ext4_io_submit io_submit; /* IO submission data */ 1680 unsigned int do_map:1; 1681 unsigned int scanned_until_end:1; 1682 unsigned int journalled_more_data:1; 1683 }; 1684 1685 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1686 bool invalidate) 1687 { 1688 unsigned nr, i; 1689 pgoff_t index, end; 1690 struct folio_batch fbatch; 1691 struct inode *inode = mpd->inode; 1692 struct address_space *mapping = inode->i_mapping; 1693 1694 /* This is necessary when next_page == 0. */ 1695 if (mpd->first_page >= mpd->next_page) 1696 return; 1697 1698 mpd->scanned_until_end = 0; 1699 index = mpd->first_page; 1700 end = mpd->next_page - 1; 1701 if (invalidate) { 1702 ext4_lblk_t start, last; 1703 start = index << (PAGE_SHIFT - inode->i_blkbits); 1704 last = end << (PAGE_SHIFT - inode->i_blkbits); 1705 1706 /* 1707 * avoid racing with extent status tree scans made by 1708 * ext4_insert_delayed_block() 1709 */ 1710 down_write(&EXT4_I(inode)->i_data_sem); 1711 ext4_es_remove_extent(inode, start, last - start + 1); 1712 up_write(&EXT4_I(inode)->i_data_sem); 1713 } 1714 1715 folio_batch_init(&fbatch); 1716 while (index <= end) { 1717 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1718 if (nr == 0) 1719 break; 1720 for (i = 0; i < nr; i++) { 1721 struct folio *folio = fbatch.folios[i]; 1722 1723 if (folio->index < mpd->first_page) 1724 continue; 1725 if (folio_next_index(folio) - 1 > end) 1726 continue; 1727 BUG_ON(!folio_test_locked(folio)); 1728 BUG_ON(folio_test_writeback(folio)); 1729 if (invalidate) { 1730 if (folio_mapped(folio)) 1731 folio_clear_dirty_for_io(folio); 1732 block_invalidate_folio(folio, 0, 1733 folio_size(folio)); 1734 folio_clear_uptodate(folio); 1735 } 1736 folio_unlock(folio); 1737 } 1738 folio_batch_release(&fbatch); 1739 } 1740 } 1741 1742 static void ext4_print_free_blocks(struct inode *inode) 1743 { 1744 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1745 struct super_block *sb = inode->i_sb; 1746 struct ext4_inode_info *ei = EXT4_I(inode); 1747 1748 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1749 EXT4_C2B(EXT4_SB(inode->i_sb), 1750 ext4_count_free_clusters(sb))); 1751 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1752 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1753 (long long) EXT4_C2B(EXT4_SB(sb), 1754 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1755 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1756 (long long) EXT4_C2B(EXT4_SB(sb), 1757 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1758 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1759 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1760 ei->i_reserved_data_blocks); 1761 return; 1762 } 1763 1764 /* 1765 * Check whether the cluster containing lblk has been allocated or has 1766 * delalloc reservation. 1767 * 1768 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc 1769 * reservation, 2 if it's already been allocated, negative error code on 1770 * failure. 1771 */ 1772 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk) 1773 { 1774 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1775 int ret; 1776 1777 /* Has delalloc reservation? */ 1778 if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk)) 1779 return 1; 1780 1781 /* Already been allocated? */ 1782 if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk)) 1783 return 2; 1784 ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); 1785 if (ret < 0) 1786 return ret; 1787 if (ret > 0) 1788 return 2; 1789 1790 return 0; 1791 } 1792 1793 /* 1794 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents 1795 * status tree, incrementing the reserved 1796 * cluster/block count or making pending 1797 * reservations where needed 1798 * 1799 * @inode - file containing the newly added block 1800 * @lblk - start logical block to be added 1801 * @len - length of blocks to be added 1802 * 1803 * Returns 0 on success, negative error code on failure. 1804 */ 1805 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk, 1806 ext4_lblk_t len) 1807 { 1808 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1809 int ret; 1810 bool lclu_allocated = false; 1811 bool end_allocated = false; 1812 ext4_lblk_t resv_clu; 1813 ext4_lblk_t end = lblk + len - 1; 1814 1815 /* 1816 * If the cluster containing lblk or end is shared with a delayed, 1817 * written, or unwritten extent in a bigalloc file system, it's 1818 * already been accounted for and does not need to be reserved. 1819 * A pending reservation must be made for the cluster if it's 1820 * shared with a written or unwritten extent and doesn't already 1821 * have one. Written and unwritten extents can be purged from the 1822 * extents status tree if the system is under memory pressure, so 1823 * it's necessary to examine the extent tree if a search of the 1824 * extents status tree doesn't get a match. 1825 */ 1826 if (sbi->s_cluster_ratio == 1) { 1827 ret = ext4_da_reserve_space(inode, len); 1828 if (ret != 0) /* ENOSPC */ 1829 return ret; 1830 } else { /* bigalloc */ 1831 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1; 1832 1833 ret = ext4_clu_alloc_state(inode, lblk); 1834 if (ret < 0) 1835 return ret; 1836 if (ret > 0) { 1837 resv_clu--; 1838 lclu_allocated = (ret == 2); 1839 } 1840 1841 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) { 1842 ret = ext4_clu_alloc_state(inode, end); 1843 if (ret < 0) 1844 return ret; 1845 if (ret > 0) { 1846 resv_clu--; 1847 end_allocated = (ret == 2); 1848 } 1849 } 1850 1851 if (resv_clu) { 1852 ret = ext4_da_reserve_space(inode, resv_clu); 1853 if (ret != 0) /* ENOSPC */ 1854 return ret; 1855 } 1856 } 1857 1858 ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated, 1859 end_allocated); 1860 return 0; 1861 } 1862 1863 /* 1864 * Looks up the requested blocks and sets the delalloc extent map. 1865 * First try to look up for the extent entry that contains the requested 1866 * blocks in the extent status tree without i_data_sem, then try to look 1867 * up for the ondisk extent mapping with i_data_sem in read mode, 1868 * finally hold i_data_sem in write mode, looks up again and add a 1869 * delalloc extent entry if it still couldn't find any extent. Pass out 1870 * the mapped extent through @map and return 0 on success. 1871 */ 1872 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map) 1873 { 1874 struct extent_status es; 1875 int retval; 1876 #ifdef ES_AGGRESSIVE_TEST 1877 struct ext4_map_blocks orig_map; 1878 1879 memcpy(&orig_map, map, sizeof(*map)); 1880 #endif 1881 1882 map->m_flags = 0; 1883 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1884 (unsigned long) map->m_lblk); 1885 1886 ext4_check_map_extents_env(inode); 1887 1888 /* Lookup extent status tree firstly */ 1889 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1890 map->m_len = min_t(unsigned int, map->m_len, 1891 es.es_len - (map->m_lblk - es.es_lblk)); 1892 1893 if (ext4_es_is_hole(&es)) 1894 goto add_delayed; 1895 1896 found: 1897 /* 1898 * Delayed extent could be allocated by fallocate. 1899 * So we need to check it. 1900 */ 1901 if (ext4_es_is_delayed(&es)) { 1902 map->m_flags |= EXT4_MAP_DELAYED; 1903 return 0; 1904 } 1905 1906 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk; 1907 if (ext4_es_is_written(&es)) 1908 map->m_flags |= EXT4_MAP_MAPPED; 1909 else if (ext4_es_is_unwritten(&es)) 1910 map->m_flags |= EXT4_MAP_UNWRITTEN; 1911 else 1912 BUG(); 1913 1914 #ifdef ES_AGGRESSIVE_TEST 1915 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1916 #endif 1917 return 0; 1918 } 1919 1920 /* 1921 * Try to see if we can get the block without requesting a new 1922 * file system block. 1923 */ 1924 down_read(&EXT4_I(inode)->i_data_sem); 1925 if (ext4_has_inline_data(inode)) 1926 retval = 0; 1927 else 1928 retval = ext4_map_query_blocks(NULL, inode, map, 0); 1929 up_read(&EXT4_I(inode)->i_data_sem); 1930 if (retval) 1931 return retval < 0 ? retval : 0; 1932 1933 add_delayed: 1934 down_write(&EXT4_I(inode)->i_data_sem); 1935 /* 1936 * Page fault path (ext4_page_mkwrite does not take i_rwsem) 1937 * and fallocate path (no folio lock) can race. Make sure we 1938 * lookup the extent status tree here again while i_data_sem 1939 * is held in write mode, before inserting a new da entry in 1940 * the extent status tree. 1941 */ 1942 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1943 map->m_len = min_t(unsigned int, map->m_len, 1944 es.es_len - (map->m_lblk - es.es_lblk)); 1945 1946 if (!ext4_es_is_hole(&es)) { 1947 up_write(&EXT4_I(inode)->i_data_sem); 1948 goto found; 1949 } 1950 } else if (!ext4_has_inline_data(inode)) { 1951 retval = ext4_map_query_blocks(NULL, inode, map, 0); 1952 if (retval) { 1953 up_write(&EXT4_I(inode)->i_data_sem); 1954 return retval < 0 ? retval : 0; 1955 } 1956 } 1957 1958 map->m_flags |= EXT4_MAP_DELAYED; 1959 retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len); 1960 up_write(&EXT4_I(inode)->i_data_sem); 1961 1962 return retval; 1963 } 1964 1965 /* 1966 * This is a special get_block_t callback which is used by 1967 * ext4_da_write_begin(). It will either return mapped block or 1968 * reserve space for a single block. 1969 * 1970 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1971 * We also have b_blocknr = -1 and b_bdev initialized properly 1972 * 1973 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1974 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1975 * initialized properly. 1976 */ 1977 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1978 struct buffer_head *bh, int create) 1979 { 1980 struct ext4_map_blocks map; 1981 sector_t invalid_block = ~((sector_t) 0xffff); 1982 int ret = 0; 1983 1984 BUG_ON(create == 0); 1985 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1986 1987 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1988 invalid_block = ~0; 1989 1990 map.m_lblk = iblock; 1991 map.m_len = 1; 1992 1993 /* 1994 * first, we need to know whether the block is allocated already 1995 * preallocated blocks are unmapped but should treated 1996 * the same as allocated blocks. 1997 */ 1998 ret = ext4_da_map_blocks(inode, &map); 1999 if (ret < 0) 2000 return ret; 2001 2002 if (map.m_flags & EXT4_MAP_DELAYED) { 2003 map_bh(bh, inode->i_sb, invalid_block); 2004 set_buffer_new(bh); 2005 set_buffer_delay(bh); 2006 return 0; 2007 } 2008 2009 map_bh(bh, inode->i_sb, map.m_pblk); 2010 ext4_update_bh_state(bh, map.m_flags); 2011 2012 if (buffer_unwritten(bh)) { 2013 /* A delayed write to unwritten bh should be marked 2014 * new and mapped. Mapped ensures that we don't do 2015 * get_block multiple times when we write to the same 2016 * offset and new ensures that we do proper zero out 2017 * for partial write. 2018 */ 2019 set_buffer_new(bh); 2020 set_buffer_mapped(bh); 2021 } 2022 return 0; 2023 } 2024 2025 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 2026 { 2027 mpd->first_page += folio_nr_pages(folio); 2028 folio_unlock(folio); 2029 } 2030 2031 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 2032 { 2033 size_t len; 2034 loff_t size; 2035 int err; 2036 2037 BUG_ON(folio->index != mpd->first_page); 2038 folio_clear_dirty_for_io(folio); 2039 /* 2040 * We have to be very careful here! Nothing protects writeback path 2041 * against i_size changes and the page can be writeably mapped into 2042 * page tables. So an application can be growing i_size and writing 2043 * data through mmap while writeback runs. folio_clear_dirty_for_io() 2044 * write-protects our page in page tables and the page cannot get 2045 * written to again until we release folio lock. So only after 2046 * folio_clear_dirty_for_io() we are safe to sample i_size for 2047 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 2048 * on the barrier provided by folio_test_clear_dirty() in 2049 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 2050 * after page tables are updated. 2051 */ 2052 size = i_size_read(mpd->inode); 2053 len = folio_size(folio); 2054 if (folio_pos(folio) + len > size && 2055 !ext4_verity_in_progress(mpd->inode)) 2056 len = size & (len - 1); 2057 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 2058 if (!err) 2059 mpd->wbc->nr_to_write -= folio_nr_pages(folio); 2060 2061 return err; 2062 } 2063 2064 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2065 2066 /* 2067 * mballoc gives us at most this number of blocks... 2068 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2069 * The rest of mballoc seems to handle chunks up to full group size. 2070 */ 2071 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2072 2073 /* 2074 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2075 * 2076 * @mpd - extent of blocks 2077 * @lblk - logical number of the block in the file 2078 * @bh - buffer head we want to add to the extent 2079 * 2080 * The function is used to collect contig. blocks in the same state. If the 2081 * buffer doesn't require mapping for writeback and we haven't started the 2082 * extent of buffers to map yet, the function returns 'true' immediately - the 2083 * caller can write the buffer right away. Otherwise the function returns true 2084 * if the block has been added to the extent, false if the block couldn't be 2085 * added. 2086 */ 2087 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2088 struct buffer_head *bh) 2089 { 2090 struct ext4_map_blocks *map = &mpd->map; 2091 2092 /* Buffer that doesn't need mapping for writeback? */ 2093 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2094 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2095 /* So far no extent to map => we write the buffer right away */ 2096 if (map->m_len == 0) 2097 return true; 2098 return false; 2099 } 2100 2101 /* First block in the extent? */ 2102 if (map->m_len == 0) { 2103 /* We cannot map unless handle is started... */ 2104 if (!mpd->do_map) 2105 return false; 2106 map->m_lblk = lblk; 2107 map->m_len = 1; 2108 map->m_flags = bh->b_state & BH_FLAGS; 2109 return true; 2110 } 2111 2112 /* Don't go larger than mballoc is willing to allocate */ 2113 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2114 return false; 2115 2116 /* Can we merge the block to our big extent? */ 2117 if (lblk == map->m_lblk + map->m_len && 2118 (bh->b_state & BH_FLAGS) == map->m_flags) { 2119 map->m_len++; 2120 return true; 2121 } 2122 return false; 2123 } 2124 2125 /* 2126 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2127 * 2128 * @mpd - extent of blocks for mapping 2129 * @head - the first buffer in the page 2130 * @bh - buffer we should start processing from 2131 * @lblk - logical number of the block in the file corresponding to @bh 2132 * 2133 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2134 * the page for IO if all buffers in this page were mapped and there's no 2135 * accumulated extent of buffers to map or add buffers in the page to the 2136 * extent of buffers to map. The function returns 1 if the caller can continue 2137 * by processing the next page, 0 if it should stop adding buffers to the 2138 * extent to map because we cannot extend it anymore. It can also return value 2139 * < 0 in case of error during IO submission. 2140 */ 2141 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2142 struct buffer_head *head, 2143 struct buffer_head *bh, 2144 ext4_lblk_t lblk) 2145 { 2146 struct inode *inode = mpd->inode; 2147 int err; 2148 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2149 >> inode->i_blkbits; 2150 2151 if (ext4_verity_in_progress(inode)) 2152 blocks = EXT_MAX_BLOCKS; 2153 2154 do { 2155 BUG_ON(buffer_locked(bh)); 2156 2157 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2158 /* Found extent to map? */ 2159 if (mpd->map.m_len) 2160 return 0; 2161 /* Buffer needs mapping and handle is not started? */ 2162 if (!mpd->do_map) 2163 return 0; 2164 /* Everything mapped so far and we hit EOF */ 2165 break; 2166 } 2167 } while (lblk++, (bh = bh->b_this_page) != head); 2168 /* So far everything mapped? Submit the page for IO. */ 2169 if (mpd->map.m_len == 0) { 2170 err = mpage_submit_folio(mpd, head->b_folio); 2171 if (err < 0) 2172 return err; 2173 mpage_folio_done(mpd, head->b_folio); 2174 } 2175 if (lblk >= blocks) { 2176 mpd->scanned_until_end = 1; 2177 return 0; 2178 } 2179 return 1; 2180 } 2181 2182 /* 2183 * mpage_process_folio - update folio buffers corresponding to changed extent 2184 * and may submit fully mapped page for IO 2185 * @mpd: description of extent to map, on return next extent to map 2186 * @folio: Contains these buffers. 2187 * @m_lblk: logical block mapping. 2188 * @m_pblk: corresponding physical mapping. 2189 * @map_bh: determines on return whether this page requires any further 2190 * mapping or not. 2191 * 2192 * Scan given folio buffers corresponding to changed extent and update buffer 2193 * state according to new extent state. 2194 * We map delalloc buffers to their physical location, clear unwritten bits. 2195 * If the given folio is not fully mapped, we update @mpd to the next extent in 2196 * the given folio that needs mapping & return @map_bh as true. 2197 */ 2198 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2199 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2200 bool *map_bh) 2201 { 2202 struct buffer_head *head, *bh; 2203 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2204 ext4_lblk_t lblk = *m_lblk; 2205 ext4_fsblk_t pblock = *m_pblk; 2206 int err = 0; 2207 int blkbits = mpd->inode->i_blkbits; 2208 ssize_t io_end_size = 0; 2209 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2210 2211 bh = head = folio_buffers(folio); 2212 do { 2213 if (lblk < mpd->map.m_lblk) 2214 continue; 2215 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2216 /* 2217 * Buffer after end of mapped extent. 2218 * Find next buffer in the folio to map. 2219 */ 2220 mpd->map.m_len = 0; 2221 mpd->map.m_flags = 0; 2222 io_end_vec->size += io_end_size; 2223 2224 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2225 if (err > 0) 2226 err = 0; 2227 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2228 io_end_vec = ext4_alloc_io_end_vec(io_end); 2229 if (IS_ERR(io_end_vec)) { 2230 err = PTR_ERR(io_end_vec); 2231 goto out; 2232 } 2233 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2234 } 2235 *map_bh = true; 2236 goto out; 2237 } 2238 if (buffer_delay(bh)) { 2239 clear_buffer_delay(bh); 2240 bh->b_blocknr = pblock++; 2241 } 2242 clear_buffer_unwritten(bh); 2243 io_end_size += (1 << blkbits); 2244 } while (lblk++, (bh = bh->b_this_page) != head); 2245 2246 io_end_vec->size += io_end_size; 2247 *map_bh = false; 2248 out: 2249 *m_lblk = lblk; 2250 *m_pblk = pblock; 2251 return err; 2252 } 2253 2254 /* 2255 * mpage_map_buffers - update buffers corresponding to changed extent and 2256 * submit fully mapped pages for IO 2257 * 2258 * @mpd - description of extent to map, on return next extent to map 2259 * 2260 * Scan buffers corresponding to changed extent (we expect corresponding pages 2261 * to be already locked) and update buffer state according to new extent state. 2262 * We map delalloc buffers to their physical location, clear unwritten bits, 2263 * and mark buffers as uninit when we perform writes to unwritten extents 2264 * and do extent conversion after IO is finished. If the last page is not fully 2265 * mapped, we update @map to the next extent in the last page that needs 2266 * mapping. Otherwise we submit the page for IO. 2267 */ 2268 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2269 { 2270 struct folio_batch fbatch; 2271 unsigned nr, i; 2272 struct inode *inode = mpd->inode; 2273 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2274 pgoff_t start, end; 2275 ext4_lblk_t lblk; 2276 ext4_fsblk_t pblock; 2277 int err; 2278 bool map_bh = false; 2279 2280 start = mpd->map.m_lblk >> bpp_bits; 2281 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2282 pblock = mpd->map.m_pblk; 2283 2284 folio_batch_init(&fbatch); 2285 while (start <= end) { 2286 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2287 if (nr == 0) 2288 break; 2289 for (i = 0; i < nr; i++) { 2290 struct folio *folio = fbatch.folios[i]; 2291 2292 lblk = folio->index << bpp_bits; 2293 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2294 &map_bh); 2295 /* 2296 * If map_bh is true, means page may require further bh 2297 * mapping, or maybe the page was submitted for IO. 2298 * So we return to call further extent mapping. 2299 */ 2300 if (err < 0 || map_bh) 2301 goto out; 2302 /* Page fully mapped - let IO run! */ 2303 err = mpage_submit_folio(mpd, folio); 2304 if (err < 0) 2305 goto out; 2306 mpage_folio_done(mpd, folio); 2307 } 2308 folio_batch_release(&fbatch); 2309 } 2310 /* Extent fully mapped and matches with page boundary. We are done. */ 2311 mpd->map.m_len = 0; 2312 mpd->map.m_flags = 0; 2313 return 0; 2314 out: 2315 folio_batch_release(&fbatch); 2316 return err; 2317 } 2318 2319 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2320 { 2321 struct inode *inode = mpd->inode; 2322 struct ext4_map_blocks *map = &mpd->map; 2323 int get_blocks_flags; 2324 int err, dioread_nolock; 2325 2326 trace_ext4_da_write_pages_extent(inode, map); 2327 /* 2328 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2329 * to convert an unwritten extent to be initialized (in the case 2330 * where we have written into one or more preallocated blocks). It is 2331 * possible that we're going to need more metadata blocks than 2332 * previously reserved. However we must not fail because we're in 2333 * writeback and there is nothing we can do about it so it might result 2334 * in data loss. So use reserved blocks to allocate metadata if 2335 * possible. In addition, do not cache any unrelated extents, as it 2336 * only holds the folio lock but does not hold the i_rwsem or 2337 * invalidate_lock, which could corrupt the extent status tree. 2338 */ 2339 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2340 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2341 EXT4_GET_BLOCKS_IO_SUBMIT | 2342 EXT4_EX_NOCACHE; 2343 2344 dioread_nolock = ext4_should_dioread_nolock(inode); 2345 if (dioread_nolock) 2346 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2347 2348 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2349 if (err < 0) 2350 return err; 2351 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2352 if (!mpd->io_submit.io_end->handle && 2353 ext4_handle_valid(handle)) { 2354 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2355 handle->h_rsv_handle = NULL; 2356 } 2357 ext4_set_io_unwritten_flag(mpd->io_submit.io_end); 2358 } 2359 2360 BUG_ON(map->m_len == 0); 2361 return 0; 2362 } 2363 2364 /* 2365 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2366 * mpd->len and submit pages underlying it for IO 2367 * 2368 * @handle - handle for journal operations 2369 * @mpd - extent to map 2370 * @give_up_on_write - we set this to true iff there is a fatal error and there 2371 * is no hope of writing the data. The caller should discard 2372 * dirty pages to avoid infinite loops. 2373 * 2374 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2375 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2376 * them to initialized or split the described range from larger unwritten 2377 * extent. Note that we need not map all the described range since allocation 2378 * can return less blocks or the range is covered by more unwritten extents. We 2379 * cannot map more because we are limited by reserved transaction credits. On 2380 * the other hand we always make sure that the last touched page is fully 2381 * mapped so that it can be written out (and thus forward progress is 2382 * guaranteed). After mapping we submit all mapped pages for IO. 2383 */ 2384 static int mpage_map_and_submit_extent(handle_t *handle, 2385 struct mpage_da_data *mpd, 2386 bool *give_up_on_write) 2387 { 2388 struct inode *inode = mpd->inode; 2389 struct ext4_map_blocks *map = &mpd->map; 2390 int err; 2391 loff_t disksize; 2392 int progress = 0; 2393 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2394 struct ext4_io_end_vec *io_end_vec; 2395 2396 io_end_vec = ext4_alloc_io_end_vec(io_end); 2397 if (IS_ERR(io_end_vec)) 2398 return PTR_ERR(io_end_vec); 2399 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2400 do { 2401 err = mpage_map_one_extent(handle, mpd); 2402 if (err < 0) { 2403 struct super_block *sb = inode->i_sb; 2404 2405 if (ext4_emergency_state(sb)) 2406 goto invalidate_dirty_pages; 2407 /* 2408 * Let the uper layers retry transient errors. 2409 * In the case of ENOSPC, if ext4_count_free_blocks() 2410 * is non-zero, a commit should free up blocks. 2411 */ 2412 if ((err == -ENOMEM) || 2413 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2414 if (progress) 2415 goto update_disksize; 2416 return err; 2417 } 2418 ext4_msg(sb, KERN_CRIT, 2419 "Delayed block allocation failed for " 2420 "inode %lu at logical offset %llu with" 2421 " max blocks %u with error %d", 2422 inode->i_ino, 2423 (unsigned long long)map->m_lblk, 2424 (unsigned)map->m_len, -err); 2425 ext4_msg(sb, KERN_CRIT, 2426 "This should not happen!! Data will " 2427 "be lost\n"); 2428 if (err == -ENOSPC) 2429 ext4_print_free_blocks(inode); 2430 invalidate_dirty_pages: 2431 *give_up_on_write = true; 2432 return err; 2433 } 2434 progress = 1; 2435 /* 2436 * Update buffer state, submit mapped pages, and get us new 2437 * extent to map 2438 */ 2439 err = mpage_map_and_submit_buffers(mpd); 2440 if (err < 0) 2441 goto update_disksize; 2442 } while (map->m_len); 2443 2444 update_disksize: 2445 /* 2446 * Update on-disk size after IO is submitted. Races with 2447 * truncate are avoided by checking i_size under i_data_sem. 2448 */ 2449 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2450 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2451 int err2; 2452 loff_t i_size; 2453 2454 down_write(&EXT4_I(inode)->i_data_sem); 2455 i_size = i_size_read(inode); 2456 if (disksize > i_size) 2457 disksize = i_size; 2458 if (disksize > EXT4_I(inode)->i_disksize) 2459 EXT4_I(inode)->i_disksize = disksize; 2460 up_write(&EXT4_I(inode)->i_data_sem); 2461 err2 = ext4_mark_inode_dirty(handle, inode); 2462 if (err2) { 2463 ext4_error_err(inode->i_sb, -err2, 2464 "Failed to mark inode %lu dirty", 2465 inode->i_ino); 2466 } 2467 if (!err) 2468 err = err2; 2469 } 2470 return err; 2471 } 2472 2473 /* 2474 * Calculate the total number of credits to reserve for one writepages 2475 * iteration. This is called from ext4_writepages(). We map an extent of 2476 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2477 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2478 * bpp - 1 blocks in bpp different extents. 2479 */ 2480 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2481 { 2482 int bpp = ext4_journal_blocks_per_folio(inode); 2483 2484 return ext4_meta_trans_blocks(inode, 2485 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2486 } 2487 2488 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2489 size_t len) 2490 { 2491 struct buffer_head *page_bufs = folio_buffers(folio); 2492 struct inode *inode = folio->mapping->host; 2493 int ret, err; 2494 2495 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2496 NULL, do_journal_get_write_access); 2497 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2498 NULL, write_end_fn); 2499 if (ret == 0) 2500 ret = err; 2501 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2502 if (ret == 0) 2503 ret = err; 2504 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2505 2506 return ret; 2507 } 2508 2509 static int mpage_journal_page_buffers(handle_t *handle, 2510 struct mpage_da_data *mpd, 2511 struct folio *folio) 2512 { 2513 struct inode *inode = mpd->inode; 2514 loff_t size = i_size_read(inode); 2515 size_t len = folio_size(folio); 2516 2517 folio_clear_checked(folio); 2518 mpd->wbc->nr_to_write -= folio_nr_pages(folio); 2519 2520 if (folio_pos(folio) + len > size && 2521 !ext4_verity_in_progress(inode)) 2522 len = size & (len - 1); 2523 2524 return ext4_journal_folio_buffers(handle, folio, len); 2525 } 2526 2527 /* 2528 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2529 * needing mapping, submit mapped pages 2530 * 2531 * @mpd - where to look for pages 2532 * 2533 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2534 * IO immediately. If we cannot map blocks, we submit just already mapped 2535 * buffers in the page for IO and keep page dirty. When we can map blocks and 2536 * we find a page which isn't mapped we start accumulating extent of buffers 2537 * underlying these pages that needs mapping (formed by either delayed or 2538 * unwritten buffers). We also lock the pages containing these buffers. The 2539 * extent found is returned in @mpd structure (starting at mpd->lblk with 2540 * length mpd->len blocks). 2541 * 2542 * Note that this function can attach bios to one io_end structure which are 2543 * neither logically nor physically contiguous. Although it may seem as an 2544 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2545 * case as we need to track IO to all buffers underlying a page in one io_end. 2546 */ 2547 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2548 { 2549 struct address_space *mapping = mpd->inode->i_mapping; 2550 struct folio_batch fbatch; 2551 unsigned int nr_folios; 2552 pgoff_t index = mpd->first_page; 2553 pgoff_t end = mpd->last_page; 2554 xa_mark_t tag; 2555 int i, err = 0; 2556 int blkbits = mpd->inode->i_blkbits; 2557 ext4_lblk_t lblk; 2558 struct buffer_head *head; 2559 handle_t *handle = NULL; 2560 int bpp = ext4_journal_blocks_per_folio(mpd->inode); 2561 2562 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2563 tag = PAGECACHE_TAG_TOWRITE; 2564 else 2565 tag = PAGECACHE_TAG_DIRTY; 2566 2567 mpd->map.m_len = 0; 2568 mpd->next_page = index; 2569 if (ext4_should_journal_data(mpd->inode)) { 2570 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2571 bpp); 2572 if (IS_ERR(handle)) 2573 return PTR_ERR(handle); 2574 } 2575 folio_batch_init(&fbatch); 2576 while (index <= end) { 2577 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2578 tag, &fbatch); 2579 if (nr_folios == 0) 2580 break; 2581 2582 for (i = 0; i < nr_folios; i++) { 2583 struct folio *folio = fbatch.folios[i]; 2584 2585 /* 2586 * Accumulated enough dirty pages? This doesn't apply 2587 * to WB_SYNC_ALL mode. For integrity sync we have to 2588 * keep going because someone may be concurrently 2589 * dirtying pages, and we might have synced a lot of 2590 * newly appeared dirty pages, but have not synced all 2591 * of the old dirty pages. 2592 */ 2593 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2594 mpd->wbc->nr_to_write <= 2595 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2596 goto out; 2597 2598 /* If we can't merge this page, we are done. */ 2599 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2600 goto out; 2601 2602 if (handle) { 2603 err = ext4_journal_ensure_credits(handle, bpp, 2604 0); 2605 if (err < 0) 2606 goto out; 2607 } 2608 2609 folio_lock(folio); 2610 /* 2611 * If the page is no longer dirty, or its mapping no 2612 * longer corresponds to inode we are writing (which 2613 * means it has been truncated or invalidated), or the 2614 * page is already under writeback and we are not doing 2615 * a data integrity writeback, skip the page 2616 */ 2617 if (!folio_test_dirty(folio) || 2618 (folio_test_writeback(folio) && 2619 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2620 unlikely(folio->mapping != mapping)) { 2621 folio_unlock(folio); 2622 continue; 2623 } 2624 2625 folio_wait_writeback(folio); 2626 BUG_ON(folio_test_writeback(folio)); 2627 2628 /* 2629 * Should never happen but for buggy code in 2630 * other subsystems that call 2631 * set_page_dirty() without properly warning 2632 * the file system first. See [1] for more 2633 * information. 2634 * 2635 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2636 */ 2637 if (!folio_buffers(folio)) { 2638 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2639 folio_clear_dirty(folio); 2640 folio_unlock(folio); 2641 continue; 2642 } 2643 2644 if (mpd->map.m_len == 0) 2645 mpd->first_page = folio->index; 2646 mpd->next_page = folio_next_index(folio); 2647 /* 2648 * Writeout when we cannot modify metadata is simple. 2649 * Just submit the page. For data=journal mode we 2650 * first handle writeout of the page for checkpoint and 2651 * only after that handle delayed page dirtying. This 2652 * makes sure current data is checkpointed to the final 2653 * location before possibly journalling it again which 2654 * is desirable when the page is frequently dirtied 2655 * through a pin. 2656 */ 2657 if (!mpd->can_map) { 2658 err = mpage_submit_folio(mpd, folio); 2659 if (err < 0) 2660 goto out; 2661 /* Pending dirtying of journalled data? */ 2662 if (folio_test_checked(folio)) { 2663 err = mpage_journal_page_buffers(handle, 2664 mpd, folio); 2665 if (err < 0) 2666 goto out; 2667 mpd->journalled_more_data = 1; 2668 } 2669 mpage_folio_done(mpd, folio); 2670 } else { 2671 /* Add all dirty buffers to mpd */ 2672 lblk = ((ext4_lblk_t)folio->index) << 2673 (PAGE_SHIFT - blkbits); 2674 head = folio_buffers(folio); 2675 err = mpage_process_page_bufs(mpd, head, head, 2676 lblk); 2677 if (err <= 0) 2678 goto out; 2679 err = 0; 2680 } 2681 } 2682 folio_batch_release(&fbatch); 2683 cond_resched(); 2684 } 2685 mpd->scanned_until_end = 1; 2686 if (handle) 2687 ext4_journal_stop(handle); 2688 return 0; 2689 out: 2690 folio_batch_release(&fbatch); 2691 if (handle) 2692 ext4_journal_stop(handle); 2693 return err; 2694 } 2695 2696 static int ext4_do_writepages(struct mpage_da_data *mpd) 2697 { 2698 struct writeback_control *wbc = mpd->wbc; 2699 pgoff_t writeback_index = 0; 2700 long nr_to_write = wbc->nr_to_write; 2701 int range_whole = 0; 2702 int cycled = 1; 2703 handle_t *handle = NULL; 2704 struct inode *inode = mpd->inode; 2705 struct address_space *mapping = inode->i_mapping; 2706 int needed_blocks, rsv_blocks = 0, ret = 0; 2707 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2708 struct blk_plug plug; 2709 bool give_up_on_write = false; 2710 2711 trace_ext4_writepages(inode, wbc); 2712 2713 /* 2714 * No pages to write? This is mainly a kludge to avoid starting 2715 * a transaction for special inodes like journal inode on last iput() 2716 * because that could violate lock ordering on umount 2717 */ 2718 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2719 goto out_writepages; 2720 2721 /* 2722 * If the filesystem has aborted, it is read-only, so return 2723 * right away instead of dumping stack traces later on that 2724 * will obscure the real source of the problem. We test 2725 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2726 * the latter could be true if the filesystem is mounted 2727 * read-only, and in that case, ext4_writepages should 2728 * *never* be called, so if that ever happens, we would want 2729 * the stack trace. 2730 */ 2731 ret = ext4_emergency_state(mapping->host->i_sb); 2732 if (unlikely(ret)) 2733 goto out_writepages; 2734 2735 /* 2736 * If we have inline data and arrive here, it means that 2737 * we will soon create the block for the 1st page, so 2738 * we'd better clear the inline data here. 2739 */ 2740 if (ext4_has_inline_data(inode)) { 2741 /* Just inode will be modified... */ 2742 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2743 if (IS_ERR(handle)) { 2744 ret = PTR_ERR(handle); 2745 goto out_writepages; 2746 } 2747 BUG_ON(ext4_test_inode_state(inode, 2748 EXT4_STATE_MAY_INLINE_DATA)); 2749 ext4_destroy_inline_data(handle, inode); 2750 ext4_journal_stop(handle); 2751 } 2752 2753 /* 2754 * data=journal mode does not do delalloc so we just need to writeout / 2755 * journal already mapped buffers. On the other hand we need to commit 2756 * transaction to make data stable. We expect all the data to be 2757 * already in the journal (the only exception are DMA pinned pages 2758 * dirtied behind our back) so we commit transaction here and run the 2759 * writeback loop to checkpoint them. The checkpointing is not actually 2760 * necessary to make data persistent *but* quite a few places (extent 2761 * shifting operations, fsverity, ...) depend on being able to drop 2762 * pagecache pages after calling filemap_write_and_wait() and for that 2763 * checkpointing needs to happen. 2764 */ 2765 if (ext4_should_journal_data(inode)) { 2766 mpd->can_map = 0; 2767 if (wbc->sync_mode == WB_SYNC_ALL) 2768 ext4_fc_commit(sbi->s_journal, 2769 EXT4_I(inode)->i_datasync_tid); 2770 } 2771 mpd->journalled_more_data = 0; 2772 2773 if (ext4_should_dioread_nolock(inode)) { 2774 /* 2775 * We may need to convert up to one extent per block in 2776 * the page and we may dirty the inode. 2777 */ 2778 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2779 PAGE_SIZE >> inode->i_blkbits); 2780 } 2781 2782 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2783 range_whole = 1; 2784 2785 if (wbc->range_cyclic) { 2786 writeback_index = mapping->writeback_index; 2787 if (writeback_index) 2788 cycled = 0; 2789 mpd->first_page = writeback_index; 2790 mpd->last_page = -1; 2791 } else { 2792 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2793 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2794 } 2795 2796 ext4_io_submit_init(&mpd->io_submit, wbc); 2797 retry: 2798 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2799 tag_pages_for_writeback(mapping, mpd->first_page, 2800 mpd->last_page); 2801 blk_start_plug(&plug); 2802 2803 /* 2804 * First writeback pages that don't need mapping - we can avoid 2805 * starting a transaction unnecessarily and also avoid being blocked 2806 * in the block layer on device congestion while having transaction 2807 * started. 2808 */ 2809 mpd->do_map = 0; 2810 mpd->scanned_until_end = 0; 2811 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2812 if (!mpd->io_submit.io_end) { 2813 ret = -ENOMEM; 2814 goto unplug; 2815 } 2816 ret = mpage_prepare_extent_to_map(mpd); 2817 /* Unlock pages we didn't use */ 2818 mpage_release_unused_pages(mpd, false); 2819 /* Submit prepared bio */ 2820 ext4_io_submit(&mpd->io_submit); 2821 ext4_put_io_end_defer(mpd->io_submit.io_end); 2822 mpd->io_submit.io_end = NULL; 2823 if (ret < 0) 2824 goto unplug; 2825 2826 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2827 /* For each extent of pages we use new io_end */ 2828 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2829 if (!mpd->io_submit.io_end) { 2830 ret = -ENOMEM; 2831 break; 2832 } 2833 2834 WARN_ON_ONCE(!mpd->can_map); 2835 /* 2836 * We have two constraints: We find one extent to map and we 2837 * must always write out whole page (makes a difference when 2838 * blocksize < pagesize) so that we don't block on IO when we 2839 * try to write out the rest of the page. Journalled mode is 2840 * not supported by delalloc. 2841 */ 2842 BUG_ON(ext4_should_journal_data(inode)); 2843 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2844 2845 /* start a new transaction */ 2846 handle = ext4_journal_start_with_reserve(inode, 2847 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2848 if (IS_ERR(handle)) { 2849 ret = PTR_ERR(handle); 2850 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2851 "%ld pages, ino %lu; err %d", __func__, 2852 wbc->nr_to_write, inode->i_ino, ret); 2853 /* Release allocated io_end */ 2854 ext4_put_io_end(mpd->io_submit.io_end); 2855 mpd->io_submit.io_end = NULL; 2856 break; 2857 } 2858 mpd->do_map = 1; 2859 2860 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2861 ret = mpage_prepare_extent_to_map(mpd); 2862 if (!ret && mpd->map.m_len) 2863 ret = mpage_map_and_submit_extent(handle, mpd, 2864 &give_up_on_write); 2865 /* 2866 * Caution: If the handle is synchronous, 2867 * ext4_journal_stop() can wait for transaction commit 2868 * to finish which may depend on writeback of pages to 2869 * complete or on page lock to be released. In that 2870 * case, we have to wait until after we have 2871 * submitted all the IO, released page locks we hold, 2872 * and dropped io_end reference (for extent conversion 2873 * to be able to complete) before stopping the handle. 2874 */ 2875 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2876 ext4_journal_stop(handle); 2877 handle = NULL; 2878 mpd->do_map = 0; 2879 } 2880 /* Unlock pages we didn't use */ 2881 mpage_release_unused_pages(mpd, give_up_on_write); 2882 /* Submit prepared bio */ 2883 ext4_io_submit(&mpd->io_submit); 2884 2885 /* 2886 * Drop our io_end reference we got from init. We have 2887 * to be careful and use deferred io_end finishing if 2888 * we are still holding the transaction as we can 2889 * release the last reference to io_end which may end 2890 * up doing unwritten extent conversion. 2891 */ 2892 if (handle) { 2893 ext4_put_io_end_defer(mpd->io_submit.io_end); 2894 ext4_journal_stop(handle); 2895 } else 2896 ext4_put_io_end(mpd->io_submit.io_end); 2897 mpd->io_submit.io_end = NULL; 2898 2899 if (ret == -ENOSPC && sbi->s_journal) { 2900 /* 2901 * Commit the transaction which would 2902 * free blocks released in the transaction 2903 * and try again 2904 */ 2905 jbd2_journal_force_commit_nested(sbi->s_journal); 2906 ret = 0; 2907 continue; 2908 } 2909 /* Fatal error - ENOMEM, EIO... */ 2910 if (ret) 2911 break; 2912 } 2913 unplug: 2914 blk_finish_plug(&plug); 2915 if (!ret && !cycled && wbc->nr_to_write > 0) { 2916 cycled = 1; 2917 mpd->last_page = writeback_index - 1; 2918 mpd->first_page = 0; 2919 goto retry; 2920 } 2921 2922 /* Update index */ 2923 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2924 /* 2925 * Set the writeback_index so that range_cyclic 2926 * mode will write it back later 2927 */ 2928 mapping->writeback_index = mpd->first_page; 2929 2930 out_writepages: 2931 trace_ext4_writepages_result(inode, wbc, ret, 2932 nr_to_write - wbc->nr_to_write); 2933 return ret; 2934 } 2935 2936 static int ext4_writepages(struct address_space *mapping, 2937 struct writeback_control *wbc) 2938 { 2939 struct super_block *sb = mapping->host->i_sb; 2940 struct mpage_da_data mpd = { 2941 .inode = mapping->host, 2942 .wbc = wbc, 2943 .can_map = 1, 2944 }; 2945 int ret; 2946 int alloc_ctx; 2947 2948 ret = ext4_emergency_state(sb); 2949 if (unlikely(ret)) 2950 return ret; 2951 2952 alloc_ctx = ext4_writepages_down_read(sb); 2953 ret = ext4_do_writepages(&mpd); 2954 /* 2955 * For data=journal writeback we could have come across pages marked 2956 * for delayed dirtying (PageChecked) which were just added to the 2957 * running transaction. Try once more to get them to stable storage. 2958 */ 2959 if (!ret && mpd.journalled_more_data) 2960 ret = ext4_do_writepages(&mpd); 2961 ext4_writepages_up_read(sb, alloc_ctx); 2962 2963 return ret; 2964 } 2965 2966 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2967 { 2968 struct writeback_control wbc = { 2969 .sync_mode = WB_SYNC_ALL, 2970 .nr_to_write = LONG_MAX, 2971 .range_start = jinode->i_dirty_start, 2972 .range_end = jinode->i_dirty_end, 2973 }; 2974 struct mpage_da_data mpd = { 2975 .inode = jinode->i_vfs_inode, 2976 .wbc = &wbc, 2977 .can_map = 0, 2978 }; 2979 return ext4_do_writepages(&mpd); 2980 } 2981 2982 static int ext4_dax_writepages(struct address_space *mapping, 2983 struct writeback_control *wbc) 2984 { 2985 int ret; 2986 long nr_to_write = wbc->nr_to_write; 2987 struct inode *inode = mapping->host; 2988 int alloc_ctx; 2989 2990 ret = ext4_emergency_state(inode->i_sb); 2991 if (unlikely(ret)) 2992 return ret; 2993 2994 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2995 trace_ext4_writepages(inode, wbc); 2996 2997 ret = dax_writeback_mapping_range(mapping, 2998 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2999 trace_ext4_writepages_result(inode, wbc, ret, 3000 nr_to_write - wbc->nr_to_write); 3001 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 3002 return ret; 3003 } 3004 3005 static int ext4_nonda_switch(struct super_block *sb) 3006 { 3007 s64 free_clusters, dirty_clusters; 3008 struct ext4_sb_info *sbi = EXT4_SB(sb); 3009 3010 /* 3011 * switch to non delalloc mode if we are running low 3012 * on free block. The free block accounting via percpu 3013 * counters can get slightly wrong with percpu_counter_batch getting 3014 * accumulated on each CPU without updating global counters 3015 * Delalloc need an accurate free block accounting. So switch 3016 * to non delalloc when we are near to error range. 3017 */ 3018 free_clusters = 3019 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 3020 dirty_clusters = 3021 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 3022 /* 3023 * Start pushing delalloc when 1/2 of free blocks are dirty. 3024 */ 3025 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 3026 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 3027 3028 if (2 * free_clusters < 3 * dirty_clusters || 3029 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 3030 /* 3031 * free block count is less than 150% of dirty blocks 3032 * or free blocks is less than watermark 3033 */ 3034 return 1; 3035 } 3036 return 0; 3037 } 3038 3039 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3040 loff_t pos, unsigned len, 3041 struct folio **foliop, void **fsdata) 3042 { 3043 int ret, retries = 0; 3044 struct folio *folio; 3045 pgoff_t index; 3046 struct inode *inode = mapping->host; 3047 fgf_t fgp = FGP_WRITEBEGIN; 3048 3049 ret = ext4_emergency_state(inode->i_sb); 3050 if (unlikely(ret)) 3051 return ret; 3052 3053 index = pos >> PAGE_SHIFT; 3054 3055 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 3056 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3057 return ext4_write_begin(file, mapping, pos, 3058 len, foliop, fsdata); 3059 } 3060 *fsdata = (void *)0; 3061 trace_ext4_da_write_begin(inode, pos, len); 3062 3063 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3064 ret = ext4_generic_write_inline_data(mapping, inode, pos, len, 3065 foliop, fsdata, true); 3066 if (ret < 0) 3067 return ret; 3068 if (ret == 1) 3069 return 0; 3070 } 3071 3072 retry: 3073 fgp |= fgf_set_order(len); 3074 folio = __filemap_get_folio(mapping, index, fgp, 3075 mapping_gfp_mask(mapping)); 3076 if (IS_ERR(folio)) 3077 return PTR_ERR(folio); 3078 3079 if (pos + len > folio_pos(folio) + folio_size(folio)) 3080 len = folio_pos(folio) + folio_size(folio) - pos; 3081 3082 ret = ext4_block_write_begin(NULL, folio, pos, len, 3083 ext4_da_get_block_prep); 3084 if (ret < 0) { 3085 folio_unlock(folio); 3086 folio_put(folio); 3087 /* 3088 * block_write_begin may have instantiated a few blocks 3089 * outside i_size. Trim these off again. Don't need 3090 * i_size_read because we hold inode lock. 3091 */ 3092 if (pos + len > inode->i_size) 3093 ext4_truncate_failed_write(inode); 3094 3095 if (ret == -ENOSPC && 3096 ext4_should_retry_alloc(inode->i_sb, &retries)) 3097 goto retry; 3098 return ret; 3099 } 3100 3101 *foliop = folio; 3102 return ret; 3103 } 3104 3105 /* 3106 * Check if we should update i_disksize 3107 * when write to the end of file but not require block allocation 3108 */ 3109 static int ext4_da_should_update_i_disksize(struct folio *folio, 3110 unsigned long offset) 3111 { 3112 struct buffer_head *bh; 3113 struct inode *inode = folio->mapping->host; 3114 unsigned int idx; 3115 int i; 3116 3117 bh = folio_buffers(folio); 3118 idx = offset >> inode->i_blkbits; 3119 3120 for (i = 0; i < idx; i++) 3121 bh = bh->b_this_page; 3122 3123 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3124 return 0; 3125 return 1; 3126 } 3127 3128 static int ext4_da_do_write_end(struct address_space *mapping, 3129 loff_t pos, unsigned len, unsigned copied, 3130 struct folio *folio) 3131 { 3132 struct inode *inode = mapping->host; 3133 loff_t old_size = inode->i_size; 3134 bool disksize_changed = false; 3135 loff_t new_i_size, zero_len = 0; 3136 handle_t *handle; 3137 3138 if (unlikely(!folio_buffers(folio))) { 3139 folio_unlock(folio); 3140 folio_put(folio); 3141 return -EIO; 3142 } 3143 /* 3144 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 3145 * flag, which all that's needed to trigger page writeback. 3146 */ 3147 copied = block_write_end(NULL, mapping, pos, len, copied, 3148 folio, NULL); 3149 new_i_size = pos + copied; 3150 3151 /* 3152 * It's important to update i_size while still holding folio lock, 3153 * because folio writeout could otherwise come in and zero beyond 3154 * i_size. 3155 * 3156 * Since we are holding inode lock, we are sure i_disksize <= 3157 * i_size. We also know that if i_disksize < i_size, there are 3158 * delalloc writes pending in the range up to i_size. If the end of 3159 * the current write is <= i_size, there's no need to touch 3160 * i_disksize since writeback will push i_disksize up to i_size 3161 * eventually. If the end of the current write is > i_size and 3162 * inside an allocated block which ext4_da_should_update_i_disksize() 3163 * checked, we need to update i_disksize here as certain 3164 * ext4_writepages() paths not allocating blocks and update i_disksize. 3165 */ 3166 if (new_i_size > inode->i_size) { 3167 unsigned long end; 3168 3169 i_size_write(inode, new_i_size); 3170 end = offset_in_folio(folio, new_i_size - 1); 3171 if (copied && ext4_da_should_update_i_disksize(folio, end)) { 3172 ext4_update_i_disksize(inode, new_i_size); 3173 disksize_changed = true; 3174 } 3175 } 3176 3177 folio_unlock(folio); 3178 folio_put(folio); 3179 3180 if (pos > old_size) { 3181 pagecache_isize_extended(inode, old_size, pos); 3182 zero_len = pos - old_size; 3183 } 3184 3185 if (!disksize_changed && !zero_len) 3186 return copied; 3187 3188 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3189 if (IS_ERR(handle)) 3190 return PTR_ERR(handle); 3191 if (zero_len) 3192 ext4_zero_partial_blocks(handle, inode, old_size, zero_len); 3193 ext4_mark_inode_dirty(handle, inode); 3194 ext4_journal_stop(handle); 3195 3196 return copied; 3197 } 3198 3199 static int ext4_da_write_end(struct file *file, 3200 struct address_space *mapping, 3201 loff_t pos, unsigned len, unsigned copied, 3202 struct folio *folio, void *fsdata) 3203 { 3204 struct inode *inode = mapping->host; 3205 int write_mode = (int)(unsigned long)fsdata; 3206 3207 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3208 return ext4_write_end(file, mapping, pos, 3209 len, copied, folio, fsdata); 3210 3211 trace_ext4_da_write_end(inode, pos, len, copied); 3212 3213 if (write_mode != CONVERT_INLINE_DATA && 3214 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3215 ext4_has_inline_data(inode)) 3216 return ext4_write_inline_data_end(inode, pos, len, copied, 3217 folio); 3218 3219 if (unlikely(copied < len) && !folio_test_uptodate(folio)) 3220 copied = 0; 3221 3222 return ext4_da_do_write_end(mapping, pos, len, copied, folio); 3223 } 3224 3225 /* 3226 * Force all delayed allocation blocks to be allocated for a given inode. 3227 */ 3228 int ext4_alloc_da_blocks(struct inode *inode) 3229 { 3230 trace_ext4_alloc_da_blocks(inode); 3231 3232 if (!EXT4_I(inode)->i_reserved_data_blocks) 3233 return 0; 3234 3235 /* 3236 * We do something simple for now. The filemap_flush() will 3237 * also start triggering a write of the data blocks, which is 3238 * not strictly speaking necessary (and for users of 3239 * laptop_mode, not even desirable). However, to do otherwise 3240 * would require replicating code paths in: 3241 * 3242 * ext4_writepages() -> 3243 * write_cache_pages() ---> (via passed in callback function) 3244 * __mpage_da_writepage() --> 3245 * mpage_add_bh_to_extent() 3246 * mpage_da_map_blocks() 3247 * 3248 * The problem is that write_cache_pages(), located in 3249 * mm/page-writeback.c, marks pages clean in preparation for 3250 * doing I/O, which is not desirable if we're not planning on 3251 * doing I/O at all. 3252 * 3253 * We could call write_cache_pages(), and then redirty all of 3254 * the pages by calling redirty_page_for_writepage() but that 3255 * would be ugly in the extreme. So instead we would need to 3256 * replicate parts of the code in the above functions, 3257 * simplifying them because we wouldn't actually intend to 3258 * write out the pages, but rather only collect contiguous 3259 * logical block extents, call the multi-block allocator, and 3260 * then update the buffer heads with the block allocations. 3261 * 3262 * For now, though, we'll cheat by calling filemap_flush(), 3263 * which will map the blocks, and start the I/O, but not 3264 * actually wait for the I/O to complete. 3265 */ 3266 return filemap_flush(inode->i_mapping); 3267 } 3268 3269 /* 3270 * bmap() is special. It gets used by applications such as lilo and by 3271 * the swapper to find the on-disk block of a specific piece of data. 3272 * 3273 * Naturally, this is dangerous if the block concerned is still in the 3274 * journal. If somebody makes a swapfile on an ext4 data-journaling 3275 * filesystem and enables swap, then they may get a nasty shock when the 3276 * data getting swapped to that swapfile suddenly gets overwritten by 3277 * the original zero's written out previously to the journal and 3278 * awaiting writeback in the kernel's buffer cache. 3279 * 3280 * So, if we see any bmap calls here on a modified, data-journaled file, 3281 * take extra steps to flush any blocks which might be in the cache. 3282 */ 3283 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3284 { 3285 struct inode *inode = mapping->host; 3286 sector_t ret = 0; 3287 3288 inode_lock_shared(inode); 3289 /* 3290 * We can get here for an inline file via the FIBMAP ioctl 3291 */ 3292 if (ext4_has_inline_data(inode)) 3293 goto out; 3294 3295 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3296 (test_opt(inode->i_sb, DELALLOC) || 3297 ext4_should_journal_data(inode))) { 3298 /* 3299 * With delalloc or journalled data we want to sync the file so 3300 * that we can make sure we allocate blocks for file and data 3301 * is in place for the user to see it 3302 */ 3303 filemap_write_and_wait(mapping); 3304 } 3305 3306 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3307 3308 out: 3309 inode_unlock_shared(inode); 3310 return ret; 3311 } 3312 3313 static int ext4_read_folio(struct file *file, struct folio *folio) 3314 { 3315 int ret = -EAGAIN; 3316 struct inode *inode = folio->mapping->host; 3317 3318 trace_ext4_read_folio(inode, folio); 3319 3320 if (ext4_has_inline_data(inode)) 3321 ret = ext4_readpage_inline(inode, folio); 3322 3323 if (ret == -EAGAIN) 3324 return ext4_mpage_readpages(inode, NULL, folio); 3325 3326 return ret; 3327 } 3328 3329 static void ext4_readahead(struct readahead_control *rac) 3330 { 3331 struct inode *inode = rac->mapping->host; 3332 3333 /* If the file has inline data, no need to do readahead. */ 3334 if (ext4_has_inline_data(inode)) 3335 return; 3336 3337 ext4_mpage_readpages(inode, rac, NULL); 3338 } 3339 3340 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3341 size_t length) 3342 { 3343 trace_ext4_invalidate_folio(folio, offset, length); 3344 3345 /* No journalling happens on data buffers when this function is used */ 3346 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3347 3348 block_invalidate_folio(folio, offset, length); 3349 } 3350 3351 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3352 size_t offset, size_t length) 3353 { 3354 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3355 3356 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3357 3358 /* 3359 * If it's a full truncate we just forget about the pending dirtying 3360 */ 3361 if (offset == 0 && length == folio_size(folio)) 3362 folio_clear_checked(folio); 3363 3364 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3365 } 3366 3367 /* Wrapper for aops... */ 3368 static void ext4_journalled_invalidate_folio(struct folio *folio, 3369 size_t offset, 3370 size_t length) 3371 { 3372 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3373 } 3374 3375 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3376 { 3377 struct inode *inode = folio->mapping->host; 3378 journal_t *journal = EXT4_JOURNAL(inode); 3379 3380 trace_ext4_release_folio(inode, folio); 3381 3382 /* Page has dirty journalled data -> cannot release */ 3383 if (folio_test_checked(folio)) 3384 return false; 3385 if (journal) 3386 return jbd2_journal_try_to_free_buffers(journal, folio); 3387 else 3388 return try_to_free_buffers(folio); 3389 } 3390 3391 static bool ext4_inode_datasync_dirty(struct inode *inode) 3392 { 3393 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3394 3395 if (journal) { 3396 if (jbd2_transaction_committed(journal, 3397 EXT4_I(inode)->i_datasync_tid)) 3398 return false; 3399 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3400 return !list_empty(&EXT4_I(inode)->i_fc_list); 3401 return true; 3402 } 3403 3404 /* Any metadata buffers to write? */ 3405 if (!list_empty(&inode->i_mapping->i_private_list)) 3406 return true; 3407 return inode->i_state & I_DIRTY_DATASYNC; 3408 } 3409 3410 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3411 struct ext4_map_blocks *map, loff_t offset, 3412 loff_t length, unsigned int flags) 3413 { 3414 u8 blkbits = inode->i_blkbits; 3415 3416 /* 3417 * Writes that span EOF might trigger an I/O size update on completion, 3418 * so consider them to be dirty for the purpose of O_DSYNC, even if 3419 * there is no other metadata changes being made or are pending. 3420 */ 3421 iomap->flags = 0; 3422 if (ext4_inode_datasync_dirty(inode) || 3423 offset + length > i_size_read(inode)) 3424 iomap->flags |= IOMAP_F_DIRTY; 3425 3426 if (map->m_flags & EXT4_MAP_NEW) 3427 iomap->flags |= IOMAP_F_NEW; 3428 3429 /* HW-offload atomics are always used */ 3430 if (flags & IOMAP_ATOMIC) 3431 iomap->flags |= IOMAP_F_ATOMIC_BIO; 3432 3433 if (flags & IOMAP_DAX) 3434 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3435 else 3436 iomap->bdev = inode->i_sb->s_bdev; 3437 iomap->offset = (u64) map->m_lblk << blkbits; 3438 iomap->length = (u64) map->m_len << blkbits; 3439 3440 if ((map->m_flags & EXT4_MAP_MAPPED) && 3441 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3442 iomap->flags |= IOMAP_F_MERGED; 3443 3444 /* 3445 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3446 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3447 * set. In order for any allocated unwritten extents to be converted 3448 * into written extents correctly within the ->end_io() handler, we 3449 * need to ensure that the iomap->type is set appropriately. Hence, the 3450 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3451 * been set first. 3452 */ 3453 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3454 iomap->type = IOMAP_UNWRITTEN; 3455 iomap->addr = (u64) map->m_pblk << blkbits; 3456 if (flags & IOMAP_DAX) 3457 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3458 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3459 iomap->type = IOMAP_MAPPED; 3460 iomap->addr = (u64) map->m_pblk << blkbits; 3461 if (flags & IOMAP_DAX) 3462 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3463 } else if (map->m_flags & EXT4_MAP_DELAYED) { 3464 iomap->type = IOMAP_DELALLOC; 3465 iomap->addr = IOMAP_NULL_ADDR; 3466 } else { 3467 iomap->type = IOMAP_HOLE; 3468 iomap->addr = IOMAP_NULL_ADDR; 3469 } 3470 } 3471 3472 static int ext4_map_blocks_atomic_write_slow(handle_t *handle, 3473 struct inode *inode, struct ext4_map_blocks *map) 3474 { 3475 ext4_lblk_t m_lblk = map->m_lblk; 3476 unsigned int m_len = map->m_len; 3477 unsigned int mapped_len = 0, m_flags = 0; 3478 ext4_fsblk_t next_pblk; 3479 bool check_next_pblk = false; 3480 int ret = 0; 3481 3482 WARN_ON_ONCE(!ext4_has_feature_bigalloc(inode->i_sb)); 3483 3484 /* 3485 * This is a slow path in case of mixed mapping. We use 3486 * EXT4_GET_BLOCKS_CREATE_ZERO flag here to make sure we get a single 3487 * contiguous mapped mapping. This will ensure any unwritten or hole 3488 * regions within the requested range is zeroed out and we return 3489 * a single contiguous mapped extent. 3490 */ 3491 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3492 3493 do { 3494 ret = ext4_map_blocks(handle, inode, map, m_flags); 3495 if (ret < 0 && ret != -ENOSPC) 3496 goto out_err; 3497 /* 3498 * This should never happen, but let's return an error code to 3499 * avoid an infinite loop in here. 3500 */ 3501 if (ret == 0) { 3502 ret = -EFSCORRUPTED; 3503 ext4_warning_inode(inode, 3504 "ext4_map_blocks() couldn't allocate blocks m_flags: 0x%x, ret:%d", 3505 m_flags, ret); 3506 goto out_err; 3507 } 3508 /* 3509 * With bigalloc we should never get ENOSPC nor discontiguous 3510 * physical extents. 3511 */ 3512 if ((check_next_pblk && next_pblk != map->m_pblk) || 3513 ret == -ENOSPC) { 3514 ext4_warning_inode(inode, 3515 "Non-contiguous allocation detected: expected %llu, got %llu, " 3516 "or ext4_map_blocks() returned out of space ret: %d", 3517 next_pblk, map->m_pblk, ret); 3518 ret = -EFSCORRUPTED; 3519 goto out_err; 3520 } 3521 next_pblk = map->m_pblk + map->m_len; 3522 check_next_pblk = true; 3523 3524 mapped_len += map->m_len; 3525 map->m_lblk += map->m_len; 3526 map->m_len = m_len - mapped_len; 3527 } while (mapped_len < m_len); 3528 3529 /* 3530 * We might have done some work in above loop, so we need to query the 3531 * start of the physical extent, based on the origin m_lblk and m_len. 3532 * Let's also ensure we were able to allocate the required range for 3533 * mixed mapping case. 3534 */ 3535 map->m_lblk = m_lblk; 3536 map->m_len = m_len; 3537 map->m_flags = 0; 3538 3539 ret = ext4_map_blocks(handle, inode, map, 3540 EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF); 3541 if (ret != m_len) { 3542 ext4_warning_inode(inode, 3543 "allocation failed for atomic write request m_lblk:%u, m_len:%u, ret:%d\n", 3544 m_lblk, m_len, ret); 3545 ret = -EINVAL; 3546 } 3547 return ret; 3548 3549 out_err: 3550 /* reset map before returning an error */ 3551 map->m_lblk = m_lblk; 3552 map->m_len = m_len; 3553 map->m_flags = 0; 3554 return ret; 3555 } 3556 3557 /* 3558 * ext4_map_blocks_atomic: Helper routine to ensure the entire requested 3559 * range in @map [lblk, lblk + len) is one single contiguous extent with no 3560 * mixed mappings. 3561 * 3562 * We first use m_flags passed to us by our caller (ext4_iomap_alloc()). 3563 * We only call EXT4_GET_BLOCKS_ZERO in the slow path, when the underlying 3564 * physical extent for the requested range does not have a single contiguous 3565 * mapping type i.e. (Hole, Mapped, or Unwritten) throughout. 3566 * In that case we will loop over the requested range to allocate and zero out 3567 * the unwritten / holes in between, to get a single mapped extent from 3568 * [m_lblk, m_lblk + m_len). Note that this is only possible because we know 3569 * this can be called only with bigalloc enabled filesystem where the underlying 3570 * cluster is already allocated. This avoids allocating discontiguous extents 3571 * in the slow path due to multiple calls to ext4_map_blocks(). 3572 * The slow path is mostly non-performance critical path, so it should be ok to 3573 * loop using ext4_map_blocks() with appropriate flags to allocate & zero the 3574 * underlying short holes/unwritten extents within the requested range. 3575 */ 3576 static int ext4_map_blocks_atomic_write(handle_t *handle, struct inode *inode, 3577 struct ext4_map_blocks *map, int m_flags, 3578 bool *force_commit) 3579 { 3580 ext4_lblk_t m_lblk = map->m_lblk; 3581 unsigned int m_len = map->m_len; 3582 int ret = 0; 3583 3584 WARN_ON_ONCE(m_len > 1 && !ext4_has_feature_bigalloc(inode->i_sb)); 3585 3586 ret = ext4_map_blocks(handle, inode, map, m_flags); 3587 if (ret < 0 || ret == m_len) 3588 goto out; 3589 /* 3590 * This is a mixed mapping case where we were not able to allocate 3591 * a single contiguous extent. In that case let's reset requested 3592 * mapping and call the slow path. 3593 */ 3594 map->m_lblk = m_lblk; 3595 map->m_len = m_len; 3596 map->m_flags = 0; 3597 3598 /* 3599 * slow path means we have mixed mapping, that means we will need 3600 * to force txn commit. 3601 */ 3602 *force_commit = true; 3603 return ext4_map_blocks_atomic_write_slow(handle, inode, map); 3604 out: 3605 return ret; 3606 } 3607 3608 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3609 unsigned int flags) 3610 { 3611 handle_t *handle; 3612 u8 blkbits = inode->i_blkbits; 3613 int ret, dio_credits, m_flags = 0, retries = 0; 3614 bool force_commit = false; 3615 3616 /* 3617 * Trim the mapping request to the maximum value that we can map at 3618 * once for direct I/O. 3619 */ 3620 if (map->m_len > DIO_MAX_BLOCKS) 3621 map->m_len = DIO_MAX_BLOCKS; 3622 3623 /* 3624 * journal credits estimation for atomic writes. We call 3625 * ext4_map_blocks(), to find if there could be a mixed mapping. If yes, 3626 * then let's assume the no. of pextents required can be m_len i.e. 3627 * every alternate block can be unwritten and hole. 3628 */ 3629 if (flags & IOMAP_ATOMIC) { 3630 unsigned int orig_mlen = map->m_len; 3631 3632 ret = ext4_map_blocks(NULL, inode, map, 0); 3633 if (ret < 0) 3634 return ret; 3635 if (map->m_len < orig_mlen) { 3636 map->m_len = orig_mlen; 3637 dio_credits = ext4_meta_trans_blocks(inode, orig_mlen, 3638 map->m_len); 3639 } else { 3640 dio_credits = ext4_chunk_trans_blocks(inode, 3641 map->m_len); 3642 } 3643 } else { 3644 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3645 } 3646 3647 retry: 3648 /* 3649 * Either we allocate blocks and then don't get an unwritten extent, so 3650 * in that case we have reserved enough credits. Or, the blocks are 3651 * already allocated and unwritten. In that case, the extent conversion 3652 * fits into the credits as well. 3653 */ 3654 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3655 if (IS_ERR(handle)) 3656 return PTR_ERR(handle); 3657 3658 /* 3659 * DAX and direct I/O are the only two operations that are currently 3660 * supported with IOMAP_WRITE. 3661 */ 3662 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3663 if (flags & IOMAP_DAX) 3664 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3665 /* 3666 * We use i_size instead of i_disksize here because delalloc writeback 3667 * can complete at any point during the I/O and subsequently push the 3668 * i_disksize out to i_size. This could be beyond where direct I/O is 3669 * happening and thus expose allocated blocks to direct I/O reads. 3670 */ 3671 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3672 m_flags = EXT4_GET_BLOCKS_CREATE; 3673 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3674 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3675 3676 if (flags & IOMAP_ATOMIC) 3677 ret = ext4_map_blocks_atomic_write(handle, inode, map, m_flags, 3678 &force_commit); 3679 else 3680 ret = ext4_map_blocks(handle, inode, map, m_flags); 3681 3682 /* 3683 * We cannot fill holes in indirect tree based inodes as that could 3684 * expose stale data in the case of a crash. Use the magic error code 3685 * to fallback to buffered I/O. 3686 */ 3687 if (!m_flags && !ret) 3688 ret = -ENOTBLK; 3689 3690 ext4_journal_stop(handle); 3691 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3692 goto retry; 3693 3694 /* 3695 * Force commit the current transaction if the allocation spans a mixed 3696 * mapping range. This ensures any pending metadata updates (like 3697 * unwritten to written extents conversion) in this range are in 3698 * consistent state with the file data blocks, before performing the 3699 * actual write I/O. If the commit fails, the whole I/O must be aborted 3700 * to prevent any possible torn writes. 3701 */ 3702 if (ret > 0 && force_commit) { 3703 int ret2; 3704 3705 ret2 = ext4_force_commit(inode->i_sb); 3706 if (ret2) 3707 return ret2; 3708 } 3709 3710 return ret; 3711 } 3712 3713 3714 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3715 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3716 { 3717 int ret; 3718 struct ext4_map_blocks map; 3719 u8 blkbits = inode->i_blkbits; 3720 unsigned int orig_mlen; 3721 3722 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3723 return -EINVAL; 3724 3725 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3726 return -ERANGE; 3727 3728 /* 3729 * Calculate the first and last logical blocks respectively. 3730 */ 3731 map.m_lblk = offset >> blkbits; 3732 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3733 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3734 orig_mlen = map.m_len; 3735 3736 if (flags & IOMAP_WRITE) { 3737 /* 3738 * We check here if the blocks are already allocated, then we 3739 * don't need to start a journal txn and we can directly return 3740 * the mapping information. This could boost performance 3741 * especially in multi-threaded overwrite requests. 3742 */ 3743 if (offset + length <= i_size_read(inode)) { 3744 ret = ext4_map_blocks(NULL, inode, &map, 0); 3745 /* 3746 * For atomic writes the entire requested length should 3747 * be mapped. 3748 */ 3749 if (map.m_flags & EXT4_MAP_MAPPED) { 3750 if ((!(flags & IOMAP_ATOMIC) && ret > 0) || 3751 (flags & IOMAP_ATOMIC && ret >= orig_mlen)) 3752 goto out; 3753 } 3754 map.m_len = orig_mlen; 3755 } 3756 ret = ext4_iomap_alloc(inode, &map, flags); 3757 } else { 3758 /* 3759 * This can be called for overwrites path from 3760 * ext4_iomap_overwrite_begin(). 3761 */ 3762 ret = ext4_map_blocks(NULL, inode, &map, 0); 3763 } 3764 3765 if (ret < 0) 3766 return ret; 3767 out: 3768 /* 3769 * When inline encryption is enabled, sometimes I/O to an encrypted file 3770 * has to be broken up to guarantee DUN contiguity. Handle this by 3771 * limiting the length of the mapping returned. 3772 */ 3773 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3774 3775 /* 3776 * Before returning to iomap, let's ensure the allocated mapping 3777 * covers the entire requested length for atomic writes. 3778 */ 3779 if (flags & IOMAP_ATOMIC) { 3780 if (map.m_len < (length >> blkbits)) { 3781 WARN_ON_ONCE(1); 3782 return -EINVAL; 3783 } 3784 } 3785 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3786 3787 return 0; 3788 } 3789 3790 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3791 loff_t length, unsigned flags, struct iomap *iomap, 3792 struct iomap *srcmap) 3793 { 3794 int ret; 3795 3796 /* 3797 * Even for writes we don't need to allocate blocks, so just pretend 3798 * we are reading to save overhead of starting a transaction. 3799 */ 3800 flags &= ~IOMAP_WRITE; 3801 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3802 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3803 return ret; 3804 } 3805 3806 static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written) 3807 { 3808 /* must be a directio to fall back to buffered */ 3809 if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != 3810 (IOMAP_WRITE | IOMAP_DIRECT)) 3811 return false; 3812 3813 /* atomic writes are all-or-nothing */ 3814 if (flags & IOMAP_ATOMIC) 3815 return false; 3816 3817 /* can only try again if we wrote nothing */ 3818 return written == 0; 3819 } 3820 3821 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3822 ssize_t written, unsigned flags, struct iomap *iomap) 3823 { 3824 /* 3825 * Check to see whether an error occurred while writing out the data to 3826 * the allocated blocks. If so, return the magic error code for 3827 * non-atomic write so that we fallback to buffered I/O and attempt to 3828 * complete the remainder of the I/O. 3829 * For non-atomic writes, any blocks that may have been 3830 * allocated in preparation for the direct I/O will be reused during 3831 * buffered I/O. For atomic write, we never fallback to buffered-io. 3832 */ 3833 if (ext4_want_directio_fallback(flags, written)) 3834 return -ENOTBLK; 3835 3836 return 0; 3837 } 3838 3839 const struct iomap_ops ext4_iomap_ops = { 3840 .iomap_begin = ext4_iomap_begin, 3841 .iomap_end = ext4_iomap_end, 3842 }; 3843 3844 const struct iomap_ops ext4_iomap_overwrite_ops = { 3845 .iomap_begin = ext4_iomap_overwrite_begin, 3846 .iomap_end = ext4_iomap_end, 3847 }; 3848 3849 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3850 loff_t length, unsigned int flags, 3851 struct iomap *iomap, struct iomap *srcmap) 3852 { 3853 int ret; 3854 struct ext4_map_blocks map; 3855 u8 blkbits = inode->i_blkbits; 3856 3857 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3858 return -EINVAL; 3859 3860 if (ext4_has_inline_data(inode)) { 3861 ret = ext4_inline_data_iomap(inode, iomap); 3862 if (ret != -EAGAIN) { 3863 if (ret == 0 && offset >= iomap->length) 3864 ret = -ENOENT; 3865 return ret; 3866 } 3867 } 3868 3869 /* 3870 * Calculate the first and last logical block respectively. 3871 */ 3872 map.m_lblk = offset >> blkbits; 3873 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3874 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3875 3876 /* 3877 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3878 * So handle it here itself instead of querying ext4_map_blocks(). 3879 * Since ext4_map_blocks() will warn about it and will return 3880 * -EIO error. 3881 */ 3882 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3883 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3884 3885 if (offset >= sbi->s_bitmap_maxbytes) { 3886 map.m_flags = 0; 3887 goto set_iomap; 3888 } 3889 } 3890 3891 ret = ext4_map_blocks(NULL, inode, &map, 0); 3892 if (ret < 0) 3893 return ret; 3894 set_iomap: 3895 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3896 3897 return 0; 3898 } 3899 3900 const struct iomap_ops ext4_iomap_report_ops = { 3901 .iomap_begin = ext4_iomap_begin_report, 3902 }; 3903 3904 /* 3905 * For data=journal mode, folio should be marked dirty only when it was 3906 * writeably mapped. When that happens, it was already attached to the 3907 * transaction and marked as jbddirty (we take care of this in 3908 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3909 * so we should have nothing to do here, except for the case when someone 3910 * had the page pinned and dirtied the page through this pin (e.g. by doing 3911 * direct IO to it). In that case we'd need to attach buffers here to the 3912 * transaction but we cannot due to lock ordering. We cannot just dirty the 3913 * folio and leave attached buffers clean, because the buffers' dirty state is 3914 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3915 * the journalling code will explode. So what we do is to mark the folio 3916 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3917 * to the transaction appropriately. 3918 */ 3919 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3920 struct folio *folio) 3921 { 3922 WARN_ON_ONCE(!folio_buffers(folio)); 3923 if (folio_maybe_dma_pinned(folio)) 3924 folio_set_checked(folio); 3925 return filemap_dirty_folio(mapping, folio); 3926 } 3927 3928 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3929 { 3930 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3931 WARN_ON_ONCE(!folio_buffers(folio)); 3932 return block_dirty_folio(mapping, folio); 3933 } 3934 3935 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3936 struct file *file, sector_t *span) 3937 { 3938 return iomap_swapfile_activate(sis, file, span, 3939 &ext4_iomap_report_ops); 3940 } 3941 3942 static const struct address_space_operations ext4_aops = { 3943 .read_folio = ext4_read_folio, 3944 .readahead = ext4_readahead, 3945 .writepages = ext4_writepages, 3946 .write_begin = ext4_write_begin, 3947 .write_end = ext4_write_end, 3948 .dirty_folio = ext4_dirty_folio, 3949 .bmap = ext4_bmap, 3950 .invalidate_folio = ext4_invalidate_folio, 3951 .release_folio = ext4_release_folio, 3952 .migrate_folio = buffer_migrate_folio, 3953 .is_partially_uptodate = block_is_partially_uptodate, 3954 .error_remove_folio = generic_error_remove_folio, 3955 .swap_activate = ext4_iomap_swap_activate, 3956 }; 3957 3958 static const struct address_space_operations ext4_journalled_aops = { 3959 .read_folio = ext4_read_folio, 3960 .readahead = ext4_readahead, 3961 .writepages = ext4_writepages, 3962 .write_begin = ext4_write_begin, 3963 .write_end = ext4_journalled_write_end, 3964 .dirty_folio = ext4_journalled_dirty_folio, 3965 .bmap = ext4_bmap, 3966 .invalidate_folio = ext4_journalled_invalidate_folio, 3967 .release_folio = ext4_release_folio, 3968 .migrate_folio = buffer_migrate_folio_norefs, 3969 .is_partially_uptodate = block_is_partially_uptodate, 3970 .error_remove_folio = generic_error_remove_folio, 3971 .swap_activate = ext4_iomap_swap_activate, 3972 }; 3973 3974 static const struct address_space_operations ext4_da_aops = { 3975 .read_folio = ext4_read_folio, 3976 .readahead = ext4_readahead, 3977 .writepages = ext4_writepages, 3978 .write_begin = ext4_da_write_begin, 3979 .write_end = ext4_da_write_end, 3980 .dirty_folio = ext4_dirty_folio, 3981 .bmap = ext4_bmap, 3982 .invalidate_folio = ext4_invalidate_folio, 3983 .release_folio = ext4_release_folio, 3984 .migrate_folio = buffer_migrate_folio, 3985 .is_partially_uptodate = block_is_partially_uptodate, 3986 .error_remove_folio = generic_error_remove_folio, 3987 .swap_activate = ext4_iomap_swap_activate, 3988 }; 3989 3990 static const struct address_space_operations ext4_dax_aops = { 3991 .writepages = ext4_dax_writepages, 3992 .dirty_folio = noop_dirty_folio, 3993 .bmap = ext4_bmap, 3994 .swap_activate = ext4_iomap_swap_activate, 3995 }; 3996 3997 void ext4_set_aops(struct inode *inode) 3998 { 3999 switch (ext4_inode_journal_mode(inode)) { 4000 case EXT4_INODE_ORDERED_DATA_MODE: 4001 case EXT4_INODE_WRITEBACK_DATA_MODE: 4002 break; 4003 case EXT4_INODE_JOURNAL_DATA_MODE: 4004 inode->i_mapping->a_ops = &ext4_journalled_aops; 4005 return; 4006 default: 4007 BUG(); 4008 } 4009 if (IS_DAX(inode)) 4010 inode->i_mapping->a_ops = &ext4_dax_aops; 4011 else if (test_opt(inode->i_sb, DELALLOC)) 4012 inode->i_mapping->a_ops = &ext4_da_aops; 4013 else 4014 inode->i_mapping->a_ops = &ext4_aops; 4015 } 4016 4017 /* 4018 * Here we can't skip an unwritten buffer even though it usually reads zero 4019 * because it might have data in pagecache (eg, if called from ext4_zero_range, 4020 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a 4021 * racing writeback can come later and flush the stale pagecache to disk. 4022 */ 4023 static int __ext4_block_zero_page_range(handle_t *handle, 4024 struct address_space *mapping, loff_t from, loff_t length) 4025 { 4026 unsigned int offset, blocksize, pos; 4027 ext4_lblk_t iblock; 4028 struct inode *inode = mapping->host; 4029 struct buffer_head *bh; 4030 struct folio *folio; 4031 int err = 0; 4032 4033 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 4034 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 4035 mapping_gfp_constraint(mapping, ~__GFP_FS)); 4036 if (IS_ERR(folio)) 4037 return PTR_ERR(folio); 4038 4039 blocksize = inode->i_sb->s_blocksize; 4040 4041 iblock = folio->index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 4042 4043 bh = folio_buffers(folio); 4044 if (!bh) 4045 bh = create_empty_buffers(folio, blocksize, 0); 4046 4047 /* Find the buffer that contains "offset" */ 4048 offset = offset_in_folio(folio, from); 4049 pos = blocksize; 4050 while (offset >= pos) { 4051 bh = bh->b_this_page; 4052 iblock++; 4053 pos += blocksize; 4054 } 4055 if (buffer_freed(bh)) { 4056 BUFFER_TRACE(bh, "freed: skip"); 4057 goto unlock; 4058 } 4059 if (!buffer_mapped(bh)) { 4060 BUFFER_TRACE(bh, "unmapped"); 4061 ext4_get_block(inode, iblock, bh, 0); 4062 /* unmapped? It's a hole - nothing to do */ 4063 if (!buffer_mapped(bh)) { 4064 BUFFER_TRACE(bh, "still unmapped"); 4065 goto unlock; 4066 } 4067 } 4068 4069 /* Ok, it's mapped. Make sure it's up-to-date */ 4070 if (folio_test_uptodate(folio)) 4071 set_buffer_uptodate(bh); 4072 4073 if (!buffer_uptodate(bh)) { 4074 err = ext4_read_bh_lock(bh, 0, true); 4075 if (err) 4076 goto unlock; 4077 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 4078 /* We expect the key to be set. */ 4079 BUG_ON(!fscrypt_has_encryption_key(inode)); 4080 err = fscrypt_decrypt_pagecache_blocks(folio, 4081 blocksize, 4082 bh_offset(bh)); 4083 if (err) { 4084 clear_buffer_uptodate(bh); 4085 goto unlock; 4086 } 4087 } 4088 } 4089 if (ext4_should_journal_data(inode)) { 4090 BUFFER_TRACE(bh, "get write access"); 4091 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 4092 EXT4_JTR_NONE); 4093 if (err) 4094 goto unlock; 4095 } 4096 folio_zero_range(folio, offset, length); 4097 BUFFER_TRACE(bh, "zeroed end of block"); 4098 4099 if (ext4_should_journal_data(inode)) { 4100 err = ext4_dirty_journalled_data(handle, bh); 4101 } else { 4102 err = 0; 4103 mark_buffer_dirty(bh); 4104 if (ext4_should_order_data(inode)) 4105 err = ext4_jbd2_inode_add_write(handle, inode, from, 4106 length); 4107 } 4108 4109 unlock: 4110 folio_unlock(folio); 4111 folio_put(folio); 4112 return err; 4113 } 4114 4115 /* 4116 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4117 * starting from file offset 'from'. The range to be zero'd must 4118 * be contained with in one block. If the specified range exceeds 4119 * the end of the block it will be shortened to end of the block 4120 * that corresponds to 'from' 4121 */ 4122 static int ext4_block_zero_page_range(handle_t *handle, 4123 struct address_space *mapping, loff_t from, loff_t length) 4124 { 4125 struct inode *inode = mapping->host; 4126 unsigned offset = from & (PAGE_SIZE-1); 4127 unsigned blocksize = inode->i_sb->s_blocksize; 4128 unsigned max = blocksize - (offset & (blocksize - 1)); 4129 4130 /* 4131 * correct length if it does not fall between 4132 * 'from' and the end of the block 4133 */ 4134 if (length > max || length < 0) 4135 length = max; 4136 4137 if (IS_DAX(inode)) { 4138 return dax_zero_range(inode, from, length, NULL, 4139 &ext4_iomap_ops); 4140 } 4141 return __ext4_block_zero_page_range(handle, mapping, from, length); 4142 } 4143 4144 /* 4145 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4146 * up to the end of the block which corresponds to `from'. 4147 * This required during truncate. We need to physically zero the tail end 4148 * of that block so it doesn't yield old data if the file is later grown. 4149 */ 4150 static int ext4_block_truncate_page(handle_t *handle, 4151 struct address_space *mapping, loff_t from) 4152 { 4153 unsigned offset = from & (PAGE_SIZE-1); 4154 unsigned length; 4155 unsigned blocksize; 4156 struct inode *inode = mapping->host; 4157 4158 /* If we are processing an encrypted inode during orphan list handling */ 4159 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 4160 return 0; 4161 4162 blocksize = inode->i_sb->s_blocksize; 4163 length = blocksize - (offset & (blocksize - 1)); 4164 4165 return ext4_block_zero_page_range(handle, mapping, from, length); 4166 } 4167 4168 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4169 loff_t lstart, loff_t length) 4170 { 4171 struct super_block *sb = inode->i_sb; 4172 struct address_space *mapping = inode->i_mapping; 4173 unsigned partial_start, partial_end; 4174 ext4_fsblk_t start, end; 4175 loff_t byte_end = (lstart + length - 1); 4176 int err = 0; 4177 4178 partial_start = lstart & (sb->s_blocksize - 1); 4179 partial_end = byte_end & (sb->s_blocksize - 1); 4180 4181 start = lstart >> sb->s_blocksize_bits; 4182 end = byte_end >> sb->s_blocksize_bits; 4183 4184 /* Handle partial zero within the single block */ 4185 if (start == end && 4186 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4187 err = ext4_block_zero_page_range(handle, mapping, 4188 lstart, length); 4189 return err; 4190 } 4191 /* Handle partial zero out on the start of the range */ 4192 if (partial_start) { 4193 err = ext4_block_zero_page_range(handle, mapping, 4194 lstart, sb->s_blocksize); 4195 if (err) 4196 return err; 4197 } 4198 /* Handle partial zero out on the end of the range */ 4199 if (partial_end != sb->s_blocksize - 1) 4200 err = ext4_block_zero_page_range(handle, mapping, 4201 byte_end - partial_end, 4202 partial_end + 1); 4203 return err; 4204 } 4205 4206 int ext4_can_truncate(struct inode *inode) 4207 { 4208 if (S_ISREG(inode->i_mode)) 4209 return 1; 4210 if (S_ISDIR(inode->i_mode)) 4211 return 1; 4212 if (S_ISLNK(inode->i_mode)) 4213 return !ext4_inode_is_fast_symlink(inode); 4214 return 0; 4215 } 4216 4217 /* 4218 * We have to make sure i_disksize gets properly updated before we truncate 4219 * page cache due to hole punching or zero range. Otherwise i_disksize update 4220 * can get lost as it may have been postponed to submission of writeback but 4221 * that will never happen after we truncate page cache. 4222 */ 4223 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4224 loff_t len) 4225 { 4226 handle_t *handle; 4227 int ret; 4228 4229 loff_t size = i_size_read(inode); 4230 4231 WARN_ON(!inode_is_locked(inode)); 4232 if (offset > size || offset + len < size) 4233 return 0; 4234 4235 if (EXT4_I(inode)->i_disksize >= size) 4236 return 0; 4237 4238 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4239 if (IS_ERR(handle)) 4240 return PTR_ERR(handle); 4241 ext4_update_i_disksize(inode, size); 4242 ret = ext4_mark_inode_dirty(handle, inode); 4243 ext4_journal_stop(handle); 4244 4245 return ret; 4246 } 4247 4248 static inline void ext4_truncate_folio(struct inode *inode, 4249 loff_t start, loff_t end) 4250 { 4251 unsigned long blocksize = i_blocksize(inode); 4252 struct folio *folio; 4253 4254 /* Nothing to be done if no complete block needs to be truncated. */ 4255 if (round_up(start, blocksize) >= round_down(end, blocksize)) 4256 return; 4257 4258 folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT); 4259 if (IS_ERR(folio)) 4260 return; 4261 4262 if (folio_mkclean(folio)) 4263 folio_mark_dirty(folio); 4264 folio_unlock(folio); 4265 folio_put(folio); 4266 } 4267 4268 int ext4_truncate_page_cache_block_range(struct inode *inode, 4269 loff_t start, loff_t end) 4270 { 4271 unsigned long blocksize = i_blocksize(inode); 4272 int ret; 4273 4274 /* 4275 * For journalled data we need to write (and checkpoint) pages 4276 * before discarding page cache to avoid inconsitent data on disk 4277 * in case of crash before freeing or unwritten converting trans 4278 * is committed. 4279 */ 4280 if (ext4_should_journal_data(inode)) { 4281 ret = filemap_write_and_wait_range(inode->i_mapping, start, 4282 end - 1); 4283 if (ret) 4284 return ret; 4285 goto truncate_pagecache; 4286 } 4287 4288 /* 4289 * If the block size is less than the page size, the file's mapped 4290 * blocks within one page could be freed or converted to unwritten. 4291 * So it's necessary to remove writable userspace mappings, and then 4292 * ext4_page_mkwrite() can be called during subsequent write access 4293 * to these partial folios. 4294 */ 4295 if (!IS_ALIGNED(start | end, PAGE_SIZE) && 4296 blocksize < PAGE_SIZE && start < inode->i_size) { 4297 loff_t page_boundary = round_up(start, PAGE_SIZE); 4298 4299 ext4_truncate_folio(inode, start, min(page_boundary, end)); 4300 if (end > page_boundary) 4301 ext4_truncate_folio(inode, 4302 round_down(end, PAGE_SIZE), end); 4303 } 4304 4305 truncate_pagecache: 4306 truncate_pagecache_range(inode, start, end - 1); 4307 return 0; 4308 } 4309 4310 static void ext4_wait_dax_page(struct inode *inode) 4311 { 4312 filemap_invalidate_unlock(inode->i_mapping); 4313 schedule(); 4314 filemap_invalidate_lock(inode->i_mapping); 4315 } 4316 4317 int ext4_break_layouts(struct inode *inode) 4318 { 4319 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 4320 return -EINVAL; 4321 4322 return dax_break_layout_inode(inode, ext4_wait_dax_page); 4323 } 4324 4325 /* 4326 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4327 * associated with the given offset and length 4328 * 4329 * @inode: File inode 4330 * @offset: The offset where the hole will begin 4331 * @len: The length of the hole 4332 * 4333 * Returns: 0 on success or negative on failure 4334 */ 4335 4336 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 4337 { 4338 struct inode *inode = file_inode(file); 4339 struct super_block *sb = inode->i_sb; 4340 ext4_lblk_t start_lblk, end_lblk; 4341 loff_t max_end = sb->s_maxbytes; 4342 loff_t end = offset + length; 4343 handle_t *handle; 4344 unsigned int credits; 4345 int ret; 4346 4347 trace_ext4_punch_hole(inode, offset, length, 0); 4348 WARN_ON_ONCE(!inode_is_locked(inode)); 4349 4350 /* 4351 * For indirect-block based inodes, make sure that the hole within 4352 * one block before last range. 4353 */ 4354 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4355 max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize; 4356 4357 /* No need to punch hole beyond i_size */ 4358 if (offset >= inode->i_size || offset >= max_end) 4359 return 0; 4360 4361 /* 4362 * If the hole extends beyond i_size, set the hole to end after 4363 * the page that contains i_size. 4364 */ 4365 if (end > inode->i_size) 4366 end = round_up(inode->i_size, PAGE_SIZE); 4367 if (end > max_end) 4368 end = max_end; 4369 length = end - offset; 4370 4371 /* 4372 * Attach jinode to inode for jbd2 if we do any zeroing of partial 4373 * block. 4374 */ 4375 if (!IS_ALIGNED(offset | end, sb->s_blocksize)) { 4376 ret = ext4_inode_attach_jinode(inode); 4377 if (ret < 0) 4378 return ret; 4379 } 4380 4381 4382 ret = ext4_update_disksize_before_punch(inode, offset, length); 4383 if (ret) 4384 return ret; 4385 4386 /* Now release the pages and zero block aligned part of pages*/ 4387 ret = ext4_truncate_page_cache_block_range(inode, offset, end); 4388 if (ret) 4389 return ret; 4390 4391 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4392 credits = ext4_writepage_trans_blocks(inode); 4393 else 4394 credits = ext4_blocks_for_truncate(inode); 4395 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4396 if (IS_ERR(handle)) { 4397 ret = PTR_ERR(handle); 4398 ext4_std_error(sb, ret); 4399 return ret; 4400 } 4401 4402 ret = ext4_zero_partial_blocks(handle, inode, offset, length); 4403 if (ret) 4404 goto out_handle; 4405 4406 /* If there are blocks to remove, do it */ 4407 start_lblk = EXT4_B_TO_LBLK(inode, offset); 4408 end_lblk = end >> inode->i_blkbits; 4409 4410 if (end_lblk > start_lblk) { 4411 ext4_lblk_t hole_len = end_lblk - start_lblk; 4412 4413 ext4_fc_track_inode(handle, inode); 4414 ext4_check_map_extents_env(inode); 4415 down_write(&EXT4_I(inode)->i_data_sem); 4416 ext4_discard_preallocations(inode); 4417 4418 ext4_es_remove_extent(inode, start_lblk, hole_len); 4419 4420 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4421 ret = ext4_ext_remove_space(inode, start_lblk, 4422 end_lblk - 1); 4423 else 4424 ret = ext4_ind_remove_space(handle, inode, start_lblk, 4425 end_lblk); 4426 if (ret) { 4427 up_write(&EXT4_I(inode)->i_data_sem); 4428 goto out_handle; 4429 } 4430 4431 ext4_es_insert_extent(inode, start_lblk, hole_len, ~0, 4432 EXTENT_STATUS_HOLE, 0); 4433 up_write(&EXT4_I(inode)->i_data_sem); 4434 } 4435 ext4_fc_track_range(handle, inode, start_lblk, end_lblk); 4436 4437 ret = ext4_mark_inode_dirty(handle, inode); 4438 if (unlikely(ret)) 4439 goto out_handle; 4440 4441 ext4_update_inode_fsync_trans(handle, inode, 1); 4442 if (IS_SYNC(inode)) 4443 ext4_handle_sync(handle); 4444 out_handle: 4445 ext4_journal_stop(handle); 4446 return ret; 4447 } 4448 4449 int ext4_inode_attach_jinode(struct inode *inode) 4450 { 4451 struct ext4_inode_info *ei = EXT4_I(inode); 4452 struct jbd2_inode *jinode; 4453 4454 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4455 return 0; 4456 4457 jinode = jbd2_alloc_inode(GFP_KERNEL); 4458 spin_lock(&inode->i_lock); 4459 if (!ei->jinode) { 4460 if (!jinode) { 4461 spin_unlock(&inode->i_lock); 4462 return -ENOMEM; 4463 } 4464 ei->jinode = jinode; 4465 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4466 jinode = NULL; 4467 } 4468 spin_unlock(&inode->i_lock); 4469 if (unlikely(jinode != NULL)) 4470 jbd2_free_inode(jinode); 4471 return 0; 4472 } 4473 4474 /* 4475 * ext4_truncate() 4476 * 4477 * We block out ext4_get_block() block instantiations across the entire 4478 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4479 * simultaneously on behalf of the same inode. 4480 * 4481 * As we work through the truncate and commit bits of it to the journal there 4482 * is one core, guiding principle: the file's tree must always be consistent on 4483 * disk. We must be able to restart the truncate after a crash. 4484 * 4485 * The file's tree may be transiently inconsistent in memory (although it 4486 * probably isn't), but whenever we close off and commit a journal transaction, 4487 * the contents of (the filesystem + the journal) must be consistent and 4488 * restartable. It's pretty simple, really: bottom up, right to left (although 4489 * left-to-right works OK too). 4490 * 4491 * Note that at recovery time, journal replay occurs *before* the restart of 4492 * truncate against the orphan inode list. 4493 * 4494 * The committed inode has the new, desired i_size (which is the same as 4495 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4496 * that this inode's truncate did not complete and it will again call 4497 * ext4_truncate() to have another go. So there will be instantiated blocks 4498 * to the right of the truncation point in a crashed ext4 filesystem. But 4499 * that's fine - as long as they are linked from the inode, the post-crash 4500 * ext4_truncate() run will find them and release them. 4501 */ 4502 int ext4_truncate(struct inode *inode) 4503 { 4504 struct ext4_inode_info *ei = EXT4_I(inode); 4505 unsigned int credits; 4506 int err = 0, err2; 4507 handle_t *handle; 4508 struct address_space *mapping = inode->i_mapping; 4509 4510 /* 4511 * There is a possibility that we're either freeing the inode 4512 * or it's a completely new inode. In those cases we might not 4513 * have i_rwsem locked because it's not necessary. 4514 */ 4515 if (!(inode->i_state & (I_NEW|I_FREEING))) 4516 WARN_ON(!inode_is_locked(inode)); 4517 trace_ext4_truncate_enter(inode); 4518 4519 if (!ext4_can_truncate(inode)) 4520 goto out_trace; 4521 4522 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4523 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4524 4525 if (ext4_has_inline_data(inode)) { 4526 int has_inline = 1; 4527 4528 err = ext4_inline_data_truncate(inode, &has_inline); 4529 if (err || has_inline) 4530 goto out_trace; 4531 } 4532 4533 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4534 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4535 err = ext4_inode_attach_jinode(inode); 4536 if (err) 4537 goto out_trace; 4538 } 4539 4540 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4541 credits = ext4_writepage_trans_blocks(inode); 4542 else 4543 credits = ext4_blocks_for_truncate(inode); 4544 4545 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4546 if (IS_ERR(handle)) { 4547 err = PTR_ERR(handle); 4548 goto out_trace; 4549 } 4550 4551 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4552 ext4_block_truncate_page(handle, mapping, inode->i_size); 4553 4554 /* 4555 * We add the inode to the orphan list, so that if this 4556 * truncate spans multiple transactions, and we crash, we will 4557 * resume the truncate when the filesystem recovers. It also 4558 * marks the inode dirty, to catch the new size. 4559 * 4560 * Implication: the file must always be in a sane, consistent 4561 * truncatable state while each transaction commits. 4562 */ 4563 err = ext4_orphan_add(handle, inode); 4564 if (err) 4565 goto out_stop; 4566 4567 ext4_fc_track_inode(handle, inode); 4568 ext4_check_map_extents_env(inode); 4569 4570 down_write(&EXT4_I(inode)->i_data_sem); 4571 ext4_discard_preallocations(inode); 4572 4573 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4574 err = ext4_ext_truncate(handle, inode); 4575 else 4576 ext4_ind_truncate(handle, inode); 4577 4578 up_write(&ei->i_data_sem); 4579 if (err) 4580 goto out_stop; 4581 4582 if (IS_SYNC(inode)) 4583 ext4_handle_sync(handle); 4584 4585 out_stop: 4586 /* 4587 * If this was a simple ftruncate() and the file will remain alive, 4588 * then we need to clear up the orphan record which we created above. 4589 * However, if this was a real unlink then we were called by 4590 * ext4_evict_inode(), and we allow that function to clean up the 4591 * orphan info for us. 4592 */ 4593 if (inode->i_nlink) 4594 ext4_orphan_del(handle, inode); 4595 4596 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4597 err2 = ext4_mark_inode_dirty(handle, inode); 4598 if (unlikely(err2 && !err)) 4599 err = err2; 4600 ext4_journal_stop(handle); 4601 4602 out_trace: 4603 trace_ext4_truncate_exit(inode); 4604 return err; 4605 } 4606 4607 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4608 { 4609 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4610 return inode_peek_iversion_raw(inode); 4611 else 4612 return inode_peek_iversion(inode); 4613 } 4614 4615 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4616 struct ext4_inode_info *ei) 4617 { 4618 struct inode *inode = &(ei->vfs_inode); 4619 u64 i_blocks = READ_ONCE(inode->i_blocks); 4620 struct super_block *sb = inode->i_sb; 4621 4622 if (i_blocks <= ~0U) { 4623 /* 4624 * i_blocks can be represented in a 32 bit variable 4625 * as multiple of 512 bytes 4626 */ 4627 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4628 raw_inode->i_blocks_high = 0; 4629 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4630 return 0; 4631 } 4632 4633 /* 4634 * This should never happen since sb->s_maxbytes should not have 4635 * allowed this, sb->s_maxbytes was set according to the huge_file 4636 * feature in ext4_fill_super(). 4637 */ 4638 if (!ext4_has_feature_huge_file(sb)) 4639 return -EFSCORRUPTED; 4640 4641 if (i_blocks <= 0xffffffffffffULL) { 4642 /* 4643 * i_blocks can be represented in a 48 bit variable 4644 * as multiple of 512 bytes 4645 */ 4646 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4647 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4648 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4649 } else { 4650 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4651 /* i_block is stored in file system block size */ 4652 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4653 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4654 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4655 } 4656 return 0; 4657 } 4658 4659 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4660 { 4661 struct ext4_inode_info *ei = EXT4_I(inode); 4662 uid_t i_uid; 4663 gid_t i_gid; 4664 projid_t i_projid; 4665 int block; 4666 int err; 4667 4668 err = ext4_inode_blocks_set(raw_inode, ei); 4669 4670 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4671 i_uid = i_uid_read(inode); 4672 i_gid = i_gid_read(inode); 4673 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4674 if (!(test_opt(inode->i_sb, NO_UID32))) { 4675 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4676 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4677 /* 4678 * Fix up interoperability with old kernels. Otherwise, 4679 * old inodes get re-used with the upper 16 bits of the 4680 * uid/gid intact. 4681 */ 4682 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4683 raw_inode->i_uid_high = 0; 4684 raw_inode->i_gid_high = 0; 4685 } else { 4686 raw_inode->i_uid_high = 4687 cpu_to_le16(high_16_bits(i_uid)); 4688 raw_inode->i_gid_high = 4689 cpu_to_le16(high_16_bits(i_gid)); 4690 } 4691 } else { 4692 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4693 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4694 raw_inode->i_uid_high = 0; 4695 raw_inode->i_gid_high = 0; 4696 } 4697 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4698 4699 EXT4_INODE_SET_CTIME(inode, raw_inode); 4700 EXT4_INODE_SET_MTIME(inode, raw_inode); 4701 EXT4_INODE_SET_ATIME(inode, raw_inode); 4702 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4703 4704 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4705 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4706 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4707 raw_inode->i_file_acl_high = 4708 cpu_to_le16(ei->i_file_acl >> 32); 4709 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4710 ext4_isize_set(raw_inode, ei->i_disksize); 4711 4712 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4713 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4714 if (old_valid_dev(inode->i_rdev)) { 4715 raw_inode->i_block[0] = 4716 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4717 raw_inode->i_block[1] = 0; 4718 } else { 4719 raw_inode->i_block[0] = 0; 4720 raw_inode->i_block[1] = 4721 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4722 raw_inode->i_block[2] = 0; 4723 } 4724 } else if (!ext4_has_inline_data(inode)) { 4725 for (block = 0; block < EXT4_N_BLOCKS; block++) 4726 raw_inode->i_block[block] = ei->i_data[block]; 4727 } 4728 4729 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4730 u64 ivers = ext4_inode_peek_iversion(inode); 4731 4732 raw_inode->i_disk_version = cpu_to_le32(ivers); 4733 if (ei->i_extra_isize) { 4734 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4735 raw_inode->i_version_hi = 4736 cpu_to_le32(ivers >> 32); 4737 raw_inode->i_extra_isize = 4738 cpu_to_le16(ei->i_extra_isize); 4739 } 4740 } 4741 4742 if (i_projid != EXT4_DEF_PROJID && 4743 !ext4_has_feature_project(inode->i_sb)) 4744 err = err ?: -EFSCORRUPTED; 4745 4746 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4747 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4748 raw_inode->i_projid = cpu_to_le32(i_projid); 4749 4750 ext4_inode_csum_set(inode, raw_inode, ei); 4751 return err; 4752 } 4753 4754 /* 4755 * ext4_get_inode_loc returns with an extra refcount against the inode's 4756 * underlying buffer_head on success. If we pass 'inode' and it does not 4757 * have in-inode xattr, we have all inode data in memory that is needed 4758 * to recreate the on-disk version of this inode. 4759 */ 4760 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4761 struct inode *inode, struct ext4_iloc *iloc, 4762 ext4_fsblk_t *ret_block) 4763 { 4764 struct ext4_group_desc *gdp; 4765 struct buffer_head *bh; 4766 ext4_fsblk_t block; 4767 struct blk_plug plug; 4768 int inodes_per_block, inode_offset; 4769 4770 iloc->bh = NULL; 4771 if (ino < EXT4_ROOT_INO || 4772 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4773 return -EFSCORRUPTED; 4774 4775 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4776 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4777 if (!gdp) 4778 return -EIO; 4779 4780 /* 4781 * Figure out the offset within the block group inode table 4782 */ 4783 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4784 inode_offset = ((ino - 1) % 4785 EXT4_INODES_PER_GROUP(sb)); 4786 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4787 4788 block = ext4_inode_table(sb, gdp); 4789 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4790 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4791 ext4_error(sb, "Invalid inode table block %llu in " 4792 "block_group %u", block, iloc->block_group); 4793 return -EFSCORRUPTED; 4794 } 4795 block += (inode_offset / inodes_per_block); 4796 4797 bh = sb_getblk(sb, block); 4798 if (unlikely(!bh)) 4799 return -ENOMEM; 4800 if (ext4_buffer_uptodate(bh)) 4801 goto has_buffer; 4802 4803 lock_buffer(bh); 4804 if (ext4_buffer_uptodate(bh)) { 4805 /* Someone brought it uptodate while we waited */ 4806 unlock_buffer(bh); 4807 goto has_buffer; 4808 } 4809 4810 /* 4811 * If we have all information of the inode in memory and this 4812 * is the only valid inode in the block, we need not read the 4813 * block. 4814 */ 4815 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4816 struct buffer_head *bitmap_bh; 4817 int i, start; 4818 4819 start = inode_offset & ~(inodes_per_block - 1); 4820 4821 /* Is the inode bitmap in cache? */ 4822 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4823 if (unlikely(!bitmap_bh)) 4824 goto make_io; 4825 4826 /* 4827 * If the inode bitmap isn't in cache then the 4828 * optimisation may end up performing two reads instead 4829 * of one, so skip it. 4830 */ 4831 if (!buffer_uptodate(bitmap_bh)) { 4832 brelse(bitmap_bh); 4833 goto make_io; 4834 } 4835 for (i = start; i < start + inodes_per_block; i++) { 4836 if (i == inode_offset) 4837 continue; 4838 if (ext4_test_bit(i, bitmap_bh->b_data)) 4839 break; 4840 } 4841 brelse(bitmap_bh); 4842 if (i == start + inodes_per_block) { 4843 struct ext4_inode *raw_inode = 4844 (struct ext4_inode *) (bh->b_data + iloc->offset); 4845 4846 /* all other inodes are free, so skip I/O */ 4847 memset(bh->b_data, 0, bh->b_size); 4848 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4849 ext4_fill_raw_inode(inode, raw_inode); 4850 set_buffer_uptodate(bh); 4851 unlock_buffer(bh); 4852 goto has_buffer; 4853 } 4854 } 4855 4856 make_io: 4857 /* 4858 * If we need to do any I/O, try to pre-readahead extra 4859 * blocks from the inode table. 4860 */ 4861 blk_start_plug(&plug); 4862 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4863 ext4_fsblk_t b, end, table; 4864 unsigned num; 4865 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4866 4867 table = ext4_inode_table(sb, gdp); 4868 /* s_inode_readahead_blks is always a power of 2 */ 4869 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4870 if (table > b) 4871 b = table; 4872 end = b + ra_blks; 4873 num = EXT4_INODES_PER_GROUP(sb); 4874 if (ext4_has_group_desc_csum(sb)) 4875 num -= ext4_itable_unused_count(sb, gdp); 4876 table += num / inodes_per_block; 4877 if (end > table) 4878 end = table; 4879 while (b <= end) 4880 ext4_sb_breadahead_unmovable(sb, b++); 4881 } 4882 4883 /* 4884 * There are other valid inodes in the buffer, this inode 4885 * has in-inode xattrs, or we don't have this inode in memory. 4886 * Read the block from disk. 4887 */ 4888 trace_ext4_load_inode(sb, ino); 4889 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL, 4890 ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)); 4891 blk_finish_plug(&plug); 4892 wait_on_buffer(bh); 4893 if (!buffer_uptodate(bh)) { 4894 if (ret_block) 4895 *ret_block = block; 4896 brelse(bh); 4897 return -EIO; 4898 } 4899 has_buffer: 4900 iloc->bh = bh; 4901 return 0; 4902 } 4903 4904 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4905 struct ext4_iloc *iloc) 4906 { 4907 ext4_fsblk_t err_blk = 0; 4908 int ret; 4909 4910 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4911 &err_blk); 4912 4913 if (ret == -EIO) 4914 ext4_error_inode_block(inode, err_blk, EIO, 4915 "unable to read itable block"); 4916 4917 return ret; 4918 } 4919 4920 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4921 { 4922 ext4_fsblk_t err_blk = 0; 4923 int ret; 4924 4925 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4926 &err_blk); 4927 4928 if (ret == -EIO) 4929 ext4_error_inode_block(inode, err_blk, EIO, 4930 "unable to read itable block"); 4931 4932 return ret; 4933 } 4934 4935 4936 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4937 struct ext4_iloc *iloc) 4938 { 4939 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4940 } 4941 4942 static bool ext4_should_enable_dax(struct inode *inode) 4943 { 4944 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4945 4946 if (test_opt2(inode->i_sb, DAX_NEVER)) 4947 return false; 4948 if (!S_ISREG(inode->i_mode)) 4949 return false; 4950 if (ext4_should_journal_data(inode)) 4951 return false; 4952 if (ext4_has_inline_data(inode)) 4953 return false; 4954 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4955 return false; 4956 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4957 return false; 4958 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4959 return false; 4960 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4961 return true; 4962 4963 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4964 } 4965 4966 void ext4_set_inode_flags(struct inode *inode, bool init) 4967 { 4968 unsigned int flags = EXT4_I(inode)->i_flags; 4969 unsigned int new_fl = 0; 4970 4971 WARN_ON_ONCE(IS_DAX(inode) && init); 4972 4973 if (flags & EXT4_SYNC_FL) 4974 new_fl |= S_SYNC; 4975 if (flags & EXT4_APPEND_FL) 4976 new_fl |= S_APPEND; 4977 if (flags & EXT4_IMMUTABLE_FL) 4978 new_fl |= S_IMMUTABLE; 4979 if (flags & EXT4_NOATIME_FL) 4980 new_fl |= S_NOATIME; 4981 if (flags & EXT4_DIRSYNC_FL) 4982 new_fl |= S_DIRSYNC; 4983 4984 /* Because of the way inode_set_flags() works we must preserve S_DAX 4985 * here if already set. */ 4986 new_fl |= (inode->i_flags & S_DAX); 4987 if (init && ext4_should_enable_dax(inode)) 4988 new_fl |= S_DAX; 4989 4990 if (flags & EXT4_ENCRYPT_FL) 4991 new_fl |= S_ENCRYPTED; 4992 if (flags & EXT4_CASEFOLD_FL) 4993 new_fl |= S_CASEFOLD; 4994 if (flags & EXT4_VERITY_FL) 4995 new_fl |= S_VERITY; 4996 inode_set_flags(inode, new_fl, 4997 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4998 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4999 } 5000 5001 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 5002 struct ext4_inode_info *ei) 5003 { 5004 blkcnt_t i_blocks ; 5005 struct inode *inode = &(ei->vfs_inode); 5006 struct super_block *sb = inode->i_sb; 5007 5008 if (ext4_has_feature_huge_file(sb)) { 5009 /* we are using combined 48 bit field */ 5010 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 5011 le32_to_cpu(raw_inode->i_blocks_lo); 5012 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 5013 /* i_blocks represent file system block size */ 5014 return i_blocks << (inode->i_blkbits - 9); 5015 } else { 5016 return i_blocks; 5017 } 5018 } else { 5019 return le32_to_cpu(raw_inode->i_blocks_lo); 5020 } 5021 } 5022 5023 static inline int ext4_iget_extra_inode(struct inode *inode, 5024 struct ext4_inode *raw_inode, 5025 struct ext4_inode_info *ei) 5026 { 5027 __le32 *magic = (void *)raw_inode + 5028 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 5029 5030 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 5031 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 5032 int err; 5033 5034 err = xattr_check_inode(inode, IHDR(inode, raw_inode), 5035 ITAIL(inode, raw_inode)); 5036 if (err) 5037 return err; 5038 5039 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 5040 err = ext4_find_inline_data_nolock(inode); 5041 if (!err && ext4_has_inline_data(inode)) 5042 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 5043 return err; 5044 } else 5045 EXT4_I(inode)->i_inline_off = 0; 5046 return 0; 5047 } 5048 5049 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 5050 { 5051 if (!ext4_has_feature_project(inode->i_sb)) 5052 return -EOPNOTSUPP; 5053 *projid = EXT4_I(inode)->i_projid; 5054 return 0; 5055 } 5056 5057 /* 5058 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 5059 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 5060 * set. 5061 */ 5062 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 5063 { 5064 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 5065 inode_set_iversion_raw(inode, val); 5066 else 5067 inode_set_iversion_queried(inode, val); 5068 } 5069 5070 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags, 5071 const char *function, unsigned int line) 5072 { 5073 const char *err_str; 5074 5075 if (flags & EXT4_IGET_EA_INODE) { 5076 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 5077 err_str = "missing EA_INODE flag"; 5078 goto error; 5079 } 5080 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5081 EXT4_I(inode)->i_file_acl) { 5082 err_str = "ea_inode with extended attributes"; 5083 goto error; 5084 } 5085 } else { 5086 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 5087 /* 5088 * open_by_handle_at() could provide an old inode number 5089 * that has since been reused for an ea_inode; this does 5090 * not indicate filesystem corruption 5091 */ 5092 if (flags & EXT4_IGET_HANDLE) 5093 return -ESTALE; 5094 err_str = "unexpected EA_INODE flag"; 5095 goto error; 5096 } 5097 } 5098 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) { 5099 err_str = "unexpected bad inode w/o EXT4_IGET_BAD"; 5100 goto error; 5101 } 5102 return 0; 5103 5104 error: 5105 ext4_error_inode(inode, function, line, 0, "%s", err_str); 5106 return -EFSCORRUPTED; 5107 } 5108 5109 bool ext4_should_enable_large_folio(struct inode *inode) 5110 { 5111 struct super_block *sb = inode->i_sb; 5112 5113 if (!S_ISREG(inode->i_mode)) 5114 return false; 5115 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 5116 ext4_test_inode_flag(inode, EXT4_INODE_JOURNAL_DATA)) 5117 return false; 5118 if (ext4_has_feature_verity(sb)) 5119 return false; 5120 if (ext4_has_feature_encrypt(sb)) 5121 return false; 5122 5123 return true; 5124 } 5125 5126 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 5127 ext4_iget_flags flags, const char *function, 5128 unsigned int line) 5129 { 5130 struct ext4_iloc iloc; 5131 struct ext4_inode *raw_inode; 5132 struct ext4_inode_info *ei; 5133 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5134 struct inode *inode; 5135 journal_t *journal = EXT4_SB(sb)->s_journal; 5136 long ret; 5137 loff_t size; 5138 int block; 5139 uid_t i_uid; 5140 gid_t i_gid; 5141 projid_t i_projid; 5142 5143 if ((!(flags & EXT4_IGET_SPECIAL) && is_special_ino(sb, ino)) || 5144 (ino < EXT4_ROOT_INO) || 5145 (ino > le32_to_cpu(es->s_inodes_count))) { 5146 if (flags & EXT4_IGET_HANDLE) 5147 return ERR_PTR(-ESTALE); 5148 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 5149 "inode #%lu: comm %s: iget: illegal inode #", 5150 ino, current->comm); 5151 return ERR_PTR(-EFSCORRUPTED); 5152 } 5153 5154 inode = iget_locked(sb, ino); 5155 if (!inode) 5156 return ERR_PTR(-ENOMEM); 5157 if (!(inode->i_state & I_NEW)) { 5158 ret = check_igot_inode(inode, flags, function, line); 5159 if (ret) { 5160 iput(inode); 5161 return ERR_PTR(ret); 5162 } 5163 return inode; 5164 } 5165 5166 ei = EXT4_I(inode); 5167 iloc.bh = NULL; 5168 5169 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 5170 if (ret < 0) 5171 goto bad_inode; 5172 raw_inode = ext4_raw_inode(&iloc); 5173 5174 if ((flags & EXT4_IGET_HANDLE) && 5175 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 5176 ret = -ESTALE; 5177 goto bad_inode; 5178 } 5179 5180 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5181 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 5182 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 5183 EXT4_INODE_SIZE(inode->i_sb) || 5184 (ei->i_extra_isize & 3)) { 5185 ext4_error_inode(inode, function, line, 0, 5186 "iget: bad extra_isize %u " 5187 "(inode size %u)", 5188 ei->i_extra_isize, 5189 EXT4_INODE_SIZE(inode->i_sb)); 5190 ret = -EFSCORRUPTED; 5191 goto bad_inode; 5192 } 5193 } else 5194 ei->i_extra_isize = 0; 5195 5196 /* Precompute checksum seed for inode metadata */ 5197 if (ext4_has_feature_metadata_csum(sb)) { 5198 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5199 __u32 csum; 5200 __le32 inum = cpu_to_le32(inode->i_ino); 5201 __le32 gen = raw_inode->i_generation; 5202 csum = ext4_chksum(sbi->s_csum_seed, (__u8 *)&inum, 5203 sizeof(inum)); 5204 ei->i_csum_seed = ext4_chksum(csum, (__u8 *)&gen, sizeof(gen)); 5205 } 5206 5207 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 5208 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 5209 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 5210 ext4_error_inode_err(inode, function, line, 0, 5211 EFSBADCRC, "iget: checksum invalid"); 5212 ret = -EFSBADCRC; 5213 goto bad_inode; 5214 } 5215 5216 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 5217 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 5218 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 5219 if (ext4_has_feature_project(sb) && 5220 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 5221 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5222 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 5223 else 5224 i_projid = EXT4_DEF_PROJID; 5225 5226 if (!(test_opt(inode->i_sb, NO_UID32))) { 5227 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 5228 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 5229 } 5230 i_uid_write(inode, i_uid); 5231 i_gid_write(inode, i_gid); 5232 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 5233 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 5234 5235 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 5236 ei->i_inline_off = 0; 5237 ei->i_dir_start_lookup = 0; 5238 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 5239 /* We now have enough fields to check if the inode was active or not. 5240 * This is needed because nfsd might try to access dead inodes 5241 * the test is that same one that e2fsck uses 5242 * NeilBrown 1999oct15 5243 */ 5244 if (inode->i_nlink == 0) { 5245 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 5246 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 5247 ino != EXT4_BOOT_LOADER_INO) { 5248 /* this inode is deleted or unallocated */ 5249 if (flags & EXT4_IGET_SPECIAL) { 5250 ext4_error_inode(inode, function, line, 0, 5251 "iget: special inode unallocated"); 5252 ret = -EFSCORRUPTED; 5253 } else 5254 ret = -ESTALE; 5255 goto bad_inode; 5256 } 5257 /* The only unlinked inodes we let through here have 5258 * valid i_mode and are being read by the orphan 5259 * recovery code: that's fine, we're about to complete 5260 * the process of deleting those. 5261 * OR it is the EXT4_BOOT_LOADER_INO which is 5262 * not initialized on a new filesystem. */ 5263 } 5264 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 5265 ext4_set_inode_flags(inode, true); 5266 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 5267 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 5268 if (ext4_has_feature_64bit(sb)) 5269 ei->i_file_acl |= 5270 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 5271 inode->i_size = ext4_isize(sb, raw_inode); 5272 size = i_size_read(inode); 5273 if (size < 0 || size > ext4_get_maxbytes(inode)) { 5274 ext4_error_inode(inode, function, line, 0, 5275 "iget: bad i_size value: %lld", size); 5276 ret = -EFSCORRUPTED; 5277 goto bad_inode; 5278 } 5279 /* 5280 * If dir_index is not enabled but there's dir with INDEX flag set, 5281 * we'd normally treat htree data as empty space. But with metadata 5282 * checksumming that corrupts checksums so forbid that. 5283 */ 5284 if (!ext4_has_feature_dir_index(sb) && 5285 ext4_has_feature_metadata_csum(sb) && 5286 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 5287 ext4_error_inode(inode, function, line, 0, 5288 "iget: Dir with htree data on filesystem without dir_index feature."); 5289 ret = -EFSCORRUPTED; 5290 goto bad_inode; 5291 } 5292 ei->i_disksize = inode->i_size; 5293 #ifdef CONFIG_QUOTA 5294 ei->i_reserved_quota = 0; 5295 #endif 5296 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 5297 ei->i_block_group = iloc.block_group; 5298 ei->i_last_alloc_group = ~0; 5299 /* 5300 * NOTE! The in-memory inode i_data array is in little-endian order 5301 * even on big-endian machines: we do NOT byteswap the block numbers! 5302 */ 5303 for (block = 0; block < EXT4_N_BLOCKS; block++) 5304 ei->i_data[block] = raw_inode->i_block[block]; 5305 INIT_LIST_HEAD(&ei->i_orphan); 5306 ext4_fc_init_inode(&ei->vfs_inode); 5307 5308 /* 5309 * Set transaction id's of transactions that have to be committed 5310 * to finish f[data]sync. We set them to currently running transaction 5311 * as we cannot be sure that the inode or some of its metadata isn't 5312 * part of the transaction - the inode could have been reclaimed and 5313 * now it is reread from disk. 5314 */ 5315 if (journal) { 5316 transaction_t *transaction; 5317 tid_t tid; 5318 5319 read_lock(&journal->j_state_lock); 5320 if (journal->j_running_transaction) 5321 transaction = journal->j_running_transaction; 5322 else 5323 transaction = journal->j_committing_transaction; 5324 if (transaction) 5325 tid = transaction->t_tid; 5326 else 5327 tid = journal->j_commit_sequence; 5328 read_unlock(&journal->j_state_lock); 5329 ei->i_sync_tid = tid; 5330 ei->i_datasync_tid = tid; 5331 } 5332 5333 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5334 if (ei->i_extra_isize == 0) { 5335 /* The extra space is currently unused. Use it. */ 5336 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 5337 ei->i_extra_isize = sizeof(struct ext4_inode) - 5338 EXT4_GOOD_OLD_INODE_SIZE; 5339 } else { 5340 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 5341 if (ret) 5342 goto bad_inode; 5343 } 5344 } 5345 5346 EXT4_INODE_GET_CTIME(inode, raw_inode); 5347 EXT4_INODE_GET_ATIME(inode, raw_inode); 5348 EXT4_INODE_GET_MTIME(inode, raw_inode); 5349 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5350 5351 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5352 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 5353 5354 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5355 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5356 ivers |= 5357 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5358 } 5359 ext4_inode_set_iversion_queried(inode, ivers); 5360 } 5361 5362 ret = 0; 5363 if (ei->i_file_acl && 5364 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 5365 ext4_error_inode(inode, function, line, 0, 5366 "iget: bad extended attribute block %llu", 5367 ei->i_file_acl); 5368 ret = -EFSCORRUPTED; 5369 goto bad_inode; 5370 } else if (!ext4_has_inline_data(inode)) { 5371 /* validate the block references in the inode */ 5372 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 5373 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5374 (S_ISLNK(inode->i_mode) && 5375 !ext4_inode_is_fast_symlink(inode)))) { 5376 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5377 ret = ext4_ext_check_inode(inode); 5378 else 5379 ret = ext4_ind_check_inode(inode); 5380 } 5381 } 5382 if (ret) 5383 goto bad_inode; 5384 5385 if (S_ISREG(inode->i_mode)) { 5386 inode->i_op = &ext4_file_inode_operations; 5387 inode->i_fop = &ext4_file_operations; 5388 ext4_set_aops(inode); 5389 } else if (S_ISDIR(inode->i_mode)) { 5390 inode->i_op = &ext4_dir_inode_operations; 5391 inode->i_fop = &ext4_dir_operations; 5392 } else if (S_ISLNK(inode->i_mode)) { 5393 /* VFS does not allow setting these so must be corruption */ 5394 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5395 ext4_error_inode(inode, function, line, 0, 5396 "iget: immutable or append flags " 5397 "not allowed on symlinks"); 5398 ret = -EFSCORRUPTED; 5399 goto bad_inode; 5400 } 5401 if (IS_ENCRYPTED(inode)) { 5402 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5403 } else if (ext4_inode_is_fast_symlink(inode)) { 5404 inode->i_op = &ext4_fast_symlink_inode_operations; 5405 if (inode->i_size == 0 || 5406 inode->i_size >= sizeof(ei->i_data) || 5407 strnlen((char *)ei->i_data, inode->i_size + 1) != 5408 inode->i_size) { 5409 ext4_error_inode(inode, function, line, 0, 5410 "invalid fast symlink length %llu", 5411 (unsigned long long)inode->i_size); 5412 ret = -EFSCORRUPTED; 5413 goto bad_inode; 5414 } 5415 inode_set_cached_link(inode, (char *)ei->i_data, 5416 inode->i_size); 5417 } else { 5418 inode->i_op = &ext4_symlink_inode_operations; 5419 } 5420 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5421 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5422 inode->i_op = &ext4_special_inode_operations; 5423 if (raw_inode->i_block[0]) 5424 init_special_inode(inode, inode->i_mode, 5425 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5426 else 5427 init_special_inode(inode, inode->i_mode, 5428 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5429 } else if (ino == EXT4_BOOT_LOADER_INO) { 5430 make_bad_inode(inode); 5431 } else { 5432 ret = -EFSCORRUPTED; 5433 ext4_error_inode(inode, function, line, 0, 5434 "iget: bogus i_mode (%o)", inode->i_mode); 5435 goto bad_inode; 5436 } 5437 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 5438 ext4_error_inode(inode, function, line, 0, 5439 "casefold flag without casefold feature"); 5440 ret = -EFSCORRUPTED; 5441 goto bad_inode; 5442 } 5443 if (ext4_should_enable_large_folio(inode)) 5444 mapping_set_large_folios(inode->i_mapping); 5445 5446 ret = check_igot_inode(inode, flags, function, line); 5447 /* 5448 * -ESTALE here means there is nothing inherently wrong with the inode, 5449 * it's just not an inode we can return for an fhandle lookup. 5450 */ 5451 if (ret == -ESTALE) { 5452 brelse(iloc.bh); 5453 unlock_new_inode(inode); 5454 iput(inode); 5455 return ERR_PTR(-ESTALE); 5456 } 5457 if (ret) 5458 goto bad_inode; 5459 brelse(iloc.bh); 5460 5461 unlock_new_inode(inode); 5462 return inode; 5463 5464 bad_inode: 5465 brelse(iloc.bh); 5466 iget_failed(inode); 5467 return ERR_PTR(ret); 5468 } 5469 5470 static void __ext4_update_other_inode_time(struct super_block *sb, 5471 unsigned long orig_ino, 5472 unsigned long ino, 5473 struct ext4_inode *raw_inode) 5474 { 5475 struct inode *inode; 5476 5477 inode = find_inode_by_ino_rcu(sb, ino); 5478 if (!inode) 5479 return; 5480 5481 if (!inode_is_dirtytime_only(inode)) 5482 return; 5483 5484 spin_lock(&inode->i_lock); 5485 if (inode_is_dirtytime_only(inode)) { 5486 struct ext4_inode_info *ei = EXT4_I(inode); 5487 5488 inode->i_state &= ~I_DIRTY_TIME; 5489 spin_unlock(&inode->i_lock); 5490 5491 spin_lock(&ei->i_raw_lock); 5492 EXT4_INODE_SET_CTIME(inode, raw_inode); 5493 EXT4_INODE_SET_MTIME(inode, raw_inode); 5494 EXT4_INODE_SET_ATIME(inode, raw_inode); 5495 ext4_inode_csum_set(inode, raw_inode, ei); 5496 spin_unlock(&ei->i_raw_lock); 5497 trace_ext4_other_inode_update_time(inode, orig_ino); 5498 return; 5499 } 5500 spin_unlock(&inode->i_lock); 5501 } 5502 5503 /* 5504 * Opportunistically update the other time fields for other inodes in 5505 * the same inode table block. 5506 */ 5507 static void ext4_update_other_inodes_time(struct super_block *sb, 5508 unsigned long orig_ino, char *buf) 5509 { 5510 unsigned long ino; 5511 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5512 int inode_size = EXT4_INODE_SIZE(sb); 5513 5514 /* 5515 * Calculate the first inode in the inode table block. Inode 5516 * numbers are one-based. That is, the first inode in a block 5517 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5518 */ 5519 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5520 rcu_read_lock(); 5521 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5522 if (ino == orig_ino) 5523 continue; 5524 __ext4_update_other_inode_time(sb, orig_ino, ino, 5525 (struct ext4_inode *)buf); 5526 } 5527 rcu_read_unlock(); 5528 } 5529 5530 /* 5531 * Post the struct inode info into an on-disk inode location in the 5532 * buffer-cache. This gobbles the caller's reference to the 5533 * buffer_head in the inode location struct. 5534 * 5535 * The caller must have write access to iloc->bh. 5536 */ 5537 static int ext4_do_update_inode(handle_t *handle, 5538 struct inode *inode, 5539 struct ext4_iloc *iloc) 5540 { 5541 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5542 struct ext4_inode_info *ei = EXT4_I(inode); 5543 struct buffer_head *bh = iloc->bh; 5544 struct super_block *sb = inode->i_sb; 5545 int err; 5546 int need_datasync = 0, set_large_file = 0; 5547 5548 spin_lock(&ei->i_raw_lock); 5549 5550 /* 5551 * For fields not tracked in the in-memory inode, initialise them 5552 * to zero for new inodes. 5553 */ 5554 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5555 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5556 5557 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5558 need_datasync = 1; 5559 if (ei->i_disksize > 0x7fffffffULL) { 5560 if (!ext4_has_feature_large_file(sb) || 5561 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5562 set_large_file = 1; 5563 } 5564 5565 err = ext4_fill_raw_inode(inode, raw_inode); 5566 spin_unlock(&ei->i_raw_lock); 5567 if (err) { 5568 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5569 goto out_brelse; 5570 } 5571 5572 if (inode->i_sb->s_flags & SB_LAZYTIME) 5573 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5574 bh->b_data); 5575 5576 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5577 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5578 if (err) 5579 goto out_error; 5580 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5581 if (set_large_file) { 5582 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5583 err = ext4_journal_get_write_access(handle, sb, 5584 EXT4_SB(sb)->s_sbh, 5585 EXT4_JTR_NONE); 5586 if (err) 5587 goto out_error; 5588 lock_buffer(EXT4_SB(sb)->s_sbh); 5589 ext4_set_feature_large_file(sb); 5590 ext4_superblock_csum_set(sb); 5591 unlock_buffer(EXT4_SB(sb)->s_sbh); 5592 ext4_handle_sync(handle); 5593 err = ext4_handle_dirty_metadata(handle, NULL, 5594 EXT4_SB(sb)->s_sbh); 5595 } 5596 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5597 out_error: 5598 ext4_std_error(inode->i_sb, err); 5599 out_brelse: 5600 brelse(bh); 5601 return err; 5602 } 5603 5604 /* 5605 * ext4_write_inode() 5606 * 5607 * We are called from a few places: 5608 * 5609 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5610 * Here, there will be no transaction running. We wait for any running 5611 * transaction to commit. 5612 * 5613 * - Within flush work (sys_sync(), kupdate and such). 5614 * We wait on commit, if told to. 5615 * 5616 * - Within iput_final() -> write_inode_now() 5617 * We wait on commit, if told to. 5618 * 5619 * In all cases it is actually safe for us to return without doing anything, 5620 * because the inode has been copied into a raw inode buffer in 5621 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5622 * writeback. 5623 * 5624 * Note that we are absolutely dependent upon all inode dirtiers doing the 5625 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5626 * which we are interested. 5627 * 5628 * It would be a bug for them to not do this. The code: 5629 * 5630 * mark_inode_dirty(inode) 5631 * stuff(); 5632 * inode->i_size = expr; 5633 * 5634 * is in error because write_inode() could occur while `stuff()' is running, 5635 * and the new i_size will be lost. Plus the inode will no longer be on the 5636 * superblock's dirty inode list. 5637 */ 5638 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5639 { 5640 int err; 5641 5642 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5643 return 0; 5644 5645 err = ext4_emergency_state(inode->i_sb); 5646 if (unlikely(err)) 5647 return err; 5648 5649 if (EXT4_SB(inode->i_sb)->s_journal) { 5650 if (ext4_journal_current_handle()) { 5651 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5652 dump_stack(); 5653 return -EIO; 5654 } 5655 5656 /* 5657 * No need to force transaction in WB_SYNC_NONE mode. Also 5658 * ext4_sync_fs() will force the commit after everything is 5659 * written. 5660 */ 5661 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5662 return 0; 5663 5664 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5665 EXT4_I(inode)->i_sync_tid); 5666 } else { 5667 struct ext4_iloc iloc; 5668 5669 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5670 if (err) 5671 return err; 5672 /* 5673 * sync(2) will flush the whole buffer cache. No need to do 5674 * it here separately for each inode. 5675 */ 5676 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5677 sync_dirty_buffer(iloc.bh); 5678 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5679 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5680 "IO error syncing inode"); 5681 err = -EIO; 5682 } 5683 brelse(iloc.bh); 5684 } 5685 return err; 5686 } 5687 5688 /* 5689 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5690 * buffers that are attached to a folio straddling i_size and are undergoing 5691 * commit. In that case we have to wait for commit to finish and try again. 5692 */ 5693 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5694 { 5695 unsigned offset; 5696 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5697 tid_t commit_tid; 5698 int ret; 5699 bool has_transaction; 5700 5701 offset = inode->i_size & (PAGE_SIZE - 1); 5702 /* 5703 * If the folio is fully truncated, we don't need to wait for any commit 5704 * (and we even should not as __ext4_journalled_invalidate_folio() may 5705 * strip all buffers from the folio but keep the folio dirty which can then 5706 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5707 * buffers). Also we don't need to wait for any commit if all buffers in 5708 * the folio remain valid. This is most beneficial for the common case of 5709 * blocksize == PAGESIZE. 5710 */ 5711 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5712 return; 5713 while (1) { 5714 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5715 inode->i_size >> PAGE_SHIFT); 5716 if (IS_ERR(folio)) 5717 return; 5718 ret = __ext4_journalled_invalidate_folio(folio, offset, 5719 folio_size(folio) - offset); 5720 folio_unlock(folio); 5721 folio_put(folio); 5722 if (ret != -EBUSY) 5723 return; 5724 has_transaction = false; 5725 read_lock(&journal->j_state_lock); 5726 if (journal->j_committing_transaction) { 5727 commit_tid = journal->j_committing_transaction->t_tid; 5728 has_transaction = true; 5729 } 5730 read_unlock(&journal->j_state_lock); 5731 if (has_transaction) 5732 jbd2_log_wait_commit(journal, commit_tid); 5733 } 5734 } 5735 5736 /* 5737 * ext4_setattr() 5738 * 5739 * Called from notify_change. 5740 * 5741 * We want to trap VFS attempts to truncate the file as soon as 5742 * possible. In particular, we want to make sure that when the VFS 5743 * shrinks i_size, we put the inode on the orphan list and modify 5744 * i_disksize immediately, so that during the subsequent flushing of 5745 * dirty pages and freeing of disk blocks, we can guarantee that any 5746 * commit will leave the blocks being flushed in an unused state on 5747 * disk. (On recovery, the inode will get truncated and the blocks will 5748 * be freed, so we have a strong guarantee that no future commit will 5749 * leave these blocks visible to the user.) 5750 * 5751 * Another thing we have to assure is that if we are in ordered mode 5752 * and inode is still attached to the committing transaction, we must 5753 * we start writeout of all the dirty pages which are being truncated. 5754 * This way we are sure that all the data written in the previous 5755 * transaction are already on disk (truncate waits for pages under 5756 * writeback). 5757 * 5758 * Called with inode->i_rwsem down. 5759 */ 5760 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5761 struct iattr *attr) 5762 { 5763 struct inode *inode = d_inode(dentry); 5764 int error, rc = 0; 5765 int orphan = 0; 5766 const unsigned int ia_valid = attr->ia_valid; 5767 bool inc_ivers = true; 5768 5769 error = ext4_emergency_state(inode->i_sb); 5770 if (unlikely(error)) 5771 return error; 5772 5773 if (unlikely(IS_IMMUTABLE(inode))) 5774 return -EPERM; 5775 5776 if (unlikely(IS_APPEND(inode) && 5777 (ia_valid & (ATTR_MODE | ATTR_UID | 5778 ATTR_GID | ATTR_TIMES_SET)))) 5779 return -EPERM; 5780 5781 error = setattr_prepare(idmap, dentry, attr); 5782 if (error) 5783 return error; 5784 5785 error = fscrypt_prepare_setattr(dentry, attr); 5786 if (error) 5787 return error; 5788 5789 error = fsverity_prepare_setattr(dentry, attr); 5790 if (error) 5791 return error; 5792 5793 if (is_quota_modification(idmap, inode, attr)) { 5794 error = dquot_initialize(inode); 5795 if (error) 5796 return error; 5797 } 5798 5799 if (i_uid_needs_update(idmap, attr, inode) || 5800 i_gid_needs_update(idmap, attr, inode)) { 5801 handle_t *handle; 5802 5803 /* (user+group)*(old+new) structure, inode write (sb, 5804 * inode block, ? - but truncate inode update has it) */ 5805 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5806 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5807 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5808 if (IS_ERR(handle)) { 5809 error = PTR_ERR(handle); 5810 goto err_out; 5811 } 5812 5813 /* dquot_transfer() calls back ext4_get_inode_usage() which 5814 * counts xattr inode references. 5815 */ 5816 down_read(&EXT4_I(inode)->xattr_sem); 5817 error = dquot_transfer(idmap, inode, attr); 5818 up_read(&EXT4_I(inode)->xattr_sem); 5819 5820 if (error) { 5821 ext4_journal_stop(handle); 5822 return error; 5823 } 5824 /* Update corresponding info in inode so that everything is in 5825 * one transaction */ 5826 i_uid_update(idmap, attr, inode); 5827 i_gid_update(idmap, attr, inode); 5828 error = ext4_mark_inode_dirty(handle, inode); 5829 ext4_journal_stop(handle); 5830 if (unlikely(error)) { 5831 return error; 5832 } 5833 } 5834 5835 if (attr->ia_valid & ATTR_SIZE) { 5836 handle_t *handle; 5837 loff_t oldsize = inode->i_size; 5838 loff_t old_disksize; 5839 int shrink = (attr->ia_size < inode->i_size); 5840 5841 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5842 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5843 5844 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5845 return -EFBIG; 5846 } 5847 } 5848 if (!S_ISREG(inode->i_mode)) { 5849 return -EINVAL; 5850 } 5851 5852 if (attr->ia_size == inode->i_size) 5853 inc_ivers = false; 5854 5855 if (shrink) { 5856 if (ext4_should_order_data(inode)) { 5857 error = ext4_begin_ordered_truncate(inode, 5858 attr->ia_size); 5859 if (error) 5860 goto err_out; 5861 } 5862 /* 5863 * Blocks are going to be removed from the inode. Wait 5864 * for dio in flight. 5865 */ 5866 inode_dio_wait(inode); 5867 } 5868 5869 filemap_invalidate_lock(inode->i_mapping); 5870 5871 rc = ext4_break_layouts(inode); 5872 if (rc) { 5873 filemap_invalidate_unlock(inode->i_mapping); 5874 goto err_out; 5875 } 5876 5877 if (attr->ia_size != inode->i_size) { 5878 /* attach jbd2 jinode for EOF folio tail zeroing */ 5879 if (attr->ia_size & (inode->i_sb->s_blocksize - 1) || 5880 oldsize & (inode->i_sb->s_blocksize - 1)) { 5881 error = ext4_inode_attach_jinode(inode); 5882 if (error) 5883 goto out_mmap_sem; 5884 } 5885 5886 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5887 if (IS_ERR(handle)) { 5888 error = PTR_ERR(handle); 5889 goto out_mmap_sem; 5890 } 5891 if (ext4_handle_valid(handle) && shrink) { 5892 error = ext4_orphan_add(handle, inode); 5893 orphan = 1; 5894 } 5895 /* 5896 * Update c/mtime and tail zero the EOF folio on 5897 * truncate up. ext4_truncate() handles the shrink case 5898 * below. 5899 */ 5900 if (!shrink) { 5901 inode_set_mtime_to_ts(inode, 5902 inode_set_ctime_current(inode)); 5903 if (oldsize & (inode->i_sb->s_blocksize - 1)) 5904 ext4_block_truncate_page(handle, 5905 inode->i_mapping, oldsize); 5906 } 5907 5908 if (shrink) 5909 ext4_fc_track_range(handle, inode, 5910 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5911 inode->i_sb->s_blocksize_bits, 5912 EXT_MAX_BLOCKS - 1); 5913 else 5914 ext4_fc_track_range( 5915 handle, inode, 5916 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5917 inode->i_sb->s_blocksize_bits, 5918 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5919 inode->i_sb->s_blocksize_bits); 5920 5921 down_write(&EXT4_I(inode)->i_data_sem); 5922 old_disksize = EXT4_I(inode)->i_disksize; 5923 EXT4_I(inode)->i_disksize = attr->ia_size; 5924 5925 /* 5926 * We have to update i_size under i_data_sem together 5927 * with i_disksize to avoid races with writeback code 5928 * running ext4_wb_update_i_disksize(). 5929 */ 5930 if (!error) 5931 i_size_write(inode, attr->ia_size); 5932 else 5933 EXT4_I(inode)->i_disksize = old_disksize; 5934 up_write(&EXT4_I(inode)->i_data_sem); 5935 rc = ext4_mark_inode_dirty(handle, inode); 5936 if (!error) 5937 error = rc; 5938 ext4_journal_stop(handle); 5939 if (error) 5940 goto out_mmap_sem; 5941 if (!shrink) { 5942 pagecache_isize_extended(inode, oldsize, 5943 inode->i_size); 5944 } else if (ext4_should_journal_data(inode)) { 5945 ext4_wait_for_tail_page_commit(inode); 5946 } 5947 } 5948 5949 /* 5950 * Truncate pagecache after we've waited for commit 5951 * in data=journal mode to make pages freeable. 5952 */ 5953 truncate_pagecache(inode, inode->i_size); 5954 /* 5955 * Call ext4_truncate() even if i_size didn't change to 5956 * truncate possible preallocated blocks. 5957 */ 5958 if (attr->ia_size <= oldsize) { 5959 rc = ext4_truncate(inode); 5960 if (rc) 5961 error = rc; 5962 } 5963 out_mmap_sem: 5964 filemap_invalidate_unlock(inode->i_mapping); 5965 } 5966 5967 if (!error) { 5968 if (inc_ivers) 5969 inode_inc_iversion(inode); 5970 setattr_copy(idmap, inode, attr); 5971 mark_inode_dirty(inode); 5972 } 5973 5974 /* 5975 * If the call to ext4_truncate failed to get a transaction handle at 5976 * all, we need to clean up the in-core orphan list manually. 5977 */ 5978 if (orphan && inode->i_nlink) 5979 ext4_orphan_del(NULL, inode); 5980 5981 if (!error && (ia_valid & ATTR_MODE)) 5982 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5983 5984 err_out: 5985 if (error) 5986 ext4_std_error(inode->i_sb, error); 5987 if (!error) 5988 error = rc; 5989 return error; 5990 } 5991 5992 u32 ext4_dio_alignment(struct inode *inode) 5993 { 5994 if (fsverity_active(inode)) 5995 return 0; 5996 if (ext4_should_journal_data(inode)) 5997 return 0; 5998 if (ext4_has_inline_data(inode)) 5999 return 0; 6000 if (IS_ENCRYPTED(inode)) { 6001 if (!fscrypt_dio_supported(inode)) 6002 return 0; 6003 return i_blocksize(inode); 6004 } 6005 return 1; /* use the iomap defaults */ 6006 } 6007 6008 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 6009 struct kstat *stat, u32 request_mask, unsigned int query_flags) 6010 { 6011 struct inode *inode = d_inode(path->dentry); 6012 struct ext4_inode *raw_inode; 6013 struct ext4_inode_info *ei = EXT4_I(inode); 6014 unsigned int flags; 6015 6016 if ((request_mask & STATX_BTIME) && 6017 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 6018 stat->result_mask |= STATX_BTIME; 6019 stat->btime.tv_sec = ei->i_crtime.tv_sec; 6020 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 6021 } 6022 6023 /* 6024 * Return the DIO alignment restrictions if requested. We only return 6025 * this information when requested, since on encrypted files it might 6026 * take a fair bit of work to get if the file wasn't opened recently. 6027 */ 6028 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 6029 u32 dio_align = ext4_dio_alignment(inode); 6030 6031 stat->result_mask |= STATX_DIOALIGN; 6032 if (dio_align == 1) { 6033 struct block_device *bdev = inode->i_sb->s_bdev; 6034 6035 /* iomap defaults */ 6036 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 6037 stat->dio_offset_align = bdev_logical_block_size(bdev); 6038 } else { 6039 stat->dio_mem_align = dio_align; 6040 stat->dio_offset_align = dio_align; 6041 } 6042 } 6043 6044 if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) { 6045 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6046 unsigned int awu_min = 0, awu_max = 0; 6047 6048 if (ext4_inode_can_atomic_write(inode)) { 6049 awu_min = sbi->s_awu_min; 6050 awu_max = sbi->s_awu_max; 6051 } 6052 6053 generic_fill_statx_atomic_writes(stat, awu_min, awu_max, 0); 6054 } 6055 6056 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 6057 if (flags & EXT4_APPEND_FL) 6058 stat->attributes |= STATX_ATTR_APPEND; 6059 if (flags & EXT4_COMPR_FL) 6060 stat->attributes |= STATX_ATTR_COMPRESSED; 6061 if (flags & EXT4_ENCRYPT_FL) 6062 stat->attributes |= STATX_ATTR_ENCRYPTED; 6063 if (flags & EXT4_IMMUTABLE_FL) 6064 stat->attributes |= STATX_ATTR_IMMUTABLE; 6065 if (flags & EXT4_NODUMP_FL) 6066 stat->attributes |= STATX_ATTR_NODUMP; 6067 if (flags & EXT4_VERITY_FL) 6068 stat->attributes |= STATX_ATTR_VERITY; 6069 6070 stat->attributes_mask |= (STATX_ATTR_APPEND | 6071 STATX_ATTR_COMPRESSED | 6072 STATX_ATTR_ENCRYPTED | 6073 STATX_ATTR_IMMUTABLE | 6074 STATX_ATTR_NODUMP | 6075 STATX_ATTR_VERITY); 6076 6077 generic_fillattr(idmap, request_mask, inode, stat); 6078 return 0; 6079 } 6080 6081 int ext4_file_getattr(struct mnt_idmap *idmap, 6082 const struct path *path, struct kstat *stat, 6083 u32 request_mask, unsigned int query_flags) 6084 { 6085 struct inode *inode = d_inode(path->dentry); 6086 u64 delalloc_blocks; 6087 6088 ext4_getattr(idmap, path, stat, request_mask, query_flags); 6089 6090 /* 6091 * If there is inline data in the inode, the inode will normally not 6092 * have data blocks allocated (it may have an external xattr block). 6093 * Report at least one sector for such files, so tools like tar, rsync, 6094 * others don't incorrectly think the file is completely sparse. 6095 */ 6096 if (unlikely(ext4_has_inline_data(inode))) 6097 stat->blocks += (stat->size + 511) >> 9; 6098 6099 /* 6100 * We can't update i_blocks if the block allocation is delayed 6101 * otherwise in the case of system crash before the real block 6102 * allocation is done, we will have i_blocks inconsistent with 6103 * on-disk file blocks. 6104 * We always keep i_blocks updated together with real 6105 * allocation. But to not confuse with user, stat 6106 * will return the blocks that include the delayed allocation 6107 * blocks for this file. 6108 */ 6109 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 6110 EXT4_I(inode)->i_reserved_data_blocks); 6111 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 6112 return 0; 6113 } 6114 6115 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 6116 int pextents) 6117 { 6118 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 6119 return ext4_ind_trans_blocks(inode, lblocks); 6120 return ext4_ext_index_trans_blocks(inode, pextents); 6121 } 6122 6123 /* 6124 * Account for index blocks, block groups bitmaps and block group 6125 * descriptor blocks if modify datablocks and index blocks 6126 * worse case, the indexs blocks spread over different block groups 6127 * 6128 * If datablocks are discontiguous, they are possible to spread over 6129 * different block groups too. If they are contiguous, with flexbg, 6130 * they could still across block group boundary. 6131 * 6132 * Also account for superblock, inode, quota and xattr blocks 6133 */ 6134 int ext4_meta_trans_blocks(struct inode *inode, int lblocks, int pextents) 6135 { 6136 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 6137 int gdpblocks; 6138 int idxblocks; 6139 int ret; 6140 6141 /* 6142 * How many index and lead blocks need to touch to map @lblocks 6143 * logical blocks to @pextents physical extents? 6144 */ 6145 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 6146 6147 /* 6148 * Now let's see how many group bitmaps and group descriptors need 6149 * to account 6150 */ 6151 groups = idxblocks; 6152 gdpblocks = groups; 6153 if (groups > ngroups) 6154 groups = ngroups; 6155 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 6156 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 6157 6158 /* bitmaps and block group descriptor blocks */ 6159 ret = idxblocks + groups + gdpblocks; 6160 6161 /* Blocks for super block, inode, quota and xattr blocks */ 6162 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 6163 6164 return ret; 6165 } 6166 6167 /* 6168 * Calculate the total number of credits to reserve to fit 6169 * the modification of a single pages into a single transaction, 6170 * which may include multiple chunks of block allocations. 6171 * 6172 * This could be called via ext4_write_begin() 6173 * 6174 * We need to consider the worse case, when 6175 * one new block per extent. 6176 */ 6177 int ext4_writepage_trans_blocks(struct inode *inode) 6178 { 6179 int bpp = ext4_journal_blocks_per_folio(inode); 6180 int ret; 6181 6182 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 6183 6184 /* Account for data blocks for journalled mode */ 6185 if (ext4_should_journal_data(inode)) 6186 ret += bpp; 6187 return ret; 6188 } 6189 6190 /* 6191 * Calculate the journal credits for a chunk of data modification. 6192 * 6193 * This is called from DIO, fallocate or whoever calling 6194 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 6195 * 6196 * journal buffers for data blocks are not included here, as DIO 6197 * and fallocate do no need to journal data buffers. 6198 */ 6199 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 6200 { 6201 return ext4_meta_trans_blocks(inode, nrblocks, 1); 6202 } 6203 6204 /* 6205 * The caller must have previously called ext4_reserve_inode_write(). 6206 * Give this, we know that the caller already has write access to iloc->bh. 6207 */ 6208 int ext4_mark_iloc_dirty(handle_t *handle, 6209 struct inode *inode, struct ext4_iloc *iloc) 6210 { 6211 int err = 0; 6212 6213 err = ext4_emergency_state(inode->i_sb); 6214 if (unlikely(err)) { 6215 put_bh(iloc->bh); 6216 return err; 6217 } 6218 ext4_fc_track_inode(handle, inode); 6219 6220 /* the do_update_inode consumes one bh->b_count */ 6221 get_bh(iloc->bh); 6222 6223 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 6224 err = ext4_do_update_inode(handle, inode, iloc); 6225 put_bh(iloc->bh); 6226 return err; 6227 } 6228 6229 /* 6230 * On success, We end up with an outstanding reference count against 6231 * iloc->bh. This _must_ be cleaned up later. 6232 */ 6233 6234 int 6235 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 6236 struct ext4_iloc *iloc) 6237 { 6238 int err; 6239 6240 err = ext4_emergency_state(inode->i_sb); 6241 if (unlikely(err)) 6242 return err; 6243 6244 err = ext4_get_inode_loc(inode, iloc); 6245 if (!err) { 6246 BUFFER_TRACE(iloc->bh, "get_write_access"); 6247 err = ext4_journal_get_write_access(handle, inode->i_sb, 6248 iloc->bh, EXT4_JTR_NONE); 6249 if (err) { 6250 brelse(iloc->bh); 6251 iloc->bh = NULL; 6252 } 6253 ext4_fc_track_inode(handle, inode); 6254 } 6255 ext4_std_error(inode->i_sb, err); 6256 return err; 6257 } 6258 6259 static int __ext4_expand_extra_isize(struct inode *inode, 6260 unsigned int new_extra_isize, 6261 struct ext4_iloc *iloc, 6262 handle_t *handle, int *no_expand) 6263 { 6264 struct ext4_inode *raw_inode; 6265 struct ext4_xattr_ibody_header *header; 6266 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 6267 struct ext4_inode_info *ei = EXT4_I(inode); 6268 int error; 6269 6270 /* this was checked at iget time, but double check for good measure */ 6271 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 6272 (ei->i_extra_isize & 3)) { 6273 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 6274 ei->i_extra_isize, 6275 EXT4_INODE_SIZE(inode->i_sb)); 6276 return -EFSCORRUPTED; 6277 } 6278 if ((new_extra_isize < ei->i_extra_isize) || 6279 (new_extra_isize < 4) || 6280 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 6281 return -EINVAL; /* Should never happen */ 6282 6283 raw_inode = ext4_raw_inode(iloc); 6284 6285 header = IHDR(inode, raw_inode); 6286 6287 /* No extended attributes present */ 6288 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 6289 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 6290 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 6291 EXT4_I(inode)->i_extra_isize, 0, 6292 new_extra_isize - EXT4_I(inode)->i_extra_isize); 6293 EXT4_I(inode)->i_extra_isize = new_extra_isize; 6294 return 0; 6295 } 6296 6297 /* 6298 * We may need to allocate external xattr block so we need quotas 6299 * initialized. Here we can be called with various locks held so we 6300 * cannot affort to initialize quotas ourselves. So just bail. 6301 */ 6302 if (dquot_initialize_needed(inode)) 6303 return -EAGAIN; 6304 6305 /* try to expand with EAs present */ 6306 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 6307 raw_inode, handle); 6308 if (error) { 6309 /* 6310 * Inode size expansion failed; don't try again 6311 */ 6312 *no_expand = 1; 6313 } 6314 6315 return error; 6316 } 6317 6318 /* 6319 * Expand an inode by new_extra_isize bytes. 6320 * Returns 0 on success or negative error number on failure. 6321 */ 6322 static int ext4_try_to_expand_extra_isize(struct inode *inode, 6323 unsigned int new_extra_isize, 6324 struct ext4_iloc iloc, 6325 handle_t *handle) 6326 { 6327 int no_expand; 6328 int error; 6329 6330 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 6331 return -EOVERFLOW; 6332 6333 /* 6334 * In nojournal mode, we can immediately attempt to expand 6335 * the inode. When journaled, we first need to obtain extra 6336 * buffer credits since we may write into the EA block 6337 * with this same handle. If journal_extend fails, then it will 6338 * only result in a minor loss of functionality for that inode. 6339 * If this is felt to be critical, then e2fsck should be run to 6340 * force a large enough s_min_extra_isize. 6341 */ 6342 if (ext4_journal_extend(handle, 6343 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 6344 return -ENOSPC; 6345 6346 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 6347 return -EBUSY; 6348 6349 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 6350 handle, &no_expand); 6351 ext4_write_unlock_xattr(inode, &no_expand); 6352 6353 return error; 6354 } 6355 6356 int ext4_expand_extra_isize(struct inode *inode, 6357 unsigned int new_extra_isize, 6358 struct ext4_iloc *iloc) 6359 { 6360 handle_t *handle; 6361 int no_expand; 6362 int error, rc; 6363 6364 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 6365 brelse(iloc->bh); 6366 return -EOVERFLOW; 6367 } 6368 6369 handle = ext4_journal_start(inode, EXT4_HT_INODE, 6370 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 6371 if (IS_ERR(handle)) { 6372 error = PTR_ERR(handle); 6373 brelse(iloc->bh); 6374 return error; 6375 } 6376 6377 ext4_write_lock_xattr(inode, &no_expand); 6378 6379 BUFFER_TRACE(iloc->bh, "get_write_access"); 6380 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 6381 EXT4_JTR_NONE); 6382 if (error) { 6383 brelse(iloc->bh); 6384 goto out_unlock; 6385 } 6386 6387 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6388 handle, &no_expand); 6389 6390 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6391 if (!error) 6392 error = rc; 6393 6394 out_unlock: 6395 ext4_write_unlock_xattr(inode, &no_expand); 6396 ext4_journal_stop(handle); 6397 return error; 6398 } 6399 6400 /* 6401 * What we do here is to mark the in-core inode as clean with respect to inode 6402 * dirtiness (it may still be data-dirty). 6403 * This means that the in-core inode may be reaped by prune_icache 6404 * without having to perform any I/O. This is a very good thing, 6405 * because *any* task may call prune_icache - even ones which 6406 * have a transaction open against a different journal. 6407 * 6408 * Is this cheating? Not really. Sure, we haven't written the 6409 * inode out, but prune_icache isn't a user-visible syncing function. 6410 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6411 * we start and wait on commits. 6412 */ 6413 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 6414 const char *func, unsigned int line) 6415 { 6416 struct ext4_iloc iloc; 6417 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6418 int err; 6419 6420 might_sleep(); 6421 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6422 err = ext4_reserve_inode_write(handle, inode, &iloc); 6423 if (err) 6424 goto out; 6425 6426 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6427 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6428 iloc, handle); 6429 6430 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 6431 out: 6432 if (unlikely(err)) 6433 ext4_error_inode_err(inode, func, line, 0, err, 6434 "mark_inode_dirty error"); 6435 return err; 6436 } 6437 6438 /* 6439 * ext4_dirty_inode() is called from __mark_inode_dirty() 6440 * 6441 * We're really interested in the case where a file is being extended. 6442 * i_size has been changed by generic_commit_write() and we thus need 6443 * to include the updated inode in the current transaction. 6444 * 6445 * Also, dquot_alloc_block() will always dirty the inode when blocks 6446 * are allocated to the file. 6447 * 6448 * If the inode is marked synchronous, we don't honour that here - doing 6449 * so would cause a commit on atime updates, which we don't bother doing. 6450 * We handle synchronous inodes at the highest possible level. 6451 */ 6452 void ext4_dirty_inode(struct inode *inode, int flags) 6453 { 6454 handle_t *handle; 6455 6456 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6457 if (IS_ERR(handle)) 6458 return; 6459 ext4_mark_inode_dirty(handle, inode); 6460 ext4_journal_stop(handle); 6461 } 6462 6463 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6464 { 6465 journal_t *journal; 6466 handle_t *handle; 6467 int err; 6468 int alloc_ctx; 6469 6470 /* 6471 * We have to be very careful here: changing a data block's 6472 * journaling status dynamically is dangerous. If we write a 6473 * data block to the journal, change the status and then delete 6474 * that block, we risk forgetting to revoke the old log record 6475 * from the journal and so a subsequent replay can corrupt data. 6476 * So, first we make sure that the journal is empty and that 6477 * nobody is changing anything. 6478 */ 6479 6480 journal = EXT4_JOURNAL(inode); 6481 if (!journal) 6482 return 0; 6483 if (is_journal_aborted(journal)) 6484 return -EROFS; 6485 6486 /* Wait for all existing dio workers */ 6487 inode_dio_wait(inode); 6488 6489 /* 6490 * Before flushing the journal and switching inode's aops, we have 6491 * to flush all dirty data the inode has. There can be outstanding 6492 * delayed allocations, there can be unwritten extents created by 6493 * fallocate or buffered writes in dioread_nolock mode covered by 6494 * dirty data which can be converted only after flushing the dirty 6495 * data (and journalled aops don't know how to handle these cases). 6496 */ 6497 if (val) { 6498 filemap_invalidate_lock(inode->i_mapping); 6499 err = filemap_write_and_wait(inode->i_mapping); 6500 if (err < 0) { 6501 filemap_invalidate_unlock(inode->i_mapping); 6502 return err; 6503 } 6504 } 6505 6506 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6507 jbd2_journal_lock_updates(journal); 6508 6509 /* 6510 * OK, there are no updates running now, and all cached data is 6511 * synced to disk. We are now in a completely consistent state 6512 * which doesn't have anything in the journal, and we know that 6513 * no filesystem updates are running, so it is safe to modify 6514 * the inode's in-core data-journaling state flag now. 6515 */ 6516 6517 if (val) 6518 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6519 else { 6520 err = jbd2_journal_flush(journal, 0); 6521 if (err < 0) { 6522 jbd2_journal_unlock_updates(journal); 6523 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6524 return err; 6525 } 6526 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6527 } 6528 ext4_set_aops(inode); 6529 6530 jbd2_journal_unlock_updates(journal); 6531 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6532 6533 if (val) 6534 filemap_invalidate_unlock(inode->i_mapping); 6535 6536 /* Finally we can mark the inode as dirty. */ 6537 6538 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6539 if (IS_ERR(handle)) 6540 return PTR_ERR(handle); 6541 6542 ext4_fc_mark_ineligible(inode->i_sb, 6543 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6544 err = ext4_mark_inode_dirty(handle, inode); 6545 ext4_handle_sync(handle); 6546 ext4_journal_stop(handle); 6547 ext4_std_error(inode->i_sb, err); 6548 6549 return err; 6550 } 6551 6552 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6553 struct buffer_head *bh) 6554 { 6555 return !buffer_mapped(bh); 6556 } 6557 6558 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6559 { 6560 struct vm_area_struct *vma = vmf->vma; 6561 struct folio *folio = page_folio(vmf->page); 6562 loff_t size; 6563 unsigned long len; 6564 int err; 6565 vm_fault_t ret; 6566 struct file *file = vma->vm_file; 6567 struct inode *inode = file_inode(file); 6568 struct address_space *mapping = inode->i_mapping; 6569 handle_t *handle; 6570 get_block_t *get_block; 6571 int retries = 0; 6572 6573 if (unlikely(IS_IMMUTABLE(inode))) 6574 return VM_FAULT_SIGBUS; 6575 6576 sb_start_pagefault(inode->i_sb); 6577 file_update_time(vma->vm_file); 6578 6579 filemap_invalidate_lock_shared(mapping); 6580 6581 err = ext4_convert_inline_data(inode); 6582 if (err) 6583 goto out_ret; 6584 6585 /* 6586 * On data journalling we skip straight to the transaction handle: 6587 * there's no delalloc; page truncated will be checked later; the 6588 * early return w/ all buffers mapped (calculates size/len) can't 6589 * be used; and there's no dioread_nolock, so only ext4_get_block. 6590 */ 6591 if (ext4_should_journal_data(inode)) 6592 goto retry_alloc; 6593 6594 /* Delalloc case is easy... */ 6595 if (test_opt(inode->i_sb, DELALLOC) && 6596 !ext4_nonda_switch(inode->i_sb)) { 6597 do { 6598 err = block_page_mkwrite(vma, vmf, 6599 ext4_da_get_block_prep); 6600 } while (err == -ENOSPC && 6601 ext4_should_retry_alloc(inode->i_sb, &retries)); 6602 goto out_ret; 6603 } 6604 6605 folio_lock(folio); 6606 size = i_size_read(inode); 6607 /* Page got truncated from under us? */ 6608 if (folio->mapping != mapping || folio_pos(folio) > size) { 6609 folio_unlock(folio); 6610 ret = VM_FAULT_NOPAGE; 6611 goto out; 6612 } 6613 6614 len = folio_size(folio); 6615 if (folio_pos(folio) + len > size) 6616 len = size - folio_pos(folio); 6617 /* 6618 * Return if we have all the buffers mapped. This avoids the need to do 6619 * journal_start/journal_stop which can block and take a long time 6620 * 6621 * This cannot be done for data journalling, as we have to add the 6622 * inode to the transaction's list to writeprotect pages on commit. 6623 */ 6624 if (folio_buffers(folio)) { 6625 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6626 0, len, NULL, 6627 ext4_bh_unmapped)) { 6628 /* Wait so that we don't change page under IO */ 6629 folio_wait_stable(folio); 6630 ret = VM_FAULT_LOCKED; 6631 goto out; 6632 } 6633 } 6634 folio_unlock(folio); 6635 /* OK, we need to fill the hole... */ 6636 if (ext4_should_dioread_nolock(inode)) 6637 get_block = ext4_get_block_unwritten; 6638 else 6639 get_block = ext4_get_block; 6640 retry_alloc: 6641 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6642 ext4_writepage_trans_blocks(inode)); 6643 if (IS_ERR(handle)) { 6644 ret = VM_FAULT_SIGBUS; 6645 goto out; 6646 } 6647 /* 6648 * Data journalling can't use block_page_mkwrite() because it 6649 * will set_buffer_dirty() before do_journal_get_write_access() 6650 * thus might hit warning messages for dirty metadata buffers. 6651 */ 6652 if (!ext4_should_journal_data(inode)) { 6653 err = block_page_mkwrite(vma, vmf, get_block); 6654 } else { 6655 folio_lock(folio); 6656 size = i_size_read(inode); 6657 /* Page got truncated from under us? */ 6658 if (folio->mapping != mapping || folio_pos(folio) > size) { 6659 ret = VM_FAULT_NOPAGE; 6660 goto out_error; 6661 } 6662 6663 len = folio_size(folio); 6664 if (folio_pos(folio) + len > size) 6665 len = size - folio_pos(folio); 6666 6667 err = ext4_block_write_begin(handle, folio, 0, len, 6668 ext4_get_block); 6669 if (!err) { 6670 ret = VM_FAULT_SIGBUS; 6671 if (ext4_journal_folio_buffers(handle, folio, len)) 6672 goto out_error; 6673 } else { 6674 folio_unlock(folio); 6675 } 6676 } 6677 ext4_journal_stop(handle); 6678 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6679 goto retry_alloc; 6680 out_ret: 6681 ret = vmf_fs_error(err); 6682 out: 6683 filemap_invalidate_unlock_shared(mapping); 6684 sb_end_pagefault(inode->i_sb); 6685 return ret; 6686 out_error: 6687 folio_unlock(folio); 6688 ext4_journal_stop(handle); 6689 goto out; 6690 } 6691