1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * fs/ext4/fast_commit.c 5 * 6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com> 7 * 8 * Ext4 fast commits routines. 9 */ 10 #include "ext4.h" 11 #include "ext4_jbd2.h" 12 #include "ext4_extents.h" 13 #include "mballoc.h" 14 15 #include <linux/lockdep.h> 16 /* 17 * Ext4 Fast Commits 18 * ----------------- 19 * 20 * Ext4 fast commits implement fine grained journalling for Ext4. 21 * 22 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See 23 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by 24 * TLV during the recovery phase. For the scenarios for which we currently 25 * don't have replay code, fast commit falls back to full commits. 26 * Fast commits record delta in one of the following three categories. 27 * 28 * (A) Directory entry updates: 29 * 30 * - EXT4_FC_TAG_UNLINK - records directory entry unlink 31 * - EXT4_FC_TAG_LINK - records directory entry link 32 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation 33 * 34 * (B) File specific data range updates: 35 * 36 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode 37 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode 38 * 39 * (C) Inode metadata (mtime / ctime etc): 40 * 41 * - EXT4_FC_TAG_INODE - record the inode that should be replayed 42 * during recovery. Note that iblocks field is 43 * not replayed and instead derived during 44 * replay. 45 * Commit Operation 46 * ---------------- 47 * With fast commits, we maintain all the directory entry operations in the 48 * order in which they are issued in an in-memory queue. This queue is flushed 49 * to disk during the commit operation. We also maintain a list of inodes 50 * that need to be committed during a fast commit in another in memory queue of 51 * inodes. During the commit operation, we commit in the following order: 52 * 53 * [1] Prepare all the inodes to write out their data by setting 54 * "EXT4_STATE_FC_FLUSHING_DATA". This ensures that inode cannot be 55 * deleted while it is being flushed. 56 * [2] Flush data buffers to disk and clear "EXT4_STATE_FC_FLUSHING_DATA" 57 * state. 58 * [3] Lock the journal by calling jbd2_journal_lock_updates. This ensures that 59 * all the exsiting handles finish and no new handles can start. 60 * [4] Mark all the fast commit eligible inodes as undergoing fast commit 61 * by setting "EXT4_STATE_FC_COMMITTING" state. 62 * [5] Unlock the journal by calling jbd2_journal_unlock_updates. This allows 63 * starting of new handles. If new handles try to start an update on 64 * any of the inodes that are being committed, ext4_fc_track_inode() 65 * will block until those inodes have finished the fast commit. 66 * [6] Commit all the directory entry updates in the fast commit space. 67 * [7] Commit all the changed inodes in the fast commit space and clear 68 * "EXT4_STATE_FC_COMMITTING" for these inodes. 69 * [8] Write tail tag (this tag ensures the atomicity, please read the following 70 * section for more details). 71 * 72 * All the inode updates must be enclosed within jbd2_jounrnal_start() 73 * and jbd2_journal_stop() similar to JBD2 journaling. 74 * 75 * Fast Commit Ineligibility 76 * ------------------------- 77 * 78 * Not all operations are supported by fast commits today (e.g extended 79 * attributes). Fast commit ineligibility is marked by calling 80 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back 81 * to full commit. 82 * 83 * Atomicity of commits 84 * -------------------- 85 * In order to guarantee atomicity during the commit operation, fast commit 86 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail 87 * tag contains CRC of the contents and TID of the transaction after which 88 * this fast commit should be applied. Recovery code replays fast commit 89 * logs only if there's at least 1 valid tail present. For every fast commit 90 * operation, there is 1 tail. This means, we may end up with multiple tails 91 * in the fast commit space. Here's an example: 92 * 93 * - Create a new file A and remove existing file B 94 * - fsync() 95 * - Append contents to file A 96 * - Truncate file A 97 * - fsync() 98 * 99 * The fast commit space at the end of above operations would look like this: 100 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL] 101 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->| 102 * 103 * Replay code should thus check for all the valid tails in the FC area. 104 * 105 * Fast Commit Replay Idempotence 106 * ------------------------------ 107 * 108 * Fast commits tags are idempotent in nature provided the recovery code follows 109 * certain rules. The guiding principle that the commit path follows while 110 * committing is that it stores the result of a particular operation instead of 111 * storing the procedure. 112 * 113 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a' 114 * was associated with inode 10. During fast commit, instead of storing this 115 * operation as a procedure "rename a to b", we store the resulting file system 116 * state as a "series" of outcomes: 117 * 118 * - Link dirent b to inode 10 119 * - Unlink dirent a 120 * - Inode <10> with valid refcount 121 * 122 * Now when recovery code runs, it needs "enforce" this state on the file 123 * system. This is what guarantees idempotence of fast commit replay. 124 * 125 * Let's take an example of a procedure that is not idempotent and see how fast 126 * commits make it idempotent. Consider following sequence of operations: 127 * 128 * rm A; mv B A; read A 129 * (x) (y) (z) 130 * 131 * (x), (y) and (z) are the points at which we can crash. If we store this 132 * sequence of operations as is then the replay is not idempotent. Let's say 133 * while in replay, we crash at (z). During the second replay, file A (which was 134 * actually created as a result of "mv B A" operation) would get deleted. Thus, 135 * file named A would be absent when we try to read A. So, this sequence of 136 * operations is not idempotent. However, as mentioned above, instead of storing 137 * the procedure fast commits store the outcome of each procedure. Thus the fast 138 * commit log for above procedure would be as follows: 139 * 140 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to 141 * inode 11 before the replay) 142 * 143 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11] 144 * (w) (x) (y) (z) 145 * 146 * If we crash at (z), we will have file A linked to inode 11. During the second 147 * replay, we will remove file A (inode 11). But we will create it back and make 148 * it point to inode 11. We won't find B, so we'll just skip that step. At this 149 * point, the refcount for inode 11 is not reliable, but that gets fixed by the 150 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled 151 * similarly. Thus, by converting a non-idempotent procedure into a series of 152 * idempotent outcomes, fast commits ensured idempotence during the replay. 153 * 154 * Locking 155 * ------- 156 * sbi->s_fc_lock protects the fast commit inodes queue and the fast commit 157 * dentry queue. ei->i_fc_lock protects the fast commit related info in a given 158 * inode. Most of the code avoids acquiring both the locks, but if one must do 159 * that then sbi->s_fc_lock must be acquired before ei->i_fc_lock. 160 * 161 * TODOs 162 * ----- 163 * 164 * 0) Fast commit replay path hardening: Fast commit replay code should use 165 * journal handles to make sure all the updates it does during the replay 166 * path are atomic. With that if we crash during fast commit replay, after 167 * trying to do recovery again, we will find a file system where fast commit 168 * area is invalid (because new full commit would be found). In order to deal 169 * with that, fast commit replay code should ensure that the "FC_REPLAY" 170 * superblock state is persisted before starting the replay, so that after 171 * the crash, fast commit recovery code can look at that flag and perform 172 * fast commit recovery even if that area is invalidated by later full 173 * commits. 174 * 175 * 1) Handle more ineligible cases. 176 * 177 * 2) Change ext4_fc_commit() to lookup logical to physical mapping using extent 178 * status tree. This would get rid of the need to call ext4_fc_track_inode() 179 * before acquiring i_data_sem. To do that we would need to ensure that 180 * modified extents from the extent status tree are not evicted from memory. 181 */ 182 183 #include <trace/events/ext4.h> 184 static struct kmem_cache *ext4_fc_dentry_cachep; 185 186 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate) 187 { 188 BUFFER_TRACE(bh, ""); 189 if (uptodate) { 190 ext4_debug("%s: Block %lld up-to-date", 191 __func__, bh->b_blocknr); 192 set_buffer_uptodate(bh); 193 } else { 194 ext4_debug("%s: Block %lld not up-to-date", 195 __func__, bh->b_blocknr); 196 clear_buffer_uptodate(bh); 197 } 198 199 unlock_buffer(bh); 200 } 201 202 static inline void ext4_fc_reset_inode(struct inode *inode) 203 { 204 struct ext4_inode_info *ei = EXT4_I(inode); 205 206 ei->i_fc_lblk_start = 0; 207 ei->i_fc_lblk_len = 0; 208 } 209 210 void ext4_fc_init_inode(struct inode *inode) 211 { 212 struct ext4_inode_info *ei = EXT4_I(inode); 213 214 ext4_fc_reset_inode(inode); 215 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING); 216 INIT_LIST_HEAD(&ei->i_fc_list); 217 INIT_LIST_HEAD(&ei->i_fc_dilist); 218 init_waitqueue_head(&ei->i_fc_wait); 219 } 220 221 static bool ext4_fc_disabled(struct super_block *sb) 222 { 223 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) || 224 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)); 225 } 226 227 /* 228 * Remove inode from fast commit list. If the inode is being committed 229 * we wait until inode commit is done. 230 */ 231 void ext4_fc_del(struct inode *inode) 232 { 233 struct ext4_inode_info *ei = EXT4_I(inode); 234 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 235 struct ext4_fc_dentry_update *fc_dentry; 236 wait_queue_head_t *wq; 237 238 if (ext4_fc_disabled(inode->i_sb)) 239 return; 240 241 mutex_lock(&sbi->s_fc_lock); 242 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) { 243 mutex_unlock(&sbi->s_fc_lock); 244 return; 245 } 246 247 /* 248 * Since ext4_fc_del is called from ext4_evict_inode while having a 249 * handle open, there is no need for us to wait here even if a fast 250 * commit is going on. That is because, if this inode is being 251 * committed, ext4_mark_inode_dirty would have waited for inode commit 252 * operation to finish before we come here. So, by the time we come 253 * here, inode's EXT4_STATE_FC_COMMITTING would have been cleared. So, 254 * we shouldn't see EXT4_STATE_FC_COMMITTING to be set on this inode 255 * here. 256 * 257 * We may come here without any handles open in the "no_delete" case of 258 * ext4_evict_inode as well. However, if that happens, we first mark the 259 * file system as fast commit ineligible anyway. So, even in that case, 260 * it is okay to remove the inode from the fc list. 261 */ 262 WARN_ON(ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING) 263 && !ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)); 264 while (ext4_test_inode_state(inode, EXT4_STATE_FC_FLUSHING_DATA)) { 265 #if (BITS_PER_LONG < 64) 266 DEFINE_WAIT_BIT(wait, &ei->i_state_flags, 267 EXT4_STATE_FC_FLUSHING_DATA); 268 wq = bit_waitqueue(&ei->i_state_flags, 269 EXT4_STATE_FC_FLUSHING_DATA); 270 #else 271 DEFINE_WAIT_BIT(wait, &ei->i_flags, 272 EXT4_STATE_FC_FLUSHING_DATA); 273 wq = bit_waitqueue(&ei->i_flags, 274 EXT4_STATE_FC_FLUSHING_DATA); 275 #endif 276 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 277 if (ext4_test_inode_state(inode, EXT4_STATE_FC_FLUSHING_DATA)) { 278 mutex_unlock(&sbi->s_fc_lock); 279 schedule(); 280 mutex_lock(&sbi->s_fc_lock); 281 } 282 finish_wait(wq, &wait.wq_entry); 283 } 284 list_del_init(&ei->i_fc_list); 285 286 /* 287 * Since this inode is getting removed, let's also remove all FC 288 * dentry create references, since it is not needed to log it anyways. 289 */ 290 if (list_empty(&ei->i_fc_dilist)) { 291 mutex_unlock(&sbi->s_fc_lock); 292 return; 293 } 294 295 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist); 296 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT); 297 list_del_init(&fc_dentry->fcd_list); 298 list_del_init(&fc_dentry->fcd_dilist); 299 300 WARN_ON(!list_empty(&ei->i_fc_dilist)); 301 mutex_unlock(&sbi->s_fc_lock); 302 303 release_dentry_name_snapshot(&fc_dentry->fcd_name); 304 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 305 } 306 307 /* 308 * Mark file system as fast commit ineligible, and record latest 309 * ineligible transaction tid. This means until the recorded 310 * transaction, commit operation would result in a full jbd2 commit. 311 */ 312 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle) 313 { 314 struct ext4_sb_info *sbi = EXT4_SB(sb); 315 tid_t tid; 316 bool has_transaction = true; 317 bool is_ineligible; 318 319 if (ext4_fc_disabled(sb)) 320 return; 321 322 if (handle && !IS_ERR(handle)) 323 tid = handle->h_transaction->t_tid; 324 else { 325 read_lock(&sbi->s_journal->j_state_lock); 326 if (sbi->s_journal->j_running_transaction) 327 tid = sbi->s_journal->j_running_transaction->t_tid; 328 else 329 has_transaction = false; 330 read_unlock(&sbi->s_journal->j_state_lock); 331 } 332 mutex_lock(&sbi->s_fc_lock); 333 is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 334 if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid))) 335 sbi->s_fc_ineligible_tid = tid; 336 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 337 mutex_unlock(&sbi->s_fc_lock); 338 WARN_ON(reason >= EXT4_FC_REASON_MAX); 339 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; 340 } 341 342 /* 343 * Generic fast commit tracking function. If this is the first time this we are 344 * called after a full commit, we initialize fast commit fields and then call 345 * __fc_track_fn() with update = 0. If we have already been called after a full 346 * commit, we pass update = 1. Based on that, the track function can determine 347 * if it needs to track a field for the first time or if it needs to just 348 * update the previously tracked value. 349 * 350 * If enqueue is set, this function enqueues the inode in fast commit list. 351 */ 352 static int ext4_fc_track_template( 353 handle_t *handle, struct inode *inode, 354 int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool), 355 void *args, int enqueue) 356 { 357 bool update = false; 358 struct ext4_inode_info *ei = EXT4_I(inode); 359 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 360 tid_t tid = 0; 361 int ret; 362 363 tid = handle->h_transaction->t_tid; 364 spin_lock(&ei->i_fc_lock); 365 if (tid == ei->i_sync_tid) { 366 update = true; 367 } else { 368 ext4_fc_reset_inode(inode); 369 ei->i_sync_tid = tid; 370 } 371 ret = __fc_track_fn(handle, inode, args, update); 372 spin_unlock(&ei->i_fc_lock); 373 if (!enqueue) 374 return ret; 375 376 mutex_lock(&sbi->s_fc_lock); 377 if (list_empty(&EXT4_I(inode)->i_fc_list)) 378 list_add_tail(&EXT4_I(inode)->i_fc_list, 379 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 380 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ? 381 &sbi->s_fc_q[FC_Q_STAGING] : 382 &sbi->s_fc_q[FC_Q_MAIN]); 383 mutex_unlock(&sbi->s_fc_lock); 384 385 return ret; 386 } 387 388 struct __track_dentry_update_args { 389 struct dentry *dentry; 390 int op; 391 }; 392 393 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */ 394 static int __track_dentry_update(handle_t *handle, struct inode *inode, 395 void *arg, bool update) 396 { 397 struct ext4_fc_dentry_update *node; 398 struct ext4_inode_info *ei = EXT4_I(inode); 399 struct __track_dentry_update_args *dentry_update = 400 (struct __track_dentry_update_args *)arg; 401 struct dentry *dentry = dentry_update->dentry; 402 struct inode *dir = dentry->d_parent->d_inode; 403 struct super_block *sb = inode->i_sb; 404 struct ext4_sb_info *sbi = EXT4_SB(sb); 405 406 spin_unlock(&ei->i_fc_lock); 407 408 if (IS_ENCRYPTED(dir)) { 409 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME, 410 handle); 411 spin_lock(&ei->i_fc_lock); 412 return -EOPNOTSUPP; 413 } 414 415 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS); 416 if (!node) { 417 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle); 418 spin_lock(&ei->i_fc_lock); 419 return -ENOMEM; 420 } 421 422 node->fcd_op = dentry_update->op; 423 node->fcd_parent = dir->i_ino; 424 node->fcd_ino = inode->i_ino; 425 take_dentry_name_snapshot(&node->fcd_name, dentry); 426 INIT_LIST_HEAD(&node->fcd_dilist); 427 INIT_LIST_HEAD(&node->fcd_list); 428 mutex_lock(&sbi->s_fc_lock); 429 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 430 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) 431 list_add_tail(&node->fcd_list, 432 &sbi->s_fc_dentry_q[FC_Q_STAGING]); 433 else 434 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]); 435 436 /* 437 * This helps us keep a track of all fc_dentry updates which is part of 438 * this ext4 inode. So in case the inode is getting unlinked, before 439 * even we get a chance to fsync, we could remove all fc_dentry 440 * references while evicting the inode in ext4_fc_del(). 441 * Also with this, we don't need to loop over all the inodes in 442 * sbi->s_fc_q to get the corresponding inode in 443 * ext4_fc_commit_dentry_updates(). 444 */ 445 if (dentry_update->op == EXT4_FC_TAG_CREAT) { 446 WARN_ON(!list_empty(&ei->i_fc_dilist)); 447 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist); 448 } 449 mutex_unlock(&sbi->s_fc_lock); 450 spin_lock(&ei->i_fc_lock); 451 452 return 0; 453 } 454 455 void __ext4_fc_track_unlink(handle_t *handle, 456 struct inode *inode, struct dentry *dentry) 457 { 458 struct __track_dentry_update_args args; 459 int ret; 460 461 args.dentry = dentry; 462 args.op = EXT4_FC_TAG_UNLINK; 463 464 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 465 (void *)&args, 0); 466 trace_ext4_fc_track_unlink(handle, inode, dentry, ret); 467 } 468 469 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry) 470 { 471 struct inode *inode = d_inode(dentry); 472 473 if (ext4_fc_disabled(inode->i_sb)) 474 return; 475 476 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 477 return; 478 479 __ext4_fc_track_unlink(handle, inode, dentry); 480 } 481 482 void __ext4_fc_track_link(handle_t *handle, 483 struct inode *inode, struct dentry *dentry) 484 { 485 struct __track_dentry_update_args args; 486 int ret; 487 488 args.dentry = dentry; 489 args.op = EXT4_FC_TAG_LINK; 490 491 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 492 (void *)&args, 0); 493 trace_ext4_fc_track_link(handle, inode, dentry, ret); 494 } 495 496 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry) 497 { 498 struct inode *inode = d_inode(dentry); 499 500 if (ext4_fc_disabled(inode->i_sb)) 501 return; 502 503 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 504 return; 505 506 __ext4_fc_track_link(handle, inode, dentry); 507 } 508 509 void __ext4_fc_track_create(handle_t *handle, struct inode *inode, 510 struct dentry *dentry) 511 { 512 struct __track_dentry_update_args args; 513 int ret; 514 515 args.dentry = dentry; 516 args.op = EXT4_FC_TAG_CREAT; 517 518 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 519 (void *)&args, 0); 520 trace_ext4_fc_track_create(handle, inode, dentry, ret); 521 } 522 523 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry) 524 { 525 struct inode *inode = d_inode(dentry); 526 527 if (ext4_fc_disabled(inode->i_sb)) 528 return; 529 530 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 531 return; 532 533 __ext4_fc_track_create(handle, inode, dentry); 534 } 535 536 /* __track_fn for inode tracking */ 537 static int __track_inode(handle_t *handle, struct inode *inode, void *arg, 538 bool update) 539 { 540 if (update) 541 return -EEXIST; 542 543 EXT4_I(inode)->i_fc_lblk_len = 0; 544 545 return 0; 546 } 547 548 void ext4_fc_track_inode(handle_t *handle, struct inode *inode) 549 { 550 struct ext4_inode_info *ei = EXT4_I(inode); 551 wait_queue_head_t *wq; 552 int ret; 553 554 if (S_ISDIR(inode->i_mode)) 555 return; 556 557 if (ext4_fc_disabled(inode->i_sb)) 558 return; 559 560 if (ext4_should_journal_data(inode)) { 561 ext4_fc_mark_ineligible(inode->i_sb, 562 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle); 563 return; 564 } 565 566 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 567 return; 568 569 /* 570 * If we come here, we may sleep while waiting for the inode to 571 * commit. We shouldn't be holding i_data_sem when we go to sleep since 572 * the commit path needs to grab the lock while committing the inode. 573 */ 574 lockdep_assert_not_held(&ei->i_data_sem); 575 576 while (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 577 #if (BITS_PER_LONG < 64) 578 DEFINE_WAIT_BIT(wait, &ei->i_state_flags, 579 EXT4_STATE_FC_COMMITTING); 580 wq = bit_waitqueue(&ei->i_state_flags, 581 EXT4_STATE_FC_COMMITTING); 582 #else 583 DEFINE_WAIT_BIT(wait, &ei->i_flags, 584 EXT4_STATE_FC_COMMITTING); 585 wq = bit_waitqueue(&ei->i_flags, 586 EXT4_STATE_FC_COMMITTING); 587 #endif 588 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 589 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) 590 schedule(); 591 finish_wait(wq, &wait.wq_entry); 592 } 593 594 /* 595 * From this point on, this inode will not be committed either 596 * by fast or full commit as long as the handle is open. 597 */ 598 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1); 599 trace_ext4_fc_track_inode(handle, inode, ret); 600 } 601 602 struct __track_range_args { 603 ext4_lblk_t start, end; 604 }; 605 606 /* __track_fn for tracking data updates */ 607 static int __track_range(handle_t *handle, struct inode *inode, void *arg, 608 bool update) 609 { 610 struct ext4_inode_info *ei = EXT4_I(inode); 611 ext4_lblk_t oldstart; 612 struct __track_range_args *__arg = 613 (struct __track_range_args *)arg; 614 615 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) { 616 ext4_debug("Special inode %ld being modified\n", inode->i_ino); 617 return -ECANCELED; 618 } 619 620 oldstart = ei->i_fc_lblk_start; 621 622 if (update && ei->i_fc_lblk_len > 0) { 623 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start); 624 ei->i_fc_lblk_len = 625 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) - 626 ei->i_fc_lblk_start + 1; 627 } else { 628 ei->i_fc_lblk_start = __arg->start; 629 ei->i_fc_lblk_len = __arg->end - __arg->start + 1; 630 } 631 632 return 0; 633 } 634 635 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, 636 ext4_lblk_t end) 637 { 638 struct __track_range_args args; 639 int ret; 640 641 if (S_ISDIR(inode->i_mode)) 642 return; 643 644 if (ext4_fc_disabled(inode->i_sb)) 645 return; 646 647 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 648 return; 649 650 if (ext4_has_inline_data(inode)) { 651 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR, 652 handle); 653 return; 654 } 655 656 args.start = start; 657 args.end = end; 658 659 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1); 660 661 trace_ext4_fc_track_range(handle, inode, start, end, ret); 662 } 663 664 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail) 665 { 666 blk_opf_t write_flags = REQ_SYNC; 667 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh; 668 669 /* Add REQ_FUA | REQ_PREFLUSH only its tail */ 670 if (test_opt(sb, BARRIER) && is_tail) 671 write_flags |= REQ_FUA | REQ_PREFLUSH; 672 lock_buffer(bh); 673 set_buffer_dirty(bh); 674 set_buffer_uptodate(bh); 675 bh->b_end_io = ext4_end_buffer_io_sync; 676 submit_bh(REQ_OP_WRITE | write_flags, bh); 677 EXT4_SB(sb)->s_fc_bh = NULL; 678 } 679 680 /* Ext4 commit path routines */ 681 682 /* 683 * Allocate len bytes on a fast commit buffer. 684 * 685 * During the commit time this function is used to manage fast commit 686 * block space. We don't split a fast commit log onto different 687 * blocks. So this function makes sure that if there's not enough space 688 * on the current block, the remaining space in the current block is 689 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case, 690 * new block is from jbd2 and CRC is updated to reflect the padding 691 * we added. 692 */ 693 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc) 694 { 695 struct ext4_fc_tl tl; 696 struct ext4_sb_info *sbi = EXT4_SB(sb); 697 struct buffer_head *bh; 698 int bsize = sbi->s_journal->j_blocksize; 699 int ret, off = sbi->s_fc_bytes % bsize; 700 int remaining; 701 u8 *dst; 702 703 /* 704 * If 'len' is too long to fit in any block alongside a PAD tlv, then we 705 * cannot fulfill the request. 706 */ 707 if (len > bsize - EXT4_FC_TAG_BASE_LEN) 708 return NULL; 709 710 if (!sbi->s_fc_bh) { 711 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 712 if (ret) 713 return NULL; 714 sbi->s_fc_bh = bh; 715 } 716 dst = sbi->s_fc_bh->b_data + off; 717 718 /* 719 * Allocate the bytes in the current block if we can do so while still 720 * leaving enough space for a PAD tlv. 721 */ 722 remaining = bsize - EXT4_FC_TAG_BASE_LEN - off; 723 if (len <= remaining) { 724 sbi->s_fc_bytes += len; 725 return dst; 726 } 727 728 /* 729 * Else, terminate the current block with a PAD tlv, then allocate a new 730 * block and allocate the bytes at the start of that new block. 731 */ 732 733 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD); 734 tl.fc_len = cpu_to_le16(remaining); 735 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 736 memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining); 737 *crc = ext4_chksum(*crc, sbi->s_fc_bh->b_data, bsize); 738 739 ext4_fc_submit_bh(sb, false); 740 741 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 742 if (ret) 743 return NULL; 744 sbi->s_fc_bh = bh; 745 sbi->s_fc_bytes += bsize - off + len; 746 return sbi->s_fc_bh->b_data; 747 } 748 749 /* 750 * Complete a fast commit by writing tail tag. 751 * 752 * Writing tail tag marks the end of a fast commit. In order to guarantee 753 * atomicity, after writing tail tag, even if there's space remaining 754 * in the block, next commit shouldn't use it. That's why tail tag 755 * has the length as that of the remaining space on the block. 756 */ 757 static int ext4_fc_write_tail(struct super_block *sb, u32 crc) 758 { 759 struct ext4_sb_info *sbi = EXT4_SB(sb); 760 struct ext4_fc_tl tl; 761 struct ext4_fc_tail tail; 762 int off, bsize = sbi->s_journal->j_blocksize; 763 u8 *dst; 764 765 /* 766 * ext4_fc_reserve_space takes care of allocating an extra block if 767 * there's no enough space on this block for accommodating this tail. 768 */ 769 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc); 770 if (!dst) 771 return -ENOSPC; 772 773 off = sbi->s_fc_bytes % bsize; 774 775 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL); 776 tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail)); 777 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize); 778 779 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 780 dst += EXT4_FC_TAG_BASE_LEN; 781 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid); 782 memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid)); 783 dst += sizeof(tail.fc_tid); 784 crc = ext4_chksum(crc, sbi->s_fc_bh->b_data, 785 dst - (u8 *)sbi->s_fc_bh->b_data); 786 tail.fc_crc = cpu_to_le32(crc); 787 memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc)); 788 dst += sizeof(tail.fc_crc); 789 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */ 790 791 ext4_fc_submit_bh(sb, true); 792 793 return 0; 794 } 795 796 /* 797 * Adds tag, length, value and updates CRC. Returns true if tlv was added. 798 * Returns false if there's not enough space. 799 */ 800 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val, 801 u32 *crc) 802 { 803 struct ext4_fc_tl tl; 804 u8 *dst; 805 806 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc); 807 if (!dst) 808 return false; 809 810 tl.fc_tag = cpu_to_le16(tag); 811 tl.fc_len = cpu_to_le16(len); 812 813 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 814 memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len); 815 816 return true; 817 } 818 819 /* Same as above, but adds dentry tlv. */ 820 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc, 821 struct ext4_fc_dentry_update *fc_dentry) 822 { 823 struct ext4_fc_dentry_info fcd; 824 struct ext4_fc_tl tl; 825 int dlen = fc_dentry->fcd_name.name.len; 826 u8 *dst = ext4_fc_reserve_space(sb, 827 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc); 828 829 if (!dst) 830 return false; 831 832 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent); 833 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino); 834 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op); 835 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen); 836 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 837 dst += EXT4_FC_TAG_BASE_LEN; 838 memcpy(dst, &fcd, sizeof(fcd)); 839 dst += sizeof(fcd); 840 memcpy(dst, fc_dentry->fcd_name.name.name, dlen); 841 842 return true; 843 } 844 845 /* 846 * Writes inode in the fast commit space under TLV with tag @tag. 847 * Returns 0 on success, error on failure. 848 */ 849 static int ext4_fc_write_inode(struct inode *inode, u32 *crc) 850 { 851 struct ext4_inode_info *ei = EXT4_I(inode); 852 int inode_len = EXT4_GOOD_OLD_INODE_SIZE; 853 int ret; 854 struct ext4_iloc iloc; 855 struct ext4_fc_inode fc_inode; 856 struct ext4_fc_tl tl; 857 u8 *dst; 858 859 ret = ext4_get_inode_loc(inode, &iloc); 860 if (ret) 861 return ret; 862 863 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 864 inode_len = EXT4_INODE_SIZE(inode->i_sb); 865 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) 866 inode_len += ei->i_extra_isize; 867 868 fc_inode.fc_ino = cpu_to_le32(inode->i_ino); 869 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE); 870 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino)); 871 872 ret = -ECANCELED; 873 dst = ext4_fc_reserve_space(inode->i_sb, 874 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc); 875 if (!dst) 876 goto err; 877 878 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 879 dst += EXT4_FC_TAG_BASE_LEN; 880 memcpy(dst, &fc_inode, sizeof(fc_inode)); 881 dst += sizeof(fc_inode); 882 memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len); 883 ret = 0; 884 err: 885 brelse(iloc.bh); 886 return ret; 887 } 888 889 /* 890 * Writes updated data ranges for the inode in question. Updates CRC. 891 * Returns 0 on success, error otherwise. 892 */ 893 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc) 894 { 895 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size; 896 struct ext4_inode_info *ei = EXT4_I(inode); 897 struct ext4_map_blocks map; 898 struct ext4_fc_add_range fc_ext; 899 struct ext4_fc_del_range lrange; 900 struct ext4_extent *ex; 901 int ret; 902 903 spin_lock(&ei->i_fc_lock); 904 if (ei->i_fc_lblk_len == 0) { 905 spin_unlock(&ei->i_fc_lock); 906 return 0; 907 } 908 old_blk_size = ei->i_fc_lblk_start; 909 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1; 910 ei->i_fc_lblk_len = 0; 911 spin_unlock(&ei->i_fc_lock); 912 913 cur_lblk_off = old_blk_size; 914 ext4_debug("will try writing %d to %d for inode %ld\n", 915 cur_lblk_off, new_blk_size, inode->i_ino); 916 917 while (cur_lblk_off <= new_blk_size) { 918 map.m_lblk = cur_lblk_off; 919 map.m_len = new_blk_size - cur_lblk_off + 1; 920 ret = ext4_map_blocks(NULL, inode, &map, 921 EXT4_GET_BLOCKS_IO_SUBMIT | 922 EXT4_EX_NOCACHE); 923 if (ret < 0) 924 return -ECANCELED; 925 926 if (map.m_len == 0) { 927 cur_lblk_off++; 928 continue; 929 } 930 931 if (ret == 0) { 932 lrange.fc_ino = cpu_to_le32(inode->i_ino); 933 lrange.fc_lblk = cpu_to_le32(map.m_lblk); 934 lrange.fc_len = cpu_to_le32(map.m_len); 935 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE, 936 sizeof(lrange), (u8 *)&lrange, crc)) 937 return -ENOSPC; 938 } else { 939 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ? 940 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN; 941 942 /* Limit the number of blocks in one extent */ 943 map.m_len = min(max, map.m_len); 944 945 fc_ext.fc_ino = cpu_to_le32(inode->i_ino); 946 ex = (struct ext4_extent *)&fc_ext.fc_ex; 947 ex->ee_block = cpu_to_le32(map.m_lblk); 948 ex->ee_len = cpu_to_le16(map.m_len); 949 ext4_ext_store_pblock(ex, map.m_pblk); 950 if (map.m_flags & EXT4_MAP_UNWRITTEN) 951 ext4_ext_mark_unwritten(ex); 952 else 953 ext4_ext_mark_initialized(ex); 954 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE, 955 sizeof(fc_ext), (u8 *)&fc_ext, crc)) 956 return -ENOSPC; 957 } 958 959 cur_lblk_off += map.m_len; 960 } 961 962 return 0; 963 } 964 965 966 /* Flushes data of all the inodes in the commit queue. */ 967 static int ext4_fc_flush_data(journal_t *journal) 968 { 969 struct super_block *sb = journal->j_private; 970 struct ext4_sb_info *sbi = EXT4_SB(sb); 971 struct ext4_inode_info *ei; 972 int ret = 0; 973 974 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 975 ret = jbd2_submit_inode_data(journal, ei->jinode); 976 if (ret) 977 return ret; 978 } 979 980 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 981 ret = jbd2_wait_inode_data(journal, ei->jinode); 982 if (ret) 983 return ret; 984 } 985 986 return 0; 987 } 988 989 /* Commit all the directory entry updates */ 990 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc) 991 { 992 struct super_block *sb = journal->j_private; 993 struct ext4_sb_info *sbi = EXT4_SB(sb); 994 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n; 995 struct inode *inode; 996 struct ext4_inode_info *ei; 997 int ret; 998 999 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) 1000 return 0; 1001 list_for_each_entry_safe(fc_dentry, fc_dentry_n, 1002 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) { 1003 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) { 1004 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) 1005 return -ENOSPC; 1006 continue; 1007 } 1008 /* 1009 * With fcd_dilist we need not loop in sbi->s_fc_q to get the 1010 * corresponding inode. Also, the corresponding inode could have been 1011 * deleted, in which case, we don't need to do anything. 1012 */ 1013 if (list_empty(&fc_dentry->fcd_dilist)) 1014 continue; 1015 ei = list_first_entry(&fc_dentry->fcd_dilist, 1016 struct ext4_inode_info, i_fc_dilist); 1017 inode = &ei->vfs_inode; 1018 WARN_ON(inode->i_ino != fc_dentry->fcd_ino); 1019 1020 /* 1021 * We first write the inode and then the create dirent. This 1022 * allows the recovery code to create an unnamed inode first 1023 * and then link it to a directory entry. This allows us 1024 * to use namei.c routines almost as is and simplifies 1025 * the recovery code. 1026 */ 1027 ret = ext4_fc_write_inode(inode, crc); 1028 if (ret) 1029 return ret; 1030 ret = ext4_fc_write_inode_data(inode, crc); 1031 if (ret) 1032 return ret; 1033 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) 1034 return -ENOSPC; 1035 } 1036 return 0; 1037 } 1038 1039 static int ext4_fc_perform_commit(journal_t *journal) 1040 { 1041 struct super_block *sb = journal->j_private; 1042 struct ext4_sb_info *sbi = EXT4_SB(sb); 1043 struct ext4_inode_info *iter; 1044 struct ext4_fc_head head; 1045 struct inode *inode; 1046 struct blk_plug plug; 1047 int ret = 0; 1048 u32 crc = 0; 1049 1050 /* 1051 * Step 1: Mark all inodes on s_fc_q[MAIN] with 1052 * EXT4_STATE_FC_FLUSHING_DATA. This prevents these inodes from being 1053 * freed until the data flush is over. 1054 */ 1055 mutex_lock(&sbi->s_fc_lock); 1056 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1057 ext4_set_inode_state(&iter->vfs_inode, 1058 EXT4_STATE_FC_FLUSHING_DATA); 1059 } 1060 mutex_unlock(&sbi->s_fc_lock); 1061 1062 /* Step 2: Flush data for all the eligible inodes. */ 1063 ret = ext4_fc_flush_data(journal); 1064 1065 /* 1066 * Step 3: Clear EXT4_STATE_FC_FLUSHING_DATA flag, before returning 1067 * any error from step 2. This ensures that waiters waiting on 1068 * EXT4_STATE_FC_FLUSHING_DATA can resume. 1069 */ 1070 mutex_lock(&sbi->s_fc_lock); 1071 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1072 ext4_clear_inode_state(&iter->vfs_inode, 1073 EXT4_STATE_FC_FLUSHING_DATA); 1074 #if (BITS_PER_LONG < 64) 1075 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_FLUSHING_DATA); 1076 #else 1077 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_FLUSHING_DATA); 1078 #endif 1079 } 1080 1081 /* 1082 * Make sure clearing of EXT4_STATE_FC_FLUSHING_DATA is visible before 1083 * the waiter checks the bit. Pairs with implicit barrier in 1084 * prepare_to_wait() in ext4_fc_del(). 1085 */ 1086 smp_mb(); 1087 mutex_unlock(&sbi->s_fc_lock); 1088 1089 /* 1090 * If we encountered error in Step 2, return it now after clearing 1091 * EXT4_STATE_FC_FLUSHING_DATA bit. 1092 */ 1093 if (ret) 1094 return ret; 1095 1096 1097 /* Step 4: Mark all inodes as being committed. */ 1098 jbd2_journal_lock_updates(journal); 1099 /* 1100 * The journal is now locked. No more handles can start and all the 1101 * previous handles are now drained. We now mark the inodes on the 1102 * commit queue as being committed. 1103 */ 1104 mutex_lock(&sbi->s_fc_lock); 1105 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1106 ext4_set_inode_state(&iter->vfs_inode, 1107 EXT4_STATE_FC_COMMITTING); 1108 } 1109 mutex_unlock(&sbi->s_fc_lock); 1110 jbd2_journal_unlock_updates(journal); 1111 1112 /* 1113 * Step 5: If file system device is different from journal device, 1114 * issue a cache flush before we start writing fast commit blocks. 1115 */ 1116 if (journal->j_fs_dev != journal->j_dev) 1117 blkdev_issue_flush(journal->j_fs_dev); 1118 1119 blk_start_plug(&plug); 1120 /* Step 6: Write fast commit blocks to disk. */ 1121 if (sbi->s_fc_bytes == 0) { 1122 /* 1123 * Step 6.1: Add a head tag only if this is the first fast 1124 * commit in this TID. 1125 */ 1126 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES); 1127 head.fc_tid = cpu_to_le32( 1128 sbi->s_journal->j_running_transaction->t_tid); 1129 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head), 1130 (u8 *)&head, &crc)) { 1131 ret = -ENOSPC; 1132 goto out; 1133 } 1134 } 1135 1136 /* Step 6.2: Now write all the dentry updates. */ 1137 mutex_lock(&sbi->s_fc_lock); 1138 ret = ext4_fc_commit_dentry_updates(journal, &crc); 1139 if (ret) 1140 goto out; 1141 1142 /* Step 6.3: Now write all the changed inodes to disk. */ 1143 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1144 inode = &iter->vfs_inode; 1145 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) 1146 continue; 1147 1148 ret = ext4_fc_write_inode_data(inode, &crc); 1149 if (ret) 1150 goto out; 1151 ret = ext4_fc_write_inode(inode, &crc); 1152 if (ret) 1153 goto out; 1154 } 1155 /* Step 6.4: Finally write tail tag to conclude this fast commit. */ 1156 ret = ext4_fc_write_tail(sb, crc); 1157 1158 out: 1159 mutex_unlock(&sbi->s_fc_lock); 1160 blk_finish_plug(&plug); 1161 return ret; 1162 } 1163 1164 static void ext4_fc_update_stats(struct super_block *sb, int status, 1165 u64 commit_time, int nblks, tid_t commit_tid) 1166 { 1167 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats; 1168 1169 ext4_debug("Fast commit ended with status = %d for tid %u", 1170 status, commit_tid); 1171 if (status == EXT4_FC_STATUS_OK) { 1172 stats->fc_num_commits++; 1173 stats->fc_numblks += nblks; 1174 if (likely(stats->s_fc_avg_commit_time)) 1175 stats->s_fc_avg_commit_time = 1176 (commit_time + 1177 stats->s_fc_avg_commit_time * 3) / 4; 1178 else 1179 stats->s_fc_avg_commit_time = commit_time; 1180 } else if (status == EXT4_FC_STATUS_FAILED || 1181 status == EXT4_FC_STATUS_INELIGIBLE) { 1182 if (status == EXT4_FC_STATUS_FAILED) 1183 stats->fc_failed_commits++; 1184 stats->fc_ineligible_commits++; 1185 } else { 1186 stats->fc_skipped_commits++; 1187 } 1188 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid); 1189 } 1190 1191 /* 1192 * The main commit entry point. Performs a fast commit for transaction 1193 * commit_tid if needed. If it's not possible to perform a fast commit 1194 * due to various reasons, we fall back to full commit. Returns 0 1195 * on success, error otherwise. 1196 */ 1197 int ext4_fc_commit(journal_t *journal, tid_t commit_tid) 1198 { 1199 struct super_block *sb = journal->j_private; 1200 struct ext4_sb_info *sbi = EXT4_SB(sb); 1201 int nblks = 0, ret, bsize = journal->j_blocksize; 1202 int subtid = atomic_read(&sbi->s_fc_subtid); 1203 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0; 1204 ktime_t start_time, commit_time; 1205 int old_ioprio, journal_ioprio; 1206 1207 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 1208 return jbd2_complete_transaction(journal, commit_tid); 1209 1210 trace_ext4_fc_commit_start(sb, commit_tid); 1211 1212 start_time = ktime_get(); 1213 old_ioprio = get_current_ioprio(); 1214 1215 restart_fc: 1216 ret = jbd2_fc_begin_commit(journal, commit_tid); 1217 if (ret == -EALREADY) { 1218 /* There was an ongoing commit, check if we need to restart */ 1219 if (atomic_read(&sbi->s_fc_subtid) <= subtid && 1220 tid_gt(commit_tid, journal->j_commit_sequence)) 1221 goto restart_fc; 1222 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0, 1223 commit_tid); 1224 return 0; 1225 } else if (ret) { 1226 /* 1227 * Commit couldn't start. Just update stats and perform a 1228 * full commit. 1229 */ 1230 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0, 1231 commit_tid); 1232 return jbd2_complete_transaction(journal, commit_tid); 1233 } 1234 1235 /* 1236 * After establishing journal barrier via jbd2_fc_begin_commit(), check 1237 * if we are fast commit ineligible. 1238 */ 1239 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) { 1240 status = EXT4_FC_STATUS_INELIGIBLE; 1241 goto fallback; 1242 } 1243 1244 /* 1245 * Now that we know that this thread is going to do a fast commit, 1246 * elevate the priority to match that of the journal thread. 1247 */ 1248 if (journal->j_task->io_context) 1249 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 1250 else 1251 journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO; 1252 set_task_ioprio(current, journal_ioprio); 1253 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize; 1254 ret = ext4_fc_perform_commit(journal); 1255 if (ret < 0) { 1256 status = EXT4_FC_STATUS_FAILED; 1257 goto fallback; 1258 } 1259 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before; 1260 ret = jbd2_fc_wait_bufs(journal, nblks); 1261 if (ret < 0) { 1262 status = EXT4_FC_STATUS_FAILED; 1263 goto fallback; 1264 } 1265 atomic_inc(&sbi->s_fc_subtid); 1266 ret = jbd2_fc_end_commit(journal); 1267 set_task_ioprio(current, old_ioprio); 1268 /* 1269 * weight the commit time higher than the average time so we 1270 * don't react too strongly to vast changes in the commit time 1271 */ 1272 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); 1273 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid); 1274 return ret; 1275 1276 fallback: 1277 set_task_ioprio(current, old_ioprio); 1278 ret = jbd2_fc_end_commit_fallback(journal); 1279 ext4_fc_update_stats(sb, status, 0, 0, commit_tid); 1280 return ret; 1281 } 1282 1283 /* 1284 * Fast commit cleanup routine. This is called after every fast commit and 1285 * full commit. full is true if we are called after a full commit. 1286 */ 1287 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid) 1288 { 1289 struct super_block *sb = journal->j_private; 1290 struct ext4_sb_info *sbi = EXT4_SB(sb); 1291 struct ext4_inode_info *ei; 1292 struct ext4_fc_dentry_update *fc_dentry; 1293 1294 if (full && sbi->s_fc_bh) 1295 sbi->s_fc_bh = NULL; 1296 1297 trace_ext4_fc_cleanup(journal, full, tid); 1298 jbd2_fc_release_bufs(journal); 1299 1300 mutex_lock(&sbi->s_fc_lock); 1301 while (!list_empty(&sbi->s_fc_q[FC_Q_MAIN])) { 1302 ei = list_first_entry(&sbi->s_fc_q[FC_Q_MAIN], 1303 struct ext4_inode_info, 1304 i_fc_list); 1305 list_del_init(&ei->i_fc_list); 1306 ext4_clear_inode_state(&ei->vfs_inode, 1307 EXT4_STATE_FC_COMMITTING); 1308 if (tid_geq(tid, ei->i_sync_tid)) { 1309 ext4_fc_reset_inode(&ei->vfs_inode); 1310 } else if (full) { 1311 /* 1312 * We are called after a full commit, inode has been 1313 * modified while the commit was running. Re-enqueue 1314 * the inode into STAGING, which will then be splice 1315 * back into MAIN. This cannot happen during 1316 * fastcommit because the journal is locked all the 1317 * time in that case (and tid doesn't increase so 1318 * tid check above isn't reliable). 1319 */ 1320 list_add_tail(&ei->i_fc_list, 1321 &sbi->s_fc_q[FC_Q_STAGING]); 1322 } 1323 /* 1324 * Make sure clearing of EXT4_STATE_FC_COMMITTING is 1325 * visible before we send the wakeup. Pairs with implicit 1326 * barrier in prepare_to_wait() in ext4_fc_track_inode(). 1327 */ 1328 smp_mb(); 1329 #if (BITS_PER_LONG < 64) 1330 wake_up_bit(&ei->i_state_flags, EXT4_STATE_FC_COMMITTING); 1331 #else 1332 wake_up_bit(&ei->i_flags, EXT4_STATE_FC_COMMITTING); 1333 #endif 1334 } 1335 1336 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) { 1337 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN], 1338 struct ext4_fc_dentry_update, 1339 fcd_list); 1340 list_del_init(&fc_dentry->fcd_list); 1341 list_del_init(&fc_dentry->fcd_dilist); 1342 1343 release_dentry_name_snapshot(&fc_dentry->fcd_name); 1344 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 1345 } 1346 1347 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING], 1348 &sbi->s_fc_dentry_q[FC_Q_MAIN]); 1349 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING], 1350 &sbi->s_fc_q[FC_Q_MAIN]); 1351 1352 if (tid_geq(tid, sbi->s_fc_ineligible_tid)) { 1353 sbi->s_fc_ineligible_tid = 0; 1354 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 1355 } 1356 1357 if (full) 1358 sbi->s_fc_bytes = 0; 1359 mutex_unlock(&sbi->s_fc_lock); 1360 trace_ext4_fc_stats(sb); 1361 } 1362 1363 /* Ext4 Replay Path Routines */ 1364 1365 /* Helper struct for dentry replay routines */ 1366 struct dentry_info_args { 1367 int parent_ino, dname_len, ino, inode_len; 1368 char *dname; 1369 }; 1370 1371 /* Same as struct ext4_fc_tl, but uses native endianness fields */ 1372 struct ext4_fc_tl_mem { 1373 u16 fc_tag; 1374 u16 fc_len; 1375 }; 1376 1377 static inline void tl_to_darg(struct dentry_info_args *darg, 1378 struct ext4_fc_tl_mem *tl, u8 *val) 1379 { 1380 struct ext4_fc_dentry_info fcd; 1381 1382 memcpy(&fcd, val, sizeof(fcd)); 1383 1384 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); 1385 darg->ino = le32_to_cpu(fcd.fc_ino); 1386 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname); 1387 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info); 1388 } 1389 1390 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val) 1391 { 1392 struct ext4_fc_tl tl_disk; 1393 1394 memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN); 1395 tl->fc_len = le16_to_cpu(tl_disk.fc_len); 1396 tl->fc_tag = le16_to_cpu(tl_disk.fc_tag); 1397 } 1398 1399 /* Unlink replay function */ 1400 static int ext4_fc_replay_unlink(struct super_block *sb, 1401 struct ext4_fc_tl_mem *tl, u8 *val) 1402 { 1403 struct inode *inode, *old_parent; 1404 struct qstr entry; 1405 struct dentry_info_args darg; 1406 int ret = 0; 1407 1408 tl_to_darg(&darg, tl, val); 1409 1410 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino, 1411 darg.parent_ino, darg.dname_len); 1412 1413 entry.name = darg.dname; 1414 entry.len = darg.dname_len; 1415 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1416 1417 if (IS_ERR(inode)) { 1418 ext4_debug("Inode %d not found", darg.ino); 1419 return 0; 1420 } 1421 1422 old_parent = ext4_iget(sb, darg.parent_ino, 1423 EXT4_IGET_NORMAL); 1424 if (IS_ERR(old_parent)) { 1425 ext4_debug("Dir with inode %d not found", darg.parent_ino); 1426 iput(inode); 1427 return 0; 1428 } 1429 1430 ret = __ext4_unlink(old_parent, &entry, inode, NULL); 1431 /* -ENOENT ok coz it might not exist anymore. */ 1432 if (ret == -ENOENT) 1433 ret = 0; 1434 iput(old_parent); 1435 iput(inode); 1436 return ret; 1437 } 1438 1439 static int ext4_fc_replay_link_internal(struct super_block *sb, 1440 struct dentry_info_args *darg, 1441 struct inode *inode) 1442 { 1443 struct inode *dir = NULL; 1444 struct dentry *dentry_dir = NULL, *dentry_inode = NULL; 1445 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len); 1446 int ret = 0; 1447 1448 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL); 1449 if (IS_ERR(dir)) { 1450 ext4_debug("Dir with inode %d not found.", darg->parent_ino); 1451 dir = NULL; 1452 goto out; 1453 } 1454 1455 dentry_dir = d_obtain_alias(dir); 1456 if (IS_ERR(dentry_dir)) { 1457 ext4_debug("Failed to obtain dentry"); 1458 dentry_dir = NULL; 1459 goto out; 1460 } 1461 1462 dentry_inode = d_alloc(dentry_dir, &qstr_dname); 1463 if (!dentry_inode) { 1464 ext4_debug("Inode dentry not created."); 1465 ret = -ENOMEM; 1466 goto out; 1467 } 1468 1469 ret = __ext4_link(dir, inode, dentry_inode); 1470 /* 1471 * It's possible that link already existed since data blocks 1472 * for the dir in question got persisted before we crashed OR 1473 * we replayed this tag and crashed before the entire replay 1474 * could complete. 1475 */ 1476 if (ret && ret != -EEXIST) { 1477 ext4_debug("Failed to link\n"); 1478 goto out; 1479 } 1480 1481 ret = 0; 1482 out: 1483 if (dentry_dir) { 1484 d_drop(dentry_dir); 1485 dput(dentry_dir); 1486 } else if (dir) { 1487 iput(dir); 1488 } 1489 if (dentry_inode) { 1490 d_drop(dentry_inode); 1491 dput(dentry_inode); 1492 } 1493 1494 return ret; 1495 } 1496 1497 /* Link replay function */ 1498 static int ext4_fc_replay_link(struct super_block *sb, 1499 struct ext4_fc_tl_mem *tl, u8 *val) 1500 { 1501 struct inode *inode; 1502 struct dentry_info_args darg; 1503 int ret = 0; 1504 1505 tl_to_darg(&darg, tl, val); 1506 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino, 1507 darg.parent_ino, darg.dname_len); 1508 1509 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1510 if (IS_ERR(inode)) { 1511 ext4_debug("Inode not found."); 1512 return 0; 1513 } 1514 1515 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1516 iput(inode); 1517 return ret; 1518 } 1519 1520 /* 1521 * Record all the modified inodes during replay. We use this later to setup 1522 * block bitmaps correctly. 1523 */ 1524 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino) 1525 { 1526 struct ext4_fc_replay_state *state; 1527 int i; 1528 1529 state = &EXT4_SB(sb)->s_fc_replay_state; 1530 for (i = 0; i < state->fc_modified_inodes_used; i++) 1531 if (state->fc_modified_inodes[i] == ino) 1532 return 0; 1533 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) { 1534 int *fc_modified_inodes; 1535 1536 fc_modified_inodes = krealloc(state->fc_modified_inodes, 1537 sizeof(int) * (state->fc_modified_inodes_size + 1538 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1539 GFP_KERNEL); 1540 if (!fc_modified_inodes) 1541 return -ENOMEM; 1542 state->fc_modified_inodes = fc_modified_inodes; 1543 state->fc_modified_inodes_size += 1544 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1545 } 1546 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino; 1547 return 0; 1548 } 1549 1550 /* 1551 * Inode replay function 1552 */ 1553 static int ext4_fc_replay_inode(struct super_block *sb, 1554 struct ext4_fc_tl_mem *tl, u8 *val) 1555 { 1556 struct ext4_fc_inode fc_inode; 1557 struct ext4_inode *raw_inode; 1558 struct ext4_inode *raw_fc_inode; 1559 struct inode *inode = NULL; 1560 struct ext4_iloc iloc; 1561 int inode_len, ino, ret, tag = tl->fc_tag; 1562 struct ext4_extent_header *eh; 1563 size_t off_gen = offsetof(struct ext4_inode, i_generation); 1564 1565 memcpy(&fc_inode, val, sizeof(fc_inode)); 1566 1567 ino = le32_to_cpu(fc_inode.fc_ino); 1568 trace_ext4_fc_replay(sb, tag, ino, 0, 0); 1569 1570 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1571 if (!IS_ERR(inode)) { 1572 ext4_ext_clear_bb(inode); 1573 iput(inode); 1574 } 1575 inode = NULL; 1576 1577 ret = ext4_fc_record_modified_inode(sb, ino); 1578 if (ret) 1579 goto out; 1580 1581 raw_fc_inode = (struct ext4_inode *) 1582 (val + offsetof(struct ext4_fc_inode, fc_raw_inode)); 1583 ret = ext4_get_fc_inode_loc(sb, ino, &iloc); 1584 if (ret) 1585 goto out; 1586 1587 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode); 1588 raw_inode = ext4_raw_inode(&iloc); 1589 1590 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block)); 1591 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen, 1592 inode_len - off_gen); 1593 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) { 1594 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]); 1595 if (eh->eh_magic != EXT4_EXT_MAGIC) { 1596 memset(eh, 0, sizeof(*eh)); 1597 eh->eh_magic = EXT4_EXT_MAGIC; 1598 eh->eh_max = cpu_to_le16( 1599 (sizeof(raw_inode->i_block) - 1600 sizeof(struct ext4_extent_header)) 1601 / sizeof(struct ext4_extent)); 1602 } 1603 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) { 1604 memcpy(raw_inode->i_block, raw_fc_inode->i_block, 1605 sizeof(raw_inode->i_block)); 1606 } 1607 1608 /* Immediately update the inode on disk. */ 1609 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1610 if (ret) 1611 goto out; 1612 ret = sync_dirty_buffer(iloc.bh); 1613 if (ret) 1614 goto out; 1615 ret = ext4_mark_inode_used(sb, ino); 1616 if (ret) 1617 goto out; 1618 1619 /* Given that we just wrote the inode on disk, this SHOULD succeed. */ 1620 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1621 if (IS_ERR(inode)) { 1622 ext4_debug("Inode not found."); 1623 return -EFSCORRUPTED; 1624 } 1625 1626 /* 1627 * Our allocator could have made different decisions than before 1628 * crashing. This should be fixed but until then, we calculate 1629 * the number of blocks the inode. 1630 */ 1631 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 1632 ext4_ext_replay_set_iblocks(inode); 1633 1634 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation); 1635 ext4_reset_inode_seed(inode); 1636 1637 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode)); 1638 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1639 sync_dirty_buffer(iloc.bh); 1640 brelse(iloc.bh); 1641 out: 1642 iput(inode); 1643 if (!ret) 1644 blkdev_issue_flush(sb->s_bdev); 1645 1646 return 0; 1647 } 1648 1649 /* 1650 * Dentry create replay function. 1651 * 1652 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the 1653 * inode for which we are trying to create a dentry here, should already have 1654 * been replayed before we start here. 1655 */ 1656 static int ext4_fc_replay_create(struct super_block *sb, 1657 struct ext4_fc_tl_mem *tl, u8 *val) 1658 { 1659 int ret = 0; 1660 struct inode *inode = NULL; 1661 struct inode *dir = NULL; 1662 struct dentry_info_args darg; 1663 1664 tl_to_darg(&darg, tl, val); 1665 1666 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino, 1667 darg.parent_ino, darg.dname_len); 1668 1669 /* This takes care of update group descriptor and other metadata */ 1670 ret = ext4_mark_inode_used(sb, darg.ino); 1671 if (ret) 1672 goto out; 1673 1674 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1675 if (IS_ERR(inode)) { 1676 ext4_debug("inode %d not found.", darg.ino); 1677 inode = NULL; 1678 ret = -EINVAL; 1679 goto out; 1680 } 1681 1682 if (S_ISDIR(inode->i_mode)) { 1683 /* 1684 * If we are creating a directory, we need to make sure that the 1685 * dot and dot dot dirents are setup properly. 1686 */ 1687 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); 1688 if (IS_ERR(dir)) { 1689 ext4_debug("Dir %d not found.", darg.ino); 1690 goto out; 1691 } 1692 ret = ext4_init_new_dir(NULL, dir, inode); 1693 iput(dir); 1694 if (ret) { 1695 ret = 0; 1696 goto out; 1697 } 1698 } 1699 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1700 if (ret) 1701 goto out; 1702 set_nlink(inode, 1); 1703 ext4_mark_inode_dirty(NULL, inode); 1704 out: 1705 iput(inode); 1706 return ret; 1707 } 1708 1709 /* 1710 * Record physical disk regions which are in use as per fast commit area, 1711 * and used by inodes during replay phase. Our simple replay phase 1712 * allocator excludes these regions from allocation. 1713 */ 1714 int ext4_fc_record_regions(struct super_block *sb, int ino, 1715 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay) 1716 { 1717 struct ext4_fc_replay_state *state; 1718 struct ext4_fc_alloc_region *region; 1719 1720 state = &EXT4_SB(sb)->s_fc_replay_state; 1721 /* 1722 * during replay phase, the fc_regions_valid may not same as 1723 * fc_regions_used, update it when do new additions. 1724 */ 1725 if (replay && state->fc_regions_used != state->fc_regions_valid) 1726 state->fc_regions_used = state->fc_regions_valid; 1727 if (state->fc_regions_used == state->fc_regions_size) { 1728 struct ext4_fc_alloc_region *fc_regions; 1729 1730 fc_regions = krealloc(state->fc_regions, 1731 sizeof(struct ext4_fc_alloc_region) * 1732 (state->fc_regions_size + 1733 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1734 GFP_KERNEL); 1735 if (!fc_regions) 1736 return -ENOMEM; 1737 state->fc_regions_size += 1738 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1739 state->fc_regions = fc_regions; 1740 } 1741 region = &state->fc_regions[state->fc_regions_used++]; 1742 region->ino = ino; 1743 region->lblk = lblk; 1744 region->pblk = pblk; 1745 region->len = len; 1746 1747 if (replay) 1748 state->fc_regions_valid++; 1749 1750 return 0; 1751 } 1752 1753 /* Replay add range tag */ 1754 static int ext4_fc_replay_add_range(struct super_block *sb, 1755 struct ext4_fc_tl_mem *tl, u8 *val) 1756 { 1757 struct ext4_fc_add_range fc_add_ex; 1758 struct ext4_extent newex, *ex; 1759 struct inode *inode; 1760 ext4_lblk_t start, cur; 1761 int remaining, len; 1762 ext4_fsblk_t start_pblk; 1763 struct ext4_map_blocks map; 1764 struct ext4_ext_path *path = NULL; 1765 int ret; 1766 1767 memcpy(&fc_add_ex, val, sizeof(fc_add_ex)); 1768 ex = (struct ext4_extent *)&fc_add_ex.fc_ex; 1769 1770 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE, 1771 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block), 1772 ext4_ext_get_actual_len(ex)); 1773 1774 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL); 1775 if (IS_ERR(inode)) { 1776 ext4_debug("Inode not found."); 1777 return 0; 1778 } 1779 1780 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1781 if (ret) 1782 goto out; 1783 1784 start = le32_to_cpu(ex->ee_block); 1785 start_pblk = ext4_ext_pblock(ex); 1786 len = ext4_ext_get_actual_len(ex); 1787 1788 cur = start; 1789 remaining = len; 1790 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n", 1791 start, start_pblk, len, ext4_ext_is_unwritten(ex), 1792 inode->i_ino); 1793 1794 while (remaining > 0) { 1795 map.m_lblk = cur; 1796 map.m_len = remaining; 1797 map.m_pblk = 0; 1798 ret = ext4_map_blocks(NULL, inode, &map, 0); 1799 1800 if (ret < 0) 1801 goto out; 1802 1803 if (ret == 0) { 1804 /* Range is not mapped */ 1805 path = ext4_find_extent(inode, cur, path, 0); 1806 if (IS_ERR(path)) 1807 goto out; 1808 memset(&newex, 0, sizeof(newex)); 1809 newex.ee_block = cpu_to_le32(cur); 1810 ext4_ext_store_pblock( 1811 &newex, start_pblk + cur - start); 1812 newex.ee_len = cpu_to_le16(map.m_len); 1813 if (ext4_ext_is_unwritten(ex)) 1814 ext4_ext_mark_unwritten(&newex); 1815 down_write(&EXT4_I(inode)->i_data_sem); 1816 path = ext4_ext_insert_extent(NULL, inode, 1817 path, &newex, 0); 1818 up_write((&EXT4_I(inode)->i_data_sem)); 1819 if (IS_ERR(path)) 1820 goto out; 1821 goto next; 1822 } 1823 1824 if (start_pblk + cur - start != map.m_pblk) { 1825 /* 1826 * Logical to physical mapping changed. This can happen 1827 * if this range was removed and then reallocated to 1828 * map to new physical blocks during a fast commit. 1829 */ 1830 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1831 ext4_ext_is_unwritten(ex), 1832 start_pblk + cur - start); 1833 if (ret) 1834 goto out; 1835 /* 1836 * Mark the old blocks as free since they aren't used 1837 * anymore. We maintain an array of all the modified 1838 * inodes. In case these blocks are still used at either 1839 * a different logical range in the same inode or in 1840 * some different inode, we will mark them as allocated 1841 * at the end of the FC replay using our array of 1842 * modified inodes. 1843 */ 1844 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false); 1845 goto next; 1846 } 1847 1848 /* Range is mapped and needs a state change */ 1849 ext4_debug("Converting from %ld to %d %lld", 1850 map.m_flags & EXT4_MAP_UNWRITTEN, 1851 ext4_ext_is_unwritten(ex), map.m_pblk); 1852 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1853 ext4_ext_is_unwritten(ex), map.m_pblk); 1854 if (ret) 1855 goto out; 1856 /* 1857 * We may have split the extent tree while toggling the state. 1858 * Try to shrink the extent tree now. 1859 */ 1860 ext4_ext_replay_shrink_inode(inode, start + len); 1861 next: 1862 cur += map.m_len; 1863 remaining -= map.m_len; 1864 } 1865 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> 1866 sb->s_blocksize_bits); 1867 out: 1868 ext4_free_ext_path(path); 1869 iput(inode); 1870 return 0; 1871 } 1872 1873 /* Replay DEL_RANGE tag */ 1874 static int 1875 ext4_fc_replay_del_range(struct super_block *sb, 1876 struct ext4_fc_tl_mem *tl, u8 *val) 1877 { 1878 struct inode *inode; 1879 struct ext4_fc_del_range lrange; 1880 struct ext4_map_blocks map; 1881 ext4_lblk_t cur, remaining; 1882 int ret; 1883 1884 memcpy(&lrange, val, sizeof(lrange)); 1885 cur = le32_to_cpu(lrange.fc_lblk); 1886 remaining = le32_to_cpu(lrange.fc_len); 1887 1888 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE, 1889 le32_to_cpu(lrange.fc_ino), cur, remaining); 1890 1891 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL); 1892 if (IS_ERR(inode)) { 1893 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino)); 1894 return 0; 1895 } 1896 1897 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1898 if (ret) 1899 goto out; 1900 1901 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n", 1902 inode->i_ino, le32_to_cpu(lrange.fc_lblk), 1903 le32_to_cpu(lrange.fc_len)); 1904 while (remaining > 0) { 1905 map.m_lblk = cur; 1906 map.m_len = remaining; 1907 1908 ret = ext4_map_blocks(NULL, inode, &map, 0); 1909 if (ret < 0) 1910 goto out; 1911 if (ret > 0) { 1912 remaining -= ret; 1913 cur += ret; 1914 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false); 1915 } else { 1916 remaining -= map.m_len; 1917 cur += map.m_len; 1918 } 1919 } 1920 1921 down_write(&EXT4_I(inode)->i_data_sem); 1922 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk), 1923 le32_to_cpu(lrange.fc_lblk) + 1924 le32_to_cpu(lrange.fc_len) - 1); 1925 up_write(&EXT4_I(inode)->i_data_sem); 1926 if (ret) 1927 goto out; 1928 ext4_ext_replay_shrink_inode(inode, 1929 i_size_read(inode) >> sb->s_blocksize_bits); 1930 ext4_mark_inode_dirty(NULL, inode); 1931 out: 1932 iput(inode); 1933 return 0; 1934 } 1935 1936 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb) 1937 { 1938 struct ext4_fc_replay_state *state; 1939 struct inode *inode; 1940 struct ext4_ext_path *path = NULL; 1941 struct ext4_map_blocks map; 1942 int i, ret, j; 1943 ext4_lblk_t cur, end; 1944 1945 state = &EXT4_SB(sb)->s_fc_replay_state; 1946 for (i = 0; i < state->fc_modified_inodes_used; i++) { 1947 inode = ext4_iget(sb, state->fc_modified_inodes[i], 1948 EXT4_IGET_NORMAL); 1949 if (IS_ERR(inode)) { 1950 ext4_debug("Inode %d not found.", 1951 state->fc_modified_inodes[i]); 1952 continue; 1953 } 1954 cur = 0; 1955 end = EXT_MAX_BLOCKS; 1956 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) { 1957 iput(inode); 1958 continue; 1959 } 1960 while (cur < end) { 1961 map.m_lblk = cur; 1962 map.m_len = end - cur; 1963 1964 ret = ext4_map_blocks(NULL, inode, &map, 0); 1965 if (ret < 0) 1966 break; 1967 1968 if (ret > 0) { 1969 path = ext4_find_extent(inode, map.m_lblk, path, 0); 1970 if (!IS_ERR(path)) { 1971 for (j = 0; j < path->p_depth; j++) 1972 ext4_mb_mark_bb(inode->i_sb, 1973 path[j].p_block, 1, true); 1974 } else { 1975 path = NULL; 1976 } 1977 cur += ret; 1978 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, 1979 map.m_len, true); 1980 } else { 1981 cur = cur + (map.m_len ? map.m_len : 1); 1982 } 1983 } 1984 iput(inode); 1985 } 1986 1987 ext4_free_ext_path(path); 1988 } 1989 1990 /* 1991 * Check if block is in excluded regions for block allocation. The simple 1992 * allocator that runs during replay phase is calls this function to see 1993 * if it is okay to use a block. 1994 */ 1995 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk) 1996 { 1997 int i; 1998 struct ext4_fc_replay_state *state; 1999 2000 state = &EXT4_SB(sb)->s_fc_replay_state; 2001 for (i = 0; i < state->fc_regions_valid; i++) { 2002 if (state->fc_regions[i].ino == 0 || 2003 state->fc_regions[i].len == 0) 2004 continue; 2005 if (in_range(blk, state->fc_regions[i].pblk, 2006 state->fc_regions[i].len)) 2007 return true; 2008 } 2009 return false; 2010 } 2011 2012 /* Cleanup function called after replay */ 2013 void ext4_fc_replay_cleanup(struct super_block *sb) 2014 { 2015 struct ext4_sb_info *sbi = EXT4_SB(sb); 2016 2017 sbi->s_mount_state &= ~EXT4_FC_REPLAY; 2018 kfree(sbi->s_fc_replay_state.fc_regions); 2019 kfree(sbi->s_fc_replay_state.fc_modified_inodes); 2020 } 2021 2022 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi, 2023 int tag, int len) 2024 { 2025 switch (tag) { 2026 case EXT4_FC_TAG_ADD_RANGE: 2027 return len == sizeof(struct ext4_fc_add_range); 2028 case EXT4_FC_TAG_DEL_RANGE: 2029 return len == sizeof(struct ext4_fc_del_range); 2030 case EXT4_FC_TAG_CREAT: 2031 case EXT4_FC_TAG_LINK: 2032 case EXT4_FC_TAG_UNLINK: 2033 len -= sizeof(struct ext4_fc_dentry_info); 2034 return len >= 1 && len <= EXT4_NAME_LEN; 2035 case EXT4_FC_TAG_INODE: 2036 len -= sizeof(struct ext4_fc_inode); 2037 return len >= EXT4_GOOD_OLD_INODE_SIZE && 2038 len <= sbi->s_inode_size; 2039 case EXT4_FC_TAG_PAD: 2040 return true; /* padding can have any length */ 2041 case EXT4_FC_TAG_TAIL: 2042 return len >= sizeof(struct ext4_fc_tail); 2043 case EXT4_FC_TAG_HEAD: 2044 return len == sizeof(struct ext4_fc_head); 2045 } 2046 return false; 2047 } 2048 2049 /* 2050 * Recovery Scan phase handler 2051 * 2052 * This function is called during the scan phase and is responsible 2053 * for doing following things: 2054 * - Make sure the fast commit area has valid tags for replay 2055 * - Count number of tags that need to be replayed by the replay handler 2056 * - Verify CRC 2057 * - Create a list of excluded blocks for allocation during replay phase 2058 * 2059 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is 2060 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP 2061 * to indicate that scan has finished and JBD2 can now start replay phase. 2062 * It returns a negative error to indicate that there was an error. At the end 2063 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set 2064 * to indicate the number of tags that need to replayed during the replay phase. 2065 */ 2066 static int ext4_fc_replay_scan(journal_t *journal, 2067 struct buffer_head *bh, int off, 2068 tid_t expected_tid) 2069 { 2070 struct super_block *sb = journal->j_private; 2071 struct ext4_sb_info *sbi = EXT4_SB(sb); 2072 struct ext4_fc_replay_state *state; 2073 int ret = JBD2_FC_REPLAY_CONTINUE; 2074 struct ext4_fc_add_range ext; 2075 struct ext4_fc_tl_mem tl; 2076 struct ext4_fc_tail tail; 2077 __u8 *start, *end, *cur, *val; 2078 struct ext4_fc_head head; 2079 struct ext4_extent *ex; 2080 2081 state = &sbi->s_fc_replay_state; 2082 2083 start = (u8 *)bh->b_data; 2084 end = start + journal->j_blocksize; 2085 2086 if (state->fc_replay_expected_off == 0) { 2087 state->fc_cur_tag = 0; 2088 state->fc_replay_num_tags = 0; 2089 state->fc_crc = 0; 2090 state->fc_regions = NULL; 2091 state->fc_regions_valid = state->fc_regions_used = 2092 state->fc_regions_size = 0; 2093 /* Check if we can stop early */ 2094 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) 2095 != EXT4_FC_TAG_HEAD) 2096 return 0; 2097 } 2098 2099 if (off != state->fc_replay_expected_off) { 2100 ret = -EFSCORRUPTED; 2101 goto out_err; 2102 } 2103 2104 state->fc_replay_expected_off++; 2105 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; 2106 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { 2107 ext4_fc_get_tl(&tl, cur); 2108 val = cur + EXT4_FC_TAG_BASE_LEN; 2109 if (tl.fc_len > end - val || 2110 !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) { 2111 ret = state->fc_replay_num_tags ? 2112 JBD2_FC_REPLAY_STOP : -ECANCELED; 2113 goto out_err; 2114 } 2115 ext4_debug("Scan phase, tag:%s, blk %lld\n", 2116 tag2str(tl.fc_tag), bh->b_blocknr); 2117 switch (tl.fc_tag) { 2118 case EXT4_FC_TAG_ADD_RANGE: 2119 memcpy(&ext, val, sizeof(ext)); 2120 ex = (struct ext4_extent *)&ext.fc_ex; 2121 ret = ext4_fc_record_regions(sb, 2122 le32_to_cpu(ext.fc_ino), 2123 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex), 2124 ext4_ext_get_actual_len(ex), 0); 2125 if (ret < 0) 2126 break; 2127 ret = JBD2_FC_REPLAY_CONTINUE; 2128 fallthrough; 2129 case EXT4_FC_TAG_DEL_RANGE: 2130 case EXT4_FC_TAG_LINK: 2131 case EXT4_FC_TAG_UNLINK: 2132 case EXT4_FC_TAG_CREAT: 2133 case EXT4_FC_TAG_INODE: 2134 case EXT4_FC_TAG_PAD: 2135 state->fc_cur_tag++; 2136 state->fc_crc = ext4_chksum(state->fc_crc, cur, 2137 EXT4_FC_TAG_BASE_LEN + tl.fc_len); 2138 break; 2139 case EXT4_FC_TAG_TAIL: 2140 state->fc_cur_tag++; 2141 memcpy(&tail, val, sizeof(tail)); 2142 state->fc_crc = ext4_chksum(state->fc_crc, cur, 2143 EXT4_FC_TAG_BASE_LEN + 2144 offsetof(struct ext4_fc_tail, 2145 fc_crc)); 2146 if (le32_to_cpu(tail.fc_tid) == expected_tid && 2147 le32_to_cpu(tail.fc_crc) == state->fc_crc) { 2148 state->fc_replay_num_tags = state->fc_cur_tag; 2149 state->fc_regions_valid = 2150 state->fc_regions_used; 2151 } else { 2152 ret = state->fc_replay_num_tags ? 2153 JBD2_FC_REPLAY_STOP : -EFSBADCRC; 2154 } 2155 state->fc_crc = 0; 2156 break; 2157 case EXT4_FC_TAG_HEAD: 2158 memcpy(&head, val, sizeof(head)); 2159 if (le32_to_cpu(head.fc_features) & 2160 ~EXT4_FC_SUPPORTED_FEATURES) { 2161 ret = -EOPNOTSUPP; 2162 break; 2163 } 2164 if (le32_to_cpu(head.fc_tid) != expected_tid) { 2165 ret = JBD2_FC_REPLAY_STOP; 2166 break; 2167 } 2168 state->fc_cur_tag++; 2169 state->fc_crc = ext4_chksum(state->fc_crc, cur, 2170 EXT4_FC_TAG_BASE_LEN + tl.fc_len); 2171 break; 2172 default: 2173 ret = state->fc_replay_num_tags ? 2174 JBD2_FC_REPLAY_STOP : -ECANCELED; 2175 } 2176 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) 2177 break; 2178 } 2179 2180 out_err: 2181 trace_ext4_fc_replay_scan(sb, ret, off); 2182 return ret; 2183 } 2184 2185 /* 2186 * Main recovery path entry point. 2187 * The meaning of return codes is similar as above. 2188 */ 2189 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, 2190 enum passtype pass, int off, tid_t expected_tid) 2191 { 2192 struct super_block *sb = journal->j_private; 2193 struct ext4_sb_info *sbi = EXT4_SB(sb); 2194 struct ext4_fc_tl_mem tl; 2195 __u8 *start, *end, *cur, *val; 2196 int ret = JBD2_FC_REPLAY_CONTINUE; 2197 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state; 2198 struct ext4_fc_tail tail; 2199 2200 if (pass == PASS_SCAN) { 2201 state->fc_current_pass = PASS_SCAN; 2202 return ext4_fc_replay_scan(journal, bh, off, expected_tid); 2203 } 2204 2205 if (state->fc_current_pass != pass) { 2206 state->fc_current_pass = pass; 2207 sbi->s_mount_state |= EXT4_FC_REPLAY; 2208 } 2209 if (!sbi->s_fc_replay_state.fc_replay_num_tags) { 2210 ext4_debug("Replay stops\n"); 2211 ext4_fc_set_bitmaps_and_counters(sb); 2212 return 0; 2213 } 2214 2215 #ifdef CONFIG_EXT4_DEBUG 2216 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) { 2217 pr_warn("Dropping fc block %d because max_replay set\n", off); 2218 return JBD2_FC_REPLAY_STOP; 2219 } 2220 #endif 2221 2222 start = (u8 *)bh->b_data; 2223 end = start + journal->j_blocksize; 2224 2225 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; 2226 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { 2227 ext4_fc_get_tl(&tl, cur); 2228 val = cur + EXT4_FC_TAG_BASE_LEN; 2229 2230 if (state->fc_replay_num_tags == 0) { 2231 ret = JBD2_FC_REPLAY_STOP; 2232 ext4_fc_set_bitmaps_and_counters(sb); 2233 break; 2234 } 2235 2236 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag)); 2237 state->fc_replay_num_tags--; 2238 switch (tl.fc_tag) { 2239 case EXT4_FC_TAG_LINK: 2240 ret = ext4_fc_replay_link(sb, &tl, val); 2241 break; 2242 case EXT4_FC_TAG_UNLINK: 2243 ret = ext4_fc_replay_unlink(sb, &tl, val); 2244 break; 2245 case EXT4_FC_TAG_ADD_RANGE: 2246 ret = ext4_fc_replay_add_range(sb, &tl, val); 2247 break; 2248 case EXT4_FC_TAG_CREAT: 2249 ret = ext4_fc_replay_create(sb, &tl, val); 2250 break; 2251 case EXT4_FC_TAG_DEL_RANGE: 2252 ret = ext4_fc_replay_del_range(sb, &tl, val); 2253 break; 2254 case EXT4_FC_TAG_INODE: 2255 ret = ext4_fc_replay_inode(sb, &tl, val); 2256 break; 2257 case EXT4_FC_TAG_PAD: 2258 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0, 2259 tl.fc_len, 0); 2260 break; 2261 case EXT4_FC_TAG_TAIL: 2262 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 2263 0, tl.fc_len, 0); 2264 memcpy(&tail, val, sizeof(tail)); 2265 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid); 2266 break; 2267 case EXT4_FC_TAG_HEAD: 2268 break; 2269 default: 2270 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0); 2271 ret = -ECANCELED; 2272 break; 2273 } 2274 if (ret < 0) 2275 break; 2276 ret = JBD2_FC_REPLAY_CONTINUE; 2277 } 2278 return ret; 2279 } 2280 2281 void ext4_fc_init(struct super_block *sb, journal_t *journal) 2282 { 2283 /* 2284 * We set replay callback even if fast commit disabled because we may 2285 * could still have fast commit blocks that need to be replayed even if 2286 * fast commit has now been turned off. 2287 */ 2288 journal->j_fc_replay_callback = ext4_fc_replay; 2289 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 2290 return; 2291 journal->j_fc_cleanup_callback = ext4_fc_cleanup; 2292 } 2293 2294 static const char * const fc_ineligible_reasons[] = { 2295 [EXT4_FC_REASON_XATTR] = "Extended attributes changed", 2296 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename", 2297 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed", 2298 [EXT4_FC_REASON_NOMEM] = "Insufficient memory", 2299 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot", 2300 [EXT4_FC_REASON_RESIZE] = "Resize", 2301 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed", 2302 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op", 2303 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling", 2304 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename", 2305 }; 2306 2307 int ext4_fc_info_show(struct seq_file *seq, void *v) 2308 { 2309 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private); 2310 struct ext4_fc_stats *stats = &sbi->s_fc_stats; 2311 int i; 2312 2313 if (v != SEQ_START_TOKEN) 2314 return 0; 2315 2316 seq_printf(seq, 2317 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n", 2318 stats->fc_num_commits, stats->fc_ineligible_commits, 2319 stats->fc_numblks, 2320 div_u64(stats->s_fc_avg_commit_time, 1000)); 2321 seq_puts(seq, "Ineligible reasons:\n"); 2322 for (i = 0; i < EXT4_FC_REASON_MAX; i++) 2323 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i], 2324 stats->fc_ineligible_reason_count[i]); 2325 2326 return 0; 2327 } 2328 2329 int __init ext4_fc_init_dentry_cache(void) 2330 { 2331 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update, 2332 SLAB_RECLAIM_ACCOUNT); 2333 2334 if (ext4_fc_dentry_cachep == NULL) 2335 return -ENOMEM; 2336 2337 return 0; 2338 } 2339 2340 void ext4_fc_destroy_dentry_cache(void) 2341 { 2342 kmem_cache_destroy(ext4_fc_dentry_cachep); 2343 } 2344