1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Filesystem-level keyring for fscrypt 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8 /* 9 * This file implements management of fscrypt master keys in the 10 * filesystem-level keyring, including the ioctls: 11 * 12 * - FS_IOC_ADD_ENCRYPTION_KEY 13 * - FS_IOC_REMOVE_ENCRYPTION_KEY 14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS 15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS 16 * 17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more 18 * information about these ioctls. 19 */ 20 21 #include <linux/unaligned.h> 22 #include <crypto/skcipher.h> 23 #include <linux/key-type.h> 24 #include <linux/random.h> 25 #include <linux/once.h> 26 #include <linux/seq_file.h> 27 28 #include "fscrypt_private.h" 29 30 /* The master encryption keys for a filesystem (->s_master_keys) */ 31 struct fscrypt_keyring { 32 /* 33 * Lock that protects ->key_hashtable. It does *not* protect the 34 * fscrypt_master_key structs themselves. 35 */ 36 spinlock_t lock; 37 38 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */ 39 struct hlist_head key_hashtable[128]; 40 }; 41 42 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) 43 { 44 fscrypt_destroy_hkdf(&secret->hkdf); 45 memzero_explicit(secret, sizeof(*secret)); 46 } 47 48 static void move_master_key_secret(struct fscrypt_master_key_secret *dst, 49 struct fscrypt_master_key_secret *src) 50 { 51 memcpy(dst, src, sizeof(*dst)); 52 memzero_explicit(src, sizeof(*src)); 53 } 54 55 static void fscrypt_free_master_key(struct rcu_head *head) 56 { 57 struct fscrypt_master_key *mk = 58 container_of(head, struct fscrypt_master_key, mk_rcu_head); 59 /* 60 * The master key secret and any embedded subkeys should have already 61 * been wiped when the last active reference to the fscrypt_master_key 62 * struct was dropped; doing it here would be unnecessarily late. 63 * Nevertheless, use kfree_sensitive() in case anything was missed. 64 */ 65 kfree_sensitive(mk); 66 } 67 68 void fscrypt_put_master_key(struct fscrypt_master_key *mk) 69 { 70 if (!refcount_dec_and_test(&mk->mk_struct_refs)) 71 return; 72 /* 73 * No structural references left, so free ->mk_users, and also free the 74 * fscrypt_master_key struct itself after an RCU grace period ensures 75 * that concurrent keyring lookups can no longer find it. 76 */ 77 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0); 78 if (mk->mk_users) { 79 /* Clear the keyring so the quota gets released right away. */ 80 keyring_clear(mk->mk_users); 81 key_put(mk->mk_users); 82 mk->mk_users = NULL; 83 } 84 call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key); 85 } 86 87 void fscrypt_put_master_key_activeref(struct super_block *sb, 88 struct fscrypt_master_key *mk) 89 { 90 size_t i; 91 92 if (!refcount_dec_and_test(&mk->mk_active_refs)) 93 return; 94 /* 95 * No active references left, so complete the full removal of this 96 * fscrypt_master_key struct by removing it from the keyring and 97 * destroying any subkeys embedded in it. 98 */ 99 100 if (WARN_ON_ONCE(!sb->s_master_keys)) 101 return; 102 spin_lock(&sb->s_master_keys->lock); 103 hlist_del_rcu(&mk->mk_node); 104 spin_unlock(&sb->s_master_keys->lock); 105 106 /* 107 * ->mk_active_refs == 0 implies that ->mk_present is false and 108 * ->mk_decrypted_inodes is empty. 109 */ 110 WARN_ON_ONCE(mk->mk_present); 111 WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes)); 112 113 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) { 114 fscrypt_destroy_prepared_key( 115 sb, &mk->mk_direct_keys[i]); 116 fscrypt_destroy_prepared_key( 117 sb, &mk->mk_iv_ino_lblk_64_keys[i]); 118 fscrypt_destroy_prepared_key( 119 sb, &mk->mk_iv_ino_lblk_32_keys[i]); 120 } 121 memzero_explicit(&mk->mk_ino_hash_key, 122 sizeof(mk->mk_ino_hash_key)); 123 mk->mk_ino_hash_key_initialized = false; 124 125 /* Drop the structural ref associated with the active refs. */ 126 fscrypt_put_master_key(mk); 127 } 128 129 /* 130 * This transitions the key state from present to incompletely removed, and then 131 * potentially to absent (depending on whether inodes remain). 132 */ 133 static void fscrypt_initiate_key_removal(struct super_block *sb, 134 struct fscrypt_master_key *mk) 135 { 136 WRITE_ONCE(mk->mk_present, false); 137 wipe_master_key_secret(&mk->mk_secret); 138 fscrypt_put_master_key_activeref(sb, mk); 139 } 140 141 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) 142 { 143 if (spec->__reserved) 144 return false; 145 return master_key_spec_len(spec) != 0; 146 } 147 148 static int fscrypt_user_key_instantiate(struct key *key, 149 struct key_preparsed_payload *prep) 150 { 151 /* 152 * We just charge FSCRYPT_MAX_RAW_KEY_SIZE bytes to the user's key quota 153 * for each key, regardless of the exact key size. The amount of memory 154 * actually used is greater than the size of the raw key anyway. 155 */ 156 return key_payload_reserve(key, FSCRYPT_MAX_RAW_KEY_SIZE); 157 } 158 159 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) 160 { 161 seq_puts(m, key->description); 162 } 163 164 /* 165 * Type of key in ->mk_users. Each key of this type represents a particular 166 * user who has added a particular master key. 167 * 168 * Note that the name of this key type really should be something like 169 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen 170 * mainly for simplicity of presentation in /proc/keys when read by a non-root 171 * user. And it is expected to be rare that a key is actually added by multiple 172 * users, since users should keep their encryption keys confidential. 173 */ 174 static struct key_type key_type_fscrypt_user = { 175 .name = ".fscrypt", 176 .instantiate = fscrypt_user_key_instantiate, 177 .describe = fscrypt_user_key_describe, 178 }; 179 180 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ 181 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ 182 CONST_STRLEN("-users") + 1) 183 184 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ 185 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) 186 187 static void format_mk_users_keyring_description( 188 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], 189 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 190 { 191 sprintf(description, "fscrypt-%*phN-users", 192 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); 193 } 194 195 static void format_mk_user_description( 196 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], 197 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 198 { 199 200 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, 201 mk_identifier, __kuid_val(current_fsuid())); 202 } 203 204 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ 205 static int allocate_filesystem_keyring(struct super_block *sb) 206 { 207 struct fscrypt_keyring *keyring; 208 209 if (sb->s_master_keys) 210 return 0; 211 212 keyring = kzalloc(sizeof(*keyring), GFP_KERNEL); 213 if (!keyring) 214 return -ENOMEM; 215 spin_lock_init(&keyring->lock); 216 /* 217 * Pairs with the smp_load_acquire() in fscrypt_find_master_key(). 218 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that 219 * concurrent tasks can ACQUIRE it. 220 */ 221 smp_store_release(&sb->s_master_keys, keyring); 222 return 0; 223 } 224 225 /* 226 * Release all encryption keys that have been added to the filesystem, along 227 * with the keyring that contains them. 228 * 229 * This is called at unmount time, after all potentially-encrypted inodes have 230 * been evicted. The filesystem's underlying block device(s) are still 231 * available at this time; this is important because after user file accesses 232 * have been allowed, this function may need to evict keys from the keyslots of 233 * an inline crypto engine, which requires the block device(s). 234 */ 235 void fscrypt_destroy_keyring(struct super_block *sb) 236 { 237 struct fscrypt_keyring *keyring = sb->s_master_keys; 238 size_t i; 239 240 if (!keyring) 241 return; 242 243 for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) { 244 struct hlist_head *bucket = &keyring->key_hashtable[i]; 245 struct fscrypt_master_key *mk; 246 struct hlist_node *tmp; 247 248 hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) { 249 /* 250 * Since all potentially-encrypted inodes were already 251 * evicted, every key remaining in the keyring should 252 * have an empty inode list, and should only still be in 253 * the keyring due to the single active ref associated 254 * with ->mk_present. There should be no structural 255 * refs beyond the one associated with the active ref. 256 */ 257 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1); 258 WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1); 259 WARN_ON_ONCE(!mk->mk_present); 260 fscrypt_initiate_key_removal(sb, mk); 261 } 262 } 263 kfree_sensitive(keyring); 264 sb->s_master_keys = NULL; 265 } 266 267 static struct hlist_head * 268 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring, 269 const struct fscrypt_key_specifier *mk_spec) 270 { 271 /* 272 * Since key specifiers should be "random" values, it is sufficient to 273 * use a trivial hash function that just takes the first several bits of 274 * the key specifier. 275 */ 276 unsigned long i = get_unaligned((unsigned long *)&mk_spec->u); 277 278 return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)]; 279 } 280 281 /* 282 * Find the specified master key struct in ->s_master_keys and take a structural 283 * ref to it. The structural ref guarantees that the key struct continues to 284 * exist, but it does *not* guarantee that ->s_master_keys continues to contain 285 * the key struct. The structural ref needs to be dropped by 286 * fscrypt_put_master_key(). Returns NULL if the key struct is not found. 287 */ 288 struct fscrypt_master_key * 289 fscrypt_find_master_key(struct super_block *sb, 290 const struct fscrypt_key_specifier *mk_spec) 291 { 292 struct fscrypt_keyring *keyring; 293 struct hlist_head *bucket; 294 struct fscrypt_master_key *mk; 295 296 /* 297 * Pairs with the smp_store_release() in allocate_filesystem_keyring(). 298 * I.e., another task can publish ->s_master_keys concurrently, 299 * executing a RELEASE barrier. We need to use smp_load_acquire() here 300 * to safely ACQUIRE the memory the other task published. 301 */ 302 keyring = smp_load_acquire(&sb->s_master_keys); 303 if (keyring == NULL) 304 return NULL; /* No keyring yet, so no keys yet. */ 305 306 bucket = fscrypt_mk_hash_bucket(keyring, mk_spec); 307 rcu_read_lock(); 308 switch (mk_spec->type) { 309 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 310 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 311 if (mk->mk_spec.type == 312 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 313 memcmp(mk->mk_spec.u.descriptor, 314 mk_spec->u.descriptor, 315 FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 && 316 refcount_inc_not_zero(&mk->mk_struct_refs)) 317 goto out; 318 } 319 break; 320 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 321 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 322 if (mk->mk_spec.type == 323 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 324 memcmp(mk->mk_spec.u.identifier, 325 mk_spec->u.identifier, 326 FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 && 327 refcount_inc_not_zero(&mk->mk_struct_refs)) 328 goto out; 329 } 330 break; 331 } 332 mk = NULL; 333 out: 334 rcu_read_unlock(); 335 return mk; 336 } 337 338 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) 339 { 340 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; 341 struct key *keyring; 342 343 format_mk_users_keyring_description(description, 344 mk->mk_spec.u.identifier); 345 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 346 current_cred(), KEY_POS_SEARCH | 347 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 348 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 349 if (IS_ERR(keyring)) 350 return PTR_ERR(keyring); 351 352 mk->mk_users = keyring; 353 return 0; 354 } 355 356 /* 357 * Find the current user's "key" in the master key's ->mk_users. 358 * Returns ERR_PTR(-ENOKEY) if not found. 359 */ 360 static struct key *find_master_key_user(struct fscrypt_master_key *mk) 361 { 362 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 363 key_ref_t keyref; 364 365 format_mk_user_description(description, mk->mk_spec.u.identifier); 366 367 /* 368 * We need to mark the keyring reference as "possessed" so that we 369 * acquire permission to search it, via the KEY_POS_SEARCH permission. 370 */ 371 keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/), 372 &key_type_fscrypt_user, description, false); 373 if (IS_ERR(keyref)) { 374 if (PTR_ERR(keyref) == -EAGAIN || /* not found */ 375 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ 376 keyref = ERR_PTR(-ENOKEY); 377 return ERR_CAST(keyref); 378 } 379 return key_ref_to_ptr(keyref); 380 } 381 382 /* 383 * Give the current user a "key" in ->mk_users. This charges the user's quota 384 * and marks the master key as added by the current user, so that it cannot be 385 * removed by another user with the key. Either ->mk_sem must be held for 386 * write, or the master key must be still undergoing initialization. 387 */ 388 static int add_master_key_user(struct fscrypt_master_key *mk) 389 { 390 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 391 struct key *mk_user; 392 int err; 393 394 format_mk_user_description(description, mk->mk_spec.u.identifier); 395 mk_user = key_alloc(&key_type_fscrypt_user, description, 396 current_fsuid(), current_gid(), current_cred(), 397 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); 398 if (IS_ERR(mk_user)) 399 return PTR_ERR(mk_user); 400 401 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); 402 key_put(mk_user); 403 return err; 404 } 405 406 /* 407 * Remove the current user's "key" from ->mk_users. 408 * ->mk_sem must be held for write. 409 * 410 * Returns 0 if removed, -ENOKEY if not found, or another -errno code. 411 */ 412 static int remove_master_key_user(struct fscrypt_master_key *mk) 413 { 414 struct key *mk_user; 415 int err; 416 417 mk_user = find_master_key_user(mk); 418 if (IS_ERR(mk_user)) 419 return PTR_ERR(mk_user); 420 err = key_unlink(mk->mk_users, mk_user); 421 key_put(mk_user); 422 return err; 423 } 424 425 /* 426 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and 427 * insert it into sb->s_master_keys. 428 */ 429 static int add_new_master_key(struct super_block *sb, 430 struct fscrypt_master_key_secret *secret, 431 const struct fscrypt_key_specifier *mk_spec) 432 { 433 struct fscrypt_keyring *keyring = sb->s_master_keys; 434 struct fscrypt_master_key *mk; 435 int err; 436 437 mk = kzalloc(sizeof(*mk), GFP_KERNEL); 438 if (!mk) 439 return -ENOMEM; 440 441 init_rwsem(&mk->mk_sem); 442 refcount_set(&mk->mk_struct_refs, 1); 443 mk->mk_spec = *mk_spec; 444 445 INIT_LIST_HEAD(&mk->mk_decrypted_inodes); 446 spin_lock_init(&mk->mk_decrypted_inodes_lock); 447 448 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 449 err = allocate_master_key_users_keyring(mk); 450 if (err) 451 goto out_put; 452 err = add_master_key_user(mk); 453 if (err) 454 goto out_put; 455 } 456 457 move_master_key_secret(&mk->mk_secret, secret); 458 mk->mk_present = true; 459 refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */ 460 461 spin_lock(&keyring->lock); 462 hlist_add_head_rcu(&mk->mk_node, 463 fscrypt_mk_hash_bucket(keyring, mk_spec)); 464 spin_unlock(&keyring->lock); 465 return 0; 466 467 out_put: 468 fscrypt_put_master_key(mk); 469 return err; 470 } 471 472 #define KEY_DEAD 1 473 474 static int add_existing_master_key(struct fscrypt_master_key *mk, 475 struct fscrypt_master_key_secret *secret) 476 { 477 int err; 478 479 /* 480 * If the current user is already in ->mk_users, then there's nothing to 481 * do. Otherwise, we need to add the user to ->mk_users. (Neither is 482 * applicable for v1 policy keys, which have NULL ->mk_users.) 483 */ 484 if (mk->mk_users) { 485 struct key *mk_user = find_master_key_user(mk); 486 487 if (mk_user != ERR_PTR(-ENOKEY)) { 488 if (IS_ERR(mk_user)) 489 return PTR_ERR(mk_user); 490 key_put(mk_user); 491 return 0; 492 } 493 err = add_master_key_user(mk); 494 if (err) 495 return err; 496 } 497 498 /* If the key is incompletely removed, make it present again. */ 499 if (!mk->mk_present) { 500 if (!refcount_inc_not_zero(&mk->mk_active_refs)) { 501 /* 502 * Raced with the last active ref being dropped, so the 503 * key has become, or is about to become, "absent". 504 * Therefore, we need to allocate a new key struct. 505 */ 506 return KEY_DEAD; 507 } 508 move_master_key_secret(&mk->mk_secret, secret); 509 WRITE_ONCE(mk->mk_present, true); 510 } 511 512 return 0; 513 } 514 515 static int do_add_master_key(struct super_block *sb, 516 struct fscrypt_master_key_secret *secret, 517 const struct fscrypt_key_specifier *mk_spec) 518 { 519 static DEFINE_MUTEX(fscrypt_add_key_mutex); 520 struct fscrypt_master_key *mk; 521 int err; 522 523 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ 524 525 mk = fscrypt_find_master_key(sb, mk_spec); 526 if (!mk) { 527 /* Didn't find the key in ->s_master_keys. Add it. */ 528 err = allocate_filesystem_keyring(sb); 529 if (!err) 530 err = add_new_master_key(sb, secret, mk_spec); 531 } else { 532 /* 533 * Found the key in ->s_master_keys. Add the user to ->mk_users 534 * if needed, and make the key "present" again if possible. 535 */ 536 down_write(&mk->mk_sem); 537 err = add_existing_master_key(mk, secret); 538 up_write(&mk->mk_sem); 539 if (err == KEY_DEAD) { 540 /* 541 * We found a key struct, but it's already been fully 542 * removed. Ignore the old struct and add a new one. 543 * fscrypt_add_key_mutex means we don't need to worry 544 * about concurrent adds. 545 */ 546 err = add_new_master_key(sb, secret, mk_spec); 547 } 548 fscrypt_put_master_key(mk); 549 } 550 mutex_unlock(&fscrypt_add_key_mutex); 551 return err; 552 } 553 554 static int add_master_key(struct super_block *sb, 555 struct fscrypt_master_key_secret *secret, 556 struct fscrypt_key_specifier *key_spec) 557 { 558 int err; 559 560 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 561 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]; 562 u8 *kdf_key = secret->bytes; 563 unsigned int kdf_key_size = secret->size; 564 u8 keyid_kdf_ctx = HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY; 565 566 /* 567 * For raw keys, the fscrypt master key is used directly as the 568 * fscrypt KDF key. For hardware-wrapped keys, we have to pass 569 * the master key to the hardware to derive the KDF key, which 570 * is then only used to derive non-file-contents subkeys. 571 */ 572 if (secret->is_hw_wrapped) { 573 err = fscrypt_derive_sw_secret(sb, secret->bytes, 574 secret->size, sw_secret); 575 if (err) 576 return err; 577 kdf_key = sw_secret; 578 kdf_key_size = sizeof(sw_secret); 579 /* 580 * To avoid weird behavior if someone manages to 581 * determine sw_secret and add it as a raw key, ensure 582 * that hardware-wrapped keys and raw keys will have 583 * different key identifiers by deriving their key 584 * identifiers using different KDF contexts. 585 */ 586 keyid_kdf_ctx = 587 HKDF_CONTEXT_KEY_IDENTIFIER_FOR_HW_WRAPPED_KEY; 588 } 589 err = fscrypt_init_hkdf(&secret->hkdf, kdf_key, kdf_key_size); 590 /* 591 * Now that the KDF context is initialized, the raw KDF key is 592 * no longer needed. 593 */ 594 memzero_explicit(kdf_key, kdf_key_size); 595 if (err) 596 return err; 597 598 /* Calculate the key identifier */ 599 err = fscrypt_hkdf_expand(&secret->hkdf, keyid_kdf_ctx, NULL, 0, 600 key_spec->u.identifier, 601 FSCRYPT_KEY_IDENTIFIER_SIZE); 602 if (err) 603 return err; 604 } 605 return do_add_master_key(sb, secret, key_spec); 606 } 607 608 /* 609 * Validate the size of an fscrypt master key being added. Note that this is 610 * just an initial check, as we don't know which ciphers will be used yet. 611 * There is a stricter size check later when the key is actually used by a file. 612 */ 613 static inline bool fscrypt_valid_key_size(size_t size, u32 add_key_flags) 614 { 615 u32 max_size = (add_key_flags & FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) ? 616 FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE : 617 FSCRYPT_MAX_RAW_KEY_SIZE; 618 619 return size >= FSCRYPT_MIN_KEY_SIZE && size <= max_size; 620 } 621 622 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) 623 { 624 const struct fscrypt_provisioning_key_payload *payload = prep->data; 625 626 if (prep->datalen < sizeof(*payload)) 627 return -EINVAL; 628 629 if (!fscrypt_valid_key_size(prep->datalen - sizeof(*payload), 630 payload->flags)) 631 return -EINVAL; 632 633 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 634 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 635 return -EINVAL; 636 637 if (payload->flags & ~FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) 638 return -EINVAL; 639 640 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); 641 if (!prep->payload.data[0]) 642 return -ENOMEM; 643 644 prep->quotalen = prep->datalen; 645 return 0; 646 } 647 648 static void fscrypt_provisioning_key_free_preparse( 649 struct key_preparsed_payload *prep) 650 { 651 kfree_sensitive(prep->payload.data[0]); 652 } 653 654 static void fscrypt_provisioning_key_describe(const struct key *key, 655 struct seq_file *m) 656 { 657 seq_puts(m, key->description); 658 if (key_is_positive(key)) { 659 const struct fscrypt_provisioning_key_payload *payload = 660 key->payload.data[0]; 661 662 seq_printf(m, ": %u [%u]", key->datalen, payload->type); 663 } 664 } 665 666 static void fscrypt_provisioning_key_destroy(struct key *key) 667 { 668 kfree_sensitive(key->payload.data[0]); 669 } 670 671 static struct key_type key_type_fscrypt_provisioning = { 672 .name = "fscrypt-provisioning", 673 .preparse = fscrypt_provisioning_key_preparse, 674 .free_preparse = fscrypt_provisioning_key_free_preparse, 675 .instantiate = generic_key_instantiate, 676 .describe = fscrypt_provisioning_key_describe, 677 .destroy = fscrypt_provisioning_key_destroy, 678 }; 679 680 /* 681 * Retrieve the key from the Linux keyring key specified by 'key_id', and store 682 * it into 'secret'. 683 * 684 * The key must be of type "fscrypt-provisioning" and must have the 'type' and 685 * 'flags' field of the payload set to the given values, indicating that the key 686 * is intended for use for the specified purpose. We don't use the "logon" key 687 * type because there's no way to completely restrict the use of such keys; they 688 * can be used by any kernel API that accepts "logon" keys and doesn't require a 689 * specific service prefix. 690 * 691 * The ability to specify the key via Linux keyring key is intended for cases 692 * where userspace needs to re-add keys after the filesystem is unmounted and 693 * re-mounted. Most users should just provide the key directly instead. 694 */ 695 static int get_keyring_key(u32 key_id, u32 type, u32 flags, 696 struct fscrypt_master_key_secret *secret) 697 { 698 key_ref_t ref; 699 struct key *key; 700 const struct fscrypt_provisioning_key_payload *payload; 701 int err; 702 703 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); 704 if (IS_ERR(ref)) 705 return PTR_ERR(ref); 706 key = key_ref_to_ptr(ref); 707 708 if (key->type != &key_type_fscrypt_provisioning) 709 goto bad_key; 710 payload = key->payload.data[0]; 711 712 /* 713 * Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. 714 * Similarly, don't allow hardware-wrapped keys to be used as 715 * non-hardware-wrapped keys and vice versa. 716 */ 717 if (payload->type != type || payload->flags != flags) 718 goto bad_key; 719 720 secret->size = key->datalen - sizeof(*payload); 721 memcpy(secret->bytes, payload->raw, secret->size); 722 err = 0; 723 goto out_put; 724 725 bad_key: 726 err = -EKEYREJECTED; 727 out_put: 728 key_ref_put(ref); 729 return err; 730 } 731 732 /* 733 * Add a master encryption key to the filesystem, causing all files which were 734 * encrypted with it to appear "unlocked" (decrypted) when accessed. 735 * 736 * When adding a key for use by v1 encryption policies, this ioctl is 737 * privileged, and userspace must provide the 'key_descriptor'. 738 * 739 * When adding a key for use by v2+ encryption policies, this ioctl is 740 * unprivileged. This is needed, in general, to allow non-root users to use 741 * encryption without encountering the visibility problems of process-subscribed 742 * keyrings and the inability to properly remove keys. This works by having 743 * each key identified by its cryptographically secure hash --- the 744 * 'key_identifier'. The cryptographic hash ensures that a malicious user 745 * cannot add the wrong key for a given identifier. Furthermore, each added key 746 * is charged to the appropriate user's quota for the keyrings service, which 747 * prevents a malicious user from adding too many keys. Finally, we forbid a 748 * user from removing a key while other users have added it too, which prevents 749 * a user who knows another user's key from causing a denial-of-service by 750 * removing it at an inopportune time. (We tolerate that a user who knows a key 751 * can prevent other users from removing it.) 752 * 753 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of 754 * Documentation/filesystems/fscrypt.rst. 755 */ 756 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) 757 { 758 struct super_block *sb = file_inode(filp)->i_sb; 759 struct fscrypt_add_key_arg __user *uarg = _uarg; 760 struct fscrypt_add_key_arg arg; 761 struct fscrypt_master_key_secret secret; 762 int err; 763 764 if (copy_from_user(&arg, uarg, sizeof(arg))) 765 return -EFAULT; 766 767 if (!valid_key_spec(&arg.key_spec)) 768 return -EINVAL; 769 770 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 771 return -EINVAL; 772 773 /* 774 * Only root can add keys that are identified by an arbitrary descriptor 775 * rather than by a cryptographic hash --- since otherwise a malicious 776 * user could add the wrong key. 777 */ 778 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 779 !capable(CAP_SYS_ADMIN)) 780 return -EACCES; 781 782 memset(&secret, 0, sizeof(secret)); 783 784 if (arg.flags) { 785 if (arg.flags & ~FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) 786 return -EINVAL; 787 if (arg.key_spec.type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 788 return -EINVAL; 789 secret.is_hw_wrapped = true; 790 } 791 792 if (arg.key_id) { 793 if (arg.raw_size != 0) 794 return -EINVAL; 795 err = get_keyring_key(arg.key_id, arg.key_spec.type, arg.flags, 796 &secret); 797 if (err) 798 goto out_wipe_secret; 799 } else { 800 if (!fscrypt_valid_key_size(arg.raw_size, arg.flags)) 801 return -EINVAL; 802 secret.size = arg.raw_size; 803 err = -EFAULT; 804 if (copy_from_user(secret.bytes, uarg->raw, secret.size)) 805 goto out_wipe_secret; 806 } 807 808 err = add_master_key(sb, &secret, &arg.key_spec); 809 if (err) 810 goto out_wipe_secret; 811 812 /* Return the key identifier to userspace, if applicable */ 813 err = -EFAULT; 814 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 815 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, 816 FSCRYPT_KEY_IDENTIFIER_SIZE)) 817 goto out_wipe_secret; 818 err = 0; 819 out_wipe_secret: 820 wipe_master_key_secret(&secret); 821 return err; 822 } 823 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); 824 825 static void 826 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret) 827 { 828 static u8 test_key[FSCRYPT_MAX_RAW_KEY_SIZE]; 829 830 get_random_once(test_key, sizeof(test_key)); 831 832 memset(secret, 0, sizeof(*secret)); 833 secret->size = sizeof(test_key); 834 memcpy(secret->bytes, test_key, sizeof(test_key)); 835 } 836 837 int fscrypt_get_test_dummy_key_identifier( 838 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 839 { 840 struct fscrypt_master_key_secret secret; 841 int err; 842 843 fscrypt_get_test_dummy_secret(&secret); 844 845 err = fscrypt_init_hkdf(&secret.hkdf, secret.bytes, secret.size); 846 if (err) 847 goto out; 848 err = fscrypt_hkdf_expand(&secret.hkdf, 849 HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY, 850 NULL, 0, key_identifier, 851 FSCRYPT_KEY_IDENTIFIER_SIZE); 852 out: 853 wipe_master_key_secret(&secret); 854 return err; 855 } 856 857 /** 858 * fscrypt_add_test_dummy_key() - add the test dummy encryption key 859 * @sb: the filesystem instance to add the key to 860 * @key_spec: the key specifier of the test dummy encryption key 861 * 862 * Add the key for the test_dummy_encryption mount option to the filesystem. To 863 * prevent misuse of this mount option, a per-boot random key is used instead of 864 * a hardcoded one. This makes it so that any encrypted files created using 865 * this option won't be accessible after a reboot. 866 * 867 * Return: 0 on success, -errno on failure 868 */ 869 int fscrypt_add_test_dummy_key(struct super_block *sb, 870 struct fscrypt_key_specifier *key_spec) 871 { 872 struct fscrypt_master_key_secret secret; 873 int err; 874 875 fscrypt_get_test_dummy_secret(&secret); 876 err = add_master_key(sb, &secret, key_spec); 877 wipe_master_key_secret(&secret); 878 return err; 879 } 880 881 /* 882 * Verify that the current user has added a master key with the given identifier 883 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting 884 * their files using some other user's key which they don't actually know. 885 * Cryptographically this isn't much of a problem, but the semantics of this 886 * would be a bit weird, so it's best to just forbid it. 887 * 888 * The system administrator (CAP_FOWNER) can override this, which should be 889 * enough for any use cases where encryption policies are being set using keys 890 * that were chosen ahead of time but aren't available at the moment. 891 * 892 * Note that the key may have already removed by the time this returns, but 893 * that's okay; we just care whether the key was there at some point. 894 * 895 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code 896 */ 897 int fscrypt_verify_key_added(struct super_block *sb, 898 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 899 { 900 struct fscrypt_key_specifier mk_spec; 901 struct fscrypt_master_key *mk; 902 struct key *mk_user; 903 int err; 904 905 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 906 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); 907 908 mk = fscrypt_find_master_key(sb, &mk_spec); 909 if (!mk) { 910 err = -ENOKEY; 911 goto out; 912 } 913 down_read(&mk->mk_sem); 914 mk_user = find_master_key_user(mk); 915 if (IS_ERR(mk_user)) { 916 err = PTR_ERR(mk_user); 917 } else { 918 key_put(mk_user); 919 err = 0; 920 } 921 up_read(&mk->mk_sem); 922 fscrypt_put_master_key(mk); 923 out: 924 if (err == -ENOKEY && capable(CAP_FOWNER)) 925 err = 0; 926 return err; 927 } 928 929 /* 930 * Try to evict the inode's dentries from the dentry cache. If the inode is a 931 * directory, then it can have at most one dentry; however, that dentry may be 932 * pinned by child dentries, so first try to evict the children too. 933 */ 934 static void shrink_dcache_inode(struct inode *inode) 935 { 936 struct dentry *dentry; 937 938 if (S_ISDIR(inode->i_mode)) { 939 dentry = d_find_any_alias(inode); 940 if (dentry) { 941 shrink_dcache_parent(dentry); 942 dput(dentry); 943 } 944 } 945 d_prune_aliases(inode); 946 } 947 948 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) 949 { 950 struct fscrypt_inode_info *ci; 951 struct inode *inode; 952 struct inode *toput_inode = NULL; 953 954 spin_lock(&mk->mk_decrypted_inodes_lock); 955 956 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { 957 inode = ci->ci_inode; 958 spin_lock(&inode->i_lock); 959 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 960 spin_unlock(&inode->i_lock); 961 continue; 962 } 963 __iget(inode); 964 spin_unlock(&inode->i_lock); 965 spin_unlock(&mk->mk_decrypted_inodes_lock); 966 967 shrink_dcache_inode(inode); 968 iput(toput_inode); 969 toput_inode = inode; 970 971 spin_lock(&mk->mk_decrypted_inodes_lock); 972 } 973 974 spin_unlock(&mk->mk_decrypted_inodes_lock); 975 iput(toput_inode); 976 } 977 978 static int check_for_busy_inodes(struct super_block *sb, 979 struct fscrypt_master_key *mk) 980 { 981 struct list_head *pos; 982 size_t busy_count = 0; 983 unsigned long ino; 984 char ino_str[50] = ""; 985 986 spin_lock(&mk->mk_decrypted_inodes_lock); 987 988 list_for_each(pos, &mk->mk_decrypted_inodes) 989 busy_count++; 990 991 if (busy_count == 0) { 992 spin_unlock(&mk->mk_decrypted_inodes_lock); 993 return 0; 994 } 995 996 { 997 /* select an example file to show for debugging purposes */ 998 struct inode *inode = 999 list_first_entry(&mk->mk_decrypted_inodes, 1000 struct fscrypt_inode_info, 1001 ci_master_key_link)->ci_inode; 1002 ino = inode->i_ino; 1003 } 1004 spin_unlock(&mk->mk_decrypted_inodes_lock); 1005 1006 /* If the inode is currently being created, ino may still be 0. */ 1007 if (ino) 1008 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino); 1009 1010 fscrypt_warn(NULL, 1011 "%s: %zu inode(s) still busy after removing key with %s %*phN%s", 1012 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), 1013 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, 1014 ino_str); 1015 return -EBUSY; 1016 } 1017 1018 static int try_to_lock_encrypted_files(struct super_block *sb, 1019 struct fscrypt_master_key *mk) 1020 { 1021 int err1; 1022 int err2; 1023 1024 /* 1025 * An inode can't be evicted while it is dirty or has dirty pages. 1026 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. 1027 * 1028 * Just do it the easy way: call sync_filesystem(). It's overkill, but 1029 * it works, and it's more important to minimize the amount of caches we 1030 * drop than the amount of data we sync. Also, unprivileged users can 1031 * already call sync_filesystem() via sys_syncfs() or sys_sync(). 1032 */ 1033 down_read(&sb->s_umount); 1034 err1 = sync_filesystem(sb); 1035 up_read(&sb->s_umount); 1036 /* If a sync error occurs, still try to evict as much as possible. */ 1037 1038 /* 1039 * Inodes are pinned by their dentries, so we have to evict their 1040 * dentries. shrink_dcache_sb() would suffice, but would be overkill 1041 * and inappropriate for use by unprivileged users. So instead go 1042 * through the inodes' alias lists and try to evict each dentry. 1043 */ 1044 evict_dentries_for_decrypted_inodes(mk); 1045 1046 /* 1047 * evict_dentries_for_decrypted_inodes() already iput() each inode in 1048 * the list; any inodes for which that dropped the last reference will 1049 * have been evicted due to fscrypt_drop_inode() detecting the key 1050 * removal and telling the VFS to evict the inode. So to finish, we 1051 * just need to check whether any inodes couldn't be evicted. 1052 */ 1053 err2 = check_for_busy_inodes(sb, mk); 1054 1055 return err1 ?: err2; 1056 } 1057 1058 /* 1059 * Try to remove an fscrypt master encryption key. 1060 * 1061 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's 1062 * claim to the key, then removes the key itself if no other users have claims. 1063 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the 1064 * key itself. 1065 * 1066 * To "remove the key itself", first we transition the key to the "incompletely 1067 * removed" state, so that no more inodes can be unlocked with it. Then we try 1068 * to evict all cached inodes that had been unlocked with the key. 1069 * 1070 * If all inodes were evicted, then we unlink the fscrypt_master_key from the 1071 * keyring. Otherwise it remains in the keyring in the "incompletely removed" 1072 * state where it tracks the list of remaining inodes. Userspace can execute 1073 * the ioctl again later to retry eviction, or alternatively can re-add the key. 1074 * 1075 * For more details, see the "Removing keys" section of 1076 * Documentation/filesystems/fscrypt.rst. 1077 */ 1078 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) 1079 { 1080 struct super_block *sb = file_inode(filp)->i_sb; 1081 struct fscrypt_remove_key_arg __user *uarg = _uarg; 1082 struct fscrypt_remove_key_arg arg; 1083 struct fscrypt_master_key *mk; 1084 u32 status_flags = 0; 1085 int err; 1086 bool inodes_remain; 1087 1088 if (copy_from_user(&arg, uarg, sizeof(arg))) 1089 return -EFAULT; 1090 1091 if (!valid_key_spec(&arg.key_spec)) 1092 return -EINVAL; 1093 1094 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1095 return -EINVAL; 1096 1097 /* 1098 * Only root can add and remove keys that are identified by an arbitrary 1099 * descriptor rather than by a cryptographic hash. 1100 */ 1101 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 1102 !capable(CAP_SYS_ADMIN)) 1103 return -EACCES; 1104 1105 /* Find the key being removed. */ 1106 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1107 if (!mk) 1108 return -ENOKEY; 1109 down_write(&mk->mk_sem); 1110 1111 /* If relevant, remove current user's (or all users) claim to the key */ 1112 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { 1113 if (all_users) 1114 err = keyring_clear(mk->mk_users); 1115 else 1116 err = remove_master_key_user(mk); 1117 if (err) { 1118 up_write(&mk->mk_sem); 1119 goto out_put_key; 1120 } 1121 if (mk->mk_users->keys.nr_leaves_on_tree != 0) { 1122 /* 1123 * Other users have still added the key too. We removed 1124 * the current user's claim to the key, but we still 1125 * can't remove the key itself. 1126 */ 1127 status_flags |= 1128 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; 1129 err = 0; 1130 up_write(&mk->mk_sem); 1131 goto out_put_key; 1132 } 1133 } 1134 1135 /* No user claims remaining. Initiate removal of the key. */ 1136 err = -ENOKEY; 1137 if (mk->mk_present) { 1138 fscrypt_initiate_key_removal(sb, mk); 1139 err = 0; 1140 } 1141 inodes_remain = refcount_read(&mk->mk_active_refs) > 0; 1142 up_write(&mk->mk_sem); 1143 1144 if (inodes_remain) { 1145 /* Some inodes still reference this key; try to evict them. */ 1146 err = try_to_lock_encrypted_files(sb, mk); 1147 if (err == -EBUSY) { 1148 status_flags |= 1149 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; 1150 err = 0; 1151 } 1152 } 1153 /* 1154 * We return 0 if we successfully did something: removed a claim to the 1155 * key, initiated removal of the key, or tried locking the files again. 1156 * Users need to check the informational status flags if they care 1157 * whether the key has been fully removed including all files locked. 1158 */ 1159 out_put_key: 1160 fscrypt_put_master_key(mk); 1161 if (err == 0) 1162 err = put_user(status_flags, &uarg->removal_status_flags); 1163 return err; 1164 } 1165 1166 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) 1167 { 1168 return do_remove_key(filp, uarg, false); 1169 } 1170 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); 1171 1172 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) 1173 { 1174 if (!capable(CAP_SYS_ADMIN)) 1175 return -EACCES; 1176 return do_remove_key(filp, uarg, true); 1177 } 1178 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); 1179 1180 /* 1181 * Retrieve the status of an fscrypt master encryption key. 1182 * 1183 * We set ->status to indicate whether the key is absent, present, or 1184 * incompletely removed. (For an explanation of what these statuses mean and 1185 * how they are represented internally, see struct fscrypt_master_key.) This 1186 * field allows applications to easily determine the status of an encrypted 1187 * directory without using a hack such as trying to open a regular file in it 1188 * (which can confuse the "incompletely removed" status with absent or present). 1189 * 1190 * In addition, for v2 policy keys we allow applications to determine, via 1191 * ->status_flags and ->user_count, whether the key has been added by the 1192 * current user, by other users, or by both. Most applications should not need 1193 * this, since ordinarily only one user should know a given key. However, if a 1194 * secret key is shared by multiple users, applications may wish to add an 1195 * already-present key to prevent other users from removing it. This ioctl can 1196 * be used to check whether that really is the case before the work is done to 1197 * add the key --- which might e.g. require prompting the user for a passphrase. 1198 * 1199 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of 1200 * Documentation/filesystems/fscrypt.rst. 1201 */ 1202 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) 1203 { 1204 struct super_block *sb = file_inode(filp)->i_sb; 1205 struct fscrypt_get_key_status_arg arg; 1206 struct fscrypt_master_key *mk; 1207 int err; 1208 1209 if (copy_from_user(&arg, uarg, sizeof(arg))) 1210 return -EFAULT; 1211 1212 if (!valid_key_spec(&arg.key_spec)) 1213 return -EINVAL; 1214 1215 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1216 return -EINVAL; 1217 1218 arg.status_flags = 0; 1219 arg.user_count = 0; 1220 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); 1221 1222 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1223 if (!mk) { 1224 arg.status = FSCRYPT_KEY_STATUS_ABSENT; 1225 err = 0; 1226 goto out; 1227 } 1228 down_read(&mk->mk_sem); 1229 1230 if (!mk->mk_present) { 1231 arg.status = refcount_read(&mk->mk_active_refs) > 0 ? 1232 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED : 1233 FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */; 1234 err = 0; 1235 goto out_release_key; 1236 } 1237 1238 arg.status = FSCRYPT_KEY_STATUS_PRESENT; 1239 if (mk->mk_users) { 1240 struct key *mk_user; 1241 1242 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; 1243 mk_user = find_master_key_user(mk); 1244 if (!IS_ERR(mk_user)) { 1245 arg.status_flags |= 1246 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; 1247 key_put(mk_user); 1248 } else if (mk_user != ERR_PTR(-ENOKEY)) { 1249 err = PTR_ERR(mk_user); 1250 goto out_release_key; 1251 } 1252 } 1253 err = 0; 1254 out_release_key: 1255 up_read(&mk->mk_sem); 1256 fscrypt_put_master_key(mk); 1257 out: 1258 if (!err && copy_to_user(uarg, &arg, sizeof(arg))) 1259 err = -EFAULT; 1260 return err; 1261 } 1262 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); 1263 1264 int __init fscrypt_init_keyring(void) 1265 { 1266 int err; 1267 1268 err = register_key_type(&key_type_fscrypt_user); 1269 if (err) 1270 return err; 1271 1272 err = register_key_type(&key_type_fscrypt_provisioning); 1273 if (err) 1274 goto err_unregister_fscrypt_user; 1275 1276 return 0; 1277 1278 err_unregister_fscrypt_user: 1279 unregister_key_type(&key_type_fscrypt_user); 1280 return err; 1281 } 1282