1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/rmap.h>
35 #include <linux/namei.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/workqueue.h>
39 #include <linux/kernel.h>
40 #include <linux/printk.h>
41 #include <linux/slab.h>
42 #include <linux/bitops.h>
43 #include <linux/iomap.h>
44 #include <linux/iversion.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50 
51 #include <trace/events/ext4.h>
52 
53 static void ext4_journalled_zero_new_buffers(handle_t *handle,
54 					    struct inode *inode,
55 					    struct folio *folio,
56 					    unsigned from, unsigned to);
57 
58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
59 			      struct ext4_inode_info *ei)
60 {
61 	__u32 csum;
62 	__u16 dummy_csum = 0;
63 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
64 	unsigned int csum_size = sizeof(dummy_csum);
65 
66 	csum = ext4_chksum(ei->i_csum_seed, (__u8 *)raw, offset);
67 	csum = ext4_chksum(csum, (__u8 *)&dummy_csum, csum_size);
68 	offset += csum_size;
69 	csum = ext4_chksum(csum, (__u8 *)raw + offset,
70 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
71 
72 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
73 		offset = offsetof(struct ext4_inode, i_checksum_hi);
74 		csum = ext4_chksum(csum, (__u8 *)raw + EXT4_GOOD_OLD_INODE_SIZE,
75 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
76 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
77 			csum = ext4_chksum(csum, (__u8 *)&dummy_csum,
78 					   csum_size);
79 			offset += csum_size;
80 		}
81 		csum = ext4_chksum(csum, (__u8 *)raw + offset,
82 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
83 	}
84 
85 	return csum;
86 }
87 
88 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
89 				  struct ext4_inode_info *ei)
90 {
91 	__u32 provided, calculated;
92 
93 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
94 	    cpu_to_le32(EXT4_OS_LINUX) ||
95 	    !ext4_has_feature_metadata_csum(inode->i_sb))
96 		return 1;
97 
98 	provided = le16_to_cpu(raw->i_checksum_lo);
99 	calculated = ext4_inode_csum(inode, raw, ei);
100 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
101 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
102 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
103 	else
104 		calculated &= 0xFFFF;
105 
106 	return provided == calculated;
107 }
108 
109 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
110 			 struct ext4_inode_info *ei)
111 {
112 	__u32 csum;
113 
114 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
115 	    cpu_to_le32(EXT4_OS_LINUX) ||
116 	    !ext4_has_feature_metadata_csum(inode->i_sb))
117 		return;
118 
119 	csum = ext4_inode_csum(inode, raw, ei);
120 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
121 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
122 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
123 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
124 }
125 
126 static inline int ext4_begin_ordered_truncate(struct inode *inode,
127 					      loff_t new_size)
128 {
129 	trace_ext4_begin_ordered_truncate(inode, new_size);
130 	/*
131 	 * If jinode is zero, then we never opened the file for
132 	 * writing, so there's no need to call
133 	 * jbd2_journal_begin_ordered_truncate() since there's no
134 	 * outstanding writes we need to flush.
135 	 */
136 	if (!EXT4_I(inode)->jinode)
137 		return 0;
138 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
139 						   EXT4_I(inode)->jinode,
140 						   new_size);
141 }
142 
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 		if (ext4_has_inline_data(inode))
154 			return 0;
155 
156 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 	}
158 	return S_ISLNK(inode->i_mode) && inode->i_size &&
159 	       (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161 
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
165 void ext4_evict_inode(struct inode *inode)
166 {
167 	handle_t *handle;
168 	int err;
169 	/*
170 	 * Credits for final inode cleanup and freeing:
171 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 	 */
174 	int extra_credits = 6;
175 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 	bool freeze_protected = false;
177 
178 	trace_ext4_evict_inode(inode);
179 
180 	dax_break_layout_final(inode);
181 
182 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
183 		ext4_evict_ea_inode(inode);
184 	if (inode->i_nlink) {
185 		truncate_inode_pages_final(&inode->i_data);
186 
187 		goto no_delete;
188 	}
189 
190 	if (is_bad_inode(inode))
191 		goto no_delete;
192 	dquot_initialize(inode);
193 
194 	if (ext4_should_order_data(inode))
195 		ext4_begin_ordered_truncate(inode, 0);
196 	truncate_inode_pages_final(&inode->i_data);
197 
198 	/*
199 	 * For inodes with journalled data, transaction commit could have
200 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
201 	 * extents converting worker could merge extents and also have dirtied
202 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
203 	 * we still need to remove the inode from the writeback lists.
204 	 */
205 	if (!list_empty_careful(&inode->i_io_list))
206 		inode_io_list_del(inode);
207 
208 	/*
209 	 * Protect us against freezing - iput() caller didn't have to have any
210 	 * protection against it. When we are in a running transaction though,
211 	 * we are already protected against freezing and we cannot grab further
212 	 * protection due to lock ordering constraints.
213 	 */
214 	if (!ext4_journal_current_handle()) {
215 		sb_start_intwrite(inode->i_sb);
216 		freeze_protected = true;
217 	}
218 
219 	if (!IS_NOQUOTA(inode))
220 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
221 
222 	/*
223 	 * Block bitmap, group descriptor, and inode are accounted in both
224 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
225 	 */
226 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
227 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
228 	if (IS_ERR(handle)) {
229 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
230 		/*
231 		 * If we're going to skip the normal cleanup, we still need to
232 		 * make sure that the in-core orphan linked list is properly
233 		 * cleaned up.
234 		 */
235 		ext4_orphan_del(NULL, inode);
236 		if (freeze_protected)
237 			sb_end_intwrite(inode->i_sb);
238 		goto no_delete;
239 	}
240 
241 	if (IS_SYNC(inode))
242 		ext4_handle_sync(handle);
243 
244 	/*
245 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
246 	 * special handling of symlinks here because i_size is used to
247 	 * determine whether ext4_inode_info->i_data contains symlink data or
248 	 * block mappings. Setting i_size to 0 will remove its fast symlink
249 	 * status. Erase i_data so that it becomes a valid empty block map.
250 	 */
251 	if (ext4_inode_is_fast_symlink(inode))
252 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
253 	inode->i_size = 0;
254 	err = ext4_mark_inode_dirty(handle, inode);
255 	if (err) {
256 		ext4_warning(inode->i_sb,
257 			     "couldn't mark inode dirty (err %d)", err);
258 		goto stop_handle;
259 	}
260 	if (inode->i_blocks) {
261 		err = ext4_truncate(inode);
262 		if (err) {
263 			ext4_error_err(inode->i_sb, -err,
264 				       "couldn't truncate inode %lu (err %d)",
265 				       inode->i_ino, err);
266 			goto stop_handle;
267 		}
268 	}
269 
270 	/* Remove xattr references. */
271 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
272 				      extra_credits);
273 	if (err) {
274 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
275 stop_handle:
276 		ext4_journal_stop(handle);
277 		ext4_orphan_del(NULL, inode);
278 		if (freeze_protected)
279 			sb_end_intwrite(inode->i_sb);
280 		ext4_xattr_inode_array_free(ea_inode_array);
281 		goto no_delete;
282 	}
283 
284 	/*
285 	 * Kill off the orphan record which ext4_truncate created.
286 	 * AKPM: I think this can be inside the above `if'.
287 	 * Note that ext4_orphan_del() has to be able to cope with the
288 	 * deletion of a non-existent orphan - this is because we don't
289 	 * know if ext4_truncate() actually created an orphan record.
290 	 * (Well, we could do this if we need to, but heck - it works)
291 	 */
292 	ext4_orphan_del(handle, inode);
293 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
294 
295 	/*
296 	 * One subtle ordering requirement: if anything has gone wrong
297 	 * (transaction abort, IO errors, whatever), then we can still
298 	 * do these next steps (the fs will already have been marked as
299 	 * having errors), but we can't free the inode if the mark_dirty
300 	 * fails.
301 	 */
302 	if (ext4_mark_inode_dirty(handle, inode))
303 		/* If that failed, just do the required in-core inode clear. */
304 		ext4_clear_inode(inode);
305 	else
306 		ext4_free_inode(handle, inode);
307 	ext4_journal_stop(handle);
308 	if (freeze_protected)
309 		sb_end_intwrite(inode->i_sb);
310 	ext4_xattr_inode_array_free(ea_inode_array);
311 	return;
312 no_delete:
313 	/*
314 	 * Check out some where else accidentally dirty the evicting inode,
315 	 * which may probably cause inode use-after-free issues later.
316 	 */
317 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
318 
319 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
320 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
321 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
322 }
323 
324 #ifdef CONFIG_QUOTA
325 qsize_t *ext4_get_reserved_space(struct inode *inode)
326 {
327 	return &EXT4_I(inode)->i_reserved_quota;
328 }
329 #endif
330 
331 /*
332  * Called with i_data_sem down, which is important since we can call
333  * ext4_discard_preallocations() from here.
334  */
335 void ext4_da_update_reserve_space(struct inode *inode,
336 					int used, int quota_claim)
337 {
338 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
339 	struct ext4_inode_info *ei = EXT4_I(inode);
340 
341 	spin_lock(&ei->i_block_reservation_lock);
342 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
343 	if (unlikely(used > ei->i_reserved_data_blocks)) {
344 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
345 			 "with only %d reserved data blocks",
346 			 __func__, inode->i_ino, used,
347 			 ei->i_reserved_data_blocks);
348 		WARN_ON(1);
349 		used = ei->i_reserved_data_blocks;
350 	}
351 
352 	/* Update per-inode reservations */
353 	ei->i_reserved_data_blocks -= used;
354 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
355 
356 	spin_unlock(&ei->i_block_reservation_lock);
357 
358 	/* Update quota subsystem for data blocks */
359 	if (quota_claim)
360 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
361 	else {
362 		/*
363 		 * We did fallocate with an offset that is already delayed
364 		 * allocated. So on delayed allocated writeback we should
365 		 * not re-claim the quota for fallocated blocks.
366 		 */
367 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
368 	}
369 
370 	/*
371 	 * If we have done all the pending block allocations and if
372 	 * there aren't any writers on the inode, we can discard the
373 	 * inode's preallocations.
374 	 */
375 	if ((ei->i_reserved_data_blocks == 0) &&
376 	    !inode_is_open_for_write(inode))
377 		ext4_discard_preallocations(inode);
378 }
379 
380 static int __check_block_validity(struct inode *inode, const char *func,
381 				unsigned int line,
382 				struct ext4_map_blocks *map)
383 {
384 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
385 
386 	if (journal && inode == journal->j_inode)
387 		return 0;
388 
389 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
390 		ext4_error_inode(inode, func, line, map->m_pblk,
391 				 "lblock %lu mapped to illegal pblock %llu "
392 				 "(length %d)", (unsigned long) map->m_lblk,
393 				 map->m_pblk, map->m_len);
394 		return -EFSCORRUPTED;
395 	}
396 	return 0;
397 }
398 
399 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
400 		       ext4_lblk_t len)
401 {
402 	int ret;
403 
404 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
405 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
406 
407 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
408 	if (ret > 0)
409 		ret = 0;
410 
411 	return ret;
412 }
413 
414 /*
415  * For generic regular files, when updating the extent tree, Ext4 should
416  * hold the i_rwsem and invalidate_lock exclusively. This ensures
417  * exclusion against concurrent page faults, as well as reads and writes.
418  */
419 #ifdef CONFIG_EXT4_DEBUG
420 void ext4_check_map_extents_env(struct inode *inode)
421 {
422 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
423 		return;
424 
425 	if (!S_ISREG(inode->i_mode) ||
426 	    IS_NOQUOTA(inode) || IS_VERITY(inode) ||
427 	    is_special_ino(inode->i_sb, inode->i_ino) ||
428 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) ||
429 	    ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE) ||
430 	    ext4_verity_in_progress(inode))
431 		return;
432 
433 	WARN_ON_ONCE(!inode_is_locked(inode) &&
434 		     !rwsem_is_locked(&inode->i_mapping->invalidate_lock));
435 }
436 #else
437 void ext4_check_map_extents_env(struct inode *inode) {}
438 #endif
439 
440 #define check_block_validity(inode, map)	\
441 	__check_block_validity((inode), __func__, __LINE__, (map))
442 
443 #ifdef ES_AGGRESSIVE_TEST
444 static void ext4_map_blocks_es_recheck(handle_t *handle,
445 				       struct inode *inode,
446 				       struct ext4_map_blocks *es_map,
447 				       struct ext4_map_blocks *map,
448 				       int flags)
449 {
450 	int retval;
451 
452 	map->m_flags = 0;
453 	/*
454 	 * There is a race window that the result is not the same.
455 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
456 	 * is that we lookup a block mapping in extent status tree with
457 	 * out taking i_data_sem.  So at the time the unwritten extent
458 	 * could be converted.
459 	 */
460 	down_read(&EXT4_I(inode)->i_data_sem);
461 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
462 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
463 	} else {
464 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
465 	}
466 	up_read((&EXT4_I(inode)->i_data_sem));
467 
468 	/*
469 	 * We don't check m_len because extent will be collpased in status
470 	 * tree.  So the m_len might not equal.
471 	 */
472 	if (es_map->m_lblk != map->m_lblk ||
473 	    es_map->m_flags != map->m_flags ||
474 	    es_map->m_pblk != map->m_pblk) {
475 		printk("ES cache assertion failed for inode: %lu "
476 		       "es_cached ex [%d/%d/%llu/%x] != "
477 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
478 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
479 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
480 		       map->m_len, map->m_pblk, map->m_flags,
481 		       retval, flags);
482 	}
483 }
484 #endif /* ES_AGGRESSIVE_TEST */
485 
486 static int ext4_map_query_blocks_next_in_leaf(handle_t *handle,
487 			struct inode *inode, struct ext4_map_blocks *map,
488 			unsigned int orig_mlen)
489 {
490 	struct ext4_map_blocks map2;
491 	unsigned int status, status2;
492 	int retval;
493 
494 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
495 		EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
496 
497 	WARN_ON_ONCE(!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF));
498 	WARN_ON_ONCE(orig_mlen <= map->m_len);
499 
500 	/* Prepare map2 for lookup in next leaf block */
501 	map2.m_lblk = map->m_lblk + map->m_len;
502 	map2.m_len = orig_mlen - map->m_len;
503 	map2.m_flags = 0;
504 	retval = ext4_ext_map_blocks(handle, inode, &map2, 0);
505 
506 	if (retval <= 0) {
507 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
508 				      map->m_pblk, status, false);
509 		return map->m_len;
510 	}
511 
512 	if (unlikely(retval != map2.m_len)) {
513 		ext4_warning(inode->i_sb,
514 			     "ES len assertion failed for inode "
515 			     "%lu: retval %d != map->m_len %d",
516 			     inode->i_ino, retval, map2.m_len);
517 		WARN_ON(1);
518 	}
519 
520 	status2 = map2.m_flags & EXT4_MAP_UNWRITTEN ?
521 		EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
522 
523 	/*
524 	 * If map2 is contiguous with map, then let's insert it as a single
525 	 * extent in es cache and return the combined length of both the maps.
526 	 */
527 	if (map->m_pblk + map->m_len == map2.m_pblk &&
528 			status == status2) {
529 		ext4_es_insert_extent(inode, map->m_lblk,
530 				      map->m_len + map2.m_len, map->m_pblk,
531 				      status, false);
532 		map->m_len += map2.m_len;
533 	} else {
534 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
535 				      map->m_pblk, status, false);
536 	}
537 
538 	return map->m_len;
539 }
540 
541 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
542 				 struct ext4_map_blocks *map, int flags)
543 {
544 	unsigned int status;
545 	int retval;
546 	unsigned int orig_mlen = map->m_len;
547 
548 	flags &= EXT4_EX_QUERY_FILTER;
549 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
550 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
551 	else
552 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
553 
554 	if (retval <= 0)
555 		return retval;
556 
557 	if (unlikely(retval != map->m_len)) {
558 		ext4_warning(inode->i_sb,
559 			     "ES len assertion failed for inode "
560 			     "%lu: retval %d != map->m_len %d",
561 			     inode->i_ino, retval, map->m_len);
562 		WARN_ON(1);
563 	}
564 
565 	/*
566 	 * No need to query next in leaf:
567 	 * - if returned extent is not last in leaf or
568 	 * - if the last in leaf is the full requested range
569 	 */
570 	if (!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF) ||
571 			map->m_len == orig_mlen) {
572 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
573 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
574 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
575 				      map->m_pblk, status, false);
576 		return retval;
577 	}
578 
579 	return ext4_map_query_blocks_next_in_leaf(handle, inode, map,
580 						  orig_mlen);
581 }
582 
583 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
584 				  struct ext4_map_blocks *map, int flags)
585 {
586 	struct extent_status es;
587 	unsigned int status;
588 	int err, retval = 0;
589 
590 	/*
591 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
592 	 * indicates that the blocks and quotas has already been
593 	 * checked when the data was copied into the page cache.
594 	 */
595 	if (map->m_flags & EXT4_MAP_DELAYED)
596 		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
597 
598 	/*
599 	 * Here we clear m_flags because after allocating an new extent,
600 	 * it will be set again.
601 	 */
602 	map->m_flags &= ~EXT4_MAP_FLAGS;
603 
604 	/*
605 	 * We need to check for EXT4 here because migrate could have
606 	 * changed the inode type in between.
607 	 */
608 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
609 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
610 	} else {
611 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
612 
613 		/*
614 		 * We allocated new blocks which will result in i_data's
615 		 * format changing. Force the migrate to fail by clearing
616 		 * migrate flags.
617 		 */
618 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
619 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
620 	}
621 	if (retval <= 0)
622 		return retval;
623 
624 	if (unlikely(retval != map->m_len)) {
625 		ext4_warning(inode->i_sb,
626 			     "ES len assertion failed for inode %lu: "
627 			     "retval %d != map->m_len %d",
628 			     inode->i_ino, retval, map->m_len);
629 		WARN_ON(1);
630 	}
631 
632 	/*
633 	 * We have to zeroout blocks before inserting them into extent
634 	 * status tree. Otherwise someone could look them up there and
635 	 * use them before they are really zeroed. We also have to
636 	 * unmap metadata before zeroing as otherwise writeback can
637 	 * overwrite zeros with stale data from block device.
638 	 */
639 	if (flags & EXT4_GET_BLOCKS_ZERO &&
640 	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
641 		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
642 					 map->m_len);
643 		if (err)
644 			return err;
645 	}
646 
647 	/*
648 	 * If the extent has been zeroed out, we don't need to update
649 	 * extent status tree.
650 	 */
651 	if (flags & EXT4_GET_BLOCKS_PRE_IO &&
652 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
653 		if (ext4_es_is_written(&es))
654 			return retval;
655 	}
656 
657 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
658 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
659 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
660 			      status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
661 
662 	return retval;
663 }
664 
665 /*
666  * The ext4_map_blocks() function tries to look up the requested blocks,
667  * and returns if the blocks are already mapped.
668  *
669  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
670  * and store the allocated blocks in the result buffer head and mark it
671  * mapped.
672  *
673  * If file type is extents based, it will call ext4_ext_map_blocks(),
674  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
675  * based files
676  *
677  * On success, it returns the number of blocks being mapped or allocated.
678  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
679  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
680  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
681  *
682  * It returns 0 if plain look up failed (blocks have not been allocated), in
683  * that case, @map is returned as unmapped but we still do fill map->m_len to
684  * indicate the length of a hole starting at map->m_lblk.
685  *
686  * It returns the error in case of allocation failure.
687  */
688 int ext4_map_blocks(handle_t *handle, struct inode *inode,
689 		    struct ext4_map_blocks *map, int flags)
690 {
691 	struct extent_status es;
692 	int retval;
693 	int ret = 0;
694 	unsigned int orig_mlen = map->m_len;
695 #ifdef ES_AGGRESSIVE_TEST
696 	struct ext4_map_blocks orig_map;
697 
698 	memcpy(&orig_map, map, sizeof(*map));
699 #endif
700 
701 	map->m_flags = 0;
702 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
703 		  flags, map->m_len, (unsigned long) map->m_lblk);
704 
705 	/*
706 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
707 	 */
708 	if (unlikely(map->m_len > INT_MAX))
709 		map->m_len = INT_MAX;
710 
711 	/* We can handle the block number less than EXT_MAX_BLOCKS */
712 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
713 		return -EFSCORRUPTED;
714 
715 	/*
716 	 * Callers from the context of data submission are the only exceptions
717 	 * for regular files that do not hold the i_rwsem or invalidate_lock.
718 	 * However, caching unrelated ranges is not permitted.
719 	 */
720 	if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
721 		WARN_ON_ONCE(!(flags & EXT4_EX_NOCACHE));
722 	else
723 		ext4_check_map_extents_env(inode);
724 
725 	/* Lookup extent status tree firstly */
726 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
727 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
728 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
729 			map->m_pblk = ext4_es_pblock(&es) +
730 					map->m_lblk - es.es_lblk;
731 			map->m_flags |= ext4_es_is_written(&es) ?
732 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
733 			retval = es.es_len - (map->m_lblk - es.es_lblk);
734 			if (retval > map->m_len)
735 				retval = map->m_len;
736 			map->m_len = retval;
737 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
738 			map->m_pblk = 0;
739 			map->m_flags |= ext4_es_is_delayed(&es) ?
740 					EXT4_MAP_DELAYED : 0;
741 			retval = es.es_len - (map->m_lblk - es.es_lblk);
742 			if (retval > map->m_len)
743 				retval = map->m_len;
744 			map->m_len = retval;
745 			retval = 0;
746 		} else {
747 			BUG();
748 		}
749 
750 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
751 			return retval;
752 #ifdef ES_AGGRESSIVE_TEST
753 		ext4_map_blocks_es_recheck(handle, inode, map,
754 					   &orig_map, flags);
755 #endif
756 		if (!(flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) ||
757 				orig_mlen == map->m_len)
758 			goto found;
759 
760 		if (flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF)
761 			map->m_len = orig_mlen;
762 	}
763 	/*
764 	 * In the query cache no-wait mode, nothing we can do more if we
765 	 * cannot find extent in the cache.
766 	 */
767 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
768 		return 0;
769 
770 	/*
771 	 * Try to see if we can get the block without requesting a new
772 	 * file system block.
773 	 */
774 	down_read(&EXT4_I(inode)->i_data_sem);
775 	retval = ext4_map_query_blocks(handle, inode, map, flags);
776 	up_read((&EXT4_I(inode)->i_data_sem));
777 
778 found:
779 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
780 		ret = check_block_validity(inode, map);
781 		if (ret != 0)
782 			return ret;
783 	}
784 
785 	/* If it is only a block(s) look up */
786 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
787 		return retval;
788 
789 	/*
790 	 * Returns if the blocks have already allocated
791 	 *
792 	 * Note that if blocks have been preallocated
793 	 * ext4_ext_map_blocks() returns with buffer head unmapped
794 	 */
795 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
796 		/*
797 		 * If we need to convert extent to unwritten
798 		 * we continue and do the actual work in
799 		 * ext4_ext_map_blocks()
800 		 */
801 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
802 			return retval;
803 
804 
805 	ext4_fc_track_inode(handle, inode);
806 	/*
807 	 * New blocks allocate and/or writing to unwritten extent
808 	 * will possibly result in updating i_data, so we take
809 	 * the write lock of i_data_sem, and call get_block()
810 	 * with create == 1 flag.
811 	 */
812 	down_write(&EXT4_I(inode)->i_data_sem);
813 	retval = ext4_map_create_blocks(handle, inode, map, flags);
814 	up_write((&EXT4_I(inode)->i_data_sem));
815 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
816 		ret = check_block_validity(inode, map);
817 		if (ret != 0)
818 			return ret;
819 
820 		/*
821 		 * Inodes with freshly allocated blocks where contents will be
822 		 * visible after transaction commit must be on transaction's
823 		 * ordered data list.
824 		 */
825 		if (map->m_flags & EXT4_MAP_NEW &&
826 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
827 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
828 		    !ext4_is_quota_file(inode) &&
829 		    ext4_should_order_data(inode)) {
830 			loff_t start_byte =
831 				(loff_t)map->m_lblk << inode->i_blkbits;
832 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
833 
834 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
835 				ret = ext4_jbd2_inode_add_wait(handle, inode,
836 						start_byte, length);
837 			else
838 				ret = ext4_jbd2_inode_add_write(handle, inode,
839 						start_byte, length);
840 			if (ret)
841 				return ret;
842 		}
843 	}
844 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
845 				map->m_flags & EXT4_MAP_MAPPED))
846 		ext4_fc_track_range(handle, inode, map->m_lblk,
847 					map->m_lblk + map->m_len - 1);
848 	if (retval < 0)
849 		ext_debug(inode, "failed with err %d\n", retval);
850 	return retval;
851 }
852 
853 /*
854  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
855  * we have to be careful as someone else may be manipulating b_state as well.
856  */
857 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
858 {
859 	unsigned long old_state;
860 	unsigned long new_state;
861 
862 	flags &= EXT4_MAP_FLAGS;
863 
864 	/* Dummy buffer_head? Set non-atomically. */
865 	if (!bh->b_folio) {
866 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
867 		return;
868 	}
869 	/*
870 	 * Someone else may be modifying b_state. Be careful! This is ugly but
871 	 * once we get rid of using bh as a container for mapping information
872 	 * to pass to / from get_block functions, this can go away.
873 	 */
874 	old_state = READ_ONCE(bh->b_state);
875 	do {
876 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
877 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
878 }
879 
880 static int _ext4_get_block(struct inode *inode, sector_t iblock,
881 			   struct buffer_head *bh, int flags)
882 {
883 	struct ext4_map_blocks map;
884 	int ret = 0;
885 
886 	if (ext4_has_inline_data(inode))
887 		return -ERANGE;
888 
889 	map.m_lblk = iblock;
890 	map.m_len = bh->b_size >> inode->i_blkbits;
891 
892 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
893 			      flags);
894 	if (ret > 0) {
895 		map_bh(bh, inode->i_sb, map.m_pblk);
896 		ext4_update_bh_state(bh, map.m_flags);
897 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
898 		ret = 0;
899 	} else if (ret == 0) {
900 		/* hole case, need to fill in bh->b_size */
901 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
902 	}
903 	return ret;
904 }
905 
906 int ext4_get_block(struct inode *inode, sector_t iblock,
907 		   struct buffer_head *bh, int create)
908 {
909 	return _ext4_get_block(inode, iblock, bh,
910 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
911 }
912 
913 /*
914  * Get block function used when preparing for buffered write if we require
915  * creating an unwritten extent if blocks haven't been allocated.  The extent
916  * will be converted to written after the IO is complete.
917  */
918 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
919 			     struct buffer_head *bh_result, int create)
920 {
921 	int ret = 0;
922 
923 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
924 		   inode->i_ino, create);
925 	ret = _ext4_get_block(inode, iblock, bh_result,
926 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
927 
928 	/*
929 	 * If the buffer is marked unwritten, mark it as new to make sure it is
930 	 * zeroed out correctly in case of partial writes. Otherwise, there is
931 	 * a chance of stale data getting exposed.
932 	 */
933 	if (ret == 0 && buffer_unwritten(bh_result))
934 		set_buffer_new(bh_result);
935 
936 	return ret;
937 }
938 
939 /* Maximum number of blocks we map for direct IO at once. */
940 #define DIO_MAX_BLOCKS 4096
941 
942 /*
943  * `handle' can be NULL if create is zero
944  */
945 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
946 				ext4_lblk_t block, int map_flags)
947 {
948 	struct ext4_map_blocks map;
949 	struct buffer_head *bh;
950 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
951 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
952 	int err;
953 
954 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
955 		    || handle != NULL || create == 0);
956 	ASSERT(create == 0 || !nowait);
957 
958 	map.m_lblk = block;
959 	map.m_len = 1;
960 	err = ext4_map_blocks(handle, inode, &map, map_flags);
961 
962 	if (err == 0)
963 		return create ? ERR_PTR(-ENOSPC) : NULL;
964 	if (err < 0)
965 		return ERR_PTR(err);
966 
967 	if (nowait)
968 		return sb_find_get_block(inode->i_sb, map.m_pblk);
969 
970 	/*
971 	 * Since bh could introduce extra ref count such as referred by
972 	 * journal_head etc. Try to avoid using __GFP_MOVABLE here
973 	 * as it may fail the migration when journal_head remains.
974 	 */
975 	bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
976 				inode->i_sb->s_blocksize);
977 
978 	if (unlikely(!bh))
979 		return ERR_PTR(-ENOMEM);
980 	if (map.m_flags & EXT4_MAP_NEW) {
981 		ASSERT(create != 0);
982 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
983 			    || (handle != NULL));
984 
985 		/*
986 		 * Now that we do not always journal data, we should
987 		 * keep in mind whether this should always journal the
988 		 * new buffer as metadata.  For now, regular file
989 		 * writes use ext4_get_block instead, so it's not a
990 		 * problem.
991 		 */
992 		lock_buffer(bh);
993 		BUFFER_TRACE(bh, "call get_create_access");
994 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
995 						     EXT4_JTR_NONE);
996 		if (unlikely(err)) {
997 			unlock_buffer(bh);
998 			goto errout;
999 		}
1000 		if (!buffer_uptodate(bh)) {
1001 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1002 			set_buffer_uptodate(bh);
1003 		}
1004 		unlock_buffer(bh);
1005 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1006 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1007 		if (unlikely(err))
1008 			goto errout;
1009 	} else
1010 		BUFFER_TRACE(bh, "not a new buffer");
1011 	return bh;
1012 errout:
1013 	brelse(bh);
1014 	return ERR_PTR(err);
1015 }
1016 
1017 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1018 			       ext4_lblk_t block, int map_flags)
1019 {
1020 	struct buffer_head *bh;
1021 	int ret;
1022 
1023 	bh = ext4_getblk(handle, inode, block, map_flags);
1024 	if (IS_ERR(bh))
1025 		return bh;
1026 	if (!bh || ext4_buffer_uptodate(bh))
1027 		return bh;
1028 
1029 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
1030 	if (ret) {
1031 		put_bh(bh);
1032 		return ERR_PTR(ret);
1033 	}
1034 	return bh;
1035 }
1036 
1037 /* Read a contiguous batch of blocks. */
1038 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1039 		     bool wait, struct buffer_head **bhs)
1040 {
1041 	int i, err;
1042 
1043 	for (i = 0; i < bh_count; i++) {
1044 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1045 		if (IS_ERR(bhs[i])) {
1046 			err = PTR_ERR(bhs[i]);
1047 			bh_count = i;
1048 			goto out_brelse;
1049 		}
1050 	}
1051 
1052 	for (i = 0; i < bh_count; i++)
1053 		/* Note that NULL bhs[i] is valid because of holes. */
1054 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1055 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
1056 
1057 	if (!wait)
1058 		return 0;
1059 
1060 	for (i = 0; i < bh_count; i++)
1061 		if (bhs[i])
1062 			wait_on_buffer(bhs[i]);
1063 
1064 	for (i = 0; i < bh_count; i++) {
1065 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1066 			err = -EIO;
1067 			goto out_brelse;
1068 		}
1069 	}
1070 	return 0;
1071 
1072 out_brelse:
1073 	for (i = 0; i < bh_count; i++) {
1074 		brelse(bhs[i]);
1075 		bhs[i] = NULL;
1076 	}
1077 	return err;
1078 }
1079 
1080 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
1081 			   struct buffer_head *head,
1082 			   unsigned from,
1083 			   unsigned to,
1084 			   int *partial,
1085 			   int (*fn)(handle_t *handle, struct inode *inode,
1086 				     struct buffer_head *bh))
1087 {
1088 	struct buffer_head *bh;
1089 	unsigned block_start, block_end;
1090 	unsigned blocksize = head->b_size;
1091 	int err, ret = 0;
1092 	struct buffer_head *next;
1093 
1094 	for (bh = head, block_start = 0;
1095 	     ret == 0 && (bh != head || !block_start);
1096 	     block_start = block_end, bh = next) {
1097 		next = bh->b_this_page;
1098 		block_end = block_start + blocksize;
1099 		if (block_end <= from || block_start >= to) {
1100 			if (partial && !buffer_uptodate(bh))
1101 				*partial = 1;
1102 			continue;
1103 		}
1104 		err = (*fn)(handle, inode, bh);
1105 		if (!ret)
1106 			ret = err;
1107 	}
1108 	return ret;
1109 }
1110 
1111 /*
1112  * Helper for handling dirtying of journalled data. We also mark the folio as
1113  * dirty so that writeback code knows about this page (and inode) contains
1114  * dirty data. ext4_writepages() then commits appropriate transaction to
1115  * make data stable.
1116  */
1117 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1118 {
1119 	struct folio *folio = bh->b_folio;
1120 	struct inode *inode = folio->mapping->host;
1121 
1122 	/* only regular files have a_ops */
1123 	if (S_ISREG(inode->i_mode))
1124 		folio_mark_dirty(folio);
1125 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1126 }
1127 
1128 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1129 				struct buffer_head *bh)
1130 {
1131 	if (!buffer_mapped(bh) || buffer_freed(bh))
1132 		return 0;
1133 	BUFFER_TRACE(bh, "get write access");
1134 	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1135 					    EXT4_JTR_NONE);
1136 }
1137 
1138 int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1139 			   loff_t pos, unsigned len,
1140 			   get_block_t *get_block)
1141 {
1142 	unsigned int from = offset_in_folio(folio, pos);
1143 	unsigned to = from + len;
1144 	struct inode *inode = folio->mapping->host;
1145 	unsigned block_start, block_end;
1146 	sector_t block;
1147 	int err = 0;
1148 	unsigned blocksize = inode->i_sb->s_blocksize;
1149 	unsigned bbits;
1150 	struct buffer_head *bh, *head, *wait[2];
1151 	int nr_wait = 0;
1152 	int i;
1153 	bool should_journal_data = ext4_should_journal_data(inode);
1154 
1155 	BUG_ON(!folio_test_locked(folio));
1156 	BUG_ON(to > folio_size(folio));
1157 	BUG_ON(from > to);
1158 
1159 	head = folio_buffers(folio);
1160 	if (!head)
1161 		head = create_empty_buffers(folio, blocksize, 0);
1162 	bbits = ilog2(blocksize);
1163 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1164 
1165 	for (bh = head, block_start = 0; bh != head || !block_start;
1166 	    block++, block_start = block_end, bh = bh->b_this_page) {
1167 		block_end = block_start + blocksize;
1168 		if (block_end <= from || block_start >= to) {
1169 			if (folio_test_uptodate(folio)) {
1170 				set_buffer_uptodate(bh);
1171 			}
1172 			continue;
1173 		}
1174 		if (buffer_new(bh))
1175 			clear_buffer_new(bh);
1176 		if (!buffer_mapped(bh)) {
1177 			WARN_ON(bh->b_size != blocksize);
1178 			err = get_block(inode, block, bh, 1);
1179 			if (err)
1180 				break;
1181 			if (buffer_new(bh)) {
1182 				/*
1183 				 * We may be zeroing partial buffers or all new
1184 				 * buffers in case of failure. Prepare JBD2 for
1185 				 * that.
1186 				 */
1187 				if (should_journal_data)
1188 					do_journal_get_write_access(handle,
1189 								    inode, bh);
1190 				if (folio_test_uptodate(folio)) {
1191 					/*
1192 					 * Unlike __block_write_begin() we leave
1193 					 * dirtying of new uptodate buffers to
1194 					 * ->write_end() time or
1195 					 * folio_zero_new_buffers().
1196 					 */
1197 					set_buffer_uptodate(bh);
1198 					continue;
1199 				}
1200 				if (block_end > to || block_start < from)
1201 					folio_zero_segments(folio, to,
1202 							    block_end,
1203 							    block_start, from);
1204 				continue;
1205 			}
1206 		}
1207 		if (folio_test_uptodate(folio)) {
1208 			set_buffer_uptodate(bh);
1209 			continue;
1210 		}
1211 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1212 		    !buffer_unwritten(bh) &&
1213 		    (block_start < from || block_end > to)) {
1214 			ext4_read_bh_lock(bh, 0, false);
1215 			wait[nr_wait++] = bh;
1216 		}
1217 	}
1218 	/*
1219 	 * If we issued read requests, let them complete.
1220 	 */
1221 	for (i = 0; i < nr_wait; i++) {
1222 		wait_on_buffer(wait[i]);
1223 		if (!buffer_uptodate(wait[i]))
1224 			err = -EIO;
1225 	}
1226 	if (unlikely(err)) {
1227 		if (should_journal_data)
1228 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1229 							 from, to);
1230 		else
1231 			folio_zero_new_buffers(folio, from, to);
1232 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1233 		for (i = 0; i < nr_wait; i++) {
1234 			int err2;
1235 
1236 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1237 						blocksize, bh_offset(wait[i]));
1238 			if (err2) {
1239 				clear_buffer_uptodate(wait[i]);
1240 				err = err2;
1241 			}
1242 		}
1243 	}
1244 
1245 	return err;
1246 }
1247 
1248 /*
1249  * To preserve ordering, it is essential that the hole instantiation and
1250  * the data write be encapsulated in a single transaction.  We cannot
1251  * close off a transaction and start a new one between the ext4_get_block()
1252  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1253  * ext4_write_begin() is the right place.
1254  */
1255 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1256 			    loff_t pos, unsigned len,
1257 			    struct folio **foliop, void **fsdata)
1258 {
1259 	struct inode *inode = mapping->host;
1260 	int ret, needed_blocks;
1261 	handle_t *handle;
1262 	int retries = 0;
1263 	struct folio *folio;
1264 	pgoff_t index;
1265 	unsigned from, to;
1266 	fgf_t fgp = FGP_WRITEBEGIN;
1267 
1268 	ret = ext4_emergency_state(inode->i_sb);
1269 	if (unlikely(ret))
1270 		return ret;
1271 
1272 	trace_ext4_write_begin(inode, pos, len);
1273 	/*
1274 	 * Reserve one block more for addition to orphan list in case
1275 	 * we allocate blocks but write fails for some reason
1276 	 */
1277 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1278 	index = pos >> PAGE_SHIFT;
1279 
1280 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1281 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1282 						    foliop);
1283 		if (ret < 0)
1284 			return ret;
1285 		if (ret == 1)
1286 			return 0;
1287 	}
1288 
1289 	/*
1290 	 * __filemap_get_folio() can take a long time if the
1291 	 * system is thrashing due to memory pressure, or if the folio
1292 	 * is being written back.  So grab it first before we start
1293 	 * the transaction handle.  This also allows us to allocate
1294 	 * the folio (if needed) without using GFP_NOFS.
1295 	 */
1296 retry_grab:
1297 	fgp |= fgf_set_order(len);
1298 	folio = __filemap_get_folio(mapping, index, fgp,
1299 				    mapping_gfp_mask(mapping));
1300 	if (IS_ERR(folio))
1301 		return PTR_ERR(folio);
1302 
1303 	if (pos + len > folio_pos(folio) + folio_size(folio))
1304 		len = folio_pos(folio) + folio_size(folio) - pos;
1305 
1306 	from = offset_in_folio(folio, pos);
1307 	to = from + len;
1308 
1309 	/*
1310 	 * The same as page allocation, we prealloc buffer heads before
1311 	 * starting the handle.
1312 	 */
1313 	if (!folio_buffers(folio))
1314 		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1315 
1316 	folio_unlock(folio);
1317 
1318 retry_journal:
1319 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1320 	if (IS_ERR(handle)) {
1321 		folio_put(folio);
1322 		return PTR_ERR(handle);
1323 	}
1324 
1325 	folio_lock(folio);
1326 	if (folio->mapping != mapping) {
1327 		/* The folio got truncated from under us */
1328 		folio_unlock(folio);
1329 		folio_put(folio);
1330 		ext4_journal_stop(handle);
1331 		goto retry_grab;
1332 	}
1333 	/* In case writeback began while the folio was unlocked */
1334 	folio_wait_stable(folio);
1335 
1336 	if (ext4_should_dioread_nolock(inode))
1337 		ret = ext4_block_write_begin(handle, folio, pos, len,
1338 					     ext4_get_block_unwritten);
1339 	else
1340 		ret = ext4_block_write_begin(handle, folio, pos, len,
1341 					     ext4_get_block);
1342 	if (!ret && ext4_should_journal_data(inode)) {
1343 		ret = ext4_walk_page_buffers(handle, inode,
1344 					     folio_buffers(folio), from, to,
1345 					     NULL, do_journal_get_write_access);
1346 	}
1347 
1348 	if (ret) {
1349 		bool extended = (pos + len > inode->i_size) &&
1350 				!ext4_verity_in_progress(inode);
1351 
1352 		folio_unlock(folio);
1353 		/*
1354 		 * ext4_block_write_begin may have instantiated a few blocks
1355 		 * outside i_size.  Trim these off again. Don't need
1356 		 * i_size_read because we hold i_rwsem.
1357 		 *
1358 		 * Add inode to orphan list in case we crash before
1359 		 * truncate finishes
1360 		 */
1361 		if (extended && ext4_can_truncate(inode))
1362 			ext4_orphan_add(handle, inode);
1363 
1364 		ext4_journal_stop(handle);
1365 		if (extended) {
1366 			ext4_truncate_failed_write(inode);
1367 			/*
1368 			 * If truncate failed early the inode might
1369 			 * still be on the orphan list; we need to
1370 			 * make sure the inode is removed from the
1371 			 * orphan list in that case.
1372 			 */
1373 			if (inode->i_nlink)
1374 				ext4_orphan_del(NULL, inode);
1375 		}
1376 
1377 		if (ret == -ENOSPC &&
1378 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1379 			goto retry_journal;
1380 		folio_put(folio);
1381 		return ret;
1382 	}
1383 	*foliop = folio;
1384 	return ret;
1385 }
1386 
1387 /* For write_end() in data=journal mode */
1388 static int write_end_fn(handle_t *handle, struct inode *inode,
1389 			struct buffer_head *bh)
1390 {
1391 	int ret;
1392 	if (!buffer_mapped(bh) || buffer_freed(bh))
1393 		return 0;
1394 	set_buffer_uptodate(bh);
1395 	ret = ext4_dirty_journalled_data(handle, bh);
1396 	clear_buffer_meta(bh);
1397 	clear_buffer_prio(bh);
1398 	return ret;
1399 }
1400 
1401 /*
1402  * We need to pick up the new inode size which generic_commit_write gave us
1403  * `file' can be NULL - eg, when called from page_symlink().
1404  *
1405  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1406  * buffers are managed internally.
1407  */
1408 static int ext4_write_end(struct file *file,
1409 			  struct address_space *mapping,
1410 			  loff_t pos, unsigned len, unsigned copied,
1411 			  struct folio *folio, void *fsdata)
1412 {
1413 	handle_t *handle = ext4_journal_current_handle();
1414 	struct inode *inode = mapping->host;
1415 	loff_t old_size = inode->i_size;
1416 	int ret = 0, ret2;
1417 	int i_size_changed = 0;
1418 	bool verity = ext4_verity_in_progress(inode);
1419 
1420 	trace_ext4_write_end(inode, pos, len, copied);
1421 
1422 	if (ext4_has_inline_data(inode) &&
1423 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1424 		return ext4_write_inline_data_end(inode, pos, len, copied,
1425 						  folio);
1426 
1427 	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1428 	/*
1429 	 * it's important to update i_size while still holding folio lock:
1430 	 * page writeout could otherwise come in and zero beyond i_size.
1431 	 *
1432 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1433 	 * blocks are being written past EOF, so skip the i_size update.
1434 	 */
1435 	if (!verity)
1436 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1437 	folio_unlock(folio);
1438 	folio_put(folio);
1439 
1440 	if (old_size < pos && !verity) {
1441 		pagecache_isize_extended(inode, old_size, pos);
1442 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1443 	}
1444 	/*
1445 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1446 	 * makes the holding time of folio lock longer. Second, it forces lock
1447 	 * ordering of folio lock and transaction start for journaling
1448 	 * filesystems.
1449 	 */
1450 	if (i_size_changed)
1451 		ret = ext4_mark_inode_dirty(handle, inode);
1452 
1453 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1454 		/* if we have allocated more blocks and copied
1455 		 * less. We will have blocks allocated outside
1456 		 * inode->i_size. So truncate them
1457 		 */
1458 		ext4_orphan_add(handle, inode);
1459 
1460 	ret2 = ext4_journal_stop(handle);
1461 	if (!ret)
1462 		ret = ret2;
1463 
1464 	if (pos + len > inode->i_size && !verity) {
1465 		ext4_truncate_failed_write(inode);
1466 		/*
1467 		 * If truncate failed early the inode might still be
1468 		 * on the orphan list; we need to make sure the inode
1469 		 * is removed from the orphan list in that case.
1470 		 */
1471 		if (inode->i_nlink)
1472 			ext4_orphan_del(NULL, inode);
1473 	}
1474 
1475 	return ret ? ret : copied;
1476 }
1477 
1478 /*
1479  * This is a private version of folio_zero_new_buffers() which doesn't
1480  * set the buffer to be dirty, since in data=journalled mode we need
1481  * to call ext4_dirty_journalled_data() instead.
1482  */
1483 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1484 					    struct inode *inode,
1485 					    struct folio *folio,
1486 					    unsigned from, unsigned to)
1487 {
1488 	unsigned int block_start = 0, block_end;
1489 	struct buffer_head *head, *bh;
1490 
1491 	bh = head = folio_buffers(folio);
1492 	do {
1493 		block_end = block_start + bh->b_size;
1494 		if (buffer_new(bh)) {
1495 			if (block_end > from && block_start < to) {
1496 				if (!folio_test_uptodate(folio)) {
1497 					unsigned start, size;
1498 
1499 					start = max(from, block_start);
1500 					size = min(to, block_end) - start;
1501 
1502 					folio_zero_range(folio, start, size);
1503 				}
1504 				clear_buffer_new(bh);
1505 				write_end_fn(handle, inode, bh);
1506 			}
1507 		}
1508 		block_start = block_end;
1509 		bh = bh->b_this_page;
1510 	} while (bh != head);
1511 }
1512 
1513 static int ext4_journalled_write_end(struct file *file,
1514 				     struct address_space *mapping,
1515 				     loff_t pos, unsigned len, unsigned copied,
1516 				     struct folio *folio, void *fsdata)
1517 {
1518 	handle_t *handle = ext4_journal_current_handle();
1519 	struct inode *inode = mapping->host;
1520 	loff_t old_size = inode->i_size;
1521 	int ret = 0, ret2;
1522 	int partial = 0;
1523 	unsigned from, to;
1524 	int size_changed = 0;
1525 	bool verity = ext4_verity_in_progress(inode);
1526 
1527 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1528 	from = pos & (PAGE_SIZE - 1);
1529 	to = from + len;
1530 
1531 	BUG_ON(!ext4_handle_valid(handle));
1532 
1533 	if (ext4_has_inline_data(inode))
1534 		return ext4_write_inline_data_end(inode, pos, len, copied,
1535 						  folio);
1536 
1537 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1538 		copied = 0;
1539 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1540 						 from, to);
1541 	} else {
1542 		if (unlikely(copied < len))
1543 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1544 							 from + copied, to);
1545 		ret = ext4_walk_page_buffers(handle, inode,
1546 					     folio_buffers(folio),
1547 					     from, from + copied, &partial,
1548 					     write_end_fn);
1549 		if (!partial)
1550 			folio_mark_uptodate(folio);
1551 	}
1552 	if (!verity)
1553 		size_changed = ext4_update_inode_size(inode, pos + copied);
1554 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1555 	folio_unlock(folio);
1556 	folio_put(folio);
1557 
1558 	if (old_size < pos && !verity) {
1559 		pagecache_isize_extended(inode, old_size, pos);
1560 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1561 	}
1562 
1563 	if (size_changed) {
1564 		ret2 = ext4_mark_inode_dirty(handle, inode);
1565 		if (!ret)
1566 			ret = ret2;
1567 	}
1568 
1569 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1570 		/* if we have allocated more blocks and copied
1571 		 * less. We will have blocks allocated outside
1572 		 * inode->i_size. So truncate them
1573 		 */
1574 		ext4_orphan_add(handle, inode);
1575 
1576 	ret2 = ext4_journal_stop(handle);
1577 	if (!ret)
1578 		ret = ret2;
1579 	if (pos + len > inode->i_size && !verity) {
1580 		ext4_truncate_failed_write(inode);
1581 		/*
1582 		 * If truncate failed early the inode might still be
1583 		 * on the orphan list; we need to make sure the inode
1584 		 * is removed from the orphan list in that case.
1585 		 */
1586 		if (inode->i_nlink)
1587 			ext4_orphan_del(NULL, inode);
1588 	}
1589 
1590 	return ret ? ret : copied;
1591 }
1592 
1593 /*
1594  * Reserve space for 'nr_resv' clusters
1595  */
1596 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1597 {
1598 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599 	struct ext4_inode_info *ei = EXT4_I(inode);
1600 	int ret;
1601 
1602 	/*
1603 	 * We will charge metadata quota at writeout time; this saves
1604 	 * us from metadata over-estimation, though we may go over by
1605 	 * a small amount in the end.  Here we just reserve for data.
1606 	 */
1607 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1608 	if (ret)
1609 		return ret;
1610 
1611 	spin_lock(&ei->i_block_reservation_lock);
1612 	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1613 		spin_unlock(&ei->i_block_reservation_lock);
1614 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1615 		return -ENOSPC;
1616 	}
1617 	ei->i_reserved_data_blocks += nr_resv;
1618 	trace_ext4_da_reserve_space(inode, nr_resv);
1619 	spin_unlock(&ei->i_block_reservation_lock);
1620 
1621 	return 0;       /* success */
1622 }
1623 
1624 void ext4_da_release_space(struct inode *inode, int to_free)
1625 {
1626 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1627 	struct ext4_inode_info *ei = EXT4_I(inode);
1628 
1629 	if (!to_free)
1630 		return;		/* Nothing to release, exit */
1631 
1632 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1633 
1634 	trace_ext4_da_release_space(inode, to_free);
1635 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1636 		/*
1637 		 * if there aren't enough reserved blocks, then the
1638 		 * counter is messed up somewhere.  Since this
1639 		 * function is called from invalidate page, it's
1640 		 * harmless to return without any action.
1641 		 */
1642 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1643 			 "ino %lu, to_free %d with only %d reserved "
1644 			 "data blocks", inode->i_ino, to_free,
1645 			 ei->i_reserved_data_blocks);
1646 		WARN_ON(1);
1647 		to_free = ei->i_reserved_data_blocks;
1648 	}
1649 	ei->i_reserved_data_blocks -= to_free;
1650 
1651 	/* update fs dirty data blocks counter */
1652 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1653 
1654 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1655 
1656 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1657 }
1658 
1659 /*
1660  * Delayed allocation stuff
1661  */
1662 
1663 struct mpage_da_data {
1664 	/* These are input fields for ext4_do_writepages() */
1665 	struct inode *inode;
1666 	struct writeback_control *wbc;
1667 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1668 
1669 	/* These are internal state of ext4_do_writepages() */
1670 	pgoff_t first_page;	/* The first page to write */
1671 	pgoff_t next_page;	/* Current page to examine */
1672 	pgoff_t last_page;	/* Last page to examine */
1673 	/*
1674 	 * Extent to map - this can be after first_page because that can be
1675 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1676 	 * is delalloc or unwritten.
1677 	 */
1678 	struct ext4_map_blocks map;
1679 	struct ext4_io_submit io_submit;	/* IO submission data */
1680 	unsigned int do_map:1;
1681 	unsigned int scanned_until_end:1;
1682 	unsigned int journalled_more_data:1;
1683 };
1684 
1685 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1686 				       bool invalidate)
1687 {
1688 	unsigned nr, i;
1689 	pgoff_t index, end;
1690 	struct folio_batch fbatch;
1691 	struct inode *inode = mpd->inode;
1692 	struct address_space *mapping = inode->i_mapping;
1693 
1694 	/* This is necessary when next_page == 0. */
1695 	if (mpd->first_page >= mpd->next_page)
1696 		return;
1697 
1698 	mpd->scanned_until_end = 0;
1699 	index = mpd->first_page;
1700 	end   = mpd->next_page - 1;
1701 	if (invalidate) {
1702 		ext4_lblk_t start, last;
1703 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1704 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1705 
1706 		/*
1707 		 * avoid racing with extent status tree scans made by
1708 		 * ext4_insert_delayed_block()
1709 		 */
1710 		down_write(&EXT4_I(inode)->i_data_sem);
1711 		ext4_es_remove_extent(inode, start, last - start + 1);
1712 		up_write(&EXT4_I(inode)->i_data_sem);
1713 	}
1714 
1715 	folio_batch_init(&fbatch);
1716 	while (index <= end) {
1717 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1718 		if (nr == 0)
1719 			break;
1720 		for (i = 0; i < nr; i++) {
1721 			struct folio *folio = fbatch.folios[i];
1722 
1723 			if (folio->index < mpd->first_page)
1724 				continue;
1725 			if (folio_next_index(folio) - 1 > end)
1726 				continue;
1727 			BUG_ON(!folio_test_locked(folio));
1728 			BUG_ON(folio_test_writeback(folio));
1729 			if (invalidate) {
1730 				if (folio_mapped(folio))
1731 					folio_clear_dirty_for_io(folio);
1732 				block_invalidate_folio(folio, 0,
1733 						folio_size(folio));
1734 				folio_clear_uptodate(folio);
1735 			}
1736 			folio_unlock(folio);
1737 		}
1738 		folio_batch_release(&fbatch);
1739 	}
1740 }
1741 
1742 static void ext4_print_free_blocks(struct inode *inode)
1743 {
1744 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1745 	struct super_block *sb = inode->i_sb;
1746 	struct ext4_inode_info *ei = EXT4_I(inode);
1747 
1748 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1749 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1750 			ext4_count_free_clusters(sb)));
1751 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1752 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1753 	       (long long) EXT4_C2B(EXT4_SB(sb),
1754 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1755 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1756 	       (long long) EXT4_C2B(EXT4_SB(sb),
1757 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1758 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1759 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1760 		 ei->i_reserved_data_blocks);
1761 	return;
1762 }
1763 
1764 /*
1765  * Check whether the cluster containing lblk has been allocated or has
1766  * delalloc reservation.
1767  *
1768  * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1769  * reservation, 2 if it's already been allocated, negative error code on
1770  * failure.
1771  */
1772 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1773 {
1774 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1775 	int ret;
1776 
1777 	/* Has delalloc reservation? */
1778 	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1779 		return 1;
1780 
1781 	/* Already been allocated? */
1782 	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1783 		return 2;
1784 	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1785 	if (ret < 0)
1786 		return ret;
1787 	if (ret > 0)
1788 		return 2;
1789 
1790 	return 0;
1791 }
1792 
1793 /*
1794  * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1795  *                              status tree, incrementing the reserved
1796  *                              cluster/block count or making pending
1797  *                              reservations where needed
1798  *
1799  * @inode - file containing the newly added block
1800  * @lblk - start logical block to be added
1801  * @len - length of blocks to be added
1802  *
1803  * Returns 0 on success, negative error code on failure.
1804  */
1805 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1806 				      ext4_lblk_t len)
1807 {
1808 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1809 	int ret;
1810 	bool lclu_allocated = false;
1811 	bool end_allocated = false;
1812 	ext4_lblk_t resv_clu;
1813 	ext4_lblk_t end = lblk + len - 1;
1814 
1815 	/*
1816 	 * If the cluster containing lblk or end is shared with a delayed,
1817 	 * written, or unwritten extent in a bigalloc file system, it's
1818 	 * already been accounted for and does not need to be reserved.
1819 	 * A pending reservation must be made for the cluster if it's
1820 	 * shared with a written or unwritten extent and doesn't already
1821 	 * have one.  Written and unwritten extents can be purged from the
1822 	 * extents status tree if the system is under memory pressure, so
1823 	 * it's necessary to examine the extent tree if a search of the
1824 	 * extents status tree doesn't get a match.
1825 	 */
1826 	if (sbi->s_cluster_ratio == 1) {
1827 		ret = ext4_da_reserve_space(inode, len);
1828 		if (ret != 0)   /* ENOSPC */
1829 			return ret;
1830 	} else {   /* bigalloc */
1831 		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1832 
1833 		ret = ext4_clu_alloc_state(inode, lblk);
1834 		if (ret < 0)
1835 			return ret;
1836 		if (ret > 0) {
1837 			resv_clu--;
1838 			lclu_allocated = (ret == 2);
1839 		}
1840 
1841 		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1842 			ret = ext4_clu_alloc_state(inode, end);
1843 			if (ret < 0)
1844 				return ret;
1845 			if (ret > 0) {
1846 				resv_clu--;
1847 				end_allocated = (ret == 2);
1848 			}
1849 		}
1850 
1851 		if (resv_clu) {
1852 			ret = ext4_da_reserve_space(inode, resv_clu);
1853 			if (ret != 0)   /* ENOSPC */
1854 				return ret;
1855 		}
1856 	}
1857 
1858 	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1859 				      end_allocated);
1860 	return 0;
1861 }
1862 
1863 /*
1864  * Looks up the requested blocks and sets the delalloc extent map.
1865  * First try to look up for the extent entry that contains the requested
1866  * blocks in the extent status tree without i_data_sem, then try to look
1867  * up for the ondisk extent mapping with i_data_sem in read mode,
1868  * finally hold i_data_sem in write mode, looks up again and add a
1869  * delalloc extent entry if it still couldn't find any extent. Pass out
1870  * the mapped extent through @map and return 0 on success.
1871  */
1872 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1873 {
1874 	struct extent_status es;
1875 	int retval;
1876 #ifdef ES_AGGRESSIVE_TEST
1877 	struct ext4_map_blocks orig_map;
1878 
1879 	memcpy(&orig_map, map, sizeof(*map));
1880 #endif
1881 
1882 	map->m_flags = 0;
1883 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1884 		  (unsigned long) map->m_lblk);
1885 
1886 	ext4_check_map_extents_env(inode);
1887 
1888 	/* Lookup extent status tree firstly */
1889 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1890 		map->m_len = min_t(unsigned int, map->m_len,
1891 				   es.es_len - (map->m_lblk - es.es_lblk));
1892 
1893 		if (ext4_es_is_hole(&es))
1894 			goto add_delayed;
1895 
1896 found:
1897 		/*
1898 		 * Delayed extent could be allocated by fallocate.
1899 		 * So we need to check it.
1900 		 */
1901 		if (ext4_es_is_delayed(&es)) {
1902 			map->m_flags |= EXT4_MAP_DELAYED;
1903 			return 0;
1904 		}
1905 
1906 		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1907 		if (ext4_es_is_written(&es))
1908 			map->m_flags |= EXT4_MAP_MAPPED;
1909 		else if (ext4_es_is_unwritten(&es))
1910 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1911 		else
1912 			BUG();
1913 
1914 #ifdef ES_AGGRESSIVE_TEST
1915 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1916 #endif
1917 		return 0;
1918 	}
1919 
1920 	/*
1921 	 * Try to see if we can get the block without requesting a new
1922 	 * file system block.
1923 	 */
1924 	down_read(&EXT4_I(inode)->i_data_sem);
1925 	if (ext4_has_inline_data(inode))
1926 		retval = 0;
1927 	else
1928 		retval = ext4_map_query_blocks(NULL, inode, map, 0);
1929 	up_read(&EXT4_I(inode)->i_data_sem);
1930 	if (retval)
1931 		return retval < 0 ? retval : 0;
1932 
1933 add_delayed:
1934 	down_write(&EXT4_I(inode)->i_data_sem);
1935 	/*
1936 	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1937 	 * and fallocate path (no folio lock) can race. Make sure we
1938 	 * lookup the extent status tree here again while i_data_sem
1939 	 * is held in write mode, before inserting a new da entry in
1940 	 * the extent status tree.
1941 	 */
1942 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1943 		map->m_len = min_t(unsigned int, map->m_len,
1944 				   es.es_len - (map->m_lblk - es.es_lblk));
1945 
1946 		if (!ext4_es_is_hole(&es)) {
1947 			up_write(&EXT4_I(inode)->i_data_sem);
1948 			goto found;
1949 		}
1950 	} else if (!ext4_has_inline_data(inode)) {
1951 		retval = ext4_map_query_blocks(NULL, inode, map, 0);
1952 		if (retval) {
1953 			up_write(&EXT4_I(inode)->i_data_sem);
1954 			return retval < 0 ? retval : 0;
1955 		}
1956 	}
1957 
1958 	map->m_flags |= EXT4_MAP_DELAYED;
1959 	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1960 	up_write(&EXT4_I(inode)->i_data_sem);
1961 
1962 	return retval;
1963 }
1964 
1965 /*
1966  * This is a special get_block_t callback which is used by
1967  * ext4_da_write_begin().  It will either return mapped block or
1968  * reserve space for a single block.
1969  *
1970  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1971  * We also have b_blocknr = -1 and b_bdev initialized properly
1972  *
1973  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1974  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1975  * initialized properly.
1976  */
1977 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1978 			   struct buffer_head *bh, int create)
1979 {
1980 	struct ext4_map_blocks map;
1981 	sector_t invalid_block = ~((sector_t) 0xffff);
1982 	int ret = 0;
1983 
1984 	BUG_ON(create == 0);
1985 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1986 
1987 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1988 		invalid_block = ~0;
1989 
1990 	map.m_lblk = iblock;
1991 	map.m_len = 1;
1992 
1993 	/*
1994 	 * first, we need to know whether the block is allocated already
1995 	 * preallocated blocks are unmapped but should treated
1996 	 * the same as allocated blocks.
1997 	 */
1998 	ret = ext4_da_map_blocks(inode, &map);
1999 	if (ret < 0)
2000 		return ret;
2001 
2002 	if (map.m_flags & EXT4_MAP_DELAYED) {
2003 		map_bh(bh, inode->i_sb, invalid_block);
2004 		set_buffer_new(bh);
2005 		set_buffer_delay(bh);
2006 		return 0;
2007 	}
2008 
2009 	map_bh(bh, inode->i_sb, map.m_pblk);
2010 	ext4_update_bh_state(bh, map.m_flags);
2011 
2012 	if (buffer_unwritten(bh)) {
2013 		/* A delayed write to unwritten bh should be marked
2014 		 * new and mapped.  Mapped ensures that we don't do
2015 		 * get_block multiple times when we write to the same
2016 		 * offset and new ensures that we do proper zero out
2017 		 * for partial write.
2018 		 */
2019 		set_buffer_new(bh);
2020 		set_buffer_mapped(bh);
2021 	}
2022 	return 0;
2023 }
2024 
2025 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
2026 {
2027 	mpd->first_page += folio_nr_pages(folio);
2028 	folio_unlock(folio);
2029 }
2030 
2031 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
2032 {
2033 	size_t len;
2034 	loff_t size;
2035 	int err;
2036 
2037 	BUG_ON(folio->index != mpd->first_page);
2038 	folio_clear_dirty_for_io(folio);
2039 	/*
2040 	 * We have to be very careful here!  Nothing protects writeback path
2041 	 * against i_size changes and the page can be writeably mapped into
2042 	 * page tables. So an application can be growing i_size and writing
2043 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
2044 	 * write-protects our page in page tables and the page cannot get
2045 	 * written to again until we release folio lock. So only after
2046 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
2047 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
2048 	 * on the barrier provided by folio_test_clear_dirty() in
2049 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
2050 	 * after page tables are updated.
2051 	 */
2052 	size = i_size_read(mpd->inode);
2053 	len = folio_size(folio);
2054 	if (folio_pos(folio) + len > size &&
2055 	    !ext4_verity_in_progress(mpd->inode))
2056 		len = size & (len - 1);
2057 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
2058 	if (!err)
2059 		mpd->wbc->nr_to_write -= folio_nr_pages(folio);
2060 
2061 	return err;
2062 }
2063 
2064 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2065 
2066 /*
2067  * mballoc gives us at most this number of blocks...
2068  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2069  * The rest of mballoc seems to handle chunks up to full group size.
2070  */
2071 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2072 
2073 /*
2074  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2075  *
2076  * @mpd - extent of blocks
2077  * @lblk - logical number of the block in the file
2078  * @bh - buffer head we want to add to the extent
2079  *
2080  * The function is used to collect contig. blocks in the same state. If the
2081  * buffer doesn't require mapping for writeback and we haven't started the
2082  * extent of buffers to map yet, the function returns 'true' immediately - the
2083  * caller can write the buffer right away. Otherwise the function returns true
2084  * if the block has been added to the extent, false if the block couldn't be
2085  * added.
2086  */
2087 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2088 				   struct buffer_head *bh)
2089 {
2090 	struct ext4_map_blocks *map = &mpd->map;
2091 
2092 	/* Buffer that doesn't need mapping for writeback? */
2093 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2094 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2095 		/* So far no extent to map => we write the buffer right away */
2096 		if (map->m_len == 0)
2097 			return true;
2098 		return false;
2099 	}
2100 
2101 	/* First block in the extent? */
2102 	if (map->m_len == 0) {
2103 		/* We cannot map unless handle is started... */
2104 		if (!mpd->do_map)
2105 			return false;
2106 		map->m_lblk = lblk;
2107 		map->m_len = 1;
2108 		map->m_flags = bh->b_state & BH_FLAGS;
2109 		return true;
2110 	}
2111 
2112 	/* Don't go larger than mballoc is willing to allocate */
2113 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2114 		return false;
2115 
2116 	/* Can we merge the block to our big extent? */
2117 	if (lblk == map->m_lblk + map->m_len &&
2118 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2119 		map->m_len++;
2120 		return true;
2121 	}
2122 	return false;
2123 }
2124 
2125 /*
2126  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2127  *
2128  * @mpd - extent of blocks for mapping
2129  * @head - the first buffer in the page
2130  * @bh - buffer we should start processing from
2131  * @lblk - logical number of the block in the file corresponding to @bh
2132  *
2133  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2134  * the page for IO if all buffers in this page were mapped and there's no
2135  * accumulated extent of buffers to map or add buffers in the page to the
2136  * extent of buffers to map. The function returns 1 if the caller can continue
2137  * by processing the next page, 0 if it should stop adding buffers to the
2138  * extent to map because we cannot extend it anymore. It can also return value
2139  * < 0 in case of error during IO submission.
2140  */
2141 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2142 				   struct buffer_head *head,
2143 				   struct buffer_head *bh,
2144 				   ext4_lblk_t lblk)
2145 {
2146 	struct inode *inode = mpd->inode;
2147 	int err;
2148 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2149 							>> inode->i_blkbits;
2150 
2151 	if (ext4_verity_in_progress(inode))
2152 		blocks = EXT_MAX_BLOCKS;
2153 
2154 	do {
2155 		BUG_ON(buffer_locked(bh));
2156 
2157 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2158 			/* Found extent to map? */
2159 			if (mpd->map.m_len)
2160 				return 0;
2161 			/* Buffer needs mapping and handle is not started? */
2162 			if (!mpd->do_map)
2163 				return 0;
2164 			/* Everything mapped so far and we hit EOF */
2165 			break;
2166 		}
2167 	} while (lblk++, (bh = bh->b_this_page) != head);
2168 	/* So far everything mapped? Submit the page for IO. */
2169 	if (mpd->map.m_len == 0) {
2170 		err = mpage_submit_folio(mpd, head->b_folio);
2171 		if (err < 0)
2172 			return err;
2173 		mpage_folio_done(mpd, head->b_folio);
2174 	}
2175 	if (lblk >= blocks) {
2176 		mpd->scanned_until_end = 1;
2177 		return 0;
2178 	}
2179 	return 1;
2180 }
2181 
2182 /*
2183  * mpage_process_folio - update folio buffers corresponding to changed extent
2184  *			 and may submit fully mapped page for IO
2185  * @mpd: description of extent to map, on return next extent to map
2186  * @folio: Contains these buffers.
2187  * @m_lblk: logical block mapping.
2188  * @m_pblk: corresponding physical mapping.
2189  * @map_bh: determines on return whether this page requires any further
2190  *		  mapping or not.
2191  *
2192  * Scan given folio buffers corresponding to changed extent and update buffer
2193  * state according to new extent state.
2194  * We map delalloc buffers to their physical location, clear unwritten bits.
2195  * If the given folio is not fully mapped, we update @mpd to the next extent in
2196  * the given folio that needs mapping & return @map_bh as true.
2197  */
2198 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2199 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2200 			      bool *map_bh)
2201 {
2202 	struct buffer_head *head, *bh;
2203 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2204 	ext4_lblk_t lblk = *m_lblk;
2205 	ext4_fsblk_t pblock = *m_pblk;
2206 	int err = 0;
2207 	int blkbits = mpd->inode->i_blkbits;
2208 	ssize_t io_end_size = 0;
2209 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2210 
2211 	bh = head = folio_buffers(folio);
2212 	do {
2213 		if (lblk < mpd->map.m_lblk)
2214 			continue;
2215 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2216 			/*
2217 			 * Buffer after end of mapped extent.
2218 			 * Find next buffer in the folio to map.
2219 			 */
2220 			mpd->map.m_len = 0;
2221 			mpd->map.m_flags = 0;
2222 			io_end_vec->size += io_end_size;
2223 
2224 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2225 			if (err > 0)
2226 				err = 0;
2227 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2228 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2229 				if (IS_ERR(io_end_vec)) {
2230 					err = PTR_ERR(io_end_vec);
2231 					goto out;
2232 				}
2233 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2234 			}
2235 			*map_bh = true;
2236 			goto out;
2237 		}
2238 		if (buffer_delay(bh)) {
2239 			clear_buffer_delay(bh);
2240 			bh->b_blocknr = pblock++;
2241 		}
2242 		clear_buffer_unwritten(bh);
2243 		io_end_size += (1 << blkbits);
2244 	} while (lblk++, (bh = bh->b_this_page) != head);
2245 
2246 	io_end_vec->size += io_end_size;
2247 	*map_bh = false;
2248 out:
2249 	*m_lblk = lblk;
2250 	*m_pblk = pblock;
2251 	return err;
2252 }
2253 
2254 /*
2255  * mpage_map_buffers - update buffers corresponding to changed extent and
2256  *		       submit fully mapped pages for IO
2257  *
2258  * @mpd - description of extent to map, on return next extent to map
2259  *
2260  * Scan buffers corresponding to changed extent (we expect corresponding pages
2261  * to be already locked) and update buffer state according to new extent state.
2262  * We map delalloc buffers to their physical location, clear unwritten bits,
2263  * and mark buffers as uninit when we perform writes to unwritten extents
2264  * and do extent conversion after IO is finished. If the last page is not fully
2265  * mapped, we update @map to the next extent in the last page that needs
2266  * mapping. Otherwise we submit the page for IO.
2267  */
2268 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2269 {
2270 	struct folio_batch fbatch;
2271 	unsigned nr, i;
2272 	struct inode *inode = mpd->inode;
2273 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2274 	pgoff_t start, end;
2275 	ext4_lblk_t lblk;
2276 	ext4_fsblk_t pblock;
2277 	int err;
2278 	bool map_bh = false;
2279 
2280 	start = mpd->map.m_lblk >> bpp_bits;
2281 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2282 	pblock = mpd->map.m_pblk;
2283 
2284 	folio_batch_init(&fbatch);
2285 	while (start <= end) {
2286 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2287 		if (nr == 0)
2288 			break;
2289 		for (i = 0; i < nr; i++) {
2290 			struct folio *folio = fbatch.folios[i];
2291 
2292 			lblk = folio->index << bpp_bits;
2293 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2294 						 &map_bh);
2295 			/*
2296 			 * If map_bh is true, means page may require further bh
2297 			 * mapping, or maybe the page was submitted for IO.
2298 			 * So we return to call further extent mapping.
2299 			 */
2300 			if (err < 0 || map_bh)
2301 				goto out;
2302 			/* Page fully mapped - let IO run! */
2303 			err = mpage_submit_folio(mpd, folio);
2304 			if (err < 0)
2305 				goto out;
2306 			mpage_folio_done(mpd, folio);
2307 		}
2308 		folio_batch_release(&fbatch);
2309 	}
2310 	/* Extent fully mapped and matches with page boundary. We are done. */
2311 	mpd->map.m_len = 0;
2312 	mpd->map.m_flags = 0;
2313 	return 0;
2314 out:
2315 	folio_batch_release(&fbatch);
2316 	return err;
2317 }
2318 
2319 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2320 {
2321 	struct inode *inode = mpd->inode;
2322 	struct ext4_map_blocks *map = &mpd->map;
2323 	int get_blocks_flags;
2324 	int err, dioread_nolock;
2325 
2326 	trace_ext4_da_write_pages_extent(inode, map);
2327 	/*
2328 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2329 	 * to convert an unwritten extent to be initialized (in the case
2330 	 * where we have written into one or more preallocated blocks).  It is
2331 	 * possible that we're going to need more metadata blocks than
2332 	 * previously reserved. However we must not fail because we're in
2333 	 * writeback and there is nothing we can do about it so it might result
2334 	 * in data loss.  So use reserved blocks to allocate metadata if
2335 	 * possible. In addition, do not cache any unrelated extents, as it
2336 	 * only holds the folio lock but does not hold the i_rwsem or
2337 	 * invalidate_lock, which could corrupt the extent status tree.
2338 	 */
2339 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2340 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2341 			   EXT4_GET_BLOCKS_IO_SUBMIT |
2342 			   EXT4_EX_NOCACHE;
2343 
2344 	dioread_nolock = ext4_should_dioread_nolock(inode);
2345 	if (dioread_nolock)
2346 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2347 
2348 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2349 	if (err < 0)
2350 		return err;
2351 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2352 		if (!mpd->io_submit.io_end->handle &&
2353 		    ext4_handle_valid(handle)) {
2354 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2355 			handle->h_rsv_handle = NULL;
2356 		}
2357 		ext4_set_io_unwritten_flag(mpd->io_submit.io_end);
2358 	}
2359 
2360 	BUG_ON(map->m_len == 0);
2361 	return 0;
2362 }
2363 
2364 /*
2365  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2366  *				 mpd->len and submit pages underlying it for IO
2367  *
2368  * @handle - handle for journal operations
2369  * @mpd - extent to map
2370  * @give_up_on_write - we set this to true iff there is a fatal error and there
2371  *                     is no hope of writing the data. The caller should discard
2372  *                     dirty pages to avoid infinite loops.
2373  *
2374  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2375  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2376  * them to initialized or split the described range from larger unwritten
2377  * extent. Note that we need not map all the described range since allocation
2378  * can return less blocks or the range is covered by more unwritten extents. We
2379  * cannot map more because we are limited by reserved transaction credits. On
2380  * the other hand we always make sure that the last touched page is fully
2381  * mapped so that it can be written out (and thus forward progress is
2382  * guaranteed). After mapping we submit all mapped pages for IO.
2383  */
2384 static int mpage_map_and_submit_extent(handle_t *handle,
2385 				       struct mpage_da_data *mpd,
2386 				       bool *give_up_on_write)
2387 {
2388 	struct inode *inode = mpd->inode;
2389 	struct ext4_map_blocks *map = &mpd->map;
2390 	int err;
2391 	loff_t disksize;
2392 	int progress = 0;
2393 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2394 	struct ext4_io_end_vec *io_end_vec;
2395 
2396 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2397 	if (IS_ERR(io_end_vec))
2398 		return PTR_ERR(io_end_vec);
2399 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2400 	do {
2401 		err = mpage_map_one_extent(handle, mpd);
2402 		if (err < 0) {
2403 			struct super_block *sb = inode->i_sb;
2404 
2405 			if (ext4_emergency_state(sb))
2406 				goto invalidate_dirty_pages;
2407 			/*
2408 			 * Let the uper layers retry transient errors.
2409 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2410 			 * is non-zero, a commit should free up blocks.
2411 			 */
2412 			if ((err == -ENOMEM) ||
2413 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2414 				if (progress)
2415 					goto update_disksize;
2416 				return err;
2417 			}
2418 			ext4_msg(sb, KERN_CRIT,
2419 				 "Delayed block allocation failed for "
2420 				 "inode %lu at logical offset %llu with"
2421 				 " max blocks %u with error %d",
2422 				 inode->i_ino,
2423 				 (unsigned long long)map->m_lblk,
2424 				 (unsigned)map->m_len, -err);
2425 			ext4_msg(sb, KERN_CRIT,
2426 				 "This should not happen!! Data will "
2427 				 "be lost\n");
2428 			if (err == -ENOSPC)
2429 				ext4_print_free_blocks(inode);
2430 		invalidate_dirty_pages:
2431 			*give_up_on_write = true;
2432 			return err;
2433 		}
2434 		progress = 1;
2435 		/*
2436 		 * Update buffer state, submit mapped pages, and get us new
2437 		 * extent to map
2438 		 */
2439 		err = mpage_map_and_submit_buffers(mpd);
2440 		if (err < 0)
2441 			goto update_disksize;
2442 	} while (map->m_len);
2443 
2444 update_disksize:
2445 	/*
2446 	 * Update on-disk size after IO is submitted.  Races with
2447 	 * truncate are avoided by checking i_size under i_data_sem.
2448 	 */
2449 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2450 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2451 		int err2;
2452 		loff_t i_size;
2453 
2454 		down_write(&EXT4_I(inode)->i_data_sem);
2455 		i_size = i_size_read(inode);
2456 		if (disksize > i_size)
2457 			disksize = i_size;
2458 		if (disksize > EXT4_I(inode)->i_disksize)
2459 			EXT4_I(inode)->i_disksize = disksize;
2460 		up_write(&EXT4_I(inode)->i_data_sem);
2461 		err2 = ext4_mark_inode_dirty(handle, inode);
2462 		if (err2) {
2463 			ext4_error_err(inode->i_sb, -err2,
2464 				       "Failed to mark inode %lu dirty",
2465 				       inode->i_ino);
2466 		}
2467 		if (!err)
2468 			err = err2;
2469 	}
2470 	return err;
2471 }
2472 
2473 /*
2474  * Calculate the total number of credits to reserve for one writepages
2475  * iteration. This is called from ext4_writepages(). We map an extent of
2476  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2477  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2478  * bpp - 1 blocks in bpp different extents.
2479  */
2480 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2481 {
2482 	int bpp = ext4_journal_blocks_per_folio(inode);
2483 
2484 	return ext4_meta_trans_blocks(inode,
2485 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2486 }
2487 
2488 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2489 				     size_t len)
2490 {
2491 	struct buffer_head *page_bufs = folio_buffers(folio);
2492 	struct inode *inode = folio->mapping->host;
2493 	int ret, err;
2494 
2495 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2496 				     NULL, do_journal_get_write_access);
2497 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2498 				     NULL, write_end_fn);
2499 	if (ret == 0)
2500 		ret = err;
2501 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2502 	if (ret == 0)
2503 		ret = err;
2504 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2505 
2506 	return ret;
2507 }
2508 
2509 static int mpage_journal_page_buffers(handle_t *handle,
2510 				      struct mpage_da_data *mpd,
2511 				      struct folio *folio)
2512 {
2513 	struct inode *inode = mpd->inode;
2514 	loff_t size = i_size_read(inode);
2515 	size_t len = folio_size(folio);
2516 
2517 	folio_clear_checked(folio);
2518 	mpd->wbc->nr_to_write -= folio_nr_pages(folio);
2519 
2520 	if (folio_pos(folio) + len > size &&
2521 	    !ext4_verity_in_progress(inode))
2522 		len = size & (len - 1);
2523 
2524 	return ext4_journal_folio_buffers(handle, folio, len);
2525 }
2526 
2527 /*
2528  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2529  * 				 needing mapping, submit mapped pages
2530  *
2531  * @mpd - where to look for pages
2532  *
2533  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2534  * IO immediately. If we cannot map blocks, we submit just already mapped
2535  * buffers in the page for IO and keep page dirty. When we can map blocks and
2536  * we find a page which isn't mapped we start accumulating extent of buffers
2537  * underlying these pages that needs mapping (formed by either delayed or
2538  * unwritten buffers). We also lock the pages containing these buffers. The
2539  * extent found is returned in @mpd structure (starting at mpd->lblk with
2540  * length mpd->len blocks).
2541  *
2542  * Note that this function can attach bios to one io_end structure which are
2543  * neither logically nor physically contiguous. Although it may seem as an
2544  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2545  * case as we need to track IO to all buffers underlying a page in one io_end.
2546  */
2547 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2548 {
2549 	struct address_space *mapping = mpd->inode->i_mapping;
2550 	struct folio_batch fbatch;
2551 	unsigned int nr_folios;
2552 	pgoff_t index = mpd->first_page;
2553 	pgoff_t end = mpd->last_page;
2554 	xa_mark_t tag;
2555 	int i, err = 0;
2556 	int blkbits = mpd->inode->i_blkbits;
2557 	ext4_lblk_t lblk;
2558 	struct buffer_head *head;
2559 	handle_t *handle = NULL;
2560 	int bpp = ext4_journal_blocks_per_folio(mpd->inode);
2561 
2562 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2563 		tag = PAGECACHE_TAG_TOWRITE;
2564 	else
2565 		tag = PAGECACHE_TAG_DIRTY;
2566 
2567 	mpd->map.m_len = 0;
2568 	mpd->next_page = index;
2569 	if (ext4_should_journal_data(mpd->inode)) {
2570 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2571 					    bpp);
2572 		if (IS_ERR(handle))
2573 			return PTR_ERR(handle);
2574 	}
2575 	folio_batch_init(&fbatch);
2576 	while (index <= end) {
2577 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2578 				tag, &fbatch);
2579 		if (nr_folios == 0)
2580 			break;
2581 
2582 		for (i = 0; i < nr_folios; i++) {
2583 			struct folio *folio = fbatch.folios[i];
2584 
2585 			/*
2586 			 * Accumulated enough dirty pages? This doesn't apply
2587 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2588 			 * keep going because someone may be concurrently
2589 			 * dirtying pages, and we might have synced a lot of
2590 			 * newly appeared dirty pages, but have not synced all
2591 			 * of the old dirty pages.
2592 			 */
2593 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2594 			    mpd->wbc->nr_to_write <=
2595 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2596 				goto out;
2597 
2598 			/* If we can't merge this page, we are done. */
2599 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2600 				goto out;
2601 
2602 			if (handle) {
2603 				err = ext4_journal_ensure_credits(handle, bpp,
2604 								  0);
2605 				if (err < 0)
2606 					goto out;
2607 			}
2608 
2609 			folio_lock(folio);
2610 			/*
2611 			 * If the page is no longer dirty, or its mapping no
2612 			 * longer corresponds to inode we are writing (which
2613 			 * means it has been truncated or invalidated), or the
2614 			 * page is already under writeback and we are not doing
2615 			 * a data integrity writeback, skip the page
2616 			 */
2617 			if (!folio_test_dirty(folio) ||
2618 			    (folio_test_writeback(folio) &&
2619 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2620 			    unlikely(folio->mapping != mapping)) {
2621 				folio_unlock(folio);
2622 				continue;
2623 			}
2624 
2625 			folio_wait_writeback(folio);
2626 			BUG_ON(folio_test_writeback(folio));
2627 
2628 			/*
2629 			 * Should never happen but for buggy code in
2630 			 * other subsystems that call
2631 			 * set_page_dirty() without properly warning
2632 			 * the file system first.  See [1] for more
2633 			 * information.
2634 			 *
2635 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2636 			 */
2637 			if (!folio_buffers(folio)) {
2638 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2639 				folio_clear_dirty(folio);
2640 				folio_unlock(folio);
2641 				continue;
2642 			}
2643 
2644 			if (mpd->map.m_len == 0)
2645 				mpd->first_page = folio->index;
2646 			mpd->next_page = folio_next_index(folio);
2647 			/*
2648 			 * Writeout when we cannot modify metadata is simple.
2649 			 * Just submit the page. For data=journal mode we
2650 			 * first handle writeout of the page for checkpoint and
2651 			 * only after that handle delayed page dirtying. This
2652 			 * makes sure current data is checkpointed to the final
2653 			 * location before possibly journalling it again which
2654 			 * is desirable when the page is frequently dirtied
2655 			 * through a pin.
2656 			 */
2657 			if (!mpd->can_map) {
2658 				err = mpage_submit_folio(mpd, folio);
2659 				if (err < 0)
2660 					goto out;
2661 				/* Pending dirtying of journalled data? */
2662 				if (folio_test_checked(folio)) {
2663 					err = mpage_journal_page_buffers(handle,
2664 						mpd, folio);
2665 					if (err < 0)
2666 						goto out;
2667 					mpd->journalled_more_data = 1;
2668 				}
2669 				mpage_folio_done(mpd, folio);
2670 			} else {
2671 				/* Add all dirty buffers to mpd */
2672 				lblk = ((ext4_lblk_t)folio->index) <<
2673 					(PAGE_SHIFT - blkbits);
2674 				head = folio_buffers(folio);
2675 				err = mpage_process_page_bufs(mpd, head, head,
2676 						lblk);
2677 				if (err <= 0)
2678 					goto out;
2679 				err = 0;
2680 			}
2681 		}
2682 		folio_batch_release(&fbatch);
2683 		cond_resched();
2684 	}
2685 	mpd->scanned_until_end = 1;
2686 	if (handle)
2687 		ext4_journal_stop(handle);
2688 	return 0;
2689 out:
2690 	folio_batch_release(&fbatch);
2691 	if (handle)
2692 		ext4_journal_stop(handle);
2693 	return err;
2694 }
2695 
2696 static int ext4_do_writepages(struct mpage_da_data *mpd)
2697 {
2698 	struct writeback_control *wbc = mpd->wbc;
2699 	pgoff_t	writeback_index = 0;
2700 	long nr_to_write = wbc->nr_to_write;
2701 	int range_whole = 0;
2702 	int cycled = 1;
2703 	handle_t *handle = NULL;
2704 	struct inode *inode = mpd->inode;
2705 	struct address_space *mapping = inode->i_mapping;
2706 	int needed_blocks, rsv_blocks = 0, ret = 0;
2707 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2708 	struct blk_plug plug;
2709 	bool give_up_on_write = false;
2710 
2711 	trace_ext4_writepages(inode, wbc);
2712 
2713 	/*
2714 	 * No pages to write? This is mainly a kludge to avoid starting
2715 	 * a transaction for special inodes like journal inode on last iput()
2716 	 * because that could violate lock ordering on umount
2717 	 */
2718 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2719 		goto out_writepages;
2720 
2721 	/*
2722 	 * If the filesystem has aborted, it is read-only, so return
2723 	 * right away instead of dumping stack traces later on that
2724 	 * will obscure the real source of the problem.  We test
2725 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2726 	 * the latter could be true if the filesystem is mounted
2727 	 * read-only, and in that case, ext4_writepages should
2728 	 * *never* be called, so if that ever happens, we would want
2729 	 * the stack trace.
2730 	 */
2731 	ret = ext4_emergency_state(mapping->host->i_sb);
2732 	if (unlikely(ret))
2733 		goto out_writepages;
2734 
2735 	/*
2736 	 * If we have inline data and arrive here, it means that
2737 	 * we will soon create the block for the 1st page, so
2738 	 * we'd better clear the inline data here.
2739 	 */
2740 	if (ext4_has_inline_data(inode)) {
2741 		/* Just inode will be modified... */
2742 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2743 		if (IS_ERR(handle)) {
2744 			ret = PTR_ERR(handle);
2745 			goto out_writepages;
2746 		}
2747 		BUG_ON(ext4_test_inode_state(inode,
2748 				EXT4_STATE_MAY_INLINE_DATA));
2749 		ext4_destroy_inline_data(handle, inode);
2750 		ext4_journal_stop(handle);
2751 	}
2752 
2753 	/*
2754 	 * data=journal mode does not do delalloc so we just need to writeout /
2755 	 * journal already mapped buffers. On the other hand we need to commit
2756 	 * transaction to make data stable. We expect all the data to be
2757 	 * already in the journal (the only exception are DMA pinned pages
2758 	 * dirtied behind our back) so we commit transaction here and run the
2759 	 * writeback loop to checkpoint them. The checkpointing is not actually
2760 	 * necessary to make data persistent *but* quite a few places (extent
2761 	 * shifting operations, fsverity, ...) depend on being able to drop
2762 	 * pagecache pages after calling filemap_write_and_wait() and for that
2763 	 * checkpointing needs to happen.
2764 	 */
2765 	if (ext4_should_journal_data(inode)) {
2766 		mpd->can_map = 0;
2767 		if (wbc->sync_mode == WB_SYNC_ALL)
2768 			ext4_fc_commit(sbi->s_journal,
2769 				       EXT4_I(inode)->i_datasync_tid);
2770 	}
2771 	mpd->journalled_more_data = 0;
2772 
2773 	if (ext4_should_dioread_nolock(inode)) {
2774 		/*
2775 		 * We may need to convert up to one extent per block in
2776 		 * the page and we may dirty the inode.
2777 		 */
2778 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2779 						PAGE_SIZE >> inode->i_blkbits);
2780 	}
2781 
2782 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2783 		range_whole = 1;
2784 
2785 	if (wbc->range_cyclic) {
2786 		writeback_index = mapping->writeback_index;
2787 		if (writeback_index)
2788 			cycled = 0;
2789 		mpd->first_page = writeback_index;
2790 		mpd->last_page = -1;
2791 	} else {
2792 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2793 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2794 	}
2795 
2796 	ext4_io_submit_init(&mpd->io_submit, wbc);
2797 retry:
2798 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2799 		tag_pages_for_writeback(mapping, mpd->first_page,
2800 					mpd->last_page);
2801 	blk_start_plug(&plug);
2802 
2803 	/*
2804 	 * First writeback pages that don't need mapping - we can avoid
2805 	 * starting a transaction unnecessarily and also avoid being blocked
2806 	 * in the block layer on device congestion while having transaction
2807 	 * started.
2808 	 */
2809 	mpd->do_map = 0;
2810 	mpd->scanned_until_end = 0;
2811 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2812 	if (!mpd->io_submit.io_end) {
2813 		ret = -ENOMEM;
2814 		goto unplug;
2815 	}
2816 	ret = mpage_prepare_extent_to_map(mpd);
2817 	/* Unlock pages we didn't use */
2818 	mpage_release_unused_pages(mpd, false);
2819 	/* Submit prepared bio */
2820 	ext4_io_submit(&mpd->io_submit);
2821 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2822 	mpd->io_submit.io_end = NULL;
2823 	if (ret < 0)
2824 		goto unplug;
2825 
2826 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2827 		/* For each extent of pages we use new io_end */
2828 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2829 		if (!mpd->io_submit.io_end) {
2830 			ret = -ENOMEM;
2831 			break;
2832 		}
2833 
2834 		WARN_ON_ONCE(!mpd->can_map);
2835 		/*
2836 		 * We have two constraints: We find one extent to map and we
2837 		 * must always write out whole page (makes a difference when
2838 		 * blocksize < pagesize) so that we don't block on IO when we
2839 		 * try to write out the rest of the page. Journalled mode is
2840 		 * not supported by delalloc.
2841 		 */
2842 		BUG_ON(ext4_should_journal_data(inode));
2843 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2844 
2845 		/* start a new transaction */
2846 		handle = ext4_journal_start_with_reserve(inode,
2847 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2848 		if (IS_ERR(handle)) {
2849 			ret = PTR_ERR(handle);
2850 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2851 			       "%ld pages, ino %lu; err %d", __func__,
2852 				wbc->nr_to_write, inode->i_ino, ret);
2853 			/* Release allocated io_end */
2854 			ext4_put_io_end(mpd->io_submit.io_end);
2855 			mpd->io_submit.io_end = NULL;
2856 			break;
2857 		}
2858 		mpd->do_map = 1;
2859 
2860 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2861 		ret = mpage_prepare_extent_to_map(mpd);
2862 		if (!ret && mpd->map.m_len)
2863 			ret = mpage_map_and_submit_extent(handle, mpd,
2864 					&give_up_on_write);
2865 		/*
2866 		 * Caution: If the handle is synchronous,
2867 		 * ext4_journal_stop() can wait for transaction commit
2868 		 * to finish which may depend on writeback of pages to
2869 		 * complete or on page lock to be released.  In that
2870 		 * case, we have to wait until after we have
2871 		 * submitted all the IO, released page locks we hold,
2872 		 * and dropped io_end reference (for extent conversion
2873 		 * to be able to complete) before stopping the handle.
2874 		 */
2875 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2876 			ext4_journal_stop(handle);
2877 			handle = NULL;
2878 			mpd->do_map = 0;
2879 		}
2880 		/* Unlock pages we didn't use */
2881 		mpage_release_unused_pages(mpd, give_up_on_write);
2882 		/* Submit prepared bio */
2883 		ext4_io_submit(&mpd->io_submit);
2884 
2885 		/*
2886 		 * Drop our io_end reference we got from init. We have
2887 		 * to be careful and use deferred io_end finishing if
2888 		 * we are still holding the transaction as we can
2889 		 * release the last reference to io_end which may end
2890 		 * up doing unwritten extent conversion.
2891 		 */
2892 		if (handle) {
2893 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2894 			ext4_journal_stop(handle);
2895 		} else
2896 			ext4_put_io_end(mpd->io_submit.io_end);
2897 		mpd->io_submit.io_end = NULL;
2898 
2899 		if (ret == -ENOSPC && sbi->s_journal) {
2900 			/*
2901 			 * Commit the transaction which would
2902 			 * free blocks released in the transaction
2903 			 * and try again
2904 			 */
2905 			jbd2_journal_force_commit_nested(sbi->s_journal);
2906 			ret = 0;
2907 			continue;
2908 		}
2909 		/* Fatal error - ENOMEM, EIO... */
2910 		if (ret)
2911 			break;
2912 	}
2913 unplug:
2914 	blk_finish_plug(&plug);
2915 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2916 		cycled = 1;
2917 		mpd->last_page = writeback_index - 1;
2918 		mpd->first_page = 0;
2919 		goto retry;
2920 	}
2921 
2922 	/* Update index */
2923 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2924 		/*
2925 		 * Set the writeback_index so that range_cyclic
2926 		 * mode will write it back later
2927 		 */
2928 		mapping->writeback_index = mpd->first_page;
2929 
2930 out_writepages:
2931 	trace_ext4_writepages_result(inode, wbc, ret,
2932 				     nr_to_write - wbc->nr_to_write);
2933 	return ret;
2934 }
2935 
2936 static int ext4_writepages(struct address_space *mapping,
2937 			   struct writeback_control *wbc)
2938 {
2939 	struct super_block *sb = mapping->host->i_sb;
2940 	struct mpage_da_data mpd = {
2941 		.inode = mapping->host,
2942 		.wbc = wbc,
2943 		.can_map = 1,
2944 	};
2945 	int ret;
2946 	int alloc_ctx;
2947 
2948 	ret = ext4_emergency_state(sb);
2949 	if (unlikely(ret))
2950 		return ret;
2951 
2952 	alloc_ctx = ext4_writepages_down_read(sb);
2953 	ret = ext4_do_writepages(&mpd);
2954 	/*
2955 	 * For data=journal writeback we could have come across pages marked
2956 	 * for delayed dirtying (PageChecked) which were just added to the
2957 	 * running transaction. Try once more to get them to stable storage.
2958 	 */
2959 	if (!ret && mpd.journalled_more_data)
2960 		ret = ext4_do_writepages(&mpd);
2961 	ext4_writepages_up_read(sb, alloc_ctx);
2962 
2963 	return ret;
2964 }
2965 
2966 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2967 {
2968 	struct writeback_control wbc = {
2969 		.sync_mode = WB_SYNC_ALL,
2970 		.nr_to_write = LONG_MAX,
2971 		.range_start = jinode->i_dirty_start,
2972 		.range_end = jinode->i_dirty_end,
2973 	};
2974 	struct mpage_da_data mpd = {
2975 		.inode = jinode->i_vfs_inode,
2976 		.wbc = &wbc,
2977 		.can_map = 0,
2978 	};
2979 	return ext4_do_writepages(&mpd);
2980 }
2981 
2982 static int ext4_dax_writepages(struct address_space *mapping,
2983 			       struct writeback_control *wbc)
2984 {
2985 	int ret;
2986 	long nr_to_write = wbc->nr_to_write;
2987 	struct inode *inode = mapping->host;
2988 	int alloc_ctx;
2989 
2990 	ret = ext4_emergency_state(inode->i_sb);
2991 	if (unlikely(ret))
2992 		return ret;
2993 
2994 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2995 	trace_ext4_writepages(inode, wbc);
2996 
2997 	ret = dax_writeback_mapping_range(mapping,
2998 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2999 	trace_ext4_writepages_result(inode, wbc, ret,
3000 				     nr_to_write - wbc->nr_to_write);
3001 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
3002 	return ret;
3003 }
3004 
3005 static int ext4_nonda_switch(struct super_block *sb)
3006 {
3007 	s64 free_clusters, dirty_clusters;
3008 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3009 
3010 	/*
3011 	 * switch to non delalloc mode if we are running low
3012 	 * on free block. The free block accounting via percpu
3013 	 * counters can get slightly wrong with percpu_counter_batch getting
3014 	 * accumulated on each CPU without updating global counters
3015 	 * Delalloc need an accurate free block accounting. So switch
3016 	 * to non delalloc when we are near to error range.
3017 	 */
3018 	free_clusters =
3019 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3020 	dirty_clusters =
3021 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3022 	/*
3023 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
3024 	 */
3025 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3026 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3027 
3028 	if (2 * free_clusters < 3 * dirty_clusters ||
3029 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3030 		/*
3031 		 * free block count is less than 150% of dirty blocks
3032 		 * or free blocks is less than watermark
3033 		 */
3034 		return 1;
3035 	}
3036 	return 0;
3037 }
3038 
3039 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3040 			       loff_t pos, unsigned len,
3041 			       struct folio **foliop, void **fsdata)
3042 {
3043 	int ret, retries = 0;
3044 	struct folio *folio;
3045 	pgoff_t index;
3046 	struct inode *inode = mapping->host;
3047 	fgf_t fgp = FGP_WRITEBEGIN;
3048 
3049 	ret = ext4_emergency_state(inode->i_sb);
3050 	if (unlikely(ret))
3051 		return ret;
3052 
3053 	index = pos >> PAGE_SHIFT;
3054 
3055 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
3056 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3057 		return ext4_write_begin(file, mapping, pos,
3058 					len, foliop, fsdata);
3059 	}
3060 	*fsdata = (void *)0;
3061 	trace_ext4_da_write_begin(inode, pos, len);
3062 
3063 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3064 		ret = ext4_generic_write_inline_data(mapping, inode, pos, len,
3065 						     foliop, fsdata, true);
3066 		if (ret < 0)
3067 			return ret;
3068 		if (ret == 1)
3069 			return 0;
3070 	}
3071 
3072 retry:
3073 	fgp |= fgf_set_order(len);
3074 	folio = __filemap_get_folio(mapping, index, fgp,
3075 				    mapping_gfp_mask(mapping));
3076 	if (IS_ERR(folio))
3077 		return PTR_ERR(folio);
3078 
3079 	if (pos + len > folio_pos(folio) + folio_size(folio))
3080 		len = folio_pos(folio) + folio_size(folio) - pos;
3081 
3082 	ret = ext4_block_write_begin(NULL, folio, pos, len,
3083 				     ext4_da_get_block_prep);
3084 	if (ret < 0) {
3085 		folio_unlock(folio);
3086 		folio_put(folio);
3087 		/*
3088 		 * block_write_begin may have instantiated a few blocks
3089 		 * outside i_size.  Trim these off again. Don't need
3090 		 * i_size_read because we hold inode lock.
3091 		 */
3092 		if (pos + len > inode->i_size)
3093 			ext4_truncate_failed_write(inode);
3094 
3095 		if (ret == -ENOSPC &&
3096 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3097 			goto retry;
3098 		return ret;
3099 	}
3100 
3101 	*foliop = folio;
3102 	return ret;
3103 }
3104 
3105 /*
3106  * Check if we should update i_disksize
3107  * when write to the end of file but not require block allocation
3108  */
3109 static int ext4_da_should_update_i_disksize(struct folio *folio,
3110 					    unsigned long offset)
3111 {
3112 	struct buffer_head *bh;
3113 	struct inode *inode = folio->mapping->host;
3114 	unsigned int idx;
3115 	int i;
3116 
3117 	bh = folio_buffers(folio);
3118 	idx = offset >> inode->i_blkbits;
3119 
3120 	for (i = 0; i < idx; i++)
3121 		bh = bh->b_this_page;
3122 
3123 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3124 		return 0;
3125 	return 1;
3126 }
3127 
3128 static int ext4_da_do_write_end(struct address_space *mapping,
3129 			loff_t pos, unsigned len, unsigned copied,
3130 			struct folio *folio)
3131 {
3132 	struct inode *inode = mapping->host;
3133 	loff_t old_size = inode->i_size;
3134 	bool disksize_changed = false;
3135 	loff_t new_i_size, zero_len = 0;
3136 	handle_t *handle;
3137 
3138 	if (unlikely(!folio_buffers(folio))) {
3139 		folio_unlock(folio);
3140 		folio_put(folio);
3141 		return -EIO;
3142 	}
3143 	/*
3144 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3145 	 * flag, which all that's needed to trigger page writeback.
3146 	 */
3147 	copied = block_write_end(NULL, mapping, pos, len, copied,
3148 			folio, NULL);
3149 	new_i_size = pos + copied;
3150 
3151 	/*
3152 	 * It's important to update i_size while still holding folio lock,
3153 	 * because folio writeout could otherwise come in and zero beyond
3154 	 * i_size.
3155 	 *
3156 	 * Since we are holding inode lock, we are sure i_disksize <=
3157 	 * i_size. We also know that if i_disksize < i_size, there are
3158 	 * delalloc writes pending in the range up to i_size. If the end of
3159 	 * the current write is <= i_size, there's no need to touch
3160 	 * i_disksize since writeback will push i_disksize up to i_size
3161 	 * eventually. If the end of the current write is > i_size and
3162 	 * inside an allocated block which ext4_da_should_update_i_disksize()
3163 	 * checked, we need to update i_disksize here as certain
3164 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3165 	 */
3166 	if (new_i_size > inode->i_size) {
3167 		unsigned long end;
3168 
3169 		i_size_write(inode, new_i_size);
3170 		end = offset_in_folio(folio, new_i_size - 1);
3171 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3172 			ext4_update_i_disksize(inode, new_i_size);
3173 			disksize_changed = true;
3174 		}
3175 	}
3176 
3177 	folio_unlock(folio);
3178 	folio_put(folio);
3179 
3180 	if (pos > old_size) {
3181 		pagecache_isize_extended(inode, old_size, pos);
3182 		zero_len = pos - old_size;
3183 	}
3184 
3185 	if (!disksize_changed && !zero_len)
3186 		return copied;
3187 
3188 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3189 	if (IS_ERR(handle))
3190 		return PTR_ERR(handle);
3191 	if (zero_len)
3192 		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3193 	ext4_mark_inode_dirty(handle, inode);
3194 	ext4_journal_stop(handle);
3195 
3196 	return copied;
3197 }
3198 
3199 static int ext4_da_write_end(struct file *file,
3200 			     struct address_space *mapping,
3201 			     loff_t pos, unsigned len, unsigned copied,
3202 			     struct folio *folio, void *fsdata)
3203 {
3204 	struct inode *inode = mapping->host;
3205 	int write_mode = (int)(unsigned long)fsdata;
3206 
3207 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3208 		return ext4_write_end(file, mapping, pos,
3209 				      len, copied, folio, fsdata);
3210 
3211 	trace_ext4_da_write_end(inode, pos, len, copied);
3212 
3213 	if (write_mode != CONVERT_INLINE_DATA &&
3214 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3215 	    ext4_has_inline_data(inode))
3216 		return ext4_write_inline_data_end(inode, pos, len, copied,
3217 						  folio);
3218 
3219 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3220 		copied = 0;
3221 
3222 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3223 }
3224 
3225 /*
3226  * Force all delayed allocation blocks to be allocated for a given inode.
3227  */
3228 int ext4_alloc_da_blocks(struct inode *inode)
3229 {
3230 	trace_ext4_alloc_da_blocks(inode);
3231 
3232 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3233 		return 0;
3234 
3235 	/*
3236 	 * We do something simple for now.  The filemap_flush() will
3237 	 * also start triggering a write of the data blocks, which is
3238 	 * not strictly speaking necessary (and for users of
3239 	 * laptop_mode, not even desirable).  However, to do otherwise
3240 	 * would require replicating code paths in:
3241 	 *
3242 	 * ext4_writepages() ->
3243 	 *    write_cache_pages() ---> (via passed in callback function)
3244 	 *        __mpage_da_writepage() -->
3245 	 *           mpage_add_bh_to_extent()
3246 	 *           mpage_da_map_blocks()
3247 	 *
3248 	 * The problem is that write_cache_pages(), located in
3249 	 * mm/page-writeback.c, marks pages clean in preparation for
3250 	 * doing I/O, which is not desirable if we're not planning on
3251 	 * doing I/O at all.
3252 	 *
3253 	 * We could call write_cache_pages(), and then redirty all of
3254 	 * the pages by calling redirty_page_for_writepage() but that
3255 	 * would be ugly in the extreme.  So instead we would need to
3256 	 * replicate parts of the code in the above functions,
3257 	 * simplifying them because we wouldn't actually intend to
3258 	 * write out the pages, but rather only collect contiguous
3259 	 * logical block extents, call the multi-block allocator, and
3260 	 * then update the buffer heads with the block allocations.
3261 	 *
3262 	 * For now, though, we'll cheat by calling filemap_flush(),
3263 	 * which will map the blocks, and start the I/O, but not
3264 	 * actually wait for the I/O to complete.
3265 	 */
3266 	return filemap_flush(inode->i_mapping);
3267 }
3268 
3269 /*
3270  * bmap() is special.  It gets used by applications such as lilo and by
3271  * the swapper to find the on-disk block of a specific piece of data.
3272  *
3273  * Naturally, this is dangerous if the block concerned is still in the
3274  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3275  * filesystem and enables swap, then they may get a nasty shock when the
3276  * data getting swapped to that swapfile suddenly gets overwritten by
3277  * the original zero's written out previously to the journal and
3278  * awaiting writeback in the kernel's buffer cache.
3279  *
3280  * So, if we see any bmap calls here on a modified, data-journaled file,
3281  * take extra steps to flush any blocks which might be in the cache.
3282  */
3283 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3284 {
3285 	struct inode *inode = mapping->host;
3286 	sector_t ret = 0;
3287 
3288 	inode_lock_shared(inode);
3289 	/*
3290 	 * We can get here for an inline file via the FIBMAP ioctl
3291 	 */
3292 	if (ext4_has_inline_data(inode))
3293 		goto out;
3294 
3295 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3296 	    (test_opt(inode->i_sb, DELALLOC) ||
3297 	     ext4_should_journal_data(inode))) {
3298 		/*
3299 		 * With delalloc or journalled data we want to sync the file so
3300 		 * that we can make sure we allocate blocks for file and data
3301 		 * is in place for the user to see it
3302 		 */
3303 		filemap_write_and_wait(mapping);
3304 	}
3305 
3306 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3307 
3308 out:
3309 	inode_unlock_shared(inode);
3310 	return ret;
3311 }
3312 
3313 static int ext4_read_folio(struct file *file, struct folio *folio)
3314 {
3315 	int ret = -EAGAIN;
3316 	struct inode *inode = folio->mapping->host;
3317 
3318 	trace_ext4_read_folio(inode, folio);
3319 
3320 	if (ext4_has_inline_data(inode))
3321 		ret = ext4_readpage_inline(inode, folio);
3322 
3323 	if (ret == -EAGAIN)
3324 		return ext4_mpage_readpages(inode, NULL, folio);
3325 
3326 	return ret;
3327 }
3328 
3329 static void ext4_readahead(struct readahead_control *rac)
3330 {
3331 	struct inode *inode = rac->mapping->host;
3332 
3333 	/* If the file has inline data, no need to do readahead. */
3334 	if (ext4_has_inline_data(inode))
3335 		return;
3336 
3337 	ext4_mpage_readpages(inode, rac, NULL);
3338 }
3339 
3340 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3341 				size_t length)
3342 {
3343 	trace_ext4_invalidate_folio(folio, offset, length);
3344 
3345 	/* No journalling happens on data buffers when this function is used */
3346 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3347 
3348 	block_invalidate_folio(folio, offset, length);
3349 }
3350 
3351 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3352 					    size_t offset, size_t length)
3353 {
3354 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3355 
3356 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3357 
3358 	/*
3359 	 * If it's a full truncate we just forget about the pending dirtying
3360 	 */
3361 	if (offset == 0 && length == folio_size(folio))
3362 		folio_clear_checked(folio);
3363 
3364 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3365 }
3366 
3367 /* Wrapper for aops... */
3368 static void ext4_journalled_invalidate_folio(struct folio *folio,
3369 					   size_t offset,
3370 					   size_t length)
3371 {
3372 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3373 }
3374 
3375 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3376 {
3377 	struct inode *inode = folio->mapping->host;
3378 	journal_t *journal = EXT4_JOURNAL(inode);
3379 
3380 	trace_ext4_release_folio(inode, folio);
3381 
3382 	/* Page has dirty journalled data -> cannot release */
3383 	if (folio_test_checked(folio))
3384 		return false;
3385 	if (journal)
3386 		return jbd2_journal_try_to_free_buffers(journal, folio);
3387 	else
3388 		return try_to_free_buffers(folio);
3389 }
3390 
3391 static bool ext4_inode_datasync_dirty(struct inode *inode)
3392 {
3393 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3394 
3395 	if (journal) {
3396 		if (jbd2_transaction_committed(journal,
3397 			EXT4_I(inode)->i_datasync_tid))
3398 			return false;
3399 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3400 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3401 		return true;
3402 	}
3403 
3404 	/* Any metadata buffers to write? */
3405 	if (!list_empty(&inode->i_mapping->i_private_list))
3406 		return true;
3407 	return inode->i_state & I_DIRTY_DATASYNC;
3408 }
3409 
3410 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3411 			   struct ext4_map_blocks *map, loff_t offset,
3412 			   loff_t length, unsigned int flags)
3413 {
3414 	u8 blkbits = inode->i_blkbits;
3415 
3416 	/*
3417 	 * Writes that span EOF might trigger an I/O size update on completion,
3418 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3419 	 * there is no other metadata changes being made or are pending.
3420 	 */
3421 	iomap->flags = 0;
3422 	if (ext4_inode_datasync_dirty(inode) ||
3423 	    offset + length > i_size_read(inode))
3424 		iomap->flags |= IOMAP_F_DIRTY;
3425 
3426 	if (map->m_flags & EXT4_MAP_NEW)
3427 		iomap->flags |= IOMAP_F_NEW;
3428 
3429 	/* HW-offload atomics are always used */
3430 	if (flags & IOMAP_ATOMIC)
3431 		iomap->flags |= IOMAP_F_ATOMIC_BIO;
3432 
3433 	if (flags & IOMAP_DAX)
3434 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3435 	else
3436 		iomap->bdev = inode->i_sb->s_bdev;
3437 	iomap->offset = (u64) map->m_lblk << blkbits;
3438 	iomap->length = (u64) map->m_len << blkbits;
3439 
3440 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3441 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3442 		iomap->flags |= IOMAP_F_MERGED;
3443 
3444 	/*
3445 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3446 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3447 	 * set. In order for any allocated unwritten extents to be converted
3448 	 * into written extents correctly within the ->end_io() handler, we
3449 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3450 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3451 	 * been set first.
3452 	 */
3453 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3454 		iomap->type = IOMAP_UNWRITTEN;
3455 		iomap->addr = (u64) map->m_pblk << blkbits;
3456 		if (flags & IOMAP_DAX)
3457 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3458 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3459 		iomap->type = IOMAP_MAPPED;
3460 		iomap->addr = (u64) map->m_pblk << blkbits;
3461 		if (flags & IOMAP_DAX)
3462 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3463 	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3464 		iomap->type = IOMAP_DELALLOC;
3465 		iomap->addr = IOMAP_NULL_ADDR;
3466 	} else {
3467 		iomap->type = IOMAP_HOLE;
3468 		iomap->addr = IOMAP_NULL_ADDR;
3469 	}
3470 }
3471 
3472 static int ext4_map_blocks_atomic_write_slow(handle_t *handle,
3473 			struct inode *inode, struct ext4_map_blocks *map)
3474 {
3475 	ext4_lblk_t m_lblk = map->m_lblk;
3476 	unsigned int m_len = map->m_len;
3477 	unsigned int mapped_len = 0, m_flags = 0;
3478 	ext4_fsblk_t next_pblk;
3479 	bool check_next_pblk = false;
3480 	int ret = 0;
3481 
3482 	WARN_ON_ONCE(!ext4_has_feature_bigalloc(inode->i_sb));
3483 
3484 	/*
3485 	 * This is a slow path in case of mixed mapping. We use
3486 	 * EXT4_GET_BLOCKS_CREATE_ZERO flag here to make sure we get a single
3487 	 * contiguous mapped mapping. This will ensure any unwritten or hole
3488 	 * regions within the requested range is zeroed out and we return
3489 	 * a single contiguous mapped extent.
3490 	 */
3491 	m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3492 
3493 	do {
3494 		ret = ext4_map_blocks(handle, inode, map, m_flags);
3495 		if (ret < 0 && ret != -ENOSPC)
3496 			goto out_err;
3497 		/*
3498 		 * This should never happen, but let's return an error code to
3499 		 * avoid an infinite loop in here.
3500 		 */
3501 		if (ret == 0) {
3502 			ret = -EFSCORRUPTED;
3503 			ext4_warning_inode(inode,
3504 				"ext4_map_blocks() couldn't allocate blocks m_flags: 0x%x, ret:%d",
3505 				m_flags, ret);
3506 			goto out_err;
3507 		}
3508 		/*
3509 		 * With bigalloc we should never get ENOSPC nor discontiguous
3510 		 * physical extents.
3511 		 */
3512 		if ((check_next_pblk && next_pblk != map->m_pblk) ||
3513 				ret == -ENOSPC) {
3514 			ext4_warning_inode(inode,
3515 				"Non-contiguous allocation detected: expected %llu, got %llu, "
3516 				"or ext4_map_blocks() returned out of space ret: %d",
3517 				next_pblk, map->m_pblk, ret);
3518 			ret = -EFSCORRUPTED;
3519 			goto out_err;
3520 		}
3521 		next_pblk = map->m_pblk + map->m_len;
3522 		check_next_pblk = true;
3523 
3524 		mapped_len += map->m_len;
3525 		map->m_lblk += map->m_len;
3526 		map->m_len = m_len - mapped_len;
3527 	} while (mapped_len < m_len);
3528 
3529 	/*
3530 	 * We might have done some work in above loop, so we need to query the
3531 	 * start of the physical extent, based on the origin m_lblk and m_len.
3532 	 * Let's also ensure we were able to allocate the required range for
3533 	 * mixed mapping case.
3534 	 */
3535 	map->m_lblk = m_lblk;
3536 	map->m_len = m_len;
3537 	map->m_flags = 0;
3538 
3539 	ret = ext4_map_blocks(handle, inode, map,
3540 			      EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF);
3541 	if (ret != m_len) {
3542 		ext4_warning_inode(inode,
3543 			"allocation failed for atomic write request m_lblk:%u, m_len:%u, ret:%d\n",
3544 			m_lblk, m_len, ret);
3545 		ret = -EINVAL;
3546 	}
3547 	return ret;
3548 
3549 out_err:
3550 	/* reset map before returning an error */
3551 	map->m_lblk = m_lblk;
3552 	map->m_len = m_len;
3553 	map->m_flags = 0;
3554 	return ret;
3555 }
3556 
3557 /*
3558  * ext4_map_blocks_atomic: Helper routine to ensure the entire requested
3559  * range in @map [lblk, lblk + len) is one single contiguous extent with no
3560  * mixed mappings.
3561  *
3562  * We first use m_flags passed to us by our caller (ext4_iomap_alloc()).
3563  * We only call EXT4_GET_BLOCKS_ZERO in the slow path, when the underlying
3564  * physical extent for the requested range does not have a single contiguous
3565  * mapping type i.e. (Hole, Mapped, or Unwritten) throughout.
3566  * In that case we will loop over the requested range to allocate and zero out
3567  * the unwritten / holes in between, to get a single mapped extent from
3568  * [m_lblk, m_lblk +  m_len). Note that this is only possible because we know
3569  * this can be called only with bigalloc enabled filesystem where the underlying
3570  * cluster is already allocated. This avoids allocating discontiguous extents
3571  * in the slow path due to multiple calls to ext4_map_blocks().
3572  * The slow path is mostly non-performance critical path, so it should be ok to
3573  * loop using ext4_map_blocks() with appropriate flags to allocate & zero the
3574  * underlying short holes/unwritten extents within the requested range.
3575  */
3576 static int ext4_map_blocks_atomic_write(handle_t *handle, struct inode *inode,
3577 				struct ext4_map_blocks *map, int m_flags,
3578 				bool *force_commit)
3579 {
3580 	ext4_lblk_t m_lblk = map->m_lblk;
3581 	unsigned int m_len = map->m_len;
3582 	int ret = 0;
3583 
3584 	WARN_ON_ONCE(m_len > 1 && !ext4_has_feature_bigalloc(inode->i_sb));
3585 
3586 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3587 	if (ret < 0 || ret == m_len)
3588 		goto out;
3589 	/*
3590 	 * This is a mixed mapping case where we were not able to allocate
3591 	 * a single contiguous extent. In that case let's reset requested
3592 	 * mapping and call the slow path.
3593 	 */
3594 	map->m_lblk = m_lblk;
3595 	map->m_len = m_len;
3596 	map->m_flags = 0;
3597 
3598 	/*
3599 	 * slow path means we have mixed mapping, that means we will need
3600 	 * to force txn commit.
3601 	 */
3602 	*force_commit = true;
3603 	return ext4_map_blocks_atomic_write_slow(handle, inode, map);
3604 out:
3605 	return ret;
3606 }
3607 
3608 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3609 			    unsigned int flags)
3610 {
3611 	handle_t *handle;
3612 	u8 blkbits = inode->i_blkbits;
3613 	int ret, dio_credits, m_flags = 0, retries = 0;
3614 	bool force_commit = false;
3615 
3616 	/*
3617 	 * Trim the mapping request to the maximum value that we can map at
3618 	 * once for direct I/O.
3619 	 */
3620 	if (map->m_len > DIO_MAX_BLOCKS)
3621 		map->m_len = DIO_MAX_BLOCKS;
3622 
3623 	/*
3624 	 * journal credits estimation for atomic writes. We call
3625 	 * ext4_map_blocks(), to find if there could be a mixed mapping. If yes,
3626 	 * then let's assume the no. of pextents required can be m_len i.e.
3627 	 * every alternate block can be unwritten and hole.
3628 	 */
3629 	if (flags & IOMAP_ATOMIC) {
3630 		unsigned int orig_mlen = map->m_len;
3631 
3632 		ret = ext4_map_blocks(NULL, inode, map, 0);
3633 		if (ret < 0)
3634 			return ret;
3635 		if (map->m_len < orig_mlen) {
3636 			map->m_len = orig_mlen;
3637 			dio_credits = ext4_meta_trans_blocks(inode, orig_mlen,
3638 							     map->m_len);
3639 		} else {
3640 			dio_credits = ext4_chunk_trans_blocks(inode,
3641 							      map->m_len);
3642 		}
3643 	} else {
3644 		dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3645 	}
3646 
3647 retry:
3648 	/*
3649 	 * Either we allocate blocks and then don't get an unwritten extent, so
3650 	 * in that case we have reserved enough credits. Or, the blocks are
3651 	 * already allocated and unwritten. In that case, the extent conversion
3652 	 * fits into the credits as well.
3653 	 */
3654 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3655 	if (IS_ERR(handle))
3656 		return PTR_ERR(handle);
3657 
3658 	/*
3659 	 * DAX and direct I/O are the only two operations that are currently
3660 	 * supported with IOMAP_WRITE.
3661 	 */
3662 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3663 	if (flags & IOMAP_DAX)
3664 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3665 	/*
3666 	 * We use i_size instead of i_disksize here because delalloc writeback
3667 	 * can complete at any point during the I/O and subsequently push the
3668 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3669 	 * happening and thus expose allocated blocks to direct I/O reads.
3670 	 */
3671 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3672 		m_flags = EXT4_GET_BLOCKS_CREATE;
3673 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3674 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3675 
3676 	if (flags & IOMAP_ATOMIC)
3677 		ret = ext4_map_blocks_atomic_write(handle, inode, map, m_flags,
3678 						   &force_commit);
3679 	else
3680 		ret = ext4_map_blocks(handle, inode, map, m_flags);
3681 
3682 	/*
3683 	 * We cannot fill holes in indirect tree based inodes as that could
3684 	 * expose stale data in the case of a crash. Use the magic error code
3685 	 * to fallback to buffered I/O.
3686 	 */
3687 	if (!m_flags && !ret)
3688 		ret = -ENOTBLK;
3689 
3690 	ext4_journal_stop(handle);
3691 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3692 		goto retry;
3693 
3694 	/*
3695 	 * Force commit the current transaction if the allocation spans a mixed
3696 	 * mapping range. This ensures any pending metadata updates (like
3697 	 * unwritten to written extents conversion) in this range are in
3698 	 * consistent state with the file data blocks, before performing the
3699 	 * actual write I/O. If the commit fails, the whole I/O must be aborted
3700 	 * to prevent any possible torn writes.
3701 	 */
3702 	if (ret > 0 && force_commit) {
3703 		int ret2;
3704 
3705 		ret2 = ext4_force_commit(inode->i_sb);
3706 		if (ret2)
3707 			return ret2;
3708 	}
3709 
3710 	return ret;
3711 }
3712 
3713 
3714 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3715 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3716 {
3717 	int ret;
3718 	struct ext4_map_blocks map;
3719 	u8 blkbits = inode->i_blkbits;
3720 	unsigned int orig_mlen;
3721 
3722 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3723 		return -EINVAL;
3724 
3725 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3726 		return -ERANGE;
3727 
3728 	/*
3729 	 * Calculate the first and last logical blocks respectively.
3730 	 */
3731 	map.m_lblk = offset >> blkbits;
3732 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3733 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3734 	orig_mlen = map.m_len;
3735 
3736 	if (flags & IOMAP_WRITE) {
3737 		/*
3738 		 * We check here if the blocks are already allocated, then we
3739 		 * don't need to start a journal txn and we can directly return
3740 		 * the mapping information. This could boost performance
3741 		 * especially in multi-threaded overwrite requests.
3742 		 */
3743 		if (offset + length <= i_size_read(inode)) {
3744 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3745 			/*
3746 			 * For atomic writes the entire requested length should
3747 			 * be mapped.
3748 			 */
3749 			if (map.m_flags & EXT4_MAP_MAPPED) {
3750 				if ((!(flags & IOMAP_ATOMIC) && ret > 0) ||
3751 				   (flags & IOMAP_ATOMIC && ret >= orig_mlen))
3752 					goto out;
3753 			}
3754 			map.m_len = orig_mlen;
3755 		}
3756 		ret = ext4_iomap_alloc(inode, &map, flags);
3757 	} else {
3758 		/*
3759 		 * This can be called for overwrites path from
3760 		 * ext4_iomap_overwrite_begin().
3761 		 */
3762 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3763 	}
3764 
3765 	if (ret < 0)
3766 		return ret;
3767 out:
3768 	/*
3769 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3770 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3771 	 * limiting the length of the mapping returned.
3772 	 */
3773 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3774 
3775 	/*
3776 	 * Before returning to iomap, let's ensure the allocated mapping
3777 	 * covers the entire requested length for atomic writes.
3778 	 */
3779 	if (flags & IOMAP_ATOMIC) {
3780 		if (map.m_len < (length >> blkbits)) {
3781 			WARN_ON_ONCE(1);
3782 			return -EINVAL;
3783 		}
3784 	}
3785 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3786 
3787 	return 0;
3788 }
3789 
3790 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3791 		loff_t length, unsigned flags, struct iomap *iomap,
3792 		struct iomap *srcmap)
3793 {
3794 	int ret;
3795 
3796 	/*
3797 	 * Even for writes we don't need to allocate blocks, so just pretend
3798 	 * we are reading to save overhead of starting a transaction.
3799 	 */
3800 	flags &= ~IOMAP_WRITE;
3801 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3802 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3803 	return ret;
3804 }
3805 
3806 static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3807 {
3808 	/* must be a directio to fall back to buffered */
3809 	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3810 		    (IOMAP_WRITE | IOMAP_DIRECT))
3811 		return false;
3812 
3813 	/* atomic writes are all-or-nothing */
3814 	if (flags & IOMAP_ATOMIC)
3815 		return false;
3816 
3817 	/* can only try again if we wrote nothing */
3818 	return written == 0;
3819 }
3820 
3821 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3822 			  ssize_t written, unsigned flags, struct iomap *iomap)
3823 {
3824 	/*
3825 	 * Check to see whether an error occurred while writing out the data to
3826 	 * the allocated blocks. If so, return the magic error code for
3827 	 * non-atomic write so that we fallback to buffered I/O and attempt to
3828 	 * complete the remainder of the I/O.
3829 	 * For non-atomic writes, any blocks that may have been
3830 	 * allocated in preparation for the direct I/O will be reused during
3831 	 * buffered I/O. For atomic write, we never fallback to buffered-io.
3832 	 */
3833 	if (ext4_want_directio_fallback(flags, written))
3834 		return -ENOTBLK;
3835 
3836 	return 0;
3837 }
3838 
3839 const struct iomap_ops ext4_iomap_ops = {
3840 	.iomap_begin		= ext4_iomap_begin,
3841 	.iomap_end		= ext4_iomap_end,
3842 };
3843 
3844 const struct iomap_ops ext4_iomap_overwrite_ops = {
3845 	.iomap_begin		= ext4_iomap_overwrite_begin,
3846 	.iomap_end		= ext4_iomap_end,
3847 };
3848 
3849 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3850 				   loff_t length, unsigned int flags,
3851 				   struct iomap *iomap, struct iomap *srcmap)
3852 {
3853 	int ret;
3854 	struct ext4_map_blocks map;
3855 	u8 blkbits = inode->i_blkbits;
3856 
3857 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3858 		return -EINVAL;
3859 
3860 	if (ext4_has_inline_data(inode)) {
3861 		ret = ext4_inline_data_iomap(inode, iomap);
3862 		if (ret != -EAGAIN) {
3863 			if (ret == 0 && offset >= iomap->length)
3864 				ret = -ENOENT;
3865 			return ret;
3866 		}
3867 	}
3868 
3869 	/*
3870 	 * Calculate the first and last logical block respectively.
3871 	 */
3872 	map.m_lblk = offset >> blkbits;
3873 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3874 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3875 
3876 	/*
3877 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3878 	 * So handle it here itself instead of querying ext4_map_blocks().
3879 	 * Since ext4_map_blocks() will warn about it and will return
3880 	 * -EIO error.
3881 	 */
3882 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3883 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3884 
3885 		if (offset >= sbi->s_bitmap_maxbytes) {
3886 			map.m_flags = 0;
3887 			goto set_iomap;
3888 		}
3889 	}
3890 
3891 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3892 	if (ret < 0)
3893 		return ret;
3894 set_iomap:
3895 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3896 
3897 	return 0;
3898 }
3899 
3900 const struct iomap_ops ext4_iomap_report_ops = {
3901 	.iomap_begin = ext4_iomap_begin_report,
3902 };
3903 
3904 /*
3905  * For data=journal mode, folio should be marked dirty only when it was
3906  * writeably mapped. When that happens, it was already attached to the
3907  * transaction and marked as jbddirty (we take care of this in
3908  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3909  * so we should have nothing to do here, except for the case when someone
3910  * had the page pinned and dirtied the page through this pin (e.g. by doing
3911  * direct IO to it). In that case we'd need to attach buffers here to the
3912  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3913  * folio and leave attached buffers clean, because the buffers' dirty state is
3914  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3915  * the journalling code will explode.  So what we do is to mark the folio
3916  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3917  * to the transaction appropriately.
3918  */
3919 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3920 		struct folio *folio)
3921 {
3922 	WARN_ON_ONCE(!folio_buffers(folio));
3923 	if (folio_maybe_dma_pinned(folio))
3924 		folio_set_checked(folio);
3925 	return filemap_dirty_folio(mapping, folio);
3926 }
3927 
3928 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3929 {
3930 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3931 	WARN_ON_ONCE(!folio_buffers(folio));
3932 	return block_dirty_folio(mapping, folio);
3933 }
3934 
3935 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3936 				    struct file *file, sector_t *span)
3937 {
3938 	return iomap_swapfile_activate(sis, file, span,
3939 				       &ext4_iomap_report_ops);
3940 }
3941 
3942 static const struct address_space_operations ext4_aops = {
3943 	.read_folio		= ext4_read_folio,
3944 	.readahead		= ext4_readahead,
3945 	.writepages		= ext4_writepages,
3946 	.write_begin		= ext4_write_begin,
3947 	.write_end		= ext4_write_end,
3948 	.dirty_folio		= ext4_dirty_folio,
3949 	.bmap			= ext4_bmap,
3950 	.invalidate_folio	= ext4_invalidate_folio,
3951 	.release_folio		= ext4_release_folio,
3952 	.migrate_folio		= buffer_migrate_folio,
3953 	.is_partially_uptodate  = block_is_partially_uptodate,
3954 	.error_remove_folio	= generic_error_remove_folio,
3955 	.swap_activate		= ext4_iomap_swap_activate,
3956 };
3957 
3958 static const struct address_space_operations ext4_journalled_aops = {
3959 	.read_folio		= ext4_read_folio,
3960 	.readahead		= ext4_readahead,
3961 	.writepages		= ext4_writepages,
3962 	.write_begin		= ext4_write_begin,
3963 	.write_end		= ext4_journalled_write_end,
3964 	.dirty_folio		= ext4_journalled_dirty_folio,
3965 	.bmap			= ext4_bmap,
3966 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3967 	.release_folio		= ext4_release_folio,
3968 	.migrate_folio		= buffer_migrate_folio_norefs,
3969 	.is_partially_uptodate  = block_is_partially_uptodate,
3970 	.error_remove_folio	= generic_error_remove_folio,
3971 	.swap_activate		= ext4_iomap_swap_activate,
3972 };
3973 
3974 static const struct address_space_operations ext4_da_aops = {
3975 	.read_folio		= ext4_read_folio,
3976 	.readahead		= ext4_readahead,
3977 	.writepages		= ext4_writepages,
3978 	.write_begin		= ext4_da_write_begin,
3979 	.write_end		= ext4_da_write_end,
3980 	.dirty_folio		= ext4_dirty_folio,
3981 	.bmap			= ext4_bmap,
3982 	.invalidate_folio	= ext4_invalidate_folio,
3983 	.release_folio		= ext4_release_folio,
3984 	.migrate_folio		= buffer_migrate_folio,
3985 	.is_partially_uptodate  = block_is_partially_uptodate,
3986 	.error_remove_folio	= generic_error_remove_folio,
3987 	.swap_activate		= ext4_iomap_swap_activate,
3988 };
3989 
3990 static const struct address_space_operations ext4_dax_aops = {
3991 	.writepages		= ext4_dax_writepages,
3992 	.dirty_folio		= noop_dirty_folio,
3993 	.bmap			= ext4_bmap,
3994 	.swap_activate		= ext4_iomap_swap_activate,
3995 };
3996 
3997 void ext4_set_aops(struct inode *inode)
3998 {
3999 	switch (ext4_inode_journal_mode(inode)) {
4000 	case EXT4_INODE_ORDERED_DATA_MODE:
4001 	case EXT4_INODE_WRITEBACK_DATA_MODE:
4002 		break;
4003 	case EXT4_INODE_JOURNAL_DATA_MODE:
4004 		inode->i_mapping->a_ops = &ext4_journalled_aops;
4005 		return;
4006 	default:
4007 		BUG();
4008 	}
4009 	if (IS_DAX(inode))
4010 		inode->i_mapping->a_ops = &ext4_dax_aops;
4011 	else if (test_opt(inode->i_sb, DELALLOC))
4012 		inode->i_mapping->a_ops = &ext4_da_aops;
4013 	else
4014 		inode->i_mapping->a_ops = &ext4_aops;
4015 }
4016 
4017 /*
4018  * Here we can't skip an unwritten buffer even though it usually reads zero
4019  * because it might have data in pagecache (eg, if called from ext4_zero_range,
4020  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
4021  * racing writeback can come later and flush the stale pagecache to disk.
4022  */
4023 static int __ext4_block_zero_page_range(handle_t *handle,
4024 		struct address_space *mapping, loff_t from, loff_t length)
4025 {
4026 	unsigned int offset, blocksize, pos;
4027 	ext4_lblk_t iblock;
4028 	struct inode *inode = mapping->host;
4029 	struct buffer_head *bh;
4030 	struct folio *folio;
4031 	int err = 0;
4032 
4033 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
4034 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
4035 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
4036 	if (IS_ERR(folio))
4037 		return PTR_ERR(folio);
4038 
4039 	blocksize = inode->i_sb->s_blocksize;
4040 
4041 	iblock = folio->index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4042 
4043 	bh = folio_buffers(folio);
4044 	if (!bh)
4045 		bh = create_empty_buffers(folio, blocksize, 0);
4046 
4047 	/* Find the buffer that contains "offset" */
4048 	offset = offset_in_folio(folio, from);
4049 	pos = blocksize;
4050 	while (offset >= pos) {
4051 		bh = bh->b_this_page;
4052 		iblock++;
4053 		pos += blocksize;
4054 	}
4055 	if (buffer_freed(bh)) {
4056 		BUFFER_TRACE(bh, "freed: skip");
4057 		goto unlock;
4058 	}
4059 	if (!buffer_mapped(bh)) {
4060 		BUFFER_TRACE(bh, "unmapped");
4061 		ext4_get_block(inode, iblock, bh, 0);
4062 		/* unmapped? It's a hole - nothing to do */
4063 		if (!buffer_mapped(bh)) {
4064 			BUFFER_TRACE(bh, "still unmapped");
4065 			goto unlock;
4066 		}
4067 	}
4068 
4069 	/* Ok, it's mapped. Make sure it's up-to-date */
4070 	if (folio_test_uptodate(folio))
4071 		set_buffer_uptodate(bh);
4072 
4073 	if (!buffer_uptodate(bh)) {
4074 		err = ext4_read_bh_lock(bh, 0, true);
4075 		if (err)
4076 			goto unlock;
4077 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
4078 			/* We expect the key to be set. */
4079 			BUG_ON(!fscrypt_has_encryption_key(inode));
4080 			err = fscrypt_decrypt_pagecache_blocks(folio,
4081 							       blocksize,
4082 							       bh_offset(bh));
4083 			if (err) {
4084 				clear_buffer_uptodate(bh);
4085 				goto unlock;
4086 			}
4087 		}
4088 	}
4089 	if (ext4_should_journal_data(inode)) {
4090 		BUFFER_TRACE(bh, "get write access");
4091 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
4092 						    EXT4_JTR_NONE);
4093 		if (err)
4094 			goto unlock;
4095 	}
4096 	folio_zero_range(folio, offset, length);
4097 	BUFFER_TRACE(bh, "zeroed end of block");
4098 
4099 	if (ext4_should_journal_data(inode)) {
4100 		err = ext4_dirty_journalled_data(handle, bh);
4101 	} else {
4102 		err = 0;
4103 		mark_buffer_dirty(bh);
4104 		if (ext4_should_order_data(inode))
4105 			err = ext4_jbd2_inode_add_write(handle, inode, from,
4106 					length);
4107 	}
4108 
4109 unlock:
4110 	folio_unlock(folio);
4111 	folio_put(folio);
4112 	return err;
4113 }
4114 
4115 /*
4116  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4117  * starting from file offset 'from'.  The range to be zero'd must
4118  * be contained with in one block.  If the specified range exceeds
4119  * the end of the block it will be shortened to end of the block
4120  * that corresponds to 'from'
4121  */
4122 static int ext4_block_zero_page_range(handle_t *handle,
4123 		struct address_space *mapping, loff_t from, loff_t length)
4124 {
4125 	struct inode *inode = mapping->host;
4126 	unsigned offset = from & (PAGE_SIZE-1);
4127 	unsigned blocksize = inode->i_sb->s_blocksize;
4128 	unsigned max = blocksize - (offset & (blocksize - 1));
4129 
4130 	/*
4131 	 * correct length if it does not fall between
4132 	 * 'from' and the end of the block
4133 	 */
4134 	if (length > max || length < 0)
4135 		length = max;
4136 
4137 	if (IS_DAX(inode)) {
4138 		return dax_zero_range(inode, from, length, NULL,
4139 				      &ext4_iomap_ops);
4140 	}
4141 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4142 }
4143 
4144 /*
4145  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4146  * up to the end of the block which corresponds to `from'.
4147  * This required during truncate. We need to physically zero the tail end
4148  * of that block so it doesn't yield old data if the file is later grown.
4149  */
4150 static int ext4_block_truncate_page(handle_t *handle,
4151 		struct address_space *mapping, loff_t from)
4152 {
4153 	unsigned offset = from & (PAGE_SIZE-1);
4154 	unsigned length;
4155 	unsigned blocksize;
4156 	struct inode *inode = mapping->host;
4157 
4158 	/* If we are processing an encrypted inode during orphan list handling */
4159 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4160 		return 0;
4161 
4162 	blocksize = inode->i_sb->s_blocksize;
4163 	length = blocksize - (offset & (blocksize - 1));
4164 
4165 	return ext4_block_zero_page_range(handle, mapping, from, length);
4166 }
4167 
4168 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4169 			     loff_t lstart, loff_t length)
4170 {
4171 	struct super_block *sb = inode->i_sb;
4172 	struct address_space *mapping = inode->i_mapping;
4173 	unsigned partial_start, partial_end;
4174 	ext4_fsblk_t start, end;
4175 	loff_t byte_end = (lstart + length - 1);
4176 	int err = 0;
4177 
4178 	partial_start = lstart & (sb->s_blocksize - 1);
4179 	partial_end = byte_end & (sb->s_blocksize - 1);
4180 
4181 	start = lstart >> sb->s_blocksize_bits;
4182 	end = byte_end >> sb->s_blocksize_bits;
4183 
4184 	/* Handle partial zero within the single block */
4185 	if (start == end &&
4186 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4187 		err = ext4_block_zero_page_range(handle, mapping,
4188 						 lstart, length);
4189 		return err;
4190 	}
4191 	/* Handle partial zero out on the start of the range */
4192 	if (partial_start) {
4193 		err = ext4_block_zero_page_range(handle, mapping,
4194 						 lstart, sb->s_blocksize);
4195 		if (err)
4196 			return err;
4197 	}
4198 	/* Handle partial zero out on the end of the range */
4199 	if (partial_end != sb->s_blocksize - 1)
4200 		err = ext4_block_zero_page_range(handle, mapping,
4201 						 byte_end - partial_end,
4202 						 partial_end + 1);
4203 	return err;
4204 }
4205 
4206 int ext4_can_truncate(struct inode *inode)
4207 {
4208 	if (S_ISREG(inode->i_mode))
4209 		return 1;
4210 	if (S_ISDIR(inode->i_mode))
4211 		return 1;
4212 	if (S_ISLNK(inode->i_mode))
4213 		return !ext4_inode_is_fast_symlink(inode);
4214 	return 0;
4215 }
4216 
4217 /*
4218  * We have to make sure i_disksize gets properly updated before we truncate
4219  * page cache due to hole punching or zero range. Otherwise i_disksize update
4220  * can get lost as it may have been postponed to submission of writeback but
4221  * that will never happen after we truncate page cache.
4222  */
4223 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4224 				      loff_t len)
4225 {
4226 	handle_t *handle;
4227 	int ret;
4228 
4229 	loff_t size = i_size_read(inode);
4230 
4231 	WARN_ON(!inode_is_locked(inode));
4232 	if (offset > size || offset + len < size)
4233 		return 0;
4234 
4235 	if (EXT4_I(inode)->i_disksize >= size)
4236 		return 0;
4237 
4238 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4239 	if (IS_ERR(handle))
4240 		return PTR_ERR(handle);
4241 	ext4_update_i_disksize(inode, size);
4242 	ret = ext4_mark_inode_dirty(handle, inode);
4243 	ext4_journal_stop(handle);
4244 
4245 	return ret;
4246 }
4247 
4248 static inline void ext4_truncate_folio(struct inode *inode,
4249 				       loff_t start, loff_t end)
4250 {
4251 	unsigned long blocksize = i_blocksize(inode);
4252 	struct folio *folio;
4253 
4254 	/* Nothing to be done if no complete block needs to be truncated. */
4255 	if (round_up(start, blocksize) >= round_down(end, blocksize))
4256 		return;
4257 
4258 	folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT);
4259 	if (IS_ERR(folio))
4260 		return;
4261 
4262 	if (folio_mkclean(folio))
4263 		folio_mark_dirty(folio);
4264 	folio_unlock(folio);
4265 	folio_put(folio);
4266 }
4267 
4268 int ext4_truncate_page_cache_block_range(struct inode *inode,
4269 					 loff_t start, loff_t end)
4270 {
4271 	unsigned long blocksize = i_blocksize(inode);
4272 	int ret;
4273 
4274 	/*
4275 	 * For journalled data we need to write (and checkpoint) pages
4276 	 * before discarding page cache to avoid inconsitent data on disk
4277 	 * in case of crash before freeing or unwritten converting trans
4278 	 * is committed.
4279 	 */
4280 	if (ext4_should_journal_data(inode)) {
4281 		ret = filemap_write_and_wait_range(inode->i_mapping, start,
4282 						   end - 1);
4283 		if (ret)
4284 			return ret;
4285 		goto truncate_pagecache;
4286 	}
4287 
4288 	/*
4289 	 * If the block size is less than the page size, the file's mapped
4290 	 * blocks within one page could be freed or converted to unwritten.
4291 	 * So it's necessary to remove writable userspace mappings, and then
4292 	 * ext4_page_mkwrite() can be called during subsequent write access
4293 	 * to these partial folios.
4294 	 */
4295 	if (!IS_ALIGNED(start | end, PAGE_SIZE) &&
4296 	    blocksize < PAGE_SIZE && start < inode->i_size) {
4297 		loff_t page_boundary = round_up(start, PAGE_SIZE);
4298 
4299 		ext4_truncate_folio(inode, start, min(page_boundary, end));
4300 		if (end > page_boundary)
4301 			ext4_truncate_folio(inode,
4302 					    round_down(end, PAGE_SIZE), end);
4303 	}
4304 
4305 truncate_pagecache:
4306 	truncate_pagecache_range(inode, start, end - 1);
4307 	return 0;
4308 }
4309 
4310 static void ext4_wait_dax_page(struct inode *inode)
4311 {
4312 	filemap_invalidate_unlock(inode->i_mapping);
4313 	schedule();
4314 	filemap_invalidate_lock(inode->i_mapping);
4315 }
4316 
4317 int ext4_break_layouts(struct inode *inode)
4318 {
4319 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
4320 		return -EINVAL;
4321 
4322 	return dax_break_layout_inode(inode, ext4_wait_dax_page);
4323 }
4324 
4325 /*
4326  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4327  * associated with the given offset and length
4328  *
4329  * @inode:  File inode
4330  * @offset: The offset where the hole will begin
4331  * @len:    The length of the hole
4332  *
4333  * Returns: 0 on success or negative on failure
4334  */
4335 
4336 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4337 {
4338 	struct inode *inode = file_inode(file);
4339 	struct super_block *sb = inode->i_sb;
4340 	ext4_lblk_t start_lblk, end_lblk;
4341 	loff_t max_end = sb->s_maxbytes;
4342 	loff_t end = offset + length;
4343 	handle_t *handle;
4344 	unsigned int credits;
4345 	int ret;
4346 
4347 	trace_ext4_punch_hole(inode, offset, length, 0);
4348 	WARN_ON_ONCE(!inode_is_locked(inode));
4349 
4350 	/*
4351 	 * For indirect-block based inodes, make sure that the hole within
4352 	 * one block before last range.
4353 	 */
4354 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4355 		max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize;
4356 
4357 	/* No need to punch hole beyond i_size */
4358 	if (offset >= inode->i_size || offset >= max_end)
4359 		return 0;
4360 
4361 	/*
4362 	 * If the hole extends beyond i_size, set the hole to end after
4363 	 * the page that contains i_size.
4364 	 */
4365 	if (end > inode->i_size)
4366 		end = round_up(inode->i_size, PAGE_SIZE);
4367 	if (end > max_end)
4368 		end = max_end;
4369 	length = end - offset;
4370 
4371 	/*
4372 	 * Attach jinode to inode for jbd2 if we do any zeroing of partial
4373 	 * block.
4374 	 */
4375 	if (!IS_ALIGNED(offset | end, sb->s_blocksize)) {
4376 		ret = ext4_inode_attach_jinode(inode);
4377 		if (ret < 0)
4378 			return ret;
4379 	}
4380 
4381 
4382 	ret = ext4_update_disksize_before_punch(inode, offset, length);
4383 	if (ret)
4384 		return ret;
4385 
4386 	/* Now release the pages and zero block aligned part of pages*/
4387 	ret = ext4_truncate_page_cache_block_range(inode, offset, end);
4388 	if (ret)
4389 		return ret;
4390 
4391 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4392 		credits = ext4_writepage_trans_blocks(inode);
4393 	else
4394 		credits = ext4_blocks_for_truncate(inode);
4395 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4396 	if (IS_ERR(handle)) {
4397 		ret = PTR_ERR(handle);
4398 		ext4_std_error(sb, ret);
4399 		return ret;
4400 	}
4401 
4402 	ret = ext4_zero_partial_blocks(handle, inode, offset, length);
4403 	if (ret)
4404 		goto out_handle;
4405 
4406 	/* If there are blocks to remove, do it */
4407 	start_lblk = EXT4_B_TO_LBLK(inode, offset);
4408 	end_lblk = end >> inode->i_blkbits;
4409 
4410 	if (end_lblk > start_lblk) {
4411 		ext4_lblk_t hole_len = end_lblk - start_lblk;
4412 
4413 		ext4_fc_track_inode(handle, inode);
4414 		ext4_check_map_extents_env(inode);
4415 		down_write(&EXT4_I(inode)->i_data_sem);
4416 		ext4_discard_preallocations(inode);
4417 
4418 		ext4_es_remove_extent(inode, start_lblk, hole_len);
4419 
4420 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4421 			ret = ext4_ext_remove_space(inode, start_lblk,
4422 						    end_lblk - 1);
4423 		else
4424 			ret = ext4_ind_remove_space(handle, inode, start_lblk,
4425 						    end_lblk);
4426 		if (ret) {
4427 			up_write(&EXT4_I(inode)->i_data_sem);
4428 			goto out_handle;
4429 		}
4430 
4431 		ext4_es_insert_extent(inode, start_lblk, hole_len, ~0,
4432 				      EXTENT_STATUS_HOLE, 0);
4433 		up_write(&EXT4_I(inode)->i_data_sem);
4434 	}
4435 	ext4_fc_track_range(handle, inode, start_lblk, end_lblk);
4436 
4437 	ret = ext4_mark_inode_dirty(handle, inode);
4438 	if (unlikely(ret))
4439 		goto out_handle;
4440 
4441 	ext4_update_inode_fsync_trans(handle, inode, 1);
4442 	if (IS_SYNC(inode))
4443 		ext4_handle_sync(handle);
4444 out_handle:
4445 	ext4_journal_stop(handle);
4446 	return ret;
4447 }
4448 
4449 int ext4_inode_attach_jinode(struct inode *inode)
4450 {
4451 	struct ext4_inode_info *ei = EXT4_I(inode);
4452 	struct jbd2_inode *jinode;
4453 
4454 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4455 		return 0;
4456 
4457 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4458 	spin_lock(&inode->i_lock);
4459 	if (!ei->jinode) {
4460 		if (!jinode) {
4461 			spin_unlock(&inode->i_lock);
4462 			return -ENOMEM;
4463 		}
4464 		ei->jinode = jinode;
4465 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4466 		jinode = NULL;
4467 	}
4468 	spin_unlock(&inode->i_lock);
4469 	if (unlikely(jinode != NULL))
4470 		jbd2_free_inode(jinode);
4471 	return 0;
4472 }
4473 
4474 /*
4475  * ext4_truncate()
4476  *
4477  * We block out ext4_get_block() block instantiations across the entire
4478  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4479  * simultaneously on behalf of the same inode.
4480  *
4481  * As we work through the truncate and commit bits of it to the journal there
4482  * is one core, guiding principle: the file's tree must always be consistent on
4483  * disk.  We must be able to restart the truncate after a crash.
4484  *
4485  * The file's tree may be transiently inconsistent in memory (although it
4486  * probably isn't), but whenever we close off and commit a journal transaction,
4487  * the contents of (the filesystem + the journal) must be consistent and
4488  * restartable.  It's pretty simple, really: bottom up, right to left (although
4489  * left-to-right works OK too).
4490  *
4491  * Note that at recovery time, journal replay occurs *before* the restart of
4492  * truncate against the orphan inode list.
4493  *
4494  * The committed inode has the new, desired i_size (which is the same as
4495  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4496  * that this inode's truncate did not complete and it will again call
4497  * ext4_truncate() to have another go.  So there will be instantiated blocks
4498  * to the right of the truncation point in a crashed ext4 filesystem.  But
4499  * that's fine - as long as they are linked from the inode, the post-crash
4500  * ext4_truncate() run will find them and release them.
4501  */
4502 int ext4_truncate(struct inode *inode)
4503 {
4504 	struct ext4_inode_info *ei = EXT4_I(inode);
4505 	unsigned int credits;
4506 	int err = 0, err2;
4507 	handle_t *handle;
4508 	struct address_space *mapping = inode->i_mapping;
4509 
4510 	/*
4511 	 * There is a possibility that we're either freeing the inode
4512 	 * or it's a completely new inode. In those cases we might not
4513 	 * have i_rwsem locked because it's not necessary.
4514 	 */
4515 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4516 		WARN_ON(!inode_is_locked(inode));
4517 	trace_ext4_truncate_enter(inode);
4518 
4519 	if (!ext4_can_truncate(inode))
4520 		goto out_trace;
4521 
4522 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4523 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4524 
4525 	if (ext4_has_inline_data(inode)) {
4526 		int has_inline = 1;
4527 
4528 		err = ext4_inline_data_truncate(inode, &has_inline);
4529 		if (err || has_inline)
4530 			goto out_trace;
4531 	}
4532 
4533 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4534 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4535 		err = ext4_inode_attach_jinode(inode);
4536 		if (err)
4537 			goto out_trace;
4538 	}
4539 
4540 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4541 		credits = ext4_writepage_trans_blocks(inode);
4542 	else
4543 		credits = ext4_blocks_for_truncate(inode);
4544 
4545 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4546 	if (IS_ERR(handle)) {
4547 		err = PTR_ERR(handle);
4548 		goto out_trace;
4549 	}
4550 
4551 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4552 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4553 
4554 	/*
4555 	 * We add the inode to the orphan list, so that if this
4556 	 * truncate spans multiple transactions, and we crash, we will
4557 	 * resume the truncate when the filesystem recovers.  It also
4558 	 * marks the inode dirty, to catch the new size.
4559 	 *
4560 	 * Implication: the file must always be in a sane, consistent
4561 	 * truncatable state while each transaction commits.
4562 	 */
4563 	err = ext4_orphan_add(handle, inode);
4564 	if (err)
4565 		goto out_stop;
4566 
4567 	ext4_fc_track_inode(handle, inode);
4568 	ext4_check_map_extents_env(inode);
4569 
4570 	down_write(&EXT4_I(inode)->i_data_sem);
4571 	ext4_discard_preallocations(inode);
4572 
4573 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4574 		err = ext4_ext_truncate(handle, inode);
4575 	else
4576 		ext4_ind_truncate(handle, inode);
4577 
4578 	up_write(&ei->i_data_sem);
4579 	if (err)
4580 		goto out_stop;
4581 
4582 	if (IS_SYNC(inode))
4583 		ext4_handle_sync(handle);
4584 
4585 out_stop:
4586 	/*
4587 	 * If this was a simple ftruncate() and the file will remain alive,
4588 	 * then we need to clear up the orphan record which we created above.
4589 	 * However, if this was a real unlink then we were called by
4590 	 * ext4_evict_inode(), and we allow that function to clean up the
4591 	 * orphan info for us.
4592 	 */
4593 	if (inode->i_nlink)
4594 		ext4_orphan_del(handle, inode);
4595 
4596 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4597 	err2 = ext4_mark_inode_dirty(handle, inode);
4598 	if (unlikely(err2 && !err))
4599 		err = err2;
4600 	ext4_journal_stop(handle);
4601 
4602 out_trace:
4603 	trace_ext4_truncate_exit(inode);
4604 	return err;
4605 }
4606 
4607 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4608 {
4609 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4610 		return inode_peek_iversion_raw(inode);
4611 	else
4612 		return inode_peek_iversion(inode);
4613 }
4614 
4615 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4616 				 struct ext4_inode_info *ei)
4617 {
4618 	struct inode *inode = &(ei->vfs_inode);
4619 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4620 	struct super_block *sb = inode->i_sb;
4621 
4622 	if (i_blocks <= ~0U) {
4623 		/*
4624 		 * i_blocks can be represented in a 32 bit variable
4625 		 * as multiple of 512 bytes
4626 		 */
4627 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4628 		raw_inode->i_blocks_high = 0;
4629 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4630 		return 0;
4631 	}
4632 
4633 	/*
4634 	 * This should never happen since sb->s_maxbytes should not have
4635 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4636 	 * feature in ext4_fill_super().
4637 	 */
4638 	if (!ext4_has_feature_huge_file(sb))
4639 		return -EFSCORRUPTED;
4640 
4641 	if (i_blocks <= 0xffffffffffffULL) {
4642 		/*
4643 		 * i_blocks can be represented in a 48 bit variable
4644 		 * as multiple of 512 bytes
4645 		 */
4646 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4647 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4648 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4649 	} else {
4650 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4651 		/* i_block is stored in file system block size */
4652 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4653 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4654 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4655 	}
4656 	return 0;
4657 }
4658 
4659 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4660 {
4661 	struct ext4_inode_info *ei = EXT4_I(inode);
4662 	uid_t i_uid;
4663 	gid_t i_gid;
4664 	projid_t i_projid;
4665 	int block;
4666 	int err;
4667 
4668 	err = ext4_inode_blocks_set(raw_inode, ei);
4669 
4670 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4671 	i_uid = i_uid_read(inode);
4672 	i_gid = i_gid_read(inode);
4673 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4674 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4675 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4676 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4677 		/*
4678 		 * Fix up interoperability with old kernels. Otherwise,
4679 		 * old inodes get re-used with the upper 16 bits of the
4680 		 * uid/gid intact.
4681 		 */
4682 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4683 			raw_inode->i_uid_high = 0;
4684 			raw_inode->i_gid_high = 0;
4685 		} else {
4686 			raw_inode->i_uid_high =
4687 				cpu_to_le16(high_16_bits(i_uid));
4688 			raw_inode->i_gid_high =
4689 				cpu_to_le16(high_16_bits(i_gid));
4690 		}
4691 	} else {
4692 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4693 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4694 		raw_inode->i_uid_high = 0;
4695 		raw_inode->i_gid_high = 0;
4696 	}
4697 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4698 
4699 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4700 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4701 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4702 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4703 
4704 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4705 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4706 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4707 		raw_inode->i_file_acl_high =
4708 			cpu_to_le16(ei->i_file_acl >> 32);
4709 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4710 	ext4_isize_set(raw_inode, ei->i_disksize);
4711 
4712 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4713 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4714 		if (old_valid_dev(inode->i_rdev)) {
4715 			raw_inode->i_block[0] =
4716 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4717 			raw_inode->i_block[1] = 0;
4718 		} else {
4719 			raw_inode->i_block[0] = 0;
4720 			raw_inode->i_block[1] =
4721 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4722 			raw_inode->i_block[2] = 0;
4723 		}
4724 	} else if (!ext4_has_inline_data(inode)) {
4725 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4726 			raw_inode->i_block[block] = ei->i_data[block];
4727 	}
4728 
4729 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4730 		u64 ivers = ext4_inode_peek_iversion(inode);
4731 
4732 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4733 		if (ei->i_extra_isize) {
4734 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4735 				raw_inode->i_version_hi =
4736 					cpu_to_le32(ivers >> 32);
4737 			raw_inode->i_extra_isize =
4738 				cpu_to_le16(ei->i_extra_isize);
4739 		}
4740 	}
4741 
4742 	if (i_projid != EXT4_DEF_PROJID &&
4743 	    !ext4_has_feature_project(inode->i_sb))
4744 		err = err ?: -EFSCORRUPTED;
4745 
4746 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4747 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4748 		raw_inode->i_projid = cpu_to_le32(i_projid);
4749 
4750 	ext4_inode_csum_set(inode, raw_inode, ei);
4751 	return err;
4752 }
4753 
4754 /*
4755  * ext4_get_inode_loc returns with an extra refcount against the inode's
4756  * underlying buffer_head on success. If we pass 'inode' and it does not
4757  * have in-inode xattr, we have all inode data in memory that is needed
4758  * to recreate the on-disk version of this inode.
4759  */
4760 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4761 				struct inode *inode, struct ext4_iloc *iloc,
4762 				ext4_fsblk_t *ret_block)
4763 {
4764 	struct ext4_group_desc	*gdp;
4765 	struct buffer_head	*bh;
4766 	ext4_fsblk_t		block;
4767 	struct blk_plug		plug;
4768 	int			inodes_per_block, inode_offset;
4769 
4770 	iloc->bh = NULL;
4771 	if (ino < EXT4_ROOT_INO ||
4772 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4773 		return -EFSCORRUPTED;
4774 
4775 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4776 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4777 	if (!gdp)
4778 		return -EIO;
4779 
4780 	/*
4781 	 * Figure out the offset within the block group inode table
4782 	 */
4783 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4784 	inode_offset = ((ino - 1) %
4785 			EXT4_INODES_PER_GROUP(sb));
4786 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4787 
4788 	block = ext4_inode_table(sb, gdp);
4789 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4790 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4791 		ext4_error(sb, "Invalid inode table block %llu in "
4792 			   "block_group %u", block, iloc->block_group);
4793 		return -EFSCORRUPTED;
4794 	}
4795 	block += (inode_offset / inodes_per_block);
4796 
4797 	bh = sb_getblk(sb, block);
4798 	if (unlikely(!bh))
4799 		return -ENOMEM;
4800 	if (ext4_buffer_uptodate(bh))
4801 		goto has_buffer;
4802 
4803 	lock_buffer(bh);
4804 	if (ext4_buffer_uptodate(bh)) {
4805 		/* Someone brought it uptodate while we waited */
4806 		unlock_buffer(bh);
4807 		goto has_buffer;
4808 	}
4809 
4810 	/*
4811 	 * If we have all information of the inode in memory and this
4812 	 * is the only valid inode in the block, we need not read the
4813 	 * block.
4814 	 */
4815 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4816 		struct buffer_head *bitmap_bh;
4817 		int i, start;
4818 
4819 		start = inode_offset & ~(inodes_per_block - 1);
4820 
4821 		/* Is the inode bitmap in cache? */
4822 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4823 		if (unlikely(!bitmap_bh))
4824 			goto make_io;
4825 
4826 		/*
4827 		 * If the inode bitmap isn't in cache then the
4828 		 * optimisation may end up performing two reads instead
4829 		 * of one, so skip it.
4830 		 */
4831 		if (!buffer_uptodate(bitmap_bh)) {
4832 			brelse(bitmap_bh);
4833 			goto make_io;
4834 		}
4835 		for (i = start; i < start + inodes_per_block; i++) {
4836 			if (i == inode_offset)
4837 				continue;
4838 			if (ext4_test_bit(i, bitmap_bh->b_data))
4839 				break;
4840 		}
4841 		brelse(bitmap_bh);
4842 		if (i == start + inodes_per_block) {
4843 			struct ext4_inode *raw_inode =
4844 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4845 
4846 			/* all other inodes are free, so skip I/O */
4847 			memset(bh->b_data, 0, bh->b_size);
4848 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4849 				ext4_fill_raw_inode(inode, raw_inode);
4850 			set_buffer_uptodate(bh);
4851 			unlock_buffer(bh);
4852 			goto has_buffer;
4853 		}
4854 	}
4855 
4856 make_io:
4857 	/*
4858 	 * If we need to do any I/O, try to pre-readahead extra
4859 	 * blocks from the inode table.
4860 	 */
4861 	blk_start_plug(&plug);
4862 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4863 		ext4_fsblk_t b, end, table;
4864 		unsigned num;
4865 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4866 
4867 		table = ext4_inode_table(sb, gdp);
4868 		/* s_inode_readahead_blks is always a power of 2 */
4869 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4870 		if (table > b)
4871 			b = table;
4872 		end = b + ra_blks;
4873 		num = EXT4_INODES_PER_GROUP(sb);
4874 		if (ext4_has_group_desc_csum(sb))
4875 			num -= ext4_itable_unused_count(sb, gdp);
4876 		table += num / inodes_per_block;
4877 		if (end > table)
4878 			end = table;
4879 		while (b <= end)
4880 			ext4_sb_breadahead_unmovable(sb, b++);
4881 	}
4882 
4883 	/*
4884 	 * There are other valid inodes in the buffer, this inode
4885 	 * has in-inode xattrs, or we don't have this inode in memory.
4886 	 * Read the block from disk.
4887 	 */
4888 	trace_ext4_load_inode(sb, ino);
4889 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4890 			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4891 	blk_finish_plug(&plug);
4892 	wait_on_buffer(bh);
4893 	if (!buffer_uptodate(bh)) {
4894 		if (ret_block)
4895 			*ret_block = block;
4896 		brelse(bh);
4897 		return -EIO;
4898 	}
4899 has_buffer:
4900 	iloc->bh = bh;
4901 	return 0;
4902 }
4903 
4904 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4905 					struct ext4_iloc *iloc)
4906 {
4907 	ext4_fsblk_t err_blk = 0;
4908 	int ret;
4909 
4910 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4911 					&err_blk);
4912 
4913 	if (ret == -EIO)
4914 		ext4_error_inode_block(inode, err_blk, EIO,
4915 					"unable to read itable block");
4916 
4917 	return ret;
4918 }
4919 
4920 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4921 {
4922 	ext4_fsblk_t err_blk = 0;
4923 	int ret;
4924 
4925 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4926 					&err_blk);
4927 
4928 	if (ret == -EIO)
4929 		ext4_error_inode_block(inode, err_blk, EIO,
4930 					"unable to read itable block");
4931 
4932 	return ret;
4933 }
4934 
4935 
4936 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4937 			  struct ext4_iloc *iloc)
4938 {
4939 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4940 }
4941 
4942 static bool ext4_should_enable_dax(struct inode *inode)
4943 {
4944 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4945 
4946 	if (test_opt2(inode->i_sb, DAX_NEVER))
4947 		return false;
4948 	if (!S_ISREG(inode->i_mode))
4949 		return false;
4950 	if (ext4_should_journal_data(inode))
4951 		return false;
4952 	if (ext4_has_inline_data(inode))
4953 		return false;
4954 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4955 		return false;
4956 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4957 		return false;
4958 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4959 		return false;
4960 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4961 		return true;
4962 
4963 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4964 }
4965 
4966 void ext4_set_inode_flags(struct inode *inode, bool init)
4967 {
4968 	unsigned int flags = EXT4_I(inode)->i_flags;
4969 	unsigned int new_fl = 0;
4970 
4971 	WARN_ON_ONCE(IS_DAX(inode) && init);
4972 
4973 	if (flags & EXT4_SYNC_FL)
4974 		new_fl |= S_SYNC;
4975 	if (flags & EXT4_APPEND_FL)
4976 		new_fl |= S_APPEND;
4977 	if (flags & EXT4_IMMUTABLE_FL)
4978 		new_fl |= S_IMMUTABLE;
4979 	if (flags & EXT4_NOATIME_FL)
4980 		new_fl |= S_NOATIME;
4981 	if (flags & EXT4_DIRSYNC_FL)
4982 		new_fl |= S_DIRSYNC;
4983 
4984 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4985 	 * here if already set. */
4986 	new_fl |= (inode->i_flags & S_DAX);
4987 	if (init && ext4_should_enable_dax(inode))
4988 		new_fl |= S_DAX;
4989 
4990 	if (flags & EXT4_ENCRYPT_FL)
4991 		new_fl |= S_ENCRYPTED;
4992 	if (flags & EXT4_CASEFOLD_FL)
4993 		new_fl |= S_CASEFOLD;
4994 	if (flags & EXT4_VERITY_FL)
4995 		new_fl |= S_VERITY;
4996 	inode_set_flags(inode, new_fl,
4997 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4998 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4999 }
5000 
5001 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
5002 				  struct ext4_inode_info *ei)
5003 {
5004 	blkcnt_t i_blocks ;
5005 	struct inode *inode = &(ei->vfs_inode);
5006 	struct super_block *sb = inode->i_sb;
5007 
5008 	if (ext4_has_feature_huge_file(sb)) {
5009 		/* we are using combined 48 bit field */
5010 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
5011 					le32_to_cpu(raw_inode->i_blocks_lo);
5012 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
5013 			/* i_blocks represent file system block size */
5014 			return i_blocks  << (inode->i_blkbits - 9);
5015 		} else {
5016 			return i_blocks;
5017 		}
5018 	} else {
5019 		return le32_to_cpu(raw_inode->i_blocks_lo);
5020 	}
5021 }
5022 
5023 static inline int ext4_iget_extra_inode(struct inode *inode,
5024 					 struct ext4_inode *raw_inode,
5025 					 struct ext4_inode_info *ei)
5026 {
5027 	__le32 *magic = (void *)raw_inode +
5028 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
5029 
5030 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
5031 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
5032 		int err;
5033 
5034 		err = xattr_check_inode(inode, IHDR(inode, raw_inode),
5035 					ITAIL(inode, raw_inode));
5036 		if (err)
5037 			return err;
5038 
5039 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5040 		err = ext4_find_inline_data_nolock(inode);
5041 		if (!err && ext4_has_inline_data(inode))
5042 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
5043 		return err;
5044 	} else
5045 		EXT4_I(inode)->i_inline_off = 0;
5046 	return 0;
5047 }
5048 
5049 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
5050 {
5051 	if (!ext4_has_feature_project(inode->i_sb))
5052 		return -EOPNOTSUPP;
5053 	*projid = EXT4_I(inode)->i_projid;
5054 	return 0;
5055 }
5056 
5057 /*
5058  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
5059  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
5060  * set.
5061  */
5062 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
5063 {
5064 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
5065 		inode_set_iversion_raw(inode, val);
5066 	else
5067 		inode_set_iversion_queried(inode, val);
5068 }
5069 
5070 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags,
5071 			    const char *function, unsigned int line)
5072 {
5073 	const char *err_str;
5074 
5075 	if (flags & EXT4_IGET_EA_INODE) {
5076 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
5077 			err_str = "missing EA_INODE flag";
5078 			goto error;
5079 		}
5080 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5081 		    EXT4_I(inode)->i_file_acl) {
5082 			err_str = "ea_inode with extended attributes";
5083 			goto error;
5084 		}
5085 	} else {
5086 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
5087 			/*
5088 			 * open_by_handle_at() could provide an old inode number
5089 			 * that has since been reused for an ea_inode; this does
5090 			 * not indicate filesystem corruption
5091 			 */
5092 			if (flags & EXT4_IGET_HANDLE)
5093 				return -ESTALE;
5094 			err_str = "unexpected EA_INODE flag";
5095 			goto error;
5096 		}
5097 	}
5098 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5099 		err_str = "unexpected bad inode w/o EXT4_IGET_BAD";
5100 		goto error;
5101 	}
5102 	return 0;
5103 
5104 error:
5105 	ext4_error_inode(inode, function, line, 0, "%s", err_str);
5106 	return -EFSCORRUPTED;
5107 }
5108 
5109 bool ext4_should_enable_large_folio(struct inode *inode)
5110 {
5111 	struct super_block *sb = inode->i_sb;
5112 
5113 	if (!S_ISREG(inode->i_mode))
5114 		return false;
5115 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
5116 	    ext4_test_inode_flag(inode, EXT4_INODE_JOURNAL_DATA))
5117 		return false;
5118 	if (ext4_has_feature_verity(sb))
5119 		return false;
5120 	if (ext4_has_feature_encrypt(sb))
5121 		return false;
5122 
5123 	return true;
5124 }
5125 
5126 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
5127 			  ext4_iget_flags flags, const char *function,
5128 			  unsigned int line)
5129 {
5130 	struct ext4_iloc iloc;
5131 	struct ext4_inode *raw_inode;
5132 	struct ext4_inode_info *ei;
5133 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5134 	struct inode *inode;
5135 	journal_t *journal = EXT4_SB(sb)->s_journal;
5136 	long ret;
5137 	loff_t size;
5138 	int block;
5139 	uid_t i_uid;
5140 	gid_t i_gid;
5141 	projid_t i_projid;
5142 
5143 	if ((!(flags & EXT4_IGET_SPECIAL) && is_special_ino(sb, ino)) ||
5144 	    (ino < EXT4_ROOT_INO) ||
5145 	    (ino > le32_to_cpu(es->s_inodes_count))) {
5146 		if (flags & EXT4_IGET_HANDLE)
5147 			return ERR_PTR(-ESTALE);
5148 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
5149 			     "inode #%lu: comm %s: iget: illegal inode #",
5150 			     ino, current->comm);
5151 		return ERR_PTR(-EFSCORRUPTED);
5152 	}
5153 
5154 	inode = iget_locked(sb, ino);
5155 	if (!inode)
5156 		return ERR_PTR(-ENOMEM);
5157 	if (!(inode->i_state & I_NEW)) {
5158 		ret = check_igot_inode(inode, flags, function, line);
5159 		if (ret) {
5160 			iput(inode);
5161 			return ERR_PTR(ret);
5162 		}
5163 		return inode;
5164 	}
5165 
5166 	ei = EXT4_I(inode);
5167 	iloc.bh = NULL;
5168 
5169 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
5170 	if (ret < 0)
5171 		goto bad_inode;
5172 	raw_inode = ext4_raw_inode(&iloc);
5173 
5174 	if ((flags & EXT4_IGET_HANDLE) &&
5175 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
5176 		ret = -ESTALE;
5177 		goto bad_inode;
5178 	}
5179 
5180 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5181 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5182 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5183 			EXT4_INODE_SIZE(inode->i_sb) ||
5184 		    (ei->i_extra_isize & 3)) {
5185 			ext4_error_inode(inode, function, line, 0,
5186 					 "iget: bad extra_isize %u "
5187 					 "(inode size %u)",
5188 					 ei->i_extra_isize,
5189 					 EXT4_INODE_SIZE(inode->i_sb));
5190 			ret = -EFSCORRUPTED;
5191 			goto bad_inode;
5192 		}
5193 	} else
5194 		ei->i_extra_isize = 0;
5195 
5196 	/* Precompute checksum seed for inode metadata */
5197 	if (ext4_has_feature_metadata_csum(sb)) {
5198 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5199 		__u32 csum;
5200 		__le32 inum = cpu_to_le32(inode->i_ino);
5201 		__le32 gen = raw_inode->i_generation;
5202 		csum = ext4_chksum(sbi->s_csum_seed, (__u8 *)&inum,
5203 				   sizeof(inum));
5204 		ei->i_csum_seed = ext4_chksum(csum, (__u8 *)&gen, sizeof(gen));
5205 	}
5206 
5207 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
5208 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
5209 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
5210 		ext4_error_inode_err(inode, function, line, 0,
5211 				EFSBADCRC, "iget: checksum invalid");
5212 		ret = -EFSBADCRC;
5213 		goto bad_inode;
5214 	}
5215 
5216 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5217 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5218 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5219 	if (ext4_has_feature_project(sb) &&
5220 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5221 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5222 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
5223 	else
5224 		i_projid = EXT4_DEF_PROJID;
5225 
5226 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5227 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5228 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5229 	}
5230 	i_uid_write(inode, i_uid);
5231 	i_gid_write(inode, i_gid);
5232 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
5233 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
5234 
5235 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
5236 	ei->i_inline_off = 0;
5237 	ei->i_dir_start_lookup = 0;
5238 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5239 	/* We now have enough fields to check if the inode was active or not.
5240 	 * This is needed because nfsd might try to access dead inodes
5241 	 * the test is that same one that e2fsck uses
5242 	 * NeilBrown 1999oct15
5243 	 */
5244 	if (inode->i_nlink == 0) {
5245 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
5246 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
5247 		    ino != EXT4_BOOT_LOADER_INO) {
5248 			/* this inode is deleted or unallocated */
5249 			if (flags & EXT4_IGET_SPECIAL) {
5250 				ext4_error_inode(inode, function, line, 0,
5251 						 "iget: special inode unallocated");
5252 				ret = -EFSCORRUPTED;
5253 			} else
5254 				ret = -ESTALE;
5255 			goto bad_inode;
5256 		}
5257 		/* The only unlinked inodes we let through here have
5258 		 * valid i_mode and are being read by the orphan
5259 		 * recovery code: that's fine, we're about to complete
5260 		 * the process of deleting those.
5261 		 * OR it is the EXT4_BOOT_LOADER_INO which is
5262 		 * not initialized on a new filesystem. */
5263 	}
5264 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5265 	ext4_set_inode_flags(inode, true);
5266 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5267 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5268 	if (ext4_has_feature_64bit(sb))
5269 		ei->i_file_acl |=
5270 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5271 	inode->i_size = ext4_isize(sb, raw_inode);
5272 	size = i_size_read(inode);
5273 	if (size < 0 || size > ext4_get_maxbytes(inode)) {
5274 		ext4_error_inode(inode, function, line, 0,
5275 				 "iget: bad i_size value: %lld", size);
5276 		ret = -EFSCORRUPTED;
5277 		goto bad_inode;
5278 	}
5279 	/*
5280 	 * If dir_index is not enabled but there's dir with INDEX flag set,
5281 	 * we'd normally treat htree data as empty space. But with metadata
5282 	 * checksumming that corrupts checksums so forbid that.
5283 	 */
5284 	if (!ext4_has_feature_dir_index(sb) &&
5285 	    ext4_has_feature_metadata_csum(sb) &&
5286 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
5287 		ext4_error_inode(inode, function, line, 0,
5288 			 "iget: Dir with htree data on filesystem without dir_index feature.");
5289 		ret = -EFSCORRUPTED;
5290 		goto bad_inode;
5291 	}
5292 	ei->i_disksize = inode->i_size;
5293 #ifdef CONFIG_QUOTA
5294 	ei->i_reserved_quota = 0;
5295 #endif
5296 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5297 	ei->i_block_group = iloc.block_group;
5298 	ei->i_last_alloc_group = ~0;
5299 	/*
5300 	 * NOTE! The in-memory inode i_data array is in little-endian order
5301 	 * even on big-endian machines: we do NOT byteswap the block numbers!
5302 	 */
5303 	for (block = 0; block < EXT4_N_BLOCKS; block++)
5304 		ei->i_data[block] = raw_inode->i_block[block];
5305 	INIT_LIST_HEAD(&ei->i_orphan);
5306 	ext4_fc_init_inode(&ei->vfs_inode);
5307 
5308 	/*
5309 	 * Set transaction id's of transactions that have to be committed
5310 	 * to finish f[data]sync. We set them to currently running transaction
5311 	 * as we cannot be sure that the inode or some of its metadata isn't
5312 	 * part of the transaction - the inode could have been reclaimed and
5313 	 * now it is reread from disk.
5314 	 */
5315 	if (journal) {
5316 		transaction_t *transaction;
5317 		tid_t tid;
5318 
5319 		read_lock(&journal->j_state_lock);
5320 		if (journal->j_running_transaction)
5321 			transaction = journal->j_running_transaction;
5322 		else
5323 			transaction = journal->j_committing_transaction;
5324 		if (transaction)
5325 			tid = transaction->t_tid;
5326 		else
5327 			tid = journal->j_commit_sequence;
5328 		read_unlock(&journal->j_state_lock);
5329 		ei->i_sync_tid = tid;
5330 		ei->i_datasync_tid = tid;
5331 	}
5332 
5333 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5334 		if (ei->i_extra_isize == 0) {
5335 			/* The extra space is currently unused. Use it. */
5336 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5337 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5338 					    EXT4_GOOD_OLD_INODE_SIZE;
5339 		} else {
5340 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5341 			if (ret)
5342 				goto bad_inode;
5343 		}
5344 	}
5345 
5346 	EXT4_INODE_GET_CTIME(inode, raw_inode);
5347 	EXT4_INODE_GET_ATIME(inode, raw_inode);
5348 	EXT4_INODE_GET_MTIME(inode, raw_inode);
5349 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5350 
5351 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5352 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5353 
5354 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5355 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5356 				ivers |=
5357 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5358 		}
5359 		ext4_inode_set_iversion_queried(inode, ivers);
5360 	}
5361 
5362 	ret = 0;
5363 	if (ei->i_file_acl &&
5364 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5365 		ext4_error_inode(inode, function, line, 0,
5366 				 "iget: bad extended attribute block %llu",
5367 				 ei->i_file_acl);
5368 		ret = -EFSCORRUPTED;
5369 		goto bad_inode;
5370 	} else if (!ext4_has_inline_data(inode)) {
5371 		/* validate the block references in the inode */
5372 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5373 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5374 			(S_ISLNK(inode->i_mode) &&
5375 			!ext4_inode_is_fast_symlink(inode)))) {
5376 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5377 				ret = ext4_ext_check_inode(inode);
5378 			else
5379 				ret = ext4_ind_check_inode(inode);
5380 		}
5381 	}
5382 	if (ret)
5383 		goto bad_inode;
5384 
5385 	if (S_ISREG(inode->i_mode)) {
5386 		inode->i_op = &ext4_file_inode_operations;
5387 		inode->i_fop = &ext4_file_operations;
5388 		ext4_set_aops(inode);
5389 	} else if (S_ISDIR(inode->i_mode)) {
5390 		inode->i_op = &ext4_dir_inode_operations;
5391 		inode->i_fop = &ext4_dir_operations;
5392 	} else if (S_ISLNK(inode->i_mode)) {
5393 		/* VFS does not allow setting these so must be corruption */
5394 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5395 			ext4_error_inode(inode, function, line, 0,
5396 					 "iget: immutable or append flags "
5397 					 "not allowed on symlinks");
5398 			ret = -EFSCORRUPTED;
5399 			goto bad_inode;
5400 		}
5401 		if (IS_ENCRYPTED(inode)) {
5402 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5403 		} else if (ext4_inode_is_fast_symlink(inode)) {
5404 			inode->i_op = &ext4_fast_symlink_inode_operations;
5405 			if (inode->i_size == 0 ||
5406 			    inode->i_size >= sizeof(ei->i_data) ||
5407 			    strnlen((char *)ei->i_data, inode->i_size + 1) !=
5408 								inode->i_size) {
5409 				ext4_error_inode(inode, function, line, 0,
5410 					"invalid fast symlink length %llu",
5411 					 (unsigned long long)inode->i_size);
5412 				ret = -EFSCORRUPTED;
5413 				goto bad_inode;
5414 			}
5415 			inode_set_cached_link(inode, (char *)ei->i_data,
5416 					      inode->i_size);
5417 		} else {
5418 			inode->i_op = &ext4_symlink_inode_operations;
5419 		}
5420 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5421 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5422 		inode->i_op = &ext4_special_inode_operations;
5423 		if (raw_inode->i_block[0])
5424 			init_special_inode(inode, inode->i_mode,
5425 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5426 		else
5427 			init_special_inode(inode, inode->i_mode,
5428 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5429 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5430 		make_bad_inode(inode);
5431 	} else {
5432 		ret = -EFSCORRUPTED;
5433 		ext4_error_inode(inode, function, line, 0,
5434 				 "iget: bogus i_mode (%o)", inode->i_mode);
5435 		goto bad_inode;
5436 	}
5437 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5438 		ext4_error_inode(inode, function, line, 0,
5439 				 "casefold flag without casefold feature");
5440 		ret = -EFSCORRUPTED;
5441 		goto bad_inode;
5442 	}
5443 	if (ext4_should_enable_large_folio(inode))
5444 		mapping_set_large_folios(inode->i_mapping);
5445 
5446 	ret = check_igot_inode(inode, flags, function, line);
5447 	/*
5448 	 * -ESTALE here means there is nothing inherently wrong with the inode,
5449 	 * it's just not an inode we can return for an fhandle lookup.
5450 	 */
5451 	if (ret == -ESTALE) {
5452 		brelse(iloc.bh);
5453 		unlock_new_inode(inode);
5454 		iput(inode);
5455 		return ERR_PTR(-ESTALE);
5456 	}
5457 	if (ret)
5458 		goto bad_inode;
5459 	brelse(iloc.bh);
5460 
5461 	unlock_new_inode(inode);
5462 	return inode;
5463 
5464 bad_inode:
5465 	brelse(iloc.bh);
5466 	iget_failed(inode);
5467 	return ERR_PTR(ret);
5468 }
5469 
5470 static void __ext4_update_other_inode_time(struct super_block *sb,
5471 					   unsigned long orig_ino,
5472 					   unsigned long ino,
5473 					   struct ext4_inode *raw_inode)
5474 {
5475 	struct inode *inode;
5476 
5477 	inode = find_inode_by_ino_rcu(sb, ino);
5478 	if (!inode)
5479 		return;
5480 
5481 	if (!inode_is_dirtytime_only(inode))
5482 		return;
5483 
5484 	spin_lock(&inode->i_lock);
5485 	if (inode_is_dirtytime_only(inode)) {
5486 		struct ext4_inode_info	*ei = EXT4_I(inode);
5487 
5488 		inode->i_state &= ~I_DIRTY_TIME;
5489 		spin_unlock(&inode->i_lock);
5490 
5491 		spin_lock(&ei->i_raw_lock);
5492 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5493 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5494 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5495 		ext4_inode_csum_set(inode, raw_inode, ei);
5496 		spin_unlock(&ei->i_raw_lock);
5497 		trace_ext4_other_inode_update_time(inode, orig_ino);
5498 		return;
5499 	}
5500 	spin_unlock(&inode->i_lock);
5501 }
5502 
5503 /*
5504  * Opportunistically update the other time fields for other inodes in
5505  * the same inode table block.
5506  */
5507 static void ext4_update_other_inodes_time(struct super_block *sb,
5508 					  unsigned long orig_ino, char *buf)
5509 {
5510 	unsigned long ino;
5511 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5512 	int inode_size = EXT4_INODE_SIZE(sb);
5513 
5514 	/*
5515 	 * Calculate the first inode in the inode table block.  Inode
5516 	 * numbers are one-based.  That is, the first inode in a block
5517 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5518 	 */
5519 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5520 	rcu_read_lock();
5521 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5522 		if (ino == orig_ino)
5523 			continue;
5524 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5525 					       (struct ext4_inode *)buf);
5526 	}
5527 	rcu_read_unlock();
5528 }
5529 
5530 /*
5531  * Post the struct inode info into an on-disk inode location in the
5532  * buffer-cache.  This gobbles the caller's reference to the
5533  * buffer_head in the inode location struct.
5534  *
5535  * The caller must have write access to iloc->bh.
5536  */
5537 static int ext4_do_update_inode(handle_t *handle,
5538 				struct inode *inode,
5539 				struct ext4_iloc *iloc)
5540 {
5541 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5542 	struct ext4_inode_info *ei = EXT4_I(inode);
5543 	struct buffer_head *bh = iloc->bh;
5544 	struct super_block *sb = inode->i_sb;
5545 	int err;
5546 	int need_datasync = 0, set_large_file = 0;
5547 
5548 	spin_lock(&ei->i_raw_lock);
5549 
5550 	/*
5551 	 * For fields not tracked in the in-memory inode, initialise them
5552 	 * to zero for new inodes.
5553 	 */
5554 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5555 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5556 
5557 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5558 		need_datasync = 1;
5559 	if (ei->i_disksize > 0x7fffffffULL) {
5560 		if (!ext4_has_feature_large_file(sb) ||
5561 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5562 			set_large_file = 1;
5563 	}
5564 
5565 	err = ext4_fill_raw_inode(inode, raw_inode);
5566 	spin_unlock(&ei->i_raw_lock);
5567 	if (err) {
5568 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5569 		goto out_brelse;
5570 	}
5571 
5572 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5573 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5574 					      bh->b_data);
5575 
5576 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5577 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5578 	if (err)
5579 		goto out_error;
5580 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5581 	if (set_large_file) {
5582 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5583 		err = ext4_journal_get_write_access(handle, sb,
5584 						    EXT4_SB(sb)->s_sbh,
5585 						    EXT4_JTR_NONE);
5586 		if (err)
5587 			goto out_error;
5588 		lock_buffer(EXT4_SB(sb)->s_sbh);
5589 		ext4_set_feature_large_file(sb);
5590 		ext4_superblock_csum_set(sb);
5591 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5592 		ext4_handle_sync(handle);
5593 		err = ext4_handle_dirty_metadata(handle, NULL,
5594 						 EXT4_SB(sb)->s_sbh);
5595 	}
5596 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5597 out_error:
5598 	ext4_std_error(inode->i_sb, err);
5599 out_brelse:
5600 	brelse(bh);
5601 	return err;
5602 }
5603 
5604 /*
5605  * ext4_write_inode()
5606  *
5607  * We are called from a few places:
5608  *
5609  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5610  *   Here, there will be no transaction running. We wait for any running
5611  *   transaction to commit.
5612  *
5613  * - Within flush work (sys_sync(), kupdate and such).
5614  *   We wait on commit, if told to.
5615  *
5616  * - Within iput_final() -> write_inode_now()
5617  *   We wait on commit, if told to.
5618  *
5619  * In all cases it is actually safe for us to return without doing anything,
5620  * because the inode has been copied into a raw inode buffer in
5621  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5622  * writeback.
5623  *
5624  * Note that we are absolutely dependent upon all inode dirtiers doing the
5625  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5626  * which we are interested.
5627  *
5628  * It would be a bug for them to not do this.  The code:
5629  *
5630  *	mark_inode_dirty(inode)
5631  *	stuff();
5632  *	inode->i_size = expr;
5633  *
5634  * is in error because write_inode() could occur while `stuff()' is running,
5635  * and the new i_size will be lost.  Plus the inode will no longer be on the
5636  * superblock's dirty inode list.
5637  */
5638 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5639 {
5640 	int err;
5641 
5642 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5643 		return 0;
5644 
5645 	err = ext4_emergency_state(inode->i_sb);
5646 	if (unlikely(err))
5647 		return err;
5648 
5649 	if (EXT4_SB(inode->i_sb)->s_journal) {
5650 		if (ext4_journal_current_handle()) {
5651 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5652 			dump_stack();
5653 			return -EIO;
5654 		}
5655 
5656 		/*
5657 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5658 		 * ext4_sync_fs() will force the commit after everything is
5659 		 * written.
5660 		 */
5661 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5662 			return 0;
5663 
5664 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5665 						EXT4_I(inode)->i_sync_tid);
5666 	} else {
5667 		struct ext4_iloc iloc;
5668 
5669 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5670 		if (err)
5671 			return err;
5672 		/*
5673 		 * sync(2) will flush the whole buffer cache. No need to do
5674 		 * it here separately for each inode.
5675 		 */
5676 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5677 			sync_dirty_buffer(iloc.bh);
5678 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5679 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5680 					       "IO error syncing inode");
5681 			err = -EIO;
5682 		}
5683 		brelse(iloc.bh);
5684 	}
5685 	return err;
5686 }
5687 
5688 /*
5689  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5690  * buffers that are attached to a folio straddling i_size and are undergoing
5691  * commit. In that case we have to wait for commit to finish and try again.
5692  */
5693 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5694 {
5695 	unsigned offset;
5696 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5697 	tid_t commit_tid;
5698 	int ret;
5699 	bool has_transaction;
5700 
5701 	offset = inode->i_size & (PAGE_SIZE - 1);
5702 	/*
5703 	 * If the folio is fully truncated, we don't need to wait for any commit
5704 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5705 	 * strip all buffers from the folio but keep the folio dirty which can then
5706 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5707 	 * buffers). Also we don't need to wait for any commit if all buffers in
5708 	 * the folio remain valid. This is most beneficial for the common case of
5709 	 * blocksize == PAGESIZE.
5710 	 */
5711 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5712 		return;
5713 	while (1) {
5714 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5715 				      inode->i_size >> PAGE_SHIFT);
5716 		if (IS_ERR(folio))
5717 			return;
5718 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5719 						folio_size(folio) - offset);
5720 		folio_unlock(folio);
5721 		folio_put(folio);
5722 		if (ret != -EBUSY)
5723 			return;
5724 		has_transaction = false;
5725 		read_lock(&journal->j_state_lock);
5726 		if (journal->j_committing_transaction) {
5727 			commit_tid = journal->j_committing_transaction->t_tid;
5728 			has_transaction = true;
5729 		}
5730 		read_unlock(&journal->j_state_lock);
5731 		if (has_transaction)
5732 			jbd2_log_wait_commit(journal, commit_tid);
5733 	}
5734 }
5735 
5736 /*
5737  * ext4_setattr()
5738  *
5739  * Called from notify_change.
5740  *
5741  * We want to trap VFS attempts to truncate the file as soon as
5742  * possible.  In particular, we want to make sure that when the VFS
5743  * shrinks i_size, we put the inode on the orphan list and modify
5744  * i_disksize immediately, so that during the subsequent flushing of
5745  * dirty pages and freeing of disk blocks, we can guarantee that any
5746  * commit will leave the blocks being flushed in an unused state on
5747  * disk.  (On recovery, the inode will get truncated and the blocks will
5748  * be freed, so we have a strong guarantee that no future commit will
5749  * leave these blocks visible to the user.)
5750  *
5751  * Another thing we have to assure is that if we are in ordered mode
5752  * and inode is still attached to the committing transaction, we must
5753  * we start writeout of all the dirty pages which are being truncated.
5754  * This way we are sure that all the data written in the previous
5755  * transaction are already on disk (truncate waits for pages under
5756  * writeback).
5757  *
5758  * Called with inode->i_rwsem down.
5759  */
5760 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5761 		 struct iattr *attr)
5762 {
5763 	struct inode *inode = d_inode(dentry);
5764 	int error, rc = 0;
5765 	int orphan = 0;
5766 	const unsigned int ia_valid = attr->ia_valid;
5767 	bool inc_ivers = true;
5768 
5769 	error = ext4_emergency_state(inode->i_sb);
5770 	if (unlikely(error))
5771 		return error;
5772 
5773 	if (unlikely(IS_IMMUTABLE(inode)))
5774 		return -EPERM;
5775 
5776 	if (unlikely(IS_APPEND(inode) &&
5777 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5778 				  ATTR_GID | ATTR_TIMES_SET))))
5779 		return -EPERM;
5780 
5781 	error = setattr_prepare(idmap, dentry, attr);
5782 	if (error)
5783 		return error;
5784 
5785 	error = fscrypt_prepare_setattr(dentry, attr);
5786 	if (error)
5787 		return error;
5788 
5789 	error = fsverity_prepare_setattr(dentry, attr);
5790 	if (error)
5791 		return error;
5792 
5793 	if (is_quota_modification(idmap, inode, attr)) {
5794 		error = dquot_initialize(inode);
5795 		if (error)
5796 			return error;
5797 	}
5798 
5799 	if (i_uid_needs_update(idmap, attr, inode) ||
5800 	    i_gid_needs_update(idmap, attr, inode)) {
5801 		handle_t *handle;
5802 
5803 		/* (user+group)*(old+new) structure, inode write (sb,
5804 		 * inode block, ? - but truncate inode update has it) */
5805 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5806 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5807 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5808 		if (IS_ERR(handle)) {
5809 			error = PTR_ERR(handle);
5810 			goto err_out;
5811 		}
5812 
5813 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5814 		 * counts xattr inode references.
5815 		 */
5816 		down_read(&EXT4_I(inode)->xattr_sem);
5817 		error = dquot_transfer(idmap, inode, attr);
5818 		up_read(&EXT4_I(inode)->xattr_sem);
5819 
5820 		if (error) {
5821 			ext4_journal_stop(handle);
5822 			return error;
5823 		}
5824 		/* Update corresponding info in inode so that everything is in
5825 		 * one transaction */
5826 		i_uid_update(idmap, attr, inode);
5827 		i_gid_update(idmap, attr, inode);
5828 		error = ext4_mark_inode_dirty(handle, inode);
5829 		ext4_journal_stop(handle);
5830 		if (unlikely(error)) {
5831 			return error;
5832 		}
5833 	}
5834 
5835 	if (attr->ia_valid & ATTR_SIZE) {
5836 		handle_t *handle;
5837 		loff_t oldsize = inode->i_size;
5838 		loff_t old_disksize;
5839 		int shrink = (attr->ia_size < inode->i_size);
5840 
5841 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5842 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5843 
5844 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5845 				return -EFBIG;
5846 			}
5847 		}
5848 		if (!S_ISREG(inode->i_mode)) {
5849 			return -EINVAL;
5850 		}
5851 
5852 		if (attr->ia_size == inode->i_size)
5853 			inc_ivers = false;
5854 
5855 		if (shrink) {
5856 			if (ext4_should_order_data(inode)) {
5857 				error = ext4_begin_ordered_truncate(inode,
5858 							    attr->ia_size);
5859 				if (error)
5860 					goto err_out;
5861 			}
5862 			/*
5863 			 * Blocks are going to be removed from the inode. Wait
5864 			 * for dio in flight.
5865 			 */
5866 			inode_dio_wait(inode);
5867 		}
5868 
5869 		filemap_invalidate_lock(inode->i_mapping);
5870 
5871 		rc = ext4_break_layouts(inode);
5872 		if (rc) {
5873 			filemap_invalidate_unlock(inode->i_mapping);
5874 			goto err_out;
5875 		}
5876 
5877 		if (attr->ia_size != inode->i_size) {
5878 			/* attach jbd2 jinode for EOF folio tail zeroing */
5879 			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5880 			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5881 				error = ext4_inode_attach_jinode(inode);
5882 				if (error)
5883 					goto out_mmap_sem;
5884 			}
5885 
5886 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5887 			if (IS_ERR(handle)) {
5888 				error = PTR_ERR(handle);
5889 				goto out_mmap_sem;
5890 			}
5891 			if (ext4_handle_valid(handle) && shrink) {
5892 				error = ext4_orphan_add(handle, inode);
5893 				orphan = 1;
5894 			}
5895 			/*
5896 			 * Update c/mtime and tail zero the EOF folio on
5897 			 * truncate up. ext4_truncate() handles the shrink case
5898 			 * below.
5899 			 */
5900 			if (!shrink) {
5901 				inode_set_mtime_to_ts(inode,
5902 						      inode_set_ctime_current(inode));
5903 				if (oldsize & (inode->i_sb->s_blocksize - 1))
5904 					ext4_block_truncate_page(handle,
5905 							inode->i_mapping, oldsize);
5906 			}
5907 
5908 			if (shrink)
5909 				ext4_fc_track_range(handle, inode,
5910 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5911 					inode->i_sb->s_blocksize_bits,
5912 					EXT_MAX_BLOCKS - 1);
5913 			else
5914 				ext4_fc_track_range(
5915 					handle, inode,
5916 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5917 					inode->i_sb->s_blocksize_bits,
5918 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5919 					inode->i_sb->s_blocksize_bits);
5920 
5921 			down_write(&EXT4_I(inode)->i_data_sem);
5922 			old_disksize = EXT4_I(inode)->i_disksize;
5923 			EXT4_I(inode)->i_disksize = attr->ia_size;
5924 
5925 			/*
5926 			 * We have to update i_size under i_data_sem together
5927 			 * with i_disksize to avoid races with writeback code
5928 			 * running ext4_wb_update_i_disksize().
5929 			 */
5930 			if (!error)
5931 				i_size_write(inode, attr->ia_size);
5932 			else
5933 				EXT4_I(inode)->i_disksize = old_disksize;
5934 			up_write(&EXT4_I(inode)->i_data_sem);
5935 			rc = ext4_mark_inode_dirty(handle, inode);
5936 			if (!error)
5937 				error = rc;
5938 			ext4_journal_stop(handle);
5939 			if (error)
5940 				goto out_mmap_sem;
5941 			if (!shrink) {
5942 				pagecache_isize_extended(inode, oldsize,
5943 							 inode->i_size);
5944 			} else if (ext4_should_journal_data(inode)) {
5945 				ext4_wait_for_tail_page_commit(inode);
5946 			}
5947 		}
5948 
5949 		/*
5950 		 * Truncate pagecache after we've waited for commit
5951 		 * in data=journal mode to make pages freeable.
5952 		 */
5953 		truncate_pagecache(inode, inode->i_size);
5954 		/*
5955 		 * Call ext4_truncate() even if i_size didn't change to
5956 		 * truncate possible preallocated blocks.
5957 		 */
5958 		if (attr->ia_size <= oldsize) {
5959 			rc = ext4_truncate(inode);
5960 			if (rc)
5961 				error = rc;
5962 		}
5963 out_mmap_sem:
5964 		filemap_invalidate_unlock(inode->i_mapping);
5965 	}
5966 
5967 	if (!error) {
5968 		if (inc_ivers)
5969 			inode_inc_iversion(inode);
5970 		setattr_copy(idmap, inode, attr);
5971 		mark_inode_dirty(inode);
5972 	}
5973 
5974 	/*
5975 	 * If the call to ext4_truncate failed to get a transaction handle at
5976 	 * all, we need to clean up the in-core orphan list manually.
5977 	 */
5978 	if (orphan && inode->i_nlink)
5979 		ext4_orphan_del(NULL, inode);
5980 
5981 	if (!error && (ia_valid & ATTR_MODE))
5982 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5983 
5984 err_out:
5985 	if  (error)
5986 		ext4_std_error(inode->i_sb, error);
5987 	if (!error)
5988 		error = rc;
5989 	return error;
5990 }
5991 
5992 u32 ext4_dio_alignment(struct inode *inode)
5993 {
5994 	if (fsverity_active(inode))
5995 		return 0;
5996 	if (ext4_should_journal_data(inode))
5997 		return 0;
5998 	if (ext4_has_inline_data(inode))
5999 		return 0;
6000 	if (IS_ENCRYPTED(inode)) {
6001 		if (!fscrypt_dio_supported(inode))
6002 			return 0;
6003 		return i_blocksize(inode);
6004 	}
6005 	return 1; /* use the iomap defaults */
6006 }
6007 
6008 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
6009 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
6010 {
6011 	struct inode *inode = d_inode(path->dentry);
6012 	struct ext4_inode *raw_inode;
6013 	struct ext4_inode_info *ei = EXT4_I(inode);
6014 	unsigned int flags;
6015 
6016 	if ((request_mask & STATX_BTIME) &&
6017 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
6018 		stat->result_mask |= STATX_BTIME;
6019 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
6020 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
6021 	}
6022 
6023 	/*
6024 	 * Return the DIO alignment restrictions if requested.  We only return
6025 	 * this information when requested, since on encrypted files it might
6026 	 * take a fair bit of work to get if the file wasn't opened recently.
6027 	 */
6028 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
6029 		u32 dio_align = ext4_dio_alignment(inode);
6030 
6031 		stat->result_mask |= STATX_DIOALIGN;
6032 		if (dio_align == 1) {
6033 			struct block_device *bdev = inode->i_sb->s_bdev;
6034 
6035 			/* iomap defaults */
6036 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
6037 			stat->dio_offset_align = bdev_logical_block_size(bdev);
6038 		} else {
6039 			stat->dio_mem_align = dio_align;
6040 			stat->dio_offset_align = dio_align;
6041 		}
6042 	}
6043 
6044 	if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
6045 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6046 		unsigned int awu_min = 0, awu_max = 0;
6047 
6048 		if (ext4_inode_can_atomic_write(inode)) {
6049 			awu_min = sbi->s_awu_min;
6050 			awu_max = sbi->s_awu_max;
6051 		}
6052 
6053 		generic_fill_statx_atomic_writes(stat, awu_min, awu_max, 0);
6054 	}
6055 
6056 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
6057 	if (flags & EXT4_APPEND_FL)
6058 		stat->attributes |= STATX_ATTR_APPEND;
6059 	if (flags & EXT4_COMPR_FL)
6060 		stat->attributes |= STATX_ATTR_COMPRESSED;
6061 	if (flags & EXT4_ENCRYPT_FL)
6062 		stat->attributes |= STATX_ATTR_ENCRYPTED;
6063 	if (flags & EXT4_IMMUTABLE_FL)
6064 		stat->attributes |= STATX_ATTR_IMMUTABLE;
6065 	if (flags & EXT4_NODUMP_FL)
6066 		stat->attributes |= STATX_ATTR_NODUMP;
6067 	if (flags & EXT4_VERITY_FL)
6068 		stat->attributes |= STATX_ATTR_VERITY;
6069 
6070 	stat->attributes_mask |= (STATX_ATTR_APPEND |
6071 				  STATX_ATTR_COMPRESSED |
6072 				  STATX_ATTR_ENCRYPTED |
6073 				  STATX_ATTR_IMMUTABLE |
6074 				  STATX_ATTR_NODUMP |
6075 				  STATX_ATTR_VERITY);
6076 
6077 	generic_fillattr(idmap, request_mask, inode, stat);
6078 	return 0;
6079 }
6080 
6081 int ext4_file_getattr(struct mnt_idmap *idmap,
6082 		      const struct path *path, struct kstat *stat,
6083 		      u32 request_mask, unsigned int query_flags)
6084 {
6085 	struct inode *inode = d_inode(path->dentry);
6086 	u64 delalloc_blocks;
6087 
6088 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
6089 
6090 	/*
6091 	 * If there is inline data in the inode, the inode will normally not
6092 	 * have data blocks allocated (it may have an external xattr block).
6093 	 * Report at least one sector for such files, so tools like tar, rsync,
6094 	 * others don't incorrectly think the file is completely sparse.
6095 	 */
6096 	if (unlikely(ext4_has_inline_data(inode)))
6097 		stat->blocks += (stat->size + 511) >> 9;
6098 
6099 	/*
6100 	 * We can't update i_blocks if the block allocation is delayed
6101 	 * otherwise in the case of system crash before the real block
6102 	 * allocation is done, we will have i_blocks inconsistent with
6103 	 * on-disk file blocks.
6104 	 * We always keep i_blocks updated together with real
6105 	 * allocation. But to not confuse with user, stat
6106 	 * will return the blocks that include the delayed allocation
6107 	 * blocks for this file.
6108 	 */
6109 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
6110 				   EXT4_I(inode)->i_reserved_data_blocks);
6111 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
6112 	return 0;
6113 }
6114 
6115 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
6116 				   int pextents)
6117 {
6118 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
6119 		return ext4_ind_trans_blocks(inode, lblocks);
6120 	return ext4_ext_index_trans_blocks(inode, pextents);
6121 }
6122 
6123 /*
6124  * Account for index blocks, block groups bitmaps and block group
6125  * descriptor blocks if modify datablocks and index blocks
6126  * worse case, the indexs blocks spread over different block groups
6127  *
6128  * If datablocks are discontiguous, they are possible to spread over
6129  * different block groups too. If they are contiguous, with flexbg,
6130  * they could still across block group boundary.
6131  *
6132  * Also account for superblock, inode, quota and xattr blocks
6133  */
6134 int ext4_meta_trans_blocks(struct inode *inode, int lblocks, int pextents)
6135 {
6136 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
6137 	int gdpblocks;
6138 	int idxblocks;
6139 	int ret;
6140 
6141 	/*
6142 	 * How many index and lead blocks need to touch to map @lblocks
6143 	 * logical blocks to @pextents physical extents?
6144 	 */
6145 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
6146 
6147 	/*
6148 	 * Now let's see how many group bitmaps and group descriptors need
6149 	 * to account
6150 	 */
6151 	groups = idxblocks;
6152 	gdpblocks = groups;
6153 	if (groups > ngroups)
6154 		groups = ngroups;
6155 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
6156 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
6157 
6158 	/* bitmaps and block group descriptor blocks */
6159 	ret = idxblocks + groups + gdpblocks;
6160 
6161 	/* Blocks for super block, inode, quota and xattr blocks */
6162 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
6163 
6164 	return ret;
6165 }
6166 
6167 /*
6168  * Calculate the total number of credits to reserve to fit
6169  * the modification of a single pages into a single transaction,
6170  * which may include multiple chunks of block allocations.
6171  *
6172  * This could be called via ext4_write_begin()
6173  *
6174  * We need to consider the worse case, when
6175  * one new block per extent.
6176  */
6177 int ext4_writepage_trans_blocks(struct inode *inode)
6178 {
6179 	int bpp = ext4_journal_blocks_per_folio(inode);
6180 	int ret;
6181 
6182 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
6183 
6184 	/* Account for data blocks for journalled mode */
6185 	if (ext4_should_journal_data(inode))
6186 		ret += bpp;
6187 	return ret;
6188 }
6189 
6190 /*
6191  * Calculate the journal credits for a chunk of data modification.
6192  *
6193  * This is called from DIO, fallocate or whoever calling
6194  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
6195  *
6196  * journal buffers for data blocks are not included here, as DIO
6197  * and fallocate do no need to journal data buffers.
6198  */
6199 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
6200 {
6201 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
6202 }
6203 
6204 /*
6205  * The caller must have previously called ext4_reserve_inode_write().
6206  * Give this, we know that the caller already has write access to iloc->bh.
6207  */
6208 int ext4_mark_iloc_dirty(handle_t *handle,
6209 			 struct inode *inode, struct ext4_iloc *iloc)
6210 {
6211 	int err = 0;
6212 
6213 	err = ext4_emergency_state(inode->i_sb);
6214 	if (unlikely(err)) {
6215 		put_bh(iloc->bh);
6216 		return err;
6217 	}
6218 	ext4_fc_track_inode(handle, inode);
6219 
6220 	/* the do_update_inode consumes one bh->b_count */
6221 	get_bh(iloc->bh);
6222 
6223 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
6224 	err = ext4_do_update_inode(handle, inode, iloc);
6225 	put_bh(iloc->bh);
6226 	return err;
6227 }
6228 
6229 /*
6230  * On success, We end up with an outstanding reference count against
6231  * iloc->bh.  This _must_ be cleaned up later.
6232  */
6233 
6234 int
6235 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
6236 			 struct ext4_iloc *iloc)
6237 {
6238 	int err;
6239 
6240 	err = ext4_emergency_state(inode->i_sb);
6241 	if (unlikely(err))
6242 		return err;
6243 
6244 	err = ext4_get_inode_loc(inode, iloc);
6245 	if (!err) {
6246 		BUFFER_TRACE(iloc->bh, "get_write_access");
6247 		err = ext4_journal_get_write_access(handle, inode->i_sb,
6248 						    iloc->bh, EXT4_JTR_NONE);
6249 		if (err) {
6250 			brelse(iloc->bh);
6251 			iloc->bh = NULL;
6252 		}
6253 		ext4_fc_track_inode(handle, inode);
6254 	}
6255 	ext4_std_error(inode->i_sb, err);
6256 	return err;
6257 }
6258 
6259 static int __ext4_expand_extra_isize(struct inode *inode,
6260 				     unsigned int new_extra_isize,
6261 				     struct ext4_iloc *iloc,
6262 				     handle_t *handle, int *no_expand)
6263 {
6264 	struct ext4_inode *raw_inode;
6265 	struct ext4_xattr_ibody_header *header;
6266 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
6267 	struct ext4_inode_info *ei = EXT4_I(inode);
6268 	int error;
6269 
6270 	/* this was checked at iget time, but double check for good measure */
6271 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
6272 	    (ei->i_extra_isize & 3)) {
6273 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
6274 				 ei->i_extra_isize,
6275 				 EXT4_INODE_SIZE(inode->i_sb));
6276 		return -EFSCORRUPTED;
6277 	}
6278 	if ((new_extra_isize < ei->i_extra_isize) ||
6279 	    (new_extra_isize < 4) ||
6280 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
6281 		return -EINVAL;	/* Should never happen */
6282 
6283 	raw_inode = ext4_raw_inode(iloc);
6284 
6285 	header = IHDR(inode, raw_inode);
6286 
6287 	/* No extended attributes present */
6288 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
6289 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6290 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
6291 		       EXT4_I(inode)->i_extra_isize, 0,
6292 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
6293 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
6294 		return 0;
6295 	}
6296 
6297 	/*
6298 	 * We may need to allocate external xattr block so we need quotas
6299 	 * initialized. Here we can be called with various locks held so we
6300 	 * cannot affort to initialize quotas ourselves. So just bail.
6301 	 */
6302 	if (dquot_initialize_needed(inode))
6303 		return -EAGAIN;
6304 
6305 	/* try to expand with EAs present */
6306 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
6307 					   raw_inode, handle);
6308 	if (error) {
6309 		/*
6310 		 * Inode size expansion failed; don't try again
6311 		 */
6312 		*no_expand = 1;
6313 	}
6314 
6315 	return error;
6316 }
6317 
6318 /*
6319  * Expand an inode by new_extra_isize bytes.
6320  * Returns 0 on success or negative error number on failure.
6321  */
6322 static int ext4_try_to_expand_extra_isize(struct inode *inode,
6323 					  unsigned int new_extra_isize,
6324 					  struct ext4_iloc iloc,
6325 					  handle_t *handle)
6326 {
6327 	int no_expand;
6328 	int error;
6329 
6330 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6331 		return -EOVERFLOW;
6332 
6333 	/*
6334 	 * In nojournal mode, we can immediately attempt to expand
6335 	 * the inode.  When journaled, we first need to obtain extra
6336 	 * buffer credits since we may write into the EA block
6337 	 * with this same handle. If journal_extend fails, then it will
6338 	 * only result in a minor loss of functionality for that inode.
6339 	 * If this is felt to be critical, then e2fsck should be run to
6340 	 * force a large enough s_min_extra_isize.
6341 	 */
6342 	if (ext4_journal_extend(handle,
6343 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
6344 		return -ENOSPC;
6345 
6346 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6347 		return -EBUSY;
6348 
6349 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6350 					  handle, &no_expand);
6351 	ext4_write_unlock_xattr(inode, &no_expand);
6352 
6353 	return error;
6354 }
6355 
6356 int ext4_expand_extra_isize(struct inode *inode,
6357 			    unsigned int new_extra_isize,
6358 			    struct ext4_iloc *iloc)
6359 {
6360 	handle_t *handle;
6361 	int no_expand;
6362 	int error, rc;
6363 
6364 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6365 		brelse(iloc->bh);
6366 		return -EOVERFLOW;
6367 	}
6368 
6369 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
6370 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6371 	if (IS_ERR(handle)) {
6372 		error = PTR_ERR(handle);
6373 		brelse(iloc->bh);
6374 		return error;
6375 	}
6376 
6377 	ext4_write_lock_xattr(inode, &no_expand);
6378 
6379 	BUFFER_TRACE(iloc->bh, "get_write_access");
6380 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6381 					      EXT4_JTR_NONE);
6382 	if (error) {
6383 		brelse(iloc->bh);
6384 		goto out_unlock;
6385 	}
6386 
6387 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6388 					  handle, &no_expand);
6389 
6390 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6391 	if (!error)
6392 		error = rc;
6393 
6394 out_unlock:
6395 	ext4_write_unlock_xattr(inode, &no_expand);
6396 	ext4_journal_stop(handle);
6397 	return error;
6398 }
6399 
6400 /*
6401  * What we do here is to mark the in-core inode as clean with respect to inode
6402  * dirtiness (it may still be data-dirty).
6403  * This means that the in-core inode may be reaped by prune_icache
6404  * without having to perform any I/O.  This is a very good thing,
6405  * because *any* task may call prune_icache - even ones which
6406  * have a transaction open against a different journal.
6407  *
6408  * Is this cheating?  Not really.  Sure, we haven't written the
6409  * inode out, but prune_icache isn't a user-visible syncing function.
6410  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6411  * we start and wait on commits.
6412  */
6413 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6414 				const char *func, unsigned int line)
6415 {
6416 	struct ext4_iloc iloc;
6417 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6418 	int err;
6419 
6420 	might_sleep();
6421 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6422 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6423 	if (err)
6424 		goto out;
6425 
6426 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6427 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6428 					       iloc, handle);
6429 
6430 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6431 out:
6432 	if (unlikely(err))
6433 		ext4_error_inode_err(inode, func, line, 0, err,
6434 					"mark_inode_dirty error");
6435 	return err;
6436 }
6437 
6438 /*
6439  * ext4_dirty_inode() is called from __mark_inode_dirty()
6440  *
6441  * We're really interested in the case where a file is being extended.
6442  * i_size has been changed by generic_commit_write() and we thus need
6443  * to include the updated inode in the current transaction.
6444  *
6445  * Also, dquot_alloc_block() will always dirty the inode when blocks
6446  * are allocated to the file.
6447  *
6448  * If the inode is marked synchronous, we don't honour that here - doing
6449  * so would cause a commit on atime updates, which we don't bother doing.
6450  * We handle synchronous inodes at the highest possible level.
6451  */
6452 void ext4_dirty_inode(struct inode *inode, int flags)
6453 {
6454 	handle_t *handle;
6455 
6456 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6457 	if (IS_ERR(handle))
6458 		return;
6459 	ext4_mark_inode_dirty(handle, inode);
6460 	ext4_journal_stop(handle);
6461 }
6462 
6463 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6464 {
6465 	journal_t *journal;
6466 	handle_t *handle;
6467 	int err;
6468 	int alloc_ctx;
6469 
6470 	/*
6471 	 * We have to be very careful here: changing a data block's
6472 	 * journaling status dynamically is dangerous.  If we write a
6473 	 * data block to the journal, change the status and then delete
6474 	 * that block, we risk forgetting to revoke the old log record
6475 	 * from the journal and so a subsequent replay can corrupt data.
6476 	 * So, first we make sure that the journal is empty and that
6477 	 * nobody is changing anything.
6478 	 */
6479 
6480 	journal = EXT4_JOURNAL(inode);
6481 	if (!journal)
6482 		return 0;
6483 	if (is_journal_aborted(journal))
6484 		return -EROFS;
6485 
6486 	/* Wait for all existing dio workers */
6487 	inode_dio_wait(inode);
6488 
6489 	/*
6490 	 * Before flushing the journal and switching inode's aops, we have
6491 	 * to flush all dirty data the inode has. There can be outstanding
6492 	 * delayed allocations, there can be unwritten extents created by
6493 	 * fallocate or buffered writes in dioread_nolock mode covered by
6494 	 * dirty data which can be converted only after flushing the dirty
6495 	 * data (and journalled aops don't know how to handle these cases).
6496 	 */
6497 	if (val) {
6498 		filemap_invalidate_lock(inode->i_mapping);
6499 		err = filemap_write_and_wait(inode->i_mapping);
6500 		if (err < 0) {
6501 			filemap_invalidate_unlock(inode->i_mapping);
6502 			return err;
6503 		}
6504 	}
6505 
6506 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6507 	jbd2_journal_lock_updates(journal);
6508 
6509 	/*
6510 	 * OK, there are no updates running now, and all cached data is
6511 	 * synced to disk.  We are now in a completely consistent state
6512 	 * which doesn't have anything in the journal, and we know that
6513 	 * no filesystem updates are running, so it is safe to modify
6514 	 * the inode's in-core data-journaling state flag now.
6515 	 */
6516 
6517 	if (val)
6518 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6519 	else {
6520 		err = jbd2_journal_flush(journal, 0);
6521 		if (err < 0) {
6522 			jbd2_journal_unlock_updates(journal);
6523 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6524 			return err;
6525 		}
6526 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6527 	}
6528 	ext4_set_aops(inode);
6529 
6530 	jbd2_journal_unlock_updates(journal);
6531 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6532 
6533 	if (val)
6534 		filemap_invalidate_unlock(inode->i_mapping);
6535 
6536 	/* Finally we can mark the inode as dirty. */
6537 
6538 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6539 	if (IS_ERR(handle))
6540 		return PTR_ERR(handle);
6541 
6542 	ext4_fc_mark_ineligible(inode->i_sb,
6543 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6544 	err = ext4_mark_inode_dirty(handle, inode);
6545 	ext4_handle_sync(handle);
6546 	ext4_journal_stop(handle);
6547 	ext4_std_error(inode->i_sb, err);
6548 
6549 	return err;
6550 }
6551 
6552 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6553 			    struct buffer_head *bh)
6554 {
6555 	return !buffer_mapped(bh);
6556 }
6557 
6558 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6559 {
6560 	struct vm_area_struct *vma = vmf->vma;
6561 	struct folio *folio = page_folio(vmf->page);
6562 	loff_t size;
6563 	unsigned long len;
6564 	int err;
6565 	vm_fault_t ret;
6566 	struct file *file = vma->vm_file;
6567 	struct inode *inode = file_inode(file);
6568 	struct address_space *mapping = inode->i_mapping;
6569 	handle_t *handle;
6570 	get_block_t *get_block;
6571 	int retries = 0;
6572 
6573 	if (unlikely(IS_IMMUTABLE(inode)))
6574 		return VM_FAULT_SIGBUS;
6575 
6576 	sb_start_pagefault(inode->i_sb);
6577 	file_update_time(vma->vm_file);
6578 
6579 	filemap_invalidate_lock_shared(mapping);
6580 
6581 	err = ext4_convert_inline_data(inode);
6582 	if (err)
6583 		goto out_ret;
6584 
6585 	/*
6586 	 * On data journalling we skip straight to the transaction handle:
6587 	 * there's no delalloc; page truncated will be checked later; the
6588 	 * early return w/ all buffers mapped (calculates size/len) can't
6589 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6590 	 */
6591 	if (ext4_should_journal_data(inode))
6592 		goto retry_alloc;
6593 
6594 	/* Delalloc case is easy... */
6595 	if (test_opt(inode->i_sb, DELALLOC) &&
6596 	    !ext4_nonda_switch(inode->i_sb)) {
6597 		do {
6598 			err = block_page_mkwrite(vma, vmf,
6599 						   ext4_da_get_block_prep);
6600 		} while (err == -ENOSPC &&
6601 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6602 		goto out_ret;
6603 	}
6604 
6605 	folio_lock(folio);
6606 	size = i_size_read(inode);
6607 	/* Page got truncated from under us? */
6608 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6609 		folio_unlock(folio);
6610 		ret = VM_FAULT_NOPAGE;
6611 		goto out;
6612 	}
6613 
6614 	len = folio_size(folio);
6615 	if (folio_pos(folio) + len > size)
6616 		len = size - folio_pos(folio);
6617 	/*
6618 	 * Return if we have all the buffers mapped. This avoids the need to do
6619 	 * journal_start/journal_stop which can block and take a long time
6620 	 *
6621 	 * This cannot be done for data journalling, as we have to add the
6622 	 * inode to the transaction's list to writeprotect pages on commit.
6623 	 */
6624 	if (folio_buffers(folio)) {
6625 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6626 					    0, len, NULL,
6627 					    ext4_bh_unmapped)) {
6628 			/* Wait so that we don't change page under IO */
6629 			folio_wait_stable(folio);
6630 			ret = VM_FAULT_LOCKED;
6631 			goto out;
6632 		}
6633 	}
6634 	folio_unlock(folio);
6635 	/* OK, we need to fill the hole... */
6636 	if (ext4_should_dioread_nolock(inode))
6637 		get_block = ext4_get_block_unwritten;
6638 	else
6639 		get_block = ext4_get_block;
6640 retry_alloc:
6641 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6642 				    ext4_writepage_trans_blocks(inode));
6643 	if (IS_ERR(handle)) {
6644 		ret = VM_FAULT_SIGBUS;
6645 		goto out;
6646 	}
6647 	/*
6648 	 * Data journalling can't use block_page_mkwrite() because it
6649 	 * will set_buffer_dirty() before do_journal_get_write_access()
6650 	 * thus might hit warning messages for dirty metadata buffers.
6651 	 */
6652 	if (!ext4_should_journal_data(inode)) {
6653 		err = block_page_mkwrite(vma, vmf, get_block);
6654 	} else {
6655 		folio_lock(folio);
6656 		size = i_size_read(inode);
6657 		/* Page got truncated from under us? */
6658 		if (folio->mapping != mapping || folio_pos(folio) > size) {
6659 			ret = VM_FAULT_NOPAGE;
6660 			goto out_error;
6661 		}
6662 
6663 		len = folio_size(folio);
6664 		if (folio_pos(folio) + len > size)
6665 			len = size - folio_pos(folio);
6666 
6667 		err = ext4_block_write_begin(handle, folio, 0, len,
6668 					     ext4_get_block);
6669 		if (!err) {
6670 			ret = VM_FAULT_SIGBUS;
6671 			if (ext4_journal_folio_buffers(handle, folio, len))
6672 				goto out_error;
6673 		} else {
6674 			folio_unlock(folio);
6675 		}
6676 	}
6677 	ext4_journal_stop(handle);
6678 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6679 		goto retry_alloc;
6680 out_ret:
6681 	ret = vmf_fs_error(err);
6682 out:
6683 	filemap_invalidate_unlock_shared(mapping);
6684 	sb_end_pagefault(inode->i_sb);
6685 	return ret;
6686 out_error:
6687 	folio_unlock(folio);
6688 	ext4_journal_stop(handle);
6689 	goto out;
6690 }
6691