1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fscrypt_private.h
4  *
5  * Copyright (C) 2015, Google, Inc.
6  *
7  * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8  * Heavily modified since then.
9  */
10 
11 #ifndef _FSCRYPT_PRIVATE_H
12 #define _FSCRYPT_PRIVATE_H
13 
14 #include <linux/fscrypt.h>
15 #include <linux/minmax.h>
16 #include <linux/siphash.h>
17 #include <crypto/hash.h>
18 #include <linux/blk-crypto.h>
19 
20 #define CONST_STRLEN(str)	(sizeof(str) - 1)
21 
22 #define FSCRYPT_FILE_NONCE_SIZE	16
23 
24 /*
25  * Minimum size of an fscrypt master key.  Note: a longer key will be required
26  * if ciphers with a 256-bit security strength are used.  This is just the
27  * absolute minimum, which applies when only 128-bit encryption is used.
28  */
29 #define FSCRYPT_MIN_KEY_SIZE	16
30 
31 /* Maximum size of a raw fscrypt master key */
32 #define FSCRYPT_MAX_RAW_KEY_SIZE	64
33 
34 /* Maximum size of a hardware-wrapped fscrypt master key */
35 #define FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE	BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE
36 
37 /* Maximum size of an fscrypt master key across both key types */
38 #define FSCRYPT_MAX_ANY_KEY_SIZE \
39 	MAX(FSCRYPT_MAX_RAW_KEY_SIZE, FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE)
40 
41 /*
42  * FSCRYPT_MAX_KEY_SIZE is defined in the UAPI header, but the addition of
43  * hardware-wrapped keys has made it misleading as it's only for raw keys.
44  * Don't use it in kernel code; use one of the above constants instead.
45  */
46 #undef FSCRYPT_MAX_KEY_SIZE
47 
48 #define FSCRYPT_CONTEXT_V1	1
49 #define FSCRYPT_CONTEXT_V2	2
50 
51 /* Keep this in sync with include/uapi/linux/fscrypt.h */
52 #define FSCRYPT_MODE_MAX	FSCRYPT_MODE_AES_256_HCTR2
53 
54 struct fscrypt_context_v1 {
55 	u8 version; /* FSCRYPT_CONTEXT_V1 */
56 	u8 contents_encryption_mode;
57 	u8 filenames_encryption_mode;
58 	u8 flags;
59 	u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
60 	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
61 };
62 
63 struct fscrypt_context_v2 {
64 	u8 version; /* FSCRYPT_CONTEXT_V2 */
65 	u8 contents_encryption_mode;
66 	u8 filenames_encryption_mode;
67 	u8 flags;
68 	u8 log2_data_unit_size;
69 	u8 __reserved[3];
70 	u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
71 	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
72 };
73 
74 /*
75  * fscrypt_context - the encryption context of an inode
76  *
77  * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
78  * encrypted file usually in a hidden extended attribute.  It contains the
79  * fields from the fscrypt_policy, in order to identify the encryption algorithm
80  * and key with which the file is encrypted.  It also contains a nonce that was
81  * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
82  * to cause different files to be encrypted differently.
83  */
84 union fscrypt_context {
85 	u8 version;
86 	struct fscrypt_context_v1 v1;
87 	struct fscrypt_context_v2 v2;
88 };
89 
90 /*
91  * Return the size expected for the given fscrypt_context based on its version
92  * number, or 0 if the context version is unrecognized.
93  */
94 static inline int fscrypt_context_size(const union fscrypt_context *ctx)
95 {
96 	switch (ctx->version) {
97 	case FSCRYPT_CONTEXT_V1:
98 		BUILD_BUG_ON(sizeof(ctx->v1) != 28);
99 		return sizeof(ctx->v1);
100 	case FSCRYPT_CONTEXT_V2:
101 		BUILD_BUG_ON(sizeof(ctx->v2) != 40);
102 		return sizeof(ctx->v2);
103 	}
104 	return 0;
105 }
106 
107 /* Check whether an fscrypt_context has a recognized version number and size */
108 static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx,
109 					    int ctx_size)
110 {
111 	return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx);
112 }
113 
114 /* Retrieve the context's nonce, assuming the context was already validated */
115 static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx)
116 {
117 	switch (ctx->version) {
118 	case FSCRYPT_CONTEXT_V1:
119 		return ctx->v1.nonce;
120 	case FSCRYPT_CONTEXT_V2:
121 		return ctx->v2.nonce;
122 	}
123 	WARN_ON_ONCE(1);
124 	return NULL;
125 }
126 
127 union fscrypt_policy {
128 	u8 version;
129 	struct fscrypt_policy_v1 v1;
130 	struct fscrypt_policy_v2 v2;
131 };
132 
133 /*
134  * Return the size expected for the given fscrypt_policy based on its version
135  * number, or 0 if the policy version is unrecognized.
136  */
137 static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
138 {
139 	switch (policy->version) {
140 	case FSCRYPT_POLICY_V1:
141 		return sizeof(policy->v1);
142 	case FSCRYPT_POLICY_V2:
143 		return sizeof(policy->v2);
144 	}
145 	return 0;
146 }
147 
148 /* Return the contents encryption mode of a valid encryption policy */
149 static inline u8
150 fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
151 {
152 	switch (policy->version) {
153 	case FSCRYPT_POLICY_V1:
154 		return policy->v1.contents_encryption_mode;
155 	case FSCRYPT_POLICY_V2:
156 		return policy->v2.contents_encryption_mode;
157 	}
158 	BUG();
159 }
160 
161 /* Return the filenames encryption mode of a valid encryption policy */
162 static inline u8
163 fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
164 {
165 	switch (policy->version) {
166 	case FSCRYPT_POLICY_V1:
167 		return policy->v1.filenames_encryption_mode;
168 	case FSCRYPT_POLICY_V2:
169 		return policy->v2.filenames_encryption_mode;
170 	}
171 	BUG();
172 }
173 
174 /* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
175 static inline u8
176 fscrypt_policy_flags(const union fscrypt_policy *policy)
177 {
178 	switch (policy->version) {
179 	case FSCRYPT_POLICY_V1:
180 		return policy->v1.flags;
181 	case FSCRYPT_POLICY_V2:
182 		return policy->v2.flags;
183 	}
184 	BUG();
185 }
186 
187 static inline int
188 fscrypt_policy_v2_du_bits(const struct fscrypt_policy_v2 *policy,
189 			  const struct inode *inode)
190 {
191 	return policy->log2_data_unit_size ?: inode->i_blkbits;
192 }
193 
194 static inline int
195 fscrypt_policy_du_bits(const union fscrypt_policy *policy,
196 		       const struct inode *inode)
197 {
198 	switch (policy->version) {
199 	case FSCRYPT_POLICY_V1:
200 		return inode->i_blkbits;
201 	case FSCRYPT_POLICY_V2:
202 		return fscrypt_policy_v2_du_bits(&policy->v2, inode);
203 	}
204 	BUG();
205 }
206 
207 /*
208  * For encrypted symlinks, the ciphertext length is stored at the beginning
209  * of the string in little-endian format.
210  */
211 struct fscrypt_symlink_data {
212 	__le16 len;
213 	char encrypted_path[];
214 } __packed;
215 
216 /**
217  * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption
218  * @tfm: crypto API transform object
219  * @blk_key: key for blk-crypto
220  *
221  * Normally only one of the fields will be non-NULL.
222  */
223 struct fscrypt_prepared_key {
224 	struct crypto_skcipher *tfm;
225 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
226 	struct blk_crypto_key *blk_key;
227 #endif
228 };
229 
230 /*
231  * fscrypt_inode_info - the "encryption key" for an inode
232  *
233  * When an encrypted file's key is made available, an instance of this struct is
234  * allocated and stored in ->i_crypt_info.  Once created, it remains until the
235  * inode is evicted.
236  */
237 struct fscrypt_inode_info {
238 
239 	/* The key in a form prepared for actual encryption/decryption */
240 	struct fscrypt_prepared_key ci_enc_key;
241 
242 	/* True if ci_enc_key should be freed when this struct is freed */
243 	u8 ci_owns_key : 1;
244 
245 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
246 	/*
247 	 * True if this inode will use inline encryption (blk-crypto) instead of
248 	 * the traditional filesystem-layer encryption.
249 	 */
250 	u8 ci_inlinecrypt : 1;
251 #endif
252 
253 	/* True if ci_dirhash_key is initialized */
254 	u8 ci_dirhash_key_initialized : 1;
255 
256 	/*
257 	 * log2 of the data unit size (granularity of contents encryption) of
258 	 * this file.  This is computable from ci_policy and ci_inode but is
259 	 * cached here for efficiency.  Only used for regular files.
260 	 */
261 	u8 ci_data_unit_bits;
262 
263 	/* Cached value: log2 of number of data units per FS block */
264 	u8 ci_data_units_per_block_bits;
265 
266 	/* Hashed inode number.  Only set for IV_INO_LBLK_32 */
267 	u32 ci_hashed_ino;
268 
269 	/*
270 	 * Encryption mode used for this inode.  It corresponds to either the
271 	 * contents or filenames encryption mode, depending on the inode type.
272 	 */
273 	struct fscrypt_mode *ci_mode;
274 
275 	/* Back-pointer to the inode */
276 	struct inode *ci_inode;
277 
278 	/*
279 	 * The master key with which this inode was unlocked (decrypted).  This
280 	 * will be NULL if the master key was found in a process-subscribed
281 	 * keyring rather than in the filesystem-level keyring.
282 	 */
283 	struct fscrypt_master_key *ci_master_key;
284 
285 	/*
286 	 * Link in list of inodes that were unlocked with the master key.
287 	 * Only used when ->ci_master_key is set.
288 	 */
289 	struct list_head ci_master_key_link;
290 
291 	/*
292 	 * If non-NULL, then encryption is done using the master key directly
293 	 * and ci_enc_key will equal ci_direct_key->dk_key.
294 	 */
295 	struct fscrypt_direct_key *ci_direct_key;
296 
297 	/*
298 	 * This inode's hash key for filenames.  This is a 128-bit SipHash-2-4
299 	 * key.  This is only set for directories that use a keyed dirhash over
300 	 * the plaintext filenames -- currently just casefolded directories.
301 	 */
302 	siphash_key_t ci_dirhash_key;
303 
304 	/* The encryption policy used by this inode */
305 	union fscrypt_policy ci_policy;
306 
307 	/* This inode's nonce, copied from the fscrypt_context */
308 	u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE];
309 };
310 
311 typedef enum {
312 	FS_DECRYPT = 0,
313 	FS_ENCRYPT,
314 } fscrypt_direction_t;
315 
316 /* crypto.c */
317 extern struct kmem_cache *fscrypt_inode_info_cachep;
318 int fscrypt_initialize(struct super_block *sb);
319 int fscrypt_crypt_data_unit(const struct fscrypt_inode_info *ci,
320 			    fscrypt_direction_t rw, u64 index,
321 			    struct page *src_page, struct page *dest_page,
322 			    unsigned int len, unsigned int offs,
323 			    gfp_t gfp_flags);
324 struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
325 
326 void __printf(3, 4) __cold
327 fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
328 
329 #define fscrypt_warn(inode, fmt, ...)		\
330 	fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
331 #define fscrypt_err(inode, fmt, ...)		\
332 	fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
333 
334 #define FSCRYPT_MAX_IV_SIZE	32
335 
336 union fscrypt_iv {
337 	struct {
338 		/* zero-based index of data unit within the file */
339 		__le64 index;
340 
341 		/* per-file nonce; only set in DIRECT_KEY mode */
342 		u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
343 	};
344 	u8 raw[FSCRYPT_MAX_IV_SIZE];
345 	__le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
346 };
347 
348 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index,
349 			 const struct fscrypt_inode_info *ci);
350 
351 /*
352  * Return the number of bits used by the maximum file data unit index that is
353  * possible on the given filesystem, using the given log2 data unit size.
354  */
355 static inline int
356 fscrypt_max_file_dun_bits(const struct super_block *sb, int du_bits)
357 {
358 	return fls64(sb->s_maxbytes - 1) - du_bits;
359 }
360 
361 /* fname.c */
362 bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
363 				    u32 orig_len, u32 max_len,
364 				    u32 *encrypted_len_ret);
365 
366 /* hkdf.c */
367 struct fscrypt_hkdf {
368 	struct crypto_shash *hmac_tfm;
369 };
370 
371 int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
372 		      unsigned int master_key_size);
373 
374 /*
375  * The list of contexts in which fscrypt uses HKDF.  These values are used as
376  * the first byte of the HKDF application-specific info string to guarantee that
377  * info strings are never repeated between contexts.  This ensures that all HKDF
378  * outputs are unique and cryptographically isolated, i.e. knowledge of one
379  * output doesn't reveal another.
380  */
381 #define HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY	1 /* info=<empty>	*/
382 #define HKDF_CONTEXT_PER_FILE_ENC_KEY	2 /* info=file_nonce		*/
383 #define HKDF_CONTEXT_DIRECT_KEY		3 /* info=mode_num		*/
384 #define HKDF_CONTEXT_IV_INO_LBLK_64_KEY	4 /* info=mode_num||fs_uuid	*/
385 #define HKDF_CONTEXT_DIRHASH_KEY	5 /* info=file_nonce		*/
386 #define HKDF_CONTEXT_IV_INO_LBLK_32_KEY	6 /* info=mode_num||fs_uuid	*/
387 #define HKDF_CONTEXT_INODE_HASH_KEY	7 /* info=<empty>		*/
388 #define HKDF_CONTEXT_KEY_IDENTIFIER_FOR_HW_WRAPPED_KEY \
389 					8 /* info=<empty>		*/
390 
391 int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
392 			const u8 *info, unsigned int infolen,
393 			u8 *okm, unsigned int okmlen);
394 
395 void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
396 
397 /* inline_crypt.c */
398 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
399 int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci,
400 				   bool is_hw_wrapped_key);
401 
402 static inline bool
403 fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
404 {
405 	return ci->ci_inlinecrypt;
406 }
407 
408 int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
409 				     const u8 *key_bytes, size_t key_size,
410 				     bool is_hw_wrapped,
411 				     const struct fscrypt_inode_info *ci);
412 
413 void fscrypt_destroy_inline_crypt_key(struct super_block *sb,
414 				      struct fscrypt_prepared_key *prep_key);
415 
416 int fscrypt_derive_sw_secret(struct super_block *sb,
417 			     const u8 *wrapped_key, size_t wrapped_key_size,
418 			     u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]);
419 
420 /*
421  * Check whether the crypto transform or blk-crypto key has been allocated in
422  * @prep_key, depending on which encryption implementation the file will use.
423  */
424 static inline bool
425 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
426 			const struct fscrypt_inode_info *ci)
427 {
428 	/*
429 	 * The two smp_load_acquire()'s here pair with the smp_store_release()'s
430 	 * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key().
431 	 * I.e., in some cases (namely, if this prep_key is a per-mode
432 	 * encryption key) another task can publish blk_key or tfm concurrently,
433 	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
434 	 * to safely ACQUIRE the memory the other task published.
435 	 */
436 	if (fscrypt_using_inline_encryption(ci))
437 		return smp_load_acquire(&prep_key->blk_key) != NULL;
438 	return smp_load_acquire(&prep_key->tfm) != NULL;
439 }
440 
441 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
442 
443 static inline int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci,
444 						 bool is_hw_wrapped_key)
445 {
446 	return 0;
447 }
448 
449 static inline bool
450 fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
451 {
452 	return false;
453 }
454 
455 static inline int
456 fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
457 				 const u8 *key_bytes, size_t key_size,
458 				 bool is_hw_wrapped,
459 				 const struct fscrypt_inode_info *ci)
460 {
461 	WARN_ON_ONCE(1);
462 	return -EOPNOTSUPP;
463 }
464 
465 static inline void
466 fscrypt_destroy_inline_crypt_key(struct super_block *sb,
467 				 struct fscrypt_prepared_key *prep_key)
468 {
469 }
470 
471 static inline int
472 fscrypt_derive_sw_secret(struct super_block *sb,
473 			 const u8 *wrapped_key, size_t wrapped_key_size,
474 			 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
475 {
476 	fscrypt_warn(NULL, "kernel doesn't support hardware-wrapped keys");
477 	return -EOPNOTSUPP;
478 }
479 
480 static inline bool
481 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
482 			const struct fscrypt_inode_info *ci)
483 {
484 	return smp_load_acquire(&prep_key->tfm) != NULL;
485 }
486 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
487 
488 /* keyring.c */
489 
490 /*
491  * fscrypt_master_key_secret - secret key material of an in-use master key
492  */
493 struct fscrypt_master_key_secret {
494 
495 	/*
496 	 * The KDF with which subkeys of this key can be derived.
497 	 *
498 	 * For v1 policy keys, this isn't applicable and won't be set.
499 	 * Otherwise, this KDF will be keyed by this master key if
500 	 * ->is_hw_wrapped=false, or by the "software secret" that hardware
501 	 * derived from this master key if ->is_hw_wrapped=true.
502 	 */
503 	struct fscrypt_hkdf	hkdf;
504 
505 	/*
506 	 * True if this key is a hardware-wrapped key; false if this key is a
507 	 * raw key (i.e. a "software key").  For v1 policy keys this will always
508 	 * be false, as v1 policy support is a legacy feature which doesn't
509 	 * support newer functionality such as hardware-wrapped keys.
510 	 */
511 	bool			is_hw_wrapped;
512 
513 	/*
514 	 * Size of the key in bytes.  This remains set even if ->bytes was
515 	 * zeroized due to no longer being needed.  I.e. we still remember the
516 	 * size of the key even if we don't need to remember the key itself.
517 	 */
518 	u32			size;
519 
520 	/*
521 	 * The bytes of the key, when still needed.  This can be either a raw
522 	 * key or a hardware-wrapped key, as indicated by ->is_hw_wrapped.  In
523 	 * the case of a raw, v2 policy key, there is no need to remember the
524 	 * actual key separately from ->hkdf so this field will be zeroized as
525 	 * soon as ->hkdf is initialized.
526 	 */
527 	u8			bytes[FSCRYPT_MAX_ANY_KEY_SIZE];
528 
529 } __randomize_layout;
530 
531 /*
532  * fscrypt_master_key - an in-use master key
533  *
534  * This represents a master encryption key which has been added to the
535  * filesystem.  There are three high-level states that a key can be in:
536  *
537  * FSCRYPT_KEY_STATUS_PRESENT
538  *	Key is fully usable; it can be used to unlock inodes that are encrypted
539  *	with it (this includes being able to create new inodes).  ->mk_present
540  *	indicates whether the key is in this state.  ->mk_secret exists, the key
541  *	is in the keyring, and ->mk_active_refs > 0 due to ->mk_present.
542  *
543  * FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED
544  *	Removal of this key has been initiated, but some inodes that were
545  *	unlocked with it are still in-use.  Like ABSENT, ->mk_secret is wiped,
546  *	and the key can no longer be used to unlock inodes.  Unlike ABSENT, the
547  *	key is still in the keyring; ->mk_decrypted_inodes is nonempty; and
548  *	->mk_active_refs > 0, being equal to the size of ->mk_decrypted_inodes.
549  *
550  *	This state transitions to ABSENT if ->mk_decrypted_inodes becomes empty,
551  *	or to PRESENT if FS_IOC_ADD_ENCRYPTION_KEY is called again for this key.
552  *
553  * FSCRYPT_KEY_STATUS_ABSENT
554  *	Key is fully removed.  The key is no longer in the keyring,
555  *	->mk_decrypted_inodes is empty, ->mk_active_refs == 0, ->mk_secret is
556  *	wiped, and the key can no longer be used to unlock inodes.
557  */
558 struct fscrypt_master_key {
559 
560 	/*
561 	 * Link in ->s_master_keys->key_hashtable.
562 	 * Only valid if ->mk_active_refs > 0.
563 	 */
564 	struct hlist_node			mk_node;
565 
566 	/* Semaphore that protects ->mk_secret, ->mk_users, and ->mk_present */
567 	struct rw_semaphore			mk_sem;
568 
569 	/*
570 	 * Active and structural reference counts.  An active ref guarantees
571 	 * that the struct continues to exist, continues to be in the keyring
572 	 * ->s_master_keys, and that any embedded subkeys (e.g.
573 	 * ->mk_direct_keys) that have been prepared continue to exist.
574 	 * A structural ref only guarantees that the struct continues to exist.
575 	 *
576 	 * There is one active ref associated with ->mk_present being true, and
577 	 * one active ref for each inode in ->mk_decrypted_inodes.
578 	 *
579 	 * There is one structural ref associated with the active refcount being
580 	 * nonzero.  Finding a key in the keyring also takes a structural ref,
581 	 * which is then held temporarily while the key is operated on.
582 	 */
583 	refcount_t				mk_active_refs;
584 	refcount_t				mk_struct_refs;
585 
586 	struct rcu_head				mk_rcu_head;
587 
588 	/*
589 	 * The secret key material.  Wiped as soon as it is no longer needed;
590 	 * for details, see the fscrypt_master_key struct comment.
591 	 *
592 	 * Locking: protected by ->mk_sem.
593 	 */
594 	struct fscrypt_master_key_secret	mk_secret;
595 
596 	/*
597 	 * For v1 policy keys: an arbitrary key descriptor which was assigned by
598 	 * userspace (->descriptor).
599 	 *
600 	 * For v2 policy keys: a cryptographic hash of this key (->identifier).
601 	 */
602 	struct fscrypt_key_specifier		mk_spec;
603 
604 	/*
605 	 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
606 	 * user who has added this key.  Normally each key will be added by just
607 	 * one user, but it's possible that multiple users share a key, and in
608 	 * that case we need to keep track of those users so that one user can't
609 	 * remove the key before the others want it removed too.
610 	 *
611 	 * This is NULL for v1 policy keys; those can only be added by root.
612 	 *
613 	 * Locking: protected by ->mk_sem.  (We don't just rely on the keyrings
614 	 * subsystem semaphore ->mk_users->sem, as we need support for atomic
615 	 * search+insert along with proper synchronization with other fields.)
616 	 */
617 	struct key		*mk_users;
618 
619 	/*
620 	 * List of inodes that were unlocked using this key.  This allows the
621 	 * inodes to be evicted efficiently if the key is removed.
622 	 */
623 	struct list_head	mk_decrypted_inodes;
624 	spinlock_t		mk_decrypted_inodes_lock;
625 
626 	/*
627 	 * Per-mode encryption keys for the various types of encryption policies
628 	 * that use them.  Allocated and derived on-demand.
629 	 */
630 	struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1];
631 	struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1];
632 	struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1];
633 
634 	/* Hash key for inode numbers.  Initialized only when needed. */
635 	siphash_key_t		mk_ino_hash_key;
636 	bool			mk_ino_hash_key_initialized;
637 
638 	/*
639 	 * Whether this key is in the "present" state, i.e. fully usable.  For
640 	 * details, see the fscrypt_master_key struct comment.
641 	 *
642 	 * Locking: protected by ->mk_sem, but can be read locklessly using
643 	 * READ_ONCE().  Writers must use WRITE_ONCE() when concurrent readers
644 	 * are possible.
645 	 */
646 	bool			mk_present;
647 
648 } __randomize_layout;
649 
650 static inline const char *master_key_spec_type(
651 				const struct fscrypt_key_specifier *spec)
652 {
653 	switch (spec->type) {
654 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
655 		return "descriptor";
656 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
657 		return "identifier";
658 	}
659 	return "[unknown]";
660 }
661 
662 static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
663 {
664 	switch (spec->type) {
665 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
666 		return FSCRYPT_KEY_DESCRIPTOR_SIZE;
667 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
668 		return FSCRYPT_KEY_IDENTIFIER_SIZE;
669 	}
670 	return 0;
671 }
672 
673 void fscrypt_put_master_key(struct fscrypt_master_key *mk);
674 
675 void fscrypt_put_master_key_activeref(struct super_block *sb,
676 				      struct fscrypt_master_key *mk);
677 
678 struct fscrypt_master_key *
679 fscrypt_find_master_key(struct super_block *sb,
680 			const struct fscrypt_key_specifier *mk_spec);
681 
682 int fscrypt_get_test_dummy_key_identifier(
683 			  u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
684 
685 int fscrypt_add_test_dummy_key(struct super_block *sb,
686 			       struct fscrypt_key_specifier *key_spec);
687 
688 int fscrypt_verify_key_added(struct super_block *sb,
689 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
690 
691 int __init fscrypt_init_keyring(void);
692 
693 /* keysetup.c */
694 
695 struct fscrypt_mode {
696 	const char *friendly_name;
697 	const char *cipher_str;
698 	int keysize;		/* key size in bytes */
699 	int security_strength;	/* security strength in bytes */
700 	int ivsize;		/* IV size in bytes */
701 	int logged_cryptoapi_impl;
702 	int logged_blk_crypto_native;
703 	int logged_blk_crypto_fallback;
704 	enum blk_crypto_mode_num blk_crypto_mode;
705 };
706 
707 extern struct fscrypt_mode fscrypt_modes[];
708 
709 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
710 			const u8 *raw_key, const struct fscrypt_inode_info *ci);
711 
712 void fscrypt_destroy_prepared_key(struct super_block *sb,
713 				  struct fscrypt_prepared_key *prep_key);
714 
715 int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci,
716 				 const u8 *raw_key);
717 
718 int fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci,
719 			       const struct fscrypt_master_key *mk);
720 
721 void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci,
722 			       const struct fscrypt_master_key *mk);
723 
724 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported);
725 
726 /**
727  * fscrypt_require_key() - require an inode's encryption key
728  * @inode: the inode we need the key for
729  *
730  * If the inode is encrypted, set up its encryption key if not already done.
731  * Then require that the key be present and return -ENOKEY otherwise.
732  *
733  * No locks are needed, and the key will live as long as the struct inode --- so
734  * it won't go away from under you.
735  *
736  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
737  * if a problem occurred while setting up the encryption key.
738  */
739 static inline int fscrypt_require_key(struct inode *inode)
740 {
741 	if (IS_ENCRYPTED(inode)) {
742 		int err = fscrypt_get_encryption_info(inode, false);
743 
744 		if (err)
745 			return err;
746 		if (!fscrypt_has_encryption_key(inode))
747 			return -ENOKEY;
748 	}
749 	return 0;
750 }
751 
752 /* keysetup_v1.c */
753 
754 void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
755 
756 int fscrypt_setup_v1_file_key(struct fscrypt_inode_info *ci,
757 			      const u8 *raw_master_key);
758 
759 int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
760 				struct fscrypt_inode_info *ci);
761 
762 /* policy.c */
763 
764 bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
765 			    const union fscrypt_policy *policy2);
766 int fscrypt_policy_to_key_spec(const union fscrypt_policy *policy,
767 			       struct fscrypt_key_specifier *key_spec);
768 const union fscrypt_policy *fscrypt_get_dummy_policy(struct super_block *sb);
769 bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
770 			      const struct inode *inode);
771 int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
772 				const union fscrypt_context *ctx_u,
773 				int ctx_size);
774 const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir);
775 
776 #endif /* _FSCRYPT_PRIVATE_H */
777