1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/fs.h> 5 #include <linux/wait.h> 6 #include <linux/slab.h> 7 #include <linux/gfp.h> 8 #include <linux/sched.h> 9 #include <linux/debugfs.h> 10 #include <linux/seq_file.h> 11 #include <linux/ratelimit.h> 12 #include <linux/bits.h> 13 #include <linux/ktime.h> 14 #include <linux/bitmap.h> 15 #include <linux/mnt_idmapping.h> 16 17 #include "super.h" 18 #include "mds_client.h" 19 #include "crypto.h" 20 21 #include <linux/ceph/ceph_features.h> 22 #include <linux/ceph/messenger.h> 23 #include <linux/ceph/decode.h> 24 #include <linux/ceph/pagelist.h> 25 #include <linux/ceph/auth.h> 26 #include <linux/ceph/debugfs.h> 27 28 #define RECONNECT_MAX_SIZE (INT_MAX - PAGE_SIZE) 29 30 /* 31 * A cluster of MDS (metadata server) daemons is responsible for 32 * managing the file system namespace (the directory hierarchy and 33 * inodes) and for coordinating shared access to storage. Metadata is 34 * partitioning hierarchically across a number of servers, and that 35 * partition varies over time as the cluster adjusts the distribution 36 * in order to balance load. 37 * 38 * The MDS client is primarily responsible to managing synchronous 39 * metadata requests for operations like open, unlink, and so forth. 40 * If there is a MDS failure, we find out about it when we (possibly 41 * request and) receive a new MDS map, and can resubmit affected 42 * requests. 43 * 44 * For the most part, though, we take advantage of a lossless 45 * communications channel to the MDS, and do not need to worry about 46 * timing out or resubmitting requests. 47 * 48 * We maintain a stateful "session" with each MDS we interact with. 49 * Within each session, we sent periodic heartbeat messages to ensure 50 * any capabilities or leases we have been issues remain valid. If 51 * the session times out and goes stale, our leases and capabilities 52 * are no longer valid. 53 */ 54 55 struct ceph_reconnect_state { 56 struct ceph_mds_session *session; 57 int nr_caps, nr_realms; 58 struct ceph_pagelist *pagelist; 59 unsigned msg_version; 60 bool allow_multi; 61 }; 62 63 static void __wake_requests(struct ceph_mds_client *mdsc, 64 struct list_head *head); 65 static void ceph_cap_release_work(struct work_struct *work); 66 static void ceph_cap_reclaim_work(struct work_struct *work); 67 68 static const struct ceph_connection_operations mds_con_ops; 69 70 71 /* 72 * mds reply parsing 73 */ 74 75 static int parse_reply_info_quota(void **p, void *end, 76 struct ceph_mds_reply_info_in *info) 77 { 78 u8 struct_v, struct_compat; 79 u32 struct_len; 80 81 ceph_decode_8_safe(p, end, struct_v, bad); 82 ceph_decode_8_safe(p, end, struct_compat, bad); 83 /* struct_v is expected to be >= 1. we only 84 * understand encoding with struct_compat == 1. */ 85 if (!struct_v || struct_compat != 1) 86 goto bad; 87 ceph_decode_32_safe(p, end, struct_len, bad); 88 ceph_decode_need(p, end, struct_len, bad); 89 end = *p + struct_len; 90 ceph_decode_64_safe(p, end, info->max_bytes, bad); 91 ceph_decode_64_safe(p, end, info->max_files, bad); 92 *p = end; 93 return 0; 94 bad: 95 return -EIO; 96 } 97 98 /* 99 * parse individual inode info 100 */ 101 static int parse_reply_info_in(void **p, void *end, 102 struct ceph_mds_reply_info_in *info, 103 u64 features) 104 { 105 int err = 0; 106 u8 struct_v = 0; 107 108 if (features == (u64)-1) { 109 u32 struct_len; 110 u8 struct_compat; 111 ceph_decode_8_safe(p, end, struct_v, bad); 112 ceph_decode_8_safe(p, end, struct_compat, bad); 113 /* struct_v is expected to be >= 1. we only understand 114 * encoding with struct_compat == 1. */ 115 if (!struct_v || struct_compat != 1) 116 goto bad; 117 ceph_decode_32_safe(p, end, struct_len, bad); 118 ceph_decode_need(p, end, struct_len, bad); 119 end = *p + struct_len; 120 } 121 122 ceph_decode_need(p, end, sizeof(struct ceph_mds_reply_inode), bad); 123 info->in = *p; 124 *p += sizeof(struct ceph_mds_reply_inode) + 125 sizeof(*info->in->fragtree.splits) * 126 le32_to_cpu(info->in->fragtree.nsplits); 127 128 ceph_decode_32_safe(p, end, info->symlink_len, bad); 129 ceph_decode_need(p, end, info->symlink_len, bad); 130 info->symlink = *p; 131 *p += info->symlink_len; 132 133 ceph_decode_copy_safe(p, end, &info->dir_layout, 134 sizeof(info->dir_layout), bad); 135 ceph_decode_32_safe(p, end, info->xattr_len, bad); 136 ceph_decode_need(p, end, info->xattr_len, bad); 137 info->xattr_data = *p; 138 *p += info->xattr_len; 139 140 if (features == (u64)-1) { 141 /* inline data */ 142 ceph_decode_64_safe(p, end, info->inline_version, bad); 143 ceph_decode_32_safe(p, end, info->inline_len, bad); 144 ceph_decode_need(p, end, info->inline_len, bad); 145 info->inline_data = *p; 146 *p += info->inline_len; 147 /* quota */ 148 err = parse_reply_info_quota(p, end, info); 149 if (err < 0) 150 goto out_bad; 151 /* pool namespace */ 152 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 153 if (info->pool_ns_len > 0) { 154 ceph_decode_need(p, end, info->pool_ns_len, bad); 155 info->pool_ns_data = *p; 156 *p += info->pool_ns_len; 157 } 158 159 /* btime */ 160 ceph_decode_need(p, end, sizeof(info->btime), bad); 161 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 162 163 /* change attribute */ 164 ceph_decode_64_safe(p, end, info->change_attr, bad); 165 166 /* dir pin */ 167 if (struct_v >= 2) { 168 ceph_decode_32_safe(p, end, info->dir_pin, bad); 169 } else { 170 info->dir_pin = -ENODATA; 171 } 172 173 /* snapshot birth time, remains zero for v<=2 */ 174 if (struct_v >= 3) { 175 ceph_decode_need(p, end, sizeof(info->snap_btime), bad); 176 ceph_decode_copy(p, &info->snap_btime, 177 sizeof(info->snap_btime)); 178 } else { 179 memset(&info->snap_btime, 0, sizeof(info->snap_btime)); 180 } 181 182 /* snapshot count, remains zero for v<=3 */ 183 if (struct_v >= 4) { 184 ceph_decode_64_safe(p, end, info->rsnaps, bad); 185 } else { 186 info->rsnaps = 0; 187 } 188 189 if (struct_v >= 5) { 190 u32 alen; 191 192 ceph_decode_32_safe(p, end, alen, bad); 193 194 while (alen--) { 195 u32 len; 196 197 /* key */ 198 ceph_decode_32_safe(p, end, len, bad); 199 ceph_decode_skip_n(p, end, len, bad); 200 /* value */ 201 ceph_decode_32_safe(p, end, len, bad); 202 ceph_decode_skip_n(p, end, len, bad); 203 } 204 } 205 206 /* fscrypt flag -- ignore */ 207 if (struct_v >= 6) 208 ceph_decode_skip_8(p, end, bad); 209 210 info->fscrypt_auth = NULL; 211 info->fscrypt_auth_len = 0; 212 info->fscrypt_file = NULL; 213 info->fscrypt_file_len = 0; 214 if (struct_v >= 7) { 215 ceph_decode_32_safe(p, end, info->fscrypt_auth_len, bad); 216 if (info->fscrypt_auth_len) { 217 info->fscrypt_auth = kmalloc(info->fscrypt_auth_len, 218 GFP_KERNEL); 219 if (!info->fscrypt_auth) 220 return -ENOMEM; 221 ceph_decode_copy_safe(p, end, info->fscrypt_auth, 222 info->fscrypt_auth_len, bad); 223 } 224 ceph_decode_32_safe(p, end, info->fscrypt_file_len, bad); 225 if (info->fscrypt_file_len) { 226 info->fscrypt_file = kmalloc(info->fscrypt_file_len, 227 GFP_KERNEL); 228 if (!info->fscrypt_file) 229 return -ENOMEM; 230 ceph_decode_copy_safe(p, end, info->fscrypt_file, 231 info->fscrypt_file_len, bad); 232 } 233 } 234 *p = end; 235 } else { 236 /* legacy (unversioned) struct */ 237 if (features & CEPH_FEATURE_MDS_INLINE_DATA) { 238 ceph_decode_64_safe(p, end, info->inline_version, bad); 239 ceph_decode_32_safe(p, end, info->inline_len, bad); 240 ceph_decode_need(p, end, info->inline_len, bad); 241 info->inline_data = *p; 242 *p += info->inline_len; 243 } else 244 info->inline_version = CEPH_INLINE_NONE; 245 246 if (features & CEPH_FEATURE_MDS_QUOTA) { 247 err = parse_reply_info_quota(p, end, info); 248 if (err < 0) 249 goto out_bad; 250 } else { 251 info->max_bytes = 0; 252 info->max_files = 0; 253 } 254 255 info->pool_ns_len = 0; 256 info->pool_ns_data = NULL; 257 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) { 258 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 259 if (info->pool_ns_len > 0) { 260 ceph_decode_need(p, end, info->pool_ns_len, bad); 261 info->pool_ns_data = *p; 262 *p += info->pool_ns_len; 263 } 264 } 265 266 if (features & CEPH_FEATURE_FS_BTIME) { 267 ceph_decode_need(p, end, sizeof(info->btime), bad); 268 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 269 ceph_decode_64_safe(p, end, info->change_attr, bad); 270 } 271 272 info->dir_pin = -ENODATA; 273 /* info->snap_btime and info->rsnaps remain zero */ 274 } 275 return 0; 276 bad: 277 err = -EIO; 278 out_bad: 279 return err; 280 } 281 282 static int parse_reply_info_dir(void **p, void *end, 283 struct ceph_mds_reply_dirfrag **dirfrag, 284 u64 features) 285 { 286 if (features == (u64)-1) { 287 u8 struct_v, struct_compat; 288 u32 struct_len; 289 ceph_decode_8_safe(p, end, struct_v, bad); 290 ceph_decode_8_safe(p, end, struct_compat, bad); 291 /* struct_v is expected to be >= 1. we only understand 292 * encoding whose struct_compat == 1. */ 293 if (!struct_v || struct_compat != 1) 294 goto bad; 295 ceph_decode_32_safe(p, end, struct_len, bad); 296 ceph_decode_need(p, end, struct_len, bad); 297 end = *p + struct_len; 298 } 299 300 ceph_decode_need(p, end, sizeof(**dirfrag), bad); 301 *dirfrag = *p; 302 *p += sizeof(**dirfrag) + sizeof(u32) * le32_to_cpu((*dirfrag)->ndist); 303 if (unlikely(*p > end)) 304 goto bad; 305 if (features == (u64)-1) 306 *p = end; 307 return 0; 308 bad: 309 return -EIO; 310 } 311 312 static int parse_reply_info_lease(void **p, void *end, 313 struct ceph_mds_reply_lease **lease, 314 u64 features, u32 *altname_len, u8 **altname) 315 { 316 u8 struct_v; 317 u32 struct_len; 318 void *lend; 319 320 if (features == (u64)-1) { 321 u8 struct_compat; 322 323 ceph_decode_8_safe(p, end, struct_v, bad); 324 ceph_decode_8_safe(p, end, struct_compat, bad); 325 326 /* struct_v is expected to be >= 1. we only understand 327 * encoding whose struct_compat == 1. */ 328 if (!struct_v || struct_compat != 1) 329 goto bad; 330 331 ceph_decode_32_safe(p, end, struct_len, bad); 332 } else { 333 struct_len = sizeof(**lease); 334 *altname_len = 0; 335 *altname = NULL; 336 } 337 338 lend = *p + struct_len; 339 ceph_decode_need(p, end, struct_len, bad); 340 *lease = *p; 341 *p += sizeof(**lease); 342 343 if (features == (u64)-1) { 344 if (struct_v >= 2) { 345 ceph_decode_32_safe(p, end, *altname_len, bad); 346 ceph_decode_need(p, end, *altname_len, bad); 347 *altname = *p; 348 *p += *altname_len; 349 } else { 350 *altname = NULL; 351 *altname_len = 0; 352 } 353 } 354 *p = lend; 355 return 0; 356 bad: 357 return -EIO; 358 } 359 360 /* 361 * parse a normal reply, which may contain a (dir+)dentry and/or a 362 * target inode. 363 */ 364 static int parse_reply_info_trace(void **p, void *end, 365 struct ceph_mds_reply_info_parsed *info, 366 u64 features) 367 { 368 int err; 369 370 if (info->head->is_dentry) { 371 err = parse_reply_info_in(p, end, &info->diri, features); 372 if (err < 0) 373 goto out_bad; 374 375 err = parse_reply_info_dir(p, end, &info->dirfrag, features); 376 if (err < 0) 377 goto out_bad; 378 379 ceph_decode_32_safe(p, end, info->dname_len, bad); 380 ceph_decode_need(p, end, info->dname_len, bad); 381 info->dname = *p; 382 *p += info->dname_len; 383 384 err = parse_reply_info_lease(p, end, &info->dlease, features, 385 &info->altname_len, &info->altname); 386 if (err < 0) 387 goto out_bad; 388 } 389 390 if (info->head->is_target) { 391 err = parse_reply_info_in(p, end, &info->targeti, features); 392 if (err < 0) 393 goto out_bad; 394 } 395 396 if (unlikely(*p != end)) 397 goto bad; 398 return 0; 399 400 bad: 401 err = -EIO; 402 out_bad: 403 pr_err("problem parsing mds trace %d\n", err); 404 return err; 405 } 406 407 /* 408 * parse readdir results 409 */ 410 static int parse_reply_info_readdir(void **p, void *end, 411 struct ceph_mds_request *req, 412 u64 features) 413 { 414 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 415 struct ceph_client *cl = req->r_mdsc->fsc->client; 416 u32 num, i = 0; 417 int err; 418 419 err = parse_reply_info_dir(p, end, &info->dir_dir, features); 420 if (err < 0) 421 goto out_bad; 422 423 ceph_decode_need(p, end, sizeof(num) + 2, bad); 424 num = ceph_decode_32(p); 425 { 426 u16 flags = ceph_decode_16(p); 427 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END); 428 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE); 429 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER); 430 info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH); 431 } 432 if (num == 0) 433 goto done; 434 435 BUG_ON(!info->dir_entries); 436 if ((unsigned long)(info->dir_entries + num) > 437 (unsigned long)info->dir_entries + info->dir_buf_size) { 438 pr_err_client(cl, "dir contents are larger than expected\n"); 439 WARN_ON(1); 440 goto bad; 441 } 442 443 info->dir_nr = num; 444 while (num) { 445 struct inode *inode = d_inode(req->r_dentry); 446 struct ceph_inode_info *ci = ceph_inode(inode); 447 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 448 struct fscrypt_str tname = FSTR_INIT(NULL, 0); 449 struct fscrypt_str oname = FSTR_INIT(NULL, 0); 450 struct ceph_fname fname; 451 u32 altname_len, _name_len; 452 u8 *altname, *_name; 453 454 /* dentry */ 455 ceph_decode_32_safe(p, end, _name_len, bad); 456 ceph_decode_need(p, end, _name_len, bad); 457 _name = *p; 458 *p += _name_len; 459 doutc(cl, "parsed dir dname '%.*s'\n", _name_len, _name); 460 461 if (info->hash_order) 462 rde->raw_hash = ceph_str_hash(ci->i_dir_layout.dl_dir_hash, 463 _name, _name_len); 464 465 /* dentry lease */ 466 err = parse_reply_info_lease(p, end, &rde->lease, features, 467 &altname_len, &altname); 468 if (err) 469 goto out_bad; 470 471 /* 472 * Try to dencrypt the dentry names and update them 473 * in the ceph_mds_reply_dir_entry struct. 474 */ 475 fname.dir = inode; 476 fname.name = _name; 477 fname.name_len = _name_len; 478 fname.ctext = altname; 479 fname.ctext_len = altname_len; 480 /* 481 * The _name_len maybe larger than altname_len, such as 482 * when the human readable name length is in range of 483 * (CEPH_NOHASH_NAME_MAX, CEPH_NOHASH_NAME_MAX + SHA256_DIGEST_SIZE), 484 * then the copy in ceph_fname_to_usr will corrupt the 485 * data if there has no encryption key. 486 * 487 * Just set the no_copy flag and then if there has no 488 * encryption key the oname.name will be assigned to 489 * _name always. 490 */ 491 fname.no_copy = true; 492 if (altname_len == 0) { 493 /* 494 * Set tname to _name, and this will be used 495 * to do the base64_decode in-place. It's 496 * safe because the decoded string should 497 * always be shorter, which is 3/4 of origin 498 * string. 499 */ 500 tname.name = _name; 501 502 /* 503 * Set oname to _name too, and this will be 504 * used to do the dencryption in-place. 505 */ 506 oname.name = _name; 507 oname.len = _name_len; 508 } else { 509 /* 510 * This will do the decryption only in-place 511 * from altname cryptext directly. 512 */ 513 oname.name = altname; 514 oname.len = altname_len; 515 } 516 rde->is_nokey = false; 517 err = ceph_fname_to_usr(&fname, &tname, &oname, &rde->is_nokey); 518 if (err) { 519 pr_err_client(cl, "unable to decode %.*s, got %d\n", 520 _name_len, _name, err); 521 goto out_bad; 522 } 523 rde->name = oname.name; 524 rde->name_len = oname.len; 525 526 /* inode */ 527 err = parse_reply_info_in(p, end, &rde->inode, features); 528 if (err < 0) 529 goto out_bad; 530 /* ceph_readdir_prepopulate() will update it */ 531 rde->offset = 0; 532 i++; 533 num--; 534 } 535 536 done: 537 /* Skip over any unrecognized fields */ 538 *p = end; 539 return 0; 540 541 bad: 542 err = -EIO; 543 out_bad: 544 pr_err_client(cl, "problem parsing dir contents %d\n", err); 545 return err; 546 } 547 548 /* 549 * parse fcntl F_GETLK results 550 */ 551 static int parse_reply_info_filelock(void **p, void *end, 552 struct ceph_mds_reply_info_parsed *info, 553 u64 features) 554 { 555 if (*p + sizeof(*info->filelock_reply) > end) 556 goto bad; 557 558 info->filelock_reply = *p; 559 560 /* Skip over any unrecognized fields */ 561 *p = end; 562 return 0; 563 bad: 564 return -EIO; 565 } 566 567 568 #if BITS_PER_LONG == 64 569 570 #define DELEGATED_INO_AVAILABLE xa_mk_value(1) 571 572 static int ceph_parse_deleg_inos(void **p, void *end, 573 struct ceph_mds_session *s) 574 { 575 struct ceph_client *cl = s->s_mdsc->fsc->client; 576 u32 sets; 577 578 ceph_decode_32_safe(p, end, sets, bad); 579 doutc(cl, "got %u sets of delegated inodes\n", sets); 580 while (sets--) { 581 u64 start, len; 582 583 ceph_decode_64_safe(p, end, start, bad); 584 ceph_decode_64_safe(p, end, len, bad); 585 586 /* Don't accept a delegation of system inodes */ 587 if (start < CEPH_INO_SYSTEM_BASE) { 588 pr_warn_ratelimited_client(cl, 589 "ignoring reserved inode range delegation (start=0x%llx len=0x%llx)\n", 590 start, len); 591 continue; 592 } 593 while (len--) { 594 int err = xa_insert(&s->s_delegated_inos, start++, 595 DELEGATED_INO_AVAILABLE, 596 GFP_KERNEL); 597 if (!err) { 598 doutc(cl, "added delegated inode 0x%llx\n", start - 1); 599 } else if (err == -EBUSY) { 600 pr_warn_client(cl, 601 "MDS delegated inode 0x%llx more than once.\n", 602 start - 1); 603 } else { 604 return err; 605 } 606 } 607 } 608 return 0; 609 bad: 610 return -EIO; 611 } 612 613 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 614 { 615 unsigned long ino; 616 void *val; 617 618 xa_for_each(&s->s_delegated_inos, ino, val) { 619 val = xa_erase(&s->s_delegated_inos, ino); 620 if (val == DELEGATED_INO_AVAILABLE) 621 return ino; 622 } 623 return 0; 624 } 625 626 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 627 { 628 return xa_insert(&s->s_delegated_inos, ino, DELEGATED_INO_AVAILABLE, 629 GFP_KERNEL); 630 } 631 #else /* BITS_PER_LONG == 64 */ 632 /* 633 * FIXME: xarrays can't handle 64-bit indexes on a 32-bit arch. For now, just 634 * ignore delegated_inos on 32 bit arch. Maybe eventually add xarrays for top 635 * and bottom words? 636 */ 637 static int ceph_parse_deleg_inos(void **p, void *end, 638 struct ceph_mds_session *s) 639 { 640 u32 sets; 641 642 ceph_decode_32_safe(p, end, sets, bad); 643 if (sets) 644 ceph_decode_skip_n(p, end, sets * 2 * sizeof(__le64), bad); 645 return 0; 646 bad: 647 return -EIO; 648 } 649 650 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 651 { 652 return 0; 653 } 654 655 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 656 { 657 return 0; 658 } 659 #endif /* BITS_PER_LONG == 64 */ 660 661 /* 662 * parse create results 663 */ 664 static int parse_reply_info_create(void **p, void *end, 665 struct ceph_mds_reply_info_parsed *info, 666 u64 features, struct ceph_mds_session *s) 667 { 668 int ret; 669 670 if (features == (u64)-1 || 671 (features & CEPH_FEATURE_REPLY_CREATE_INODE)) { 672 if (*p == end) { 673 /* Malformed reply? */ 674 info->has_create_ino = false; 675 } else if (test_bit(CEPHFS_FEATURE_DELEG_INO, &s->s_features)) { 676 info->has_create_ino = true; 677 /* struct_v, struct_compat, and len */ 678 ceph_decode_skip_n(p, end, 2 + sizeof(u32), bad); 679 ceph_decode_64_safe(p, end, info->ino, bad); 680 ret = ceph_parse_deleg_inos(p, end, s); 681 if (ret) 682 return ret; 683 } else { 684 /* legacy */ 685 ceph_decode_64_safe(p, end, info->ino, bad); 686 info->has_create_ino = true; 687 } 688 } else { 689 if (*p != end) 690 goto bad; 691 } 692 693 /* Skip over any unrecognized fields */ 694 *p = end; 695 return 0; 696 bad: 697 return -EIO; 698 } 699 700 static int parse_reply_info_getvxattr(void **p, void *end, 701 struct ceph_mds_reply_info_parsed *info, 702 u64 features) 703 { 704 u32 value_len; 705 706 ceph_decode_skip_8(p, end, bad); /* skip current version: 1 */ 707 ceph_decode_skip_8(p, end, bad); /* skip first version: 1 */ 708 ceph_decode_skip_32(p, end, bad); /* skip payload length */ 709 710 ceph_decode_32_safe(p, end, value_len, bad); 711 712 if (value_len == end - *p) { 713 info->xattr_info.xattr_value = *p; 714 info->xattr_info.xattr_value_len = value_len; 715 *p = end; 716 return value_len; 717 } 718 bad: 719 return -EIO; 720 } 721 722 /* 723 * parse extra results 724 */ 725 static int parse_reply_info_extra(void **p, void *end, 726 struct ceph_mds_request *req, 727 u64 features, struct ceph_mds_session *s) 728 { 729 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 730 u32 op = le32_to_cpu(info->head->op); 731 732 if (op == CEPH_MDS_OP_GETFILELOCK) 733 return parse_reply_info_filelock(p, end, info, features); 734 else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP) 735 return parse_reply_info_readdir(p, end, req, features); 736 else if (op == CEPH_MDS_OP_CREATE) 737 return parse_reply_info_create(p, end, info, features, s); 738 else if (op == CEPH_MDS_OP_GETVXATTR) 739 return parse_reply_info_getvxattr(p, end, info, features); 740 else 741 return -EIO; 742 } 743 744 /* 745 * parse entire mds reply 746 */ 747 static int parse_reply_info(struct ceph_mds_session *s, struct ceph_msg *msg, 748 struct ceph_mds_request *req, u64 features) 749 { 750 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 751 struct ceph_client *cl = s->s_mdsc->fsc->client; 752 void *p, *end; 753 u32 len; 754 int err; 755 756 info->head = msg->front.iov_base; 757 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 758 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 759 760 /* trace */ 761 ceph_decode_32_safe(&p, end, len, bad); 762 if (len > 0) { 763 ceph_decode_need(&p, end, len, bad); 764 err = parse_reply_info_trace(&p, p+len, info, features); 765 if (err < 0) 766 goto out_bad; 767 } 768 769 /* extra */ 770 ceph_decode_32_safe(&p, end, len, bad); 771 if (len > 0) { 772 ceph_decode_need(&p, end, len, bad); 773 err = parse_reply_info_extra(&p, p+len, req, features, s); 774 if (err < 0) 775 goto out_bad; 776 } 777 778 /* snap blob */ 779 ceph_decode_32_safe(&p, end, len, bad); 780 info->snapblob_len = len; 781 info->snapblob = p; 782 p += len; 783 784 if (p != end) 785 goto bad; 786 return 0; 787 788 bad: 789 err = -EIO; 790 out_bad: 791 pr_err_client(cl, "mds parse_reply err %d\n", err); 792 ceph_msg_dump(msg); 793 return err; 794 } 795 796 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 797 { 798 int i; 799 800 kfree(info->diri.fscrypt_auth); 801 kfree(info->diri.fscrypt_file); 802 kfree(info->targeti.fscrypt_auth); 803 kfree(info->targeti.fscrypt_file); 804 if (!info->dir_entries) 805 return; 806 807 for (i = 0; i < info->dir_nr; i++) { 808 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 809 810 kfree(rde->inode.fscrypt_auth); 811 kfree(rde->inode.fscrypt_file); 812 } 813 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size)); 814 } 815 816 /* 817 * In async unlink case the kclient won't wait for the first reply 818 * from MDS and just drop all the links and unhash the dentry and then 819 * succeeds immediately. 820 * 821 * For any new create/link/rename,etc requests followed by using the 822 * same file names we must wait for the first reply of the inflight 823 * unlink request, or the MDS possibly will fail these following 824 * requests with -EEXIST if the inflight async unlink request was 825 * delayed for some reasons. 826 * 827 * And the worst case is that for the none async openc request it will 828 * successfully open the file if the CDentry hasn't been unlinked yet, 829 * but later the previous delayed async unlink request will remove the 830 * CDentry. That means the just created file is possibly deleted later 831 * by accident. 832 * 833 * We need to wait for the inflight async unlink requests to finish 834 * when creating new files/directories by using the same file names. 835 */ 836 int ceph_wait_on_conflict_unlink(struct dentry *dentry) 837 { 838 struct ceph_fs_client *fsc = ceph_sb_to_fs_client(dentry->d_sb); 839 struct ceph_client *cl = fsc->client; 840 struct dentry *pdentry = dentry->d_parent; 841 struct dentry *udentry, *found = NULL; 842 struct ceph_dentry_info *di; 843 struct qstr dname; 844 u32 hash = dentry->d_name.hash; 845 int err; 846 847 dname.name = dentry->d_name.name; 848 dname.len = dentry->d_name.len; 849 850 rcu_read_lock(); 851 hash_for_each_possible_rcu(fsc->async_unlink_conflict, di, 852 hnode, hash) { 853 udentry = di->dentry; 854 855 spin_lock(&udentry->d_lock); 856 if (udentry->d_name.hash != hash) 857 goto next; 858 if (unlikely(udentry->d_parent != pdentry)) 859 goto next; 860 if (!hash_hashed(&di->hnode)) 861 goto next; 862 863 if (!test_bit(CEPH_DENTRY_ASYNC_UNLINK_BIT, &di->flags)) 864 pr_warn_client(cl, "dentry %p:%pd async unlink bit is not set\n", 865 dentry, dentry); 866 867 if (!d_same_name(udentry, pdentry, &dname)) 868 goto next; 869 870 found = dget_dlock(udentry); 871 spin_unlock(&udentry->d_lock); 872 break; 873 next: 874 spin_unlock(&udentry->d_lock); 875 } 876 rcu_read_unlock(); 877 878 if (likely(!found)) 879 return 0; 880 881 doutc(cl, "dentry %p:%pd conflict with old %p:%pd\n", dentry, dentry, 882 found, found); 883 884 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_UNLINK_BIT, 885 TASK_KILLABLE); 886 dput(found); 887 return err; 888 } 889 890 891 /* 892 * sessions 893 */ 894 const char *ceph_session_state_name(int s) 895 { 896 switch (s) { 897 case CEPH_MDS_SESSION_NEW: return "new"; 898 case CEPH_MDS_SESSION_OPENING: return "opening"; 899 case CEPH_MDS_SESSION_OPEN: return "open"; 900 case CEPH_MDS_SESSION_HUNG: return "hung"; 901 case CEPH_MDS_SESSION_CLOSING: return "closing"; 902 case CEPH_MDS_SESSION_CLOSED: return "closed"; 903 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 904 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 905 case CEPH_MDS_SESSION_REJECTED: return "rejected"; 906 default: return "???"; 907 } 908 } 909 910 struct ceph_mds_session *ceph_get_mds_session(struct ceph_mds_session *s) 911 { 912 if (refcount_inc_not_zero(&s->s_ref)) 913 return s; 914 return NULL; 915 } 916 917 void ceph_put_mds_session(struct ceph_mds_session *s) 918 { 919 if (IS_ERR_OR_NULL(s)) 920 return; 921 922 if (refcount_dec_and_test(&s->s_ref)) { 923 if (s->s_auth.authorizer) 924 ceph_auth_destroy_authorizer(s->s_auth.authorizer); 925 WARN_ON(mutex_is_locked(&s->s_mutex)); 926 xa_destroy(&s->s_delegated_inos); 927 kfree(s); 928 } 929 } 930 931 /* 932 * called under mdsc->mutex 933 */ 934 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 935 int mds) 936 { 937 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 938 return NULL; 939 return ceph_get_mds_session(mdsc->sessions[mds]); 940 } 941 942 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 943 { 944 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 945 return false; 946 else 947 return true; 948 } 949 950 static int __verify_registered_session(struct ceph_mds_client *mdsc, 951 struct ceph_mds_session *s) 952 { 953 if (s->s_mds >= mdsc->max_sessions || 954 mdsc->sessions[s->s_mds] != s) 955 return -ENOENT; 956 return 0; 957 } 958 959 /* 960 * create+register a new session for given mds. 961 * called under mdsc->mutex. 962 */ 963 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 964 int mds) 965 { 966 struct ceph_client *cl = mdsc->fsc->client; 967 struct ceph_mds_session *s; 968 969 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) 970 return ERR_PTR(-EIO); 971 972 if (mds >= mdsc->mdsmap->possible_max_rank) 973 return ERR_PTR(-EINVAL); 974 975 s = kzalloc(sizeof(*s), GFP_NOFS); 976 if (!s) 977 return ERR_PTR(-ENOMEM); 978 979 if (mds >= mdsc->max_sessions) { 980 int newmax = 1 << get_count_order(mds + 1); 981 struct ceph_mds_session **sa; 982 983 doutc(cl, "realloc to %d\n", newmax); 984 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 985 if (!sa) 986 goto fail_realloc; 987 if (mdsc->sessions) { 988 memcpy(sa, mdsc->sessions, 989 mdsc->max_sessions * sizeof(void *)); 990 kfree(mdsc->sessions); 991 } 992 mdsc->sessions = sa; 993 mdsc->max_sessions = newmax; 994 } 995 996 doutc(cl, "mds%d\n", mds); 997 s->s_mdsc = mdsc; 998 s->s_mds = mds; 999 s->s_state = CEPH_MDS_SESSION_NEW; 1000 mutex_init(&s->s_mutex); 1001 1002 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 1003 1004 atomic_set(&s->s_cap_gen, 1); 1005 s->s_cap_ttl = jiffies - 1; 1006 1007 spin_lock_init(&s->s_cap_lock); 1008 INIT_LIST_HEAD(&s->s_caps); 1009 refcount_set(&s->s_ref, 1); 1010 INIT_LIST_HEAD(&s->s_waiting); 1011 INIT_LIST_HEAD(&s->s_unsafe); 1012 xa_init(&s->s_delegated_inos); 1013 INIT_LIST_HEAD(&s->s_cap_releases); 1014 INIT_WORK(&s->s_cap_release_work, ceph_cap_release_work); 1015 1016 INIT_LIST_HEAD(&s->s_cap_dirty); 1017 INIT_LIST_HEAD(&s->s_cap_flushing); 1018 1019 mdsc->sessions[mds] = s; 1020 atomic_inc(&mdsc->num_sessions); 1021 refcount_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 1022 1023 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 1024 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 1025 1026 return s; 1027 1028 fail_realloc: 1029 kfree(s); 1030 return ERR_PTR(-ENOMEM); 1031 } 1032 1033 /* 1034 * called under mdsc->mutex 1035 */ 1036 static void __unregister_session(struct ceph_mds_client *mdsc, 1037 struct ceph_mds_session *s) 1038 { 1039 doutc(mdsc->fsc->client, "mds%d %p\n", s->s_mds, s); 1040 BUG_ON(mdsc->sessions[s->s_mds] != s); 1041 mdsc->sessions[s->s_mds] = NULL; 1042 ceph_con_close(&s->s_con); 1043 ceph_put_mds_session(s); 1044 atomic_dec(&mdsc->num_sessions); 1045 } 1046 1047 /* 1048 * drop session refs in request. 1049 * 1050 * should be last request ref, or hold mdsc->mutex 1051 */ 1052 static void put_request_session(struct ceph_mds_request *req) 1053 { 1054 if (req->r_session) { 1055 ceph_put_mds_session(req->r_session); 1056 req->r_session = NULL; 1057 } 1058 } 1059 1060 void ceph_mdsc_iterate_sessions(struct ceph_mds_client *mdsc, 1061 void (*cb)(struct ceph_mds_session *), 1062 bool check_state) 1063 { 1064 int mds; 1065 1066 mutex_lock(&mdsc->mutex); 1067 for (mds = 0; mds < mdsc->max_sessions; ++mds) { 1068 struct ceph_mds_session *s; 1069 1070 s = __ceph_lookup_mds_session(mdsc, mds); 1071 if (!s) 1072 continue; 1073 1074 if (check_state && !check_session_state(s)) { 1075 ceph_put_mds_session(s); 1076 continue; 1077 } 1078 1079 mutex_unlock(&mdsc->mutex); 1080 cb(s); 1081 ceph_put_mds_session(s); 1082 mutex_lock(&mdsc->mutex); 1083 } 1084 mutex_unlock(&mdsc->mutex); 1085 } 1086 1087 void ceph_mdsc_release_request(struct kref *kref) 1088 { 1089 struct ceph_mds_request *req = container_of(kref, 1090 struct ceph_mds_request, 1091 r_kref); 1092 ceph_mdsc_release_dir_caps_async(req); 1093 destroy_reply_info(&req->r_reply_info); 1094 if (req->r_request) 1095 ceph_msg_put(req->r_request); 1096 if (req->r_reply) 1097 ceph_msg_put(req->r_reply); 1098 if (req->r_inode) { 1099 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 1100 iput(req->r_inode); 1101 } 1102 if (req->r_parent) { 1103 ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN); 1104 iput(req->r_parent); 1105 } 1106 iput(req->r_target_inode); 1107 iput(req->r_new_inode); 1108 if (req->r_dentry) 1109 dput(req->r_dentry); 1110 if (req->r_old_dentry) 1111 dput(req->r_old_dentry); 1112 if (req->r_old_dentry_dir) { 1113 /* 1114 * track (and drop pins for) r_old_dentry_dir 1115 * separately, since r_old_dentry's d_parent may have 1116 * changed between the dir mutex being dropped and 1117 * this request being freed. 1118 */ 1119 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 1120 CEPH_CAP_PIN); 1121 iput(req->r_old_dentry_dir); 1122 } 1123 kfree(req->r_path1); 1124 kfree(req->r_path2); 1125 put_cred(req->r_cred); 1126 if (req->r_mnt_idmap) 1127 mnt_idmap_put(req->r_mnt_idmap); 1128 if (req->r_pagelist) 1129 ceph_pagelist_release(req->r_pagelist); 1130 kfree(req->r_fscrypt_auth); 1131 kfree(req->r_altname); 1132 put_request_session(req); 1133 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 1134 WARN_ON_ONCE(!list_empty(&req->r_wait)); 1135 kmem_cache_free(ceph_mds_request_cachep, req); 1136 } 1137 1138 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node) 1139 1140 /* 1141 * lookup session, bump ref if found. 1142 * 1143 * called under mdsc->mutex. 1144 */ 1145 static struct ceph_mds_request * 1146 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid) 1147 { 1148 struct ceph_mds_request *req; 1149 1150 req = lookup_request(&mdsc->request_tree, tid); 1151 if (req) 1152 ceph_mdsc_get_request(req); 1153 1154 return req; 1155 } 1156 1157 /* 1158 * Register an in-flight request, and assign a tid. Link to directory 1159 * are modifying (if any). 1160 * 1161 * Called under mdsc->mutex. 1162 */ 1163 static void __register_request(struct ceph_mds_client *mdsc, 1164 struct ceph_mds_request *req, 1165 struct inode *dir) 1166 { 1167 struct ceph_client *cl = mdsc->fsc->client; 1168 int ret = 0; 1169 1170 req->r_tid = ++mdsc->last_tid; 1171 if (req->r_num_caps) { 1172 ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation, 1173 req->r_num_caps); 1174 if (ret < 0) { 1175 pr_err_client(cl, "%p failed to reserve caps: %d\n", 1176 req, ret); 1177 /* set req->r_err to fail early from __do_request */ 1178 req->r_err = ret; 1179 return; 1180 } 1181 } 1182 doutc(cl, "%p tid %lld\n", req, req->r_tid); 1183 ceph_mdsc_get_request(req); 1184 insert_request(&mdsc->request_tree, req); 1185 1186 req->r_cred = get_current_cred(); 1187 if (!req->r_mnt_idmap) 1188 req->r_mnt_idmap = &nop_mnt_idmap; 1189 1190 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK) 1191 mdsc->oldest_tid = req->r_tid; 1192 1193 if (dir) { 1194 struct ceph_inode_info *ci = ceph_inode(dir); 1195 1196 ihold(dir); 1197 req->r_unsafe_dir = dir; 1198 spin_lock(&ci->i_unsafe_lock); 1199 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 1200 spin_unlock(&ci->i_unsafe_lock); 1201 } 1202 } 1203 1204 static void __unregister_request(struct ceph_mds_client *mdsc, 1205 struct ceph_mds_request *req) 1206 { 1207 doutc(mdsc->fsc->client, "%p tid %lld\n", req, req->r_tid); 1208 1209 /* Never leave an unregistered request on an unsafe list! */ 1210 list_del_init(&req->r_unsafe_item); 1211 1212 if (req->r_tid == mdsc->oldest_tid) { 1213 struct rb_node *p = rb_next(&req->r_node); 1214 mdsc->oldest_tid = 0; 1215 while (p) { 1216 struct ceph_mds_request *next_req = 1217 rb_entry(p, struct ceph_mds_request, r_node); 1218 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) { 1219 mdsc->oldest_tid = next_req->r_tid; 1220 break; 1221 } 1222 p = rb_next(p); 1223 } 1224 } 1225 1226 erase_request(&mdsc->request_tree, req); 1227 1228 if (req->r_unsafe_dir) { 1229 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 1230 spin_lock(&ci->i_unsafe_lock); 1231 list_del_init(&req->r_unsafe_dir_item); 1232 spin_unlock(&ci->i_unsafe_lock); 1233 } 1234 if (req->r_target_inode && 1235 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 1236 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); 1237 spin_lock(&ci->i_unsafe_lock); 1238 list_del_init(&req->r_unsafe_target_item); 1239 spin_unlock(&ci->i_unsafe_lock); 1240 } 1241 1242 if (req->r_unsafe_dir) { 1243 iput(req->r_unsafe_dir); 1244 req->r_unsafe_dir = NULL; 1245 } 1246 1247 complete_all(&req->r_safe_completion); 1248 1249 ceph_mdsc_put_request(req); 1250 } 1251 1252 /* 1253 * Walk back up the dentry tree until we hit a dentry representing a 1254 * non-snapshot inode. We do this using the rcu_read_lock (which must be held 1255 * when calling this) to ensure that the objects won't disappear while we're 1256 * working with them. Once we hit a candidate dentry, we attempt to take a 1257 * reference to it, and return that as the result. 1258 */ 1259 static struct inode *get_nonsnap_parent(struct dentry *dentry) 1260 { 1261 struct inode *inode = NULL; 1262 1263 while (dentry && !IS_ROOT(dentry)) { 1264 inode = d_inode_rcu(dentry); 1265 if (!inode || ceph_snap(inode) == CEPH_NOSNAP) 1266 break; 1267 dentry = dentry->d_parent; 1268 } 1269 if (inode) 1270 inode = igrab(inode); 1271 return inode; 1272 } 1273 1274 /* 1275 * Choose mds to send request to next. If there is a hint set in the 1276 * request (e.g., due to a prior forward hint from the mds), use that. 1277 * Otherwise, consult frag tree and/or caps to identify the 1278 * appropriate mds. If all else fails, choose randomly. 1279 * 1280 * Called under mdsc->mutex. 1281 */ 1282 static int __choose_mds(struct ceph_mds_client *mdsc, 1283 struct ceph_mds_request *req, 1284 bool *random) 1285 { 1286 struct inode *inode; 1287 struct ceph_inode_info *ci; 1288 struct ceph_cap *cap; 1289 int mode = req->r_direct_mode; 1290 int mds = -1; 1291 u32 hash = req->r_direct_hash; 1292 bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags); 1293 struct ceph_client *cl = mdsc->fsc->client; 1294 1295 if (random) 1296 *random = false; 1297 1298 /* 1299 * is there a specific mds we should try? ignore hint if we have 1300 * no session and the mds is not up (active or recovering). 1301 */ 1302 if (req->r_resend_mds >= 0 && 1303 (__have_session(mdsc, req->r_resend_mds) || 1304 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 1305 doutc(cl, "using resend_mds mds%d\n", req->r_resend_mds); 1306 return req->r_resend_mds; 1307 } 1308 1309 if (mode == USE_RANDOM_MDS) 1310 goto random; 1311 1312 inode = NULL; 1313 if (req->r_inode) { 1314 if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) { 1315 inode = req->r_inode; 1316 ihold(inode); 1317 } else { 1318 /* req->r_dentry is non-null for LSSNAP request */ 1319 rcu_read_lock(); 1320 inode = get_nonsnap_parent(req->r_dentry); 1321 rcu_read_unlock(); 1322 doutc(cl, "using snapdir's parent %p %llx.%llx\n", 1323 inode, ceph_vinop(inode)); 1324 } 1325 } else if (req->r_dentry) { 1326 /* ignore race with rename; old or new d_parent is okay */ 1327 struct dentry *parent; 1328 struct inode *dir; 1329 1330 rcu_read_lock(); 1331 parent = READ_ONCE(req->r_dentry->d_parent); 1332 dir = req->r_parent ? : d_inode_rcu(parent); 1333 1334 if (!dir || dir->i_sb != mdsc->fsc->sb) { 1335 /* not this fs or parent went negative */ 1336 inode = d_inode(req->r_dentry); 1337 if (inode) 1338 ihold(inode); 1339 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 1340 /* direct snapped/virtual snapdir requests 1341 * based on parent dir inode */ 1342 inode = get_nonsnap_parent(parent); 1343 doutc(cl, "using nonsnap parent %p %llx.%llx\n", 1344 inode, ceph_vinop(inode)); 1345 } else { 1346 /* dentry target */ 1347 inode = d_inode(req->r_dentry); 1348 if (!inode || mode == USE_AUTH_MDS) { 1349 /* dir + name */ 1350 inode = igrab(dir); 1351 hash = ceph_dentry_hash(dir, req->r_dentry); 1352 is_hash = true; 1353 } else { 1354 ihold(inode); 1355 } 1356 } 1357 rcu_read_unlock(); 1358 } 1359 1360 if (!inode) 1361 goto random; 1362 1363 doutc(cl, "%p %llx.%llx is_hash=%d (0x%x) mode %d\n", inode, 1364 ceph_vinop(inode), (int)is_hash, hash, mode); 1365 ci = ceph_inode(inode); 1366 1367 if (is_hash && S_ISDIR(inode->i_mode)) { 1368 struct ceph_inode_frag frag; 1369 int found; 1370 1371 ceph_choose_frag(ci, hash, &frag, &found); 1372 if (found) { 1373 if (mode == USE_ANY_MDS && frag.ndist > 0) { 1374 u8 r; 1375 1376 /* choose a random replica */ 1377 get_random_bytes(&r, 1); 1378 r %= frag.ndist; 1379 mds = frag.dist[r]; 1380 doutc(cl, "%p %llx.%llx frag %u mds%d (%d/%d)\n", 1381 inode, ceph_vinop(inode), frag.frag, 1382 mds, (int)r, frag.ndist); 1383 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1384 CEPH_MDS_STATE_ACTIVE && 1385 !ceph_mdsmap_is_laggy(mdsc->mdsmap, mds)) 1386 goto out; 1387 } 1388 1389 /* since this file/dir wasn't known to be 1390 * replicated, then we want to look for the 1391 * authoritative mds. */ 1392 if (frag.mds >= 0) { 1393 /* choose auth mds */ 1394 mds = frag.mds; 1395 doutc(cl, "%p %llx.%llx frag %u mds%d (auth)\n", 1396 inode, ceph_vinop(inode), frag.frag, mds); 1397 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1398 CEPH_MDS_STATE_ACTIVE) { 1399 if (!ceph_mdsmap_is_laggy(mdsc->mdsmap, 1400 mds)) 1401 goto out; 1402 } 1403 } 1404 mode = USE_AUTH_MDS; 1405 } 1406 } 1407 1408 spin_lock(&ci->i_ceph_lock); 1409 cap = NULL; 1410 if (mode == USE_AUTH_MDS) 1411 cap = ci->i_auth_cap; 1412 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 1413 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 1414 if (!cap) { 1415 spin_unlock(&ci->i_ceph_lock); 1416 iput(inode); 1417 goto random; 1418 } 1419 mds = cap->session->s_mds; 1420 doutc(cl, "%p %llx.%llx mds%d (%scap %p)\n", inode, 1421 ceph_vinop(inode), mds, 1422 cap == ci->i_auth_cap ? "auth " : "", cap); 1423 spin_unlock(&ci->i_ceph_lock); 1424 out: 1425 iput(inode); 1426 return mds; 1427 1428 random: 1429 if (random) 1430 *random = true; 1431 1432 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 1433 doutc(cl, "chose random mds%d\n", mds); 1434 return mds; 1435 } 1436 1437 1438 /* 1439 * session messages 1440 */ 1441 struct ceph_msg *ceph_create_session_msg(u32 op, u64 seq) 1442 { 1443 struct ceph_msg *msg; 1444 struct ceph_mds_session_head *h; 1445 1446 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 1447 false); 1448 if (!msg) { 1449 pr_err("ENOMEM creating session %s msg\n", 1450 ceph_session_op_name(op)); 1451 return NULL; 1452 } 1453 h = msg->front.iov_base; 1454 h->op = cpu_to_le32(op); 1455 h->seq = cpu_to_le64(seq); 1456 1457 return msg; 1458 } 1459 1460 static const unsigned char feature_bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED; 1461 #define FEATURE_BYTES(c) (DIV_ROUND_UP((size_t)feature_bits[c - 1] + 1, 64) * 8) 1462 static int encode_supported_features(void **p, void *end) 1463 { 1464 static const size_t count = ARRAY_SIZE(feature_bits); 1465 1466 if (count > 0) { 1467 size_t i; 1468 size_t size = FEATURE_BYTES(count); 1469 unsigned long bit; 1470 1471 if (WARN_ON_ONCE(*p + 4 + size > end)) 1472 return -ERANGE; 1473 1474 ceph_encode_32(p, size); 1475 memset(*p, 0, size); 1476 for (i = 0; i < count; i++) { 1477 bit = feature_bits[i]; 1478 ((unsigned char *)(*p))[bit / 8] |= BIT(bit % 8); 1479 } 1480 *p += size; 1481 } else { 1482 if (WARN_ON_ONCE(*p + 4 > end)) 1483 return -ERANGE; 1484 1485 ceph_encode_32(p, 0); 1486 } 1487 1488 return 0; 1489 } 1490 1491 static const unsigned char metric_bits[] = CEPHFS_METRIC_SPEC_CLIENT_SUPPORTED; 1492 #define METRIC_BYTES(cnt) (DIV_ROUND_UP((size_t)metric_bits[cnt - 1] + 1, 64) * 8) 1493 static int encode_metric_spec(void **p, void *end) 1494 { 1495 static const size_t count = ARRAY_SIZE(metric_bits); 1496 1497 /* header */ 1498 if (WARN_ON_ONCE(*p + 2 > end)) 1499 return -ERANGE; 1500 1501 ceph_encode_8(p, 1); /* version */ 1502 ceph_encode_8(p, 1); /* compat */ 1503 1504 if (count > 0) { 1505 size_t i; 1506 size_t size = METRIC_BYTES(count); 1507 1508 if (WARN_ON_ONCE(*p + 4 + 4 + size > end)) 1509 return -ERANGE; 1510 1511 /* metric spec info length */ 1512 ceph_encode_32(p, 4 + size); 1513 1514 /* metric spec */ 1515 ceph_encode_32(p, size); 1516 memset(*p, 0, size); 1517 for (i = 0; i < count; i++) 1518 ((unsigned char *)(*p))[i / 8] |= BIT(metric_bits[i] % 8); 1519 *p += size; 1520 } else { 1521 if (WARN_ON_ONCE(*p + 4 + 4 > end)) 1522 return -ERANGE; 1523 1524 /* metric spec info length */ 1525 ceph_encode_32(p, 4); 1526 /* metric spec */ 1527 ceph_encode_32(p, 0); 1528 } 1529 1530 return 0; 1531 } 1532 1533 /* 1534 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 1535 * to include additional client metadata fields. 1536 */ 1537 static struct ceph_msg * 1538 create_session_full_msg(struct ceph_mds_client *mdsc, int op, u64 seq) 1539 { 1540 struct ceph_msg *msg; 1541 struct ceph_mds_session_head *h; 1542 int i; 1543 int extra_bytes = 0; 1544 int metadata_key_count = 0; 1545 struct ceph_options *opt = mdsc->fsc->client->options; 1546 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options; 1547 struct ceph_client *cl = mdsc->fsc->client; 1548 size_t size, count; 1549 void *p, *end; 1550 int ret; 1551 1552 const char* metadata[][2] = { 1553 {"hostname", mdsc->nodename}, 1554 {"kernel_version", init_utsname()->release}, 1555 {"entity_id", opt->name ? : ""}, 1556 {"root", fsopt->server_path ? : "/"}, 1557 {NULL, NULL} 1558 }; 1559 1560 /* Calculate serialized length of metadata */ 1561 extra_bytes = 4; /* map length */ 1562 for (i = 0; metadata[i][0]; ++i) { 1563 extra_bytes += 8 + strlen(metadata[i][0]) + 1564 strlen(metadata[i][1]); 1565 metadata_key_count++; 1566 } 1567 1568 /* supported feature */ 1569 size = 0; 1570 count = ARRAY_SIZE(feature_bits); 1571 if (count > 0) 1572 size = FEATURE_BYTES(count); 1573 extra_bytes += 4 + size; 1574 1575 /* metric spec */ 1576 size = 0; 1577 count = ARRAY_SIZE(metric_bits); 1578 if (count > 0) 1579 size = METRIC_BYTES(count); 1580 extra_bytes += 2 + 4 + 4 + size; 1581 1582 /* flags, mds auth caps and oldest_client_tid */ 1583 extra_bytes += 4 + 4 + 8; 1584 1585 /* Allocate the message */ 1586 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes, 1587 GFP_NOFS, false); 1588 if (!msg) { 1589 pr_err_client(cl, "ENOMEM creating session open msg\n"); 1590 return ERR_PTR(-ENOMEM); 1591 } 1592 p = msg->front.iov_base; 1593 end = p + msg->front.iov_len; 1594 1595 h = p; 1596 h->op = cpu_to_le32(op); 1597 h->seq = cpu_to_le64(seq); 1598 1599 /* 1600 * Serialize client metadata into waiting buffer space, using 1601 * the format that userspace expects for map<string, string> 1602 * 1603 * ClientSession messages with metadata are v7 1604 */ 1605 msg->hdr.version = cpu_to_le16(7); 1606 msg->hdr.compat_version = cpu_to_le16(1); 1607 1608 /* The write pointer, following the session_head structure */ 1609 p += sizeof(*h); 1610 1611 /* Number of entries in the map */ 1612 ceph_encode_32(&p, metadata_key_count); 1613 1614 /* Two length-prefixed strings for each entry in the map */ 1615 for (i = 0; metadata[i][0]; ++i) { 1616 size_t const key_len = strlen(metadata[i][0]); 1617 size_t const val_len = strlen(metadata[i][1]); 1618 1619 ceph_encode_32(&p, key_len); 1620 memcpy(p, metadata[i][0], key_len); 1621 p += key_len; 1622 ceph_encode_32(&p, val_len); 1623 memcpy(p, metadata[i][1], val_len); 1624 p += val_len; 1625 } 1626 1627 ret = encode_supported_features(&p, end); 1628 if (ret) { 1629 pr_err_client(cl, "encode_supported_features failed!\n"); 1630 ceph_msg_put(msg); 1631 return ERR_PTR(ret); 1632 } 1633 1634 ret = encode_metric_spec(&p, end); 1635 if (ret) { 1636 pr_err_client(cl, "encode_metric_spec failed!\n"); 1637 ceph_msg_put(msg); 1638 return ERR_PTR(ret); 1639 } 1640 1641 /* version == 5, flags */ 1642 ceph_encode_32(&p, 0); 1643 1644 /* version == 6, mds auth caps */ 1645 ceph_encode_32(&p, 0); 1646 1647 /* version == 7, oldest_client_tid */ 1648 ceph_encode_64(&p, mdsc->oldest_tid); 1649 1650 msg->front.iov_len = p - msg->front.iov_base; 1651 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1652 1653 return msg; 1654 } 1655 1656 /* 1657 * send session open request. 1658 * 1659 * called under mdsc->mutex 1660 */ 1661 static int __open_session(struct ceph_mds_client *mdsc, 1662 struct ceph_mds_session *session) 1663 { 1664 struct ceph_msg *msg; 1665 int mstate; 1666 int mds = session->s_mds; 1667 1668 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) 1669 return -EIO; 1670 1671 /* wait for mds to go active? */ 1672 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 1673 doutc(mdsc->fsc->client, "open_session to mds%d (%s)\n", mds, 1674 ceph_mds_state_name(mstate)); 1675 session->s_state = CEPH_MDS_SESSION_OPENING; 1676 session->s_renew_requested = jiffies; 1677 1678 /* send connect message */ 1679 msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_OPEN, 1680 session->s_seq); 1681 if (IS_ERR(msg)) 1682 return PTR_ERR(msg); 1683 ceph_con_send(&session->s_con, msg); 1684 return 0; 1685 } 1686 1687 /* 1688 * open sessions for any export targets for the given mds 1689 * 1690 * called under mdsc->mutex 1691 */ 1692 static struct ceph_mds_session * 1693 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 1694 { 1695 struct ceph_mds_session *session; 1696 int ret; 1697 1698 session = __ceph_lookup_mds_session(mdsc, target); 1699 if (!session) { 1700 session = register_session(mdsc, target); 1701 if (IS_ERR(session)) 1702 return session; 1703 } 1704 if (session->s_state == CEPH_MDS_SESSION_NEW || 1705 session->s_state == CEPH_MDS_SESSION_CLOSING) { 1706 ret = __open_session(mdsc, session); 1707 if (ret) 1708 return ERR_PTR(ret); 1709 } 1710 1711 return session; 1712 } 1713 1714 struct ceph_mds_session * 1715 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 1716 { 1717 struct ceph_mds_session *session; 1718 struct ceph_client *cl = mdsc->fsc->client; 1719 1720 doutc(cl, "to mds%d\n", target); 1721 1722 mutex_lock(&mdsc->mutex); 1723 session = __open_export_target_session(mdsc, target); 1724 mutex_unlock(&mdsc->mutex); 1725 1726 return session; 1727 } 1728 1729 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 1730 struct ceph_mds_session *session) 1731 { 1732 struct ceph_mds_info *mi; 1733 struct ceph_mds_session *ts; 1734 int i, mds = session->s_mds; 1735 struct ceph_client *cl = mdsc->fsc->client; 1736 1737 if (mds >= mdsc->mdsmap->possible_max_rank) 1738 return; 1739 1740 mi = &mdsc->mdsmap->m_info[mds]; 1741 doutc(cl, "for mds%d (%d targets)\n", session->s_mds, 1742 mi->num_export_targets); 1743 1744 for (i = 0; i < mi->num_export_targets; i++) { 1745 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 1746 ceph_put_mds_session(ts); 1747 } 1748 } 1749 1750 /* 1751 * session caps 1752 */ 1753 1754 static void detach_cap_releases(struct ceph_mds_session *session, 1755 struct list_head *target) 1756 { 1757 struct ceph_client *cl = session->s_mdsc->fsc->client; 1758 1759 lockdep_assert_held(&session->s_cap_lock); 1760 1761 list_splice_init(&session->s_cap_releases, target); 1762 session->s_num_cap_releases = 0; 1763 doutc(cl, "mds%d\n", session->s_mds); 1764 } 1765 1766 static void dispose_cap_releases(struct ceph_mds_client *mdsc, 1767 struct list_head *dispose) 1768 { 1769 while (!list_empty(dispose)) { 1770 struct ceph_cap *cap; 1771 /* zero out the in-progress message */ 1772 cap = list_first_entry(dispose, struct ceph_cap, session_caps); 1773 list_del(&cap->session_caps); 1774 ceph_put_cap(mdsc, cap); 1775 } 1776 } 1777 1778 static void cleanup_session_requests(struct ceph_mds_client *mdsc, 1779 struct ceph_mds_session *session) 1780 { 1781 struct ceph_client *cl = mdsc->fsc->client; 1782 struct ceph_mds_request *req; 1783 struct rb_node *p; 1784 1785 doutc(cl, "mds%d\n", session->s_mds); 1786 mutex_lock(&mdsc->mutex); 1787 while (!list_empty(&session->s_unsafe)) { 1788 req = list_first_entry(&session->s_unsafe, 1789 struct ceph_mds_request, r_unsafe_item); 1790 pr_warn_ratelimited_client(cl, " dropping unsafe request %llu\n", 1791 req->r_tid); 1792 if (req->r_target_inode) 1793 mapping_set_error(req->r_target_inode->i_mapping, -EIO); 1794 if (req->r_unsafe_dir) 1795 mapping_set_error(req->r_unsafe_dir->i_mapping, -EIO); 1796 __unregister_request(mdsc, req); 1797 } 1798 /* zero r_attempts, so kick_requests() will re-send requests */ 1799 p = rb_first(&mdsc->request_tree); 1800 while (p) { 1801 req = rb_entry(p, struct ceph_mds_request, r_node); 1802 p = rb_next(p); 1803 if (req->r_session && 1804 req->r_session->s_mds == session->s_mds) 1805 req->r_attempts = 0; 1806 } 1807 mutex_unlock(&mdsc->mutex); 1808 } 1809 1810 /* 1811 * Helper to safely iterate over all caps associated with a session, with 1812 * special care taken to handle a racing __ceph_remove_cap(). 1813 * 1814 * Caller must hold session s_mutex. 1815 */ 1816 int ceph_iterate_session_caps(struct ceph_mds_session *session, 1817 int (*cb)(struct inode *, int mds, void *), 1818 void *arg) 1819 { 1820 struct ceph_client *cl = session->s_mdsc->fsc->client; 1821 struct list_head *p; 1822 struct ceph_cap *cap; 1823 struct inode *inode, *last_inode = NULL; 1824 struct ceph_cap *old_cap = NULL; 1825 int ret; 1826 1827 doutc(cl, "%p mds%d\n", session, session->s_mds); 1828 spin_lock(&session->s_cap_lock); 1829 p = session->s_caps.next; 1830 while (p != &session->s_caps) { 1831 int mds; 1832 1833 cap = list_entry(p, struct ceph_cap, session_caps); 1834 inode = igrab(&cap->ci->netfs.inode); 1835 if (!inode) { 1836 p = p->next; 1837 continue; 1838 } 1839 session->s_cap_iterator = cap; 1840 mds = cap->mds; 1841 spin_unlock(&session->s_cap_lock); 1842 1843 if (last_inode) { 1844 iput(last_inode); 1845 last_inode = NULL; 1846 } 1847 if (old_cap) { 1848 ceph_put_cap(session->s_mdsc, old_cap); 1849 old_cap = NULL; 1850 } 1851 1852 ret = cb(inode, mds, arg); 1853 last_inode = inode; 1854 1855 spin_lock(&session->s_cap_lock); 1856 p = p->next; 1857 if (!cap->ci) { 1858 doutc(cl, "finishing cap %p removal\n", cap); 1859 BUG_ON(cap->session != session); 1860 cap->session = NULL; 1861 list_del_init(&cap->session_caps); 1862 session->s_nr_caps--; 1863 atomic64_dec(&session->s_mdsc->metric.total_caps); 1864 if (cap->queue_release) 1865 __ceph_queue_cap_release(session, cap); 1866 else 1867 old_cap = cap; /* put_cap it w/o locks held */ 1868 } 1869 if (ret < 0) 1870 goto out; 1871 } 1872 ret = 0; 1873 out: 1874 session->s_cap_iterator = NULL; 1875 spin_unlock(&session->s_cap_lock); 1876 1877 iput(last_inode); 1878 if (old_cap) 1879 ceph_put_cap(session->s_mdsc, old_cap); 1880 1881 return ret; 1882 } 1883 1884 static int remove_session_caps_cb(struct inode *inode, int mds, void *arg) 1885 { 1886 struct ceph_inode_info *ci = ceph_inode(inode); 1887 struct ceph_client *cl = ceph_inode_to_client(inode); 1888 bool invalidate = false; 1889 struct ceph_cap *cap; 1890 int iputs = 0; 1891 1892 spin_lock(&ci->i_ceph_lock); 1893 cap = __get_cap_for_mds(ci, mds); 1894 if (cap) { 1895 doutc(cl, " removing cap %p, ci is %p, inode is %p\n", 1896 cap, ci, &ci->netfs.inode); 1897 1898 iputs = ceph_purge_inode_cap(inode, cap, &invalidate); 1899 } 1900 spin_unlock(&ci->i_ceph_lock); 1901 1902 if (cap) 1903 wake_up_all(&ci->i_cap_wq); 1904 if (invalidate) 1905 ceph_queue_invalidate(inode); 1906 while (iputs--) 1907 iput(inode); 1908 return 0; 1909 } 1910 1911 /* 1912 * caller must hold session s_mutex 1913 */ 1914 static void remove_session_caps(struct ceph_mds_session *session) 1915 { 1916 struct ceph_fs_client *fsc = session->s_mdsc->fsc; 1917 struct super_block *sb = fsc->sb; 1918 LIST_HEAD(dispose); 1919 1920 doutc(fsc->client, "on %p\n", session); 1921 ceph_iterate_session_caps(session, remove_session_caps_cb, fsc); 1922 1923 wake_up_all(&fsc->mdsc->cap_flushing_wq); 1924 1925 spin_lock(&session->s_cap_lock); 1926 if (session->s_nr_caps > 0) { 1927 struct inode *inode; 1928 struct ceph_cap *cap, *prev = NULL; 1929 struct ceph_vino vino; 1930 /* 1931 * iterate_session_caps() skips inodes that are being 1932 * deleted, we need to wait until deletions are complete. 1933 * __wait_on_freeing_inode() is designed for the job, 1934 * but it is not exported, so use lookup inode function 1935 * to access it. 1936 */ 1937 while (!list_empty(&session->s_caps)) { 1938 cap = list_entry(session->s_caps.next, 1939 struct ceph_cap, session_caps); 1940 if (cap == prev) 1941 break; 1942 prev = cap; 1943 vino = cap->ci->i_vino; 1944 spin_unlock(&session->s_cap_lock); 1945 1946 inode = ceph_find_inode(sb, vino); 1947 iput(inode); 1948 1949 spin_lock(&session->s_cap_lock); 1950 } 1951 } 1952 1953 // drop cap expires and unlock s_cap_lock 1954 detach_cap_releases(session, &dispose); 1955 1956 BUG_ON(session->s_nr_caps > 0); 1957 BUG_ON(!list_empty(&session->s_cap_flushing)); 1958 spin_unlock(&session->s_cap_lock); 1959 dispose_cap_releases(session->s_mdsc, &dispose); 1960 } 1961 1962 enum { 1963 RECONNECT, 1964 RENEWCAPS, 1965 FORCE_RO, 1966 }; 1967 1968 /* 1969 * wake up any threads waiting on this session's caps. if the cap is 1970 * old (didn't get renewed on the client reconnect), remove it now. 1971 * 1972 * caller must hold s_mutex. 1973 */ 1974 static int wake_up_session_cb(struct inode *inode, int mds, void *arg) 1975 { 1976 struct ceph_inode_info *ci = ceph_inode(inode); 1977 unsigned long ev = (unsigned long)arg; 1978 1979 if (ev == RECONNECT) { 1980 spin_lock(&ci->i_ceph_lock); 1981 ci->i_wanted_max_size = 0; 1982 ci->i_requested_max_size = 0; 1983 spin_unlock(&ci->i_ceph_lock); 1984 } else if (ev == RENEWCAPS) { 1985 struct ceph_cap *cap; 1986 1987 spin_lock(&ci->i_ceph_lock); 1988 cap = __get_cap_for_mds(ci, mds); 1989 /* mds did not re-issue stale cap */ 1990 if (cap && cap->cap_gen < atomic_read(&cap->session->s_cap_gen)) 1991 cap->issued = cap->implemented = CEPH_CAP_PIN; 1992 spin_unlock(&ci->i_ceph_lock); 1993 } else if (ev == FORCE_RO) { 1994 } 1995 wake_up_all(&ci->i_cap_wq); 1996 return 0; 1997 } 1998 1999 static void wake_up_session_caps(struct ceph_mds_session *session, int ev) 2000 { 2001 struct ceph_client *cl = session->s_mdsc->fsc->client; 2002 2003 doutc(cl, "session %p mds%d\n", session, session->s_mds); 2004 ceph_iterate_session_caps(session, wake_up_session_cb, 2005 (void *)(unsigned long)ev); 2006 } 2007 2008 /* 2009 * Send periodic message to MDS renewing all currently held caps. The 2010 * ack will reset the expiration for all caps from this session. 2011 * 2012 * caller holds s_mutex 2013 */ 2014 static int send_renew_caps(struct ceph_mds_client *mdsc, 2015 struct ceph_mds_session *session) 2016 { 2017 struct ceph_client *cl = mdsc->fsc->client; 2018 struct ceph_msg *msg; 2019 int state; 2020 2021 if (time_after_eq(jiffies, session->s_cap_ttl) && 2022 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 2023 pr_info_client(cl, "mds%d caps stale\n", session->s_mds); 2024 session->s_renew_requested = jiffies; 2025 2026 /* do not try to renew caps until a recovering mds has reconnected 2027 * with its clients. */ 2028 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 2029 if (state < CEPH_MDS_STATE_RECONNECT) { 2030 doutc(cl, "ignoring mds%d (%s)\n", session->s_mds, 2031 ceph_mds_state_name(state)); 2032 return 0; 2033 } 2034 2035 doutc(cl, "to mds%d (%s)\n", session->s_mds, 2036 ceph_mds_state_name(state)); 2037 msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_RENEWCAPS, 2038 ++session->s_renew_seq); 2039 if (IS_ERR(msg)) 2040 return PTR_ERR(msg); 2041 ceph_con_send(&session->s_con, msg); 2042 return 0; 2043 } 2044 2045 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 2046 struct ceph_mds_session *session, u64 seq) 2047 { 2048 struct ceph_client *cl = mdsc->fsc->client; 2049 struct ceph_msg *msg; 2050 2051 doutc(cl, "to mds%d (%s)s seq %lld\n", session->s_mds, 2052 ceph_session_state_name(session->s_state), seq); 2053 msg = ceph_create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 2054 if (!msg) 2055 return -ENOMEM; 2056 ceph_con_send(&session->s_con, msg); 2057 return 0; 2058 } 2059 2060 2061 /* 2062 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 2063 * 2064 * Called under session->s_mutex 2065 */ 2066 static void renewed_caps(struct ceph_mds_client *mdsc, 2067 struct ceph_mds_session *session, int is_renew) 2068 { 2069 struct ceph_client *cl = mdsc->fsc->client; 2070 int was_stale; 2071 int wake = 0; 2072 2073 spin_lock(&session->s_cap_lock); 2074 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 2075 2076 session->s_cap_ttl = session->s_renew_requested + 2077 mdsc->mdsmap->m_session_timeout*HZ; 2078 2079 if (was_stale) { 2080 if (time_before(jiffies, session->s_cap_ttl)) { 2081 pr_info_client(cl, "mds%d caps renewed\n", 2082 session->s_mds); 2083 wake = 1; 2084 } else { 2085 pr_info_client(cl, "mds%d caps still stale\n", 2086 session->s_mds); 2087 } 2088 } 2089 doutc(cl, "mds%d ttl now %lu, was %s, now %s\n", session->s_mds, 2090 session->s_cap_ttl, was_stale ? "stale" : "fresh", 2091 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 2092 spin_unlock(&session->s_cap_lock); 2093 2094 if (wake) 2095 wake_up_session_caps(session, RENEWCAPS); 2096 } 2097 2098 /* 2099 * send a session close request 2100 */ 2101 static int request_close_session(struct ceph_mds_session *session) 2102 { 2103 struct ceph_client *cl = session->s_mdsc->fsc->client; 2104 struct ceph_msg *msg; 2105 2106 doutc(cl, "mds%d state %s seq %lld\n", session->s_mds, 2107 ceph_session_state_name(session->s_state), session->s_seq); 2108 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_CLOSE, 2109 session->s_seq); 2110 if (!msg) 2111 return -ENOMEM; 2112 ceph_con_send(&session->s_con, msg); 2113 return 1; 2114 } 2115 2116 /* 2117 * Called with s_mutex held. 2118 */ 2119 static int __close_session(struct ceph_mds_client *mdsc, 2120 struct ceph_mds_session *session) 2121 { 2122 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 2123 return 0; 2124 session->s_state = CEPH_MDS_SESSION_CLOSING; 2125 return request_close_session(session); 2126 } 2127 2128 static bool drop_negative_children(struct dentry *dentry) 2129 { 2130 struct dentry *child; 2131 bool all_negative = true; 2132 2133 if (!d_is_dir(dentry)) 2134 goto out; 2135 2136 spin_lock(&dentry->d_lock); 2137 hlist_for_each_entry(child, &dentry->d_children, d_sib) { 2138 if (d_really_is_positive(child)) { 2139 all_negative = false; 2140 break; 2141 } 2142 } 2143 spin_unlock(&dentry->d_lock); 2144 2145 if (all_negative) 2146 shrink_dcache_parent(dentry); 2147 out: 2148 return all_negative; 2149 } 2150 2151 /* 2152 * Trim old(er) caps. 2153 * 2154 * Because we can't cache an inode without one or more caps, we do 2155 * this indirectly: if a cap is unused, we prune its aliases, at which 2156 * point the inode will hopefully get dropped to. 2157 * 2158 * Yes, this is a bit sloppy. Our only real goal here is to respond to 2159 * memory pressure from the MDS, though, so it needn't be perfect. 2160 */ 2161 static int trim_caps_cb(struct inode *inode, int mds, void *arg) 2162 { 2163 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 2164 struct ceph_client *cl = mdsc->fsc->client; 2165 int *remaining = arg; 2166 struct ceph_inode_info *ci = ceph_inode(inode); 2167 int used, wanted, oissued, mine; 2168 struct ceph_cap *cap; 2169 2170 if (*remaining <= 0) 2171 return -1; 2172 2173 spin_lock(&ci->i_ceph_lock); 2174 cap = __get_cap_for_mds(ci, mds); 2175 if (!cap) { 2176 spin_unlock(&ci->i_ceph_lock); 2177 return 0; 2178 } 2179 mine = cap->issued | cap->implemented; 2180 used = __ceph_caps_used(ci); 2181 wanted = __ceph_caps_file_wanted(ci); 2182 oissued = __ceph_caps_issued_other(ci, cap); 2183 2184 doutc(cl, "%p %llx.%llx cap %p mine %s oissued %s used %s wanted %s\n", 2185 inode, ceph_vinop(inode), cap, ceph_cap_string(mine), 2186 ceph_cap_string(oissued), ceph_cap_string(used), 2187 ceph_cap_string(wanted)); 2188 if (cap == ci->i_auth_cap) { 2189 if (ci->i_dirty_caps || ci->i_flushing_caps || 2190 !list_empty(&ci->i_cap_snaps)) 2191 goto out; 2192 if ((used | wanted) & CEPH_CAP_ANY_WR) 2193 goto out; 2194 /* Note: it's possible that i_filelock_ref becomes non-zero 2195 * after dropping auth caps. It doesn't hurt because reply 2196 * of lock mds request will re-add auth caps. */ 2197 if (atomic_read(&ci->i_filelock_ref) > 0) 2198 goto out; 2199 } 2200 /* The inode has cached pages, but it's no longer used. 2201 * we can safely drop it */ 2202 if (S_ISREG(inode->i_mode) && 2203 wanted == 0 && used == CEPH_CAP_FILE_CACHE && 2204 !(oissued & CEPH_CAP_FILE_CACHE)) { 2205 used = 0; 2206 oissued = 0; 2207 } 2208 if ((used | wanted) & ~oissued & mine) 2209 goto out; /* we need these caps */ 2210 2211 if (oissued) { 2212 /* we aren't the only cap.. just remove us */ 2213 ceph_remove_cap(mdsc, cap, true); 2214 (*remaining)--; 2215 } else { 2216 struct dentry *dentry; 2217 /* try dropping referring dentries */ 2218 spin_unlock(&ci->i_ceph_lock); 2219 dentry = d_find_any_alias(inode); 2220 if (dentry && drop_negative_children(dentry)) { 2221 int count; 2222 dput(dentry); 2223 d_prune_aliases(inode); 2224 count = atomic_read(&inode->i_count); 2225 if (count == 1) 2226 (*remaining)--; 2227 doutc(cl, "%p %llx.%llx cap %p pruned, count now %d\n", 2228 inode, ceph_vinop(inode), cap, count); 2229 } else { 2230 dput(dentry); 2231 } 2232 return 0; 2233 } 2234 2235 out: 2236 spin_unlock(&ci->i_ceph_lock); 2237 return 0; 2238 } 2239 2240 /* 2241 * Trim session cap count down to some max number. 2242 */ 2243 int ceph_trim_caps(struct ceph_mds_client *mdsc, 2244 struct ceph_mds_session *session, 2245 int max_caps) 2246 { 2247 struct ceph_client *cl = mdsc->fsc->client; 2248 int trim_caps = session->s_nr_caps - max_caps; 2249 2250 doutc(cl, "mds%d start: %d / %d, trim %d\n", session->s_mds, 2251 session->s_nr_caps, max_caps, trim_caps); 2252 if (trim_caps > 0) { 2253 int remaining = trim_caps; 2254 2255 ceph_iterate_session_caps(session, trim_caps_cb, &remaining); 2256 doutc(cl, "mds%d done: %d / %d, trimmed %d\n", 2257 session->s_mds, session->s_nr_caps, max_caps, 2258 trim_caps - remaining); 2259 } 2260 2261 ceph_flush_session_cap_releases(mdsc, session); 2262 return 0; 2263 } 2264 2265 static int check_caps_flush(struct ceph_mds_client *mdsc, 2266 u64 want_flush_tid) 2267 { 2268 struct ceph_client *cl = mdsc->fsc->client; 2269 int ret = 1; 2270 2271 spin_lock(&mdsc->cap_dirty_lock); 2272 if (!list_empty(&mdsc->cap_flush_list)) { 2273 struct ceph_cap_flush *cf = 2274 list_first_entry(&mdsc->cap_flush_list, 2275 struct ceph_cap_flush, g_list); 2276 if (cf->tid <= want_flush_tid) { 2277 doutc(cl, "still flushing tid %llu <= %llu\n", 2278 cf->tid, want_flush_tid); 2279 ret = 0; 2280 } 2281 } 2282 spin_unlock(&mdsc->cap_dirty_lock); 2283 return ret; 2284 } 2285 2286 /* 2287 * flush all dirty inode data to disk. 2288 * 2289 * returns true if we've flushed through want_flush_tid 2290 */ 2291 static void wait_caps_flush(struct ceph_mds_client *mdsc, 2292 u64 want_flush_tid) 2293 { 2294 struct ceph_client *cl = mdsc->fsc->client; 2295 2296 doutc(cl, "want %llu\n", want_flush_tid); 2297 2298 wait_event(mdsc->cap_flushing_wq, 2299 check_caps_flush(mdsc, want_flush_tid)); 2300 2301 doutc(cl, "ok, flushed thru %llu\n", want_flush_tid); 2302 } 2303 2304 /* 2305 * called under s_mutex 2306 */ 2307 static void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 2308 struct ceph_mds_session *session) 2309 { 2310 struct ceph_client *cl = mdsc->fsc->client; 2311 struct ceph_msg *msg = NULL; 2312 struct ceph_mds_cap_release *head; 2313 struct ceph_mds_cap_item *item; 2314 struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc; 2315 struct ceph_cap *cap; 2316 LIST_HEAD(tmp_list); 2317 int num_cap_releases; 2318 __le32 barrier, *cap_barrier; 2319 2320 down_read(&osdc->lock); 2321 barrier = cpu_to_le32(osdc->epoch_barrier); 2322 up_read(&osdc->lock); 2323 2324 spin_lock(&session->s_cap_lock); 2325 again: 2326 list_splice_init(&session->s_cap_releases, &tmp_list); 2327 num_cap_releases = session->s_num_cap_releases; 2328 session->s_num_cap_releases = 0; 2329 spin_unlock(&session->s_cap_lock); 2330 2331 while (!list_empty(&tmp_list)) { 2332 if (!msg) { 2333 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, 2334 PAGE_SIZE, GFP_NOFS, false); 2335 if (!msg) 2336 goto out_err; 2337 head = msg->front.iov_base; 2338 head->num = cpu_to_le32(0); 2339 msg->front.iov_len = sizeof(*head); 2340 2341 msg->hdr.version = cpu_to_le16(2); 2342 msg->hdr.compat_version = cpu_to_le16(1); 2343 } 2344 2345 cap = list_first_entry(&tmp_list, struct ceph_cap, 2346 session_caps); 2347 list_del(&cap->session_caps); 2348 num_cap_releases--; 2349 2350 head = msg->front.iov_base; 2351 put_unaligned_le32(get_unaligned_le32(&head->num) + 1, 2352 &head->num); 2353 item = msg->front.iov_base + msg->front.iov_len; 2354 item->ino = cpu_to_le64(cap->cap_ino); 2355 item->cap_id = cpu_to_le64(cap->cap_id); 2356 item->migrate_seq = cpu_to_le32(cap->mseq); 2357 item->issue_seq = cpu_to_le32(cap->issue_seq); 2358 msg->front.iov_len += sizeof(*item); 2359 2360 ceph_put_cap(mdsc, cap); 2361 2362 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 2363 // Append cap_barrier field 2364 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2365 *cap_barrier = barrier; 2366 msg->front.iov_len += sizeof(*cap_barrier); 2367 2368 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2369 doutc(cl, "mds%d %p\n", session->s_mds, msg); 2370 ceph_con_send(&session->s_con, msg); 2371 msg = NULL; 2372 } 2373 } 2374 2375 BUG_ON(num_cap_releases != 0); 2376 2377 spin_lock(&session->s_cap_lock); 2378 if (!list_empty(&session->s_cap_releases)) 2379 goto again; 2380 spin_unlock(&session->s_cap_lock); 2381 2382 if (msg) { 2383 // Append cap_barrier field 2384 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2385 *cap_barrier = barrier; 2386 msg->front.iov_len += sizeof(*cap_barrier); 2387 2388 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2389 doutc(cl, "mds%d %p\n", session->s_mds, msg); 2390 ceph_con_send(&session->s_con, msg); 2391 } 2392 return; 2393 out_err: 2394 pr_err_client(cl, "mds%d, failed to allocate message\n", 2395 session->s_mds); 2396 spin_lock(&session->s_cap_lock); 2397 list_splice(&tmp_list, &session->s_cap_releases); 2398 session->s_num_cap_releases += num_cap_releases; 2399 spin_unlock(&session->s_cap_lock); 2400 } 2401 2402 static void ceph_cap_release_work(struct work_struct *work) 2403 { 2404 struct ceph_mds_session *session = 2405 container_of(work, struct ceph_mds_session, s_cap_release_work); 2406 2407 mutex_lock(&session->s_mutex); 2408 if (session->s_state == CEPH_MDS_SESSION_OPEN || 2409 session->s_state == CEPH_MDS_SESSION_HUNG) 2410 ceph_send_cap_releases(session->s_mdsc, session); 2411 mutex_unlock(&session->s_mutex); 2412 ceph_put_mds_session(session); 2413 } 2414 2415 void ceph_flush_session_cap_releases(struct ceph_mds_client *mdsc, 2416 struct ceph_mds_session *session) 2417 { 2418 struct ceph_client *cl = mdsc->fsc->client; 2419 if (mdsc->stopping) 2420 return; 2421 2422 ceph_get_mds_session(session); 2423 if (queue_work(mdsc->fsc->cap_wq, 2424 &session->s_cap_release_work)) { 2425 doutc(cl, "cap release work queued\n"); 2426 } else { 2427 ceph_put_mds_session(session); 2428 doutc(cl, "failed to queue cap release work\n"); 2429 } 2430 } 2431 2432 /* 2433 * caller holds session->s_cap_lock 2434 */ 2435 void __ceph_queue_cap_release(struct ceph_mds_session *session, 2436 struct ceph_cap *cap) 2437 { 2438 list_add_tail(&cap->session_caps, &session->s_cap_releases); 2439 session->s_num_cap_releases++; 2440 2441 if (!(session->s_num_cap_releases % CEPH_CAPS_PER_RELEASE)) 2442 ceph_flush_session_cap_releases(session->s_mdsc, session); 2443 } 2444 2445 static void ceph_cap_reclaim_work(struct work_struct *work) 2446 { 2447 struct ceph_mds_client *mdsc = 2448 container_of(work, struct ceph_mds_client, cap_reclaim_work); 2449 int ret = ceph_trim_dentries(mdsc); 2450 if (ret == -EAGAIN) 2451 ceph_queue_cap_reclaim_work(mdsc); 2452 } 2453 2454 void ceph_queue_cap_reclaim_work(struct ceph_mds_client *mdsc) 2455 { 2456 struct ceph_client *cl = mdsc->fsc->client; 2457 if (mdsc->stopping) 2458 return; 2459 2460 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_reclaim_work)) { 2461 doutc(cl, "caps reclaim work queued\n"); 2462 } else { 2463 doutc(cl, "failed to queue caps release work\n"); 2464 } 2465 } 2466 2467 void ceph_reclaim_caps_nr(struct ceph_mds_client *mdsc, int nr) 2468 { 2469 int val; 2470 if (!nr) 2471 return; 2472 val = atomic_add_return(nr, &mdsc->cap_reclaim_pending); 2473 if ((val % CEPH_CAPS_PER_RELEASE) < nr) { 2474 atomic_set(&mdsc->cap_reclaim_pending, 0); 2475 ceph_queue_cap_reclaim_work(mdsc); 2476 } 2477 } 2478 2479 void ceph_queue_cap_unlink_work(struct ceph_mds_client *mdsc) 2480 { 2481 struct ceph_client *cl = mdsc->fsc->client; 2482 if (mdsc->stopping) 2483 return; 2484 2485 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_unlink_work)) { 2486 doutc(cl, "caps unlink work queued\n"); 2487 } else { 2488 doutc(cl, "failed to queue caps unlink work\n"); 2489 } 2490 } 2491 2492 static void ceph_cap_unlink_work(struct work_struct *work) 2493 { 2494 struct ceph_mds_client *mdsc = 2495 container_of(work, struct ceph_mds_client, cap_unlink_work); 2496 struct ceph_client *cl = mdsc->fsc->client; 2497 2498 doutc(cl, "begin\n"); 2499 spin_lock(&mdsc->cap_delay_lock); 2500 while (!list_empty(&mdsc->cap_unlink_delay_list)) { 2501 struct ceph_inode_info *ci; 2502 struct inode *inode; 2503 2504 ci = list_first_entry(&mdsc->cap_unlink_delay_list, 2505 struct ceph_inode_info, 2506 i_cap_delay_list); 2507 list_del_init(&ci->i_cap_delay_list); 2508 2509 inode = igrab(&ci->netfs.inode); 2510 if (inode) { 2511 spin_unlock(&mdsc->cap_delay_lock); 2512 doutc(cl, "on %p %llx.%llx\n", inode, 2513 ceph_vinop(inode)); 2514 ceph_check_caps(ci, CHECK_CAPS_FLUSH); 2515 iput(inode); 2516 spin_lock(&mdsc->cap_delay_lock); 2517 } 2518 } 2519 spin_unlock(&mdsc->cap_delay_lock); 2520 doutc(cl, "done\n"); 2521 } 2522 2523 /* 2524 * requests 2525 */ 2526 2527 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 2528 struct inode *dir) 2529 { 2530 struct ceph_inode_info *ci = ceph_inode(dir); 2531 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 2532 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 2533 size_t size = sizeof(struct ceph_mds_reply_dir_entry); 2534 unsigned int num_entries; 2535 int order; 2536 2537 spin_lock(&ci->i_ceph_lock); 2538 num_entries = ci->i_files + ci->i_subdirs; 2539 spin_unlock(&ci->i_ceph_lock); 2540 num_entries = max(num_entries, 1U); 2541 num_entries = min(num_entries, opt->max_readdir); 2542 2543 order = get_order(size * num_entries); 2544 while (order >= 0) { 2545 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL | 2546 __GFP_NOWARN | 2547 __GFP_ZERO, 2548 order); 2549 if (rinfo->dir_entries) 2550 break; 2551 order--; 2552 } 2553 if (!rinfo->dir_entries) 2554 return -ENOMEM; 2555 2556 num_entries = (PAGE_SIZE << order) / size; 2557 num_entries = min(num_entries, opt->max_readdir); 2558 2559 rinfo->dir_buf_size = PAGE_SIZE << order; 2560 req->r_num_caps = num_entries + 1; 2561 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 2562 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 2563 return 0; 2564 } 2565 2566 /* 2567 * Create an mds request. 2568 */ 2569 struct ceph_mds_request * 2570 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 2571 { 2572 struct ceph_mds_request *req; 2573 2574 req = kmem_cache_zalloc(ceph_mds_request_cachep, GFP_NOFS); 2575 if (!req) 2576 return ERR_PTR(-ENOMEM); 2577 2578 mutex_init(&req->r_fill_mutex); 2579 req->r_mdsc = mdsc; 2580 req->r_started = jiffies; 2581 req->r_start_latency = ktime_get(); 2582 req->r_resend_mds = -1; 2583 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 2584 INIT_LIST_HEAD(&req->r_unsafe_target_item); 2585 req->r_fmode = -1; 2586 req->r_feature_needed = -1; 2587 kref_init(&req->r_kref); 2588 RB_CLEAR_NODE(&req->r_node); 2589 INIT_LIST_HEAD(&req->r_wait); 2590 init_completion(&req->r_completion); 2591 init_completion(&req->r_safe_completion); 2592 INIT_LIST_HEAD(&req->r_unsafe_item); 2593 2594 ktime_get_coarse_real_ts64(&req->r_stamp); 2595 2596 req->r_op = op; 2597 req->r_direct_mode = mode; 2598 return req; 2599 } 2600 2601 /* 2602 * return oldest (lowest) request, tid in request tree, 0 if none. 2603 * 2604 * called under mdsc->mutex. 2605 */ 2606 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 2607 { 2608 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 2609 return NULL; 2610 return rb_entry(rb_first(&mdsc->request_tree), 2611 struct ceph_mds_request, r_node); 2612 } 2613 2614 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 2615 { 2616 return mdsc->oldest_tid; 2617 } 2618 2619 #if IS_ENABLED(CONFIG_FS_ENCRYPTION) 2620 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen) 2621 { 2622 struct inode *dir = req->r_parent; 2623 struct dentry *dentry = req->r_dentry; 2624 const struct qstr *name = req->r_dname; 2625 u8 *cryptbuf = NULL; 2626 u32 len = 0; 2627 int ret = 0; 2628 2629 /* only encode if we have parent and dentry */ 2630 if (!dir || !dentry) 2631 goto success; 2632 2633 /* No-op unless this is encrypted */ 2634 if (!IS_ENCRYPTED(dir)) 2635 goto success; 2636 2637 ret = ceph_fscrypt_prepare_readdir(dir); 2638 if (ret < 0) 2639 return ERR_PTR(ret); 2640 2641 /* No key? Just ignore it. */ 2642 if (!fscrypt_has_encryption_key(dir)) 2643 goto success; 2644 2645 if (!name) 2646 name = &dentry->d_name; 2647 2648 if (!fscrypt_fname_encrypted_size(dir, name->len, NAME_MAX, &len)) { 2649 WARN_ON_ONCE(1); 2650 return ERR_PTR(-ENAMETOOLONG); 2651 } 2652 2653 /* No need to append altname if name is short enough */ 2654 if (len <= CEPH_NOHASH_NAME_MAX) { 2655 len = 0; 2656 goto success; 2657 } 2658 2659 cryptbuf = kmalloc(len, GFP_KERNEL); 2660 if (!cryptbuf) 2661 return ERR_PTR(-ENOMEM); 2662 2663 ret = fscrypt_fname_encrypt(dir, name, cryptbuf, len); 2664 if (ret) { 2665 kfree(cryptbuf); 2666 return ERR_PTR(ret); 2667 } 2668 success: 2669 *plen = len; 2670 return cryptbuf; 2671 } 2672 #else 2673 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen) 2674 { 2675 *plen = 0; 2676 return NULL; 2677 } 2678 #endif 2679 2680 /** 2681 * ceph_mdsc_build_path - build a path string to a given dentry 2682 * @mdsc: mds client 2683 * @dentry: dentry to which path should be built 2684 * @plen: returned length of string 2685 * @pbase: returned base inode number 2686 * @for_wire: is this path going to be sent to the MDS? 2687 * 2688 * Build a string that represents the path to the dentry. This is mostly called 2689 * for two different purposes: 2690 * 2691 * 1) we need to build a path string to send to the MDS (for_wire == true) 2692 * 2) we need a path string for local presentation (e.g. debugfs) 2693 * (for_wire == false) 2694 * 2695 * The path is built in reverse, starting with the dentry. Walk back up toward 2696 * the root, building the path until the first non-snapped inode is reached 2697 * (for_wire) or the root inode is reached (!for_wire). 2698 * 2699 * Encode hidden .snap dirs as a double /, i.e. 2700 * foo/.snap/bar -> foo//bar 2701 */ 2702 char *ceph_mdsc_build_path(struct ceph_mds_client *mdsc, struct dentry *dentry, 2703 int *plen, u64 *pbase, int for_wire) 2704 { 2705 struct ceph_client *cl = mdsc->fsc->client; 2706 struct dentry *cur; 2707 struct inode *inode; 2708 char *path; 2709 int pos; 2710 unsigned seq; 2711 u64 base; 2712 2713 if (!dentry) 2714 return ERR_PTR(-EINVAL); 2715 2716 path = __getname(); 2717 if (!path) 2718 return ERR_PTR(-ENOMEM); 2719 retry: 2720 pos = PATH_MAX - 1; 2721 path[pos] = '\0'; 2722 2723 seq = read_seqbegin(&rename_lock); 2724 cur = dget(dentry); 2725 for (;;) { 2726 struct dentry *parent; 2727 2728 spin_lock(&cur->d_lock); 2729 inode = d_inode(cur); 2730 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 2731 doutc(cl, "path+%d: %p SNAPDIR\n", pos, cur); 2732 spin_unlock(&cur->d_lock); 2733 parent = dget_parent(cur); 2734 } else if (for_wire && inode && dentry != cur && 2735 ceph_snap(inode) == CEPH_NOSNAP) { 2736 spin_unlock(&cur->d_lock); 2737 pos++; /* get rid of any prepended '/' */ 2738 break; 2739 } else if (!for_wire || !IS_ENCRYPTED(d_inode(cur->d_parent))) { 2740 pos -= cur->d_name.len; 2741 if (pos < 0) { 2742 spin_unlock(&cur->d_lock); 2743 break; 2744 } 2745 memcpy(path + pos, cur->d_name.name, cur->d_name.len); 2746 spin_unlock(&cur->d_lock); 2747 parent = dget_parent(cur); 2748 } else { 2749 int len, ret; 2750 char buf[NAME_MAX]; 2751 2752 /* 2753 * Proactively copy name into buf, in case we need to 2754 * present it as-is. 2755 */ 2756 memcpy(buf, cur->d_name.name, cur->d_name.len); 2757 len = cur->d_name.len; 2758 spin_unlock(&cur->d_lock); 2759 parent = dget_parent(cur); 2760 2761 ret = ceph_fscrypt_prepare_readdir(d_inode(parent)); 2762 if (ret < 0) { 2763 dput(parent); 2764 dput(cur); 2765 return ERR_PTR(ret); 2766 } 2767 2768 if (fscrypt_has_encryption_key(d_inode(parent))) { 2769 len = ceph_encode_encrypted_fname(d_inode(parent), 2770 cur, buf); 2771 if (len < 0) { 2772 dput(parent); 2773 dput(cur); 2774 return ERR_PTR(len); 2775 } 2776 } 2777 pos -= len; 2778 if (pos < 0) { 2779 dput(parent); 2780 break; 2781 } 2782 memcpy(path + pos, buf, len); 2783 } 2784 dput(cur); 2785 cur = parent; 2786 2787 /* Are we at the root? */ 2788 if (IS_ROOT(cur)) 2789 break; 2790 2791 /* Are we out of buffer? */ 2792 if (--pos < 0) 2793 break; 2794 2795 path[pos] = '/'; 2796 } 2797 inode = d_inode(cur); 2798 base = inode ? ceph_ino(inode) : 0; 2799 dput(cur); 2800 2801 if (read_seqretry(&rename_lock, seq)) 2802 goto retry; 2803 2804 if (pos < 0) { 2805 /* 2806 * The path is longer than PATH_MAX and this function 2807 * cannot ever succeed. Creating paths that long is 2808 * possible with Ceph, but Linux cannot use them. 2809 */ 2810 return ERR_PTR(-ENAMETOOLONG); 2811 } 2812 2813 *pbase = base; 2814 *plen = PATH_MAX - 1 - pos; 2815 doutc(cl, "on %p %d built %llx '%.*s'\n", dentry, d_count(dentry), 2816 base, *plen, path + pos); 2817 return path + pos; 2818 } 2819 2820 static int build_dentry_path(struct ceph_mds_client *mdsc, struct dentry *dentry, 2821 struct inode *dir, const char **ppath, int *ppathlen, 2822 u64 *pino, bool *pfreepath, bool parent_locked) 2823 { 2824 char *path; 2825 2826 rcu_read_lock(); 2827 if (!dir) 2828 dir = d_inode_rcu(dentry->d_parent); 2829 if (dir && parent_locked && ceph_snap(dir) == CEPH_NOSNAP && 2830 !IS_ENCRYPTED(dir)) { 2831 *pino = ceph_ino(dir); 2832 rcu_read_unlock(); 2833 *ppath = dentry->d_name.name; 2834 *ppathlen = dentry->d_name.len; 2835 return 0; 2836 } 2837 rcu_read_unlock(); 2838 path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1); 2839 if (IS_ERR(path)) 2840 return PTR_ERR(path); 2841 *ppath = path; 2842 *pfreepath = true; 2843 return 0; 2844 } 2845 2846 static int build_inode_path(struct inode *inode, 2847 const char **ppath, int *ppathlen, u64 *pino, 2848 bool *pfreepath) 2849 { 2850 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 2851 struct dentry *dentry; 2852 char *path; 2853 2854 if (ceph_snap(inode) == CEPH_NOSNAP) { 2855 *pino = ceph_ino(inode); 2856 *ppathlen = 0; 2857 return 0; 2858 } 2859 dentry = d_find_alias(inode); 2860 path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1); 2861 dput(dentry); 2862 if (IS_ERR(path)) 2863 return PTR_ERR(path); 2864 *ppath = path; 2865 *pfreepath = true; 2866 return 0; 2867 } 2868 2869 /* 2870 * request arguments may be specified via an inode *, a dentry *, or 2871 * an explicit ino+path. 2872 */ 2873 static int set_request_path_attr(struct ceph_mds_client *mdsc, struct inode *rinode, 2874 struct dentry *rdentry, struct inode *rdiri, 2875 const char *rpath, u64 rino, const char **ppath, 2876 int *pathlen, u64 *ino, bool *freepath, 2877 bool parent_locked) 2878 { 2879 struct ceph_client *cl = mdsc->fsc->client; 2880 int r = 0; 2881 2882 if (rinode) { 2883 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 2884 doutc(cl, " inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 2885 ceph_snap(rinode)); 2886 } else if (rdentry) { 2887 r = build_dentry_path(mdsc, rdentry, rdiri, ppath, pathlen, ino, 2888 freepath, parent_locked); 2889 doutc(cl, " dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, *ppath); 2890 } else if (rpath || rino) { 2891 *ino = rino; 2892 *ppath = rpath; 2893 *pathlen = rpath ? strlen(rpath) : 0; 2894 doutc(cl, " path %.*s\n", *pathlen, rpath); 2895 } 2896 2897 return r; 2898 } 2899 2900 static void encode_mclientrequest_tail(void **p, 2901 const struct ceph_mds_request *req) 2902 { 2903 struct ceph_timespec ts; 2904 int i; 2905 2906 ceph_encode_timespec64(&ts, &req->r_stamp); 2907 ceph_encode_copy(p, &ts, sizeof(ts)); 2908 2909 /* v4: gid_list */ 2910 ceph_encode_32(p, req->r_cred->group_info->ngroups); 2911 for (i = 0; i < req->r_cred->group_info->ngroups; i++) 2912 ceph_encode_64(p, from_kgid(&init_user_ns, 2913 req->r_cred->group_info->gid[i])); 2914 2915 /* v5: altname */ 2916 ceph_encode_32(p, req->r_altname_len); 2917 ceph_encode_copy(p, req->r_altname, req->r_altname_len); 2918 2919 /* v6: fscrypt_auth and fscrypt_file */ 2920 if (req->r_fscrypt_auth) { 2921 u32 authlen = ceph_fscrypt_auth_len(req->r_fscrypt_auth); 2922 2923 ceph_encode_32(p, authlen); 2924 ceph_encode_copy(p, req->r_fscrypt_auth, authlen); 2925 } else { 2926 ceph_encode_32(p, 0); 2927 } 2928 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) { 2929 ceph_encode_32(p, sizeof(__le64)); 2930 ceph_encode_64(p, req->r_fscrypt_file); 2931 } else { 2932 ceph_encode_32(p, 0); 2933 } 2934 } 2935 2936 static inline u16 mds_supported_head_version(struct ceph_mds_session *session) 2937 { 2938 if (!test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, &session->s_features)) 2939 return 1; 2940 2941 if (!test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features)) 2942 return 2; 2943 2944 return CEPH_MDS_REQUEST_HEAD_VERSION; 2945 } 2946 2947 static struct ceph_mds_request_head_legacy * 2948 find_legacy_request_head(void *p, u64 features) 2949 { 2950 bool legacy = !(features & CEPH_FEATURE_FS_BTIME); 2951 struct ceph_mds_request_head *head; 2952 2953 if (legacy) 2954 return (struct ceph_mds_request_head_legacy *)p; 2955 head = (struct ceph_mds_request_head *)p; 2956 return (struct ceph_mds_request_head_legacy *)&head->oldest_client_tid; 2957 } 2958 2959 /* 2960 * called under mdsc->mutex 2961 */ 2962 static struct ceph_msg *create_request_message(struct ceph_mds_session *session, 2963 struct ceph_mds_request *req, 2964 bool drop_cap_releases) 2965 { 2966 int mds = session->s_mds; 2967 struct ceph_mds_client *mdsc = session->s_mdsc; 2968 struct ceph_client *cl = mdsc->fsc->client; 2969 struct ceph_msg *msg; 2970 struct ceph_mds_request_head_legacy *lhead; 2971 const char *path1 = NULL; 2972 const char *path2 = NULL; 2973 u64 ino1 = 0, ino2 = 0; 2974 int pathlen1 = 0, pathlen2 = 0; 2975 bool freepath1 = false, freepath2 = false; 2976 struct dentry *old_dentry = NULL; 2977 int len; 2978 u16 releases; 2979 void *p, *end; 2980 int ret; 2981 bool legacy = !(session->s_con.peer_features & CEPH_FEATURE_FS_BTIME); 2982 u16 request_head_version = mds_supported_head_version(session); 2983 kuid_t caller_fsuid = req->r_cred->fsuid; 2984 kgid_t caller_fsgid = req->r_cred->fsgid; 2985 2986 ret = set_request_path_attr(mdsc, req->r_inode, req->r_dentry, 2987 req->r_parent, req->r_path1, req->r_ino1.ino, 2988 &path1, &pathlen1, &ino1, &freepath1, 2989 test_bit(CEPH_MDS_R_PARENT_LOCKED, 2990 &req->r_req_flags)); 2991 if (ret < 0) { 2992 msg = ERR_PTR(ret); 2993 goto out; 2994 } 2995 2996 /* If r_old_dentry is set, then assume that its parent is locked */ 2997 if (req->r_old_dentry && 2998 !(req->r_old_dentry->d_flags & DCACHE_DISCONNECTED)) 2999 old_dentry = req->r_old_dentry; 3000 ret = set_request_path_attr(mdsc, NULL, old_dentry, 3001 req->r_old_dentry_dir, 3002 req->r_path2, req->r_ino2.ino, 3003 &path2, &pathlen2, &ino2, &freepath2, true); 3004 if (ret < 0) { 3005 msg = ERR_PTR(ret); 3006 goto out_free1; 3007 } 3008 3009 req->r_altname = get_fscrypt_altname(req, &req->r_altname_len); 3010 if (IS_ERR(req->r_altname)) { 3011 msg = ERR_CAST(req->r_altname); 3012 req->r_altname = NULL; 3013 goto out_free2; 3014 } 3015 3016 /* 3017 * For old cephs without supporting the 32bit retry/fwd feature 3018 * it will copy the raw memories directly when decoding the 3019 * requests. While new cephs will decode the head depending the 3020 * version member, so we need to make sure it will be compatible 3021 * with them both. 3022 */ 3023 if (legacy) 3024 len = sizeof(struct ceph_mds_request_head_legacy); 3025 else if (request_head_version == 1) 3026 len = offsetofend(struct ceph_mds_request_head, args); 3027 else if (request_head_version == 2) 3028 len = offsetofend(struct ceph_mds_request_head, ext_num_fwd); 3029 else 3030 len = sizeof(struct ceph_mds_request_head); 3031 3032 /* filepaths */ 3033 len += 2 * (1 + sizeof(u32) + sizeof(u64)); 3034 len += pathlen1 + pathlen2; 3035 3036 /* cap releases */ 3037 len += sizeof(struct ceph_mds_request_release) * 3038 (!!req->r_inode_drop + !!req->r_dentry_drop + 3039 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 3040 3041 if (req->r_dentry_drop) 3042 len += pathlen1; 3043 if (req->r_old_dentry_drop) 3044 len += pathlen2; 3045 3046 /* MClientRequest tail */ 3047 3048 /* req->r_stamp */ 3049 len += sizeof(struct ceph_timespec); 3050 3051 /* gid list */ 3052 len += sizeof(u32) + (sizeof(u64) * req->r_cred->group_info->ngroups); 3053 3054 /* alternate name */ 3055 len += sizeof(u32) + req->r_altname_len; 3056 3057 /* fscrypt_auth */ 3058 len += sizeof(u32); // fscrypt_auth 3059 if (req->r_fscrypt_auth) 3060 len += ceph_fscrypt_auth_len(req->r_fscrypt_auth); 3061 3062 /* fscrypt_file */ 3063 len += sizeof(u32); 3064 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) 3065 len += sizeof(__le64); 3066 3067 msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false); 3068 if (!msg) { 3069 msg = ERR_PTR(-ENOMEM); 3070 goto out_free2; 3071 } 3072 3073 msg->hdr.tid = cpu_to_le64(req->r_tid); 3074 3075 lhead = find_legacy_request_head(msg->front.iov_base, 3076 session->s_con.peer_features); 3077 3078 if ((req->r_mnt_idmap != &nop_mnt_idmap) && 3079 !test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features)) { 3080 WARN_ON_ONCE(!IS_CEPH_MDS_OP_NEWINODE(req->r_op)); 3081 3082 if (enable_unsafe_idmap) { 3083 pr_warn_once_client(cl, 3084 "idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID" 3085 " is not supported by MDS. UID/GID-based restrictions may" 3086 " not work properly.\n"); 3087 3088 caller_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns, 3089 VFSUIDT_INIT(req->r_cred->fsuid)); 3090 caller_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns, 3091 VFSGIDT_INIT(req->r_cred->fsgid)); 3092 } else { 3093 pr_err_ratelimited_client(cl, 3094 "idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID" 3095 " is not supported by MDS. Fail request with -EIO.\n"); 3096 3097 ret = -EIO; 3098 goto out_err; 3099 } 3100 } 3101 3102 /* 3103 * The ceph_mds_request_head_legacy didn't contain a version field, and 3104 * one was added when we moved the message version from 3->4. 3105 */ 3106 if (legacy) { 3107 msg->hdr.version = cpu_to_le16(3); 3108 p = msg->front.iov_base + sizeof(*lhead); 3109 } else if (request_head_version == 1) { 3110 struct ceph_mds_request_head *nhead = msg->front.iov_base; 3111 3112 msg->hdr.version = cpu_to_le16(4); 3113 nhead->version = cpu_to_le16(1); 3114 p = msg->front.iov_base + offsetofend(struct ceph_mds_request_head, args); 3115 } else if (request_head_version == 2) { 3116 struct ceph_mds_request_head *nhead = msg->front.iov_base; 3117 3118 msg->hdr.version = cpu_to_le16(6); 3119 nhead->version = cpu_to_le16(2); 3120 3121 p = msg->front.iov_base + offsetofend(struct ceph_mds_request_head, ext_num_fwd); 3122 } else { 3123 struct ceph_mds_request_head *nhead = msg->front.iov_base; 3124 kuid_t owner_fsuid; 3125 kgid_t owner_fsgid; 3126 3127 msg->hdr.version = cpu_to_le16(6); 3128 nhead->version = cpu_to_le16(CEPH_MDS_REQUEST_HEAD_VERSION); 3129 nhead->struct_len = cpu_to_le32(sizeof(struct ceph_mds_request_head)); 3130 3131 if (IS_CEPH_MDS_OP_NEWINODE(req->r_op)) { 3132 owner_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns, 3133 VFSUIDT_INIT(req->r_cred->fsuid)); 3134 owner_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns, 3135 VFSGIDT_INIT(req->r_cred->fsgid)); 3136 nhead->owner_uid = cpu_to_le32(from_kuid(&init_user_ns, owner_fsuid)); 3137 nhead->owner_gid = cpu_to_le32(from_kgid(&init_user_ns, owner_fsgid)); 3138 } else { 3139 nhead->owner_uid = cpu_to_le32(-1); 3140 nhead->owner_gid = cpu_to_le32(-1); 3141 } 3142 3143 p = msg->front.iov_base + sizeof(*nhead); 3144 } 3145 3146 end = msg->front.iov_base + msg->front.iov_len; 3147 3148 lhead->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 3149 lhead->op = cpu_to_le32(req->r_op); 3150 lhead->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, 3151 caller_fsuid)); 3152 lhead->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, 3153 caller_fsgid)); 3154 lhead->ino = cpu_to_le64(req->r_deleg_ino); 3155 lhead->args = req->r_args; 3156 3157 ceph_encode_filepath(&p, end, ino1, path1); 3158 ceph_encode_filepath(&p, end, ino2, path2); 3159 3160 /* make note of release offset, in case we need to replay */ 3161 req->r_request_release_offset = p - msg->front.iov_base; 3162 3163 /* cap releases */ 3164 releases = 0; 3165 if (req->r_inode_drop) 3166 releases += ceph_encode_inode_release(&p, 3167 req->r_inode ? req->r_inode : d_inode(req->r_dentry), 3168 mds, req->r_inode_drop, req->r_inode_unless, 3169 req->r_op == CEPH_MDS_OP_READDIR); 3170 if (req->r_dentry_drop) { 3171 ret = ceph_encode_dentry_release(&p, req->r_dentry, 3172 req->r_parent, mds, req->r_dentry_drop, 3173 req->r_dentry_unless); 3174 if (ret < 0) 3175 goto out_err; 3176 releases += ret; 3177 } 3178 if (req->r_old_dentry_drop) { 3179 ret = ceph_encode_dentry_release(&p, req->r_old_dentry, 3180 req->r_old_dentry_dir, mds, 3181 req->r_old_dentry_drop, 3182 req->r_old_dentry_unless); 3183 if (ret < 0) 3184 goto out_err; 3185 releases += ret; 3186 } 3187 if (req->r_old_inode_drop) 3188 releases += ceph_encode_inode_release(&p, 3189 d_inode(req->r_old_dentry), 3190 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 3191 3192 if (drop_cap_releases) { 3193 releases = 0; 3194 p = msg->front.iov_base + req->r_request_release_offset; 3195 } 3196 3197 lhead->num_releases = cpu_to_le16(releases); 3198 3199 encode_mclientrequest_tail(&p, req); 3200 3201 if (WARN_ON_ONCE(p > end)) { 3202 ceph_msg_put(msg); 3203 msg = ERR_PTR(-ERANGE); 3204 goto out_free2; 3205 } 3206 3207 msg->front.iov_len = p - msg->front.iov_base; 3208 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 3209 3210 if (req->r_pagelist) { 3211 struct ceph_pagelist *pagelist = req->r_pagelist; 3212 ceph_msg_data_add_pagelist(msg, pagelist); 3213 msg->hdr.data_len = cpu_to_le32(pagelist->length); 3214 } else { 3215 msg->hdr.data_len = 0; 3216 } 3217 3218 msg->hdr.data_off = cpu_to_le16(0); 3219 3220 out_free2: 3221 if (freepath2) 3222 ceph_mdsc_free_path((char *)path2, pathlen2); 3223 out_free1: 3224 if (freepath1) 3225 ceph_mdsc_free_path((char *)path1, pathlen1); 3226 out: 3227 return msg; 3228 out_err: 3229 ceph_msg_put(msg); 3230 msg = ERR_PTR(ret); 3231 goto out_free2; 3232 } 3233 3234 /* 3235 * called under mdsc->mutex if error, under no mutex if 3236 * success. 3237 */ 3238 static void complete_request(struct ceph_mds_client *mdsc, 3239 struct ceph_mds_request *req) 3240 { 3241 req->r_end_latency = ktime_get(); 3242 3243 if (req->r_callback) 3244 req->r_callback(mdsc, req); 3245 complete_all(&req->r_completion); 3246 } 3247 3248 /* 3249 * called under mdsc->mutex 3250 */ 3251 static int __prepare_send_request(struct ceph_mds_session *session, 3252 struct ceph_mds_request *req, 3253 bool drop_cap_releases) 3254 { 3255 int mds = session->s_mds; 3256 struct ceph_mds_client *mdsc = session->s_mdsc; 3257 struct ceph_client *cl = mdsc->fsc->client; 3258 struct ceph_mds_request_head_legacy *lhead; 3259 struct ceph_mds_request_head *nhead; 3260 struct ceph_msg *msg; 3261 int flags = 0, old_max_retry; 3262 bool old_version = !test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, 3263 &session->s_features); 3264 3265 /* 3266 * Avoid infinite retrying after overflow. The client will 3267 * increase the retry count and if the MDS is old version, 3268 * so we limit to retry at most 256 times. 3269 */ 3270 if (req->r_attempts) { 3271 old_max_retry = sizeof_field(struct ceph_mds_request_head, 3272 num_retry); 3273 old_max_retry = 1 << (old_max_retry * BITS_PER_BYTE); 3274 if ((old_version && req->r_attempts >= old_max_retry) || 3275 ((uint32_t)req->r_attempts >= U32_MAX)) { 3276 pr_warn_ratelimited_client(cl, "request tid %llu seq overflow\n", 3277 req->r_tid); 3278 return -EMULTIHOP; 3279 } 3280 } 3281 3282 req->r_attempts++; 3283 if (req->r_inode) { 3284 struct ceph_cap *cap = 3285 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 3286 3287 if (cap) 3288 req->r_sent_on_mseq = cap->mseq; 3289 else 3290 req->r_sent_on_mseq = -1; 3291 } 3292 doutc(cl, "%p tid %lld %s (attempt %d)\n", req, req->r_tid, 3293 ceph_mds_op_name(req->r_op), req->r_attempts); 3294 3295 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3296 void *p; 3297 3298 /* 3299 * Replay. Do not regenerate message (and rebuild 3300 * paths, etc.); just use the original message. 3301 * Rebuilding paths will break for renames because 3302 * d_move mangles the src name. 3303 */ 3304 msg = req->r_request; 3305 lhead = find_legacy_request_head(msg->front.iov_base, 3306 session->s_con.peer_features); 3307 3308 flags = le32_to_cpu(lhead->flags); 3309 flags |= CEPH_MDS_FLAG_REPLAY; 3310 lhead->flags = cpu_to_le32(flags); 3311 3312 if (req->r_target_inode) 3313 lhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 3314 3315 lhead->num_retry = req->r_attempts - 1; 3316 if (!old_version) { 3317 nhead = (struct ceph_mds_request_head*)msg->front.iov_base; 3318 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1); 3319 } 3320 3321 /* remove cap/dentry releases from message */ 3322 lhead->num_releases = 0; 3323 3324 p = msg->front.iov_base + req->r_request_release_offset; 3325 encode_mclientrequest_tail(&p, req); 3326 3327 msg->front.iov_len = p - msg->front.iov_base; 3328 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 3329 return 0; 3330 } 3331 3332 if (req->r_request) { 3333 ceph_msg_put(req->r_request); 3334 req->r_request = NULL; 3335 } 3336 msg = create_request_message(session, req, drop_cap_releases); 3337 if (IS_ERR(msg)) { 3338 req->r_err = PTR_ERR(msg); 3339 return PTR_ERR(msg); 3340 } 3341 req->r_request = msg; 3342 3343 lhead = find_legacy_request_head(msg->front.iov_base, 3344 session->s_con.peer_features); 3345 lhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 3346 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3347 flags |= CEPH_MDS_FLAG_REPLAY; 3348 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) 3349 flags |= CEPH_MDS_FLAG_ASYNC; 3350 if (req->r_parent) 3351 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 3352 lhead->flags = cpu_to_le32(flags); 3353 lhead->num_fwd = req->r_num_fwd; 3354 lhead->num_retry = req->r_attempts - 1; 3355 if (!old_version) { 3356 nhead = (struct ceph_mds_request_head*)msg->front.iov_base; 3357 nhead->ext_num_fwd = cpu_to_le32(req->r_num_fwd); 3358 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1); 3359 } 3360 3361 doutc(cl, " r_parent = %p\n", req->r_parent); 3362 return 0; 3363 } 3364 3365 /* 3366 * called under mdsc->mutex 3367 */ 3368 static int __send_request(struct ceph_mds_session *session, 3369 struct ceph_mds_request *req, 3370 bool drop_cap_releases) 3371 { 3372 int err; 3373 3374 err = __prepare_send_request(session, req, drop_cap_releases); 3375 if (!err) { 3376 ceph_msg_get(req->r_request); 3377 ceph_con_send(&session->s_con, req->r_request); 3378 } 3379 3380 return err; 3381 } 3382 3383 /* 3384 * send request, or put it on the appropriate wait list. 3385 */ 3386 static void __do_request(struct ceph_mds_client *mdsc, 3387 struct ceph_mds_request *req) 3388 { 3389 struct ceph_client *cl = mdsc->fsc->client; 3390 struct ceph_mds_session *session = NULL; 3391 int mds = -1; 3392 int err = 0; 3393 bool random; 3394 3395 if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 3396 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) 3397 __unregister_request(mdsc, req); 3398 return; 3399 } 3400 3401 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) { 3402 doutc(cl, "metadata corrupted\n"); 3403 err = -EIO; 3404 goto finish; 3405 } 3406 if (req->r_timeout && 3407 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 3408 doutc(cl, "timed out\n"); 3409 err = -ETIMEDOUT; 3410 goto finish; 3411 } 3412 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { 3413 doutc(cl, "forced umount\n"); 3414 err = -EIO; 3415 goto finish; 3416 } 3417 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) { 3418 if (mdsc->mdsmap_err) { 3419 err = mdsc->mdsmap_err; 3420 doutc(cl, "mdsmap err %d\n", err); 3421 goto finish; 3422 } 3423 if (mdsc->mdsmap->m_epoch == 0) { 3424 doutc(cl, "no mdsmap, waiting for map\n"); 3425 list_add(&req->r_wait, &mdsc->waiting_for_map); 3426 return; 3427 } 3428 if (!(mdsc->fsc->mount_options->flags & 3429 CEPH_MOUNT_OPT_MOUNTWAIT) && 3430 !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) { 3431 err = -EHOSTUNREACH; 3432 goto finish; 3433 } 3434 } 3435 3436 put_request_session(req); 3437 3438 mds = __choose_mds(mdsc, req, &random); 3439 if (mds < 0 || 3440 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 3441 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 3442 err = -EJUKEBOX; 3443 goto finish; 3444 } 3445 doutc(cl, "no mds or not active, waiting for map\n"); 3446 list_add(&req->r_wait, &mdsc->waiting_for_map); 3447 return; 3448 } 3449 3450 /* get, open session */ 3451 session = __ceph_lookup_mds_session(mdsc, mds); 3452 if (!session) { 3453 session = register_session(mdsc, mds); 3454 if (IS_ERR(session)) { 3455 err = PTR_ERR(session); 3456 goto finish; 3457 } 3458 } 3459 req->r_session = ceph_get_mds_session(session); 3460 3461 doutc(cl, "mds%d session %p state %s\n", mds, session, 3462 ceph_session_state_name(session->s_state)); 3463 3464 /* 3465 * The old ceph will crash the MDSs when see unknown OPs 3466 */ 3467 if (req->r_feature_needed > 0 && 3468 !test_bit(req->r_feature_needed, &session->s_features)) { 3469 err = -EOPNOTSUPP; 3470 goto out_session; 3471 } 3472 3473 if (session->s_state != CEPH_MDS_SESSION_OPEN && 3474 session->s_state != CEPH_MDS_SESSION_HUNG) { 3475 /* 3476 * We cannot queue async requests since the caps and delegated 3477 * inodes are bound to the session. Just return -EJUKEBOX and 3478 * let the caller retry a sync request in that case. 3479 */ 3480 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 3481 err = -EJUKEBOX; 3482 goto out_session; 3483 } 3484 3485 /* 3486 * If the session has been REJECTED, then return a hard error, 3487 * unless it's a CLEANRECOVER mount, in which case we'll queue 3488 * it to the mdsc queue. 3489 */ 3490 if (session->s_state == CEPH_MDS_SESSION_REJECTED) { 3491 if (ceph_test_mount_opt(mdsc->fsc, CLEANRECOVER)) 3492 list_add(&req->r_wait, &mdsc->waiting_for_map); 3493 else 3494 err = -EACCES; 3495 goto out_session; 3496 } 3497 3498 if (session->s_state == CEPH_MDS_SESSION_NEW || 3499 session->s_state == CEPH_MDS_SESSION_CLOSING) { 3500 err = __open_session(mdsc, session); 3501 if (err) 3502 goto out_session; 3503 /* retry the same mds later */ 3504 if (random) 3505 req->r_resend_mds = mds; 3506 } 3507 list_add(&req->r_wait, &session->s_waiting); 3508 goto out_session; 3509 } 3510 3511 /* send request */ 3512 req->r_resend_mds = -1; /* forget any previous mds hint */ 3513 3514 if (req->r_request_started == 0) /* note request start time */ 3515 req->r_request_started = jiffies; 3516 3517 /* 3518 * For async create we will choose the auth MDS of frag in parent 3519 * directory to send the request and usually this works fine, but 3520 * if the migrated the dirtory to another MDS before it could handle 3521 * it the request will be forwarded. 3522 * 3523 * And then the auth cap will be changed. 3524 */ 3525 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags) && req->r_num_fwd) { 3526 struct ceph_dentry_info *di = ceph_dentry(req->r_dentry); 3527 struct ceph_inode_info *ci; 3528 struct ceph_cap *cap; 3529 3530 /* 3531 * The request maybe handled very fast and the new inode 3532 * hasn't been linked to the dentry yet. We need to wait 3533 * for the ceph_finish_async_create(), which shouldn't be 3534 * stuck too long or fail in thoery, to finish when forwarding 3535 * the request. 3536 */ 3537 if (!d_inode(req->r_dentry)) { 3538 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_CREATE_BIT, 3539 TASK_KILLABLE); 3540 if (err) { 3541 mutex_lock(&req->r_fill_mutex); 3542 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3543 mutex_unlock(&req->r_fill_mutex); 3544 goto out_session; 3545 } 3546 } 3547 3548 ci = ceph_inode(d_inode(req->r_dentry)); 3549 3550 spin_lock(&ci->i_ceph_lock); 3551 cap = ci->i_auth_cap; 3552 if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE && mds != cap->mds) { 3553 doutc(cl, "session changed for auth cap %d -> %d\n", 3554 cap->session->s_mds, session->s_mds); 3555 3556 /* Remove the auth cap from old session */ 3557 spin_lock(&cap->session->s_cap_lock); 3558 cap->session->s_nr_caps--; 3559 list_del_init(&cap->session_caps); 3560 spin_unlock(&cap->session->s_cap_lock); 3561 3562 /* Add the auth cap to the new session */ 3563 cap->mds = mds; 3564 cap->session = session; 3565 spin_lock(&session->s_cap_lock); 3566 session->s_nr_caps++; 3567 list_add_tail(&cap->session_caps, &session->s_caps); 3568 spin_unlock(&session->s_cap_lock); 3569 3570 change_auth_cap_ses(ci, session); 3571 } 3572 spin_unlock(&ci->i_ceph_lock); 3573 } 3574 3575 err = __send_request(session, req, false); 3576 3577 out_session: 3578 ceph_put_mds_session(session); 3579 finish: 3580 if (err) { 3581 doutc(cl, "early error %d\n", err); 3582 req->r_err = err; 3583 complete_request(mdsc, req); 3584 __unregister_request(mdsc, req); 3585 } 3586 return; 3587 } 3588 3589 /* 3590 * called under mdsc->mutex 3591 */ 3592 static void __wake_requests(struct ceph_mds_client *mdsc, 3593 struct list_head *head) 3594 { 3595 struct ceph_client *cl = mdsc->fsc->client; 3596 struct ceph_mds_request *req; 3597 LIST_HEAD(tmp_list); 3598 3599 list_splice_init(head, &tmp_list); 3600 3601 while (!list_empty(&tmp_list)) { 3602 req = list_entry(tmp_list.next, 3603 struct ceph_mds_request, r_wait); 3604 list_del_init(&req->r_wait); 3605 doutc(cl, " wake request %p tid %llu\n", req, 3606 req->r_tid); 3607 __do_request(mdsc, req); 3608 } 3609 } 3610 3611 /* 3612 * Wake up threads with requests pending for @mds, so that they can 3613 * resubmit their requests to a possibly different mds. 3614 */ 3615 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 3616 { 3617 struct ceph_client *cl = mdsc->fsc->client; 3618 struct ceph_mds_request *req; 3619 struct rb_node *p = rb_first(&mdsc->request_tree); 3620 3621 doutc(cl, "kick_requests mds%d\n", mds); 3622 while (p) { 3623 req = rb_entry(p, struct ceph_mds_request, r_node); 3624 p = rb_next(p); 3625 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3626 continue; 3627 if (req->r_attempts > 0) 3628 continue; /* only new requests */ 3629 if (req->r_session && 3630 req->r_session->s_mds == mds) { 3631 doutc(cl, " kicking tid %llu\n", req->r_tid); 3632 list_del_init(&req->r_wait); 3633 __do_request(mdsc, req); 3634 } 3635 } 3636 } 3637 3638 int ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct inode *dir, 3639 struct ceph_mds_request *req) 3640 { 3641 struct ceph_client *cl = mdsc->fsc->client; 3642 int err = 0; 3643 3644 /* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */ 3645 if (req->r_inode) 3646 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 3647 if (req->r_parent) { 3648 struct ceph_inode_info *ci = ceph_inode(req->r_parent); 3649 int fmode = (req->r_op & CEPH_MDS_OP_WRITE) ? 3650 CEPH_FILE_MODE_WR : CEPH_FILE_MODE_RD; 3651 spin_lock(&ci->i_ceph_lock); 3652 ceph_take_cap_refs(ci, CEPH_CAP_PIN, false); 3653 __ceph_touch_fmode(ci, mdsc, fmode); 3654 spin_unlock(&ci->i_ceph_lock); 3655 } 3656 if (req->r_old_dentry_dir) 3657 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 3658 CEPH_CAP_PIN); 3659 3660 if (req->r_inode) { 3661 err = ceph_wait_on_async_create(req->r_inode); 3662 if (err) { 3663 doutc(cl, "wait for async create returned: %d\n", err); 3664 return err; 3665 } 3666 } 3667 3668 if (!err && req->r_old_inode) { 3669 err = ceph_wait_on_async_create(req->r_old_inode); 3670 if (err) { 3671 doutc(cl, "wait for async create returned: %d\n", err); 3672 return err; 3673 } 3674 } 3675 3676 doutc(cl, "submit_request on %p for inode %p\n", req, dir); 3677 mutex_lock(&mdsc->mutex); 3678 __register_request(mdsc, req, dir); 3679 __do_request(mdsc, req); 3680 err = req->r_err; 3681 mutex_unlock(&mdsc->mutex); 3682 return err; 3683 } 3684 3685 int ceph_mdsc_wait_request(struct ceph_mds_client *mdsc, 3686 struct ceph_mds_request *req, 3687 ceph_mds_request_wait_callback_t wait_func) 3688 { 3689 struct ceph_client *cl = mdsc->fsc->client; 3690 int err; 3691 3692 /* wait */ 3693 doutc(cl, "do_request waiting\n"); 3694 if (wait_func) { 3695 err = wait_func(mdsc, req); 3696 } else { 3697 long timeleft = wait_for_completion_killable_timeout( 3698 &req->r_completion, 3699 ceph_timeout_jiffies(req->r_timeout)); 3700 if (timeleft > 0) 3701 err = 0; 3702 else if (!timeleft) 3703 err = -ETIMEDOUT; /* timed out */ 3704 else 3705 err = timeleft; /* killed */ 3706 } 3707 doutc(cl, "do_request waited, got %d\n", err); 3708 mutex_lock(&mdsc->mutex); 3709 3710 /* only abort if we didn't race with a real reply */ 3711 if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 3712 err = le32_to_cpu(req->r_reply_info.head->result); 3713 } else if (err < 0) { 3714 doutc(cl, "aborted request %lld with %d\n", req->r_tid, err); 3715 3716 /* 3717 * ensure we aren't running concurrently with 3718 * ceph_fill_trace or ceph_readdir_prepopulate, which 3719 * rely on locks (dir mutex) held by our caller. 3720 */ 3721 mutex_lock(&req->r_fill_mutex); 3722 req->r_err = err; 3723 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3724 mutex_unlock(&req->r_fill_mutex); 3725 3726 if (req->r_parent && 3727 (req->r_op & CEPH_MDS_OP_WRITE)) 3728 ceph_invalidate_dir_request(req); 3729 } else { 3730 err = req->r_err; 3731 } 3732 3733 mutex_unlock(&mdsc->mutex); 3734 return err; 3735 } 3736 3737 /* 3738 * Synchrously perform an mds request. Take care of all of the 3739 * session setup, forwarding, retry details. 3740 */ 3741 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 3742 struct inode *dir, 3743 struct ceph_mds_request *req) 3744 { 3745 struct ceph_client *cl = mdsc->fsc->client; 3746 int err; 3747 3748 doutc(cl, "do_request on %p\n", req); 3749 3750 /* issue */ 3751 err = ceph_mdsc_submit_request(mdsc, dir, req); 3752 if (!err) 3753 err = ceph_mdsc_wait_request(mdsc, req, NULL); 3754 doutc(cl, "do_request %p done, result %d\n", req, err); 3755 return err; 3756 } 3757 3758 /* 3759 * Invalidate dir's completeness, dentry lease state on an aborted MDS 3760 * namespace request. 3761 */ 3762 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 3763 { 3764 struct inode *dir = req->r_parent; 3765 struct inode *old_dir = req->r_old_dentry_dir; 3766 struct ceph_client *cl = req->r_mdsc->fsc->client; 3767 3768 doutc(cl, "invalidate_dir_request %p %p (complete, lease(s))\n", 3769 dir, old_dir); 3770 3771 ceph_dir_clear_complete(dir); 3772 if (old_dir) 3773 ceph_dir_clear_complete(old_dir); 3774 if (req->r_dentry) 3775 ceph_invalidate_dentry_lease(req->r_dentry); 3776 if (req->r_old_dentry) 3777 ceph_invalidate_dentry_lease(req->r_old_dentry); 3778 } 3779 3780 /* 3781 * Handle mds reply. 3782 * 3783 * We take the session mutex and parse and process the reply immediately. 3784 * This preserves the logical ordering of replies, capabilities, etc., sent 3785 * by the MDS as they are applied to our local cache. 3786 */ 3787 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 3788 { 3789 struct ceph_mds_client *mdsc = session->s_mdsc; 3790 struct ceph_client *cl = mdsc->fsc->client; 3791 struct ceph_mds_request *req; 3792 struct ceph_mds_reply_head *head = msg->front.iov_base; 3793 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 3794 struct ceph_snap_realm *realm; 3795 u64 tid; 3796 int err, result; 3797 int mds = session->s_mds; 3798 bool close_sessions = false; 3799 3800 if (msg->front.iov_len < sizeof(*head)) { 3801 pr_err_client(cl, "got corrupt (short) reply\n"); 3802 ceph_msg_dump(msg); 3803 return; 3804 } 3805 3806 /* get request, session */ 3807 tid = le64_to_cpu(msg->hdr.tid); 3808 mutex_lock(&mdsc->mutex); 3809 req = lookup_get_request(mdsc, tid); 3810 if (!req) { 3811 doutc(cl, "on unknown tid %llu\n", tid); 3812 mutex_unlock(&mdsc->mutex); 3813 return; 3814 } 3815 doutc(cl, "handle_reply %p\n", req); 3816 3817 /* correct session? */ 3818 if (req->r_session != session) { 3819 pr_err_client(cl, "got %llu on session mds%d not mds%d\n", 3820 tid, session->s_mds, 3821 req->r_session ? req->r_session->s_mds : -1); 3822 mutex_unlock(&mdsc->mutex); 3823 goto out; 3824 } 3825 3826 /* dup? */ 3827 if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) || 3828 (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) { 3829 pr_warn_client(cl, "got a dup %s reply on %llu from mds%d\n", 3830 head->safe ? "safe" : "unsafe", tid, mds); 3831 mutex_unlock(&mdsc->mutex); 3832 goto out; 3833 } 3834 if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) { 3835 pr_warn_client(cl, "got unsafe after safe on %llu from mds%d\n", 3836 tid, mds); 3837 mutex_unlock(&mdsc->mutex); 3838 goto out; 3839 } 3840 3841 result = le32_to_cpu(head->result); 3842 3843 if (head->safe) { 3844 set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags); 3845 __unregister_request(mdsc, req); 3846 3847 /* last request during umount? */ 3848 if (mdsc->stopping && !__get_oldest_req(mdsc)) 3849 complete_all(&mdsc->safe_umount_waiters); 3850 3851 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3852 /* 3853 * We already handled the unsafe response, now do the 3854 * cleanup. No need to examine the response; the MDS 3855 * doesn't include any result info in the safe 3856 * response. And even if it did, there is nothing 3857 * useful we could do with a revised return value. 3858 */ 3859 doutc(cl, "got safe reply %llu, mds%d\n", tid, mds); 3860 3861 mutex_unlock(&mdsc->mutex); 3862 goto out; 3863 } 3864 } else { 3865 set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags); 3866 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 3867 } 3868 3869 doutc(cl, "tid %lld result %d\n", tid, result); 3870 if (test_bit(CEPHFS_FEATURE_REPLY_ENCODING, &session->s_features)) 3871 err = parse_reply_info(session, msg, req, (u64)-1); 3872 else 3873 err = parse_reply_info(session, msg, req, 3874 session->s_con.peer_features); 3875 mutex_unlock(&mdsc->mutex); 3876 3877 /* Must find target inode outside of mutexes to avoid deadlocks */ 3878 rinfo = &req->r_reply_info; 3879 if ((err >= 0) && rinfo->head->is_target) { 3880 struct inode *in = xchg(&req->r_new_inode, NULL); 3881 struct ceph_vino tvino = { 3882 .ino = le64_to_cpu(rinfo->targeti.in->ino), 3883 .snap = le64_to_cpu(rinfo->targeti.in->snapid) 3884 }; 3885 3886 /* 3887 * If we ended up opening an existing inode, discard 3888 * r_new_inode 3889 */ 3890 if (req->r_op == CEPH_MDS_OP_CREATE && 3891 !req->r_reply_info.has_create_ino) { 3892 /* This should never happen on an async create */ 3893 WARN_ON_ONCE(req->r_deleg_ino); 3894 iput(in); 3895 in = NULL; 3896 } 3897 3898 in = ceph_get_inode(mdsc->fsc->sb, tvino, in); 3899 if (IS_ERR(in)) { 3900 err = PTR_ERR(in); 3901 mutex_lock(&session->s_mutex); 3902 goto out_err; 3903 } 3904 req->r_target_inode = in; 3905 } 3906 3907 mutex_lock(&session->s_mutex); 3908 if (err < 0) { 3909 pr_err_client(cl, "got corrupt reply mds%d(tid:%lld)\n", 3910 mds, tid); 3911 ceph_msg_dump(msg); 3912 goto out_err; 3913 } 3914 3915 /* snap trace */ 3916 realm = NULL; 3917 if (rinfo->snapblob_len) { 3918 down_write(&mdsc->snap_rwsem); 3919 err = ceph_update_snap_trace(mdsc, rinfo->snapblob, 3920 rinfo->snapblob + rinfo->snapblob_len, 3921 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, 3922 &realm); 3923 if (err) { 3924 up_write(&mdsc->snap_rwsem); 3925 close_sessions = true; 3926 if (err == -EIO) 3927 ceph_msg_dump(msg); 3928 goto out_err; 3929 } 3930 downgrade_write(&mdsc->snap_rwsem); 3931 } else { 3932 down_read(&mdsc->snap_rwsem); 3933 } 3934 3935 /* insert trace into our cache */ 3936 mutex_lock(&req->r_fill_mutex); 3937 current->journal_info = req; 3938 err = ceph_fill_trace(mdsc->fsc->sb, req); 3939 if (err == 0) { 3940 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 3941 req->r_op == CEPH_MDS_OP_LSSNAP)) 3942 err = ceph_readdir_prepopulate(req, req->r_session); 3943 } 3944 current->journal_info = NULL; 3945 mutex_unlock(&req->r_fill_mutex); 3946 3947 up_read(&mdsc->snap_rwsem); 3948 if (realm) 3949 ceph_put_snap_realm(mdsc, realm); 3950 3951 if (err == 0) { 3952 if (req->r_target_inode && 3953 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3954 struct ceph_inode_info *ci = 3955 ceph_inode(req->r_target_inode); 3956 spin_lock(&ci->i_unsafe_lock); 3957 list_add_tail(&req->r_unsafe_target_item, 3958 &ci->i_unsafe_iops); 3959 spin_unlock(&ci->i_unsafe_lock); 3960 } 3961 3962 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 3963 } 3964 out_err: 3965 mutex_lock(&mdsc->mutex); 3966 if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 3967 if (err) { 3968 req->r_err = err; 3969 } else { 3970 req->r_reply = ceph_msg_get(msg); 3971 set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags); 3972 } 3973 } else { 3974 doutc(cl, "reply arrived after request %lld was aborted\n", tid); 3975 } 3976 mutex_unlock(&mdsc->mutex); 3977 3978 mutex_unlock(&session->s_mutex); 3979 3980 /* kick calling process */ 3981 complete_request(mdsc, req); 3982 3983 ceph_update_metadata_metrics(&mdsc->metric, req->r_start_latency, 3984 req->r_end_latency, err); 3985 out: 3986 ceph_mdsc_put_request(req); 3987 3988 /* Defer closing the sessions after s_mutex lock being released */ 3989 if (close_sessions) 3990 ceph_mdsc_close_sessions(mdsc); 3991 return; 3992 } 3993 3994 3995 3996 /* 3997 * handle mds notification that our request has been forwarded. 3998 */ 3999 static void handle_forward(struct ceph_mds_client *mdsc, 4000 struct ceph_mds_session *session, 4001 struct ceph_msg *msg) 4002 { 4003 struct ceph_client *cl = mdsc->fsc->client; 4004 struct ceph_mds_request *req; 4005 u64 tid = le64_to_cpu(msg->hdr.tid); 4006 u32 next_mds; 4007 u32 fwd_seq; 4008 int err = -EINVAL; 4009 void *p = msg->front.iov_base; 4010 void *end = p + msg->front.iov_len; 4011 bool aborted = false; 4012 4013 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 4014 next_mds = ceph_decode_32(&p); 4015 fwd_seq = ceph_decode_32(&p); 4016 4017 mutex_lock(&mdsc->mutex); 4018 req = lookup_get_request(mdsc, tid); 4019 if (!req) { 4020 mutex_unlock(&mdsc->mutex); 4021 doutc(cl, "forward tid %llu to mds%d - req dne\n", tid, next_mds); 4022 return; /* dup reply? */ 4023 } 4024 4025 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 4026 doutc(cl, "forward tid %llu aborted, unregistering\n", tid); 4027 __unregister_request(mdsc, req); 4028 } else if (fwd_seq <= req->r_num_fwd || (uint32_t)fwd_seq >= U32_MAX) { 4029 /* 4030 * Avoid infinite retrying after overflow. 4031 * 4032 * The MDS will increase the fwd count and in client side 4033 * if the num_fwd is less than the one saved in request 4034 * that means the MDS is an old version and overflowed of 4035 * 8 bits. 4036 */ 4037 mutex_lock(&req->r_fill_mutex); 4038 req->r_err = -EMULTIHOP; 4039 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 4040 mutex_unlock(&req->r_fill_mutex); 4041 aborted = true; 4042 pr_warn_ratelimited_client(cl, "forward tid %llu seq overflow\n", 4043 tid); 4044 } else { 4045 /* resend. forward race not possible; mds would drop */ 4046 doutc(cl, "forward tid %llu to mds%d (we resend)\n", tid, next_mds); 4047 BUG_ON(req->r_err); 4048 BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)); 4049 req->r_attempts = 0; 4050 req->r_num_fwd = fwd_seq; 4051 req->r_resend_mds = next_mds; 4052 put_request_session(req); 4053 __do_request(mdsc, req); 4054 } 4055 mutex_unlock(&mdsc->mutex); 4056 4057 /* kick calling process */ 4058 if (aborted) 4059 complete_request(mdsc, req); 4060 ceph_mdsc_put_request(req); 4061 return; 4062 4063 bad: 4064 pr_err_client(cl, "decode error err=%d\n", err); 4065 ceph_msg_dump(msg); 4066 } 4067 4068 static int __decode_session_metadata(void **p, void *end, 4069 bool *blocklisted) 4070 { 4071 /* map<string,string> */ 4072 u32 n; 4073 bool err_str; 4074 ceph_decode_32_safe(p, end, n, bad); 4075 while (n-- > 0) { 4076 u32 len; 4077 ceph_decode_32_safe(p, end, len, bad); 4078 ceph_decode_need(p, end, len, bad); 4079 err_str = !strncmp(*p, "error_string", len); 4080 *p += len; 4081 ceph_decode_32_safe(p, end, len, bad); 4082 ceph_decode_need(p, end, len, bad); 4083 /* 4084 * Match "blocklisted (blacklisted)" from newer MDSes, 4085 * or "blacklisted" from older MDSes. 4086 */ 4087 if (err_str && strnstr(*p, "blacklisted", len)) 4088 *blocklisted = true; 4089 *p += len; 4090 } 4091 return 0; 4092 bad: 4093 return -1; 4094 } 4095 4096 /* 4097 * handle a mds session control message 4098 */ 4099 static void handle_session(struct ceph_mds_session *session, 4100 struct ceph_msg *msg) 4101 { 4102 struct ceph_mds_client *mdsc = session->s_mdsc; 4103 struct ceph_client *cl = mdsc->fsc->client; 4104 int mds = session->s_mds; 4105 int msg_version = le16_to_cpu(msg->hdr.version); 4106 void *p = msg->front.iov_base; 4107 void *end = p + msg->front.iov_len; 4108 struct ceph_mds_session_head *h; 4109 struct ceph_mds_cap_auth *cap_auths = NULL; 4110 u32 op, cap_auths_num = 0; 4111 u64 seq, features = 0; 4112 int wake = 0; 4113 bool blocklisted = false; 4114 u32 i; 4115 4116 4117 /* decode */ 4118 ceph_decode_need(&p, end, sizeof(*h), bad); 4119 h = p; 4120 p += sizeof(*h); 4121 4122 op = le32_to_cpu(h->op); 4123 seq = le64_to_cpu(h->seq); 4124 4125 if (msg_version >= 3) { 4126 u32 len; 4127 /* version >= 2 and < 5, decode metadata, skip otherwise 4128 * as it's handled via flags. 4129 */ 4130 if (msg_version >= 5) 4131 ceph_decode_skip_map(&p, end, string, string, bad); 4132 else if (__decode_session_metadata(&p, end, &blocklisted) < 0) 4133 goto bad; 4134 4135 /* version >= 3, feature bits */ 4136 ceph_decode_32_safe(&p, end, len, bad); 4137 if (len) { 4138 ceph_decode_64_safe(&p, end, features, bad); 4139 p += len - sizeof(features); 4140 } 4141 } 4142 4143 if (msg_version >= 5) { 4144 u32 flags, len; 4145 4146 /* version >= 4 */ 4147 ceph_decode_skip_16(&p, end, bad); /* struct_v, struct_cv */ 4148 ceph_decode_32_safe(&p, end, len, bad); /* len */ 4149 ceph_decode_skip_n(&p, end, len, bad); /* metric_spec */ 4150 4151 /* version >= 5, flags */ 4152 ceph_decode_32_safe(&p, end, flags, bad); 4153 if (flags & CEPH_SESSION_BLOCKLISTED) { 4154 pr_warn_client(cl, "mds%d session blocklisted\n", 4155 session->s_mds); 4156 blocklisted = true; 4157 } 4158 } 4159 4160 if (msg_version >= 6) { 4161 ceph_decode_32_safe(&p, end, cap_auths_num, bad); 4162 doutc(cl, "cap_auths_num %d\n", cap_auths_num); 4163 4164 if (cap_auths_num && op != CEPH_SESSION_OPEN) { 4165 WARN_ON_ONCE(op != CEPH_SESSION_OPEN); 4166 goto skip_cap_auths; 4167 } 4168 4169 cap_auths = kcalloc(cap_auths_num, 4170 sizeof(struct ceph_mds_cap_auth), 4171 GFP_KERNEL); 4172 if (!cap_auths) { 4173 pr_err_client(cl, "No memory for cap_auths\n"); 4174 return; 4175 } 4176 4177 for (i = 0; i < cap_auths_num; i++) { 4178 u32 _len, j; 4179 4180 /* struct_v, struct_compat, and struct_len in MDSCapAuth */ 4181 ceph_decode_skip_n(&p, end, 2 + sizeof(u32), bad); 4182 4183 /* struct_v, struct_compat, and struct_len in MDSCapMatch */ 4184 ceph_decode_skip_n(&p, end, 2 + sizeof(u32), bad); 4185 ceph_decode_64_safe(&p, end, cap_auths[i].match.uid, bad); 4186 ceph_decode_32_safe(&p, end, _len, bad); 4187 if (_len) { 4188 cap_auths[i].match.gids = kcalloc(_len, sizeof(u32), 4189 GFP_KERNEL); 4190 if (!cap_auths[i].match.gids) { 4191 pr_err_client(cl, "No memory for gids\n"); 4192 goto fail; 4193 } 4194 4195 cap_auths[i].match.num_gids = _len; 4196 for (j = 0; j < _len; j++) 4197 ceph_decode_32_safe(&p, end, 4198 cap_auths[i].match.gids[j], 4199 bad); 4200 } 4201 4202 ceph_decode_32_safe(&p, end, _len, bad); 4203 if (_len) { 4204 cap_auths[i].match.path = kcalloc(_len + 1, sizeof(char), 4205 GFP_KERNEL); 4206 if (!cap_auths[i].match.path) { 4207 pr_err_client(cl, "No memory for path\n"); 4208 goto fail; 4209 } 4210 ceph_decode_copy(&p, cap_auths[i].match.path, _len); 4211 4212 /* Remove the tailing '/' */ 4213 while (_len && cap_auths[i].match.path[_len - 1] == '/') { 4214 cap_auths[i].match.path[_len - 1] = '\0'; 4215 _len -= 1; 4216 } 4217 } 4218 4219 ceph_decode_32_safe(&p, end, _len, bad); 4220 if (_len) { 4221 cap_auths[i].match.fs_name = kcalloc(_len + 1, sizeof(char), 4222 GFP_KERNEL); 4223 if (!cap_auths[i].match.fs_name) { 4224 pr_err_client(cl, "No memory for fs_name\n"); 4225 goto fail; 4226 } 4227 ceph_decode_copy(&p, cap_auths[i].match.fs_name, _len); 4228 } 4229 4230 ceph_decode_8_safe(&p, end, cap_auths[i].match.root_squash, bad); 4231 ceph_decode_8_safe(&p, end, cap_auths[i].readable, bad); 4232 ceph_decode_8_safe(&p, end, cap_auths[i].writeable, bad); 4233 doutc(cl, "uid %lld, num_gids %u, path %s, fs_name %s, root_squash %d, readable %d, writeable %d\n", 4234 cap_auths[i].match.uid, cap_auths[i].match.num_gids, 4235 cap_auths[i].match.path, cap_auths[i].match.fs_name, 4236 cap_auths[i].match.root_squash, 4237 cap_auths[i].readable, cap_auths[i].writeable); 4238 } 4239 } 4240 4241 skip_cap_auths: 4242 mutex_lock(&mdsc->mutex); 4243 if (op == CEPH_SESSION_OPEN) { 4244 if (mdsc->s_cap_auths) { 4245 for (i = 0; i < mdsc->s_cap_auths_num; i++) { 4246 kfree(mdsc->s_cap_auths[i].match.gids); 4247 kfree(mdsc->s_cap_auths[i].match.path); 4248 kfree(mdsc->s_cap_auths[i].match.fs_name); 4249 } 4250 kfree(mdsc->s_cap_auths); 4251 } 4252 mdsc->s_cap_auths_num = cap_auths_num; 4253 mdsc->s_cap_auths = cap_auths; 4254 } 4255 if (op == CEPH_SESSION_CLOSE) { 4256 ceph_get_mds_session(session); 4257 __unregister_session(mdsc, session); 4258 } 4259 /* FIXME: this ttl calculation is generous */ 4260 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 4261 mutex_unlock(&mdsc->mutex); 4262 4263 mutex_lock(&session->s_mutex); 4264 4265 doutc(cl, "mds%d %s %p state %s seq %llu\n", mds, 4266 ceph_session_op_name(op), session, 4267 ceph_session_state_name(session->s_state), seq); 4268 4269 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 4270 session->s_state = CEPH_MDS_SESSION_OPEN; 4271 pr_info_client(cl, "mds%d came back\n", session->s_mds); 4272 } 4273 4274 switch (op) { 4275 case CEPH_SESSION_OPEN: 4276 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 4277 pr_info_client(cl, "mds%d reconnect success\n", 4278 session->s_mds); 4279 4280 session->s_features = features; 4281 if (session->s_state == CEPH_MDS_SESSION_OPEN) { 4282 pr_notice_client(cl, "mds%d is already opened\n", 4283 session->s_mds); 4284 } else { 4285 session->s_state = CEPH_MDS_SESSION_OPEN; 4286 renewed_caps(mdsc, session, 0); 4287 if (test_bit(CEPHFS_FEATURE_METRIC_COLLECT, 4288 &session->s_features)) 4289 metric_schedule_delayed(&mdsc->metric); 4290 } 4291 4292 /* 4293 * The connection maybe broken and the session in client 4294 * side has been reinitialized, need to update the seq 4295 * anyway. 4296 */ 4297 if (!session->s_seq && seq) 4298 session->s_seq = seq; 4299 4300 wake = 1; 4301 if (mdsc->stopping) 4302 __close_session(mdsc, session); 4303 break; 4304 4305 case CEPH_SESSION_RENEWCAPS: 4306 if (session->s_renew_seq == seq) 4307 renewed_caps(mdsc, session, 1); 4308 break; 4309 4310 case CEPH_SESSION_CLOSE: 4311 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 4312 pr_info_client(cl, "mds%d reconnect denied\n", 4313 session->s_mds); 4314 session->s_state = CEPH_MDS_SESSION_CLOSED; 4315 cleanup_session_requests(mdsc, session); 4316 remove_session_caps(session); 4317 wake = 2; /* for good measure */ 4318 wake_up_all(&mdsc->session_close_wq); 4319 break; 4320 4321 case CEPH_SESSION_STALE: 4322 pr_info_client(cl, "mds%d caps went stale, renewing\n", 4323 session->s_mds); 4324 atomic_inc(&session->s_cap_gen); 4325 session->s_cap_ttl = jiffies - 1; 4326 send_renew_caps(mdsc, session); 4327 break; 4328 4329 case CEPH_SESSION_RECALL_STATE: 4330 ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 4331 break; 4332 4333 case CEPH_SESSION_FLUSHMSG: 4334 /* flush cap releases */ 4335 spin_lock(&session->s_cap_lock); 4336 if (session->s_num_cap_releases) 4337 ceph_flush_session_cap_releases(mdsc, session); 4338 spin_unlock(&session->s_cap_lock); 4339 4340 send_flushmsg_ack(mdsc, session, seq); 4341 break; 4342 4343 case CEPH_SESSION_FORCE_RO: 4344 doutc(cl, "force_session_readonly %p\n", session); 4345 spin_lock(&session->s_cap_lock); 4346 session->s_readonly = true; 4347 spin_unlock(&session->s_cap_lock); 4348 wake_up_session_caps(session, FORCE_RO); 4349 break; 4350 4351 case CEPH_SESSION_REJECT: 4352 WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING); 4353 pr_info_client(cl, "mds%d rejected session\n", 4354 session->s_mds); 4355 session->s_state = CEPH_MDS_SESSION_REJECTED; 4356 cleanup_session_requests(mdsc, session); 4357 remove_session_caps(session); 4358 if (blocklisted) 4359 mdsc->fsc->blocklisted = true; 4360 wake = 2; /* for good measure */ 4361 break; 4362 4363 default: 4364 pr_err_client(cl, "bad op %d mds%d\n", op, mds); 4365 WARN_ON(1); 4366 } 4367 4368 mutex_unlock(&session->s_mutex); 4369 if (wake) { 4370 mutex_lock(&mdsc->mutex); 4371 __wake_requests(mdsc, &session->s_waiting); 4372 if (wake == 2) 4373 kick_requests(mdsc, mds); 4374 mutex_unlock(&mdsc->mutex); 4375 } 4376 if (op == CEPH_SESSION_CLOSE) 4377 ceph_put_mds_session(session); 4378 return; 4379 4380 bad: 4381 pr_err_client(cl, "corrupt message mds%d len %d\n", mds, 4382 (int)msg->front.iov_len); 4383 ceph_msg_dump(msg); 4384 fail: 4385 for (i = 0; i < cap_auths_num; i++) { 4386 kfree(cap_auths[i].match.gids); 4387 kfree(cap_auths[i].match.path); 4388 kfree(cap_auths[i].match.fs_name); 4389 } 4390 kfree(cap_auths); 4391 return; 4392 } 4393 4394 void ceph_mdsc_release_dir_caps(struct ceph_mds_request *req) 4395 { 4396 struct ceph_client *cl = req->r_mdsc->fsc->client; 4397 int dcaps; 4398 4399 dcaps = xchg(&req->r_dir_caps, 0); 4400 if (dcaps) { 4401 doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 4402 ceph_put_cap_refs(ceph_inode(req->r_parent), dcaps); 4403 } 4404 } 4405 4406 void ceph_mdsc_release_dir_caps_async(struct ceph_mds_request *req) 4407 { 4408 struct ceph_client *cl = req->r_mdsc->fsc->client; 4409 int dcaps; 4410 4411 dcaps = xchg(&req->r_dir_caps, 0); 4412 if (dcaps) { 4413 doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 4414 ceph_put_cap_refs_async(ceph_inode(req->r_parent), dcaps); 4415 } 4416 } 4417 4418 /* 4419 * called under session->mutex. 4420 */ 4421 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 4422 struct ceph_mds_session *session) 4423 { 4424 struct ceph_mds_request *req, *nreq; 4425 struct rb_node *p; 4426 4427 doutc(mdsc->fsc->client, "mds%d\n", session->s_mds); 4428 4429 mutex_lock(&mdsc->mutex); 4430 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) 4431 __send_request(session, req, true); 4432 4433 /* 4434 * also re-send old requests when MDS enters reconnect stage. So that MDS 4435 * can process completed request in clientreplay stage. 4436 */ 4437 p = rb_first(&mdsc->request_tree); 4438 while (p) { 4439 req = rb_entry(p, struct ceph_mds_request, r_node); 4440 p = rb_next(p); 4441 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 4442 continue; 4443 if (req->r_attempts == 0) 4444 continue; /* only old requests */ 4445 if (!req->r_session) 4446 continue; 4447 if (req->r_session->s_mds != session->s_mds) 4448 continue; 4449 4450 ceph_mdsc_release_dir_caps_async(req); 4451 4452 __send_request(session, req, true); 4453 } 4454 mutex_unlock(&mdsc->mutex); 4455 } 4456 4457 static int send_reconnect_partial(struct ceph_reconnect_state *recon_state) 4458 { 4459 struct ceph_msg *reply; 4460 struct ceph_pagelist *_pagelist; 4461 struct page *page; 4462 __le32 *addr; 4463 int err = -ENOMEM; 4464 4465 if (!recon_state->allow_multi) 4466 return -ENOSPC; 4467 4468 /* can't handle message that contains both caps and realm */ 4469 BUG_ON(!recon_state->nr_caps == !recon_state->nr_realms); 4470 4471 /* pre-allocate new pagelist */ 4472 _pagelist = ceph_pagelist_alloc(GFP_NOFS); 4473 if (!_pagelist) 4474 return -ENOMEM; 4475 4476 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 4477 if (!reply) 4478 goto fail_msg; 4479 4480 /* placeholder for nr_caps */ 4481 err = ceph_pagelist_encode_32(_pagelist, 0); 4482 if (err < 0) 4483 goto fail; 4484 4485 if (recon_state->nr_caps) { 4486 /* currently encoding caps */ 4487 err = ceph_pagelist_encode_32(recon_state->pagelist, 0); 4488 if (err) 4489 goto fail; 4490 } else { 4491 /* placeholder for nr_realms (currently encoding relams) */ 4492 err = ceph_pagelist_encode_32(_pagelist, 0); 4493 if (err < 0) 4494 goto fail; 4495 } 4496 4497 err = ceph_pagelist_encode_8(recon_state->pagelist, 1); 4498 if (err) 4499 goto fail; 4500 4501 page = list_first_entry(&recon_state->pagelist->head, struct page, lru); 4502 addr = kmap_atomic(page); 4503 if (recon_state->nr_caps) { 4504 /* currently encoding caps */ 4505 *addr = cpu_to_le32(recon_state->nr_caps); 4506 } else { 4507 /* currently encoding relams */ 4508 *(addr + 1) = cpu_to_le32(recon_state->nr_realms); 4509 } 4510 kunmap_atomic(addr); 4511 4512 reply->hdr.version = cpu_to_le16(5); 4513 reply->hdr.compat_version = cpu_to_le16(4); 4514 4515 reply->hdr.data_len = cpu_to_le32(recon_state->pagelist->length); 4516 ceph_msg_data_add_pagelist(reply, recon_state->pagelist); 4517 4518 ceph_con_send(&recon_state->session->s_con, reply); 4519 ceph_pagelist_release(recon_state->pagelist); 4520 4521 recon_state->pagelist = _pagelist; 4522 recon_state->nr_caps = 0; 4523 recon_state->nr_realms = 0; 4524 recon_state->msg_version = 5; 4525 return 0; 4526 fail: 4527 ceph_msg_put(reply); 4528 fail_msg: 4529 ceph_pagelist_release(_pagelist); 4530 return err; 4531 } 4532 4533 static struct dentry* d_find_primary(struct inode *inode) 4534 { 4535 struct dentry *alias, *dn = NULL; 4536 4537 if (hlist_empty(&inode->i_dentry)) 4538 return NULL; 4539 4540 spin_lock(&inode->i_lock); 4541 if (hlist_empty(&inode->i_dentry)) 4542 goto out_unlock; 4543 4544 if (S_ISDIR(inode->i_mode)) { 4545 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 4546 if (!IS_ROOT(alias)) 4547 dn = dget(alias); 4548 goto out_unlock; 4549 } 4550 4551 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 4552 spin_lock(&alias->d_lock); 4553 if (!d_unhashed(alias) && 4554 (ceph_dentry(alias)->flags & CEPH_DENTRY_PRIMARY_LINK)) { 4555 dn = dget_dlock(alias); 4556 } 4557 spin_unlock(&alias->d_lock); 4558 if (dn) 4559 break; 4560 } 4561 out_unlock: 4562 spin_unlock(&inode->i_lock); 4563 return dn; 4564 } 4565 4566 /* 4567 * Encode information about a cap for a reconnect with the MDS. 4568 */ 4569 static int reconnect_caps_cb(struct inode *inode, int mds, void *arg) 4570 { 4571 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 4572 struct ceph_client *cl = ceph_inode_to_client(inode); 4573 union { 4574 struct ceph_mds_cap_reconnect v2; 4575 struct ceph_mds_cap_reconnect_v1 v1; 4576 } rec; 4577 struct ceph_inode_info *ci = ceph_inode(inode); 4578 struct ceph_reconnect_state *recon_state = arg; 4579 struct ceph_pagelist *pagelist = recon_state->pagelist; 4580 struct dentry *dentry; 4581 struct ceph_cap *cap; 4582 char *path; 4583 int pathlen = 0, err; 4584 u64 pathbase; 4585 u64 snap_follows; 4586 4587 dentry = d_find_primary(inode); 4588 if (dentry) { 4589 /* set pathbase to parent dir when msg_version >= 2 */ 4590 path = ceph_mdsc_build_path(mdsc, dentry, &pathlen, &pathbase, 4591 recon_state->msg_version >= 2); 4592 dput(dentry); 4593 if (IS_ERR(path)) { 4594 err = PTR_ERR(path); 4595 goto out_err; 4596 } 4597 } else { 4598 path = NULL; 4599 pathbase = 0; 4600 } 4601 4602 spin_lock(&ci->i_ceph_lock); 4603 cap = __get_cap_for_mds(ci, mds); 4604 if (!cap) { 4605 spin_unlock(&ci->i_ceph_lock); 4606 err = 0; 4607 goto out_err; 4608 } 4609 doutc(cl, " adding %p ino %llx.%llx cap %p %lld %s\n", inode, 4610 ceph_vinop(inode), cap, cap->cap_id, 4611 ceph_cap_string(cap->issued)); 4612 4613 cap->seq = 0; /* reset cap seq */ 4614 cap->issue_seq = 0; /* and issue_seq */ 4615 cap->mseq = 0; /* and migrate_seq */ 4616 cap->cap_gen = atomic_read(&cap->session->s_cap_gen); 4617 4618 /* These are lost when the session goes away */ 4619 if (S_ISDIR(inode->i_mode)) { 4620 if (cap->issued & CEPH_CAP_DIR_CREATE) { 4621 ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns)); 4622 memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout)); 4623 } 4624 cap->issued &= ~CEPH_CAP_ANY_DIR_OPS; 4625 } 4626 4627 if (recon_state->msg_version >= 2) { 4628 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 4629 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 4630 rec.v2.issued = cpu_to_le32(cap->issued); 4631 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 4632 rec.v2.pathbase = cpu_to_le64(pathbase); 4633 rec.v2.flock_len = (__force __le32) 4634 ((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1); 4635 } else { 4636 struct timespec64 ts; 4637 4638 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 4639 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 4640 rec.v1.issued = cpu_to_le32(cap->issued); 4641 rec.v1.size = cpu_to_le64(i_size_read(inode)); 4642 ts = inode_get_mtime(inode); 4643 ceph_encode_timespec64(&rec.v1.mtime, &ts); 4644 ts = inode_get_atime(inode); 4645 ceph_encode_timespec64(&rec.v1.atime, &ts); 4646 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 4647 rec.v1.pathbase = cpu_to_le64(pathbase); 4648 } 4649 4650 if (list_empty(&ci->i_cap_snaps)) { 4651 snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0; 4652 } else { 4653 struct ceph_cap_snap *capsnap = 4654 list_first_entry(&ci->i_cap_snaps, 4655 struct ceph_cap_snap, ci_item); 4656 snap_follows = capsnap->follows; 4657 } 4658 spin_unlock(&ci->i_ceph_lock); 4659 4660 if (recon_state->msg_version >= 2) { 4661 int num_fcntl_locks, num_flock_locks; 4662 struct ceph_filelock *flocks = NULL; 4663 size_t struct_len, total_len = sizeof(u64); 4664 u8 struct_v = 0; 4665 4666 encode_again: 4667 if (rec.v2.flock_len) { 4668 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 4669 } else { 4670 num_fcntl_locks = 0; 4671 num_flock_locks = 0; 4672 } 4673 if (num_fcntl_locks + num_flock_locks > 0) { 4674 flocks = kmalloc_array(num_fcntl_locks + num_flock_locks, 4675 sizeof(struct ceph_filelock), 4676 GFP_NOFS); 4677 if (!flocks) { 4678 err = -ENOMEM; 4679 goto out_err; 4680 } 4681 err = ceph_encode_locks_to_buffer(inode, flocks, 4682 num_fcntl_locks, 4683 num_flock_locks); 4684 if (err) { 4685 kfree(flocks); 4686 flocks = NULL; 4687 if (err == -ENOSPC) 4688 goto encode_again; 4689 goto out_err; 4690 } 4691 } else { 4692 kfree(flocks); 4693 flocks = NULL; 4694 } 4695 4696 if (recon_state->msg_version >= 3) { 4697 /* version, compat_version and struct_len */ 4698 total_len += 2 * sizeof(u8) + sizeof(u32); 4699 struct_v = 2; 4700 } 4701 /* 4702 * number of encoded locks is stable, so copy to pagelist 4703 */ 4704 struct_len = 2 * sizeof(u32) + 4705 (num_fcntl_locks + num_flock_locks) * 4706 sizeof(struct ceph_filelock); 4707 rec.v2.flock_len = cpu_to_le32(struct_len); 4708 4709 struct_len += sizeof(u32) + pathlen + sizeof(rec.v2); 4710 4711 if (struct_v >= 2) 4712 struct_len += sizeof(u64); /* snap_follows */ 4713 4714 total_len += struct_len; 4715 4716 if (pagelist->length + total_len > RECONNECT_MAX_SIZE) { 4717 err = send_reconnect_partial(recon_state); 4718 if (err) 4719 goto out_freeflocks; 4720 pagelist = recon_state->pagelist; 4721 } 4722 4723 err = ceph_pagelist_reserve(pagelist, total_len); 4724 if (err) 4725 goto out_freeflocks; 4726 4727 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 4728 if (recon_state->msg_version >= 3) { 4729 ceph_pagelist_encode_8(pagelist, struct_v); 4730 ceph_pagelist_encode_8(pagelist, 1); 4731 ceph_pagelist_encode_32(pagelist, struct_len); 4732 } 4733 ceph_pagelist_encode_string(pagelist, path, pathlen); 4734 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2)); 4735 ceph_locks_to_pagelist(flocks, pagelist, 4736 num_fcntl_locks, num_flock_locks); 4737 if (struct_v >= 2) 4738 ceph_pagelist_encode_64(pagelist, snap_follows); 4739 out_freeflocks: 4740 kfree(flocks); 4741 } else { 4742 err = ceph_pagelist_reserve(pagelist, 4743 sizeof(u64) + sizeof(u32) + 4744 pathlen + sizeof(rec.v1)); 4745 if (err) 4746 goto out_err; 4747 4748 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 4749 ceph_pagelist_encode_string(pagelist, path, pathlen); 4750 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1)); 4751 } 4752 4753 out_err: 4754 ceph_mdsc_free_path(path, pathlen); 4755 if (!err) 4756 recon_state->nr_caps++; 4757 return err; 4758 } 4759 4760 static int encode_snap_realms(struct ceph_mds_client *mdsc, 4761 struct ceph_reconnect_state *recon_state) 4762 { 4763 struct rb_node *p; 4764 struct ceph_pagelist *pagelist = recon_state->pagelist; 4765 struct ceph_client *cl = mdsc->fsc->client; 4766 int err = 0; 4767 4768 if (recon_state->msg_version >= 4) { 4769 err = ceph_pagelist_encode_32(pagelist, mdsc->num_snap_realms); 4770 if (err < 0) 4771 goto fail; 4772 } 4773 4774 /* 4775 * snaprealms. we provide mds with the ino, seq (version), and 4776 * parent for all of our realms. If the mds has any newer info, 4777 * it will tell us. 4778 */ 4779 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 4780 struct ceph_snap_realm *realm = 4781 rb_entry(p, struct ceph_snap_realm, node); 4782 struct ceph_mds_snaprealm_reconnect sr_rec; 4783 4784 if (recon_state->msg_version >= 4) { 4785 size_t need = sizeof(u8) * 2 + sizeof(u32) + 4786 sizeof(sr_rec); 4787 4788 if (pagelist->length + need > RECONNECT_MAX_SIZE) { 4789 err = send_reconnect_partial(recon_state); 4790 if (err) 4791 goto fail; 4792 pagelist = recon_state->pagelist; 4793 } 4794 4795 err = ceph_pagelist_reserve(pagelist, need); 4796 if (err) 4797 goto fail; 4798 4799 ceph_pagelist_encode_8(pagelist, 1); 4800 ceph_pagelist_encode_8(pagelist, 1); 4801 ceph_pagelist_encode_32(pagelist, sizeof(sr_rec)); 4802 } 4803 4804 doutc(cl, " adding snap realm %llx seq %lld parent %llx\n", 4805 realm->ino, realm->seq, realm->parent_ino); 4806 sr_rec.ino = cpu_to_le64(realm->ino); 4807 sr_rec.seq = cpu_to_le64(realm->seq); 4808 sr_rec.parent = cpu_to_le64(realm->parent_ino); 4809 4810 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 4811 if (err) 4812 goto fail; 4813 4814 recon_state->nr_realms++; 4815 } 4816 fail: 4817 return err; 4818 } 4819 4820 4821 /* 4822 * If an MDS fails and recovers, clients need to reconnect in order to 4823 * reestablish shared state. This includes all caps issued through 4824 * this session _and_ the snap_realm hierarchy. Because it's not 4825 * clear which snap realms the mds cares about, we send everything we 4826 * know about.. that ensures we'll then get any new info the 4827 * recovering MDS might have. 4828 * 4829 * This is a relatively heavyweight operation, but it's rare. 4830 */ 4831 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 4832 struct ceph_mds_session *session) 4833 { 4834 struct ceph_client *cl = mdsc->fsc->client; 4835 struct ceph_msg *reply; 4836 int mds = session->s_mds; 4837 int err = -ENOMEM; 4838 struct ceph_reconnect_state recon_state = { 4839 .session = session, 4840 }; 4841 LIST_HEAD(dispose); 4842 4843 pr_info_client(cl, "mds%d reconnect start\n", mds); 4844 4845 recon_state.pagelist = ceph_pagelist_alloc(GFP_NOFS); 4846 if (!recon_state.pagelist) 4847 goto fail_nopagelist; 4848 4849 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 4850 if (!reply) 4851 goto fail_nomsg; 4852 4853 xa_destroy(&session->s_delegated_inos); 4854 4855 mutex_lock(&session->s_mutex); 4856 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 4857 session->s_seq = 0; 4858 4859 doutc(cl, "session %p state %s\n", session, 4860 ceph_session_state_name(session->s_state)); 4861 4862 atomic_inc(&session->s_cap_gen); 4863 4864 spin_lock(&session->s_cap_lock); 4865 /* don't know if session is readonly */ 4866 session->s_readonly = 0; 4867 /* 4868 * notify __ceph_remove_cap() that we are composing cap reconnect. 4869 * If a cap get released before being added to the cap reconnect, 4870 * __ceph_remove_cap() should skip queuing cap release. 4871 */ 4872 session->s_cap_reconnect = 1; 4873 /* drop old cap expires; we're about to reestablish that state */ 4874 detach_cap_releases(session, &dispose); 4875 spin_unlock(&session->s_cap_lock); 4876 dispose_cap_releases(mdsc, &dispose); 4877 4878 /* trim unused caps to reduce MDS's cache rejoin time */ 4879 if (mdsc->fsc->sb->s_root) 4880 shrink_dcache_parent(mdsc->fsc->sb->s_root); 4881 4882 ceph_con_close(&session->s_con); 4883 ceph_con_open(&session->s_con, 4884 CEPH_ENTITY_TYPE_MDS, mds, 4885 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 4886 4887 /* replay unsafe requests */ 4888 replay_unsafe_requests(mdsc, session); 4889 4890 ceph_early_kick_flushing_caps(mdsc, session); 4891 4892 down_read(&mdsc->snap_rwsem); 4893 4894 /* placeholder for nr_caps */ 4895 err = ceph_pagelist_encode_32(recon_state.pagelist, 0); 4896 if (err) 4897 goto fail; 4898 4899 if (test_bit(CEPHFS_FEATURE_MULTI_RECONNECT, &session->s_features)) { 4900 recon_state.msg_version = 3; 4901 recon_state.allow_multi = true; 4902 } else if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) { 4903 recon_state.msg_version = 3; 4904 } else { 4905 recon_state.msg_version = 2; 4906 } 4907 /* traverse this session's caps */ 4908 err = ceph_iterate_session_caps(session, reconnect_caps_cb, &recon_state); 4909 4910 spin_lock(&session->s_cap_lock); 4911 session->s_cap_reconnect = 0; 4912 spin_unlock(&session->s_cap_lock); 4913 4914 if (err < 0) 4915 goto fail; 4916 4917 /* check if all realms can be encoded into current message */ 4918 if (mdsc->num_snap_realms) { 4919 size_t total_len = 4920 recon_state.pagelist->length + 4921 mdsc->num_snap_realms * 4922 sizeof(struct ceph_mds_snaprealm_reconnect); 4923 if (recon_state.msg_version >= 4) { 4924 /* number of realms */ 4925 total_len += sizeof(u32); 4926 /* version, compat_version and struct_len */ 4927 total_len += mdsc->num_snap_realms * 4928 (2 * sizeof(u8) + sizeof(u32)); 4929 } 4930 if (total_len > RECONNECT_MAX_SIZE) { 4931 if (!recon_state.allow_multi) { 4932 err = -ENOSPC; 4933 goto fail; 4934 } 4935 if (recon_state.nr_caps) { 4936 err = send_reconnect_partial(&recon_state); 4937 if (err) 4938 goto fail; 4939 } 4940 recon_state.msg_version = 5; 4941 } 4942 } 4943 4944 err = encode_snap_realms(mdsc, &recon_state); 4945 if (err < 0) 4946 goto fail; 4947 4948 if (recon_state.msg_version >= 5) { 4949 err = ceph_pagelist_encode_8(recon_state.pagelist, 0); 4950 if (err < 0) 4951 goto fail; 4952 } 4953 4954 if (recon_state.nr_caps || recon_state.nr_realms) { 4955 struct page *page = 4956 list_first_entry(&recon_state.pagelist->head, 4957 struct page, lru); 4958 __le32 *addr = kmap_atomic(page); 4959 if (recon_state.nr_caps) { 4960 WARN_ON(recon_state.nr_realms != mdsc->num_snap_realms); 4961 *addr = cpu_to_le32(recon_state.nr_caps); 4962 } else if (recon_state.msg_version >= 4) { 4963 *(addr + 1) = cpu_to_le32(recon_state.nr_realms); 4964 } 4965 kunmap_atomic(addr); 4966 } 4967 4968 reply->hdr.version = cpu_to_le16(recon_state.msg_version); 4969 if (recon_state.msg_version >= 4) 4970 reply->hdr.compat_version = cpu_to_le16(4); 4971 4972 reply->hdr.data_len = cpu_to_le32(recon_state.pagelist->length); 4973 ceph_msg_data_add_pagelist(reply, recon_state.pagelist); 4974 4975 ceph_con_send(&session->s_con, reply); 4976 4977 mutex_unlock(&session->s_mutex); 4978 4979 mutex_lock(&mdsc->mutex); 4980 __wake_requests(mdsc, &session->s_waiting); 4981 mutex_unlock(&mdsc->mutex); 4982 4983 up_read(&mdsc->snap_rwsem); 4984 ceph_pagelist_release(recon_state.pagelist); 4985 return; 4986 4987 fail: 4988 ceph_msg_put(reply); 4989 up_read(&mdsc->snap_rwsem); 4990 mutex_unlock(&session->s_mutex); 4991 fail_nomsg: 4992 ceph_pagelist_release(recon_state.pagelist); 4993 fail_nopagelist: 4994 pr_err_client(cl, "error %d preparing reconnect for mds%d\n", 4995 err, mds); 4996 return; 4997 } 4998 4999 5000 /* 5001 * compare old and new mdsmaps, kicking requests 5002 * and closing out old connections as necessary 5003 * 5004 * called under mdsc->mutex. 5005 */ 5006 static void check_new_map(struct ceph_mds_client *mdsc, 5007 struct ceph_mdsmap *newmap, 5008 struct ceph_mdsmap *oldmap) 5009 { 5010 int i, j, err; 5011 int oldstate, newstate; 5012 struct ceph_mds_session *s; 5013 unsigned long targets[DIV_ROUND_UP(CEPH_MAX_MDS, sizeof(unsigned long))] = {0}; 5014 struct ceph_client *cl = mdsc->fsc->client; 5015 5016 doutc(cl, "new %u old %u\n", newmap->m_epoch, oldmap->m_epoch); 5017 5018 if (newmap->m_info) { 5019 for (i = 0; i < newmap->possible_max_rank; i++) { 5020 for (j = 0; j < newmap->m_info[i].num_export_targets; j++) 5021 set_bit(newmap->m_info[i].export_targets[j], targets); 5022 } 5023 } 5024 5025 for (i = 0; i < oldmap->possible_max_rank && i < mdsc->max_sessions; i++) { 5026 if (!mdsc->sessions[i]) 5027 continue; 5028 s = mdsc->sessions[i]; 5029 oldstate = ceph_mdsmap_get_state(oldmap, i); 5030 newstate = ceph_mdsmap_get_state(newmap, i); 5031 5032 doutc(cl, "mds%d state %s%s -> %s%s (session %s)\n", 5033 i, ceph_mds_state_name(oldstate), 5034 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 5035 ceph_mds_state_name(newstate), 5036 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 5037 ceph_session_state_name(s->s_state)); 5038 5039 if (i >= newmap->possible_max_rank) { 5040 /* force close session for stopped mds */ 5041 ceph_get_mds_session(s); 5042 __unregister_session(mdsc, s); 5043 __wake_requests(mdsc, &s->s_waiting); 5044 mutex_unlock(&mdsc->mutex); 5045 5046 mutex_lock(&s->s_mutex); 5047 cleanup_session_requests(mdsc, s); 5048 remove_session_caps(s); 5049 mutex_unlock(&s->s_mutex); 5050 5051 ceph_put_mds_session(s); 5052 5053 mutex_lock(&mdsc->mutex); 5054 kick_requests(mdsc, i); 5055 continue; 5056 } 5057 5058 if (memcmp(ceph_mdsmap_get_addr(oldmap, i), 5059 ceph_mdsmap_get_addr(newmap, i), 5060 sizeof(struct ceph_entity_addr))) { 5061 /* just close it */ 5062 mutex_unlock(&mdsc->mutex); 5063 mutex_lock(&s->s_mutex); 5064 mutex_lock(&mdsc->mutex); 5065 ceph_con_close(&s->s_con); 5066 mutex_unlock(&s->s_mutex); 5067 s->s_state = CEPH_MDS_SESSION_RESTARTING; 5068 } else if (oldstate == newstate) { 5069 continue; /* nothing new with this mds */ 5070 } 5071 5072 /* 5073 * send reconnect? 5074 */ 5075 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 5076 newstate >= CEPH_MDS_STATE_RECONNECT) { 5077 mutex_unlock(&mdsc->mutex); 5078 clear_bit(i, targets); 5079 send_mds_reconnect(mdsc, s); 5080 mutex_lock(&mdsc->mutex); 5081 } 5082 5083 /* 5084 * kick request on any mds that has gone active. 5085 */ 5086 if (oldstate < CEPH_MDS_STATE_ACTIVE && 5087 newstate >= CEPH_MDS_STATE_ACTIVE) { 5088 if (oldstate != CEPH_MDS_STATE_CREATING && 5089 oldstate != CEPH_MDS_STATE_STARTING) 5090 pr_info_client(cl, "mds%d recovery completed\n", 5091 s->s_mds); 5092 kick_requests(mdsc, i); 5093 mutex_unlock(&mdsc->mutex); 5094 mutex_lock(&s->s_mutex); 5095 mutex_lock(&mdsc->mutex); 5096 ceph_kick_flushing_caps(mdsc, s); 5097 mutex_unlock(&s->s_mutex); 5098 wake_up_session_caps(s, RECONNECT); 5099 } 5100 } 5101 5102 /* 5103 * Only open and reconnect sessions that don't exist yet. 5104 */ 5105 for (i = 0; i < newmap->possible_max_rank; i++) { 5106 /* 5107 * In case the import MDS is crashed just after 5108 * the EImportStart journal is flushed, so when 5109 * a standby MDS takes over it and is replaying 5110 * the EImportStart journal the new MDS daemon 5111 * will wait the client to reconnect it, but the 5112 * client may never register/open the session yet. 5113 * 5114 * Will try to reconnect that MDS daemon if the 5115 * rank number is in the export targets array and 5116 * is the up:reconnect state. 5117 */ 5118 newstate = ceph_mdsmap_get_state(newmap, i); 5119 if (!test_bit(i, targets) || newstate != CEPH_MDS_STATE_RECONNECT) 5120 continue; 5121 5122 /* 5123 * The session maybe registered and opened by some 5124 * requests which were choosing random MDSes during 5125 * the mdsc->mutex's unlock/lock gap below in rare 5126 * case. But the related MDS daemon will just queue 5127 * that requests and be still waiting for the client's 5128 * reconnection request in up:reconnect state. 5129 */ 5130 s = __ceph_lookup_mds_session(mdsc, i); 5131 if (likely(!s)) { 5132 s = __open_export_target_session(mdsc, i); 5133 if (IS_ERR(s)) { 5134 err = PTR_ERR(s); 5135 pr_err_client(cl, 5136 "failed to open export target session, err %d\n", 5137 err); 5138 continue; 5139 } 5140 } 5141 doutc(cl, "send reconnect to export target mds.%d\n", i); 5142 mutex_unlock(&mdsc->mutex); 5143 send_mds_reconnect(mdsc, s); 5144 ceph_put_mds_session(s); 5145 mutex_lock(&mdsc->mutex); 5146 } 5147 5148 for (i = 0; i < newmap->possible_max_rank && i < mdsc->max_sessions; i++) { 5149 s = mdsc->sessions[i]; 5150 if (!s) 5151 continue; 5152 if (!ceph_mdsmap_is_laggy(newmap, i)) 5153 continue; 5154 if (s->s_state == CEPH_MDS_SESSION_OPEN || 5155 s->s_state == CEPH_MDS_SESSION_HUNG || 5156 s->s_state == CEPH_MDS_SESSION_CLOSING) { 5157 doutc(cl, " connecting to export targets of laggy mds%d\n", i); 5158 __open_export_target_sessions(mdsc, s); 5159 } 5160 } 5161 } 5162 5163 5164 5165 /* 5166 * leases 5167 */ 5168 5169 /* 5170 * caller must hold session s_mutex, dentry->d_lock 5171 */ 5172 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 5173 { 5174 struct ceph_dentry_info *di = ceph_dentry(dentry); 5175 5176 ceph_put_mds_session(di->lease_session); 5177 di->lease_session = NULL; 5178 } 5179 5180 static void handle_lease(struct ceph_mds_client *mdsc, 5181 struct ceph_mds_session *session, 5182 struct ceph_msg *msg) 5183 { 5184 struct ceph_client *cl = mdsc->fsc->client; 5185 struct super_block *sb = mdsc->fsc->sb; 5186 struct inode *inode; 5187 struct dentry *parent, *dentry; 5188 struct ceph_dentry_info *di; 5189 int mds = session->s_mds; 5190 struct ceph_mds_lease *h = msg->front.iov_base; 5191 u32 seq; 5192 struct ceph_vino vino; 5193 struct qstr dname; 5194 int release = 0; 5195 5196 doutc(cl, "from mds%d\n", mds); 5197 5198 if (!ceph_inc_mds_stopping_blocker(mdsc, session)) 5199 return; 5200 5201 /* decode */ 5202 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 5203 goto bad; 5204 vino.ino = le64_to_cpu(h->ino); 5205 vino.snap = CEPH_NOSNAP; 5206 seq = le32_to_cpu(h->seq); 5207 dname.len = get_unaligned_le32(h + 1); 5208 if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len) 5209 goto bad; 5210 dname.name = (void *)(h + 1) + sizeof(u32); 5211 5212 /* lookup inode */ 5213 inode = ceph_find_inode(sb, vino); 5214 doutc(cl, "%s, ino %llx %p %.*s\n", ceph_lease_op_name(h->action), 5215 vino.ino, inode, dname.len, dname.name); 5216 5217 mutex_lock(&session->s_mutex); 5218 if (!inode) { 5219 doutc(cl, "no inode %llx\n", vino.ino); 5220 goto release; 5221 } 5222 5223 /* dentry */ 5224 parent = d_find_alias(inode); 5225 if (!parent) { 5226 doutc(cl, "no parent dentry on inode %p\n", inode); 5227 WARN_ON(1); 5228 goto release; /* hrm... */ 5229 } 5230 dname.hash = full_name_hash(parent, dname.name, dname.len); 5231 dentry = d_lookup(parent, &dname); 5232 dput(parent); 5233 if (!dentry) 5234 goto release; 5235 5236 spin_lock(&dentry->d_lock); 5237 di = ceph_dentry(dentry); 5238 switch (h->action) { 5239 case CEPH_MDS_LEASE_REVOKE: 5240 if (di->lease_session == session) { 5241 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 5242 h->seq = cpu_to_le32(di->lease_seq); 5243 __ceph_mdsc_drop_dentry_lease(dentry); 5244 } 5245 release = 1; 5246 break; 5247 5248 case CEPH_MDS_LEASE_RENEW: 5249 if (di->lease_session == session && 5250 di->lease_gen == atomic_read(&session->s_cap_gen) && 5251 di->lease_renew_from && 5252 di->lease_renew_after == 0) { 5253 unsigned long duration = 5254 msecs_to_jiffies(le32_to_cpu(h->duration_ms)); 5255 5256 di->lease_seq = seq; 5257 di->time = di->lease_renew_from + duration; 5258 di->lease_renew_after = di->lease_renew_from + 5259 (duration >> 1); 5260 di->lease_renew_from = 0; 5261 } 5262 break; 5263 } 5264 spin_unlock(&dentry->d_lock); 5265 dput(dentry); 5266 5267 if (!release) 5268 goto out; 5269 5270 release: 5271 /* let's just reuse the same message */ 5272 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 5273 ceph_msg_get(msg); 5274 ceph_con_send(&session->s_con, msg); 5275 5276 out: 5277 mutex_unlock(&session->s_mutex); 5278 iput(inode); 5279 5280 ceph_dec_mds_stopping_blocker(mdsc); 5281 return; 5282 5283 bad: 5284 ceph_dec_mds_stopping_blocker(mdsc); 5285 5286 pr_err_client(cl, "corrupt lease message\n"); 5287 ceph_msg_dump(msg); 5288 } 5289 5290 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 5291 struct dentry *dentry, char action, 5292 u32 seq) 5293 { 5294 struct ceph_client *cl = session->s_mdsc->fsc->client; 5295 struct ceph_msg *msg; 5296 struct ceph_mds_lease *lease; 5297 struct inode *dir; 5298 int len = sizeof(*lease) + sizeof(u32) + NAME_MAX; 5299 5300 doutc(cl, "identry %p %s to mds%d\n", dentry, ceph_lease_op_name(action), 5301 session->s_mds); 5302 5303 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 5304 if (!msg) 5305 return; 5306 lease = msg->front.iov_base; 5307 lease->action = action; 5308 lease->seq = cpu_to_le32(seq); 5309 5310 spin_lock(&dentry->d_lock); 5311 dir = d_inode(dentry->d_parent); 5312 lease->ino = cpu_to_le64(ceph_ino(dir)); 5313 lease->first = lease->last = cpu_to_le64(ceph_snap(dir)); 5314 5315 put_unaligned_le32(dentry->d_name.len, lease + 1); 5316 memcpy((void *)(lease + 1) + 4, 5317 dentry->d_name.name, dentry->d_name.len); 5318 spin_unlock(&dentry->d_lock); 5319 5320 ceph_con_send(&session->s_con, msg); 5321 } 5322 5323 /* 5324 * lock unlock the session, to wait ongoing session activities 5325 */ 5326 static void lock_unlock_session(struct ceph_mds_session *s) 5327 { 5328 mutex_lock(&s->s_mutex); 5329 mutex_unlock(&s->s_mutex); 5330 } 5331 5332 static void maybe_recover_session(struct ceph_mds_client *mdsc) 5333 { 5334 struct ceph_client *cl = mdsc->fsc->client; 5335 struct ceph_fs_client *fsc = mdsc->fsc; 5336 5337 if (!ceph_test_mount_opt(fsc, CLEANRECOVER)) 5338 return; 5339 5340 if (READ_ONCE(fsc->mount_state) != CEPH_MOUNT_MOUNTED) 5341 return; 5342 5343 if (!READ_ONCE(fsc->blocklisted)) 5344 return; 5345 5346 pr_info_client(cl, "auto reconnect after blocklisted\n"); 5347 ceph_force_reconnect(fsc->sb); 5348 } 5349 5350 bool check_session_state(struct ceph_mds_session *s) 5351 { 5352 struct ceph_client *cl = s->s_mdsc->fsc->client; 5353 5354 switch (s->s_state) { 5355 case CEPH_MDS_SESSION_OPEN: 5356 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 5357 s->s_state = CEPH_MDS_SESSION_HUNG; 5358 pr_info_client(cl, "mds%d hung\n", s->s_mds); 5359 } 5360 break; 5361 case CEPH_MDS_SESSION_CLOSING: 5362 case CEPH_MDS_SESSION_NEW: 5363 case CEPH_MDS_SESSION_RESTARTING: 5364 case CEPH_MDS_SESSION_CLOSED: 5365 case CEPH_MDS_SESSION_REJECTED: 5366 return false; 5367 } 5368 5369 return true; 5370 } 5371 5372 /* 5373 * If the sequence is incremented while we're waiting on a REQUEST_CLOSE reply, 5374 * then we need to retransmit that request. 5375 */ 5376 void inc_session_sequence(struct ceph_mds_session *s) 5377 { 5378 struct ceph_client *cl = s->s_mdsc->fsc->client; 5379 5380 lockdep_assert_held(&s->s_mutex); 5381 5382 s->s_seq++; 5383 5384 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 5385 int ret; 5386 5387 doutc(cl, "resending session close request for mds%d\n", s->s_mds); 5388 ret = request_close_session(s); 5389 if (ret < 0) 5390 pr_err_client(cl, "unable to close session to mds%d: %d\n", 5391 s->s_mds, ret); 5392 } 5393 } 5394 5395 /* 5396 * delayed work -- periodically trim expired leases, renew caps with mds. If 5397 * the @delay parameter is set to 0 or if it's more than 5 secs, the default 5398 * workqueue delay value of 5 secs will be used. 5399 */ 5400 static void schedule_delayed(struct ceph_mds_client *mdsc, unsigned long delay) 5401 { 5402 unsigned long max_delay = HZ * 5; 5403 5404 /* 5 secs default delay */ 5405 if (!delay || (delay > max_delay)) 5406 delay = max_delay; 5407 schedule_delayed_work(&mdsc->delayed_work, 5408 round_jiffies_relative(delay)); 5409 } 5410 5411 static void delayed_work(struct work_struct *work) 5412 { 5413 struct ceph_mds_client *mdsc = 5414 container_of(work, struct ceph_mds_client, delayed_work.work); 5415 unsigned long delay; 5416 int renew_interval; 5417 int renew_caps; 5418 int i; 5419 5420 doutc(mdsc->fsc->client, "mdsc delayed_work\n"); 5421 5422 if (mdsc->stopping >= CEPH_MDSC_STOPPING_FLUSHED) 5423 return; 5424 5425 mutex_lock(&mdsc->mutex); 5426 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 5427 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 5428 mdsc->last_renew_caps); 5429 if (renew_caps) 5430 mdsc->last_renew_caps = jiffies; 5431 5432 for (i = 0; i < mdsc->max_sessions; i++) { 5433 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 5434 if (!s) 5435 continue; 5436 5437 if (!check_session_state(s)) { 5438 ceph_put_mds_session(s); 5439 continue; 5440 } 5441 mutex_unlock(&mdsc->mutex); 5442 5443 ceph_flush_session_cap_releases(mdsc, s); 5444 5445 mutex_lock(&s->s_mutex); 5446 if (renew_caps) 5447 send_renew_caps(mdsc, s); 5448 else 5449 ceph_con_keepalive(&s->s_con); 5450 if (s->s_state == CEPH_MDS_SESSION_OPEN || 5451 s->s_state == CEPH_MDS_SESSION_HUNG) 5452 ceph_send_cap_releases(mdsc, s); 5453 mutex_unlock(&s->s_mutex); 5454 ceph_put_mds_session(s); 5455 5456 mutex_lock(&mdsc->mutex); 5457 } 5458 mutex_unlock(&mdsc->mutex); 5459 5460 delay = ceph_check_delayed_caps(mdsc); 5461 5462 ceph_queue_cap_reclaim_work(mdsc); 5463 5464 ceph_trim_snapid_map(mdsc); 5465 5466 maybe_recover_session(mdsc); 5467 5468 schedule_delayed(mdsc, delay); 5469 } 5470 5471 int ceph_mdsc_init(struct ceph_fs_client *fsc) 5472 5473 { 5474 struct ceph_mds_client *mdsc; 5475 int err; 5476 5477 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 5478 if (!mdsc) 5479 return -ENOMEM; 5480 mdsc->fsc = fsc; 5481 mutex_init(&mdsc->mutex); 5482 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 5483 if (!mdsc->mdsmap) { 5484 err = -ENOMEM; 5485 goto err_mdsc; 5486 } 5487 5488 init_completion(&mdsc->safe_umount_waiters); 5489 spin_lock_init(&mdsc->stopping_lock); 5490 atomic_set(&mdsc->stopping_blockers, 0); 5491 init_completion(&mdsc->stopping_waiter); 5492 atomic64_set(&mdsc->dirty_folios, 0); 5493 init_waitqueue_head(&mdsc->flush_end_wq); 5494 init_waitqueue_head(&mdsc->session_close_wq); 5495 INIT_LIST_HEAD(&mdsc->waiting_for_map); 5496 mdsc->quotarealms_inodes = RB_ROOT; 5497 mutex_init(&mdsc->quotarealms_inodes_mutex); 5498 init_rwsem(&mdsc->snap_rwsem); 5499 mdsc->snap_realms = RB_ROOT; 5500 INIT_LIST_HEAD(&mdsc->snap_empty); 5501 spin_lock_init(&mdsc->snap_empty_lock); 5502 mdsc->request_tree = RB_ROOT; 5503 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 5504 mdsc->last_renew_caps = jiffies; 5505 INIT_LIST_HEAD(&mdsc->cap_delay_list); 5506 #ifdef CONFIG_DEBUG_FS 5507 INIT_LIST_HEAD(&mdsc->cap_wait_list); 5508 #endif 5509 spin_lock_init(&mdsc->cap_delay_lock); 5510 INIT_LIST_HEAD(&mdsc->cap_unlink_delay_list); 5511 INIT_LIST_HEAD(&mdsc->snap_flush_list); 5512 spin_lock_init(&mdsc->snap_flush_lock); 5513 mdsc->last_cap_flush_tid = 1; 5514 INIT_LIST_HEAD(&mdsc->cap_flush_list); 5515 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 5516 spin_lock_init(&mdsc->cap_dirty_lock); 5517 init_waitqueue_head(&mdsc->cap_flushing_wq); 5518 INIT_WORK(&mdsc->cap_reclaim_work, ceph_cap_reclaim_work); 5519 INIT_WORK(&mdsc->cap_unlink_work, ceph_cap_unlink_work); 5520 err = ceph_metric_init(&mdsc->metric); 5521 if (err) 5522 goto err_mdsmap; 5523 5524 spin_lock_init(&mdsc->dentry_list_lock); 5525 INIT_LIST_HEAD(&mdsc->dentry_leases); 5526 INIT_LIST_HEAD(&mdsc->dentry_dir_leases); 5527 5528 ceph_caps_init(mdsc); 5529 ceph_adjust_caps_max_min(mdsc, fsc->mount_options); 5530 5531 spin_lock_init(&mdsc->snapid_map_lock); 5532 mdsc->snapid_map_tree = RB_ROOT; 5533 INIT_LIST_HEAD(&mdsc->snapid_map_lru); 5534 5535 init_rwsem(&mdsc->pool_perm_rwsem); 5536 mdsc->pool_perm_tree = RB_ROOT; 5537 5538 strscpy(mdsc->nodename, utsname()->nodename, 5539 sizeof(mdsc->nodename)); 5540 5541 fsc->mdsc = mdsc; 5542 return 0; 5543 5544 err_mdsmap: 5545 kfree(mdsc->mdsmap); 5546 err_mdsc: 5547 kfree(mdsc); 5548 return err; 5549 } 5550 5551 /* 5552 * Wait for safe replies on open mds requests. If we time out, drop 5553 * all requests from the tree to avoid dangling dentry refs. 5554 */ 5555 static void wait_requests(struct ceph_mds_client *mdsc) 5556 { 5557 struct ceph_client *cl = mdsc->fsc->client; 5558 struct ceph_options *opts = mdsc->fsc->client->options; 5559 struct ceph_mds_request *req; 5560 5561 mutex_lock(&mdsc->mutex); 5562 if (__get_oldest_req(mdsc)) { 5563 mutex_unlock(&mdsc->mutex); 5564 5565 doutc(cl, "waiting for requests\n"); 5566 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 5567 ceph_timeout_jiffies(opts->mount_timeout)); 5568 5569 /* tear down remaining requests */ 5570 mutex_lock(&mdsc->mutex); 5571 while ((req = __get_oldest_req(mdsc))) { 5572 doutc(cl, "timed out on tid %llu\n", req->r_tid); 5573 list_del_init(&req->r_wait); 5574 __unregister_request(mdsc, req); 5575 } 5576 } 5577 mutex_unlock(&mdsc->mutex); 5578 doutc(cl, "done\n"); 5579 } 5580 5581 void send_flush_mdlog(struct ceph_mds_session *s) 5582 { 5583 struct ceph_client *cl = s->s_mdsc->fsc->client; 5584 struct ceph_msg *msg; 5585 5586 /* 5587 * Pre-luminous MDS crashes when it sees an unknown session request 5588 */ 5589 if (!CEPH_HAVE_FEATURE(s->s_con.peer_features, SERVER_LUMINOUS)) 5590 return; 5591 5592 mutex_lock(&s->s_mutex); 5593 doutc(cl, "request mdlog flush to mds%d (%s)s seq %lld\n", 5594 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq); 5595 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_FLUSH_MDLOG, 5596 s->s_seq); 5597 if (!msg) { 5598 pr_err_client(cl, "failed to request mdlog flush to mds%d (%s) seq %lld\n", 5599 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq); 5600 } else { 5601 ceph_con_send(&s->s_con, msg); 5602 } 5603 mutex_unlock(&s->s_mutex); 5604 } 5605 5606 static int ceph_mds_auth_match(struct ceph_mds_client *mdsc, 5607 struct ceph_mds_cap_auth *auth, 5608 const struct cred *cred, 5609 char *tpath) 5610 { 5611 u32 caller_uid = from_kuid(&init_user_ns, cred->fsuid); 5612 u32 caller_gid = from_kgid(&init_user_ns, cred->fsgid); 5613 struct ceph_client *cl = mdsc->fsc->client; 5614 const char *spath = mdsc->fsc->mount_options->server_path; 5615 bool gid_matched = false; 5616 u32 gid, tlen, len; 5617 int i, j; 5618 5619 doutc(cl, "match.uid %lld\n", auth->match.uid); 5620 if (auth->match.uid != MDS_AUTH_UID_ANY) { 5621 if (auth->match.uid != caller_uid) 5622 return 0; 5623 if (auth->match.num_gids) { 5624 for (i = 0; i < auth->match.num_gids; i++) { 5625 if (caller_gid == auth->match.gids[i]) 5626 gid_matched = true; 5627 } 5628 if (!gid_matched && cred->group_info->ngroups) { 5629 for (i = 0; i < cred->group_info->ngroups; i++) { 5630 gid = from_kgid(&init_user_ns, 5631 cred->group_info->gid[i]); 5632 for (j = 0; j < auth->match.num_gids; j++) { 5633 if (gid == auth->match.gids[j]) { 5634 gid_matched = true; 5635 break; 5636 } 5637 } 5638 if (gid_matched) 5639 break; 5640 } 5641 } 5642 if (!gid_matched) 5643 return 0; 5644 } 5645 } 5646 5647 /* path match */ 5648 if (auth->match.path) { 5649 if (!tpath) 5650 return 0; 5651 5652 tlen = strlen(tpath); 5653 len = strlen(auth->match.path); 5654 if (len) { 5655 char *_tpath = tpath; 5656 bool free_tpath = false; 5657 int m, n; 5658 5659 doutc(cl, "server path %s, tpath %s, match.path %s\n", 5660 spath, tpath, auth->match.path); 5661 if (spath && (m = strlen(spath)) != 1) { 5662 /* mount path + '/' + tpath + an extra space */ 5663 n = m + 1 + tlen + 1; 5664 _tpath = kmalloc(n, GFP_NOFS); 5665 if (!_tpath) 5666 return -ENOMEM; 5667 /* remove the leading '/' */ 5668 snprintf(_tpath, n, "%s/%s", spath + 1, tpath); 5669 free_tpath = true; 5670 tlen = strlen(_tpath); 5671 } 5672 5673 /* 5674 * Please note the tailing '/' for match.path has already 5675 * been removed when parsing. 5676 * 5677 * Remove the tailing '/' for the target path. 5678 */ 5679 while (tlen && _tpath[tlen - 1] == '/') { 5680 _tpath[tlen - 1] = '\0'; 5681 tlen -= 1; 5682 } 5683 doutc(cl, "_tpath %s\n", _tpath); 5684 5685 /* 5686 * In case first == _tpath && tlen == len: 5687 * match.path=/foo --> /foo _path=/foo --> match 5688 * match.path=/foo/ --> /foo _path=/foo --> match 5689 * 5690 * In case first == _tmatch.path && tlen > len: 5691 * match.path=/foo/ --> /foo _path=/foo/ --> match 5692 * match.path=/foo --> /foo _path=/foo/ --> match 5693 * match.path=/foo/ --> /foo _path=/foo/d --> match 5694 * match.path=/foo --> /foo _path=/food --> mismatch 5695 * 5696 * All the other cases --> mismatch 5697 */ 5698 bool path_matched = true; 5699 char *first = strstr(_tpath, auth->match.path); 5700 if (first != _tpath || 5701 (tlen > len && _tpath[len] != '/')) { 5702 path_matched = false; 5703 } 5704 5705 if (free_tpath) 5706 kfree(_tpath); 5707 5708 if (!path_matched) 5709 return 0; 5710 } 5711 } 5712 5713 doutc(cl, "matched\n"); 5714 return 1; 5715 } 5716 5717 int ceph_mds_check_access(struct ceph_mds_client *mdsc, char *tpath, int mask) 5718 { 5719 const struct cred *cred = get_current_cred(); 5720 u32 caller_uid = from_kuid(&init_user_ns, cred->fsuid); 5721 u32 caller_gid = from_kgid(&init_user_ns, cred->fsgid); 5722 struct ceph_mds_cap_auth *rw_perms_s = NULL; 5723 struct ceph_client *cl = mdsc->fsc->client; 5724 bool root_squash_perms = true; 5725 int i, err; 5726 5727 doutc(cl, "tpath '%s', mask %d, caller_uid %d, caller_gid %d\n", 5728 tpath, mask, caller_uid, caller_gid); 5729 5730 for (i = 0; i < mdsc->s_cap_auths_num; i++) { 5731 struct ceph_mds_cap_auth *s = &mdsc->s_cap_auths[i]; 5732 5733 err = ceph_mds_auth_match(mdsc, s, cred, tpath); 5734 if (err < 0) { 5735 put_cred(cred); 5736 return err; 5737 } else if (err > 0) { 5738 /* always follow the last auth caps' permission */ 5739 root_squash_perms = true; 5740 rw_perms_s = NULL; 5741 if ((mask & MAY_WRITE) && s->writeable && 5742 s->match.root_squash && (!caller_uid || !caller_gid)) 5743 root_squash_perms = false; 5744 5745 if (((mask & MAY_WRITE) && !s->writeable) || 5746 ((mask & MAY_READ) && !s->readable)) 5747 rw_perms_s = s; 5748 } 5749 } 5750 5751 put_cred(cred); 5752 5753 doutc(cl, "root_squash_perms %d, rw_perms_s %p\n", root_squash_perms, 5754 rw_perms_s); 5755 if (root_squash_perms && rw_perms_s == NULL) { 5756 doutc(cl, "access allowed\n"); 5757 return 0; 5758 } 5759 5760 if (!root_squash_perms) { 5761 doutc(cl, "root_squash is enabled and user(%d %d) isn't allowed to write", 5762 caller_uid, caller_gid); 5763 } 5764 if (rw_perms_s) { 5765 doutc(cl, "mds auth caps readable/writeable %d/%d while request r/w %d/%d", 5766 rw_perms_s->readable, rw_perms_s->writeable, 5767 !!(mask & MAY_READ), !!(mask & MAY_WRITE)); 5768 } 5769 doutc(cl, "access denied\n"); 5770 return -EACCES; 5771 } 5772 5773 /* 5774 * called before mount is ro, and before dentries are torn down. 5775 * (hmm, does this still race with new lookups?) 5776 */ 5777 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 5778 { 5779 doutc(mdsc->fsc->client, "begin\n"); 5780 mdsc->stopping = CEPH_MDSC_STOPPING_BEGIN; 5781 5782 ceph_mdsc_iterate_sessions(mdsc, send_flush_mdlog, true); 5783 ceph_mdsc_iterate_sessions(mdsc, lock_unlock_session, false); 5784 ceph_flush_dirty_caps(mdsc); 5785 wait_requests(mdsc); 5786 5787 /* 5788 * wait for reply handlers to drop their request refs and 5789 * their inode/dcache refs 5790 */ 5791 ceph_msgr_flush(); 5792 5793 ceph_cleanup_quotarealms_inodes(mdsc); 5794 doutc(mdsc->fsc->client, "done\n"); 5795 } 5796 5797 /* 5798 * flush the mdlog and wait for all write mds requests to flush. 5799 */ 5800 static void flush_mdlog_and_wait_mdsc_unsafe_requests(struct ceph_mds_client *mdsc, 5801 u64 want_tid) 5802 { 5803 struct ceph_client *cl = mdsc->fsc->client; 5804 struct ceph_mds_request *req = NULL, *nextreq; 5805 struct ceph_mds_session *last_session = NULL; 5806 struct rb_node *n; 5807 5808 mutex_lock(&mdsc->mutex); 5809 doutc(cl, "want %lld\n", want_tid); 5810 restart: 5811 req = __get_oldest_req(mdsc); 5812 while (req && req->r_tid <= want_tid) { 5813 /* find next request */ 5814 n = rb_next(&req->r_node); 5815 if (n) 5816 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 5817 else 5818 nextreq = NULL; 5819 if (req->r_op != CEPH_MDS_OP_SETFILELOCK && 5820 (req->r_op & CEPH_MDS_OP_WRITE)) { 5821 struct ceph_mds_session *s = req->r_session; 5822 5823 if (!s) { 5824 req = nextreq; 5825 continue; 5826 } 5827 5828 /* write op */ 5829 ceph_mdsc_get_request(req); 5830 if (nextreq) 5831 ceph_mdsc_get_request(nextreq); 5832 s = ceph_get_mds_session(s); 5833 mutex_unlock(&mdsc->mutex); 5834 5835 /* send flush mdlog request to MDS */ 5836 if (last_session != s) { 5837 send_flush_mdlog(s); 5838 ceph_put_mds_session(last_session); 5839 last_session = s; 5840 } else { 5841 ceph_put_mds_session(s); 5842 } 5843 doutc(cl, "wait on %llu (want %llu)\n", 5844 req->r_tid, want_tid); 5845 wait_for_completion(&req->r_safe_completion); 5846 5847 mutex_lock(&mdsc->mutex); 5848 ceph_mdsc_put_request(req); 5849 if (!nextreq) 5850 break; /* next dne before, so we're done! */ 5851 if (RB_EMPTY_NODE(&nextreq->r_node)) { 5852 /* next request was removed from tree */ 5853 ceph_mdsc_put_request(nextreq); 5854 goto restart; 5855 } 5856 ceph_mdsc_put_request(nextreq); /* won't go away */ 5857 } 5858 req = nextreq; 5859 } 5860 mutex_unlock(&mdsc->mutex); 5861 ceph_put_mds_session(last_session); 5862 doutc(cl, "done\n"); 5863 } 5864 5865 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 5866 { 5867 struct ceph_client *cl = mdsc->fsc->client; 5868 u64 want_tid, want_flush; 5869 5870 if (READ_ONCE(mdsc->fsc->mount_state) >= CEPH_MOUNT_SHUTDOWN) 5871 return; 5872 5873 doutc(cl, "sync\n"); 5874 mutex_lock(&mdsc->mutex); 5875 want_tid = mdsc->last_tid; 5876 mutex_unlock(&mdsc->mutex); 5877 5878 ceph_flush_dirty_caps(mdsc); 5879 ceph_flush_cap_releases(mdsc); 5880 spin_lock(&mdsc->cap_dirty_lock); 5881 want_flush = mdsc->last_cap_flush_tid; 5882 if (!list_empty(&mdsc->cap_flush_list)) { 5883 struct ceph_cap_flush *cf = 5884 list_last_entry(&mdsc->cap_flush_list, 5885 struct ceph_cap_flush, g_list); 5886 cf->wake = true; 5887 } 5888 spin_unlock(&mdsc->cap_dirty_lock); 5889 5890 doutc(cl, "sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 5891 5892 flush_mdlog_and_wait_mdsc_unsafe_requests(mdsc, want_tid); 5893 wait_caps_flush(mdsc, want_flush); 5894 } 5895 5896 /* 5897 * true if all sessions are closed, or we force unmount 5898 */ 5899 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped) 5900 { 5901 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 5902 return true; 5903 return atomic_read(&mdsc->num_sessions) <= skipped; 5904 } 5905 5906 /* 5907 * called after sb is ro or when metadata corrupted. 5908 */ 5909 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 5910 { 5911 struct ceph_options *opts = mdsc->fsc->client->options; 5912 struct ceph_client *cl = mdsc->fsc->client; 5913 struct ceph_mds_session *session; 5914 int i; 5915 int skipped = 0; 5916 5917 doutc(cl, "begin\n"); 5918 5919 /* close sessions */ 5920 mutex_lock(&mdsc->mutex); 5921 for (i = 0; i < mdsc->max_sessions; i++) { 5922 session = __ceph_lookup_mds_session(mdsc, i); 5923 if (!session) 5924 continue; 5925 mutex_unlock(&mdsc->mutex); 5926 mutex_lock(&session->s_mutex); 5927 if (__close_session(mdsc, session) <= 0) 5928 skipped++; 5929 mutex_unlock(&session->s_mutex); 5930 ceph_put_mds_session(session); 5931 mutex_lock(&mdsc->mutex); 5932 } 5933 mutex_unlock(&mdsc->mutex); 5934 5935 doutc(cl, "waiting for sessions to close\n"); 5936 wait_event_timeout(mdsc->session_close_wq, 5937 done_closing_sessions(mdsc, skipped), 5938 ceph_timeout_jiffies(opts->mount_timeout)); 5939 5940 /* tear down remaining sessions */ 5941 mutex_lock(&mdsc->mutex); 5942 for (i = 0; i < mdsc->max_sessions; i++) { 5943 if (mdsc->sessions[i]) { 5944 session = ceph_get_mds_session(mdsc->sessions[i]); 5945 __unregister_session(mdsc, session); 5946 mutex_unlock(&mdsc->mutex); 5947 mutex_lock(&session->s_mutex); 5948 remove_session_caps(session); 5949 mutex_unlock(&session->s_mutex); 5950 ceph_put_mds_session(session); 5951 mutex_lock(&mdsc->mutex); 5952 } 5953 } 5954 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 5955 mutex_unlock(&mdsc->mutex); 5956 5957 ceph_cleanup_snapid_map(mdsc); 5958 ceph_cleanup_global_and_empty_realms(mdsc); 5959 5960 cancel_work_sync(&mdsc->cap_reclaim_work); 5961 cancel_work_sync(&mdsc->cap_unlink_work); 5962 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 5963 5964 doutc(cl, "done\n"); 5965 } 5966 5967 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc) 5968 { 5969 struct ceph_mds_session *session; 5970 int mds; 5971 5972 doutc(mdsc->fsc->client, "force umount\n"); 5973 5974 mutex_lock(&mdsc->mutex); 5975 for (mds = 0; mds < mdsc->max_sessions; mds++) { 5976 session = __ceph_lookup_mds_session(mdsc, mds); 5977 if (!session) 5978 continue; 5979 5980 if (session->s_state == CEPH_MDS_SESSION_REJECTED) 5981 __unregister_session(mdsc, session); 5982 __wake_requests(mdsc, &session->s_waiting); 5983 mutex_unlock(&mdsc->mutex); 5984 5985 mutex_lock(&session->s_mutex); 5986 __close_session(mdsc, session); 5987 if (session->s_state == CEPH_MDS_SESSION_CLOSING) { 5988 cleanup_session_requests(mdsc, session); 5989 remove_session_caps(session); 5990 } 5991 mutex_unlock(&session->s_mutex); 5992 ceph_put_mds_session(session); 5993 5994 mutex_lock(&mdsc->mutex); 5995 kick_requests(mdsc, mds); 5996 } 5997 __wake_requests(mdsc, &mdsc->waiting_for_map); 5998 mutex_unlock(&mdsc->mutex); 5999 } 6000 6001 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 6002 { 6003 doutc(mdsc->fsc->client, "stop\n"); 6004 /* 6005 * Make sure the delayed work stopped before releasing 6006 * the resources. 6007 * 6008 * Because the cancel_delayed_work_sync() will only 6009 * guarantee that the work finishes executing. But the 6010 * delayed work will re-arm itself again after that. 6011 */ 6012 flush_delayed_work(&mdsc->delayed_work); 6013 6014 if (mdsc->mdsmap) 6015 ceph_mdsmap_destroy(mdsc->mdsmap); 6016 kfree(mdsc->sessions); 6017 ceph_caps_finalize(mdsc); 6018 6019 if (mdsc->s_cap_auths) { 6020 int i; 6021 6022 for (i = 0; i < mdsc->s_cap_auths_num; i++) { 6023 kfree(mdsc->s_cap_auths[i].match.gids); 6024 kfree(mdsc->s_cap_auths[i].match.path); 6025 kfree(mdsc->s_cap_auths[i].match.fs_name); 6026 } 6027 kfree(mdsc->s_cap_auths); 6028 } 6029 6030 ceph_pool_perm_destroy(mdsc); 6031 } 6032 6033 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 6034 { 6035 struct ceph_mds_client *mdsc = fsc->mdsc; 6036 doutc(fsc->client, "%p\n", mdsc); 6037 6038 if (!mdsc) 6039 return; 6040 6041 /* flush out any connection work with references to us */ 6042 ceph_msgr_flush(); 6043 6044 ceph_mdsc_stop(mdsc); 6045 6046 ceph_metric_destroy(&mdsc->metric); 6047 6048 fsc->mdsc = NULL; 6049 kfree(mdsc); 6050 doutc(fsc->client, "%p done\n", mdsc); 6051 } 6052 6053 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 6054 { 6055 struct ceph_fs_client *fsc = mdsc->fsc; 6056 struct ceph_client *cl = fsc->client; 6057 const char *mds_namespace = fsc->mount_options->mds_namespace; 6058 void *p = msg->front.iov_base; 6059 void *end = p + msg->front.iov_len; 6060 u32 epoch; 6061 u32 num_fs; 6062 u32 mount_fscid = (u32)-1; 6063 int err = -EINVAL; 6064 6065 ceph_decode_need(&p, end, sizeof(u32), bad); 6066 epoch = ceph_decode_32(&p); 6067 6068 doutc(cl, "epoch %u\n", epoch); 6069 6070 /* struct_v, struct_cv, map_len, epoch, legacy_client_fscid */ 6071 ceph_decode_skip_n(&p, end, 2 + sizeof(u32) * 3, bad); 6072 6073 ceph_decode_32_safe(&p, end, num_fs, bad); 6074 while (num_fs-- > 0) { 6075 void *info_p, *info_end; 6076 u32 info_len; 6077 u32 fscid, namelen; 6078 6079 ceph_decode_need(&p, end, 2 + sizeof(u32), bad); 6080 p += 2; // info_v, info_cv 6081 info_len = ceph_decode_32(&p); 6082 ceph_decode_need(&p, end, info_len, bad); 6083 info_p = p; 6084 info_end = p + info_len; 6085 p = info_end; 6086 6087 ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad); 6088 fscid = ceph_decode_32(&info_p); 6089 namelen = ceph_decode_32(&info_p); 6090 ceph_decode_need(&info_p, info_end, namelen, bad); 6091 6092 if (mds_namespace && 6093 strlen(mds_namespace) == namelen && 6094 !strncmp(mds_namespace, (char *)info_p, namelen)) { 6095 mount_fscid = fscid; 6096 break; 6097 } 6098 } 6099 6100 ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch); 6101 if (mount_fscid != (u32)-1) { 6102 fsc->client->monc.fs_cluster_id = mount_fscid; 6103 ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP, 6104 0, true); 6105 ceph_monc_renew_subs(&fsc->client->monc); 6106 } else { 6107 err = -ENOENT; 6108 goto err_out; 6109 } 6110 return; 6111 6112 bad: 6113 pr_err_client(cl, "error decoding fsmap %d. Shutting down mount.\n", 6114 err); 6115 ceph_umount_begin(mdsc->fsc->sb); 6116 ceph_msg_dump(msg); 6117 err_out: 6118 mutex_lock(&mdsc->mutex); 6119 mdsc->mdsmap_err = err; 6120 __wake_requests(mdsc, &mdsc->waiting_for_map); 6121 mutex_unlock(&mdsc->mutex); 6122 } 6123 6124 /* 6125 * handle mds map update. 6126 */ 6127 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 6128 { 6129 struct ceph_client *cl = mdsc->fsc->client; 6130 u32 epoch; 6131 u32 maplen; 6132 void *p = msg->front.iov_base; 6133 void *end = p + msg->front.iov_len; 6134 struct ceph_mdsmap *newmap, *oldmap; 6135 struct ceph_fsid fsid; 6136 int err = -EINVAL; 6137 6138 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 6139 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 6140 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 6141 return; 6142 epoch = ceph_decode_32(&p); 6143 maplen = ceph_decode_32(&p); 6144 doutc(cl, "epoch %u len %d\n", epoch, (int)maplen); 6145 6146 /* do we need it? */ 6147 mutex_lock(&mdsc->mutex); 6148 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 6149 doutc(cl, "epoch %u <= our %u\n", epoch, mdsc->mdsmap->m_epoch); 6150 mutex_unlock(&mdsc->mutex); 6151 return; 6152 } 6153 6154 newmap = ceph_mdsmap_decode(mdsc, &p, end, ceph_msgr2(mdsc->fsc->client)); 6155 if (IS_ERR(newmap)) { 6156 err = PTR_ERR(newmap); 6157 goto bad_unlock; 6158 } 6159 6160 /* swap into place */ 6161 if (mdsc->mdsmap) { 6162 oldmap = mdsc->mdsmap; 6163 mdsc->mdsmap = newmap; 6164 check_new_map(mdsc, newmap, oldmap); 6165 ceph_mdsmap_destroy(oldmap); 6166 } else { 6167 mdsc->mdsmap = newmap; /* first mds map */ 6168 } 6169 mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size, 6170 MAX_LFS_FILESIZE); 6171 6172 __wake_requests(mdsc, &mdsc->waiting_for_map); 6173 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP, 6174 mdsc->mdsmap->m_epoch); 6175 6176 mutex_unlock(&mdsc->mutex); 6177 schedule_delayed(mdsc, 0); 6178 return; 6179 6180 bad_unlock: 6181 mutex_unlock(&mdsc->mutex); 6182 bad: 6183 pr_err_client(cl, "error decoding mdsmap %d. Shutting down mount.\n", 6184 err); 6185 ceph_umount_begin(mdsc->fsc->sb); 6186 ceph_msg_dump(msg); 6187 return; 6188 } 6189 6190 static struct ceph_connection *mds_get_con(struct ceph_connection *con) 6191 { 6192 struct ceph_mds_session *s = con->private; 6193 6194 if (ceph_get_mds_session(s)) 6195 return con; 6196 return NULL; 6197 } 6198 6199 static void mds_put_con(struct ceph_connection *con) 6200 { 6201 struct ceph_mds_session *s = con->private; 6202 6203 ceph_put_mds_session(s); 6204 } 6205 6206 /* 6207 * if the client is unresponsive for long enough, the mds will kill 6208 * the session entirely. 6209 */ 6210 static void mds_peer_reset(struct ceph_connection *con) 6211 { 6212 struct ceph_mds_session *s = con->private; 6213 struct ceph_mds_client *mdsc = s->s_mdsc; 6214 6215 pr_warn_client(mdsc->fsc->client, "mds%d closed our session\n", 6216 s->s_mds); 6217 if (READ_ONCE(mdsc->fsc->mount_state) != CEPH_MOUNT_FENCE_IO && 6218 ceph_mdsmap_get_state(mdsc->mdsmap, s->s_mds) >= CEPH_MDS_STATE_RECONNECT) 6219 send_mds_reconnect(mdsc, s); 6220 } 6221 6222 static void mds_dispatch(struct ceph_connection *con, struct ceph_msg *msg) 6223 { 6224 struct ceph_mds_session *s = con->private; 6225 struct ceph_mds_client *mdsc = s->s_mdsc; 6226 struct ceph_client *cl = mdsc->fsc->client; 6227 int type = le16_to_cpu(msg->hdr.type); 6228 6229 mutex_lock(&mdsc->mutex); 6230 if (__verify_registered_session(mdsc, s) < 0) { 6231 mutex_unlock(&mdsc->mutex); 6232 goto out; 6233 } 6234 mutex_unlock(&mdsc->mutex); 6235 6236 switch (type) { 6237 case CEPH_MSG_MDS_MAP: 6238 ceph_mdsc_handle_mdsmap(mdsc, msg); 6239 break; 6240 case CEPH_MSG_FS_MAP_USER: 6241 ceph_mdsc_handle_fsmap(mdsc, msg); 6242 break; 6243 case CEPH_MSG_CLIENT_SESSION: 6244 handle_session(s, msg); 6245 break; 6246 case CEPH_MSG_CLIENT_REPLY: 6247 handle_reply(s, msg); 6248 break; 6249 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 6250 handle_forward(mdsc, s, msg); 6251 break; 6252 case CEPH_MSG_CLIENT_CAPS: 6253 ceph_handle_caps(s, msg); 6254 break; 6255 case CEPH_MSG_CLIENT_SNAP: 6256 ceph_handle_snap(mdsc, s, msg); 6257 break; 6258 case CEPH_MSG_CLIENT_LEASE: 6259 handle_lease(mdsc, s, msg); 6260 break; 6261 case CEPH_MSG_CLIENT_QUOTA: 6262 ceph_handle_quota(mdsc, s, msg); 6263 break; 6264 6265 default: 6266 pr_err_client(cl, "received unknown message type %d %s\n", 6267 type, ceph_msg_type_name(type)); 6268 } 6269 out: 6270 ceph_msg_put(msg); 6271 } 6272 6273 /* 6274 * authentication 6275 */ 6276 6277 /* 6278 * Note: returned pointer is the address of a structure that's 6279 * managed separately. Caller must *not* attempt to free it. 6280 */ 6281 static struct ceph_auth_handshake * 6282 mds_get_authorizer(struct ceph_connection *con, int *proto, int force_new) 6283 { 6284 struct ceph_mds_session *s = con->private; 6285 struct ceph_mds_client *mdsc = s->s_mdsc; 6286 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 6287 struct ceph_auth_handshake *auth = &s->s_auth; 6288 int ret; 6289 6290 ret = __ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 6291 force_new, proto, NULL, NULL); 6292 if (ret) 6293 return ERR_PTR(ret); 6294 6295 return auth; 6296 } 6297 6298 static int mds_add_authorizer_challenge(struct ceph_connection *con, 6299 void *challenge_buf, int challenge_buf_len) 6300 { 6301 struct ceph_mds_session *s = con->private; 6302 struct ceph_mds_client *mdsc = s->s_mdsc; 6303 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 6304 6305 return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer, 6306 challenge_buf, challenge_buf_len); 6307 } 6308 6309 static int mds_verify_authorizer_reply(struct ceph_connection *con) 6310 { 6311 struct ceph_mds_session *s = con->private; 6312 struct ceph_mds_client *mdsc = s->s_mdsc; 6313 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 6314 struct ceph_auth_handshake *auth = &s->s_auth; 6315 6316 return ceph_auth_verify_authorizer_reply(ac, auth->authorizer, 6317 auth->authorizer_reply_buf, auth->authorizer_reply_buf_len, 6318 NULL, NULL, NULL, NULL); 6319 } 6320 6321 static int mds_invalidate_authorizer(struct ceph_connection *con) 6322 { 6323 struct ceph_mds_session *s = con->private; 6324 struct ceph_mds_client *mdsc = s->s_mdsc; 6325 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 6326 6327 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 6328 6329 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 6330 } 6331 6332 static int mds_get_auth_request(struct ceph_connection *con, 6333 void *buf, int *buf_len, 6334 void **authorizer, int *authorizer_len) 6335 { 6336 struct ceph_mds_session *s = con->private; 6337 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 6338 struct ceph_auth_handshake *auth = &s->s_auth; 6339 int ret; 6340 6341 ret = ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 6342 buf, buf_len); 6343 if (ret) 6344 return ret; 6345 6346 *authorizer = auth->authorizer_buf; 6347 *authorizer_len = auth->authorizer_buf_len; 6348 return 0; 6349 } 6350 6351 static int mds_handle_auth_reply_more(struct ceph_connection *con, 6352 void *reply, int reply_len, 6353 void *buf, int *buf_len, 6354 void **authorizer, int *authorizer_len) 6355 { 6356 struct ceph_mds_session *s = con->private; 6357 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 6358 struct ceph_auth_handshake *auth = &s->s_auth; 6359 int ret; 6360 6361 ret = ceph_auth_handle_svc_reply_more(ac, auth, reply, reply_len, 6362 buf, buf_len); 6363 if (ret) 6364 return ret; 6365 6366 *authorizer = auth->authorizer_buf; 6367 *authorizer_len = auth->authorizer_buf_len; 6368 return 0; 6369 } 6370 6371 static int mds_handle_auth_done(struct ceph_connection *con, 6372 u64 global_id, void *reply, int reply_len, 6373 u8 *session_key, int *session_key_len, 6374 u8 *con_secret, int *con_secret_len) 6375 { 6376 struct ceph_mds_session *s = con->private; 6377 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 6378 struct ceph_auth_handshake *auth = &s->s_auth; 6379 6380 return ceph_auth_handle_svc_reply_done(ac, auth, reply, reply_len, 6381 session_key, session_key_len, 6382 con_secret, con_secret_len); 6383 } 6384 6385 static int mds_handle_auth_bad_method(struct ceph_connection *con, 6386 int used_proto, int result, 6387 const int *allowed_protos, int proto_cnt, 6388 const int *allowed_modes, int mode_cnt) 6389 { 6390 struct ceph_mds_session *s = con->private; 6391 struct ceph_mon_client *monc = &s->s_mdsc->fsc->client->monc; 6392 int ret; 6393 6394 if (ceph_auth_handle_bad_authorizer(monc->auth, CEPH_ENTITY_TYPE_MDS, 6395 used_proto, result, 6396 allowed_protos, proto_cnt, 6397 allowed_modes, mode_cnt)) { 6398 ret = ceph_monc_validate_auth(monc); 6399 if (ret) 6400 return ret; 6401 } 6402 6403 return -EACCES; 6404 } 6405 6406 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 6407 struct ceph_msg_header *hdr, int *skip) 6408 { 6409 struct ceph_msg *msg; 6410 int type = (int) le16_to_cpu(hdr->type); 6411 int front_len = (int) le32_to_cpu(hdr->front_len); 6412 6413 if (con->in_msg) 6414 return con->in_msg; 6415 6416 *skip = 0; 6417 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 6418 if (!msg) { 6419 pr_err("unable to allocate msg type %d len %d\n", 6420 type, front_len); 6421 return NULL; 6422 } 6423 6424 return msg; 6425 } 6426 6427 static int mds_sign_message(struct ceph_msg *msg) 6428 { 6429 struct ceph_mds_session *s = msg->con->private; 6430 struct ceph_auth_handshake *auth = &s->s_auth; 6431 6432 return ceph_auth_sign_message(auth, msg); 6433 } 6434 6435 static int mds_check_message_signature(struct ceph_msg *msg) 6436 { 6437 struct ceph_mds_session *s = msg->con->private; 6438 struct ceph_auth_handshake *auth = &s->s_auth; 6439 6440 return ceph_auth_check_message_signature(auth, msg); 6441 } 6442 6443 static const struct ceph_connection_operations mds_con_ops = { 6444 .get = mds_get_con, 6445 .put = mds_put_con, 6446 .alloc_msg = mds_alloc_msg, 6447 .dispatch = mds_dispatch, 6448 .peer_reset = mds_peer_reset, 6449 .get_authorizer = mds_get_authorizer, 6450 .add_authorizer_challenge = mds_add_authorizer_challenge, 6451 .verify_authorizer_reply = mds_verify_authorizer_reply, 6452 .invalidate_authorizer = mds_invalidate_authorizer, 6453 .sign_message = mds_sign_message, 6454 .check_message_signature = mds_check_message_signature, 6455 .get_auth_request = mds_get_auth_request, 6456 .handle_auth_reply_more = mds_handle_auth_reply_more, 6457 .handle_auth_done = mds_handle_auth_done, 6458 .handle_auth_bad_method = mds_handle_auth_bad_method, 6459 }; 6460 6461 /* eof */ 6462