1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "disk-io.h" 17 #include "extent-tree.h" 18 #include "transaction.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "rcu-string.h" 22 #include "dev-replace.h" 23 #include "sysfs.h" 24 #include "tree-checker.h" 25 #include "space-info.h" 26 #include "block-group.h" 27 #include "discard.h" 28 #include "zoned.h" 29 #include "fs.h" 30 #include "accessors.h" 31 #include "uuid-tree.h" 32 #include "ioctl.h" 33 #include "relocation.h" 34 #include "scrub.h" 35 #include "super.h" 36 #include "raid-stripe-tree.h" 37 38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 39 BTRFS_BLOCK_GROUP_RAID10 | \ 40 BTRFS_BLOCK_GROUP_RAID56_MASK) 41 42 struct btrfs_io_geometry { 43 u32 stripe_index; 44 u32 stripe_nr; 45 int mirror_num; 46 int num_stripes; 47 u64 stripe_offset; 48 u64 raid56_full_stripe_start; 49 int max_errors; 50 enum btrfs_map_op op; 51 bool use_rst; 52 }; 53 54 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 55 [BTRFS_RAID_RAID10] = { 56 .sub_stripes = 2, 57 .dev_stripes = 1, 58 .devs_max = 0, /* 0 == as many as possible */ 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 .nparity = 0, 64 .raid_name = "raid10", 65 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 66 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 67 }, 68 [BTRFS_RAID_RAID1] = { 69 .sub_stripes = 1, 70 .dev_stripes = 1, 71 .devs_max = 2, 72 .devs_min = 2, 73 .tolerated_failures = 1, 74 .devs_increment = 2, 75 .ncopies = 2, 76 .nparity = 0, 77 .raid_name = "raid1", 78 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 79 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 80 }, 81 [BTRFS_RAID_RAID1C3] = { 82 .sub_stripes = 1, 83 .dev_stripes = 1, 84 .devs_max = 3, 85 .devs_min = 3, 86 .tolerated_failures = 2, 87 .devs_increment = 3, 88 .ncopies = 3, 89 .nparity = 0, 90 .raid_name = "raid1c3", 91 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 92 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 93 }, 94 [BTRFS_RAID_RAID1C4] = { 95 .sub_stripes = 1, 96 .dev_stripes = 1, 97 .devs_max = 4, 98 .devs_min = 4, 99 .tolerated_failures = 3, 100 .devs_increment = 4, 101 .ncopies = 4, 102 .nparity = 0, 103 .raid_name = "raid1c4", 104 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 105 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 106 }, 107 [BTRFS_RAID_DUP] = { 108 .sub_stripes = 1, 109 .dev_stripes = 2, 110 .devs_max = 1, 111 .devs_min = 1, 112 .tolerated_failures = 0, 113 .devs_increment = 1, 114 .ncopies = 2, 115 .nparity = 0, 116 .raid_name = "dup", 117 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 118 .mindev_error = 0, 119 }, 120 [BTRFS_RAID_RAID0] = { 121 .sub_stripes = 1, 122 .dev_stripes = 1, 123 .devs_max = 0, 124 .devs_min = 1, 125 .tolerated_failures = 0, 126 .devs_increment = 1, 127 .ncopies = 1, 128 .nparity = 0, 129 .raid_name = "raid0", 130 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 131 .mindev_error = 0, 132 }, 133 [BTRFS_RAID_SINGLE] = { 134 .sub_stripes = 1, 135 .dev_stripes = 1, 136 .devs_max = 1, 137 .devs_min = 1, 138 .tolerated_failures = 0, 139 .devs_increment = 1, 140 .ncopies = 1, 141 .nparity = 0, 142 .raid_name = "single", 143 .bg_flag = 0, 144 .mindev_error = 0, 145 }, 146 [BTRFS_RAID_RAID5] = { 147 .sub_stripes = 1, 148 .dev_stripes = 1, 149 .devs_max = 0, 150 .devs_min = 2, 151 .tolerated_failures = 1, 152 .devs_increment = 1, 153 .ncopies = 1, 154 .nparity = 1, 155 .raid_name = "raid5", 156 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 157 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 158 }, 159 [BTRFS_RAID_RAID6] = { 160 .sub_stripes = 1, 161 .dev_stripes = 1, 162 .devs_max = 0, 163 .devs_min = 3, 164 .tolerated_failures = 2, 165 .devs_increment = 1, 166 .ncopies = 1, 167 .nparity = 2, 168 .raid_name = "raid6", 169 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 170 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 171 }, 172 }; 173 174 /* 175 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 176 * can be used as index to access btrfs_raid_array[]. 177 */ 178 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 179 { 180 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 181 182 if (!profile) 183 return BTRFS_RAID_SINGLE; 184 185 return BTRFS_BG_FLAG_TO_INDEX(profile); 186 } 187 188 const char *btrfs_bg_type_to_raid_name(u64 flags) 189 { 190 const int index = btrfs_bg_flags_to_raid_index(flags); 191 192 if (index >= BTRFS_NR_RAID_TYPES) 193 return NULL; 194 195 return btrfs_raid_array[index].raid_name; 196 } 197 198 int btrfs_nr_parity_stripes(u64 type) 199 { 200 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 201 202 return btrfs_raid_array[index].nparity; 203 } 204 205 /* 206 * Fill @buf with textual description of @bg_flags, no more than @size_buf 207 * bytes including terminating null byte. 208 */ 209 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 210 { 211 int i; 212 int ret; 213 char *bp = buf; 214 u64 flags = bg_flags; 215 u32 size_bp = size_buf; 216 217 if (!flags) { 218 strcpy(bp, "NONE"); 219 return; 220 } 221 222 #define DESCRIBE_FLAG(flag, desc) \ 223 do { \ 224 if (flags & (flag)) { \ 225 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 226 if (ret < 0 || ret >= size_bp) \ 227 goto out_overflow; \ 228 size_bp -= ret; \ 229 bp += ret; \ 230 flags &= ~(flag); \ 231 } \ 232 } while (0) 233 234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 236 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 237 238 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 239 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 240 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 241 btrfs_raid_array[i].raid_name); 242 #undef DESCRIBE_FLAG 243 244 if (flags) { 245 ret = snprintf(bp, size_bp, "0x%llx|", flags); 246 size_bp -= ret; 247 } 248 249 if (size_bp < size_buf) 250 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 251 252 /* 253 * The text is trimmed, it's up to the caller to provide sufficiently 254 * large buffer 255 */ 256 out_overflow:; 257 } 258 259 static int init_first_rw_device(struct btrfs_trans_handle *trans); 260 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 261 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 262 263 /* 264 * Device locking 265 * ============== 266 * 267 * There are several mutexes that protect manipulation of devices and low-level 268 * structures like chunks but not block groups, extents or files 269 * 270 * uuid_mutex (global lock) 271 * ------------------------ 272 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 273 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 274 * device) or requested by the device= mount option 275 * 276 * the mutex can be very coarse and can cover long-running operations 277 * 278 * protects: updates to fs_devices counters like missing devices, rw devices, 279 * seeding, structure cloning, opening/closing devices at mount/umount time 280 * 281 * global::fs_devs - add, remove, updates to the global list 282 * 283 * does not protect: manipulation of the fs_devices::devices list in general 284 * but in mount context it could be used to exclude list modifications by eg. 285 * scan ioctl 286 * 287 * btrfs_device::name - renames (write side), read is RCU 288 * 289 * fs_devices::device_list_mutex (per-fs, with RCU) 290 * ------------------------------------------------ 291 * protects updates to fs_devices::devices, ie. adding and deleting 292 * 293 * simple list traversal with read-only actions can be done with RCU protection 294 * 295 * may be used to exclude some operations from running concurrently without any 296 * modifications to the list (see write_all_supers) 297 * 298 * Is not required at mount and close times, because our device list is 299 * protected by the uuid_mutex at that point. 300 * 301 * balance_mutex 302 * ------------- 303 * protects balance structures (status, state) and context accessed from 304 * several places (internally, ioctl) 305 * 306 * chunk_mutex 307 * ----------- 308 * protects chunks, adding or removing during allocation, trim or when a new 309 * device is added/removed. Additionally it also protects post_commit_list of 310 * individual devices, since they can be added to the transaction's 311 * post_commit_list only with chunk_mutex held. 312 * 313 * cleaner_mutex 314 * ------------- 315 * a big lock that is held by the cleaner thread and prevents running subvolume 316 * cleaning together with relocation or delayed iputs 317 * 318 * 319 * Lock nesting 320 * ============ 321 * 322 * uuid_mutex 323 * device_list_mutex 324 * chunk_mutex 325 * balance_mutex 326 * 327 * 328 * Exclusive operations 329 * ==================== 330 * 331 * Maintains the exclusivity of the following operations that apply to the 332 * whole filesystem and cannot run in parallel. 333 * 334 * - Balance (*) 335 * - Device add 336 * - Device remove 337 * - Device replace (*) 338 * - Resize 339 * 340 * The device operations (as above) can be in one of the following states: 341 * 342 * - Running state 343 * - Paused state 344 * - Completed state 345 * 346 * Only device operations marked with (*) can go into the Paused state for the 347 * following reasons: 348 * 349 * - ioctl (only Balance can be Paused through ioctl) 350 * - filesystem remounted as read-only 351 * - filesystem unmounted and mounted as read-only 352 * - system power-cycle and filesystem mounted as read-only 353 * - filesystem or device errors leading to forced read-only 354 * 355 * The status of exclusive operation is set and cleared atomically. 356 * During the course of Paused state, fs_info::exclusive_operation remains set. 357 * A device operation in Paused or Running state can be canceled or resumed 358 * either by ioctl (Balance only) or when remounted as read-write. 359 * The exclusive status is cleared when the device operation is canceled or 360 * completed. 361 */ 362 363 DEFINE_MUTEX(uuid_mutex); 364 static LIST_HEAD(fs_uuids); 365 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 366 { 367 return &fs_uuids; 368 } 369 370 /* 371 * Allocate new btrfs_fs_devices structure identified by a fsid. 372 * 373 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 374 * fs_devices::metadata_fsid 375 * 376 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 377 * The returned struct is not linked onto any lists and can be destroyed with 378 * kfree() right away. 379 */ 380 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 381 { 382 struct btrfs_fs_devices *fs_devs; 383 384 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 385 if (!fs_devs) 386 return ERR_PTR(-ENOMEM); 387 388 mutex_init(&fs_devs->device_list_mutex); 389 390 INIT_LIST_HEAD(&fs_devs->devices); 391 INIT_LIST_HEAD(&fs_devs->alloc_list); 392 INIT_LIST_HEAD(&fs_devs->fs_list); 393 INIT_LIST_HEAD(&fs_devs->seed_list); 394 395 if (fsid) { 396 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 397 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 398 } 399 400 return fs_devs; 401 } 402 403 static void btrfs_free_device(struct btrfs_device *device) 404 { 405 WARN_ON(!list_empty(&device->post_commit_list)); 406 rcu_string_free(device->name); 407 extent_io_tree_release(&device->alloc_state); 408 btrfs_destroy_dev_zone_info(device); 409 kfree(device); 410 } 411 412 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 413 { 414 struct btrfs_device *device; 415 416 WARN_ON(fs_devices->opened); 417 while (!list_empty(&fs_devices->devices)) { 418 device = list_entry(fs_devices->devices.next, 419 struct btrfs_device, dev_list); 420 list_del(&device->dev_list); 421 btrfs_free_device(device); 422 } 423 kfree(fs_devices); 424 } 425 426 void __exit btrfs_cleanup_fs_uuids(void) 427 { 428 struct btrfs_fs_devices *fs_devices; 429 430 while (!list_empty(&fs_uuids)) { 431 fs_devices = list_entry(fs_uuids.next, 432 struct btrfs_fs_devices, fs_list); 433 list_del(&fs_devices->fs_list); 434 free_fs_devices(fs_devices); 435 } 436 } 437 438 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 439 const u8 *fsid, const u8 *metadata_fsid) 440 { 441 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 442 return false; 443 444 if (!metadata_fsid) 445 return true; 446 447 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 448 return false; 449 450 return true; 451 } 452 453 static noinline struct btrfs_fs_devices *find_fsid( 454 const u8 *fsid, const u8 *metadata_fsid) 455 { 456 struct btrfs_fs_devices *fs_devices; 457 458 ASSERT(fsid); 459 460 /* Handle non-split brain cases */ 461 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 462 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 463 return fs_devices; 464 } 465 return NULL; 466 } 467 468 static int 469 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 470 int flush, struct file **bdev_file, 471 struct btrfs_super_block **disk_super) 472 { 473 struct block_device *bdev; 474 int ret; 475 476 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL); 477 478 if (IS_ERR(*bdev_file)) { 479 ret = PTR_ERR(*bdev_file); 480 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d", 481 device_path, flags, ret); 482 goto error; 483 } 484 bdev = file_bdev(*bdev_file); 485 486 if (flush) 487 sync_blockdev(bdev); 488 if (holder) { 489 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE); 490 if (ret) { 491 fput(*bdev_file); 492 goto error; 493 } 494 } 495 invalidate_bdev(bdev); 496 *disk_super = btrfs_read_dev_super(bdev); 497 if (IS_ERR(*disk_super)) { 498 ret = PTR_ERR(*disk_super); 499 fput(*bdev_file); 500 goto error; 501 } 502 503 return 0; 504 505 error: 506 *disk_super = NULL; 507 *bdev_file = NULL; 508 return ret; 509 } 510 511 /* 512 * Search and remove all stale devices (which are not mounted). When both 513 * inputs are NULL, it will search and release all stale devices. 514 * 515 * @devt: Optional. When provided will it release all unmounted devices 516 * matching this devt only. 517 * @skip_device: Optional. Will skip this device when searching for the stale 518 * devices. 519 * 520 * Return: 0 for success or if @devt is 0. 521 * -EBUSY if @devt is a mounted device. 522 * -ENOENT if @devt does not match any device in the list. 523 */ 524 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 525 { 526 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 527 struct btrfs_device *device, *tmp_device; 528 int ret; 529 bool freed = false; 530 531 lockdep_assert_held(&uuid_mutex); 532 533 /* Return good status if there is no instance of devt. */ 534 ret = 0; 535 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 536 537 mutex_lock(&fs_devices->device_list_mutex); 538 list_for_each_entry_safe(device, tmp_device, 539 &fs_devices->devices, dev_list) { 540 if (skip_device && skip_device == device) 541 continue; 542 if (devt && devt != device->devt) 543 continue; 544 if (fs_devices->opened) { 545 if (devt) 546 ret = -EBUSY; 547 break; 548 } 549 550 /* delete the stale device */ 551 fs_devices->num_devices--; 552 list_del(&device->dev_list); 553 btrfs_free_device(device); 554 555 freed = true; 556 } 557 mutex_unlock(&fs_devices->device_list_mutex); 558 559 if (fs_devices->num_devices == 0) { 560 btrfs_sysfs_remove_fsid(fs_devices); 561 list_del(&fs_devices->fs_list); 562 free_fs_devices(fs_devices); 563 } 564 } 565 566 /* If there is at least one freed device return 0. */ 567 if (freed) 568 return 0; 569 570 return ret; 571 } 572 573 static struct btrfs_fs_devices *find_fsid_by_device( 574 struct btrfs_super_block *disk_super, 575 dev_t devt, bool *same_fsid_diff_dev) 576 { 577 struct btrfs_fs_devices *fsid_fs_devices; 578 struct btrfs_fs_devices *devt_fs_devices; 579 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 580 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 581 bool found_by_devt = false; 582 583 /* Find the fs_device by the usual method, if found use it. */ 584 fsid_fs_devices = find_fsid(disk_super->fsid, 585 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 586 587 /* The temp_fsid feature is supported only with single device filesystem. */ 588 if (btrfs_super_num_devices(disk_super) != 1) 589 return fsid_fs_devices; 590 591 /* 592 * A seed device is an integral component of the sprout device, which 593 * functions as a multi-device filesystem. So, temp-fsid feature is 594 * not supported. 595 */ 596 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 597 return fsid_fs_devices; 598 599 /* Try to find a fs_devices by matching devt. */ 600 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 601 struct btrfs_device *device; 602 603 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 604 if (device->devt == devt) { 605 found_by_devt = true; 606 break; 607 } 608 } 609 if (found_by_devt) 610 break; 611 } 612 613 if (found_by_devt) { 614 /* Existing device. */ 615 if (fsid_fs_devices == NULL) { 616 if (devt_fs_devices->opened == 0) { 617 /* Stale device. */ 618 return NULL; 619 } else { 620 /* temp_fsid is mounting a subvol. */ 621 return devt_fs_devices; 622 } 623 } else { 624 /* Regular or temp_fsid device mounting a subvol. */ 625 return devt_fs_devices; 626 } 627 } else { 628 /* New device. */ 629 if (fsid_fs_devices == NULL) { 630 return NULL; 631 } else { 632 /* sb::fsid is already used create a new temp_fsid. */ 633 *same_fsid_diff_dev = true; 634 return NULL; 635 } 636 } 637 638 /* Not reached. */ 639 } 640 641 /* 642 * This is only used on mount, and we are protected from competing things 643 * messing with our fs_devices by the uuid_mutex, thus we do not need the 644 * fs_devices->device_list_mutex here. 645 */ 646 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 647 struct btrfs_device *device, blk_mode_t flags, 648 void *holder) 649 { 650 struct file *bdev_file; 651 struct btrfs_super_block *disk_super; 652 u64 devid; 653 int ret; 654 655 if (device->bdev) 656 return -EINVAL; 657 if (!device->name) 658 return -EINVAL; 659 660 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 661 &bdev_file, &disk_super); 662 if (ret) 663 return ret; 664 665 devid = btrfs_stack_device_id(&disk_super->dev_item); 666 if (devid != device->devid) 667 goto error_free_page; 668 669 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 670 goto error_free_page; 671 672 device->generation = btrfs_super_generation(disk_super); 673 674 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 675 if (btrfs_super_incompat_flags(disk_super) & 676 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 677 pr_err( 678 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 679 goto error_free_page; 680 } 681 682 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 683 fs_devices->seeding = true; 684 } else { 685 if (bdev_read_only(file_bdev(bdev_file))) 686 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 687 else 688 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 689 } 690 691 if (!bdev_nonrot(file_bdev(bdev_file))) 692 fs_devices->rotating = true; 693 694 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 695 fs_devices->discardable = true; 696 697 device->bdev_file = bdev_file; 698 device->bdev = file_bdev(bdev_file); 699 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 700 701 if (device->devt != device->bdev->bd_dev) { 702 btrfs_warn(NULL, 703 "device %s maj:min changed from %d:%d to %d:%d", 704 device->name->str, MAJOR(device->devt), 705 MINOR(device->devt), MAJOR(device->bdev->bd_dev), 706 MINOR(device->bdev->bd_dev)); 707 708 device->devt = device->bdev->bd_dev; 709 } 710 711 fs_devices->open_devices++; 712 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 713 device->devid != BTRFS_DEV_REPLACE_DEVID) { 714 fs_devices->rw_devices++; 715 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 716 } 717 btrfs_release_disk_super(disk_super); 718 719 return 0; 720 721 error_free_page: 722 btrfs_release_disk_super(disk_super); 723 fput(bdev_file); 724 725 return -EINVAL; 726 } 727 728 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb) 729 { 730 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 731 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 732 733 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 734 } 735 736 static bool is_same_device(struct btrfs_device *device, const char *new_path) 737 { 738 struct path old = { .mnt = NULL, .dentry = NULL }; 739 struct path new = { .mnt = NULL, .dentry = NULL }; 740 char *old_path = NULL; 741 bool is_same = false; 742 int ret; 743 744 if (!device->name) 745 goto out; 746 747 old_path = kzalloc(PATH_MAX, GFP_NOFS); 748 if (!old_path) 749 goto out; 750 751 rcu_read_lock(); 752 ret = strscpy(old_path, rcu_str_deref(device->name), PATH_MAX); 753 rcu_read_unlock(); 754 if (ret < 0) 755 goto out; 756 757 ret = kern_path(old_path, LOOKUP_FOLLOW, &old); 758 if (ret) 759 goto out; 760 ret = kern_path(new_path, LOOKUP_FOLLOW, &new); 761 if (ret) 762 goto out; 763 if (path_equal(&old, &new)) 764 is_same = true; 765 out: 766 kfree(old_path); 767 path_put(&old); 768 path_put(&new); 769 return is_same; 770 } 771 772 /* 773 * Add new device to list of registered devices 774 * 775 * Returns: 776 * device pointer which was just added or updated when successful 777 * error pointer when failed 778 */ 779 static noinline struct btrfs_device *device_list_add(const char *path, 780 struct btrfs_super_block *disk_super, 781 bool *new_device_added) 782 { 783 struct btrfs_device *device; 784 struct btrfs_fs_devices *fs_devices = NULL; 785 struct rcu_string *name; 786 u64 found_transid = btrfs_super_generation(disk_super); 787 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 788 dev_t path_devt; 789 int error; 790 bool same_fsid_diff_dev = false; 791 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 792 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 793 794 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 795 btrfs_err(NULL, 796 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 797 path); 798 return ERR_PTR(-EAGAIN); 799 } 800 801 error = lookup_bdev(path, &path_devt); 802 if (error) { 803 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 804 path, error); 805 return ERR_PTR(error); 806 } 807 808 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 809 810 if (!fs_devices) { 811 fs_devices = alloc_fs_devices(disk_super->fsid); 812 if (IS_ERR(fs_devices)) 813 return ERR_CAST(fs_devices); 814 815 if (has_metadata_uuid) 816 memcpy(fs_devices->metadata_uuid, 817 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 818 819 if (same_fsid_diff_dev) { 820 generate_random_uuid(fs_devices->fsid); 821 fs_devices->temp_fsid = true; 822 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n", 823 path, MAJOR(path_devt), MINOR(path_devt), 824 fs_devices->fsid); 825 } 826 827 mutex_lock(&fs_devices->device_list_mutex); 828 list_add(&fs_devices->fs_list, &fs_uuids); 829 830 device = NULL; 831 } else { 832 struct btrfs_dev_lookup_args args = { 833 .devid = devid, 834 .uuid = disk_super->dev_item.uuid, 835 }; 836 837 mutex_lock(&fs_devices->device_list_mutex); 838 device = btrfs_find_device(fs_devices, &args); 839 840 if (found_transid > fs_devices->latest_generation) { 841 memcpy(fs_devices->fsid, disk_super->fsid, 842 BTRFS_FSID_SIZE); 843 memcpy(fs_devices->metadata_uuid, 844 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 845 } 846 } 847 848 if (!device) { 849 unsigned int nofs_flag; 850 851 if (fs_devices->opened) { 852 btrfs_err(NULL, 853 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 854 path, MAJOR(path_devt), MINOR(path_devt), 855 fs_devices->fsid, current->comm, 856 task_pid_nr(current)); 857 mutex_unlock(&fs_devices->device_list_mutex); 858 return ERR_PTR(-EBUSY); 859 } 860 861 nofs_flag = memalloc_nofs_save(); 862 device = btrfs_alloc_device(NULL, &devid, 863 disk_super->dev_item.uuid, path); 864 memalloc_nofs_restore(nofs_flag); 865 if (IS_ERR(device)) { 866 mutex_unlock(&fs_devices->device_list_mutex); 867 /* we can safely leave the fs_devices entry around */ 868 return device; 869 } 870 871 device->devt = path_devt; 872 873 list_add_rcu(&device->dev_list, &fs_devices->devices); 874 fs_devices->num_devices++; 875 876 device->fs_devices = fs_devices; 877 *new_device_added = true; 878 879 if (disk_super->label[0]) 880 pr_info( 881 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 882 disk_super->label, devid, found_transid, path, 883 MAJOR(path_devt), MINOR(path_devt), 884 current->comm, task_pid_nr(current)); 885 else 886 pr_info( 887 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 888 disk_super->fsid, devid, found_transid, path, 889 MAJOR(path_devt), MINOR(path_devt), 890 current->comm, task_pid_nr(current)); 891 892 } else if (!device->name || !is_same_device(device, path)) { 893 /* 894 * When FS is already mounted. 895 * 1. If you are here and if the device->name is NULL that 896 * means this device was missing at time of FS mount. 897 * 2. If you are here and if the device->name is different 898 * from 'path' that means either 899 * a. The same device disappeared and reappeared with 900 * different name. or 901 * b. The missing-disk-which-was-replaced, has 902 * reappeared now. 903 * 904 * We must allow 1 and 2a above. But 2b would be a spurious 905 * and unintentional. 906 * 907 * Further in case of 1 and 2a above, the disk at 'path' 908 * would have missed some transaction when it was away and 909 * in case of 2a the stale bdev has to be updated as well. 910 * 2b must not be allowed at all time. 911 */ 912 913 /* 914 * For now, we do allow update to btrfs_fs_device through the 915 * btrfs dev scan cli after FS has been mounted. We're still 916 * tracking a problem where systems fail mount by subvolume id 917 * when we reject replacement on a mounted FS. 918 */ 919 if (!fs_devices->opened && found_transid < device->generation) { 920 /* 921 * That is if the FS is _not_ mounted and if you 922 * are here, that means there is more than one 923 * disk with same uuid and devid.We keep the one 924 * with larger generation number or the last-in if 925 * generation are equal. 926 */ 927 mutex_unlock(&fs_devices->device_list_mutex); 928 btrfs_err(NULL, 929 "device %s already registered with a higher generation, found %llu expect %llu", 930 path, found_transid, device->generation); 931 return ERR_PTR(-EEXIST); 932 } 933 934 /* 935 * We are going to replace the device path for a given devid, 936 * make sure it's the same device if the device is mounted 937 * 938 * NOTE: the device->fs_info may not be reliable here so pass 939 * in a NULL to message helpers instead. This avoids a possible 940 * use-after-free when the fs_info and fs_info->sb are already 941 * torn down. 942 */ 943 if (device->bdev) { 944 if (device->devt != path_devt) { 945 mutex_unlock(&fs_devices->device_list_mutex); 946 btrfs_warn_in_rcu(NULL, 947 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 948 path, devid, found_transid, 949 current->comm, 950 task_pid_nr(current)); 951 return ERR_PTR(-EEXIST); 952 } 953 btrfs_info_in_rcu(NULL, 954 "devid %llu device path %s changed to %s scanned by %s (%d)", 955 devid, btrfs_dev_name(device), 956 path, current->comm, 957 task_pid_nr(current)); 958 } 959 960 name = rcu_string_strdup(path, GFP_NOFS); 961 if (!name) { 962 mutex_unlock(&fs_devices->device_list_mutex); 963 return ERR_PTR(-ENOMEM); 964 } 965 rcu_string_free(device->name); 966 rcu_assign_pointer(device->name, name); 967 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 968 fs_devices->missing_devices--; 969 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 970 } 971 device->devt = path_devt; 972 } 973 974 /* 975 * Unmount does not free the btrfs_device struct but would zero 976 * generation along with most of the other members. So just update 977 * it back. We need it to pick the disk with largest generation 978 * (as above). 979 */ 980 if (!fs_devices->opened) { 981 device->generation = found_transid; 982 fs_devices->latest_generation = max_t(u64, found_transid, 983 fs_devices->latest_generation); 984 } 985 986 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 987 988 mutex_unlock(&fs_devices->device_list_mutex); 989 return device; 990 } 991 992 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 993 { 994 struct btrfs_fs_devices *fs_devices; 995 struct btrfs_device *device; 996 struct btrfs_device *orig_dev; 997 int ret = 0; 998 999 lockdep_assert_held(&uuid_mutex); 1000 1001 fs_devices = alloc_fs_devices(orig->fsid); 1002 if (IS_ERR(fs_devices)) 1003 return fs_devices; 1004 1005 fs_devices->total_devices = orig->total_devices; 1006 1007 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1008 const char *dev_path = NULL; 1009 1010 /* 1011 * This is ok to do without RCU read locked because we hold the 1012 * uuid mutex so nothing we touch in here is going to disappear. 1013 */ 1014 if (orig_dev->name) 1015 dev_path = orig_dev->name->str; 1016 1017 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1018 orig_dev->uuid, dev_path); 1019 if (IS_ERR(device)) { 1020 ret = PTR_ERR(device); 1021 goto error; 1022 } 1023 1024 if (orig_dev->zone_info) { 1025 struct btrfs_zoned_device_info *zone_info; 1026 1027 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1028 if (!zone_info) { 1029 btrfs_free_device(device); 1030 ret = -ENOMEM; 1031 goto error; 1032 } 1033 device->zone_info = zone_info; 1034 } 1035 1036 list_add(&device->dev_list, &fs_devices->devices); 1037 device->fs_devices = fs_devices; 1038 fs_devices->num_devices++; 1039 } 1040 return fs_devices; 1041 error: 1042 free_fs_devices(fs_devices); 1043 return ERR_PTR(ret); 1044 } 1045 1046 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1047 struct btrfs_device **latest_dev) 1048 { 1049 struct btrfs_device *device, *next; 1050 1051 /* This is the initialized path, it is safe to release the devices. */ 1052 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1053 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1054 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1055 &device->dev_state) && 1056 !test_bit(BTRFS_DEV_STATE_MISSING, 1057 &device->dev_state) && 1058 (!*latest_dev || 1059 device->generation > (*latest_dev)->generation)) { 1060 *latest_dev = device; 1061 } 1062 continue; 1063 } 1064 1065 /* 1066 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1067 * in btrfs_init_dev_replace() so just continue. 1068 */ 1069 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1070 continue; 1071 1072 if (device->bdev_file) { 1073 fput(device->bdev_file); 1074 device->bdev = NULL; 1075 device->bdev_file = NULL; 1076 fs_devices->open_devices--; 1077 } 1078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1079 list_del_init(&device->dev_alloc_list); 1080 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1081 fs_devices->rw_devices--; 1082 } 1083 list_del_init(&device->dev_list); 1084 fs_devices->num_devices--; 1085 btrfs_free_device(device); 1086 } 1087 1088 } 1089 1090 /* 1091 * After we have read the system tree and know devids belonging to this 1092 * filesystem, remove the device which does not belong there. 1093 */ 1094 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1095 { 1096 struct btrfs_device *latest_dev = NULL; 1097 struct btrfs_fs_devices *seed_dev; 1098 1099 mutex_lock(&uuid_mutex); 1100 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1101 1102 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1103 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1104 1105 fs_devices->latest_dev = latest_dev; 1106 1107 mutex_unlock(&uuid_mutex); 1108 } 1109 1110 static void btrfs_close_bdev(struct btrfs_device *device) 1111 { 1112 if (!device->bdev) 1113 return; 1114 1115 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1116 sync_blockdev(device->bdev); 1117 invalidate_bdev(device->bdev); 1118 } 1119 1120 fput(device->bdev_file); 1121 } 1122 1123 static void btrfs_close_one_device(struct btrfs_device *device) 1124 { 1125 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1126 1127 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1128 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1129 list_del_init(&device->dev_alloc_list); 1130 fs_devices->rw_devices--; 1131 } 1132 1133 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1134 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1135 1136 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1137 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1138 fs_devices->missing_devices--; 1139 } 1140 1141 btrfs_close_bdev(device); 1142 if (device->bdev) { 1143 fs_devices->open_devices--; 1144 device->bdev = NULL; 1145 device->bdev_file = NULL; 1146 } 1147 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1148 btrfs_destroy_dev_zone_info(device); 1149 1150 device->fs_info = NULL; 1151 atomic_set(&device->dev_stats_ccnt, 0); 1152 extent_io_tree_release(&device->alloc_state); 1153 1154 /* 1155 * Reset the flush error record. We might have a transient flush error 1156 * in this mount, and if so we aborted the current transaction and set 1157 * the fs to an error state, guaranteeing no super blocks can be further 1158 * committed. However that error might be transient and if we unmount the 1159 * filesystem and mount it again, we should allow the mount to succeed 1160 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1161 * filesystem again we still get flush errors, then we will again abort 1162 * any transaction and set the error state, guaranteeing no commits of 1163 * unsafe super blocks. 1164 */ 1165 device->last_flush_error = 0; 1166 1167 /* Verify the device is back in a pristine state */ 1168 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1169 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1170 WARN_ON(!list_empty(&device->dev_alloc_list)); 1171 WARN_ON(!list_empty(&device->post_commit_list)); 1172 } 1173 1174 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1175 { 1176 struct btrfs_device *device, *tmp; 1177 1178 lockdep_assert_held(&uuid_mutex); 1179 1180 if (--fs_devices->opened > 0) 1181 return; 1182 1183 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1184 btrfs_close_one_device(device); 1185 1186 WARN_ON(fs_devices->open_devices); 1187 WARN_ON(fs_devices->rw_devices); 1188 fs_devices->opened = 0; 1189 fs_devices->seeding = false; 1190 fs_devices->fs_info = NULL; 1191 } 1192 1193 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1194 { 1195 LIST_HEAD(list); 1196 struct btrfs_fs_devices *tmp; 1197 1198 mutex_lock(&uuid_mutex); 1199 close_fs_devices(fs_devices); 1200 if (!fs_devices->opened) { 1201 list_splice_init(&fs_devices->seed_list, &list); 1202 1203 /* 1204 * If the struct btrfs_fs_devices is not assembled with any 1205 * other device, it can be re-initialized during the next mount 1206 * without the needing device-scan step. Therefore, it can be 1207 * fully freed. 1208 */ 1209 if (fs_devices->num_devices == 1) { 1210 list_del(&fs_devices->fs_list); 1211 free_fs_devices(fs_devices); 1212 } 1213 } 1214 1215 1216 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1217 close_fs_devices(fs_devices); 1218 list_del(&fs_devices->seed_list); 1219 free_fs_devices(fs_devices); 1220 } 1221 mutex_unlock(&uuid_mutex); 1222 } 1223 1224 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1225 blk_mode_t flags, void *holder) 1226 { 1227 struct btrfs_device *device; 1228 struct btrfs_device *latest_dev = NULL; 1229 struct btrfs_device *tmp_device; 1230 s64 __maybe_unused value = 0; 1231 int ret = 0; 1232 1233 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1234 dev_list) { 1235 int ret2; 1236 1237 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); 1238 if (ret2 == 0 && 1239 (!latest_dev || device->generation > latest_dev->generation)) { 1240 latest_dev = device; 1241 } else if (ret2 == -ENODATA) { 1242 fs_devices->num_devices--; 1243 list_del(&device->dev_list); 1244 btrfs_free_device(device); 1245 } 1246 if (ret == 0 && ret2 != 0) 1247 ret = ret2; 1248 } 1249 1250 if (fs_devices->open_devices == 0) { 1251 if (ret) 1252 return ret; 1253 return -EINVAL; 1254 } 1255 1256 fs_devices->opened = 1; 1257 fs_devices->latest_dev = latest_dev; 1258 fs_devices->total_rw_bytes = 0; 1259 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1260 #ifdef CONFIG_BTRFS_EXPERIMENTAL 1261 fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ; 1262 fs_devices->read_devid = latest_dev->devid; 1263 fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(), 1264 &value); 1265 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1266 fs_devices->collect_fs_stats = true; 1267 1268 if (value) { 1269 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1270 fs_devices->rr_min_contig_read = value; 1271 if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID) 1272 fs_devices->read_devid = value; 1273 } 1274 #else 1275 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1276 #endif 1277 1278 return 0; 1279 } 1280 1281 static int devid_cmp(void *priv, const struct list_head *a, 1282 const struct list_head *b) 1283 { 1284 const struct btrfs_device *dev1, *dev2; 1285 1286 dev1 = list_entry(a, struct btrfs_device, dev_list); 1287 dev2 = list_entry(b, struct btrfs_device, dev_list); 1288 1289 if (dev1->devid < dev2->devid) 1290 return -1; 1291 else if (dev1->devid > dev2->devid) 1292 return 1; 1293 return 0; 1294 } 1295 1296 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1297 blk_mode_t flags, void *holder) 1298 { 1299 int ret; 1300 1301 lockdep_assert_held(&uuid_mutex); 1302 /* 1303 * The device_list_mutex cannot be taken here in case opening the 1304 * underlying device takes further locks like open_mutex. 1305 * 1306 * We also don't need the lock here as this is called during mount and 1307 * exclusion is provided by uuid_mutex 1308 */ 1309 1310 if (fs_devices->opened) { 1311 fs_devices->opened++; 1312 ret = 0; 1313 } else { 1314 list_sort(NULL, &fs_devices->devices, devid_cmp); 1315 ret = open_fs_devices(fs_devices, flags, holder); 1316 } 1317 1318 return ret; 1319 } 1320 1321 void btrfs_release_disk_super(struct btrfs_super_block *super) 1322 { 1323 struct page *page = virt_to_page(super); 1324 1325 put_page(page); 1326 } 1327 1328 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1329 u64 bytenr, u64 bytenr_orig) 1330 { 1331 struct btrfs_super_block *disk_super; 1332 struct page *page; 1333 void *p; 1334 pgoff_t index; 1335 1336 /* make sure our super fits in the device */ 1337 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1338 return ERR_PTR(-EINVAL); 1339 1340 /* make sure our super fits in the page */ 1341 if (sizeof(*disk_super) > PAGE_SIZE) 1342 return ERR_PTR(-EINVAL); 1343 1344 /* make sure our super doesn't straddle pages on disk */ 1345 index = bytenr >> PAGE_SHIFT; 1346 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1347 return ERR_PTR(-EINVAL); 1348 1349 /* pull in the page with our super */ 1350 page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL); 1351 1352 if (IS_ERR(page)) 1353 return ERR_CAST(page); 1354 1355 p = page_address(page); 1356 1357 /* align our pointer to the offset of the super block */ 1358 disk_super = p + offset_in_page(bytenr); 1359 1360 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1361 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1362 btrfs_release_disk_super(p); 1363 return ERR_PTR(-EINVAL); 1364 } 1365 1366 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1367 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1368 1369 return disk_super; 1370 } 1371 1372 int btrfs_forget_devices(dev_t devt) 1373 { 1374 int ret; 1375 1376 mutex_lock(&uuid_mutex); 1377 ret = btrfs_free_stale_devices(devt, NULL); 1378 mutex_unlock(&uuid_mutex); 1379 1380 return ret; 1381 } 1382 1383 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, 1384 const char *path, dev_t devt, 1385 bool mount_arg_dev) 1386 { 1387 struct btrfs_fs_devices *fs_devices; 1388 1389 /* 1390 * Do not skip device registration for mounted devices with matching 1391 * maj:min but different paths. Booting without initrd relies on 1392 * /dev/root initially, later replaced with the actual root device. 1393 * A successful scan ensures grub2-probe selects the correct device. 1394 */ 1395 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 1396 struct btrfs_device *device; 1397 1398 mutex_lock(&fs_devices->device_list_mutex); 1399 1400 if (!fs_devices->opened) { 1401 mutex_unlock(&fs_devices->device_list_mutex); 1402 continue; 1403 } 1404 1405 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1406 if (device->bdev && (device->bdev->bd_dev == devt) && 1407 strcmp(device->name->str, path) != 0) { 1408 mutex_unlock(&fs_devices->device_list_mutex); 1409 1410 /* Do not skip registration. */ 1411 return false; 1412 } 1413 } 1414 mutex_unlock(&fs_devices->device_list_mutex); 1415 } 1416 1417 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1418 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) 1419 return true; 1420 1421 return false; 1422 } 1423 1424 /* 1425 * Look for a btrfs signature on a device. This may be called out of the mount path 1426 * and we are not allowed to call set_blocksize during the scan. The superblock 1427 * is read via pagecache. 1428 * 1429 * With @mount_arg_dev it's a scan during mount time that will always register 1430 * the device or return an error. Multi-device and seeding devices are registered 1431 * in both cases. 1432 */ 1433 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 1434 bool mount_arg_dev) 1435 { 1436 struct btrfs_super_block *disk_super; 1437 bool new_device_added = false; 1438 struct btrfs_device *device = NULL; 1439 struct file *bdev_file; 1440 u64 bytenr; 1441 dev_t devt; 1442 int ret; 1443 1444 lockdep_assert_held(&uuid_mutex); 1445 1446 /* 1447 * Avoid an exclusive open here, as the systemd-udev may initiate the 1448 * device scan which may race with the user's mount or mkfs command, 1449 * resulting in failure. 1450 * Since the device scan is solely for reading purposes, there is no 1451 * need for an exclusive open. Additionally, the devices are read again 1452 * during the mount process. It is ok to get some inconsistent 1453 * values temporarily, as the device paths of the fsid are the only 1454 * required information for assembling the volume. 1455 */ 1456 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL); 1457 if (IS_ERR(bdev_file)) 1458 return ERR_CAST(bdev_file); 1459 1460 /* 1461 * We would like to check all the super blocks, but doing so would 1462 * allow a mount to succeed after a mkfs from a different filesystem. 1463 * Currently, recovery from a bad primary btrfs superblock is done 1464 * using the userspace command 'btrfs check --super'. 1465 */ 1466 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr); 1467 if (ret) { 1468 device = ERR_PTR(ret); 1469 goto error_bdev_put; 1470 } 1471 1472 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr, 1473 btrfs_sb_offset(0)); 1474 if (IS_ERR(disk_super)) { 1475 device = ERR_CAST(disk_super); 1476 goto error_bdev_put; 1477 } 1478 1479 devt = file_bdev(bdev_file)->bd_dev; 1480 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { 1481 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n", 1482 path, MAJOR(devt), MINOR(devt)); 1483 1484 btrfs_free_stale_devices(devt, NULL); 1485 1486 device = NULL; 1487 goto free_disk_super; 1488 } 1489 1490 device = device_list_add(path, disk_super, &new_device_added); 1491 if (!IS_ERR(device) && new_device_added) 1492 btrfs_free_stale_devices(device->devt, device); 1493 1494 free_disk_super: 1495 btrfs_release_disk_super(disk_super); 1496 1497 error_bdev_put: 1498 fput(bdev_file); 1499 1500 return device; 1501 } 1502 1503 /* 1504 * Try to find a chunk that intersects [start, start + len] range and when one 1505 * such is found, record the end of it in *start 1506 */ 1507 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1508 u64 len) 1509 { 1510 u64 physical_start, physical_end; 1511 1512 lockdep_assert_held(&device->fs_info->chunk_mutex); 1513 1514 if (find_first_extent_bit(&device->alloc_state, *start, 1515 &physical_start, &physical_end, 1516 CHUNK_ALLOCATED, NULL)) { 1517 1518 if (in_range(physical_start, *start, len) || 1519 in_range(*start, physical_start, 1520 physical_end + 1 - physical_start)) { 1521 *start = physical_end + 1; 1522 return true; 1523 } 1524 } 1525 return false; 1526 } 1527 1528 static u64 dev_extent_search_start(struct btrfs_device *device) 1529 { 1530 switch (device->fs_devices->chunk_alloc_policy) { 1531 case BTRFS_CHUNK_ALLOC_REGULAR: 1532 return BTRFS_DEVICE_RANGE_RESERVED; 1533 case BTRFS_CHUNK_ALLOC_ZONED: 1534 /* 1535 * We don't care about the starting region like regular 1536 * allocator, because we anyway use/reserve the first two zones 1537 * for superblock logging. 1538 */ 1539 return 0; 1540 default: 1541 BUG(); 1542 } 1543 } 1544 1545 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1546 u64 *hole_start, u64 *hole_size, 1547 u64 num_bytes) 1548 { 1549 u64 zone_size = device->zone_info->zone_size; 1550 u64 pos; 1551 int ret; 1552 bool changed = false; 1553 1554 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1555 1556 while (*hole_size > 0) { 1557 pos = btrfs_find_allocatable_zones(device, *hole_start, 1558 *hole_start + *hole_size, 1559 num_bytes); 1560 if (pos != *hole_start) { 1561 *hole_size = *hole_start + *hole_size - pos; 1562 *hole_start = pos; 1563 changed = true; 1564 if (*hole_size < num_bytes) 1565 break; 1566 } 1567 1568 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1569 1570 /* Range is ensured to be empty */ 1571 if (!ret) 1572 return changed; 1573 1574 /* Given hole range was invalid (outside of device) */ 1575 if (ret == -ERANGE) { 1576 *hole_start += *hole_size; 1577 *hole_size = 0; 1578 return true; 1579 } 1580 1581 *hole_start += zone_size; 1582 *hole_size -= zone_size; 1583 changed = true; 1584 } 1585 1586 return changed; 1587 } 1588 1589 /* 1590 * Check if specified hole is suitable for allocation. 1591 * 1592 * @device: the device which we have the hole 1593 * @hole_start: starting position of the hole 1594 * @hole_size: the size of the hole 1595 * @num_bytes: the size of the free space that we need 1596 * 1597 * This function may modify @hole_start and @hole_size to reflect the suitable 1598 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1599 */ 1600 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1601 u64 *hole_size, u64 num_bytes) 1602 { 1603 bool changed = false; 1604 u64 hole_end = *hole_start + *hole_size; 1605 1606 for (;;) { 1607 /* 1608 * Check before we set max_hole_start, otherwise we could end up 1609 * sending back this offset anyway. 1610 */ 1611 if (contains_pending_extent(device, hole_start, *hole_size)) { 1612 if (hole_end >= *hole_start) 1613 *hole_size = hole_end - *hole_start; 1614 else 1615 *hole_size = 0; 1616 changed = true; 1617 } 1618 1619 switch (device->fs_devices->chunk_alloc_policy) { 1620 case BTRFS_CHUNK_ALLOC_REGULAR: 1621 /* No extra check */ 1622 break; 1623 case BTRFS_CHUNK_ALLOC_ZONED: 1624 if (dev_extent_hole_check_zoned(device, hole_start, 1625 hole_size, num_bytes)) { 1626 changed = true; 1627 /* 1628 * The changed hole can contain pending extent. 1629 * Loop again to check that. 1630 */ 1631 continue; 1632 } 1633 break; 1634 default: 1635 BUG(); 1636 } 1637 1638 break; 1639 } 1640 1641 return changed; 1642 } 1643 1644 /* 1645 * Find free space in the specified device. 1646 * 1647 * @device: the device which we search the free space in 1648 * @num_bytes: the size of the free space that we need 1649 * @search_start: the position from which to begin the search 1650 * @start: store the start of the free space. 1651 * @len: the size of the free space. that we find, or the size 1652 * of the max free space if we don't find suitable free space 1653 * 1654 * This does a pretty simple search, the expectation is that it is called very 1655 * infrequently and that a given device has a small number of extents. 1656 * 1657 * @start is used to store the start of the free space if we find. But if we 1658 * don't find suitable free space, it will be used to store the start position 1659 * of the max free space. 1660 * 1661 * @len is used to store the size of the free space that we find. 1662 * But if we don't find suitable free space, it is used to store the size of 1663 * the max free space. 1664 * 1665 * NOTE: This function will search *commit* root of device tree, and does extra 1666 * check to ensure dev extents are not double allocated. 1667 * This makes the function safe to allocate dev extents but may not report 1668 * correct usable device space, as device extent freed in current transaction 1669 * is not reported as available. 1670 */ 1671 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1672 u64 *start, u64 *len) 1673 { 1674 struct btrfs_fs_info *fs_info = device->fs_info; 1675 struct btrfs_root *root = fs_info->dev_root; 1676 struct btrfs_key key; 1677 struct btrfs_dev_extent *dev_extent; 1678 struct btrfs_path *path; 1679 u64 search_start; 1680 u64 hole_size; 1681 u64 max_hole_start; 1682 u64 max_hole_size = 0; 1683 u64 extent_end; 1684 u64 search_end = device->total_bytes; 1685 int ret; 1686 int slot; 1687 struct extent_buffer *l; 1688 1689 search_start = dev_extent_search_start(device); 1690 max_hole_start = search_start; 1691 1692 WARN_ON(device->zone_info && 1693 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1694 1695 path = btrfs_alloc_path(); 1696 if (!path) { 1697 ret = -ENOMEM; 1698 goto out; 1699 } 1700 again: 1701 if (search_start >= search_end || 1702 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1703 ret = -ENOSPC; 1704 goto out; 1705 } 1706 1707 path->reada = READA_FORWARD; 1708 path->search_commit_root = 1; 1709 path->skip_locking = 1; 1710 1711 key.objectid = device->devid; 1712 key.type = BTRFS_DEV_EXTENT_KEY; 1713 key.offset = search_start; 1714 1715 ret = btrfs_search_backwards(root, &key, path); 1716 if (ret < 0) 1717 goto out; 1718 1719 while (search_start < search_end) { 1720 l = path->nodes[0]; 1721 slot = path->slots[0]; 1722 if (slot >= btrfs_header_nritems(l)) { 1723 ret = btrfs_next_leaf(root, path); 1724 if (ret == 0) 1725 continue; 1726 if (ret < 0) 1727 goto out; 1728 1729 break; 1730 } 1731 btrfs_item_key_to_cpu(l, &key, slot); 1732 1733 if (key.objectid < device->devid) 1734 goto next; 1735 1736 if (key.objectid > device->devid) 1737 break; 1738 1739 if (key.type != BTRFS_DEV_EXTENT_KEY) 1740 goto next; 1741 1742 if (key.offset > search_end) 1743 break; 1744 1745 if (key.offset > search_start) { 1746 hole_size = key.offset - search_start; 1747 dev_extent_hole_check(device, &search_start, &hole_size, 1748 num_bytes); 1749 1750 if (hole_size > max_hole_size) { 1751 max_hole_start = search_start; 1752 max_hole_size = hole_size; 1753 } 1754 1755 /* 1756 * If this free space is greater than which we need, 1757 * it must be the max free space that we have found 1758 * until now, so max_hole_start must point to the start 1759 * of this free space and the length of this free space 1760 * is stored in max_hole_size. Thus, we return 1761 * max_hole_start and max_hole_size and go back to the 1762 * caller. 1763 */ 1764 if (hole_size >= num_bytes) { 1765 ret = 0; 1766 goto out; 1767 } 1768 } 1769 1770 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1771 extent_end = key.offset + btrfs_dev_extent_length(l, 1772 dev_extent); 1773 if (extent_end > search_start) 1774 search_start = extent_end; 1775 next: 1776 path->slots[0]++; 1777 cond_resched(); 1778 } 1779 1780 /* 1781 * At this point, search_start should be the end of 1782 * allocated dev extents, and when shrinking the device, 1783 * search_end may be smaller than search_start. 1784 */ 1785 if (search_end > search_start) { 1786 hole_size = search_end - search_start; 1787 if (dev_extent_hole_check(device, &search_start, &hole_size, 1788 num_bytes)) { 1789 btrfs_release_path(path); 1790 goto again; 1791 } 1792 1793 if (hole_size > max_hole_size) { 1794 max_hole_start = search_start; 1795 max_hole_size = hole_size; 1796 } 1797 } 1798 1799 /* See above. */ 1800 if (max_hole_size < num_bytes) 1801 ret = -ENOSPC; 1802 else 1803 ret = 0; 1804 1805 ASSERT(max_hole_start + max_hole_size <= search_end); 1806 out: 1807 btrfs_free_path(path); 1808 *start = max_hole_start; 1809 if (len) 1810 *len = max_hole_size; 1811 return ret; 1812 } 1813 1814 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1815 struct btrfs_device *device, 1816 u64 start, u64 *dev_extent_len) 1817 { 1818 struct btrfs_fs_info *fs_info = device->fs_info; 1819 struct btrfs_root *root = fs_info->dev_root; 1820 int ret; 1821 struct btrfs_path *path; 1822 struct btrfs_key key; 1823 struct btrfs_key found_key; 1824 struct extent_buffer *leaf = NULL; 1825 struct btrfs_dev_extent *extent = NULL; 1826 1827 path = btrfs_alloc_path(); 1828 if (!path) 1829 return -ENOMEM; 1830 1831 key.objectid = device->devid; 1832 key.type = BTRFS_DEV_EXTENT_KEY; 1833 key.offset = start; 1834 again: 1835 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1836 if (ret > 0) { 1837 ret = btrfs_previous_item(root, path, key.objectid, 1838 BTRFS_DEV_EXTENT_KEY); 1839 if (ret) 1840 goto out; 1841 leaf = path->nodes[0]; 1842 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1843 extent = btrfs_item_ptr(leaf, path->slots[0], 1844 struct btrfs_dev_extent); 1845 BUG_ON(found_key.offset > start || found_key.offset + 1846 btrfs_dev_extent_length(leaf, extent) < start); 1847 key = found_key; 1848 btrfs_release_path(path); 1849 goto again; 1850 } else if (ret == 0) { 1851 leaf = path->nodes[0]; 1852 extent = btrfs_item_ptr(leaf, path->slots[0], 1853 struct btrfs_dev_extent); 1854 } else { 1855 goto out; 1856 } 1857 1858 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1859 1860 ret = btrfs_del_item(trans, root, path); 1861 if (ret == 0) 1862 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1863 out: 1864 btrfs_free_path(path); 1865 return ret; 1866 } 1867 1868 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1869 { 1870 struct rb_node *n; 1871 u64 ret = 0; 1872 1873 read_lock(&fs_info->mapping_tree_lock); 1874 n = rb_last(&fs_info->mapping_tree.rb_root); 1875 if (n) { 1876 struct btrfs_chunk_map *map; 1877 1878 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1879 ret = map->start + map->chunk_len; 1880 } 1881 read_unlock(&fs_info->mapping_tree_lock); 1882 1883 return ret; 1884 } 1885 1886 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1887 u64 *devid_ret) 1888 { 1889 int ret; 1890 struct btrfs_key key; 1891 struct btrfs_key found_key; 1892 struct btrfs_path *path; 1893 1894 path = btrfs_alloc_path(); 1895 if (!path) 1896 return -ENOMEM; 1897 1898 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1899 key.type = BTRFS_DEV_ITEM_KEY; 1900 key.offset = (u64)-1; 1901 1902 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1903 if (ret < 0) 1904 goto error; 1905 1906 if (ret == 0) { 1907 /* Corruption */ 1908 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1909 ret = -EUCLEAN; 1910 goto error; 1911 } 1912 1913 ret = btrfs_previous_item(fs_info->chunk_root, path, 1914 BTRFS_DEV_ITEMS_OBJECTID, 1915 BTRFS_DEV_ITEM_KEY); 1916 if (ret) { 1917 *devid_ret = 1; 1918 } else { 1919 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1920 path->slots[0]); 1921 *devid_ret = found_key.offset + 1; 1922 } 1923 ret = 0; 1924 error: 1925 btrfs_free_path(path); 1926 return ret; 1927 } 1928 1929 /* 1930 * the device information is stored in the chunk root 1931 * the btrfs_device struct should be fully filled in 1932 */ 1933 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1934 struct btrfs_device *device) 1935 { 1936 int ret; 1937 struct btrfs_path *path; 1938 struct btrfs_dev_item *dev_item; 1939 struct extent_buffer *leaf; 1940 struct btrfs_key key; 1941 unsigned long ptr; 1942 1943 path = btrfs_alloc_path(); 1944 if (!path) 1945 return -ENOMEM; 1946 1947 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1948 key.type = BTRFS_DEV_ITEM_KEY; 1949 key.offset = device->devid; 1950 1951 btrfs_reserve_chunk_metadata(trans, true); 1952 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1953 &key, sizeof(*dev_item)); 1954 btrfs_trans_release_chunk_metadata(trans); 1955 if (ret) 1956 goto out; 1957 1958 leaf = path->nodes[0]; 1959 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1960 1961 btrfs_set_device_id(leaf, dev_item, device->devid); 1962 btrfs_set_device_generation(leaf, dev_item, 0); 1963 btrfs_set_device_type(leaf, dev_item, device->type); 1964 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1965 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1966 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1967 btrfs_set_device_total_bytes(leaf, dev_item, 1968 btrfs_device_get_disk_total_bytes(device)); 1969 btrfs_set_device_bytes_used(leaf, dev_item, 1970 btrfs_device_get_bytes_used(device)); 1971 btrfs_set_device_group(leaf, dev_item, 0); 1972 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1973 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1974 btrfs_set_device_start_offset(leaf, dev_item, 0); 1975 1976 ptr = btrfs_device_uuid(dev_item); 1977 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1978 ptr = btrfs_device_fsid(dev_item); 1979 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1980 ptr, BTRFS_FSID_SIZE); 1981 1982 ret = 0; 1983 out: 1984 btrfs_free_path(path); 1985 return ret; 1986 } 1987 1988 /* 1989 * Function to update ctime/mtime for a given device path. 1990 * Mainly used for ctime/mtime based probe like libblkid. 1991 * 1992 * We don't care about errors here, this is just to be kind to userspace. 1993 */ 1994 static void update_dev_time(const char *device_path) 1995 { 1996 struct path path; 1997 int ret; 1998 1999 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 2000 if (ret) 2001 return; 2002 2003 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 2004 path_put(&path); 2005 } 2006 2007 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 2008 struct btrfs_device *device) 2009 { 2010 struct btrfs_root *root = device->fs_info->chunk_root; 2011 int ret; 2012 struct btrfs_path *path; 2013 struct btrfs_key key; 2014 2015 path = btrfs_alloc_path(); 2016 if (!path) 2017 return -ENOMEM; 2018 2019 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2020 key.type = BTRFS_DEV_ITEM_KEY; 2021 key.offset = device->devid; 2022 2023 btrfs_reserve_chunk_metadata(trans, false); 2024 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2025 btrfs_trans_release_chunk_metadata(trans); 2026 if (ret) { 2027 if (ret > 0) 2028 ret = -ENOENT; 2029 goto out; 2030 } 2031 2032 ret = btrfs_del_item(trans, root, path); 2033 out: 2034 btrfs_free_path(path); 2035 return ret; 2036 } 2037 2038 /* 2039 * Verify that @num_devices satisfies the RAID profile constraints in the whole 2040 * filesystem. It's up to the caller to adjust that number regarding eg. device 2041 * replace. 2042 */ 2043 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 2044 u64 num_devices) 2045 { 2046 u64 all_avail; 2047 unsigned seq; 2048 int i; 2049 2050 do { 2051 seq = read_seqbegin(&fs_info->profiles_lock); 2052 2053 all_avail = fs_info->avail_data_alloc_bits | 2054 fs_info->avail_system_alloc_bits | 2055 fs_info->avail_metadata_alloc_bits; 2056 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2057 2058 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2059 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2060 continue; 2061 2062 if (num_devices < btrfs_raid_array[i].devs_min) 2063 return btrfs_raid_array[i].mindev_error; 2064 } 2065 2066 return 0; 2067 } 2068 2069 static struct btrfs_device * btrfs_find_next_active_device( 2070 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2071 { 2072 struct btrfs_device *next_device; 2073 2074 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2075 if (next_device != device && 2076 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2077 && next_device->bdev) 2078 return next_device; 2079 } 2080 2081 return NULL; 2082 } 2083 2084 /* 2085 * Helper function to check if the given device is part of s_bdev / latest_dev 2086 * and replace it with the provided or the next active device, in the context 2087 * where this function called, there should be always be another device (or 2088 * this_dev) which is active. 2089 */ 2090 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2091 struct btrfs_device *next_device) 2092 { 2093 struct btrfs_fs_info *fs_info = device->fs_info; 2094 2095 if (!next_device) 2096 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2097 device); 2098 ASSERT(next_device); 2099 2100 if (fs_info->sb->s_bdev && 2101 (fs_info->sb->s_bdev == device->bdev)) 2102 fs_info->sb->s_bdev = next_device->bdev; 2103 2104 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2105 fs_info->fs_devices->latest_dev = next_device; 2106 } 2107 2108 /* 2109 * Return btrfs_fs_devices::num_devices excluding the device that's being 2110 * currently replaced. 2111 */ 2112 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2113 { 2114 u64 num_devices = fs_info->fs_devices->num_devices; 2115 2116 down_read(&fs_info->dev_replace.rwsem); 2117 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2118 ASSERT(num_devices > 1); 2119 num_devices--; 2120 } 2121 up_read(&fs_info->dev_replace.rwsem); 2122 2123 return num_devices; 2124 } 2125 2126 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2127 struct block_device *bdev, int copy_num) 2128 { 2129 struct btrfs_super_block *disk_super; 2130 const size_t len = sizeof(disk_super->magic); 2131 const u64 bytenr = btrfs_sb_offset(copy_num); 2132 int ret; 2133 2134 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); 2135 if (IS_ERR(disk_super)) 2136 return; 2137 2138 memset(&disk_super->magic, 0, len); 2139 folio_mark_dirty(virt_to_folio(disk_super)); 2140 btrfs_release_disk_super(disk_super); 2141 2142 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2143 if (ret) 2144 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2145 copy_num, ret); 2146 } 2147 2148 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) 2149 { 2150 int copy_num; 2151 struct block_device *bdev = device->bdev; 2152 2153 if (!bdev) 2154 return; 2155 2156 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2157 if (bdev_is_zoned(bdev)) 2158 btrfs_reset_sb_log_zones(bdev, copy_num); 2159 else 2160 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2161 } 2162 2163 /* Notify udev that device has changed */ 2164 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2165 2166 /* Update ctime/mtime for device path for libblkid */ 2167 update_dev_time(device->name->str); 2168 } 2169 2170 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2171 struct btrfs_dev_lookup_args *args, 2172 struct file **bdev_file) 2173 { 2174 struct btrfs_trans_handle *trans; 2175 struct btrfs_device *device; 2176 struct btrfs_fs_devices *cur_devices; 2177 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2178 u64 num_devices; 2179 int ret = 0; 2180 2181 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2182 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2183 return -EINVAL; 2184 } 2185 2186 /* 2187 * The device list in fs_devices is accessed without locks (neither 2188 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2189 * filesystem and another device rm cannot run. 2190 */ 2191 num_devices = btrfs_num_devices(fs_info); 2192 2193 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2194 if (ret) 2195 return ret; 2196 2197 device = btrfs_find_device(fs_info->fs_devices, args); 2198 if (!device) { 2199 if (args->missing) 2200 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2201 else 2202 ret = -ENOENT; 2203 return ret; 2204 } 2205 2206 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2207 btrfs_warn_in_rcu(fs_info, 2208 "cannot remove device %s (devid %llu) due to active swapfile", 2209 btrfs_dev_name(device), device->devid); 2210 return -ETXTBSY; 2211 } 2212 2213 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2214 return BTRFS_ERROR_DEV_TGT_REPLACE; 2215 2216 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2217 fs_info->fs_devices->rw_devices == 1) 2218 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2219 2220 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2221 mutex_lock(&fs_info->chunk_mutex); 2222 list_del_init(&device->dev_alloc_list); 2223 device->fs_devices->rw_devices--; 2224 mutex_unlock(&fs_info->chunk_mutex); 2225 } 2226 2227 ret = btrfs_shrink_device(device, 0); 2228 if (ret) 2229 goto error_undo; 2230 2231 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2232 if (IS_ERR(trans)) { 2233 ret = PTR_ERR(trans); 2234 goto error_undo; 2235 } 2236 2237 ret = btrfs_rm_dev_item(trans, device); 2238 if (ret) { 2239 /* Any error in dev item removal is critical */ 2240 btrfs_crit(fs_info, 2241 "failed to remove device item for devid %llu: %d", 2242 device->devid, ret); 2243 btrfs_abort_transaction(trans, ret); 2244 btrfs_end_transaction(trans); 2245 return ret; 2246 } 2247 2248 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2249 btrfs_scrub_cancel_dev(device); 2250 2251 /* 2252 * the device list mutex makes sure that we don't change 2253 * the device list while someone else is writing out all 2254 * the device supers. Whoever is writing all supers, should 2255 * lock the device list mutex before getting the number of 2256 * devices in the super block (super_copy). Conversely, 2257 * whoever updates the number of devices in the super block 2258 * (super_copy) should hold the device list mutex. 2259 */ 2260 2261 /* 2262 * In normal cases the cur_devices == fs_devices. But in case 2263 * of deleting a seed device, the cur_devices should point to 2264 * its own fs_devices listed under the fs_devices->seed_list. 2265 */ 2266 cur_devices = device->fs_devices; 2267 mutex_lock(&fs_devices->device_list_mutex); 2268 list_del_rcu(&device->dev_list); 2269 2270 cur_devices->num_devices--; 2271 cur_devices->total_devices--; 2272 /* Update total_devices of the parent fs_devices if it's seed */ 2273 if (cur_devices != fs_devices) 2274 fs_devices->total_devices--; 2275 2276 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2277 cur_devices->missing_devices--; 2278 2279 btrfs_assign_next_active_device(device, NULL); 2280 2281 if (device->bdev_file) { 2282 cur_devices->open_devices--; 2283 /* remove sysfs entry */ 2284 btrfs_sysfs_remove_device(device); 2285 } 2286 2287 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2288 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2289 mutex_unlock(&fs_devices->device_list_mutex); 2290 2291 /* 2292 * At this point, the device is zero sized and detached from the 2293 * devices list. All that's left is to zero out the old supers and 2294 * free the device. 2295 * 2296 * We cannot call btrfs_close_bdev() here because we're holding the sb 2297 * write lock, and fput() on the block device will pull in the 2298 * ->open_mutex on the block device and it's dependencies. Instead 2299 * just flush the device and let the caller do the final bdev_release. 2300 */ 2301 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2302 btrfs_scratch_superblocks(fs_info, device); 2303 if (device->bdev) { 2304 sync_blockdev(device->bdev); 2305 invalidate_bdev(device->bdev); 2306 } 2307 } 2308 2309 *bdev_file = device->bdev_file; 2310 synchronize_rcu(); 2311 btrfs_free_device(device); 2312 2313 /* 2314 * This can happen if cur_devices is the private seed devices list. We 2315 * cannot call close_fs_devices() here because it expects the uuid_mutex 2316 * to be held, but in fact we don't need that for the private 2317 * seed_devices, we can simply decrement cur_devices->opened and then 2318 * remove it from our list and free the fs_devices. 2319 */ 2320 if (cur_devices->num_devices == 0) { 2321 list_del_init(&cur_devices->seed_list); 2322 ASSERT(cur_devices->opened == 1); 2323 cur_devices->opened--; 2324 free_fs_devices(cur_devices); 2325 } 2326 2327 ret = btrfs_commit_transaction(trans); 2328 2329 return ret; 2330 2331 error_undo: 2332 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2333 mutex_lock(&fs_info->chunk_mutex); 2334 list_add(&device->dev_alloc_list, 2335 &fs_devices->alloc_list); 2336 device->fs_devices->rw_devices++; 2337 mutex_unlock(&fs_info->chunk_mutex); 2338 } 2339 return ret; 2340 } 2341 2342 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2343 { 2344 struct btrfs_fs_devices *fs_devices; 2345 2346 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2347 2348 /* 2349 * in case of fs with no seed, srcdev->fs_devices will point 2350 * to fs_devices of fs_info. However when the dev being replaced is 2351 * a seed dev it will point to the seed's local fs_devices. In short 2352 * srcdev will have its correct fs_devices in both the cases. 2353 */ 2354 fs_devices = srcdev->fs_devices; 2355 2356 list_del_rcu(&srcdev->dev_list); 2357 list_del(&srcdev->dev_alloc_list); 2358 fs_devices->num_devices--; 2359 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2360 fs_devices->missing_devices--; 2361 2362 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2363 fs_devices->rw_devices--; 2364 2365 if (srcdev->bdev) 2366 fs_devices->open_devices--; 2367 } 2368 2369 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2370 { 2371 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2372 2373 mutex_lock(&uuid_mutex); 2374 2375 btrfs_close_bdev(srcdev); 2376 synchronize_rcu(); 2377 btrfs_free_device(srcdev); 2378 2379 /* if this is no devs we rather delete the fs_devices */ 2380 if (!fs_devices->num_devices) { 2381 /* 2382 * On a mounted FS, num_devices can't be zero unless it's a 2383 * seed. In case of a seed device being replaced, the replace 2384 * target added to the sprout FS, so there will be no more 2385 * device left under the seed FS. 2386 */ 2387 ASSERT(fs_devices->seeding); 2388 2389 list_del_init(&fs_devices->seed_list); 2390 close_fs_devices(fs_devices); 2391 free_fs_devices(fs_devices); 2392 } 2393 mutex_unlock(&uuid_mutex); 2394 } 2395 2396 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2397 { 2398 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2399 2400 mutex_lock(&fs_devices->device_list_mutex); 2401 2402 btrfs_sysfs_remove_device(tgtdev); 2403 2404 if (tgtdev->bdev) 2405 fs_devices->open_devices--; 2406 2407 fs_devices->num_devices--; 2408 2409 btrfs_assign_next_active_device(tgtdev, NULL); 2410 2411 list_del_rcu(&tgtdev->dev_list); 2412 2413 mutex_unlock(&fs_devices->device_list_mutex); 2414 2415 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); 2416 2417 btrfs_close_bdev(tgtdev); 2418 synchronize_rcu(); 2419 btrfs_free_device(tgtdev); 2420 } 2421 2422 /* 2423 * Populate args from device at path. 2424 * 2425 * @fs_info: the filesystem 2426 * @args: the args to populate 2427 * @path: the path to the device 2428 * 2429 * This will read the super block of the device at @path and populate @args with 2430 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2431 * lookup a device to operate on, but need to do it before we take any locks. 2432 * This properly handles the special case of "missing" that a user may pass in, 2433 * and does some basic sanity checks. The caller must make sure that @path is 2434 * properly NUL terminated before calling in, and must call 2435 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2436 * uuid buffers. 2437 * 2438 * Return: 0 for success, -errno for failure 2439 */ 2440 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2441 struct btrfs_dev_lookup_args *args, 2442 const char *path) 2443 { 2444 struct btrfs_super_block *disk_super; 2445 struct file *bdev_file; 2446 int ret; 2447 2448 if (!path || !path[0]) 2449 return -EINVAL; 2450 if (!strcmp(path, "missing")) { 2451 args->missing = true; 2452 return 0; 2453 } 2454 2455 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2456 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2457 if (!args->uuid || !args->fsid) { 2458 btrfs_put_dev_args_from_path(args); 2459 return -ENOMEM; 2460 } 2461 2462 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2463 &bdev_file, &disk_super); 2464 if (ret) { 2465 btrfs_put_dev_args_from_path(args); 2466 return ret; 2467 } 2468 2469 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2470 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2471 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2472 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2473 else 2474 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2475 btrfs_release_disk_super(disk_super); 2476 fput(bdev_file); 2477 return 0; 2478 } 2479 2480 /* 2481 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2482 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2483 * that don't need to be freed. 2484 */ 2485 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2486 { 2487 kfree(args->uuid); 2488 kfree(args->fsid); 2489 args->uuid = NULL; 2490 args->fsid = NULL; 2491 } 2492 2493 struct btrfs_device *btrfs_find_device_by_devspec( 2494 struct btrfs_fs_info *fs_info, u64 devid, 2495 const char *device_path) 2496 { 2497 BTRFS_DEV_LOOKUP_ARGS(args); 2498 struct btrfs_device *device; 2499 int ret; 2500 2501 if (devid) { 2502 args.devid = devid; 2503 device = btrfs_find_device(fs_info->fs_devices, &args); 2504 if (!device) 2505 return ERR_PTR(-ENOENT); 2506 return device; 2507 } 2508 2509 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2510 if (ret) 2511 return ERR_PTR(ret); 2512 device = btrfs_find_device(fs_info->fs_devices, &args); 2513 btrfs_put_dev_args_from_path(&args); 2514 if (!device) 2515 return ERR_PTR(-ENOENT); 2516 return device; 2517 } 2518 2519 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2520 { 2521 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2522 struct btrfs_fs_devices *old_devices; 2523 struct btrfs_fs_devices *seed_devices; 2524 2525 lockdep_assert_held(&uuid_mutex); 2526 if (!fs_devices->seeding) 2527 return ERR_PTR(-EINVAL); 2528 2529 /* 2530 * Private copy of the seed devices, anchored at 2531 * fs_info->fs_devices->seed_list 2532 */ 2533 seed_devices = alloc_fs_devices(NULL); 2534 if (IS_ERR(seed_devices)) 2535 return seed_devices; 2536 2537 /* 2538 * It's necessary to retain a copy of the original seed fs_devices in 2539 * fs_uuids so that filesystems which have been seeded can successfully 2540 * reference the seed device from open_seed_devices. This also supports 2541 * multiple fs seed. 2542 */ 2543 old_devices = clone_fs_devices(fs_devices); 2544 if (IS_ERR(old_devices)) { 2545 kfree(seed_devices); 2546 return old_devices; 2547 } 2548 2549 list_add(&old_devices->fs_list, &fs_uuids); 2550 2551 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2552 seed_devices->opened = 1; 2553 INIT_LIST_HEAD(&seed_devices->devices); 2554 INIT_LIST_HEAD(&seed_devices->alloc_list); 2555 mutex_init(&seed_devices->device_list_mutex); 2556 2557 return seed_devices; 2558 } 2559 2560 /* 2561 * Splice seed devices into the sprout fs_devices. 2562 * Generate a new fsid for the sprouted read-write filesystem. 2563 */ 2564 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2565 struct btrfs_fs_devices *seed_devices) 2566 { 2567 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2568 struct btrfs_super_block *disk_super = fs_info->super_copy; 2569 struct btrfs_device *device; 2570 u64 super_flags; 2571 2572 /* 2573 * We are updating the fsid, the thread leading to device_list_add() 2574 * could race, so uuid_mutex is needed. 2575 */ 2576 lockdep_assert_held(&uuid_mutex); 2577 2578 /* 2579 * The threads listed below may traverse dev_list but can do that without 2580 * device_list_mutex: 2581 * - All device ops and balance - as we are in btrfs_exclop_start. 2582 * - Various dev_list readers - are using RCU. 2583 * - btrfs_ioctl_fitrim() - is using RCU. 2584 * 2585 * For-read threads as below are using device_list_mutex: 2586 * - Readonly scrub btrfs_scrub_dev() 2587 * - Readonly scrub btrfs_scrub_progress() 2588 * - btrfs_get_dev_stats() 2589 */ 2590 lockdep_assert_held(&fs_devices->device_list_mutex); 2591 2592 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2593 synchronize_rcu); 2594 list_for_each_entry(device, &seed_devices->devices, dev_list) 2595 device->fs_devices = seed_devices; 2596 2597 fs_devices->seeding = false; 2598 fs_devices->num_devices = 0; 2599 fs_devices->open_devices = 0; 2600 fs_devices->missing_devices = 0; 2601 fs_devices->rotating = false; 2602 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2603 2604 generate_random_uuid(fs_devices->fsid); 2605 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2606 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2607 2608 super_flags = btrfs_super_flags(disk_super) & 2609 ~BTRFS_SUPER_FLAG_SEEDING; 2610 btrfs_set_super_flags(disk_super, super_flags); 2611 } 2612 2613 /* 2614 * Store the expected generation for seed devices in device items. 2615 */ 2616 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2617 { 2618 BTRFS_DEV_LOOKUP_ARGS(args); 2619 struct btrfs_fs_info *fs_info = trans->fs_info; 2620 struct btrfs_root *root = fs_info->chunk_root; 2621 struct btrfs_path *path; 2622 struct extent_buffer *leaf; 2623 struct btrfs_dev_item *dev_item; 2624 struct btrfs_device *device; 2625 struct btrfs_key key; 2626 u8 fs_uuid[BTRFS_FSID_SIZE]; 2627 u8 dev_uuid[BTRFS_UUID_SIZE]; 2628 int ret; 2629 2630 path = btrfs_alloc_path(); 2631 if (!path) 2632 return -ENOMEM; 2633 2634 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2635 key.type = BTRFS_DEV_ITEM_KEY; 2636 key.offset = 0; 2637 2638 while (1) { 2639 btrfs_reserve_chunk_metadata(trans, false); 2640 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2641 btrfs_trans_release_chunk_metadata(trans); 2642 if (ret < 0) 2643 goto error; 2644 2645 leaf = path->nodes[0]; 2646 next_slot: 2647 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2648 ret = btrfs_next_leaf(root, path); 2649 if (ret > 0) 2650 break; 2651 if (ret < 0) 2652 goto error; 2653 leaf = path->nodes[0]; 2654 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2655 btrfs_release_path(path); 2656 continue; 2657 } 2658 2659 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2660 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2661 key.type != BTRFS_DEV_ITEM_KEY) 2662 break; 2663 2664 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2665 struct btrfs_dev_item); 2666 args.devid = btrfs_device_id(leaf, dev_item); 2667 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2668 BTRFS_UUID_SIZE); 2669 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2670 BTRFS_FSID_SIZE); 2671 args.uuid = dev_uuid; 2672 args.fsid = fs_uuid; 2673 device = btrfs_find_device(fs_info->fs_devices, &args); 2674 BUG_ON(!device); /* Logic error */ 2675 2676 if (device->fs_devices->seeding) 2677 btrfs_set_device_generation(leaf, dev_item, 2678 device->generation); 2679 2680 path->slots[0]++; 2681 goto next_slot; 2682 } 2683 ret = 0; 2684 error: 2685 btrfs_free_path(path); 2686 return ret; 2687 } 2688 2689 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2690 { 2691 struct btrfs_root *root = fs_info->dev_root; 2692 struct btrfs_trans_handle *trans; 2693 struct btrfs_device *device; 2694 struct file *bdev_file; 2695 struct super_block *sb = fs_info->sb; 2696 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2697 struct btrfs_fs_devices *seed_devices = NULL; 2698 u64 orig_super_total_bytes; 2699 u64 orig_super_num_devices; 2700 int ret = 0; 2701 bool seeding_dev = false; 2702 bool locked = false; 2703 2704 if (sb_rdonly(sb) && !fs_devices->seeding) 2705 return -EROFS; 2706 2707 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, 2708 fs_info->bdev_holder, NULL); 2709 if (IS_ERR(bdev_file)) 2710 return PTR_ERR(bdev_file); 2711 2712 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { 2713 ret = -EINVAL; 2714 goto error; 2715 } 2716 2717 if (fs_devices->seeding) { 2718 seeding_dev = true; 2719 down_write(&sb->s_umount); 2720 mutex_lock(&uuid_mutex); 2721 locked = true; 2722 } 2723 2724 sync_blockdev(file_bdev(bdev_file)); 2725 2726 rcu_read_lock(); 2727 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2728 if (device->bdev == file_bdev(bdev_file)) { 2729 ret = -EEXIST; 2730 rcu_read_unlock(); 2731 goto error; 2732 } 2733 } 2734 rcu_read_unlock(); 2735 2736 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2737 if (IS_ERR(device)) { 2738 /* we can safely leave the fs_devices entry around */ 2739 ret = PTR_ERR(device); 2740 goto error; 2741 } 2742 2743 device->fs_info = fs_info; 2744 device->bdev_file = bdev_file; 2745 device->bdev = file_bdev(bdev_file); 2746 ret = lookup_bdev(device_path, &device->devt); 2747 if (ret) 2748 goto error_free_device; 2749 2750 ret = btrfs_get_dev_zone_info(device, false); 2751 if (ret) 2752 goto error_free_device; 2753 2754 trans = btrfs_start_transaction(root, 0); 2755 if (IS_ERR(trans)) { 2756 ret = PTR_ERR(trans); 2757 goto error_free_zone; 2758 } 2759 2760 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2761 device->generation = trans->transid; 2762 device->io_width = fs_info->sectorsize; 2763 device->io_align = fs_info->sectorsize; 2764 device->sector_size = fs_info->sectorsize; 2765 device->total_bytes = 2766 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2767 device->disk_total_bytes = device->total_bytes; 2768 device->commit_total_bytes = device->total_bytes; 2769 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2770 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2771 device->dev_stats_valid = 1; 2772 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE); 2773 2774 if (seeding_dev) { 2775 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2776 seed_devices = btrfs_init_sprout(fs_info); 2777 if (IS_ERR(seed_devices)) { 2778 ret = PTR_ERR(seed_devices); 2779 btrfs_abort_transaction(trans, ret); 2780 goto error_trans; 2781 } 2782 } 2783 2784 mutex_lock(&fs_devices->device_list_mutex); 2785 if (seeding_dev) { 2786 btrfs_setup_sprout(fs_info, seed_devices); 2787 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2788 device); 2789 } 2790 2791 device->fs_devices = fs_devices; 2792 2793 mutex_lock(&fs_info->chunk_mutex); 2794 list_add_rcu(&device->dev_list, &fs_devices->devices); 2795 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2796 fs_devices->num_devices++; 2797 fs_devices->open_devices++; 2798 fs_devices->rw_devices++; 2799 fs_devices->total_devices++; 2800 fs_devices->total_rw_bytes += device->total_bytes; 2801 2802 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2803 2804 if (!bdev_nonrot(device->bdev)) 2805 fs_devices->rotating = true; 2806 2807 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2808 btrfs_set_super_total_bytes(fs_info->super_copy, 2809 round_down(orig_super_total_bytes + device->total_bytes, 2810 fs_info->sectorsize)); 2811 2812 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2813 btrfs_set_super_num_devices(fs_info->super_copy, 2814 orig_super_num_devices + 1); 2815 2816 /* 2817 * we've got more storage, clear any full flags on the space 2818 * infos 2819 */ 2820 btrfs_clear_space_info_full(fs_info); 2821 2822 mutex_unlock(&fs_info->chunk_mutex); 2823 2824 /* Add sysfs device entry */ 2825 btrfs_sysfs_add_device(device); 2826 2827 mutex_unlock(&fs_devices->device_list_mutex); 2828 2829 if (seeding_dev) { 2830 mutex_lock(&fs_info->chunk_mutex); 2831 ret = init_first_rw_device(trans); 2832 mutex_unlock(&fs_info->chunk_mutex); 2833 if (ret) { 2834 btrfs_abort_transaction(trans, ret); 2835 goto error_sysfs; 2836 } 2837 } 2838 2839 ret = btrfs_add_dev_item(trans, device); 2840 if (ret) { 2841 btrfs_abort_transaction(trans, ret); 2842 goto error_sysfs; 2843 } 2844 2845 if (seeding_dev) { 2846 ret = btrfs_finish_sprout(trans); 2847 if (ret) { 2848 btrfs_abort_transaction(trans, ret); 2849 goto error_sysfs; 2850 } 2851 2852 /* 2853 * fs_devices now represents the newly sprouted filesystem and 2854 * its fsid has been changed by btrfs_sprout_splice(). 2855 */ 2856 btrfs_sysfs_update_sprout_fsid(fs_devices); 2857 } 2858 2859 ret = btrfs_commit_transaction(trans); 2860 2861 if (seeding_dev) { 2862 mutex_unlock(&uuid_mutex); 2863 up_write(&sb->s_umount); 2864 locked = false; 2865 2866 if (ret) /* transaction commit */ 2867 return ret; 2868 2869 ret = btrfs_relocate_sys_chunks(fs_info); 2870 if (ret < 0) 2871 btrfs_handle_fs_error(fs_info, ret, 2872 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2873 trans = btrfs_attach_transaction(root); 2874 if (IS_ERR(trans)) { 2875 if (PTR_ERR(trans) == -ENOENT) 2876 return 0; 2877 ret = PTR_ERR(trans); 2878 trans = NULL; 2879 goto error_sysfs; 2880 } 2881 ret = btrfs_commit_transaction(trans); 2882 } 2883 2884 /* 2885 * Now that we have written a new super block to this device, check all 2886 * other fs_devices list if device_path alienates any other scanned 2887 * device. 2888 * We can ignore the return value as it typically returns -EINVAL and 2889 * only succeeds if the device was an alien. 2890 */ 2891 btrfs_forget_devices(device->devt); 2892 2893 /* Update ctime/mtime for blkid or udev */ 2894 update_dev_time(device_path); 2895 2896 return ret; 2897 2898 error_sysfs: 2899 btrfs_sysfs_remove_device(device); 2900 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2901 mutex_lock(&fs_info->chunk_mutex); 2902 list_del_rcu(&device->dev_list); 2903 list_del(&device->dev_alloc_list); 2904 fs_info->fs_devices->num_devices--; 2905 fs_info->fs_devices->open_devices--; 2906 fs_info->fs_devices->rw_devices--; 2907 fs_info->fs_devices->total_devices--; 2908 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2909 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2910 btrfs_set_super_total_bytes(fs_info->super_copy, 2911 orig_super_total_bytes); 2912 btrfs_set_super_num_devices(fs_info->super_copy, 2913 orig_super_num_devices); 2914 mutex_unlock(&fs_info->chunk_mutex); 2915 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2916 error_trans: 2917 if (trans) 2918 btrfs_end_transaction(trans); 2919 error_free_zone: 2920 btrfs_destroy_dev_zone_info(device); 2921 error_free_device: 2922 btrfs_free_device(device); 2923 error: 2924 fput(bdev_file); 2925 if (locked) { 2926 mutex_unlock(&uuid_mutex); 2927 up_write(&sb->s_umount); 2928 } 2929 return ret; 2930 } 2931 2932 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2933 struct btrfs_device *device) 2934 { 2935 int ret; 2936 struct btrfs_path *path; 2937 struct btrfs_root *root = device->fs_info->chunk_root; 2938 struct btrfs_dev_item *dev_item; 2939 struct extent_buffer *leaf; 2940 struct btrfs_key key; 2941 2942 path = btrfs_alloc_path(); 2943 if (!path) 2944 return -ENOMEM; 2945 2946 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2947 key.type = BTRFS_DEV_ITEM_KEY; 2948 key.offset = device->devid; 2949 2950 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2951 if (ret < 0) 2952 goto out; 2953 2954 if (ret > 0) { 2955 ret = -ENOENT; 2956 goto out; 2957 } 2958 2959 leaf = path->nodes[0]; 2960 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2961 2962 btrfs_set_device_id(leaf, dev_item, device->devid); 2963 btrfs_set_device_type(leaf, dev_item, device->type); 2964 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2965 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2966 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2967 btrfs_set_device_total_bytes(leaf, dev_item, 2968 btrfs_device_get_disk_total_bytes(device)); 2969 btrfs_set_device_bytes_used(leaf, dev_item, 2970 btrfs_device_get_bytes_used(device)); 2971 out: 2972 btrfs_free_path(path); 2973 return ret; 2974 } 2975 2976 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2977 struct btrfs_device *device, u64 new_size) 2978 { 2979 struct btrfs_fs_info *fs_info = device->fs_info; 2980 struct btrfs_super_block *super_copy = fs_info->super_copy; 2981 u64 old_total; 2982 u64 diff; 2983 int ret; 2984 2985 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2986 return -EACCES; 2987 2988 new_size = round_down(new_size, fs_info->sectorsize); 2989 2990 mutex_lock(&fs_info->chunk_mutex); 2991 old_total = btrfs_super_total_bytes(super_copy); 2992 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2993 2994 if (new_size <= device->total_bytes || 2995 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2996 mutex_unlock(&fs_info->chunk_mutex); 2997 return -EINVAL; 2998 } 2999 3000 btrfs_set_super_total_bytes(super_copy, 3001 round_down(old_total + diff, fs_info->sectorsize)); 3002 device->fs_devices->total_rw_bytes += diff; 3003 atomic64_add(diff, &fs_info->free_chunk_space); 3004 3005 btrfs_device_set_total_bytes(device, new_size); 3006 btrfs_device_set_disk_total_bytes(device, new_size); 3007 btrfs_clear_space_info_full(device->fs_info); 3008 if (list_empty(&device->post_commit_list)) 3009 list_add_tail(&device->post_commit_list, 3010 &trans->transaction->dev_update_list); 3011 mutex_unlock(&fs_info->chunk_mutex); 3012 3013 btrfs_reserve_chunk_metadata(trans, false); 3014 ret = btrfs_update_device(trans, device); 3015 btrfs_trans_release_chunk_metadata(trans); 3016 3017 return ret; 3018 } 3019 3020 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3021 { 3022 struct btrfs_fs_info *fs_info = trans->fs_info; 3023 struct btrfs_root *root = fs_info->chunk_root; 3024 int ret; 3025 struct btrfs_path *path; 3026 struct btrfs_key key; 3027 3028 path = btrfs_alloc_path(); 3029 if (!path) 3030 return -ENOMEM; 3031 3032 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3033 key.type = BTRFS_CHUNK_ITEM_KEY; 3034 key.offset = chunk_offset; 3035 3036 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3037 if (ret < 0) 3038 goto out; 3039 else if (ret > 0) { /* Logic error or corruption */ 3040 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing", 3041 chunk_offset); 3042 btrfs_abort_transaction(trans, -ENOENT); 3043 ret = -EUCLEAN; 3044 goto out; 3045 } 3046 3047 ret = btrfs_del_item(trans, root, path); 3048 if (ret < 0) { 3049 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset); 3050 btrfs_abort_transaction(trans, ret); 3051 goto out; 3052 } 3053 out: 3054 btrfs_free_path(path); 3055 return ret; 3056 } 3057 3058 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3059 { 3060 struct btrfs_super_block *super_copy = fs_info->super_copy; 3061 struct btrfs_disk_key *disk_key; 3062 struct btrfs_chunk *chunk; 3063 u8 *ptr; 3064 int ret = 0; 3065 u32 num_stripes; 3066 u32 array_size; 3067 u32 len = 0; 3068 u32 cur; 3069 struct btrfs_key key; 3070 3071 lockdep_assert_held(&fs_info->chunk_mutex); 3072 array_size = btrfs_super_sys_array_size(super_copy); 3073 3074 ptr = super_copy->sys_chunk_array; 3075 cur = 0; 3076 3077 while (cur < array_size) { 3078 disk_key = (struct btrfs_disk_key *)ptr; 3079 btrfs_disk_key_to_cpu(&key, disk_key); 3080 3081 len = sizeof(*disk_key); 3082 3083 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3084 chunk = (struct btrfs_chunk *)(ptr + len); 3085 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3086 len += btrfs_chunk_item_size(num_stripes); 3087 } else { 3088 ret = -EIO; 3089 break; 3090 } 3091 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3092 key.offset == chunk_offset) { 3093 memmove(ptr, ptr + len, array_size - (cur + len)); 3094 array_size -= len; 3095 btrfs_set_super_sys_array_size(super_copy, array_size); 3096 } else { 3097 ptr += len; 3098 cur += len; 3099 } 3100 } 3101 return ret; 3102 } 3103 3104 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3105 u64 logical, u64 length) 3106 { 3107 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3108 struct rb_node *prev = NULL; 3109 struct rb_node *orig_prev; 3110 struct btrfs_chunk_map *map; 3111 struct btrfs_chunk_map *prev_map = NULL; 3112 3113 while (node) { 3114 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3115 prev = node; 3116 prev_map = map; 3117 3118 if (logical < map->start) { 3119 node = node->rb_left; 3120 } else if (logical >= map->start + map->chunk_len) { 3121 node = node->rb_right; 3122 } else { 3123 refcount_inc(&map->refs); 3124 return map; 3125 } 3126 } 3127 3128 if (!prev) 3129 return NULL; 3130 3131 orig_prev = prev; 3132 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3133 prev = rb_next(prev); 3134 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3135 } 3136 3137 if (!prev) { 3138 prev = orig_prev; 3139 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3140 while (prev && logical < prev_map->start) { 3141 prev = rb_prev(prev); 3142 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3143 } 3144 } 3145 3146 if (prev) { 3147 u64 end = logical + length; 3148 3149 /* 3150 * Caller can pass a U64_MAX length when it wants to get any 3151 * chunk starting at an offset of 'logical' or higher, so deal 3152 * with underflow by resetting the end offset to U64_MAX. 3153 */ 3154 if (end < logical) 3155 end = U64_MAX; 3156 3157 if (end > prev_map->start && 3158 logical < prev_map->start + prev_map->chunk_len) { 3159 refcount_inc(&prev_map->refs); 3160 return prev_map; 3161 } 3162 } 3163 3164 return NULL; 3165 } 3166 3167 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3168 u64 logical, u64 length) 3169 { 3170 struct btrfs_chunk_map *map; 3171 3172 read_lock(&fs_info->mapping_tree_lock); 3173 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3174 read_unlock(&fs_info->mapping_tree_lock); 3175 3176 return map; 3177 } 3178 3179 /* 3180 * Find the mapping containing the given logical extent. 3181 * 3182 * @logical: Logical block offset in bytes. 3183 * @length: Length of extent in bytes. 3184 * 3185 * Return: Chunk mapping or ERR_PTR. 3186 */ 3187 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3188 u64 logical, u64 length) 3189 { 3190 struct btrfs_chunk_map *map; 3191 3192 map = btrfs_find_chunk_map(fs_info, logical, length); 3193 3194 if (unlikely(!map)) { 3195 btrfs_crit(fs_info, 3196 "unable to find chunk map for logical %llu length %llu", 3197 logical, length); 3198 return ERR_PTR(-EINVAL); 3199 } 3200 3201 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3202 btrfs_crit(fs_info, 3203 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3204 logical, logical + length, map->start, 3205 map->start + map->chunk_len); 3206 btrfs_free_chunk_map(map); 3207 return ERR_PTR(-EINVAL); 3208 } 3209 3210 /* Callers are responsible for dropping the reference. */ 3211 return map; 3212 } 3213 3214 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3215 struct btrfs_chunk_map *map, u64 chunk_offset) 3216 { 3217 int i; 3218 3219 /* 3220 * Removing chunk items and updating the device items in the chunks btree 3221 * requires holding the chunk_mutex. 3222 * See the comment at btrfs_chunk_alloc() for the details. 3223 */ 3224 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3225 3226 for (i = 0; i < map->num_stripes; i++) { 3227 int ret; 3228 3229 ret = btrfs_update_device(trans, map->stripes[i].dev); 3230 if (ret) 3231 return ret; 3232 } 3233 3234 return btrfs_free_chunk(trans, chunk_offset); 3235 } 3236 3237 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3238 { 3239 struct btrfs_fs_info *fs_info = trans->fs_info; 3240 struct btrfs_chunk_map *map; 3241 u64 dev_extent_len = 0; 3242 int i, ret = 0; 3243 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3244 3245 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3246 if (IS_ERR(map)) { 3247 /* 3248 * This is a logic error, but we don't want to just rely on the 3249 * user having built with ASSERT enabled, so if ASSERT doesn't 3250 * do anything we still error out. 3251 */ 3252 ASSERT(0); 3253 return PTR_ERR(map); 3254 } 3255 3256 /* 3257 * First delete the device extent items from the devices btree. 3258 * We take the device_list_mutex to avoid racing with the finishing phase 3259 * of a device replace operation. See the comment below before acquiring 3260 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3261 * because that can result in a deadlock when deleting the device extent 3262 * items from the devices btree - COWing an extent buffer from the btree 3263 * may result in allocating a new metadata chunk, which would attempt to 3264 * lock again fs_info->chunk_mutex. 3265 */ 3266 mutex_lock(&fs_devices->device_list_mutex); 3267 for (i = 0; i < map->num_stripes; i++) { 3268 struct btrfs_device *device = map->stripes[i].dev; 3269 ret = btrfs_free_dev_extent(trans, device, 3270 map->stripes[i].physical, 3271 &dev_extent_len); 3272 if (ret) { 3273 mutex_unlock(&fs_devices->device_list_mutex); 3274 btrfs_abort_transaction(trans, ret); 3275 goto out; 3276 } 3277 3278 if (device->bytes_used > 0) { 3279 mutex_lock(&fs_info->chunk_mutex); 3280 btrfs_device_set_bytes_used(device, 3281 device->bytes_used - dev_extent_len); 3282 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3283 btrfs_clear_space_info_full(fs_info); 3284 mutex_unlock(&fs_info->chunk_mutex); 3285 } 3286 } 3287 mutex_unlock(&fs_devices->device_list_mutex); 3288 3289 /* 3290 * We acquire fs_info->chunk_mutex for 2 reasons: 3291 * 3292 * 1) Just like with the first phase of the chunk allocation, we must 3293 * reserve system space, do all chunk btree updates and deletions, and 3294 * update the system chunk array in the superblock while holding this 3295 * mutex. This is for similar reasons as explained on the comment at 3296 * the top of btrfs_chunk_alloc(); 3297 * 3298 * 2) Prevent races with the final phase of a device replace operation 3299 * that replaces the device object associated with the map's stripes, 3300 * because the device object's id can change at any time during that 3301 * final phase of the device replace operation 3302 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3303 * replaced device and then see it with an ID of 3304 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3305 * the device item, which does not exists on the chunk btree. 3306 * The finishing phase of device replace acquires both the 3307 * device_list_mutex and the chunk_mutex, in that order, so we are 3308 * safe by just acquiring the chunk_mutex. 3309 */ 3310 trans->removing_chunk = true; 3311 mutex_lock(&fs_info->chunk_mutex); 3312 3313 check_system_chunk(trans, map->type); 3314 3315 ret = remove_chunk_item(trans, map, chunk_offset); 3316 /* 3317 * Normally we should not get -ENOSPC since we reserved space before 3318 * through the call to check_system_chunk(). 3319 * 3320 * Despite our system space_info having enough free space, we may not 3321 * be able to allocate extents from its block groups, because all have 3322 * an incompatible profile, which will force us to allocate a new system 3323 * block group with the right profile, or right after we called 3324 * check_system_space() above, a scrub turned the only system block group 3325 * with enough free space into RO mode. 3326 * This is explained with more detail at do_chunk_alloc(). 3327 * 3328 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3329 */ 3330 if (ret == -ENOSPC) { 3331 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3332 struct btrfs_block_group *sys_bg; 3333 3334 sys_bg = btrfs_create_chunk(trans, sys_flags); 3335 if (IS_ERR(sys_bg)) { 3336 ret = PTR_ERR(sys_bg); 3337 btrfs_abort_transaction(trans, ret); 3338 goto out; 3339 } 3340 3341 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3342 if (ret) { 3343 btrfs_abort_transaction(trans, ret); 3344 goto out; 3345 } 3346 3347 ret = remove_chunk_item(trans, map, chunk_offset); 3348 if (ret) { 3349 btrfs_abort_transaction(trans, ret); 3350 goto out; 3351 } 3352 } else if (ret) { 3353 btrfs_abort_transaction(trans, ret); 3354 goto out; 3355 } 3356 3357 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3358 3359 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3360 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3361 if (ret) { 3362 btrfs_abort_transaction(trans, ret); 3363 goto out; 3364 } 3365 } 3366 3367 mutex_unlock(&fs_info->chunk_mutex); 3368 trans->removing_chunk = false; 3369 3370 /* 3371 * We are done with chunk btree updates and deletions, so release the 3372 * system space we previously reserved (with check_system_chunk()). 3373 */ 3374 btrfs_trans_release_chunk_metadata(trans); 3375 3376 ret = btrfs_remove_block_group(trans, map); 3377 if (ret) { 3378 btrfs_abort_transaction(trans, ret); 3379 goto out; 3380 } 3381 3382 out: 3383 if (trans->removing_chunk) { 3384 mutex_unlock(&fs_info->chunk_mutex); 3385 trans->removing_chunk = false; 3386 } 3387 /* once for us */ 3388 btrfs_free_chunk_map(map); 3389 return ret; 3390 } 3391 3392 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3393 { 3394 struct btrfs_root *root = fs_info->chunk_root; 3395 struct btrfs_trans_handle *trans; 3396 struct btrfs_block_group *block_group; 3397 u64 length; 3398 int ret; 3399 3400 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3401 btrfs_err(fs_info, 3402 "relocate: not supported on extent tree v2 yet"); 3403 return -EINVAL; 3404 } 3405 3406 /* 3407 * Prevent races with automatic removal of unused block groups. 3408 * After we relocate and before we remove the chunk with offset 3409 * chunk_offset, automatic removal of the block group can kick in, 3410 * resulting in a failure when calling btrfs_remove_chunk() below. 3411 * 3412 * Make sure to acquire this mutex before doing a tree search (dev 3413 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3414 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3415 * we release the path used to search the chunk/dev tree and before 3416 * the current task acquires this mutex and calls us. 3417 */ 3418 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3419 3420 /* step one, relocate all the extents inside this chunk */ 3421 btrfs_scrub_pause(fs_info); 3422 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3423 btrfs_scrub_continue(fs_info); 3424 if (ret) { 3425 /* 3426 * If we had a transaction abort, stop all running scrubs. 3427 * See transaction.c:cleanup_transaction() why we do it here. 3428 */ 3429 if (BTRFS_FS_ERROR(fs_info)) 3430 btrfs_scrub_cancel(fs_info); 3431 return ret; 3432 } 3433 3434 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3435 if (!block_group) 3436 return -ENOENT; 3437 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3438 length = block_group->length; 3439 btrfs_put_block_group(block_group); 3440 3441 /* 3442 * On a zoned file system, discard the whole block group, this will 3443 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3444 * resetting the zone fails, don't treat it as a fatal problem from the 3445 * filesystem's point of view. 3446 */ 3447 if (btrfs_is_zoned(fs_info)) { 3448 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3449 if (ret) 3450 btrfs_info(fs_info, 3451 "failed to reset zone %llu after relocation", 3452 chunk_offset); 3453 } 3454 3455 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3456 chunk_offset); 3457 if (IS_ERR(trans)) { 3458 ret = PTR_ERR(trans); 3459 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3460 return ret; 3461 } 3462 3463 /* 3464 * step two, delete the device extents and the 3465 * chunk tree entries 3466 */ 3467 ret = btrfs_remove_chunk(trans, chunk_offset); 3468 btrfs_end_transaction(trans); 3469 return ret; 3470 } 3471 3472 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3473 { 3474 struct btrfs_root *chunk_root = fs_info->chunk_root; 3475 struct btrfs_path *path; 3476 struct extent_buffer *leaf; 3477 struct btrfs_chunk *chunk; 3478 struct btrfs_key key; 3479 struct btrfs_key found_key; 3480 u64 chunk_type; 3481 bool retried = false; 3482 int failed = 0; 3483 int ret; 3484 3485 path = btrfs_alloc_path(); 3486 if (!path) 3487 return -ENOMEM; 3488 3489 again: 3490 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3491 key.type = BTRFS_CHUNK_ITEM_KEY; 3492 key.offset = (u64)-1; 3493 3494 while (1) { 3495 mutex_lock(&fs_info->reclaim_bgs_lock); 3496 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3497 if (ret < 0) { 3498 mutex_unlock(&fs_info->reclaim_bgs_lock); 3499 goto error; 3500 } 3501 if (ret == 0) { 3502 /* 3503 * On the first search we would find chunk tree with 3504 * offset -1, which is not possible. On subsequent 3505 * loops this would find an existing item on an invalid 3506 * offset (one less than the previous one, wrong 3507 * alignment and size). 3508 */ 3509 ret = -EUCLEAN; 3510 mutex_unlock(&fs_info->reclaim_bgs_lock); 3511 goto error; 3512 } 3513 3514 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3515 key.type); 3516 if (ret) 3517 mutex_unlock(&fs_info->reclaim_bgs_lock); 3518 if (ret < 0) 3519 goto error; 3520 if (ret > 0) 3521 break; 3522 3523 leaf = path->nodes[0]; 3524 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3525 3526 chunk = btrfs_item_ptr(leaf, path->slots[0], 3527 struct btrfs_chunk); 3528 chunk_type = btrfs_chunk_type(leaf, chunk); 3529 btrfs_release_path(path); 3530 3531 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3532 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3533 if (ret == -ENOSPC) 3534 failed++; 3535 else 3536 BUG_ON(ret); 3537 } 3538 mutex_unlock(&fs_info->reclaim_bgs_lock); 3539 3540 if (found_key.offset == 0) 3541 break; 3542 key.offset = found_key.offset - 1; 3543 } 3544 ret = 0; 3545 if (failed && !retried) { 3546 failed = 0; 3547 retried = true; 3548 goto again; 3549 } else if (WARN_ON(failed && retried)) { 3550 ret = -ENOSPC; 3551 } 3552 error: 3553 btrfs_free_path(path); 3554 return ret; 3555 } 3556 3557 /* 3558 * return 1 : allocate a data chunk successfully, 3559 * return <0: errors during allocating a data chunk, 3560 * return 0 : no need to allocate a data chunk. 3561 */ 3562 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3563 u64 chunk_offset) 3564 { 3565 struct btrfs_block_group *cache; 3566 u64 bytes_used; 3567 u64 chunk_type; 3568 3569 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3570 ASSERT(cache); 3571 chunk_type = cache->flags; 3572 btrfs_put_block_group(cache); 3573 3574 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3575 return 0; 3576 3577 spin_lock(&fs_info->data_sinfo->lock); 3578 bytes_used = fs_info->data_sinfo->bytes_used; 3579 spin_unlock(&fs_info->data_sinfo->lock); 3580 3581 if (!bytes_used) { 3582 struct btrfs_trans_handle *trans; 3583 int ret; 3584 3585 trans = btrfs_join_transaction(fs_info->tree_root); 3586 if (IS_ERR(trans)) 3587 return PTR_ERR(trans); 3588 3589 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3590 btrfs_end_transaction(trans); 3591 if (ret < 0) 3592 return ret; 3593 return 1; 3594 } 3595 3596 return 0; 3597 } 3598 3599 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 3600 const struct btrfs_disk_balance_args *disk) 3601 { 3602 memset(cpu, 0, sizeof(*cpu)); 3603 3604 cpu->profiles = le64_to_cpu(disk->profiles); 3605 cpu->usage = le64_to_cpu(disk->usage); 3606 cpu->devid = le64_to_cpu(disk->devid); 3607 cpu->pstart = le64_to_cpu(disk->pstart); 3608 cpu->pend = le64_to_cpu(disk->pend); 3609 cpu->vstart = le64_to_cpu(disk->vstart); 3610 cpu->vend = le64_to_cpu(disk->vend); 3611 cpu->target = le64_to_cpu(disk->target); 3612 cpu->flags = le64_to_cpu(disk->flags); 3613 cpu->limit = le64_to_cpu(disk->limit); 3614 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 3615 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 3616 } 3617 3618 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 3619 const struct btrfs_balance_args *cpu) 3620 { 3621 memset(disk, 0, sizeof(*disk)); 3622 3623 disk->profiles = cpu_to_le64(cpu->profiles); 3624 disk->usage = cpu_to_le64(cpu->usage); 3625 disk->devid = cpu_to_le64(cpu->devid); 3626 disk->pstart = cpu_to_le64(cpu->pstart); 3627 disk->pend = cpu_to_le64(cpu->pend); 3628 disk->vstart = cpu_to_le64(cpu->vstart); 3629 disk->vend = cpu_to_le64(cpu->vend); 3630 disk->target = cpu_to_le64(cpu->target); 3631 disk->flags = cpu_to_le64(cpu->flags); 3632 disk->limit = cpu_to_le64(cpu->limit); 3633 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 3634 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 3635 } 3636 3637 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3638 struct btrfs_balance_control *bctl) 3639 { 3640 struct btrfs_root *root = fs_info->tree_root; 3641 struct btrfs_trans_handle *trans; 3642 struct btrfs_balance_item *item; 3643 struct btrfs_disk_balance_args disk_bargs; 3644 struct btrfs_path *path; 3645 struct extent_buffer *leaf; 3646 struct btrfs_key key; 3647 int ret, err; 3648 3649 path = btrfs_alloc_path(); 3650 if (!path) 3651 return -ENOMEM; 3652 3653 trans = btrfs_start_transaction(root, 0); 3654 if (IS_ERR(trans)) { 3655 btrfs_free_path(path); 3656 return PTR_ERR(trans); 3657 } 3658 3659 key.objectid = BTRFS_BALANCE_OBJECTID; 3660 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3661 key.offset = 0; 3662 3663 ret = btrfs_insert_empty_item(trans, root, path, &key, 3664 sizeof(*item)); 3665 if (ret) 3666 goto out; 3667 3668 leaf = path->nodes[0]; 3669 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3670 3671 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3672 3673 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3674 btrfs_set_balance_data(leaf, item, &disk_bargs); 3675 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3676 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3677 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3678 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3679 btrfs_set_balance_flags(leaf, item, bctl->flags); 3680 out: 3681 btrfs_free_path(path); 3682 err = btrfs_commit_transaction(trans); 3683 if (err && !ret) 3684 ret = err; 3685 return ret; 3686 } 3687 3688 static int del_balance_item(struct btrfs_fs_info *fs_info) 3689 { 3690 struct btrfs_root *root = fs_info->tree_root; 3691 struct btrfs_trans_handle *trans; 3692 struct btrfs_path *path; 3693 struct btrfs_key key; 3694 int ret, err; 3695 3696 path = btrfs_alloc_path(); 3697 if (!path) 3698 return -ENOMEM; 3699 3700 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3701 if (IS_ERR(trans)) { 3702 btrfs_free_path(path); 3703 return PTR_ERR(trans); 3704 } 3705 3706 key.objectid = BTRFS_BALANCE_OBJECTID; 3707 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3708 key.offset = 0; 3709 3710 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3711 if (ret < 0) 3712 goto out; 3713 if (ret > 0) { 3714 ret = -ENOENT; 3715 goto out; 3716 } 3717 3718 ret = btrfs_del_item(trans, root, path); 3719 out: 3720 btrfs_free_path(path); 3721 err = btrfs_commit_transaction(trans); 3722 if (err && !ret) 3723 ret = err; 3724 return ret; 3725 } 3726 3727 /* 3728 * This is a heuristic used to reduce the number of chunks balanced on 3729 * resume after balance was interrupted. 3730 */ 3731 static void update_balance_args(struct btrfs_balance_control *bctl) 3732 { 3733 /* 3734 * Turn on soft mode for chunk types that were being converted. 3735 */ 3736 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3737 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3738 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3739 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3740 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3741 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3742 3743 /* 3744 * Turn on usage filter if is not already used. The idea is 3745 * that chunks that we have already balanced should be 3746 * reasonably full. Don't do it for chunks that are being 3747 * converted - that will keep us from relocating unconverted 3748 * (albeit full) chunks. 3749 */ 3750 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3751 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3752 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3753 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3754 bctl->data.usage = 90; 3755 } 3756 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3757 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3758 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3759 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3760 bctl->sys.usage = 90; 3761 } 3762 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3763 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3764 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3765 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3766 bctl->meta.usage = 90; 3767 } 3768 } 3769 3770 /* 3771 * Clear the balance status in fs_info and delete the balance item from disk. 3772 */ 3773 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3774 { 3775 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3776 int ret; 3777 3778 ASSERT(fs_info->balance_ctl); 3779 3780 spin_lock(&fs_info->balance_lock); 3781 fs_info->balance_ctl = NULL; 3782 spin_unlock(&fs_info->balance_lock); 3783 3784 kfree(bctl); 3785 ret = del_balance_item(fs_info); 3786 if (ret) 3787 btrfs_handle_fs_error(fs_info, ret, NULL); 3788 } 3789 3790 /* 3791 * Balance filters. Return 1 if chunk should be filtered out 3792 * (should not be balanced). 3793 */ 3794 static int chunk_profiles_filter(u64 chunk_type, 3795 struct btrfs_balance_args *bargs) 3796 { 3797 chunk_type = chunk_to_extended(chunk_type) & 3798 BTRFS_EXTENDED_PROFILE_MASK; 3799 3800 if (bargs->profiles & chunk_type) 3801 return 0; 3802 3803 return 1; 3804 } 3805 3806 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3807 struct btrfs_balance_args *bargs) 3808 { 3809 struct btrfs_block_group *cache; 3810 u64 chunk_used; 3811 u64 user_thresh_min; 3812 u64 user_thresh_max; 3813 int ret = 1; 3814 3815 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3816 chunk_used = cache->used; 3817 3818 if (bargs->usage_min == 0) 3819 user_thresh_min = 0; 3820 else 3821 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3822 3823 if (bargs->usage_max == 0) 3824 user_thresh_max = 1; 3825 else if (bargs->usage_max > 100) 3826 user_thresh_max = cache->length; 3827 else 3828 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3829 3830 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3831 ret = 0; 3832 3833 btrfs_put_block_group(cache); 3834 return ret; 3835 } 3836 3837 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3838 u64 chunk_offset, struct btrfs_balance_args *bargs) 3839 { 3840 struct btrfs_block_group *cache; 3841 u64 chunk_used, user_thresh; 3842 int ret = 1; 3843 3844 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3845 chunk_used = cache->used; 3846 3847 if (bargs->usage_min == 0) 3848 user_thresh = 1; 3849 else if (bargs->usage > 100) 3850 user_thresh = cache->length; 3851 else 3852 user_thresh = mult_perc(cache->length, bargs->usage); 3853 3854 if (chunk_used < user_thresh) 3855 ret = 0; 3856 3857 btrfs_put_block_group(cache); 3858 return ret; 3859 } 3860 3861 static int chunk_devid_filter(struct extent_buffer *leaf, 3862 struct btrfs_chunk *chunk, 3863 struct btrfs_balance_args *bargs) 3864 { 3865 struct btrfs_stripe *stripe; 3866 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3867 int i; 3868 3869 for (i = 0; i < num_stripes; i++) { 3870 stripe = btrfs_stripe_nr(chunk, i); 3871 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3872 return 0; 3873 } 3874 3875 return 1; 3876 } 3877 3878 static u64 calc_data_stripes(u64 type, int num_stripes) 3879 { 3880 const int index = btrfs_bg_flags_to_raid_index(type); 3881 const int ncopies = btrfs_raid_array[index].ncopies; 3882 const int nparity = btrfs_raid_array[index].nparity; 3883 3884 return (num_stripes - nparity) / ncopies; 3885 } 3886 3887 /* [pstart, pend) */ 3888 static int chunk_drange_filter(struct extent_buffer *leaf, 3889 struct btrfs_chunk *chunk, 3890 struct btrfs_balance_args *bargs) 3891 { 3892 struct btrfs_stripe *stripe; 3893 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3894 u64 stripe_offset; 3895 u64 stripe_length; 3896 u64 type; 3897 int factor; 3898 int i; 3899 3900 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3901 return 0; 3902 3903 type = btrfs_chunk_type(leaf, chunk); 3904 factor = calc_data_stripes(type, num_stripes); 3905 3906 for (i = 0; i < num_stripes; i++) { 3907 stripe = btrfs_stripe_nr(chunk, i); 3908 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3909 continue; 3910 3911 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3912 stripe_length = btrfs_chunk_length(leaf, chunk); 3913 stripe_length = div_u64(stripe_length, factor); 3914 3915 if (stripe_offset < bargs->pend && 3916 stripe_offset + stripe_length > bargs->pstart) 3917 return 0; 3918 } 3919 3920 return 1; 3921 } 3922 3923 /* [vstart, vend) */ 3924 static int chunk_vrange_filter(struct extent_buffer *leaf, 3925 struct btrfs_chunk *chunk, 3926 u64 chunk_offset, 3927 struct btrfs_balance_args *bargs) 3928 { 3929 if (chunk_offset < bargs->vend && 3930 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3931 /* at least part of the chunk is inside this vrange */ 3932 return 0; 3933 3934 return 1; 3935 } 3936 3937 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3938 struct btrfs_chunk *chunk, 3939 struct btrfs_balance_args *bargs) 3940 { 3941 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3942 3943 if (bargs->stripes_min <= num_stripes 3944 && num_stripes <= bargs->stripes_max) 3945 return 0; 3946 3947 return 1; 3948 } 3949 3950 static int chunk_soft_convert_filter(u64 chunk_type, 3951 struct btrfs_balance_args *bargs) 3952 { 3953 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3954 return 0; 3955 3956 chunk_type = chunk_to_extended(chunk_type) & 3957 BTRFS_EXTENDED_PROFILE_MASK; 3958 3959 if (bargs->target == chunk_type) 3960 return 1; 3961 3962 return 0; 3963 } 3964 3965 static int should_balance_chunk(struct extent_buffer *leaf, 3966 struct btrfs_chunk *chunk, u64 chunk_offset) 3967 { 3968 struct btrfs_fs_info *fs_info = leaf->fs_info; 3969 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3970 struct btrfs_balance_args *bargs = NULL; 3971 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3972 3973 /* type filter */ 3974 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3975 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3976 return 0; 3977 } 3978 3979 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3980 bargs = &bctl->data; 3981 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3982 bargs = &bctl->sys; 3983 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3984 bargs = &bctl->meta; 3985 3986 /* profiles filter */ 3987 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3988 chunk_profiles_filter(chunk_type, bargs)) { 3989 return 0; 3990 } 3991 3992 /* usage filter */ 3993 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3994 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3995 return 0; 3996 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3997 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3998 return 0; 3999 } 4000 4001 /* devid filter */ 4002 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 4003 chunk_devid_filter(leaf, chunk, bargs)) { 4004 return 0; 4005 } 4006 4007 /* drange filter, makes sense only with devid filter */ 4008 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 4009 chunk_drange_filter(leaf, chunk, bargs)) { 4010 return 0; 4011 } 4012 4013 /* vrange filter */ 4014 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 4015 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 4016 return 0; 4017 } 4018 4019 /* stripes filter */ 4020 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 4021 chunk_stripes_range_filter(leaf, chunk, bargs)) { 4022 return 0; 4023 } 4024 4025 /* soft profile changing mode */ 4026 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 4027 chunk_soft_convert_filter(chunk_type, bargs)) { 4028 return 0; 4029 } 4030 4031 /* 4032 * limited by count, must be the last filter 4033 */ 4034 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 4035 if (bargs->limit == 0) 4036 return 0; 4037 else 4038 bargs->limit--; 4039 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 4040 /* 4041 * Same logic as the 'limit' filter; the minimum cannot be 4042 * determined here because we do not have the global information 4043 * about the count of all chunks that satisfy the filters. 4044 */ 4045 if (bargs->limit_max == 0) 4046 return 0; 4047 else 4048 bargs->limit_max--; 4049 } 4050 4051 return 1; 4052 } 4053 4054 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 4055 { 4056 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4057 struct btrfs_root *chunk_root = fs_info->chunk_root; 4058 u64 chunk_type; 4059 struct btrfs_chunk *chunk; 4060 struct btrfs_path *path = NULL; 4061 struct btrfs_key key; 4062 struct btrfs_key found_key; 4063 struct extent_buffer *leaf; 4064 int slot; 4065 int ret; 4066 int enospc_errors = 0; 4067 bool counting = true; 4068 /* The single value limit and min/max limits use the same bytes in the */ 4069 u64 limit_data = bctl->data.limit; 4070 u64 limit_meta = bctl->meta.limit; 4071 u64 limit_sys = bctl->sys.limit; 4072 u32 count_data = 0; 4073 u32 count_meta = 0; 4074 u32 count_sys = 0; 4075 int chunk_reserved = 0; 4076 4077 path = btrfs_alloc_path(); 4078 if (!path) { 4079 ret = -ENOMEM; 4080 goto error; 4081 } 4082 4083 /* zero out stat counters */ 4084 spin_lock(&fs_info->balance_lock); 4085 memset(&bctl->stat, 0, sizeof(bctl->stat)); 4086 spin_unlock(&fs_info->balance_lock); 4087 again: 4088 if (!counting) { 4089 /* 4090 * The single value limit and min/max limits use the same bytes 4091 * in the 4092 */ 4093 bctl->data.limit = limit_data; 4094 bctl->meta.limit = limit_meta; 4095 bctl->sys.limit = limit_sys; 4096 } 4097 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4098 key.type = BTRFS_CHUNK_ITEM_KEY; 4099 key.offset = (u64)-1; 4100 4101 while (1) { 4102 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 4103 atomic_read(&fs_info->balance_cancel_req)) { 4104 ret = -ECANCELED; 4105 goto error; 4106 } 4107 4108 mutex_lock(&fs_info->reclaim_bgs_lock); 4109 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 4110 if (ret < 0) { 4111 mutex_unlock(&fs_info->reclaim_bgs_lock); 4112 goto error; 4113 } 4114 4115 /* 4116 * this shouldn't happen, it means the last relocate 4117 * failed 4118 */ 4119 if (ret == 0) 4120 BUG(); /* FIXME break ? */ 4121 4122 ret = btrfs_previous_item(chunk_root, path, 0, 4123 BTRFS_CHUNK_ITEM_KEY); 4124 if (ret) { 4125 mutex_unlock(&fs_info->reclaim_bgs_lock); 4126 ret = 0; 4127 break; 4128 } 4129 4130 leaf = path->nodes[0]; 4131 slot = path->slots[0]; 4132 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4133 4134 if (found_key.objectid != key.objectid) { 4135 mutex_unlock(&fs_info->reclaim_bgs_lock); 4136 break; 4137 } 4138 4139 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4140 chunk_type = btrfs_chunk_type(leaf, chunk); 4141 4142 if (!counting) { 4143 spin_lock(&fs_info->balance_lock); 4144 bctl->stat.considered++; 4145 spin_unlock(&fs_info->balance_lock); 4146 } 4147 4148 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4149 4150 btrfs_release_path(path); 4151 if (!ret) { 4152 mutex_unlock(&fs_info->reclaim_bgs_lock); 4153 goto loop; 4154 } 4155 4156 if (counting) { 4157 mutex_unlock(&fs_info->reclaim_bgs_lock); 4158 spin_lock(&fs_info->balance_lock); 4159 bctl->stat.expected++; 4160 spin_unlock(&fs_info->balance_lock); 4161 4162 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4163 count_data++; 4164 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4165 count_sys++; 4166 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4167 count_meta++; 4168 4169 goto loop; 4170 } 4171 4172 /* 4173 * Apply limit_min filter, no need to check if the LIMITS 4174 * filter is used, limit_min is 0 by default 4175 */ 4176 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4177 count_data < bctl->data.limit_min) 4178 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4179 count_meta < bctl->meta.limit_min) 4180 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4181 count_sys < bctl->sys.limit_min)) { 4182 mutex_unlock(&fs_info->reclaim_bgs_lock); 4183 goto loop; 4184 } 4185 4186 if (!chunk_reserved) { 4187 /* 4188 * We may be relocating the only data chunk we have, 4189 * which could potentially end up with losing data's 4190 * raid profile, so lets allocate an empty one in 4191 * advance. 4192 */ 4193 ret = btrfs_may_alloc_data_chunk(fs_info, 4194 found_key.offset); 4195 if (ret < 0) { 4196 mutex_unlock(&fs_info->reclaim_bgs_lock); 4197 goto error; 4198 } else if (ret == 1) { 4199 chunk_reserved = 1; 4200 } 4201 } 4202 4203 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4204 mutex_unlock(&fs_info->reclaim_bgs_lock); 4205 if (ret == -ENOSPC) { 4206 enospc_errors++; 4207 } else if (ret == -ETXTBSY) { 4208 btrfs_info(fs_info, 4209 "skipping relocation of block group %llu due to active swapfile", 4210 found_key.offset); 4211 ret = 0; 4212 } else if (ret) { 4213 goto error; 4214 } else { 4215 spin_lock(&fs_info->balance_lock); 4216 bctl->stat.completed++; 4217 spin_unlock(&fs_info->balance_lock); 4218 } 4219 loop: 4220 if (found_key.offset == 0) 4221 break; 4222 key.offset = found_key.offset - 1; 4223 } 4224 4225 if (counting) { 4226 btrfs_release_path(path); 4227 counting = false; 4228 goto again; 4229 } 4230 error: 4231 btrfs_free_path(path); 4232 if (enospc_errors) { 4233 btrfs_info(fs_info, "%d enospc errors during balance", 4234 enospc_errors); 4235 if (!ret) 4236 ret = -ENOSPC; 4237 } 4238 4239 return ret; 4240 } 4241 4242 /* 4243 * See if a given profile is valid and reduced. 4244 * 4245 * @flags: profile to validate 4246 * @extended: if true @flags is treated as an extended profile 4247 */ 4248 static int alloc_profile_is_valid(u64 flags, int extended) 4249 { 4250 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4251 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4252 4253 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4254 4255 /* 1) check that all other bits are zeroed */ 4256 if (flags & ~mask) 4257 return 0; 4258 4259 /* 2) see if profile is reduced */ 4260 if (flags == 0) 4261 return !extended; /* "0" is valid for usual profiles */ 4262 4263 return has_single_bit_set(flags); 4264 } 4265 4266 /* 4267 * Validate target profile against allowed profiles and return true if it's OK. 4268 * Otherwise print the error message and return false. 4269 */ 4270 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4271 const struct btrfs_balance_args *bargs, 4272 u64 allowed, const char *type) 4273 { 4274 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4275 return true; 4276 4277 /* Profile is valid and does not have bits outside of the allowed set */ 4278 if (alloc_profile_is_valid(bargs->target, 1) && 4279 (bargs->target & ~allowed) == 0) 4280 return true; 4281 4282 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4283 type, btrfs_bg_type_to_raid_name(bargs->target)); 4284 return false; 4285 } 4286 4287 /* 4288 * Fill @buf with textual description of balance filter flags @bargs, up to 4289 * @size_buf including the terminating null. The output may be trimmed if it 4290 * does not fit into the provided buffer. 4291 */ 4292 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4293 u32 size_buf) 4294 { 4295 int ret; 4296 u32 size_bp = size_buf; 4297 char *bp = buf; 4298 u64 flags = bargs->flags; 4299 char tmp_buf[128] = {'\0'}; 4300 4301 if (!flags) 4302 return; 4303 4304 #define CHECK_APPEND_NOARG(a) \ 4305 do { \ 4306 ret = snprintf(bp, size_bp, (a)); \ 4307 if (ret < 0 || ret >= size_bp) \ 4308 goto out_overflow; \ 4309 size_bp -= ret; \ 4310 bp += ret; \ 4311 } while (0) 4312 4313 #define CHECK_APPEND_1ARG(a, v1) \ 4314 do { \ 4315 ret = snprintf(bp, size_bp, (a), (v1)); \ 4316 if (ret < 0 || ret >= size_bp) \ 4317 goto out_overflow; \ 4318 size_bp -= ret; \ 4319 bp += ret; \ 4320 } while (0) 4321 4322 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4323 do { \ 4324 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4325 if (ret < 0 || ret >= size_bp) \ 4326 goto out_overflow; \ 4327 size_bp -= ret; \ 4328 bp += ret; \ 4329 } while (0) 4330 4331 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4332 CHECK_APPEND_1ARG("convert=%s,", 4333 btrfs_bg_type_to_raid_name(bargs->target)); 4334 4335 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4336 CHECK_APPEND_NOARG("soft,"); 4337 4338 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4339 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4340 sizeof(tmp_buf)); 4341 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4342 } 4343 4344 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4345 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4346 4347 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4348 CHECK_APPEND_2ARG("usage=%u..%u,", 4349 bargs->usage_min, bargs->usage_max); 4350 4351 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4352 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4353 4354 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4355 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4356 bargs->pstart, bargs->pend); 4357 4358 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4359 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4360 bargs->vstart, bargs->vend); 4361 4362 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4363 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4364 4365 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4366 CHECK_APPEND_2ARG("limit=%u..%u,", 4367 bargs->limit_min, bargs->limit_max); 4368 4369 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4370 CHECK_APPEND_2ARG("stripes=%u..%u,", 4371 bargs->stripes_min, bargs->stripes_max); 4372 4373 #undef CHECK_APPEND_2ARG 4374 #undef CHECK_APPEND_1ARG 4375 #undef CHECK_APPEND_NOARG 4376 4377 out_overflow: 4378 4379 if (size_bp < size_buf) 4380 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4381 else 4382 buf[0] = '\0'; 4383 } 4384 4385 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4386 { 4387 u32 size_buf = 1024; 4388 char tmp_buf[192] = {'\0'}; 4389 char *buf; 4390 char *bp; 4391 u32 size_bp = size_buf; 4392 int ret; 4393 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4394 4395 buf = kzalloc(size_buf, GFP_KERNEL); 4396 if (!buf) 4397 return; 4398 4399 bp = buf; 4400 4401 #define CHECK_APPEND_1ARG(a, v1) \ 4402 do { \ 4403 ret = snprintf(bp, size_bp, (a), (v1)); \ 4404 if (ret < 0 || ret >= size_bp) \ 4405 goto out_overflow; \ 4406 size_bp -= ret; \ 4407 bp += ret; \ 4408 } while (0) 4409 4410 if (bctl->flags & BTRFS_BALANCE_FORCE) 4411 CHECK_APPEND_1ARG("%s", "-f "); 4412 4413 if (bctl->flags & BTRFS_BALANCE_DATA) { 4414 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4415 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4416 } 4417 4418 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4419 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4420 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4421 } 4422 4423 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4424 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4425 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4426 } 4427 4428 #undef CHECK_APPEND_1ARG 4429 4430 out_overflow: 4431 4432 if (size_bp < size_buf) 4433 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4434 btrfs_info(fs_info, "balance: %s %s", 4435 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4436 "resume" : "start", buf); 4437 4438 kfree(buf); 4439 } 4440 4441 /* 4442 * Should be called with balance mutexe held 4443 */ 4444 int btrfs_balance(struct btrfs_fs_info *fs_info, 4445 struct btrfs_balance_control *bctl, 4446 struct btrfs_ioctl_balance_args *bargs) 4447 { 4448 u64 meta_target, data_target; 4449 u64 allowed; 4450 int mixed = 0; 4451 int ret; 4452 u64 num_devices; 4453 unsigned seq; 4454 bool reducing_redundancy; 4455 bool paused = false; 4456 int i; 4457 4458 if (btrfs_fs_closing(fs_info) || 4459 atomic_read(&fs_info->balance_pause_req) || 4460 btrfs_should_cancel_balance(fs_info)) { 4461 ret = -EINVAL; 4462 goto out; 4463 } 4464 4465 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4466 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4467 mixed = 1; 4468 4469 /* 4470 * In case of mixed groups both data and meta should be picked, 4471 * and identical options should be given for both of them. 4472 */ 4473 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4474 if (mixed && (bctl->flags & allowed)) { 4475 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4476 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4477 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4478 btrfs_err(fs_info, 4479 "balance: mixed groups data and metadata options must be the same"); 4480 ret = -EINVAL; 4481 goto out; 4482 } 4483 } 4484 4485 /* 4486 * rw_devices will not change at the moment, device add/delete/replace 4487 * are exclusive 4488 */ 4489 num_devices = fs_info->fs_devices->rw_devices; 4490 4491 /* 4492 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4493 * special bit for it, to make it easier to distinguish. Thus we need 4494 * to set it manually, or balance would refuse the profile. 4495 */ 4496 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4497 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4498 if (num_devices >= btrfs_raid_array[i].devs_min) 4499 allowed |= btrfs_raid_array[i].bg_flag; 4500 4501 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4502 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4503 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4504 ret = -EINVAL; 4505 goto out; 4506 } 4507 4508 /* 4509 * Allow to reduce metadata or system integrity only if force set for 4510 * profiles with redundancy (copies, parity) 4511 */ 4512 allowed = 0; 4513 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4514 if (btrfs_raid_array[i].ncopies >= 2 || 4515 btrfs_raid_array[i].tolerated_failures >= 1) 4516 allowed |= btrfs_raid_array[i].bg_flag; 4517 } 4518 do { 4519 seq = read_seqbegin(&fs_info->profiles_lock); 4520 4521 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4522 (fs_info->avail_system_alloc_bits & allowed) && 4523 !(bctl->sys.target & allowed)) || 4524 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4525 (fs_info->avail_metadata_alloc_bits & allowed) && 4526 !(bctl->meta.target & allowed))) 4527 reducing_redundancy = true; 4528 else 4529 reducing_redundancy = false; 4530 4531 /* if we're not converting, the target field is uninitialized */ 4532 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4533 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4534 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4535 bctl->data.target : fs_info->avail_data_alloc_bits; 4536 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4537 4538 if (reducing_redundancy) { 4539 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4540 btrfs_info(fs_info, 4541 "balance: force reducing metadata redundancy"); 4542 } else { 4543 btrfs_err(fs_info, 4544 "balance: reduces metadata redundancy, use --force if you want this"); 4545 ret = -EINVAL; 4546 goto out; 4547 } 4548 } 4549 4550 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4551 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4552 btrfs_warn(fs_info, 4553 "balance: metadata profile %s has lower redundancy than data profile %s", 4554 btrfs_bg_type_to_raid_name(meta_target), 4555 btrfs_bg_type_to_raid_name(data_target)); 4556 } 4557 4558 ret = insert_balance_item(fs_info, bctl); 4559 if (ret && ret != -EEXIST) 4560 goto out; 4561 4562 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4563 BUG_ON(ret == -EEXIST); 4564 BUG_ON(fs_info->balance_ctl); 4565 spin_lock(&fs_info->balance_lock); 4566 fs_info->balance_ctl = bctl; 4567 spin_unlock(&fs_info->balance_lock); 4568 } else { 4569 BUG_ON(ret != -EEXIST); 4570 spin_lock(&fs_info->balance_lock); 4571 update_balance_args(bctl); 4572 spin_unlock(&fs_info->balance_lock); 4573 } 4574 4575 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4576 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4577 describe_balance_start_or_resume(fs_info); 4578 mutex_unlock(&fs_info->balance_mutex); 4579 4580 ret = __btrfs_balance(fs_info); 4581 4582 mutex_lock(&fs_info->balance_mutex); 4583 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4584 btrfs_info(fs_info, "balance: paused"); 4585 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4586 paused = true; 4587 } 4588 /* 4589 * Balance can be canceled by: 4590 * 4591 * - Regular cancel request 4592 * Then ret == -ECANCELED and balance_cancel_req > 0 4593 * 4594 * - Fatal signal to "btrfs" process 4595 * Either the signal caught by wait_reserve_ticket() and callers 4596 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4597 * got -ECANCELED. 4598 * Either way, in this case balance_cancel_req = 0, and 4599 * ret == -EINTR or ret == -ECANCELED. 4600 * 4601 * So here we only check the return value to catch canceled balance. 4602 */ 4603 else if (ret == -ECANCELED || ret == -EINTR) 4604 btrfs_info(fs_info, "balance: canceled"); 4605 else 4606 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4607 4608 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4609 4610 if (bargs) { 4611 memset(bargs, 0, sizeof(*bargs)); 4612 btrfs_update_ioctl_balance_args(fs_info, bargs); 4613 } 4614 4615 /* We didn't pause, we can clean everything up. */ 4616 if (!paused) { 4617 reset_balance_state(fs_info); 4618 btrfs_exclop_finish(fs_info); 4619 } 4620 4621 wake_up(&fs_info->balance_wait_q); 4622 4623 return ret; 4624 out: 4625 if (bctl->flags & BTRFS_BALANCE_RESUME) 4626 reset_balance_state(fs_info); 4627 else 4628 kfree(bctl); 4629 btrfs_exclop_finish(fs_info); 4630 4631 return ret; 4632 } 4633 4634 static int balance_kthread(void *data) 4635 { 4636 struct btrfs_fs_info *fs_info = data; 4637 int ret = 0; 4638 4639 sb_start_write(fs_info->sb); 4640 mutex_lock(&fs_info->balance_mutex); 4641 if (fs_info->balance_ctl) 4642 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4643 mutex_unlock(&fs_info->balance_mutex); 4644 sb_end_write(fs_info->sb); 4645 4646 return ret; 4647 } 4648 4649 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4650 { 4651 struct task_struct *tsk; 4652 4653 mutex_lock(&fs_info->balance_mutex); 4654 if (!fs_info->balance_ctl) { 4655 mutex_unlock(&fs_info->balance_mutex); 4656 return 0; 4657 } 4658 mutex_unlock(&fs_info->balance_mutex); 4659 4660 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4661 btrfs_info(fs_info, "balance: resume skipped"); 4662 return 0; 4663 } 4664 4665 spin_lock(&fs_info->super_lock); 4666 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4667 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4668 spin_unlock(&fs_info->super_lock); 4669 /* 4670 * A ro->rw remount sequence should continue with the paused balance 4671 * regardless of who pauses it, system or the user as of now, so set 4672 * the resume flag. 4673 */ 4674 spin_lock(&fs_info->balance_lock); 4675 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4676 spin_unlock(&fs_info->balance_lock); 4677 4678 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4679 return PTR_ERR_OR_ZERO(tsk); 4680 } 4681 4682 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4683 { 4684 struct btrfs_balance_control *bctl; 4685 struct btrfs_balance_item *item; 4686 struct btrfs_disk_balance_args disk_bargs; 4687 struct btrfs_path *path; 4688 struct extent_buffer *leaf; 4689 struct btrfs_key key; 4690 int ret; 4691 4692 path = btrfs_alloc_path(); 4693 if (!path) 4694 return -ENOMEM; 4695 4696 key.objectid = BTRFS_BALANCE_OBJECTID; 4697 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4698 key.offset = 0; 4699 4700 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4701 if (ret < 0) 4702 goto out; 4703 if (ret > 0) { /* ret = -ENOENT; */ 4704 ret = 0; 4705 goto out; 4706 } 4707 4708 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4709 if (!bctl) { 4710 ret = -ENOMEM; 4711 goto out; 4712 } 4713 4714 leaf = path->nodes[0]; 4715 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4716 4717 bctl->flags = btrfs_balance_flags(leaf, item); 4718 bctl->flags |= BTRFS_BALANCE_RESUME; 4719 4720 btrfs_balance_data(leaf, item, &disk_bargs); 4721 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4722 btrfs_balance_meta(leaf, item, &disk_bargs); 4723 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4724 btrfs_balance_sys(leaf, item, &disk_bargs); 4725 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4726 4727 /* 4728 * This should never happen, as the paused balance state is recovered 4729 * during mount without any chance of other exclusive ops to collide. 4730 * 4731 * This gives the exclusive op status to balance and keeps in paused 4732 * state until user intervention (cancel or umount). If the ownership 4733 * cannot be assigned, show a message but do not fail. The balance 4734 * is in a paused state and must have fs_info::balance_ctl properly 4735 * set up. 4736 */ 4737 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4738 btrfs_warn(fs_info, 4739 "balance: cannot set exclusive op status, resume manually"); 4740 4741 btrfs_release_path(path); 4742 4743 mutex_lock(&fs_info->balance_mutex); 4744 BUG_ON(fs_info->balance_ctl); 4745 spin_lock(&fs_info->balance_lock); 4746 fs_info->balance_ctl = bctl; 4747 spin_unlock(&fs_info->balance_lock); 4748 mutex_unlock(&fs_info->balance_mutex); 4749 out: 4750 btrfs_free_path(path); 4751 return ret; 4752 } 4753 4754 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4755 { 4756 int ret = 0; 4757 4758 mutex_lock(&fs_info->balance_mutex); 4759 if (!fs_info->balance_ctl) { 4760 mutex_unlock(&fs_info->balance_mutex); 4761 return -ENOTCONN; 4762 } 4763 4764 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4765 atomic_inc(&fs_info->balance_pause_req); 4766 mutex_unlock(&fs_info->balance_mutex); 4767 4768 wait_event(fs_info->balance_wait_q, 4769 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4770 4771 mutex_lock(&fs_info->balance_mutex); 4772 /* we are good with balance_ctl ripped off from under us */ 4773 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4774 atomic_dec(&fs_info->balance_pause_req); 4775 } else { 4776 ret = -ENOTCONN; 4777 } 4778 4779 mutex_unlock(&fs_info->balance_mutex); 4780 return ret; 4781 } 4782 4783 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4784 { 4785 mutex_lock(&fs_info->balance_mutex); 4786 if (!fs_info->balance_ctl) { 4787 mutex_unlock(&fs_info->balance_mutex); 4788 return -ENOTCONN; 4789 } 4790 4791 /* 4792 * A paused balance with the item stored on disk can be resumed at 4793 * mount time if the mount is read-write. Otherwise it's still paused 4794 * and we must not allow cancelling as it deletes the item. 4795 */ 4796 if (sb_rdonly(fs_info->sb)) { 4797 mutex_unlock(&fs_info->balance_mutex); 4798 return -EROFS; 4799 } 4800 4801 atomic_inc(&fs_info->balance_cancel_req); 4802 /* 4803 * if we are running just wait and return, balance item is 4804 * deleted in btrfs_balance in this case 4805 */ 4806 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4807 mutex_unlock(&fs_info->balance_mutex); 4808 wait_event(fs_info->balance_wait_q, 4809 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4810 mutex_lock(&fs_info->balance_mutex); 4811 } else { 4812 mutex_unlock(&fs_info->balance_mutex); 4813 /* 4814 * Lock released to allow other waiters to continue, we'll 4815 * reexamine the status again. 4816 */ 4817 mutex_lock(&fs_info->balance_mutex); 4818 4819 if (fs_info->balance_ctl) { 4820 reset_balance_state(fs_info); 4821 btrfs_exclop_finish(fs_info); 4822 btrfs_info(fs_info, "balance: canceled"); 4823 } 4824 } 4825 4826 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4827 atomic_dec(&fs_info->balance_cancel_req); 4828 mutex_unlock(&fs_info->balance_mutex); 4829 return 0; 4830 } 4831 4832 /* 4833 * shrinking a device means finding all of the device extents past 4834 * the new size, and then following the back refs to the chunks. 4835 * The chunk relocation code actually frees the device extent 4836 */ 4837 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4838 { 4839 struct btrfs_fs_info *fs_info = device->fs_info; 4840 struct btrfs_root *root = fs_info->dev_root; 4841 struct btrfs_trans_handle *trans; 4842 struct btrfs_dev_extent *dev_extent = NULL; 4843 struct btrfs_path *path; 4844 u64 length; 4845 u64 chunk_offset; 4846 int ret; 4847 int slot; 4848 int failed = 0; 4849 bool retried = false; 4850 struct extent_buffer *l; 4851 struct btrfs_key key; 4852 struct btrfs_super_block *super_copy = fs_info->super_copy; 4853 u64 old_total = btrfs_super_total_bytes(super_copy); 4854 u64 old_size = btrfs_device_get_total_bytes(device); 4855 u64 diff; 4856 u64 start; 4857 u64 free_diff = 0; 4858 4859 new_size = round_down(new_size, fs_info->sectorsize); 4860 start = new_size; 4861 diff = round_down(old_size - new_size, fs_info->sectorsize); 4862 4863 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4864 return -EINVAL; 4865 4866 path = btrfs_alloc_path(); 4867 if (!path) 4868 return -ENOMEM; 4869 4870 path->reada = READA_BACK; 4871 4872 trans = btrfs_start_transaction(root, 0); 4873 if (IS_ERR(trans)) { 4874 btrfs_free_path(path); 4875 return PTR_ERR(trans); 4876 } 4877 4878 mutex_lock(&fs_info->chunk_mutex); 4879 4880 btrfs_device_set_total_bytes(device, new_size); 4881 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4882 device->fs_devices->total_rw_bytes -= diff; 4883 4884 /* 4885 * The new free_chunk_space is new_size - used, so we have to 4886 * subtract the delta of the old free_chunk_space which included 4887 * old_size - used. If used > new_size then just subtract this 4888 * entire device's free space. 4889 */ 4890 if (device->bytes_used < new_size) 4891 free_diff = (old_size - device->bytes_used) - 4892 (new_size - device->bytes_used); 4893 else 4894 free_diff = old_size - device->bytes_used; 4895 atomic64_sub(free_diff, &fs_info->free_chunk_space); 4896 } 4897 4898 /* 4899 * Once the device's size has been set to the new size, ensure all 4900 * in-memory chunks are synced to disk so that the loop below sees them 4901 * and relocates them accordingly. 4902 */ 4903 if (contains_pending_extent(device, &start, diff)) { 4904 mutex_unlock(&fs_info->chunk_mutex); 4905 ret = btrfs_commit_transaction(trans); 4906 if (ret) 4907 goto done; 4908 } else { 4909 mutex_unlock(&fs_info->chunk_mutex); 4910 btrfs_end_transaction(trans); 4911 } 4912 4913 again: 4914 key.objectid = device->devid; 4915 key.type = BTRFS_DEV_EXTENT_KEY; 4916 key.offset = (u64)-1; 4917 4918 do { 4919 mutex_lock(&fs_info->reclaim_bgs_lock); 4920 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4921 if (ret < 0) { 4922 mutex_unlock(&fs_info->reclaim_bgs_lock); 4923 goto done; 4924 } 4925 4926 ret = btrfs_previous_item(root, path, 0, key.type); 4927 if (ret) { 4928 mutex_unlock(&fs_info->reclaim_bgs_lock); 4929 if (ret < 0) 4930 goto done; 4931 ret = 0; 4932 btrfs_release_path(path); 4933 break; 4934 } 4935 4936 l = path->nodes[0]; 4937 slot = path->slots[0]; 4938 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4939 4940 if (key.objectid != device->devid) { 4941 mutex_unlock(&fs_info->reclaim_bgs_lock); 4942 btrfs_release_path(path); 4943 break; 4944 } 4945 4946 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4947 length = btrfs_dev_extent_length(l, dev_extent); 4948 4949 if (key.offset + length <= new_size) { 4950 mutex_unlock(&fs_info->reclaim_bgs_lock); 4951 btrfs_release_path(path); 4952 break; 4953 } 4954 4955 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4956 btrfs_release_path(path); 4957 4958 /* 4959 * We may be relocating the only data chunk we have, 4960 * which could potentially end up with losing data's 4961 * raid profile, so lets allocate an empty one in 4962 * advance. 4963 */ 4964 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4965 if (ret < 0) { 4966 mutex_unlock(&fs_info->reclaim_bgs_lock); 4967 goto done; 4968 } 4969 4970 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4971 mutex_unlock(&fs_info->reclaim_bgs_lock); 4972 if (ret == -ENOSPC) { 4973 failed++; 4974 } else if (ret) { 4975 if (ret == -ETXTBSY) { 4976 btrfs_warn(fs_info, 4977 "could not shrink block group %llu due to active swapfile", 4978 chunk_offset); 4979 } 4980 goto done; 4981 } 4982 } while (key.offset-- > 0); 4983 4984 if (failed && !retried) { 4985 failed = 0; 4986 retried = true; 4987 goto again; 4988 } else if (failed && retried) { 4989 ret = -ENOSPC; 4990 goto done; 4991 } 4992 4993 /* Shrinking succeeded, else we would be at "done". */ 4994 trans = btrfs_start_transaction(root, 0); 4995 if (IS_ERR(trans)) { 4996 ret = PTR_ERR(trans); 4997 goto done; 4998 } 4999 5000 mutex_lock(&fs_info->chunk_mutex); 5001 /* Clear all state bits beyond the shrunk device size */ 5002 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 5003 CHUNK_STATE_MASK); 5004 5005 btrfs_device_set_disk_total_bytes(device, new_size); 5006 if (list_empty(&device->post_commit_list)) 5007 list_add_tail(&device->post_commit_list, 5008 &trans->transaction->dev_update_list); 5009 5010 WARN_ON(diff > old_total); 5011 btrfs_set_super_total_bytes(super_copy, 5012 round_down(old_total - diff, fs_info->sectorsize)); 5013 mutex_unlock(&fs_info->chunk_mutex); 5014 5015 btrfs_reserve_chunk_metadata(trans, false); 5016 /* Now btrfs_update_device() will change the on-disk size. */ 5017 ret = btrfs_update_device(trans, device); 5018 btrfs_trans_release_chunk_metadata(trans); 5019 if (ret < 0) { 5020 btrfs_abort_transaction(trans, ret); 5021 btrfs_end_transaction(trans); 5022 } else { 5023 ret = btrfs_commit_transaction(trans); 5024 } 5025 done: 5026 btrfs_free_path(path); 5027 if (ret) { 5028 mutex_lock(&fs_info->chunk_mutex); 5029 btrfs_device_set_total_bytes(device, old_size); 5030 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5031 device->fs_devices->total_rw_bytes += diff; 5032 atomic64_add(free_diff, &fs_info->free_chunk_space); 5033 } 5034 mutex_unlock(&fs_info->chunk_mutex); 5035 } 5036 return ret; 5037 } 5038 5039 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5040 struct btrfs_key *key, 5041 struct btrfs_chunk *chunk, int item_size) 5042 { 5043 struct btrfs_super_block *super_copy = fs_info->super_copy; 5044 struct btrfs_disk_key disk_key; 5045 u32 array_size; 5046 u8 *ptr; 5047 5048 lockdep_assert_held(&fs_info->chunk_mutex); 5049 5050 array_size = btrfs_super_sys_array_size(super_copy); 5051 if (array_size + item_size + sizeof(disk_key) 5052 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5053 return -EFBIG; 5054 5055 ptr = super_copy->sys_chunk_array + array_size; 5056 btrfs_cpu_key_to_disk(&disk_key, key); 5057 memcpy(ptr, &disk_key, sizeof(disk_key)); 5058 ptr += sizeof(disk_key); 5059 memcpy(ptr, chunk, item_size); 5060 item_size += sizeof(disk_key); 5061 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5062 5063 return 0; 5064 } 5065 5066 /* 5067 * sort the devices in descending order by max_avail, total_avail 5068 */ 5069 static int btrfs_cmp_device_info(const void *a, const void *b) 5070 { 5071 const struct btrfs_device_info *di_a = a; 5072 const struct btrfs_device_info *di_b = b; 5073 5074 if (di_a->max_avail > di_b->max_avail) 5075 return -1; 5076 if (di_a->max_avail < di_b->max_avail) 5077 return 1; 5078 if (di_a->total_avail > di_b->total_avail) 5079 return -1; 5080 if (di_a->total_avail < di_b->total_avail) 5081 return 1; 5082 return 0; 5083 } 5084 5085 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5086 { 5087 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5088 return; 5089 5090 btrfs_set_fs_incompat(info, RAID56); 5091 } 5092 5093 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5094 { 5095 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5096 return; 5097 5098 btrfs_set_fs_incompat(info, RAID1C34); 5099 } 5100 5101 /* 5102 * Structure used internally for btrfs_create_chunk() function. 5103 * Wraps needed parameters. 5104 */ 5105 struct alloc_chunk_ctl { 5106 u64 start; 5107 u64 type; 5108 /* Total number of stripes to allocate */ 5109 int num_stripes; 5110 /* sub_stripes info for map */ 5111 int sub_stripes; 5112 /* Stripes per device */ 5113 int dev_stripes; 5114 /* Maximum number of devices to use */ 5115 int devs_max; 5116 /* Minimum number of devices to use */ 5117 int devs_min; 5118 /* ndevs has to be a multiple of this */ 5119 int devs_increment; 5120 /* Number of copies */ 5121 int ncopies; 5122 /* Number of stripes worth of bytes to store parity information */ 5123 int nparity; 5124 u64 max_stripe_size; 5125 u64 max_chunk_size; 5126 u64 dev_extent_min; 5127 u64 stripe_size; 5128 u64 chunk_size; 5129 int ndevs; 5130 }; 5131 5132 static void init_alloc_chunk_ctl_policy_regular( 5133 struct btrfs_fs_devices *fs_devices, 5134 struct alloc_chunk_ctl *ctl) 5135 { 5136 struct btrfs_space_info *space_info; 5137 5138 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5139 ASSERT(space_info); 5140 5141 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5142 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5143 5144 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5145 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5146 5147 /* We don't want a chunk larger than 10% of writable space */ 5148 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5149 ctl->max_chunk_size); 5150 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5151 } 5152 5153 static void init_alloc_chunk_ctl_policy_zoned( 5154 struct btrfs_fs_devices *fs_devices, 5155 struct alloc_chunk_ctl *ctl) 5156 { 5157 u64 zone_size = fs_devices->fs_info->zone_size; 5158 u64 limit; 5159 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5160 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5161 u64 min_chunk_size = min_data_stripes * zone_size; 5162 u64 type = ctl->type; 5163 5164 ctl->max_stripe_size = zone_size; 5165 if (type & BTRFS_BLOCK_GROUP_DATA) { 5166 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5167 zone_size); 5168 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5169 ctl->max_chunk_size = ctl->max_stripe_size; 5170 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5171 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5172 ctl->devs_max = min_t(int, ctl->devs_max, 5173 BTRFS_MAX_DEVS_SYS_CHUNK); 5174 } else { 5175 BUG(); 5176 } 5177 5178 /* We don't want a chunk larger than 10% of writable space */ 5179 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5180 zone_size), 5181 min_chunk_size); 5182 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5183 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5184 } 5185 5186 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5187 struct alloc_chunk_ctl *ctl) 5188 { 5189 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5190 5191 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5192 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5193 ctl->devs_max = btrfs_raid_array[index].devs_max; 5194 if (!ctl->devs_max) 5195 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5196 ctl->devs_min = btrfs_raid_array[index].devs_min; 5197 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5198 ctl->ncopies = btrfs_raid_array[index].ncopies; 5199 ctl->nparity = btrfs_raid_array[index].nparity; 5200 ctl->ndevs = 0; 5201 5202 switch (fs_devices->chunk_alloc_policy) { 5203 case BTRFS_CHUNK_ALLOC_REGULAR: 5204 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5205 break; 5206 case BTRFS_CHUNK_ALLOC_ZONED: 5207 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5208 break; 5209 default: 5210 BUG(); 5211 } 5212 } 5213 5214 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5215 struct alloc_chunk_ctl *ctl, 5216 struct btrfs_device_info *devices_info) 5217 { 5218 struct btrfs_fs_info *info = fs_devices->fs_info; 5219 struct btrfs_device *device; 5220 u64 total_avail; 5221 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5222 int ret; 5223 int ndevs = 0; 5224 u64 max_avail; 5225 u64 dev_offset; 5226 5227 /* 5228 * in the first pass through the devices list, we gather information 5229 * about the available holes on each device. 5230 */ 5231 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5232 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5233 WARN(1, KERN_ERR 5234 "BTRFS: read-only device in alloc_list\n"); 5235 continue; 5236 } 5237 5238 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5239 &device->dev_state) || 5240 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5241 continue; 5242 5243 if (device->total_bytes > device->bytes_used) 5244 total_avail = device->total_bytes - device->bytes_used; 5245 else 5246 total_avail = 0; 5247 5248 /* If there is no space on this device, skip it. */ 5249 if (total_avail < ctl->dev_extent_min) 5250 continue; 5251 5252 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5253 &max_avail); 5254 if (ret && ret != -ENOSPC) 5255 return ret; 5256 5257 if (ret == 0) 5258 max_avail = dev_extent_want; 5259 5260 if (max_avail < ctl->dev_extent_min) { 5261 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5262 btrfs_debug(info, 5263 "%s: devid %llu has no free space, have=%llu want=%llu", 5264 __func__, device->devid, max_avail, 5265 ctl->dev_extent_min); 5266 continue; 5267 } 5268 5269 if (ndevs == fs_devices->rw_devices) { 5270 WARN(1, "%s: found more than %llu devices\n", 5271 __func__, fs_devices->rw_devices); 5272 break; 5273 } 5274 devices_info[ndevs].dev_offset = dev_offset; 5275 devices_info[ndevs].max_avail = max_avail; 5276 devices_info[ndevs].total_avail = total_avail; 5277 devices_info[ndevs].dev = device; 5278 ++ndevs; 5279 } 5280 ctl->ndevs = ndevs; 5281 5282 /* 5283 * now sort the devices by hole size / available space 5284 */ 5285 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5286 btrfs_cmp_device_info, NULL); 5287 5288 return 0; 5289 } 5290 5291 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5292 struct btrfs_device_info *devices_info) 5293 { 5294 /* Number of stripes that count for block group size */ 5295 int data_stripes; 5296 5297 /* 5298 * The primary goal is to maximize the number of stripes, so use as 5299 * many devices as possible, even if the stripes are not maximum sized. 5300 * 5301 * The DUP profile stores more than one stripe per device, the 5302 * max_avail is the total size so we have to adjust. 5303 */ 5304 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5305 ctl->dev_stripes); 5306 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5307 5308 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5309 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5310 5311 /* 5312 * Use the number of data stripes to figure out how big this chunk is 5313 * really going to be in terms of logical address space, and compare 5314 * that answer with the max chunk size. If it's higher, we try to 5315 * reduce stripe_size. 5316 */ 5317 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5318 /* 5319 * Reduce stripe_size, round it up to a 16MB boundary again and 5320 * then use it, unless it ends up being even bigger than the 5321 * previous value we had already. 5322 */ 5323 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5324 data_stripes), SZ_16M), 5325 ctl->stripe_size); 5326 } 5327 5328 /* Stripe size should not go beyond 1G. */ 5329 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5330 5331 /* Align to BTRFS_STRIPE_LEN */ 5332 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5333 ctl->chunk_size = ctl->stripe_size * data_stripes; 5334 5335 return 0; 5336 } 5337 5338 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5339 struct btrfs_device_info *devices_info) 5340 { 5341 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5342 /* Number of stripes that count for block group size */ 5343 int data_stripes; 5344 5345 /* 5346 * It should hold because: 5347 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5348 */ 5349 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5350 5351 ctl->stripe_size = zone_size; 5352 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5353 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5354 5355 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */ 5356 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5357 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5358 ctl->stripe_size) + ctl->nparity, 5359 ctl->dev_stripes); 5360 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5361 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5362 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5363 } 5364 5365 ctl->chunk_size = ctl->stripe_size * data_stripes; 5366 5367 return 0; 5368 } 5369 5370 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5371 struct alloc_chunk_ctl *ctl, 5372 struct btrfs_device_info *devices_info) 5373 { 5374 struct btrfs_fs_info *info = fs_devices->fs_info; 5375 5376 /* 5377 * Round down to number of usable stripes, devs_increment can be any 5378 * number so we can't use round_down() that requires power of 2, while 5379 * rounddown is safe. 5380 */ 5381 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5382 5383 if (ctl->ndevs < ctl->devs_min) { 5384 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5385 btrfs_debug(info, 5386 "%s: not enough devices with free space: have=%d minimum required=%d", 5387 __func__, ctl->ndevs, ctl->devs_min); 5388 } 5389 return -ENOSPC; 5390 } 5391 5392 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5393 5394 switch (fs_devices->chunk_alloc_policy) { 5395 case BTRFS_CHUNK_ALLOC_REGULAR: 5396 return decide_stripe_size_regular(ctl, devices_info); 5397 case BTRFS_CHUNK_ALLOC_ZONED: 5398 return decide_stripe_size_zoned(ctl, devices_info); 5399 default: 5400 BUG(); 5401 } 5402 } 5403 5404 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5405 { 5406 for (int i = 0; i < map->num_stripes; i++) { 5407 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5408 struct btrfs_device *device = stripe->dev; 5409 5410 set_extent_bit(&device->alloc_state, stripe->physical, 5411 stripe->physical + map->stripe_size - 1, 5412 bits | EXTENT_NOWAIT, NULL); 5413 } 5414 } 5415 5416 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5417 { 5418 for (int i = 0; i < map->num_stripes; i++) { 5419 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5420 struct btrfs_device *device = stripe->dev; 5421 5422 __clear_extent_bit(&device->alloc_state, stripe->physical, 5423 stripe->physical + map->stripe_size - 1, 5424 bits | EXTENT_NOWAIT, 5425 NULL, NULL); 5426 } 5427 } 5428 5429 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5430 { 5431 write_lock(&fs_info->mapping_tree_lock); 5432 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5433 RB_CLEAR_NODE(&map->rb_node); 5434 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5435 write_unlock(&fs_info->mapping_tree_lock); 5436 5437 /* Once for the tree reference. */ 5438 btrfs_free_chunk_map(map); 5439 } 5440 5441 static int btrfs_chunk_map_cmp(const struct rb_node *new, 5442 const struct rb_node *exist) 5443 { 5444 const struct btrfs_chunk_map *new_map = 5445 rb_entry(new, struct btrfs_chunk_map, rb_node); 5446 const struct btrfs_chunk_map *exist_map = 5447 rb_entry(exist, struct btrfs_chunk_map, rb_node); 5448 5449 if (new_map->start == exist_map->start) 5450 return 0; 5451 if (new_map->start < exist_map->start) 5452 return -1; 5453 return 1; 5454 } 5455 5456 EXPORT_FOR_TESTS 5457 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5458 { 5459 struct rb_node *exist; 5460 5461 write_lock(&fs_info->mapping_tree_lock); 5462 exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree, 5463 btrfs_chunk_map_cmp); 5464 5465 if (exist) { 5466 write_unlock(&fs_info->mapping_tree_lock); 5467 return -EEXIST; 5468 } 5469 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5470 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5471 write_unlock(&fs_info->mapping_tree_lock); 5472 5473 return 0; 5474 } 5475 5476 EXPORT_FOR_TESTS 5477 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5478 { 5479 struct btrfs_chunk_map *map; 5480 5481 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5482 if (!map) 5483 return NULL; 5484 5485 refcount_set(&map->refs, 1); 5486 RB_CLEAR_NODE(&map->rb_node); 5487 5488 return map; 5489 } 5490 5491 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5492 struct alloc_chunk_ctl *ctl, 5493 struct btrfs_device_info *devices_info) 5494 { 5495 struct btrfs_fs_info *info = trans->fs_info; 5496 struct btrfs_chunk_map *map; 5497 struct btrfs_block_group *block_group; 5498 u64 start = ctl->start; 5499 u64 type = ctl->type; 5500 int ret; 5501 5502 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5503 if (!map) 5504 return ERR_PTR(-ENOMEM); 5505 5506 map->start = start; 5507 map->chunk_len = ctl->chunk_size; 5508 map->stripe_size = ctl->stripe_size; 5509 map->type = type; 5510 map->io_align = BTRFS_STRIPE_LEN; 5511 map->io_width = BTRFS_STRIPE_LEN; 5512 map->sub_stripes = ctl->sub_stripes; 5513 map->num_stripes = ctl->num_stripes; 5514 5515 for (int i = 0; i < ctl->ndevs; i++) { 5516 for (int j = 0; j < ctl->dev_stripes; j++) { 5517 int s = i * ctl->dev_stripes + j; 5518 map->stripes[s].dev = devices_info[i].dev; 5519 map->stripes[s].physical = devices_info[i].dev_offset + 5520 j * ctl->stripe_size; 5521 } 5522 } 5523 5524 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5525 5526 ret = btrfs_add_chunk_map(info, map); 5527 if (ret) { 5528 btrfs_free_chunk_map(map); 5529 return ERR_PTR(ret); 5530 } 5531 5532 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); 5533 if (IS_ERR(block_group)) { 5534 btrfs_remove_chunk_map(info, map); 5535 return block_group; 5536 } 5537 5538 for (int i = 0; i < map->num_stripes; i++) { 5539 struct btrfs_device *dev = map->stripes[i].dev; 5540 5541 btrfs_device_set_bytes_used(dev, 5542 dev->bytes_used + ctl->stripe_size); 5543 if (list_empty(&dev->post_commit_list)) 5544 list_add_tail(&dev->post_commit_list, 5545 &trans->transaction->dev_update_list); 5546 } 5547 5548 atomic64_sub(ctl->stripe_size * map->num_stripes, 5549 &info->free_chunk_space); 5550 5551 check_raid56_incompat_flag(info, type); 5552 check_raid1c34_incompat_flag(info, type); 5553 5554 return block_group; 5555 } 5556 5557 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5558 u64 type) 5559 { 5560 struct btrfs_fs_info *info = trans->fs_info; 5561 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5562 struct btrfs_device_info *devices_info = NULL; 5563 struct alloc_chunk_ctl ctl; 5564 struct btrfs_block_group *block_group; 5565 int ret; 5566 5567 lockdep_assert_held(&info->chunk_mutex); 5568 5569 if (!alloc_profile_is_valid(type, 0)) { 5570 ASSERT(0); 5571 return ERR_PTR(-EINVAL); 5572 } 5573 5574 if (list_empty(&fs_devices->alloc_list)) { 5575 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5576 btrfs_debug(info, "%s: no writable device", __func__); 5577 return ERR_PTR(-ENOSPC); 5578 } 5579 5580 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5581 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5582 ASSERT(0); 5583 return ERR_PTR(-EINVAL); 5584 } 5585 5586 ctl.start = find_next_chunk(info); 5587 ctl.type = type; 5588 init_alloc_chunk_ctl(fs_devices, &ctl); 5589 5590 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5591 GFP_NOFS); 5592 if (!devices_info) 5593 return ERR_PTR(-ENOMEM); 5594 5595 ret = gather_device_info(fs_devices, &ctl, devices_info); 5596 if (ret < 0) { 5597 block_group = ERR_PTR(ret); 5598 goto out; 5599 } 5600 5601 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5602 if (ret < 0) { 5603 block_group = ERR_PTR(ret); 5604 goto out; 5605 } 5606 5607 block_group = create_chunk(trans, &ctl, devices_info); 5608 5609 out: 5610 kfree(devices_info); 5611 return block_group; 5612 } 5613 5614 /* 5615 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5616 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5617 * chunks. 5618 * 5619 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5620 * phases. 5621 */ 5622 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5623 struct btrfs_block_group *bg) 5624 { 5625 struct btrfs_fs_info *fs_info = trans->fs_info; 5626 struct btrfs_root *chunk_root = fs_info->chunk_root; 5627 struct btrfs_key key; 5628 struct btrfs_chunk *chunk; 5629 struct btrfs_stripe *stripe; 5630 struct btrfs_chunk_map *map; 5631 size_t item_size; 5632 int i; 5633 int ret; 5634 5635 /* 5636 * We take the chunk_mutex for 2 reasons: 5637 * 5638 * 1) Updates and insertions in the chunk btree must be done while holding 5639 * the chunk_mutex, as well as updating the system chunk array in the 5640 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5641 * details; 5642 * 5643 * 2) To prevent races with the final phase of a device replace operation 5644 * that replaces the device object associated with the map's stripes, 5645 * because the device object's id can change at any time during that 5646 * final phase of the device replace operation 5647 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5648 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5649 * which would cause a failure when updating the device item, which does 5650 * not exists, or persisting a stripe of the chunk item with such ID. 5651 * Here we can't use the device_list_mutex because our caller already 5652 * has locked the chunk_mutex, and the final phase of device replace 5653 * acquires both mutexes - first the device_list_mutex and then the 5654 * chunk_mutex. Using any of those two mutexes protects us from a 5655 * concurrent device replace. 5656 */ 5657 lockdep_assert_held(&fs_info->chunk_mutex); 5658 5659 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5660 if (IS_ERR(map)) { 5661 ret = PTR_ERR(map); 5662 btrfs_abort_transaction(trans, ret); 5663 return ret; 5664 } 5665 5666 item_size = btrfs_chunk_item_size(map->num_stripes); 5667 5668 chunk = kzalloc(item_size, GFP_NOFS); 5669 if (!chunk) { 5670 ret = -ENOMEM; 5671 btrfs_abort_transaction(trans, ret); 5672 goto out; 5673 } 5674 5675 for (i = 0; i < map->num_stripes; i++) { 5676 struct btrfs_device *device = map->stripes[i].dev; 5677 5678 ret = btrfs_update_device(trans, device); 5679 if (ret) 5680 goto out; 5681 } 5682 5683 stripe = &chunk->stripe; 5684 for (i = 0; i < map->num_stripes; i++) { 5685 struct btrfs_device *device = map->stripes[i].dev; 5686 const u64 dev_offset = map->stripes[i].physical; 5687 5688 btrfs_set_stack_stripe_devid(stripe, device->devid); 5689 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5690 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5691 stripe++; 5692 } 5693 5694 btrfs_set_stack_chunk_length(chunk, bg->length); 5695 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5696 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5697 btrfs_set_stack_chunk_type(chunk, map->type); 5698 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5699 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5700 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5701 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5702 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5703 5704 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5705 key.type = BTRFS_CHUNK_ITEM_KEY; 5706 key.offset = bg->start; 5707 5708 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5709 if (ret) 5710 goto out; 5711 5712 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5713 5714 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5715 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5716 if (ret) 5717 goto out; 5718 } 5719 5720 out: 5721 kfree(chunk); 5722 btrfs_free_chunk_map(map); 5723 return ret; 5724 } 5725 5726 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5727 { 5728 struct btrfs_fs_info *fs_info = trans->fs_info; 5729 u64 alloc_profile; 5730 struct btrfs_block_group *meta_bg; 5731 struct btrfs_block_group *sys_bg; 5732 5733 /* 5734 * When adding a new device for sprouting, the seed device is read-only 5735 * so we must first allocate a metadata and a system chunk. But before 5736 * adding the block group items to the extent, device and chunk btrees, 5737 * we must first: 5738 * 5739 * 1) Create both chunks without doing any changes to the btrees, as 5740 * otherwise we would get -ENOSPC since the block groups from the 5741 * seed device are read-only; 5742 * 5743 * 2) Add the device item for the new sprout device - finishing the setup 5744 * of a new block group requires updating the device item in the chunk 5745 * btree, so it must exist when we attempt to do it. The previous step 5746 * ensures this does not fail with -ENOSPC. 5747 * 5748 * After that we can add the block group items to their btrees: 5749 * update existing device item in the chunk btree, add a new block group 5750 * item to the extent btree, add a new chunk item to the chunk btree and 5751 * finally add the new device extent items to the devices btree. 5752 */ 5753 5754 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5755 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5756 if (IS_ERR(meta_bg)) 5757 return PTR_ERR(meta_bg); 5758 5759 alloc_profile = btrfs_system_alloc_profile(fs_info); 5760 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5761 if (IS_ERR(sys_bg)) 5762 return PTR_ERR(sys_bg); 5763 5764 return 0; 5765 } 5766 5767 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5768 { 5769 const int index = btrfs_bg_flags_to_raid_index(map->type); 5770 5771 return btrfs_raid_array[index].tolerated_failures; 5772 } 5773 5774 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5775 { 5776 struct btrfs_chunk_map *map; 5777 int miss_ndevs = 0; 5778 int i; 5779 bool ret = true; 5780 5781 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5782 if (IS_ERR(map)) 5783 return false; 5784 5785 for (i = 0; i < map->num_stripes; i++) { 5786 if (test_bit(BTRFS_DEV_STATE_MISSING, 5787 &map->stripes[i].dev->dev_state)) { 5788 miss_ndevs++; 5789 continue; 5790 } 5791 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5792 &map->stripes[i].dev->dev_state)) { 5793 ret = false; 5794 goto end; 5795 } 5796 } 5797 5798 /* 5799 * If the number of missing devices is larger than max errors, we can 5800 * not write the data into that chunk successfully. 5801 */ 5802 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5803 ret = false; 5804 end: 5805 btrfs_free_chunk_map(map); 5806 return ret; 5807 } 5808 5809 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5810 { 5811 write_lock(&fs_info->mapping_tree_lock); 5812 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5813 struct btrfs_chunk_map *map; 5814 struct rb_node *node; 5815 5816 node = rb_first_cached(&fs_info->mapping_tree); 5817 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5818 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5819 RB_CLEAR_NODE(&map->rb_node); 5820 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5821 /* Once for the tree ref. */ 5822 btrfs_free_chunk_map(map); 5823 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5824 } 5825 write_unlock(&fs_info->mapping_tree_lock); 5826 } 5827 5828 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map) 5829 { 5830 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type); 5831 5832 if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5833 return 2; 5834 5835 /* 5836 * There could be two corrupted data stripes, we need to loop retry in 5837 * order to rebuild the correct data. 5838 * 5839 * Fail a stripe at a time on every retry except the stripe under 5840 * reconstruction. 5841 */ 5842 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5843 return map->num_stripes; 5844 5845 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5846 return btrfs_raid_array[index].ncopies; 5847 } 5848 5849 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5850 { 5851 struct btrfs_chunk_map *map; 5852 int ret; 5853 5854 map = btrfs_get_chunk_map(fs_info, logical, len); 5855 if (IS_ERR(map)) 5856 /* 5857 * We could return errors for these cases, but that could get 5858 * ugly and we'd probably do the same thing which is just not do 5859 * anything else and exit, so return 1 so the callers don't try 5860 * to use other copies. 5861 */ 5862 return 1; 5863 5864 ret = btrfs_chunk_map_num_copies(map); 5865 btrfs_free_chunk_map(map); 5866 return ret; 5867 } 5868 5869 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5870 u64 logical) 5871 { 5872 struct btrfs_chunk_map *map; 5873 unsigned long len = fs_info->sectorsize; 5874 5875 if (!btrfs_fs_incompat(fs_info, RAID56)) 5876 return len; 5877 5878 map = btrfs_get_chunk_map(fs_info, logical, len); 5879 5880 if (!WARN_ON(IS_ERR(map))) { 5881 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5882 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5883 btrfs_free_chunk_map(map); 5884 } 5885 return len; 5886 } 5887 5888 #ifdef CONFIG_BTRFS_EXPERIMENTAL 5889 static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes) 5890 { 5891 for (int index = first; index < first + num_stripes; index++) { 5892 const struct btrfs_device *device = map->stripes[index].dev; 5893 5894 if (device->devid == READ_ONCE(device->fs_devices->read_devid)) 5895 return index; 5896 } 5897 5898 /* If no read-preferred device is set use the first stripe. */ 5899 return first; 5900 } 5901 5902 struct stripe_mirror { 5903 u64 devid; 5904 int num; 5905 }; 5906 5907 static int btrfs_cmp_devid(const void *a, const void *b) 5908 { 5909 const struct stripe_mirror *s1 = (const struct stripe_mirror *)a; 5910 const struct stripe_mirror *s2 = (const struct stripe_mirror *)b; 5911 5912 if (s1->devid < s2->devid) 5913 return -1; 5914 if (s1->devid > s2->devid) 5915 return 1; 5916 return 0; 5917 } 5918 5919 /* 5920 * Select a stripe for reading using the round-robin algorithm. 5921 * 5922 * 1. Compute the read cycle as the total sectors read divided by the minimum 5923 * sectors per device. 5924 * 2. Determine the stripe number for the current read by taking the modulus 5925 * of the read cycle with the total number of stripes: 5926 * 5927 * stripe index = (total sectors / min sectors per dev) % num stripes 5928 * 5929 * The calculated stripe index is then used to select the corresponding device 5930 * from the list of devices, which is ordered by devid. 5931 */ 5932 static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes) 5933 { 5934 struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 }; 5935 struct btrfs_device *device = map->stripes[first].dev; 5936 struct btrfs_fs_info *fs_info = device->fs_devices->fs_info; 5937 unsigned int read_cycle; 5938 unsigned int total_reads; 5939 unsigned int min_reads_per_dev; 5940 5941 total_reads = percpu_counter_sum(&fs_info->stats_read_blocks); 5942 min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >> 5943 fs_info->sectorsize_bits; 5944 5945 for (int index = 0, i = first; i < first + num_stripes; i++) { 5946 stripes[index].devid = map->stripes[i].dev->devid; 5947 stripes[index].num = i; 5948 index++; 5949 } 5950 sort(stripes, num_stripes, sizeof(struct stripe_mirror), 5951 btrfs_cmp_devid, NULL); 5952 5953 read_cycle = total_reads / min_reads_per_dev; 5954 return stripes[read_cycle % num_stripes].num; 5955 } 5956 #endif 5957 5958 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5959 struct btrfs_chunk_map *map, int first, 5960 int dev_replace_is_ongoing) 5961 { 5962 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); 5963 int i; 5964 int num_stripes; 5965 int preferred_mirror; 5966 int tolerance; 5967 struct btrfs_device *srcdev; 5968 5969 ASSERT((map->type & 5970 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5971 5972 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5973 num_stripes = map->sub_stripes; 5974 else 5975 num_stripes = map->num_stripes; 5976 5977 switch (policy) { 5978 default: 5979 /* Shouldn't happen, just warn and use pid instead of failing */ 5980 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", 5981 policy); 5982 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); 5983 fallthrough; 5984 case BTRFS_READ_POLICY_PID: 5985 preferred_mirror = first + (current->pid % num_stripes); 5986 break; 5987 #ifdef CONFIG_BTRFS_EXPERIMENTAL 5988 case BTRFS_READ_POLICY_RR: 5989 preferred_mirror = btrfs_read_rr(map, first, num_stripes); 5990 break; 5991 case BTRFS_READ_POLICY_DEVID: 5992 preferred_mirror = btrfs_read_preferred(map, first, num_stripes); 5993 break; 5994 #endif 5995 } 5996 5997 if (dev_replace_is_ongoing && 5998 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5999 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 6000 srcdev = fs_info->dev_replace.srcdev; 6001 else 6002 srcdev = NULL; 6003 6004 /* 6005 * try to avoid the drive that is the source drive for a 6006 * dev-replace procedure, only choose it if no other non-missing 6007 * mirror is available 6008 */ 6009 for (tolerance = 0; tolerance < 2; tolerance++) { 6010 if (map->stripes[preferred_mirror].dev->bdev && 6011 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 6012 return preferred_mirror; 6013 for (i = first; i < first + num_stripes; i++) { 6014 if (map->stripes[i].dev->bdev && 6015 (tolerance || map->stripes[i].dev != srcdev)) 6016 return i; 6017 } 6018 } 6019 6020 /* we couldn't find one that doesn't fail. Just return something 6021 * and the io error handling code will clean up eventually 6022 */ 6023 return preferred_mirror; 6024 } 6025 6026 EXPORT_FOR_TESTS 6027 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6028 u64 logical, u16 total_stripes) 6029 { 6030 struct btrfs_io_context *bioc; 6031 6032 bioc = kzalloc( 6033 /* The size of btrfs_io_context */ 6034 sizeof(struct btrfs_io_context) + 6035 /* Plus the variable array for the stripes */ 6036 sizeof(struct btrfs_io_stripe) * (total_stripes), 6037 GFP_NOFS); 6038 6039 if (!bioc) 6040 return NULL; 6041 6042 refcount_set(&bioc->refs, 1); 6043 6044 bioc->fs_info = fs_info; 6045 bioc->replace_stripe_src = -1; 6046 bioc->full_stripe_logical = (u64)-1; 6047 bioc->logical = logical; 6048 6049 return bioc; 6050 } 6051 6052 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6053 { 6054 WARN_ON(!refcount_read(&bioc->refs)); 6055 refcount_inc(&bioc->refs); 6056 } 6057 6058 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6059 { 6060 if (!bioc) 6061 return; 6062 if (refcount_dec_and_test(&bioc->refs)) 6063 kfree(bioc); 6064 } 6065 6066 /* 6067 * Please note that, discard won't be sent to target device of device 6068 * replace. 6069 */ 6070 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6071 u64 logical, u64 *length_ret, 6072 u32 *num_stripes) 6073 { 6074 struct btrfs_chunk_map *map; 6075 struct btrfs_discard_stripe *stripes; 6076 u64 length = *length_ret; 6077 u64 offset; 6078 u32 stripe_nr; 6079 u32 stripe_nr_end; 6080 u32 stripe_cnt; 6081 u64 stripe_end_offset; 6082 u64 stripe_offset; 6083 u32 stripe_index; 6084 u32 factor = 0; 6085 u32 sub_stripes = 0; 6086 u32 stripes_per_dev = 0; 6087 u32 remaining_stripes = 0; 6088 u32 last_stripe = 0; 6089 int ret; 6090 int i; 6091 6092 map = btrfs_get_chunk_map(fs_info, logical, length); 6093 if (IS_ERR(map)) 6094 return ERR_CAST(map); 6095 6096 /* we don't discard raid56 yet */ 6097 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6098 ret = -EOPNOTSUPP; 6099 goto out_free_map; 6100 } 6101 6102 offset = logical - map->start; 6103 length = min_t(u64, map->start + map->chunk_len - logical, length); 6104 *length_ret = length; 6105 6106 /* 6107 * stripe_nr counts the total number of stripes we have to stride 6108 * to get to this block 6109 */ 6110 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6111 6112 /* stripe_offset is the offset of this block in its stripe */ 6113 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6114 6115 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6116 BTRFS_STRIPE_LEN_SHIFT; 6117 stripe_cnt = stripe_nr_end - stripe_nr; 6118 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6119 (offset + length); 6120 /* 6121 * after this, stripe_nr is the number of stripes on this 6122 * device we have to walk to find the data, and stripe_index is 6123 * the number of our device in the stripe array 6124 */ 6125 *num_stripes = 1; 6126 stripe_index = 0; 6127 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6128 BTRFS_BLOCK_GROUP_RAID10)) { 6129 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6130 sub_stripes = 1; 6131 else 6132 sub_stripes = map->sub_stripes; 6133 6134 factor = map->num_stripes / sub_stripes; 6135 *num_stripes = min_t(u64, map->num_stripes, 6136 sub_stripes * stripe_cnt); 6137 stripe_index = stripe_nr % factor; 6138 stripe_nr /= factor; 6139 stripe_index *= sub_stripes; 6140 6141 remaining_stripes = stripe_cnt % factor; 6142 stripes_per_dev = stripe_cnt / factor; 6143 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6144 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6145 BTRFS_BLOCK_GROUP_DUP)) { 6146 *num_stripes = map->num_stripes; 6147 } else { 6148 stripe_index = stripe_nr % map->num_stripes; 6149 stripe_nr /= map->num_stripes; 6150 } 6151 6152 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6153 if (!stripes) { 6154 ret = -ENOMEM; 6155 goto out_free_map; 6156 } 6157 6158 for (i = 0; i < *num_stripes; i++) { 6159 stripes[i].physical = 6160 map->stripes[stripe_index].physical + 6161 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6162 stripes[i].dev = map->stripes[stripe_index].dev; 6163 6164 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6165 BTRFS_BLOCK_GROUP_RAID10)) { 6166 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6167 6168 if (i / sub_stripes < remaining_stripes) 6169 stripes[i].length += BTRFS_STRIPE_LEN; 6170 6171 /* 6172 * Special for the first stripe and 6173 * the last stripe: 6174 * 6175 * |-------|...|-------| 6176 * |----------| 6177 * off end_off 6178 */ 6179 if (i < sub_stripes) 6180 stripes[i].length -= stripe_offset; 6181 6182 if (stripe_index >= last_stripe && 6183 stripe_index <= (last_stripe + 6184 sub_stripes - 1)) 6185 stripes[i].length -= stripe_end_offset; 6186 6187 if (i == sub_stripes - 1) 6188 stripe_offset = 0; 6189 } else { 6190 stripes[i].length = length; 6191 } 6192 6193 stripe_index++; 6194 if (stripe_index == map->num_stripes) { 6195 stripe_index = 0; 6196 stripe_nr++; 6197 } 6198 } 6199 6200 btrfs_free_chunk_map(map); 6201 return stripes; 6202 out_free_map: 6203 btrfs_free_chunk_map(map); 6204 return ERR_PTR(ret); 6205 } 6206 6207 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6208 { 6209 struct btrfs_block_group *cache; 6210 bool ret; 6211 6212 /* Non zoned filesystem does not use "to_copy" flag */ 6213 if (!btrfs_is_zoned(fs_info)) 6214 return false; 6215 6216 cache = btrfs_lookup_block_group(fs_info, logical); 6217 6218 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6219 6220 btrfs_put_block_group(cache); 6221 return ret; 6222 } 6223 6224 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc, 6225 struct btrfs_dev_replace *dev_replace, 6226 u64 logical, 6227 struct btrfs_io_geometry *io_geom) 6228 { 6229 u64 srcdev_devid = dev_replace->srcdev->devid; 6230 /* 6231 * At this stage, num_stripes is still the real number of stripes, 6232 * excluding the duplicated stripes. 6233 */ 6234 int num_stripes = io_geom->num_stripes; 6235 int max_errors = io_geom->max_errors; 6236 int nr_extra_stripes = 0; 6237 int i; 6238 6239 /* 6240 * A block group which has "to_copy" set will eventually be copied by 6241 * the dev-replace process. We can avoid cloning IO here. 6242 */ 6243 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6244 return; 6245 6246 /* 6247 * Duplicate the write operations while the dev-replace procedure is 6248 * running. Since the copying of the old disk to the new disk takes 6249 * place at run time while the filesystem is mounted writable, the 6250 * regular write operations to the old disk have to be duplicated to go 6251 * to the new disk as well. 6252 * 6253 * Note that device->missing is handled by the caller, and that the 6254 * write to the old disk is already set up in the stripes array. 6255 */ 6256 for (i = 0; i < num_stripes; i++) { 6257 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6258 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6259 6260 if (old->dev->devid != srcdev_devid) 6261 continue; 6262 6263 new->physical = old->physical; 6264 new->dev = dev_replace->tgtdev; 6265 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6266 bioc->replace_stripe_src = i; 6267 nr_extra_stripes++; 6268 } 6269 6270 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6271 ASSERT(nr_extra_stripes <= 2); 6272 /* 6273 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6274 * replace. 6275 * If we have 2 extra stripes, only choose the one with smaller physical. 6276 */ 6277 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6278 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6279 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6280 6281 /* Only DUP can have two extra stripes. */ 6282 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); 6283 6284 /* 6285 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6286 * The extra stripe would still be there, but won't be accessed. 6287 */ 6288 if (first->physical > second->physical) { 6289 swap(second->physical, first->physical); 6290 swap(second->dev, first->dev); 6291 nr_extra_stripes--; 6292 } 6293 } 6294 6295 io_geom->num_stripes = num_stripes + nr_extra_stripes; 6296 io_geom->max_errors = max_errors + nr_extra_stripes; 6297 bioc->replace_nr_stripes = nr_extra_stripes; 6298 } 6299 6300 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6301 struct btrfs_io_geometry *io_geom) 6302 { 6303 /* 6304 * Stripe_nr is the stripe where this block falls. stripe_offset is 6305 * the offset of this block in its stripe. 6306 */ 6307 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6308 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6309 ASSERT(io_geom->stripe_offset < U32_MAX); 6310 6311 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6312 unsigned long full_stripe_len = 6313 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6314 6315 /* 6316 * For full stripe start, we use previously calculated 6317 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6318 * STRIPE_LEN. 6319 * 6320 * By this we can avoid u64 division completely. And we have 6321 * to go rounddown(), not round_down(), as nr_data_stripes is 6322 * not ensured to be power of 2. 6323 */ 6324 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6325 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6326 6327 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset); 6328 ASSERT(io_geom->raid56_full_stripe_start <= offset); 6329 /* 6330 * For writes to RAID56, allow to write a full stripe set, but 6331 * no straddling of stripe sets. 6332 */ 6333 if (io_geom->op == BTRFS_MAP_WRITE) 6334 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6335 } 6336 6337 /* 6338 * For other RAID types and for RAID56 reads, allow a single stripe (on 6339 * a single disk). 6340 */ 6341 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6342 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6343 return U64_MAX; 6344 } 6345 6346 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6347 u64 *length, struct btrfs_io_stripe *dst, 6348 struct btrfs_chunk_map *map, 6349 struct btrfs_io_geometry *io_geom) 6350 { 6351 dst->dev = map->stripes[io_geom->stripe_index].dev; 6352 6353 if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst) 6354 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6355 map->type, 6356 io_geom->stripe_index, dst); 6357 6358 dst->physical = map->stripes[io_geom->stripe_index].physical + 6359 io_geom->stripe_offset + 6360 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6361 return 0; 6362 } 6363 6364 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6365 const struct btrfs_io_stripe *smap, 6366 const struct btrfs_chunk_map *map, 6367 int num_alloc_stripes, 6368 struct btrfs_io_geometry *io_geom) 6369 { 6370 if (!smap) 6371 return false; 6372 6373 if (num_alloc_stripes != 1) 6374 return false; 6375 6376 if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ) 6377 return false; 6378 6379 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1) 6380 return false; 6381 6382 return true; 6383 } 6384 6385 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6386 struct btrfs_io_geometry *io_geom) 6387 { 6388 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6389 io_geom->stripe_nr /= map->num_stripes; 6390 if (io_geom->op == BTRFS_MAP_READ) 6391 io_geom->mirror_num = 1; 6392 } 6393 6394 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6395 struct btrfs_chunk_map *map, 6396 struct btrfs_io_geometry *io_geom, 6397 bool dev_replace_is_ongoing) 6398 { 6399 if (io_geom->op != BTRFS_MAP_READ) { 6400 io_geom->num_stripes = map->num_stripes; 6401 return; 6402 } 6403 6404 if (io_geom->mirror_num) { 6405 io_geom->stripe_index = io_geom->mirror_num - 1; 6406 return; 6407 } 6408 6409 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6410 dev_replace_is_ongoing); 6411 io_geom->mirror_num = io_geom->stripe_index + 1; 6412 } 6413 6414 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6415 struct btrfs_io_geometry *io_geom) 6416 { 6417 if (io_geom->op != BTRFS_MAP_READ) { 6418 io_geom->num_stripes = map->num_stripes; 6419 return; 6420 } 6421 6422 if (io_geom->mirror_num) { 6423 io_geom->stripe_index = io_geom->mirror_num - 1; 6424 return; 6425 } 6426 6427 io_geom->mirror_num = 1; 6428 } 6429 6430 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6431 struct btrfs_chunk_map *map, 6432 struct btrfs_io_geometry *io_geom, 6433 bool dev_replace_is_ongoing) 6434 { 6435 u32 factor = map->num_stripes / map->sub_stripes; 6436 int old_stripe_index; 6437 6438 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6439 io_geom->stripe_nr /= factor; 6440 6441 if (io_geom->op != BTRFS_MAP_READ) { 6442 io_geom->num_stripes = map->sub_stripes; 6443 return; 6444 } 6445 6446 if (io_geom->mirror_num) { 6447 io_geom->stripe_index += io_geom->mirror_num - 1; 6448 return; 6449 } 6450 6451 old_stripe_index = io_geom->stripe_index; 6452 io_geom->stripe_index = find_live_mirror(fs_info, map, 6453 io_geom->stripe_index, 6454 dev_replace_is_ongoing); 6455 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6456 } 6457 6458 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6459 struct btrfs_io_geometry *io_geom, 6460 u64 logical, u64 *length) 6461 { 6462 int data_stripes = nr_data_stripes(map); 6463 6464 /* 6465 * Needs full stripe mapping. 6466 * 6467 * Push stripe_nr back to the start of the full stripe For those cases 6468 * needing a full stripe, @stripe_nr is the full stripe number. 6469 * 6470 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6471 * that can be expensive. Here we just divide @stripe_nr with 6472 * @data_stripes. 6473 */ 6474 io_geom->stripe_nr /= data_stripes; 6475 6476 /* RAID[56] write or recovery. Return all stripes */ 6477 io_geom->num_stripes = map->num_stripes; 6478 io_geom->max_errors = btrfs_chunk_max_errors(map); 6479 6480 /* Return the length to the full stripe end. */ 6481 *length = min(logical + *length, 6482 io_geom->raid56_full_stripe_start + map->start + 6483 btrfs_stripe_nr_to_offset(data_stripes)) - 6484 logical; 6485 io_geom->stripe_index = 0; 6486 io_geom->stripe_offset = 0; 6487 } 6488 6489 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6490 struct btrfs_io_geometry *io_geom) 6491 { 6492 int data_stripes = nr_data_stripes(map); 6493 6494 ASSERT(io_geom->mirror_num <= 1); 6495 /* Just grab the data stripe directly. */ 6496 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6497 io_geom->stripe_nr /= data_stripes; 6498 6499 /* We distribute the parity blocks across stripes. */ 6500 io_geom->stripe_index = 6501 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6502 6503 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6504 io_geom->mirror_num = 1; 6505 } 6506 6507 static void map_blocks_single(const struct btrfs_chunk_map *map, 6508 struct btrfs_io_geometry *io_geom) 6509 { 6510 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6511 io_geom->stripe_nr /= map->num_stripes; 6512 io_geom->mirror_num = io_geom->stripe_index + 1; 6513 } 6514 6515 /* 6516 * Map one logical range to one or more physical ranges. 6517 * 6518 * @length: (Mandatory) mapped length of this run. 6519 * One logical range can be split into different segments 6520 * due to factors like zones and RAID0/5/6/10 stripe 6521 * boundaries. 6522 * 6523 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6524 * which has one or more physical ranges (btrfs_io_stripe) 6525 * recorded inside. 6526 * Caller should call btrfs_put_bioc() to free it after use. 6527 * 6528 * @smap: (Optional) single physical range optimization. 6529 * If the map request can be fulfilled by one single 6530 * physical range, and this is parameter is not NULL, 6531 * then @bioc_ret would be NULL, and @smap would be 6532 * updated. 6533 * 6534 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6535 * value is 0. 6536 * 6537 * Mirror number 0 means to choose any live mirrors. 6538 * 6539 * For non-RAID56 profiles, non-zero mirror_num means 6540 * the Nth mirror. (e.g. mirror_num 1 means the first 6541 * copy). 6542 * 6543 * For RAID56 profile, mirror 1 means rebuild from P and 6544 * the remaining data stripes. 6545 * 6546 * For RAID6 profile, mirror > 2 means mark another 6547 * data/P stripe error and rebuild from the remaining 6548 * stripes.. 6549 */ 6550 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6551 u64 logical, u64 *length, 6552 struct btrfs_io_context **bioc_ret, 6553 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6554 { 6555 struct btrfs_chunk_map *map; 6556 struct btrfs_io_geometry io_geom = { 0 }; 6557 u64 map_offset; 6558 int ret = 0; 6559 int num_copies; 6560 struct btrfs_io_context *bioc = NULL; 6561 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6562 int dev_replace_is_ongoing = 0; 6563 u16 num_alloc_stripes; 6564 u64 max_len; 6565 6566 ASSERT(bioc_ret); 6567 6568 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6569 io_geom.num_stripes = 1; 6570 io_geom.stripe_index = 0; 6571 io_geom.op = op; 6572 6573 map = btrfs_get_chunk_map(fs_info, logical, *length); 6574 if (IS_ERR(map)) 6575 return PTR_ERR(map); 6576 6577 num_copies = btrfs_chunk_map_num_copies(map); 6578 if (io_geom.mirror_num > num_copies) 6579 return -EINVAL; 6580 6581 map_offset = logical - map->start; 6582 io_geom.raid56_full_stripe_start = (u64)-1; 6583 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6584 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6585 io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type); 6586 6587 if (dev_replace->replace_task != current) 6588 down_read(&dev_replace->rwsem); 6589 6590 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6591 /* 6592 * Hold the semaphore for read during the whole operation, write is 6593 * requested at commit time but must wait. 6594 */ 6595 if (!dev_replace_is_ongoing && dev_replace->replace_task != current) 6596 up_read(&dev_replace->rwsem); 6597 6598 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6599 case BTRFS_BLOCK_GROUP_RAID0: 6600 map_blocks_raid0(map, &io_geom); 6601 break; 6602 case BTRFS_BLOCK_GROUP_RAID1: 6603 case BTRFS_BLOCK_GROUP_RAID1C3: 6604 case BTRFS_BLOCK_GROUP_RAID1C4: 6605 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6606 break; 6607 case BTRFS_BLOCK_GROUP_DUP: 6608 map_blocks_dup(map, &io_geom); 6609 break; 6610 case BTRFS_BLOCK_GROUP_RAID10: 6611 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6612 break; 6613 case BTRFS_BLOCK_GROUP_RAID5: 6614 case BTRFS_BLOCK_GROUP_RAID6: 6615 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6616 map_blocks_raid56_write(map, &io_geom, logical, length); 6617 else 6618 map_blocks_raid56_read(map, &io_geom); 6619 break; 6620 default: 6621 /* 6622 * After this, stripe_nr is the number of stripes on this 6623 * device we have to walk to find the data, and stripe_index is 6624 * the number of our device in the stripe array 6625 */ 6626 map_blocks_single(map, &io_geom); 6627 break; 6628 } 6629 if (io_geom.stripe_index >= map->num_stripes) { 6630 btrfs_crit(fs_info, 6631 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6632 io_geom.stripe_index, map->num_stripes); 6633 ret = -EINVAL; 6634 goto out; 6635 } 6636 6637 num_alloc_stripes = io_geom.num_stripes; 6638 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6639 op != BTRFS_MAP_READ) 6640 /* 6641 * For replace case, we need to add extra stripes for extra 6642 * duplicated stripes. 6643 * 6644 * For both WRITE and GET_READ_MIRRORS, we may have at most 6645 * 2 more stripes (DUP types, otherwise 1). 6646 */ 6647 num_alloc_stripes += 2; 6648 6649 /* 6650 * If this I/O maps to a single device, try to return the device and 6651 * physical block information on the stack instead of allocating an 6652 * I/O context structure. 6653 */ 6654 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) { 6655 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6656 if (mirror_num_ret) 6657 *mirror_num_ret = io_geom.mirror_num; 6658 *bioc_ret = NULL; 6659 goto out; 6660 } 6661 6662 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6663 if (!bioc) { 6664 ret = -ENOMEM; 6665 goto out; 6666 } 6667 bioc->map_type = map->type; 6668 bioc->use_rst = io_geom.use_rst; 6669 6670 /* 6671 * For RAID56 full map, we need to make sure the stripes[] follows the 6672 * rule that data stripes are all ordered, then followed with P and Q 6673 * (if we have). 6674 * 6675 * It's still mostly the same as other profiles, just with extra rotation. 6676 */ 6677 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6678 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6679 /* 6680 * For RAID56 @stripe_nr is already the number of full stripes 6681 * before us, which is also the rotation value (needs to modulo 6682 * with num_stripes). 6683 * 6684 * In this case, we just add @stripe_nr with @i, then do the 6685 * modulo, to reduce one modulo call. 6686 */ 6687 bioc->full_stripe_logical = map->start + 6688 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6689 nr_data_stripes(map)); 6690 for (int i = 0; i < io_geom.num_stripes; i++) { 6691 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6692 u32 stripe_index; 6693 6694 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6695 dst->dev = map->stripes[stripe_index].dev; 6696 dst->physical = 6697 map->stripes[stripe_index].physical + 6698 io_geom.stripe_offset + 6699 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6700 } 6701 } else { 6702 /* 6703 * For all other non-RAID56 profiles, just copy the target 6704 * stripe into the bioc. 6705 */ 6706 for (int i = 0; i < io_geom.num_stripes; i++) { 6707 ret = set_io_stripe(fs_info, logical, length, 6708 &bioc->stripes[i], map, &io_geom); 6709 if (ret < 0) 6710 break; 6711 io_geom.stripe_index++; 6712 } 6713 } 6714 6715 if (ret) { 6716 *bioc_ret = NULL; 6717 btrfs_put_bioc(bioc); 6718 goto out; 6719 } 6720 6721 if (op != BTRFS_MAP_READ) 6722 io_geom.max_errors = btrfs_chunk_max_errors(map); 6723 6724 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6725 op != BTRFS_MAP_READ) { 6726 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom); 6727 } 6728 6729 *bioc_ret = bioc; 6730 bioc->num_stripes = io_geom.num_stripes; 6731 bioc->max_errors = io_geom.max_errors; 6732 bioc->mirror_num = io_geom.mirror_num; 6733 6734 out: 6735 if (dev_replace_is_ongoing && dev_replace->replace_task != current) { 6736 lockdep_assert_held(&dev_replace->rwsem); 6737 /* Unlock and let waiting writers proceed */ 6738 up_read(&dev_replace->rwsem); 6739 } 6740 btrfs_free_chunk_map(map); 6741 return ret; 6742 } 6743 6744 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6745 const struct btrfs_fs_devices *fs_devices) 6746 { 6747 if (args->fsid == NULL) 6748 return true; 6749 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6750 return true; 6751 return false; 6752 } 6753 6754 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6755 const struct btrfs_device *device) 6756 { 6757 if (args->missing) { 6758 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6759 !device->bdev) 6760 return true; 6761 return false; 6762 } 6763 6764 if (device->devid != args->devid) 6765 return false; 6766 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6767 return false; 6768 return true; 6769 } 6770 6771 /* 6772 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6773 * return NULL. 6774 * 6775 * If devid and uuid are both specified, the match must be exact, otherwise 6776 * only devid is used. 6777 */ 6778 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6779 const struct btrfs_dev_lookup_args *args) 6780 { 6781 struct btrfs_device *device; 6782 struct btrfs_fs_devices *seed_devs; 6783 6784 if (dev_args_match_fs_devices(args, fs_devices)) { 6785 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6786 if (dev_args_match_device(args, device)) 6787 return device; 6788 } 6789 } 6790 6791 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6792 if (!dev_args_match_fs_devices(args, seed_devs)) 6793 continue; 6794 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6795 if (dev_args_match_device(args, device)) 6796 return device; 6797 } 6798 } 6799 6800 return NULL; 6801 } 6802 6803 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6804 u64 devid, u8 *dev_uuid) 6805 { 6806 struct btrfs_device *device; 6807 unsigned int nofs_flag; 6808 6809 /* 6810 * We call this under the chunk_mutex, so we want to use NOFS for this 6811 * allocation, however we don't want to change btrfs_alloc_device() to 6812 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6813 * places. 6814 */ 6815 6816 nofs_flag = memalloc_nofs_save(); 6817 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6818 memalloc_nofs_restore(nofs_flag); 6819 if (IS_ERR(device)) 6820 return device; 6821 6822 list_add(&device->dev_list, &fs_devices->devices); 6823 device->fs_devices = fs_devices; 6824 fs_devices->num_devices++; 6825 6826 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6827 fs_devices->missing_devices++; 6828 6829 return device; 6830 } 6831 6832 /* 6833 * Allocate new device struct, set up devid and UUID. 6834 * 6835 * @fs_info: used only for generating a new devid, can be NULL if 6836 * devid is provided (i.e. @devid != NULL). 6837 * @devid: a pointer to devid for this device. If NULL a new devid 6838 * is generated. 6839 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6840 * is generated. 6841 * @path: a pointer to device path if available, NULL otherwise. 6842 * 6843 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6844 * on error. Returned struct is not linked onto any lists and must be 6845 * destroyed with btrfs_free_device. 6846 */ 6847 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6848 const u64 *devid, const u8 *uuid, 6849 const char *path) 6850 { 6851 struct btrfs_device *dev; 6852 u64 tmp; 6853 6854 if (WARN_ON(!devid && !fs_info)) 6855 return ERR_PTR(-EINVAL); 6856 6857 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6858 if (!dev) 6859 return ERR_PTR(-ENOMEM); 6860 6861 INIT_LIST_HEAD(&dev->dev_list); 6862 INIT_LIST_HEAD(&dev->dev_alloc_list); 6863 INIT_LIST_HEAD(&dev->post_commit_list); 6864 6865 atomic_set(&dev->dev_stats_ccnt, 0); 6866 btrfs_device_data_ordered_init(dev); 6867 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6868 6869 if (devid) 6870 tmp = *devid; 6871 else { 6872 int ret; 6873 6874 ret = find_next_devid(fs_info, &tmp); 6875 if (ret) { 6876 btrfs_free_device(dev); 6877 return ERR_PTR(ret); 6878 } 6879 } 6880 dev->devid = tmp; 6881 6882 if (uuid) 6883 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6884 else 6885 generate_random_uuid(dev->uuid); 6886 6887 if (path) { 6888 struct rcu_string *name; 6889 6890 name = rcu_string_strdup(path, GFP_KERNEL); 6891 if (!name) { 6892 btrfs_free_device(dev); 6893 return ERR_PTR(-ENOMEM); 6894 } 6895 rcu_assign_pointer(dev->name, name); 6896 } 6897 6898 return dev; 6899 } 6900 6901 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6902 u64 devid, u8 *uuid, bool error) 6903 { 6904 if (error) 6905 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6906 devid, uuid); 6907 else 6908 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6909 devid, uuid); 6910 } 6911 6912 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 6913 { 6914 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6915 6916 return div_u64(map->chunk_len, data_stripes); 6917 } 6918 6919 #if BITS_PER_LONG == 32 6920 /* 6921 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6922 * can't be accessed on 32bit systems. 6923 * 6924 * This function do mount time check to reject the fs if it already has 6925 * metadata chunk beyond that limit. 6926 */ 6927 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6928 u64 logical, u64 length, u64 type) 6929 { 6930 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6931 return 0; 6932 6933 if (logical + length < MAX_LFS_FILESIZE) 6934 return 0; 6935 6936 btrfs_err_32bit_limit(fs_info); 6937 return -EOVERFLOW; 6938 } 6939 6940 /* 6941 * This is to give early warning for any metadata chunk reaching 6942 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6943 * Although we can still access the metadata, it's not going to be possible 6944 * once the limit is reached. 6945 */ 6946 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6947 u64 logical, u64 length, u64 type) 6948 { 6949 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6950 return; 6951 6952 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6953 return; 6954 6955 btrfs_warn_32bit_limit(fs_info); 6956 } 6957 #endif 6958 6959 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6960 u64 devid, u8 *uuid) 6961 { 6962 struct btrfs_device *dev; 6963 6964 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6965 btrfs_report_missing_device(fs_info, devid, uuid, true); 6966 return ERR_PTR(-ENOENT); 6967 } 6968 6969 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 6970 if (IS_ERR(dev)) { 6971 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 6972 devid, PTR_ERR(dev)); 6973 return dev; 6974 } 6975 btrfs_report_missing_device(fs_info, devid, uuid, false); 6976 6977 return dev; 6978 } 6979 6980 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6981 struct btrfs_chunk *chunk) 6982 { 6983 BTRFS_DEV_LOOKUP_ARGS(args); 6984 struct btrfs_fs_info *fs_info = leaf->fs_info; 6985 struct btrfs_chunk_map *map; 6986 u64 logical; 6987 u64 length; 6988 u64 devid; 6989 u64 type; 6990 u8 uuid[BTRFS_UUID_SIZE]; 6991 int index; 6992 int num_stripes; 6993 int ret; 6994 int i; 6995 6996 logical = key->offset; 6997 length = btrfs_chunk_length(leaf, chunk); 6998 type = btrfs_chunk_type(leaf, chunk); 6999 index = btrfs_bg_flags_to_raid_index(type); 7000 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7001 7002 #if BITS_PER_LONG == 32 7003 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7004 if (ret < 0) 7005 return ret; 7006 warn_32bit_meta_chunk(fs_info, logical, length, type); 7007 #endif 7008 7009 map = btrfs_find_chunk_map(fs_info, logical, 1); 7010 7011 /* already mapped? */ 7012 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7013 btrfs_free_chunk_map(map); 7014 return 0; 7015 } else if (map) { 7016 btrfs_free_chunk_map(map); 7017 } 7018 7019 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7020 if (!map) 7021 return -ENOMEM; 7022 7023 map->start = logical; 7024 map->chunk_len = length; 7025 map->num_stripes = num_stripes; 7026 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7027 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7028 map->type = type; 7029 /* 7030 * We can't use the sub_stripes value, as for profiles other than 7031 * RAID10, they may have 0 as sub_stripes for filesystems created by 7032 * older mkfs (<v5.4). 7033 * In that case, it can cause divide-by-zero errors later. 7034 * Since currently sub_stripes is fixed for each profile, let's 7035 * use the trusted value instead. 7036 */ 7037 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7038 map->verified_stripes = 0; 7039 map->stripe_size = btrfs_calc_stripe_length(map); 7040 for (i = 0; i < num_stripes; i++) { 7041 map->stripes[i].physical = 7042 btrfs_stripe_offset_nr(leaf, chunk, i); 7043 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7044 args.devid = devid; 7045 read_extent_buffer(leaf, uuid, (unsigned long) 7046 btrfs_stripe_dev_uuid_nr(chunk, i), 7047 BTRFS_UUID_SIZE); 7048 args.uuid = uuid; 7049 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7050 if (!map->stripes[i].dev) { 7051 map->stripes[i].dev = handle_missing_device(fs_info, 7052 devid, uuid); 7053 if (IS_ERR(map->stripes[i].dev)) { 7054 ret = PTR_ERR(map->stripes[i].dev); 7055 btrfs_free_chunk_map(map); 7056 return ret; 7057 } 7058 } 7059 7060 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7061 &(map->stripes[i].dev->dev_state)); 7062 } 7063 7064 ret = btrfs_add_chunk_map(fs_info, map); 7065 if (ret < 0) { 7066 btrfs_err(fs_info, 7067 "failed to add chunk map, start=%llu len=%llu: %d", 7068 map->start, map->chunk_len, ret); 7069 btrfs_free_chunk_map(map); 7070 } 7071 7072 return ret; 7073 } 7074 7075 static void fill_device_from_item(struct extent_buffer *leaf, 7076 struct btrfs_dev_item *dev_item, 7077 struct btrfs_device *device) 7078 { 7079 unsigned long ptr; 7080 7081 device->devid = btrfs_device_id(leaf, dev_item); 7082 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7083 device->total_bytes = device->disk_total_bytes; 7084 device->commit_total_bytes = device->disk_total_bytes; 7085 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7086 device->commit_bytes_used = device->bytes_used; 7087 device->type = btrfs_device_type(leaf, dev_item); 7088 device->io_align = btrfs_device_io_align(leaf, dev_item); 7089 device->io_width = btrfs_device_io_width(leaf, dev_item); 7090 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7091 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7092 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7093 7094 ptr = btrfs_device_uuid(dev_item); 7095 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7096 } 7097 7098 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7099 u8 *fsid) 7100 { 7101 struct btrfs_fs_devices *fs_devices; 7102 int ret; 7103 7104 lockdep_assert_held(&uuid_mutex); 7105 ASSERT(fsid); 7106 7107 /* This will match only for multi-device seed fs */ 7108 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7109 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7110 return fs_devices; 7111 7112 7113 fs_devices = find_fsid(fsid, NULL); 7114 if (!fs_devices) { 7115 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7116 btrfs_err(fs_info, 7117 "failed to find fsid %pU when attempting to open seed devices", 7118 fsid); 7119 return ERR_PTR(-ENOENT); 7120 } 7121 7122 fs_devices = alloc_fs_devices(fsid); 7123 if (IS_ERR(fs_devices)) 7124 return fs_devices; 7125 7126 fs_devices->seeding = true; 7127 fs_devices->opened = 1; 7128 return fs_devices; 7129 } 7130 7131 /* 7132 * Upon first call for a seed fs fsid, just create a private copy of the 7133 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7134 */ 7135 fs_devices = clone_fs_devices(fs_devices); 7136 if (IS_ERR(fs_devices)) 7137 return fs_devices; 7138 7139 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 7140 if (ret) { 7141 free_fs_devices(fs_devices); 7142 return ERR_PTR(ret); 7143 } 7144 7145 if (!fs_devices->seeding) { 7146 close_fs_devices(fs_devices); 7147 free_fs_devices(fs_devices); 7148 return ERR_PTR(-EINVAL); 7149 } 7150 7151 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7152 7153 return fs_devices; 7154 } 7155 7156 static int read_one_dev(struct extent_buffer *leaf, 7157 struct btrfs_dev_item *dev_item) 7158 { 7159 BTRFS_DEV_LOOKUP_ARGS(args); 7160 struct btrfs_fs_info *fs_info = leaf->fs_info; 7161 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7162 struct btrfs_device *device; 7163 u64 devid; 7164 int ret; 7165 u8 fs_uuid[BTRFS_FSID_SIZE]; 7166 u8 dev_uuid[BTRFS_UUID_SIZE]; 7167 7168 devid = btrfs_device_id(leaf, dev_item); 7169 args.devid = devid; 7170 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7171 BTRFS_UUID_SIZE); 7172 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7173 BTRFS_FSID_SIZE); 7174 args.uuid = dev_uuid; 7175 args.fsid = fs_uuid; 7176 7177 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7178 fs_devices = open_seed_devices(fs_info, fs_uuid); 7179 if (IS_ERR(fs_devices)) 7180 return PTR_ERR(fs_devices); 7181 } 7182 7183 device = btrfs_find_device(fs_info->fs_devices, &args); 7184 if (!device) { 7185 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7186 btrfs_report_missing_device(fs_info, devid, 7187 dev_uuid, true); 7188 return -ENOENT; 7189 } 7190 7191 device = add_missing_dev(fs_devices, devid, dev_uuid); 7192 if (IS_ERR(device)) { 7193 btrfs_err(fs_info, 7194 "failed to add missing dev %llu: %ld", 7195 devid, PTR_ERR(device)); 7196 return PTR_ERR(device); 7197 } 7198 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7199 } else { 7200 if (!device->bdev) { 7201 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7202 btrfs_report_missing_device(fs_info, 7203 devid, dev_uuid, true); 7204 return -ENOENT; 7205 } 7206 btrfs_report_missing_device(fs_info, devid, 7207 dev_uuid, false); 7208 } 7209 7210 if (!device->bdev && 7211 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7212 /* 7213 * this happens when a device that was properly setup 7214 * in the device info lists suddenly goes bad. 7215 * device->bdev is NULL, and so we have to set 7216 * device->missing to one here 7217 */ 7218 device->fs_devices->missing_devices++; 7219 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7220 } 7221 7222 /* Move the device to its own fs_devices */ 7223 if (device->fs_devices != fs_devices) { 7224 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7225 &device->dev_state)); 7226 7227 list_move(&device->dev_list, &fs_devices->devices); 7228 device->fs_devices->num_devices--; 7229 fs_devices->num_devices++; 7230 7231 device->fs_devices->missing_devices--; 7232 fs_devices->missing_devices++; 7233 7234 device->fs_devices = fs_devices; 7235 } 7236 } 7237 7238 if (device->fs_devices != fs_info->fs_devices) { 7239 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7240 if (device->generation != 7241 btrfs_device_generation(leaf, dev_item)) 7242 return -EINVAL; 7243 } 7244 7245 fill_device_from_item(leaf, dev_item, device); 7246 if (device->bdev) { 7247 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7248 7249 if (device->total_bytes > max_total_bytes) { 7250 btrfs_err(fs_info, 7251 "device total_bytes should be at most %llu but found %llu", 7252 max_total_bytes, device->total_bytes); 7253 return -EINVAL; 7254 } 7255 } 7256 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7257 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7258 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7259 device->fs_devices->total_rw_bytes += device->total_bytes; 7260 atomic64_add(device->total_bytes - device->bytes_used, 7261 &fs_info->free_chunk_space); 7262 } 7263 ret = 0; 7264 return ret; 7265 } 7266 7267 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7268 { 7269 struct btrfs_super_block *super_copy = fs_info->super_copy; 7270 struct extent_buffer *sb; 7271 u8 *array_ptr; 7272 unsigned long sb_array_offset; 7273 int ret = 0; 7274 u32 array_size; 7275 u32 cur_offset; 7276 struct btrfs_key key; 7277 7278 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7279 7280 /* 7281 * We allocated a dummy extent, just to use extent buffer accessors. 7282 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7283 * that's fine, we will not go beyond system chunk array anyway. 7284 */ 7285 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7286 if (!sb) 7287 return -ENOMEM; 7288 set_extent_buffer_uptodate(sb); 7289 7290 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7291 array_size = btrfs_super_sys_array_size(super_copy); 7292 7293 array_ptr = super_copy->sys_chunk_array; 7294 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7295 cur_offset = 0; 7296 7297 while (cur_offset < array_size) { 7298 struct btrfs_chunk *chunk; 7299 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr; 7300 u32 len = sizeof(*disk_key); 7301 7302 /* 7303 * The sys_chunk_array has been already verified at super block 7304 * read time. Only do ASSERT()s for basic checks. 7305 */ 7306 ASSERT(cur_offset + len <= array_size); 7307 7308 btrfs_disk_key_to_cpu(&key, disk_key); 7309 7310 array_ptr += len; 7311 sb_array_offset += len; 7312 cur_offset += len; 7313 7314 ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY); 7315 7316 chunk = (struct btrfs_chunk *)sb_array_offset; 7317 ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM); 7318 7319 len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk)); 7320 7321 ASSERT(cur_offset + len <= array_size); 7322 7323 ret = read_one_chunk(&key, sb, chunk); 7324 if (ret) 7325 break; 7326 7327 array_ptr += len; 7328 sb_array_offset += len; 7329 cur_offset += len; 7330 } 7331 clear_extent_buffer_uptodate(sb); 7332 free_extent_buffer_stale(sb); 7333 return ret; 7334 } 7335 7336 /* 7337 * Check if all chunks in the fs are OK for read-write degraded mount 7338 * 7339 * If the @failing_dev is specified, it's accounted as missing. 7340 * 7341 * Return true if all chunks meet the minimal RW mount requirements. 7342 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7343 */ 7344 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7345 struct btrfs_device *failing_dev) 7346 { 7347 struct btrfs_chunk_map *map; 7348 u64 next_start; 7349 bool ret = true; 7350 7351 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7352 /* No chunk at all? Return false anyway */ 7353 if (!map) { 7354 ret = false; 7355 goto out; 7356 } 7357 while (map) { 7358 int missing = 0; 7359 int max_tolerated; 7360 int i; 7361 7362 max_tolerated = 7363 btrfs_get_num_tolerated_disk_barrier_failures( 7364 map->type); 7365 for (i = 0; i < map->num_stripes; i++) { 7366 struct btrfs_device *dev = map->stripes[i].dev; 7367 7368 if (!dev || !dev->bdev || 7369 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7370 dev->last_flush_error) 7371 missing++; 7372 else if (failing_dev && failing_dev == dev) 7373 missing++; 7374 } 7375 if (missing > max_tolerated) { 7376 if (!failing_dev) 7377 btrfs_warn(fs_info, 7378 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7379 map->start, missing, max_tolerated); 7380 btrfs_free_chunk_map(map); 7381 ret = false; 7382 goto out; 7383 } 7384 next_start = map->start + map->chunk_len; 7385 btrfs_free_chunk_map(map); 7386 7387 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7388 } 7389 out: 7390 return ret; 7391 } 7392 7393 static void readahead_tree_node_children(struct extent_buffer *node) 7394 { 7395 int i; 7396 const int nr_items = btrfs_header_nritems(node); 7397 7398 for (i = 0; i < nr_items; i++) 7399 btrfs_readahead_node_child(node, i); 7400 } 7401 7402 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7403 { 7404 struct btrfs_root *root = fs_info->chunk_root; 7405 struct btrfs_path *path; 7406 struct extent_buffer *leaf; 7407 struct btrfs_key key; 7408 struct btrfs_key found_key; 7409 int ret; 7410 int slot; 7411 int iter_ret = 0; 7412 u64 total_dev = 0; 7413 u64 last_ra_node = 0; 7414 7415 path = btrfs_alloc_path(); 7416 if (!path) 7417 return -ENOMEM; 7418 7419 /* 7420 * uuid_mutex is needed only if we are mounting a sprout FS 7421 * otherwise we don't need it. 7422 */ 7423 mutex_lock(&uuid_mutex); 7424 7425 /* 7426 * It is possible for mount and umount to race in such a way that 7427 * we execute this code path, but open_fs_devices failed to clear 7428 * total_rw_bytes. We certainly want it cleared before reading the 7429 * device items, so clear it here. 7430 */ 7431 fs_info->fs_devices->total_rw_bytes = 0; 7432 7433 /* 7434 * Lockdep complains about possible circular locking dependency between 7435 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7436 * used for freeze procection of a fs (struct super_block.s_writers), 7437 * which we take when starting a transaction, and extent buffers of the 7438 * chunk tree if we call read_one_dev() while holding a lock on an 7439 * extent buffer of the chunk tree. Since we are mounting the filesystem 7440 * and at this point there can't be any concurrent task modifying the 7441 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7442 */ 7443 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7444 path->skip_locking = 1; 7445 7446 /* 7447 * Read all device items, and then all the chunk items. All 7448 * device items are found before any chunk item (their object id 7449 * is smaller than the lowest possible object id for a chunk 7450 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7451 */ 7452 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7453 key.type = 0; 7454 key.offset = 0; 7455 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7456 struct extent_buffer *node = path->nodes[1]; 7457 7458 leaf = path->nodes[0]; 7459 slot = path->slots[0]; 7460 7461 if (node) { 7462 if (last_ra_node != node->start) { 7463 readahead_tree_node_children(node); 7464 last_ra_node = node->start; 7465 } 7466 } 7467 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7468 struct btrfs_dev_item *dev_item; 7469 dev_item = btrfs_item_ptr(leaf, slot, 7470 struct btrfs_dev_item); 7471 ret = read_one_dev(leaf, dev_item); 7472 if (ret) 7473 goto error; 7474 total_dev++; 7475 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7476 struct btrfs_chunk *chunk; 7477 7478 /* 7479 * We are only called at mount time, so no need to take 7480 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7481 * we always lock first fs_info->chunk_mutex before 7482 * acquiring any locks on the chunk tree. This is a 7483 * requirement for chunk allocation, see the comment on 7484 * top of btrfs_chunk_alloc() for details. 7485 */ 7486 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7487 ret = read_one_chunk(&found_key, leaf, chunk); 7488 if (ret) 7489 goto error; 7490 } 7491 } 7492 /* Catch error found during iteration */ 7493 if (iter_ret < 0) { 7494 ret = iter_ret; 7495 goto error; 7496 } 7497 7498 /* 7499 * After loading chunk tree, we've got all device information, 7500 * do another round of validation checks. 7501 */ 7502 if (total_dev != fs_info->fs_devices->total_devices) { 7503 btrfs_warn(fs_info, 7504 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7505 btrfs_super_num_devices(fs_info->super_copy), 7506 total_dev); 7507 fs_info->fs_devices->total_devices = total_dev; 7508 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7509 } 7510 if (btrfs_super_total_bytes(fs_info->super_copy) < 7511 fs_info->fs_devices->total_rw_bytes) { 7512 btrfs_err(fs_info, 7513 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7514 btrfs_super_total_bytes(fs_info->super_copy), 7515 fs_info->fs_devices->total_rw_bytes); 7516 ret = -EINVAL; 7517 goto error; 7518 } 7519 ret = 0; 7520 error: 7521 mutex_unlock(&uuid_mutex); 7522 7523 btrfs_free_path(path); 7524 return ret; 7525 } 7526 7527 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7528 { 7529 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7530 struct btrfs_device *device; 7531 int ret = 0; 7532 7533 mutex_lock(&fs_devices->device_list_mutex); 7534 list_for_each_entry(device, &fs_devices->devices, dev_list) 7535 device->fs_info = fs_info; 7536 7537 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7538 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7539 device->fs_info = fs_info; 7540 ret = btrfs_get_dev_zone_info(device, false); 7541 if (ret) 7542 break; 7543 } 7544 7545 seed_devs->fs_info = fs_info; 7546 } 7547 mutex_unlock(&fs_devices->device_list_mutex); 7548 7549 return ret; 7550 } 7551 7552 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7553 const struct btrfs_dev_stats_item *ptr, 7554 int index) 7555 { 7556 u64 val; 7557 7558 read_extent_buffer(eb, &val, 7559 offsetof(struct btrfs_dev_stats_item, values) + 7560 ((unsigned long)ptr) + (index * sizeof(u64)), 7561 sizeof(val)); 7562 return val; 7563 } 7564 7565 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7566 struct btrfs_dev_stats_item *ptr, 7567 int index, u64 val) 7568 { 7569 write_extent_buffer(eb, &val, 7570 offsetof(struct btrfs_dev_stats_item, values) + 7571 ((unsigned long)ptr) + (index * sizeof(u64)), 7572 sizeof(val)); 7573 } 7574 7575 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7576 struct btrfs_path *path) 7577 { 7578 struct btrfs_dev_stats_item *ptr; 7579 struct extent_buffer *eb; 7580 struct btrfs_key key; 7581 int item_size; 7582 int i, ret, slot; 7583 7584 if (!device->fs_info->dev_root) 7585 return 0; 7586 7587 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7588 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7589 key.offset = device->devid; 7590 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7591 if (ret) { 7592 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7593 btrfs_dev_stat_set(device, i, 0); 7594 device->dev_stats_valid = 1; 7595 btrfs_release_path(path); 7596 return ret < 0 ? ret : 0; 7597 } 7598 slot = path->slots[0]; 7599 eb = path->nodes[0]; 7600 item_size = btrfs_item_size(eb, slot); 7601 7602 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7603 7604 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7605 if (item_size >= (1 + i) * sizeof(__le64)) 7606 btrfs_dev_stat_set(device, i, 7607 btrfs_dev_stats_value(eb, ptr, i)); 7608 else 7609 btrfs_dev_stat_set(device, i, 0); 7610 } 7611 7612 device->dev_stats_valid = 1; 7613 btrfs_dev_stat_print_on_load(device); 7614 btrfs_release_path(path); 7615 7616 return 0; 7617 } 7618 7619 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7620 { 7621 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7622 struct btrfs_device *device; 7623 struct btrfs_path *path = NULL; 7624 int ret = 0; 7625 7626 path = btrfs_alloc_path(); 7627 if (!path) 7628 return -ENOMEM; 7629 7630 mutex_lock(&fs_devices->device_list_mutex); 7631 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7632 ret = btrfs_device_init_dev_stats(device, path); 7633 if (ret) 7634 goto out; 7635 } 7636 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7637 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7638 ret = btrfs_device_init_dev_stats(device, path); 7639 if (ret) 7640 goto out; 7641 } 7642 } 7643 out: 7644 mutex_unlock(&fs_devices->device_list_mutex); 7645 7646 btrfs_free_path(path); 7647 return ret; 7648 } 7649 7650 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7651 struct btrfs_device *device) 7652 { 7653 struct btrfs_fs_info *fs_info = trans->fs_info; 7654 struct btrfs_root *dev_root = fs_info->dev_root; 7655 struct btrfs_path *path; 7656 struct btrfs_key key; 7657 struct extent_buffer *eb; 7658 struct btrfs_dev_stats_item *ptr; 7659 int ret; 7660 int i; 7661 7662 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7663 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7664 key.offset = device->devid; 7665 7666 path = btrfs_alloc_path(); 7667 if (!path) 7668 return -ENOMEM; 7669 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7670 if (ret < 0) { 7671 btrfs_warn_in_rcu(fs_info, 7672 "error %d while searching for dev_stats item for device %s", 7673 ret, btrfs_dev_name(device)); 7674 goto out; 7675 } 7676 7677 if (ret == 0 && 7678 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7679 /* need to delete old one and insert a new one */ 7680 ret = btrfs_del_item(trans, dev_root, path); 7681 if (ret != 0) { 7682 btrfs_warn_in_rcu(fs_info, 7683 "delete too small dev_stats item for device %s failed %d", 7684 btrfs_dev_name(device), ret); 7685 goto out; 7686 } 7687 ret = 1; 7688 } 7689 7690 if (ret == 1) { 7691 /* need to insert a new item */ 7692 btrfs_release_path(path); 7693 ret = btrfs_insert_empty_item(trans, dev_root, path, 7694 &key, sizeof(*ptr)); 7695 if (ret < 0) { 7696 btrfs_warn_in_rcu(fs_info, 7697 "insert dev_stats item for device %s failed %d", 7698 btrfs_dev_name(device), ret); 7699 goto out; 7700 } 7701 } 7702 7703 eb = path->nodes[0]; 7704 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7705 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7706 btrfs_set_dev_stats_value(eb, ptr, i, 7707 btrfs_dev_stat_read(device, i)); 7708 out: 7709 btrfs_free_path(path); 7710 return ret; 7711 } 7712 7713 /* 7714 * called from commit_transaction. Writes all changed device stats to disk. 7715 */ 7716 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7717 { 7718 struct btrfs_fs_info *fs_info = trans->fs_info; 7719 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7720 struct btrfs_device *device; 7721 int stats_cnt; 7722 int ret = 0; 7723 7724 mutex_lock(&fs_devices->device_list_mutex); 7725 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7726 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7727 if (!device->dev_stats_valid || stats_cnt == 0) 7728 continue; 7729 7730 7731 /* 7732 * There is a LOAD-LOAD control dependency between the value of 7733 * dev_stats_ccnt and updating the on-disk values which requires 7734 * reading the in-memory counters. Such control dependencies 7735 * require explicit read memory barriers. 7736 * 7737 * This memory barriers pairs with smp_mb__before_atomic in 7738 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7739 * barrier implied by atomic_xchg in 7740 * btrfs_dev_stats_read_and_reset 7741 */ 7742 smp_rmb(); 7743 7744 ret = update_dev_stat_item(trans, device); 7745 if (!ret) 7746 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7747 } 7748 mutex_unlock(&fs_devices->device_list_mutex); 7749 7750 return ret; 7751 } 7752 7753 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7754 { 7755 btrfs_dev_stat_inc(dev, index); 7756 7757 if (!dev->dev_stats_valid) 7758 return; 7759 btrfs_err_rl_in_rcu(dev->fs_info, 7760 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7761 btrfs_dev_name(dev), 7762 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7763 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7764 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7765 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7766 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7767 } 7768 7769 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7770 { 7771 int i; 7772 7773 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7774 if (btrfs_dev_stat_read(dev, i) != 0) 7775 break; 7776 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7777 return; /* all values == 0, suppress message */ 7778 7779 btrfs_info_in_rcu(dev->fs_info, 7780 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7781 btrfs_dev_name(dev), 7782 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7783 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7784 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7785 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7786 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7787 } 7788 7789 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7790 struct btrfs_ioctl_get_dev_stats *stats) 7791 { 7792 BTRFS_DEV_LOOKUP_ARGS(args); 7793 struct btrfs_device *dev; 7794 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7795 int i; 7796 7797 mutex_lock(&fs_devices->device_list_mutex); 7798 args.devid = stats->devid; 7799 dev = btrfs_find_device(fs_info->fs_devices, &args); 7800 mutex_unlock(&fs_devices->device_list_mutex); 7801 7802 if (!dev) { 7803 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7804 return -ENODEV; 7805 } else if (!dev->dev_stats_valid) { 7806 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7807 return -ENODEV; 7808 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7809 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7810 if (stats->nr_items > i) 7811 stats->values[i] = 7812 btrfs_dev_stat_read_and_reset(dev, i); 7813 else 7814 btrfs_dev_stat_set(dev, i, 0); 7815 } 7816 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7817 current->comm, task_pid_nr(current)); 7818 } else { 7819 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7820 if (stats->nr_items > i) 7821 stats->values[i] = btrfs_dev_stat_read(dev, i); 7822 } 7823 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7824 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7825 return 0; 7826 } 7827 7828 /* 7829 * Update the size and bytes used for each device where it changed. This is 7830 * delayed since we would otherwise get errors while writing out the 7831 * superblocks. 7832 * 7833 * Must be invoked during transaction commit. 7834 */ 7835 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7836 { 7837 struct btrfs_device *curr, *next; 7838 7839 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7840 7841 if (list_empty(&trans->dev_update_list)) 7842 return; 7843 7844 /* 7845 * We don't need the device_list_mutex here. This list is owned by the 7846 * transaction and the transaction must complete before the device is 7847 * released. 7848 */ 7849 mutex_lock(&trans->fs_info->chunk_mutex); 7850 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7851 post_commit_list) { 7852 list_del_init(&curr->post_commit_list); 7853 curr->commit_total_bytes = curr->disk_total_bytes; 7854 curr->commit_bytes_used = curr->bytes_used; 7855 } 7856 mutex_unlock(&trans->fs_info->chunk_mutex); 7857 } 7858 7859 /* 7860 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7861 */ 7862 int btrfs_bg_type_to_factor(u64 flags) 7863 { 7864 const int index = btrfs_bg_flags_to_raid_index(flags); 7865 7866 return btrfs_raid_array[index].ncopies; 7867 } 7868 7869 7870 7871 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7872 u64 chunk_offset, u64 devid, 7873 u64 physical_offset, u64 physical_len) 7874 { 7875 struct btrfs_dev_lookup_args args = { .devid = devid }; 7876 struct btrfs_chunk_map *map; 7877 struct btrfs_device *dev; 7878 u64 stripe_len; 7879 bool found = false; 7880 int ret = 0; 7881 int i; 7882 7883 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 7884 if (!map) { 7885 btrfs_err(fs_info, 7886 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7887 physical_offset, devid); 7888 ret = -EUCLEAN; 7889 goto out; 7890 } 7891 7892 stripe_len = btrfs_calc_stripe_length(map); 7893 if (physical_len != stripe_len) { 7894 btrfs_err(fs_info, 7895 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7896 physical_offset, devid, map->start, physical_len, 7897 stripe_len); 7898 ret = -EUCLEAN; 7899 goto out; 7900 } 7901 7902 /* 7903 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 7904 * space. Although kernel can handle it without problem, better to warn 7905 * the users. 7906 */ 7907 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7908 btrfs_warn(fs_info, 7909 "devid %llu physical %llu len %llu inside the reserved space", 7910 devid, physical_offset, physical_len); 7911 7912 for (i = 0; i < map->num_stripes; i++) { 7913 if (map->stripes[i].dev->devid == devid && 7914 map->stripes[i].physical == physical_offset) { 7915 found = true; 7916 if (map->verified_stripes >= map->num_stripes) { 7917 btrfs_err(fs_info, 7918 "too many dev extents for chunk %llu found", 7919 map->start); 7920 ret = -EUCLEAN; 7921 goto out; 7922 } 7923 map->verified_stripes++; 7924 break; 7925 } 7926 } 7927 if (!found) { 7928 btrfs_err(fs_info, 7929 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7930 physical_offset, devid); 7931 ret = -EUCLEAN; 7932 } 7933 7934 /* Make sure no dev extent is beyond device boundary */ 7935 dev = btrfs_find_device(fs_info->fs_devices, &args); 7936 if (!dev) { 7937 btrfs_err(fs_info, "failed to find devid %llu", devid); 7938 ret = -EUCLEAN; 7939 goto out; 7940 } 7941 7942 if (physical_offset + physical_len > dev->disk_total_bytes) { 7943 btrfs_err(fs_info, 7944 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7945 devid, physical_offset, physical_len, 7946 dev->disk_total_bytes); 7947 ret = -EUCLEAN; 7948 goto out; 7949 } 7950 7951 if (dev->zone_info) { 7952 u64 zone_size = dev->zone_info->zone_size; 7953 7954 if (!IS_ALIGNED(physical_offset, zone_size) || 7955 !IS_ALIGNED(physical_len, zone_size)) { 7956 btrfs_err(fs_info, 7957 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7958 devid, physical_offset, physical_len); 7959 ret = -EUCLEAN; 7960 goto out; 7961 } 7962 } 7963 7964 out: 7965 btrfs_free_chunk_map(map); 7966 return ret; 7967 } 7968 7969 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7970 { 7971 struct rb_node *node; 7972 int ret = 0; 7973 7974 read_lock(&fs_info->mapping_tree_lock); 7975 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 7976 struct btrfs_chunk_map *map; 7977 7978 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 7979 if (map->num_stripes != map->verified_stripes) { 7980 btrfs_err(fs_info, 7981 "chunk %llu has missing dev extent, have %d expect %d", 7982 map->start, map->verified_stripes, map->num_stripes); 7983 ret = -EUCLEAN; 7984 goto out; 7985 } 7986 } 7987 out: 7988 read_unlock(&fs_info->mapping_tree_lock); 7989 return ret; 7990 } 7991 7992 /* 7993 * Ensure that all dev extents are mapped to correct chunk, otherwise 7994 * later chunk allocation/free would cause unexpected behavior. 7995 * 7996 * NOTE: This will iterate through the whole device tree, which should be of 7997 * the same size level as the chunk tree. This slightly increases mount time. 7998 */ 7999 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8000 { 8001 struct btrfs_path *path; 8002 struct btrfs_root *root = fs_info->dev_root; 8003 struct btrfs_key key; 8004 u64 prev_devid = 0; 8005 u64 prev_dev_ext_end = 0; 8006 int ret = 0; 8007 8008 /* 8009 * We don't have a dev_root because we mounted with ignorebadroots and 8010 * failed to load the root, so we want to skip the verification in this 8011 * case for sure. 8012 * 8013 * However if the dev root is fine, but the tree itself is corrupted 8014 * we'd still fail to mount. This verification is only to make sure 8015 * writes can happen safely, so instead just bypass this check 8016 * completely in the case of IGNOREBADROOTS. 8017 */ 8018 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8019 return 0; 8020 8021 key.objectid = 1; 8022 key.type = BTRFS_DEV_EXTENT_KEY; 8023 key.offset = 0; 8024 8025 path = btrfs_alloc_path(); 8026 if (!path) 8027 return -ENOMEM; 8028 8029 path->reada = READA_FORWARD; 8030 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8031 if (ret < 0) 8032 goto out; 8033 8034 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8035 ret = btrfs_next_leaf(root, path); 8036 if (ret < 0) 8037 goto out; 8038 /* No dev extents at all? Not good */ 8039 if (ret > 0) { 8040 ret = -EUCLEAN; 8041 goto out; 8042 } 8043 } 8044 while (1) { 8045 struct extent_buffer *leaf = path->nodes[0]; 8046 struct btrfs_dev_extent *dext; 8047 int slot = path->slots[0]; 8048 u64 chunk_offset; 8049 u64 physical_offset; 8050 u64 physical_len; 8051 u64 devid; 8052 8053 btrfs_item_key_to_cpu(leaf, &key, slot); 8054 if (key.type != BTRFS_DEV_EXTENT_KEY) 8055 break; 8056 devid = key.objectid; 8057 physical_offset = key.offset; 8058 8059 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8060 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8061 physical_len = btrfs_dev_extent_length(leaf, dext); 8062 8063 /* Check if this dev extent overlaps with the previous one */ 8064 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8065 btrfs_err(fs_info, 8066 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8067 devid, physical_offset, prev_dev_ext_end); 8068 ret = -EUCLEAN; 8069 goto out; 8070 } 8071 8072 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8073 physical_offset, physical_len); 8074 if (ret < 0) 8075 goto out; 8076 prev_devid = devid; 8077 prev_dev_ext_end = physical_offset + physical_len; 8078 8079 ret = btrfs_next_item(root, path); 8080 if (ret < 0) 8081 goto out; 8082 if (ret > 0) { 8083 ret = 0; 8084 break; 8085 } 8086 } 8087 8088 /* Ensure all chunks have corresponding dev extents */ 8089 ret = verify_chunk_dev_extent_mapping(fs_info); 8090 out: 8091 btrfs_free_path(path); 8092 return ret; 8093 } 8094 8095 /* 8096 * Check whether the given block group or device is pinned by any inode being 8097 * used as a swapfile. 8098 */ 8099 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8100 { 8101 struct btrfs_swapfile_pin *sp; 8102 struct rb_node *node; 8103 8104 spin_lock(&fs_info->swapfile_pins_lock); 8105 node = fs_info->swapfile_pins.rb_node; 8106 while (node) { 8107 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8108 if (ptr < sp->ptr) 8109 node = node->rb_left; 8110 else if (ptr > sp->ptr) 8111 node = node->rb_right; 8112 else 8113 break; 8114 } 8115 spin_unlock(&fs_info->swapfile_pins_lock); 8116 return node != NULL; 8117 } 8118 8119 static int relocating_repair_kthread(void *data) 8120 { 8121 struct btrfs_block_group *cache = data; 8122 struct btrfs_fs_info *fs_info = cache->fs_info; 8123 u64 target; 8124 int ret = 0; 8125 8126 target = cache->start; 8127 btrfs_put_block_group(cache); 8128 8129 sb_start_write(fs_info->sb); 8130 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8131 btrfs_info(fs_info, 8132 "zoned: skip relocating block group %llu to repair: EBUSY", 8133 target); 8134 sb_end_write(fs_info->sb); 8135 return -EBUSY; 8136 } 8137 8138 mutex_lock(&fs_info->reclaim_bgs_lock); 8139 8140 /* Ensure block group still exists */ 8141 cache = btrfs_lookup_block_group(fs_info, target); 8142 if (!cache) 8143 goto out; 8144 8145 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8146 goto out; 8147 8148 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8149 if (ret < 0) 8150 goto out; 8151 8152 btrfs_info(fs_info, 8153 "zoned: relocating block group %llu to repair IO failure", 8154 target); 8155 ret = btrfs_relocate_chunk(fs_info, target); 8156 8157 out: 8158 if (cache) 8159 btrfs_put_block_group(cache); 8160 mutex_unlock(&fs_info->reclaim_bgs_lock); 8161 btrfs_exclop_finish(fs_info); 8162 sb_end_write(fs_info->sb); 8163 8164 return ret; 8165 } 8166 8167 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8168 { 8169 struct btrfs_block_group *cache; 8170 8171 if (!btrfs_is_zoned(fs_info)) 8172 return false; 8173 8174 /* Do not attempt to repair in degraded state */ 8175 if (btrfs_test_opt(fs_info, DEGRADED)) 8176 return true; 8177 8178 cache = btrfs_lookup_block_group(fs_info, logical); 8179 if (!cache) 8180 return true; 8181 8182 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8183 btrfs_put_block_group(cache); 8184 return true; 8185 } 8186 8187 kthread_run(relocating_repair_kthread, cache, 8188 "btrfs-relocating-repair"); 8189 8190 return true; 8191 } 8192 8193 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8194 struct btrfs_io_stripe *smap, 8195 u64 logical) 8196 { 8197 int data_stripes = nr_bioc_data_stripes(bioc); 8198 int i; 8199 8200 for (i = 0; i < data_stripes; i++) { 8201 u64 stripe_start = bioc->full_stripe_logical + 8202 btrfs_stripe_nr_to_offset(i); 8203 8204 if (logical >= stripe_start && 8205 logical < stripe_start + BTRFS_STRIPE_LEN) 8206 break; 8207 } 8208 ASSERT(i < data_stripes); 8209 smap->dev = bioc->stripes[i].dev; 8210 smap->physical = bioc->stripes[i].physical + 8211 ((logical - bioc->full_stripe_logical) & 8212 BTRFS_STRIPE_LEN_MASK); 8213 } 8214 8215 /* 8216 * Map a repair write into a single device. 8217 * 8218 * A repair write is triggered by read time repair or scrub, which would only 8219 * update the contents of a single device. 8220 * Not update any other mirrors nor go through RMW path. 8221 * 8222 * Callers should ensure: 8223 * 8224 * - Call btrfs_bio_counter_inc_blocked() first 8225 * - The range does not cross stripe boundary 8226 * - Has a valid @mirror_num passed in. 8227 */ 8228 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8229 struct btrfs_io_stripe *smap, u64 logical, 8230 u32 length, int mirror_num) 8231 { 8232 struct btrfs_io_context *bioc = NULL; 8233 u64 map_length = length; 8234 int mirror_ret = mirror_num; 8235 int ret; 8236 8237 ASSERT(mirror_num > 0); 8238 8239 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8240 &bioc, smap, &mirror_ret); 8241 if (ret < 0) 8242 return ret; 8243 8244 /* The map range should not cross stripe boundary. */ 8245 ASSERT(map_length >= length); 8246 8247 /* Already mapped to single stripe. */ 8248 if (!bioc) 8249 goto out; 8250 8251 /* Map the RAID56 multi-stripe writes to a single one. */ 8252 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8253 map_raid56_repair_block(bioc, smap, logical); 8254 goto out; 8255 } 8256 8257 ASSERT(mirror_num <= bioc->num_stripes); 8258 smap->dev = bioc->stripes[mirror_num - 1].dev; 8259 smap->physical = bioc->stripes[mirror_num - 1].physical; 8260 out: 8261 btrfs_put_bioc(bioc); 8262 ASSERT(smap->dev); 8263 return 0; 8264 } 8265