1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "disk-io.h" 17 #include "extent-tree.h" 18 #include "transaction.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "rcu-string.h" 22 #include "dev-replace.h" 23 #include "sysfs.h" 24 #include "tree-checker.h" 25 #include "space-info.h" 26 #include "block-group.h" 27 #include "discard.h" 28 #include "zoned.h" 29 #include "fs.h" 30 #include "accessors.h" 31 #include "uuid-tree.h" 32 #include "ioctl.h" 33 #include "relocation.h" 34 #include "scrub.h" 35 #include "super.h" 36 #include "raid-stripe-tree.h" 37 38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 39 BTRFS_BLOCK_GROUP_RAID10 | \ 40 BTRFS_BLOCK_GROUP_RAID56_MASK) 41 42 struct btrfs_io_geometry { 43 u32 stripe_index; 44 u32 stripe_nr; 45 int mirror_num; 46 int num_stripes; 47 u64 stripe_offset; 48 u64 raid56_full_stripe_start; 49 int max_errors; 50 enum btrfs_map_op op; 51 bool use_rst; 52 }; 53 54 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 55 [BTRFS_RAID_RAID10] = { 56 .sub_stripes = 2, 57 .dev_stripes = 1, 58 .devs_max = 0, /* 0 == as many as possible */ 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 .nparity = 0, 64 .raid_name = "raid10", 65 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 66 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 67 }, 68 [BTRFS_RAID_RAID1] = { 69 .sub_stripes = 1, 70 .dev_stripes = 1, 71 .devs_max = 2, 72 .devs_min = 2, 73 .tolerated_failures = 1, 74 .devs_increment = 2, 75 .ncopies = 2, 76 .nparity = 0, 77 .raid_name = "raid1", 78 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 79 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 80 }, 81 [BTRFS_RAID_RAID1C3] = { 82 .sub_stripes = 1, 83 .dev_stripes = 1, 84 .devs_max = 3, 85 .devs_min = 3, 86 .tolerated_failures = 2, 87 .devs_increment = 3, 88 .ncopies = 3, 89 .nparity = 0, 90 .raid_name = "raid1c3", 91 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 92 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 93 }, 94 [BTRFS_RAID_RAID1C4] = { 95 .sub_stripes = 1, 96 .dev_stripes = 1, 97 .devs_max = 4, 98 .devs_min = 4, 99 .tolerated_failures = 3, 100 .devs_increment = 4, 101 .ncopies = 4, 102 .nparity = 0, 103 .raid_name = "raid1c4", 104 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 105 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 106 }, 107 [BTRFS_RAID_DUP] = { 108 .sub_stripes = 1, 109 .dev_stripes = 2, 110 .devs_max = 1, 111 .devs_min = 1, 112 .tolerated_failures = 0, 113 .devs_increment = 1, 114 .ncopies = 2, 115 .nparity = 0, 116 .raid_name = "dup", 117 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 118 .mindev_error = 0, 119 }, 120 [BTRFS_RAID_RAID0] = { 121 .sub_stripes = 1, 122 .dev_stripes = 1, 123 .devs_max = 0, 124 .devs_min = 1, 125 .tolerated_failures = 0, 126 .devs_increment = 1, 127 .ncopies = 1, 128 .nparity = 0, 129 .raid_name = "raid0", 130 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 131 .mindev_error = 0, 132 }, 133 [BTRFS_RAID_SINGLE] = { 134 .sub_stripes = 1, 135 .dev_stripes = 1, 136 .devs_max = 1, 137 .devs_min = 1, 138 .tolerated_failures = 0, 139 .devs_increment = 1, 140 .ncopies = 1, 141 .nparity = 0, 142 .raid_name = "single", 143 .bg_flag = 0, 144 .mindev_error = 0, 145 }, 146 [BTRFS_RAID_RAID5] = { 147 .sub_stripes = 1, 148 .dev_stripes = 1, 149 .devs_max = 0, 150 .devs_min = 2, 151 .tolerated_failures = 1, 152 .devs_increment = 1, 153 .ncopies = 1, 154 .nparity = 1, 155 .raid_name = "raid5", 156 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 157 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 158 }, 159 [BTRFS_RAID_RAID6] = { 160 .sub_stripes = 1, 161 .dev_stripes = 1, 162 .devs_max = 0, 163 .devs_min = 3, 164 .tolerated_failures = 2, 165 .devs_increment = 1, 166 .ncopies = 1, 167 .nparity = 2, 168 .raid_name = "raid6", 169 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 170 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 171 }, 172 }; 173 174 /* 175 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 176 * can be used as index to access btrfs_raid_array[]. 177 */ 178 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 179 { 180 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 181 182 if (!profile) 183 return BTRFS_RAID_SINGLE; 184 185 return BTRFS_BG_FLAG_TO_INDEX(profile); 186 } 187 188 const char *btrfs_bg_type_to_raid_name(u64 flags) 189 { 190 const int index = btrfs_bg_flags_to_raid_index(flags); 191 192 if (index >= BTRFS_NR_RAID_TYPES) 193 return NULL; 194 195 return btrfs_raid_array[index].raid_name; 196 } 197 198 int btrfs_nr_parity_stripes(u64 type) 199 { 200 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 201 202 return btrfs_raid_array[index].nparity; 203 } 204 205 /* 206 * Fill @buf with textual description of @bg_flags, no more than @size_buf 207 * bytes including terminating null byte. 208 */ 209 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 210 { 211 int i; 212 int ret; 213 char *bp = buf; 214 u64 flags = bg_flags; 215 u32 size_bp = size_buf; 216 217 if (!flags) { 218 strcpy(bp, "NONE"); 219 return; 220 } 221 222 #define DESCRIBE_FLAG(flag, desc) \ 223 do { \ 224 if (flags & (flag)) { \ 225 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 226 if (ret < 0 || ret >= size_bp) \ 227 goto out_overflow; \ 228 size_bp -= ret; \ 229 bp += ret; \ 230 flags &= ~(flag); \ 231 } \ 232 } while (0) 233 234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 236 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 237 238 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 239 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 240 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 241 btrfs_raid_array[i].raid_name); 242 #undef DESCRIBE_FLAG 243 244 if (flags) { 245 ret = snprintf(bp, size_bp, "0x%llx|", flags); 246 size_bp -= ret; 247 } 248 249 if (size_bp < size_buf) 250 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 251 252 /* 253 * The text is trimmed, it's up to the caller to provide sufficiently 254 * large buffer 255 */ 256 out_overflow:; 257 } 258 259 static int init_first_rw_device(struct btrfs_trans_handle *trans); 260 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 261 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 262 263 /* 264 * Device locking 265 * ============== 266 * 267 * There are several mutexes that protect manipulation of devices and low-level 268 * structures like chunks but not block groups, extents or files 269 * 270 * uuid_mutex (global lock) 271 * ------------------------ 272 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 273 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 274 * device) or requested by the device= mount option 275 * 276 * the mutex can be very coarse and can cover long-running operations 277 * 278 * protects: updates to fs_devices counters like missing devices, rw devices, 279 * seeding, structure cloning, opening/closing devices at mount/umount time 280 * 281 * global::fs_devs - add, remove, updates to the global list 282 * 283 * does not protect: manipulation of the fs_devices::devices list in general 284 * but in mount context it could be used to exclude list modifications by eg. 285 * scan ioctl 286 * 287 * btrfs_device::name - renames (write side), read is RCU 288 * 289 * fs_devices::device_list_mutex (per-fs, with RCU) 290 * ------------------------------------------------ 291 * protects updates to fs_devices::devices, ie. adding and deleting 292 * 293 * simple list traversal with read-only actions can be done with RCU protection 294 * 295 * may be used to exclude some operations from running concurrently without any 296 * modifications to the list (see write_all_supers) 297 * 298 * Is not required at mount and close times, because our device list is 299 * protected by the uuid_mutex at that point. 300 * 301 * balance_mutex 302 * ------------- 303 * protects balance structures (status, state) and context accessed from 304 * several places (internally, ioctl) 305 * 306 * chunk_mutex 307 * ----------- 308 * protects chunks, adding or removing during allocation, trim or when a new 309 * device is added/removed. Additionally it also protects post_commit_list of 310 * individual devices, since they can be added to the transaction's 311 * post_commit_list only with chunk_mutex held. 312 * 313 * cleaner_mutex 314 * ------------- 315 * a big lock that is held by the cleaner thread and prevents running subvolume 316 * cleaning together with relocation or delayed iputs 317 * 318 * 319 * Lock nesting 320 * ============ 321 * 322 * uuid_mutex 323 * device_list_mutex 324 * chunk_mutex 325 * balance_mutex 326 * 327 * 328 * Exclusive operations 329 * ==================== 330 * 331 * Maintains the exclusivity of the following operations that apply to the 332 * whole filesystem and cannot run in parallel. 333 * 334 * - Balance (*) 335 * - Device add 336 * - Device remove 337 * - Device replace (*) 338 * - Resize 339 * 340 * The device operations (as above) can be in one of the following states: 341 * 342 * - Running state 343 * - Paused state 344 * - Completed state 345 * 346 * Only device operations marked with (*) can go into the Paused state for the 347 * following reasons: 348 * 349 * - ioctl (only Balance can be Paused through ioctl) 350 * - filesystem remounted as read-only 351 * - filesystem unmounted and mounted as read-only 352 * - system power-cycle and filesystem mounted as read-only 353 * - filesystem or device errors leading to forced read-only 354 * 355 * The status of exclusive operation is set and cleared atomically. 356 * During the course of Paused state, fs_info::exclusive_operation remains set. 357 * A device operation in Paused or Running state can be canceled or resumed 358 * either by ioctl (Balance only) or when remounted as read-write. 359 * The exclusive status is cleared when the device operation is canceled or 360 * completed. 361 */ 362 363 DEFINE_MUTEX(uuid_mutex); 364 static LIST_HEAD(fs_uuids); 365 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 366 { 367 return &fs_uuids; 368 } 369 370 /* 371 * Allocate new btrfs_fs_devices structure identified by a fsid. 372 * 373 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 374 * fs_devices::metadata_fsid 375 * 376 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 377 * The returned struct is not linked onto any lists and can be destroyed with 378 * kfree() right away. 379 */ 380 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 381 { 382 struct btrfs_fs_devices *fs_devs; 383 384 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 385 if (!fs_devs) 386 return ERR_PTR(-ENOMEM); 387 388 mutex_init(&fs_devs->device_list_mutex); 389 390 INIT_LIST_HEAD(&fs_devs->devices); 391 INIT_LIST_HEAD(&fs_devs->alloc_list); 392 INIT_LIST_HEAD(&fs_devs->fs_list); 393 INIT_LIST_HEAD(&fs_devs->seed_list); 394 395 if (fsid) { 396 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 397 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 398 } 399 400 return fs_devs; 401 } 402 403 static void btrfs_free_device(struct btrfs_device *device) 404 { 405 WARN_ON(!list_empty(&device->post_commit_list)); 406 rcu_string_free(device->name); 407 btrfs_extent_io_tree_release(&device->alloc_state); 408 btrfs_destroy_dev_zone_info(device); 409 kfree(device); 410 } 411 412 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 413 { 414 struct btrfs_device *device; 415 416 WARN_ON(fs_devices->opened); 417 while (!list_empty(&fs_devices->devices)) { 418 device = list_first_entry(&fs_devices->devices, 419 struct btrfs_device, dev_list); 420 list_del(&device->dev_list); 421 btrfs_free_device(device); 422 } 423 kfree(fs_devices); 424 } 425 426 void __exit btrfs_cleanup_fs_uuids(void) 427 { 428 struct btrfs_fs_devices *fs_devices; 429 430 while (!list_empty(&fs_uuids)) { 431 fs_devices = list_first_entry(&fs_uuids, struct btrfs_fs_devices, 432 fs_list); 433 list_del(&fs_devices->fs_list); 434 free_fs_devices(fs_devices); 435 } 436 } 437 438 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 439 const u8 *fsid, const u8 *metadata_fsid) 440 { 441 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 442 return false; 443 444 if (!metadata_fsid) 445 return true; 446 447 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 448 return false; 449 450 return true; 451 } 452 453 static noinline struct btrfs_fs_devices *find_fsid( 454 const u8 *fsid, const u8 *metadata_fsid) 455 { 456 struct btrfs_fs_devices *fs_devices; 457 458 ASSERT(fsid); 459 460 /* Handle non-split brain cases */ 461 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 462 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 463 return fs_devices; 464 } 465 return NULL; 466 } 467 468 static int 469 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 470 int flush, struct file **bdev_file, 471 struct btrfs_super_block **disk_super) 472 { 473 struct block_device *bdev; 474 int ret; 475 476 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL); 477 478 if (IS_ERR(*bdev_file)) { 479 ret = PTR_ERR(*bdev_file); 480 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d", 481 device_path, flags, ret); 482 goto error; 483 } 484 bdev = file_bdev(*bdev_file); 485 486 if (flush) 487 sync_blockdev(bdev); 488 if (holder) { 489 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE); 490 if (ret) { 491 fput(*bdev_file); 492 goto error; 493 } 494 } 495 invalidate_bdev(bdev); 496 *disk_super = btrfs_read_disk_super(bdev, 0, false); 497 if (IS_ERR(*disk_super)) { 498 ret = PTR_ERR(*disk_super); 499 fput(*bdev_file); 500 goto error; 501 } 502 503 return 0; 504 505 error: 506 *disk_super = NULL; 507 *bdev_file = NULL; 508 return ret; 509 } 510 511 /* 512 * Search and remove all stale devices (which are not mounted). When both 513 * inputs are NULL, it will search and release all stale devices. 514 * 515 * @devt: Optional. When provided will it release all unmounted devices 516 * matching this devt only. 517 * @skip_device: Optional. Will skip this device when searching for the stale 518 * devices. 519 * 520 * Return: 0 for success or if @devt is 0. 521 * -EBUSY if @devt is a mounted device. 522 * -ENOENT if @devt does not match any device in the list. 523 */ 524 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 525 { 526 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 527 struct btrfs_device *device, *tmp_device; 528 int ret; 529 bool freed = false; 530 531 lockdep_assert_held(&uuid_mutex); 532 533 /* Return good status if there is no instance of devt. */ 534 ret = 0; 535 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 536 537 mutex_lock(&fs_devices->device_list_mutex); 538 list_for_each_entry_safe(device, tmp_device, 539 &fs_devices->devices, dev_list) { 540 if (skip_device && skip_device == device) 541 continue; 542 if (devt && devt != device->devt) 543 continue; 544 if (fs_devices->opened) { 545 if (devt) 546 ret = -EBUSY; 547 break; 548 } 549 550 /* delete the stale device */ 551 fs_devices->num_devices--; 552 list_del(&device->dev_list); 553 btrfs_free_device(device); 554 555 freed = true; 556 } 557 mutex_unlock(&fs_devices->device_list_mutex); 558 559 if (fs_devices->num_devices == 0) { 560 btrfs_sysfs_remove_fsid(fs_devices); 561 list_del(&fs_devices->fs_list); 562 free_fs_devices(fs_devices); 563 } 564 } 565 566 /* If there is at least one freed device return 0. */ 567 if (freed) 568 return 0; 569 570 return ret; 571 } 572 573 static struct btrfs_fs_devices *find_fsid_by_device( 574 struct btrfs_super_block *disk_super, 575 dev_t devt, bool *same_fsid_diff_dev) 576 { 577 struct btrfs_fs_devices *fsid_fs_devices; 578 struct btrfs_fs_devices *devt_fs_devices; 579 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 580 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 581 bool found_by_devt = false; 582 583 /* Find the fs_device by the usual method, if found use it. */ 584 fsid_fs_devices = find_fsid(disk_super->fsid, 585 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 586 587 /* The temp_fsid feature is supported only with single device filesystem. */ 588 if (btrfs_super_num_devices(disk_super) != 1) 589 return fsid_fs_devices; 590 591 /* 592 * A seed device is an integral component of the sprout device, which 593 * functions as a multi-device filesystem. So, temp-fsid feature is 594 * not supported. 595 */ 596 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 597 return fsid_fs_devices; 598 599 /* Try to find a fs_devices by matching devt. */ 600 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 601 struct btrfs_device *device; 602 603 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 604 if (device->devt == devt) { 605 found_by_devt = true; 606 break; 607 } 608 } 609 if (found_by_devt) 610 break; 611 } 612 613 if (found_by_devt) { 614 /* Existing device. */ 615 if (fsid_fs_devices == NULL) { 616 if (devt_fs_devices->opened == 0) { 617 /* Stale device. */ 618 return NULL; 619 } else { 620 /* temp_fsid is mounting a subvol. */ 621 return devt_fs_devices; 622 } 623 } else { 624 /* Regular or temp_fsid device mounting a subvol. */ 625 return devt_fs_devices; 626 } 627 } else { 628 /* New device. */ 629 if (fsid_fs_devices == NULL) { 630 return NULL; 631 } else { 632 /* sb::fsid is already used create a new temp_fsid. */ 633 *same_fsid_diff_dev = true; 634 return NULL; 635 } 636 } 637 638 /* Not reached. */ 639 } 640 641 /* 642 * This is only used on mount, and we are protected from competing things 643 * messing with our fs_devices by the uuid_mutex, thus we do not need the 644 * fs_devices->device_list_mutex here. 645 */ 646 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 647 struct btrfs_device *device, blk_mode_t flags, 648 void *holder) 649 { 650 struct file *bdev_file; 651 struct btrfs_super_block *disk_super; 652 u64 devid; 653 int ret; 654 655 if (device->bdev) 656 return -EINVAL; 657 if (!device->name) 658 return -EINVAL; 659 660 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 661 &bdev_file, &disk_super); 662 if (ret) 663 return ret; 664 665 devid = btrfs_stack_device_id(&disk_super->dev_item); 666 if (devid != device->devid) 667 goto error_free_page; 668 669 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 670 goto error_free_page; 671 672 device->generation = btrfs_super_generation(disk_super); 673 674 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 675 if (btrfs_super_incompat_flags(disk_super) & 676 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 677 pr_err( 678 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 679 goto error_free_page; 680 } 681 682 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 683 fs_devices->seeding = true; 684 } else { 685 if (bdev_read_only(file_bdev(bdev_file))) 686 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 687 else 688 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 689 } 690 691 if (!bdev_nonrot(file_bdev(bdev_file))) 692 fs_devices->rotating = true; 693 694 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 695 fs_devices->discardable = true; 696 697 device->bdev_file = bdev_file; 698 device->bdev = file_bdev(bdev_file); 699 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 700 701 if (device->devt != device->bdev->bd_dev) { 702 btrfs_warn(NULL, 703 "device %s maj:min changed from %d:%d to %d:%d", 704 device->name->str, MAJOR(device->devt), 705 MINOR(device->devt), MAJOR(device->bdev->bd_dev), 706 MINOR(device->bdev->bd_dev)); 707 708 device->devt = device->bdev->bd_dev; 709 } 710 711 fs_devices->open_devices++; 712 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 713 device->devid != BTRFS_DEV_REPLACE_DEVID) { 714 fs_devices->rw_devices++; 715 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 716 } 717 btrfs_release_disk_super(disk_super); 718 719 return 0; 720 721 error_free_page: 722 btrfs_release_disk_super(disk_super); 723 fput(bdev_file); 724 725 return -EINVAL; 726 } 727 728 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb) 729 { 730 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 731 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 732 733 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 734 } 735 736 static bool is_same_device(struct btrfs_device *device, const char *new_path) 737 { 738 struct path old = { .mnt = NULL, .dentry = NULL }; 739 struct path new = { .mnt = NULL, .dentry = NULL }; 740 char *old_path = NULL; 741 bool is_same = false; 742 int ret; 743 744 if (!device->name) 745 goto out; 746 747 old_path = kzalloc(PATH_MAX, GFP_NOFS); 748 if (!old_path) 749 goto out; 750 751 rcu_read_lock(); 752 ret = strscpy(old_path, rcu_str_deref(device->name), PATH_MAX); 753 rcu_read_unlock(); 754 if (ret < 0) 755 goto out; 756 757 ret = kern_path(old_path, LOOKUP_FOLLOW, &old); 758 if (ret) 759 goto out; 760 ret = kern_path(new_path, LOOKUP_FOLLOW, &new); 761 if (ret) 762 goto out; 763 if (path_equal(&old, &new)) 764 is_same = true; 765 out: 766 kfree(old_path); 767 path_put(&old); 768 path_put(&new); 769 return is_same; 770 } 771 772 /* 773 * Add new device to list of registered devices 774 * 775 * Returns: 776 * device pointer which was just added or updated when successful 777 * error pointer when failed 778 */ 779 static noinline struct btrfs_device *device_list_add(const char *path, 780 struct btrfs_super_block *disk_super, 781 bool *new_device_added) 782 { 783 struct btrfs_device *device; 784 struct btrfs_fs_devices *fs_devices = NULL; 785 struct rcu_string *name; 786 u64 found_transid = btrfs_super_generation(disk_super); 787 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 788 dev_t path_devt; 789 int error; 790 bool same_fsid_diff_dev = false; 791 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 792 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 793 794 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 795 btrfs_err(NULL, 796 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 797 path); 798 return ERR_PTR(-EAGAIN); 799 } 800 801 error = lookup_bdev(path, &path_devt); 802 if (error) { 803 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 804 path, error); 805 return ERR_PTR(error); 806 } 807 808 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 809 810 if (!fs_devices) { 811 fs_devices = alloc_fs_devices(disk_super->fsid); 812 if (IS_ERR(fs_devices)) 813 return ERR_CAST(fs_devices); 814 815 if (has_metadata_uuid) 816 memcpy(fs_devices->metadata_uuid, 817 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 818 819 if (same_fsid_diff_dev) { 820 generate_random_uuid(fs_devices->fsid); 821 fs_devices->temp_fsid = true; 822 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n", 823 path, MAJOR(path_devt), MINOR(path_devt), 824 fs_devices->fsid); 825 } 826 827 mutex_lock(&fs_devices->device_list_mutex); 828 list_add(&fs_devices->fs_list, &fs_uuids); 829 830 device = NULL; 831 } else { 832 struct btrfs_dev_lookup_args args = { 833 .devid = devid, 834 .uuid = disk_super->dev_item.uuid, 835 }; 836 837 mutex_lock(&fs_devices->device_list_mutex); 838 device = btrfs_find_device(fs_devices, &args); 839 840 if (found_transid > fs_devices->latest_generation) { 841 memcpy(fs_devices->fsid, disk_super->fsid, 842 BTRFS_FSID_SIZE); 843 memcpy(fs_devices->metadata_uuid, 844 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 845 } 846 } 847 848 if (!device) { 849 unsigned int nofs_flag; 850 851 if (fs_devices->opened) { 852 btrfs_err(NULL, 853 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 854 path, MAJOR(path_devt), MINOR(path_devt), 855 fs_devices->fsid, current->comm, 856 task_pid_nr(current)); 857 mutex_unlock(&fs_devices->device_list_mutex); 858 return ERR_PTR(-EBUSY); 859 } 860 861 nofs_flag = memalloc_nofs_save(); 862 device = btrfs_alloc_device(NULL, &devid, 863 disk_super->dev_item.uuid, path); 864 memalloc_nofs_restore(nofs_flag); 865 if (IS_ERR(device)) { 866 mutex_unlock(&fs_devices->device_list_mutex); 867 /* we can safely leave the fs_devices entry around */ 868 return device; 869 } 870 871 device->devt = path_devt; 872 873 list_add_rcu(&device->dev_list, &fs_devices->devices); 874 fs_devices->num_devices++; 875 876 device->fs_devices = fs_devices; 877 *new_device_added = true; 878 879 if (disk_super->label[0]) 880 pr_info( 881 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 882 disk_super->label, devid, found_transid, path, 883 MAJOR(path_devt), MINOR(path_devt), 884 current->comm, task_pid_nr(current)); 885 else 886 pr_info( 887 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 888 disk_super->fsid, devid, found_transid, path, 889 MAJOR(path_devt), MINOR(path_devt), 890 current->comm, task_pid_nr(current)); 891 892 } else if (!device->name || !is_same_device(device, path)) { 893 /* 894 * When FS is already mounted. 895 * 1. If you are here and if the device->name is NULL that 896 * means this device was missing at time of FS mount. 897 * 2. If you are here and if the device->name is different 898 * from 'path' that means either 899 * a. The same device disappeared and reappeared with 900 * different name. or 901 * b. The missing-disk-which-was-replaced, has 902 * reappeared now. 903 * 904 * We must allow 1 and 2a above. But 2b would be a spurious 905 * and unintentional. 906 * 907 * Further in case of 1 and 2a above, the disk at 'path' 908 * would have missed some transaction when it was away and 909 * in case of 2a the stale bdev has to be updated as well. 910 * 2b must not be allowed at all time. 911 */ 912 913 /* 914 * For now, we do allow update to btrfs_fs_device through the 915 * btrfs dev scan cli after FS has been mounted. We're still 916 * tracking a problem where systems fail mount by subvolume id 917 * when we reject replacement on a mounted FS. 918 */ 919 if (!fs_devices->opened && found_transid < device->generation) { 920 /* 921 * That is if the FS is _not_ mounted and if you 922 * are here, that means there is more than one 923 * disk with same uuid and devid.We keep the one 924 * with larger generation number or the last-in if 925 * generation are equal. 926 */ 927 mutex_unlock(&fs_devices->device_list_mutex); 928 btrfs_err(NULL, 929 "device %s already registered with a higher generation, found %llu expect %llu", 930 path, found_transid, device->generation); 931 return ERR_PTR(-EEXIST); 932 } 933 934 /* 935 * We are going to replace the device path for a given devid, 936 * make sure it's the same device if the device is mounted 937 * 938 * NOTE: the device->fs_info may not be reliable here so pass 939 * in a NULL to message helpers instead. This avoids a possible 940 * use-after-free when the fs_info and fs_info->sb are already 941 * torn down. 942 */ 943 if (device->bdev) { 944 if (device->devt != path_devt) { 945 mutex_unlock(&fs_devices->device_list_mutex); 946 btrfs_warn_in_rcu(NULL, 947 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 948 path, devid, found_transid, 949 current->comm, 950 task_pid_nr(current)); 951 return ERR_PTR(-EEXIST); 952 } 953 btrfs_info_in_rcu(NULL, 954 "devid %llu device path %s changed to %s scanned by %s (%d)", 955 devid, btrfs_dev_name(device), 956 path, current->comm, 957 task_pid_nr(current)); 958 } 959 960 name = rcu_string_strdup(path, GFP_NOFS); 961 if (!name) { 962 mutex_unlock(&fs_devices->device_list_mutex); 963 return ERR_PTR(-ENOMEM); 964 } 965 rcu_string_free(device->name); 966 rcu_assign_pointer(device->name, name); 967 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 968 fs_devices->missing_devices--; 969 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 970 } 971 device->devt = path_devt; 972 } 973 974 /* 975 * Unmount does not free the btrfs_device struct but would zero 976 * generation along with most of the other members. So just update 977 * it back. We need it to pick the disk with largest generation 978 * (as above). 979 */ 980 if (!fs_devices->opened) { 981 device->generation = found_transid; 982 fs_devices->latest_generation = max_t(u64, found_transid, 983 fs_devices->latest_generation); 984 } 985 986 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 987 988 mutex_unlock(&fs_devices->device_list_mutex); 989 return device; 990 } 991 992 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 993 { 994 struct btrfs_fs_devices *fs_devices; 995 struct btrfs_device *device; 996 struct btrfs_device *orig_dev; 997 int ret = 0; 998 999 lockdep_assert_held(&uuid_mutex); 1000 1001 fs_devices = alloc_fs_devices(orig->fsid); 1002 if (IS_ERR(fs_devices)) 1003 return fs_devices; 1004 1005 fs_devices->total_devices = orig->total_devices; 1006 1007 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1008 const char *dev_path = NULL; 1009 1010 /* 1011 * This is ok to do without RCU read locked because we hold the 1012 * uuid mutex so nothing we touch in here is going to disappear. 1013 */ 1014 if (orig_dev->name) 1015 dev_path = orig_dev->name->str; 1016 1017 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1018 orig_dev->uuid, dev_path); 1019 if (IS_ERR(device)) { 1020 ret = PTR_ERR(device); 1021 goto error; 1022 } 1023 1024 if (orig_dev->zone_info) { 1025 struct btrfs_zoned_device_info *zone_info; 1026 1027 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1028 if (!zone_info) { 1029 btrfs_free_device(device); 1030 ret = -ENOMEM; 1031 goto error; 1032 } 1033 device->zone_info = zone_info; 1034 } 1035 1036 list_add(&device->dev_list, &fs_devices->devices); 1037 device->fs_devices = fs_devices; 1038 fs_devices->num_devices++; 1039 } 1040 return fs_devices; 1041 error: 1042 free_fs_devices(fs_devices); 1043 return ERR_PTR(ret); 1044 } 1045 1046 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1047 struct btrfs_device **latest_dev) 1048 { 1049 struct btrfs_device *device, *next; 1050 1051 /* This is the initialized path, it is safe to release the devices. */ 1052 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1053 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1054 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1055 &device->dev_state) && 1056 !test_bit(BTRFS_DEV_STATE_MISSING, 1057 &device->dev_state) && 1058 (!*latest_dev || 1059 device->generation > (*latest_dev)->generation)) { 1060 *latest_dev = device; 1061 } 1062 continue; 1063 } 1064 1065 /* 1066 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1067 * in btrfs_init_dev_replace() so just continue. 1068 */ 1069 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1070 continue; 1071 1072 if (device->bdev_file) { 1073 fput(device->bdev_file); 1074 device->bdev = NULL; 1075 device->bdev_file = NULL; 1076 fs_devices->open_devices--; 1077 } 1078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1079 list_del_init(&device->dev_alloc_list); 1080 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1081 fs_devices->rw_devices--; 1082 } 1083 list_del_init(&device->dev_list); 1084 fs_devices->num_devices--; 1085 btrfs_free_device(device); 1086 } 1087 1088 } 1089 1090 /* 1091 * After we have read the system tree and know devids belonging to this 1092 * filesystem, remove the device which does not belong there. 1093 */ 1094 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1095 { 1096 struct btrfs_device *latest_dev = NULL; 1097 struct btrfs_fs_devices *seed_dev; 1098 1099 mutex_lock(&uuid_mutex); 1100 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1101 1102 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1103 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1104 1105 fs_devices->latest_dev = latest_dev; 1106 1107 mutex_unlock(&uuid_mutex); 1108 } 1109 1110 static void btrfs_close_bdev(struct btrfs_device *device) 1111 { 1112 if (!device->bdev) 1113 return; 1114 1115 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1116 sync_blockdev(device->bdev); 1117 invalidate_bdev(device->bdev); 1118 } 1119 1120 fput(device->bdev_file); 1121 } 1122 1123 static void btrfs_close_one_device(struct btrfs_device *device) 1124 { 1125 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1126 1127 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1128 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1129 list_del_init(&device->dev_alloc_list); 1130 fs_devices->rw_devices--; 1131 } 1132 1133 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1134 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1135 1136 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1137 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1138 fs_devices->missing_devices--; 1139 } 1140 1141 btrfs_close_bdev(device); 1142 if (device->bdev) { 1143 fs_devices->open_devices--; 1144 device->bdev = NULL; 1145 device->bdev_file = NULL; 1146 } 1147 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1148 btrfs_destroy_dev_zone_info(device); 1149 1150 device->fs_info = NULL; 1151 atomic_set(&device->dev_stats_ccnt, 0); 1152 btrfs_extent_io_tree_release(&device->alloc_state); 1153 1154 /* 1155 * Reset the flush error record. We might have a transient flush error 1156 * in this mount, and if so we aborted the current transaction and set 1157 * the fs to an error state, guaranteeing no super blocks can be further 1158 * committed. However that error might be transient and if we unmount the 1159 * filesystem and mount it again, we should allow the mount to succeed 1160 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1161 * filesystem again we still get flush errors, then we will again abort 1162 * any transaction and set the error state, guaranteeing no commits of 1163 * unsafe super blocks. 1164 */ 1165 device->last_flush_error = 0; 1166 1167 /* Verify the device is back in a pristine state */ 1168 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1169 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1170 WARN_ON(!list_empty(&device->dev_alloc_list)); 1171 WARN_ON(!list_empty(&device->post_commit_list)); 1172 } 1173 1174 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1175 { 1176 struct btrfs_device *device, *tmp; 1177 1178 lockdep_assert_held(&uuid_mutex); 1179 1180 if (--fs_devices->opened > 0) 1181 return; 1182 1183 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1184 btrfs_close_one_device(device); 1185 1186 WARN_ON(fs_devices->open_devices); 1187 WARN_ON(fs_devices->rw_devices); 1188 fs_devices->opened = 0; 1189 fs_devices->seeding = false; 1190 fs_devices->fs_info = NULL; 1191 } 1192 1193 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1194 { 1195 LIST_HEAD(list); 1196 struct btrfs_fs_devices *tmp; 1197 1198 mutex_lock(&uuid_mutex); 1199 close_fs_devices(fs_devices); 1200 if (!fs_devices->opened) { 1201 list_splice_init(&fs_devices->seed_list, &list); 1202 1203 /* 1204 * If the struct btrfs_fs_devices is not assembled with any 1205 * other device, it can be re-initialized during the next mount 1206 * without the needing device-scan step. Therefore, it can be 1207 * fully freed. 1208 */ 1209 if (fs_devices->num_devices == 1) { 1210 list_del(&fs_devices->fs_list); 1211 free_fs_devices(fs_devices); 1212 } 1213 } 1214 1215 1216 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1217 close_fs_devices(fs_devices); 1218 list_del(&fs_devices->seed_list); 1219 free_fs_devices(fs_devices); 1220 } 1221 mutex_unlock(&uuid_mutex); 1222 } 1223 1224 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1225 blk_mode_t flags, void *holder) 1226 { 1227 struct btrfs_device *device; 1228 struct btrfs_device *latest_dev = NULL; 1229 struct btrfs_device *tmp_device; 1230 s64 __maybe_unused value = 0; 1231 int ret = 0; 1232 1233 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1234 dev_list) { 1235 int ret2; 1236 1237 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); 1238 if (ret2 == 0 && 1239 (!latest_dev || device->generation > latest_dev->generation)) { 1240 latest_dev = device; 1241 } else if (ret2 == -ENODATA) { 1242 fs_devices->num_devices--; 1243 list_del(&device->dev_list); 1244 btrfs_free_device(device); 1245 } 1246 if (ret == 0 && ret2 != 0) 1247 ret = ret2; 1248 } 1249 1250 if (fs_devices->open_devices == 0) { 1251 if (ret) 1252 return ret; 1253 return -EINVAL; 1254 } 1255 1256 fs_devices->opened = 1; 1257 fs_devices->latest_dev = latest_dev; 1258 fs_devices->total_rw_bytes = 0; 1259 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1260 #ifdef CONFIG_BTRFS_EXPERIMENTAL 1261 fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ; 1262 fs_devices->read_devid = latest_dev->devid; 1263 fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(), 1264 &value); 1265 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1266 fs_devices->collect_fs_stats = true; 1267 1268 if (value) { 1269 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1270 fs_devices->rr_min_contig_read = value; 1271 if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID) 1272 fs_devices->read_devid = value; 1273 } 1274 #else 1275 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1276 #endif 1277 1278 return 0; 1279 } 1280 1281 static int devid_cmp(void *priv, const struct list_head *a, 1282 const struct list_head *b) 1283 { 1284 const struct btrfs_device *dev1, *dev2; 1285 1286 dev1 = list_entry(a, struct btrfs_device, dev_list); 1287 dev2 = list_entry(b, struct btrfs_device, dev_list); 1288 1289 if (dev1->devid < dev2->devid) 1290 return -1; 1291 else if (dev1->devid > dev2->devid) 1292 return 1; 1293 return 0; 1294 } 1295 1296 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1297 blk_mode_t flags, void *holder) 1298 { 1299 int ret; 1300 1301 lockdep_assert_held(&uuid_mutex); 1302 /* 1303 * The device_list_mutex cannot be taken here in case opening the 1304 * underlying device takes further locks like open_mutex. 1305 * 1306 * We also don't need the lock here as this is called during mount and 1307 * exclusion is provided by uuid_mutex 1308 */ 1309 1310 if (fs_devices->opened) { 1311 fs_devices->opened++; 1312 ret = 0; 1313 } else { 1314 list_sort(NULL, &fs_devices->devices, devid_cmp); 1315 ret = open_fs_devices(fs_devices, flags, holder); 1316 } 1317 1318 return ret; 1319 } 1320 1321 void btrfs_release_disk_super(struct btrfs_super_block *super) 1322 { 1323 struct page *page = virt_to_page(super); 1324 1325 put_page(page); 1326 } 1327 1328 struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1329 int copy_num, bool drop_cache) 1330 { 1331 struct btrfs_super_block *super; 1332 struct page *page; 1333 u64 bytenr, bytenr_orig; 1334 struct address_space *mapping = bdev->bd_mapping; 1335 int ret; 1336 1337 bytenr_orig = btrfs_sb_offset(copy_num); 1338 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 1339 if (ret < 0) { 1340 if (ret == -ENOENT) 1341 ret = -EINVAL; 1342 return ERR_PTR(ret); 1343 } 1344 1345 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 1346 return ERR_PTR(-EINVAL); 1347 1348 if (drop_cache) { 1349 /* This should only be called with the primary sb. */ 1350 ASSERT(copy_num == 0); 1351 1352 /* 1353 * Drop the page of the primary superblock, so later read will 1354 * always read from the device. 1355 */ 1356 invalidate_inode_pages2_range(mapping, bytenr >> PAGE_SHIFT, 1357 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 1358 } 1359 1360 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 1361 if (IS_ERR(page)) 1362 return ERR_CAST(page); 1363 1364 super = page_address(page); 1365 if (btrfs_super_magic(super) != BTRFS_MAGIC || 1366 btrfs_super_bytenr(super) != bytenr_orig) { 1367 btrfs_release_disk_super(super); 1368 return ERR_PTR(-EINVAL); 1369 } 1370 1371 /* 1372 * Make sure the last byte of label is properly NUL termiated. We use 1373 * '%s' to print the label, if not properly NUL termiated we can access 1374 * beyond the label. 1375 */ 1376 if (super->label[0] && super->label[BTRFS_LABEL_SIZE - 1]) 1377 super->label[BTRFS_LABEL_SIZE - 1] = 0; 1378 1379 return super; 1380 } 1381 1382 int btrfs_forget_devices(dev_t devt) 1383 { 1384 int ret; 1385 1386 mutex_lock(&uuid_mutex); 1387 ret = btrfs_free_stale_devices(devt, NULL); 1388 mutex_unlock(&uuid_mutex); 1389 1390 return ret; 1391 } 1392 1393 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, 1394 const char *path, dev_t devt, 1395 bool mount_arg_dev) 1396 { 1397 struct btrfs_fs_devices *fs_devices; 1398 1399 /* 1400 * Do not skip device registration for mounted devices with matching 1401 * maj:min but different paths. Booting without initrd relies on 1402 * /dev/root initially, later replaced with the actual root device. 1403 * A successful scan ensures grub2-probe selects the correct device. 1404 */ 1405 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 1406 struct btrfs_device *device; 1407 1408 mutex_lock(&fs_devices->device_list_mutex); 1409 1410 if (!fs_devices->opened) { 1411 mutex_unlock(&fs_devices->device_list_mutex); 1412 continue; 1413 } 1414 1415 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1416 if (device->bdev && (device->bdev->bd_dev == devt) && 1417 strcmp(device->name->str, path) != 0) { 1418 mutex_unlock(&fs_devices->device_list_mutex); 1419 1420 /* Do not skip registration. */ 1421 return false; 1422 } 1423 } 1424 mutex_unlock(&fs_devices->device_list_mutex); 1425 } 1426 1427 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1428 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) 1429 return true; 1430 1431 return false; 1432 } 1433 1434 /* 1435 * Look for a btrfs signature on a device. This may be called out of the mount path 1436 * and we are not allowed to call set_blocksize during the scan. The superblock 1437 * is read via pagecache. 1438 * 1439 * With @mount_arg_dev it's a scan during mount time that will always register 1440 * the device or return an error. Multi-device and seeding devices are registered 1441 * in both cases. 1442 */ 1443 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 1444 bool mount_arg_dev) 1445 { 1446 struct btrfs_super_block *disk_super; 1447 bool new_device_added = false; 1448 struct btrfs_device *device = NULL; 1449 struct file *bdev_file; 1450 dev_t devt; 1451 1452 lockdep_assert_held(&uuid_mutex); 1453 1454 /* 1455 * Avoid an exclusive open here, as the systemd-udev may initiate the 1456 * device scan which may race with the user's mount or mkfs command, 1457 * resulting in failure. 1458 * Since the device scan is solely for reading purposes, there is no 1459 * need for an exclusive open. Additionally, the devices are read again 1460 * during the mount process. It is ok to get some inconsistent 1461 * values temporarily, as the device paths of the fsid are the only 1462 * required information for assembling the volume. 1463 */ 1464 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL); 1465 if (IS_ERR(bdev_file)) 1466 return ERR_CAST(bdev_file); 1467 1468 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), 0, false); 1469 if (IS_ERR(disk_super)) { 1470 device = ERR_CAST(disk_super); 1471 goto error_bdev_put; 1472 } 1473 1474 devt = file_bdev(bdev_file)->bd_dev; 1475 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { 1476 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n", 1477 path, MAJOR(devt), MINOR(devt)); 1478 1479 btrfs_free_stale_devices(devt, NULL); 1480 1481 device = NULL; 1482 goto free_disk_super; 1483 } 1484 1485 device = device_list_add(path, disk_super, &new_device_added); 1486 if (!IS_ERR(device) && new_device_added) 1487 btrfs_free_stale_devices(device->devt, device); 1488 1489 free_disk_super: 1490 btrfs_release_disk_super(disk_super); 1491 1492 error_bdev_put: 1493 fput(bdev_file); 1494 1495 return device; 1496 } 1497 1498 /* 1499 * Try to find a chunk that intersects [start, start + len] range and when one 1500 * such is found, record the end of it in *start 1501 */ 1502 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1503 u64 len) 1504 { 1505 u64 physical_start, physical_end; 1506 1507 lockdep_assert_held(&device->fs_info->chunk_mutex); 1508 1509 if (btrfs_find_first_extent_bit(&device->alloc_state, *start, 1510 &physical_start, &physical_end, 1511 CHUNK_ALLOCATED, NULL)) { 1512 1513 if (in_range(physical_start, *start, len) || 1514 in_range(*start, physical_start, 1515 physical_end + 1 - physical_start)) { 1516 *start = physical_end + 1; 1517 return true; 1518 } 1519 } 1520 return false; 1521 } 1522 1523 static u64 dev_extent_search_start(struct btrfs_device *device) 1524 { 1525 switch (device->fs_devices->chunk_alloc_policy) { 1526 default: 1527 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1528 fallthrough; 1529 case BTRFS_CHUNK_ALLOC_REGULAR: 1530 return BTRFS_DEVICE_RANGE_RESERVED; 1531 case BTRFS_CHUNK_ALLOC_ZONED: 1532 /* 1533 * We don't care about the starting region like regular 1534 * allocator, because we anyway use/reserve the first two zones 1535 * for superblock logging. 1536 */ 1537 return 0; 1538 } 1539 } 1540 1541 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1542 u64 *hole_start, u64 *hole_size, 1543 u64 num_bytes) 1544 { 1545 u64 zone_size = device->zone_info->zone_size; 1546 u64 pos; 1547 int ret; 1548 bool changed = false; 1549 1550 ASSERT(IS_ALIGNED(*hole_start, zone_size), 1551 "hole_start=%llu zone_size=%llu", *hole_start, zone_size); 1552 1553 while (*hole_size > 0) { 1554 pos = btrfs_find_allocatable_zones(device, *hole_start, 1555 *hole_start + *hole_size, 1556 num_bytes); 1557 if (pos != *hole_start) { 1558 *hole_size = *hole_start + *hole_size - pos; 1559 *hole_start = pos; 1560 changed = true; 1561 if (*hole_size < num_bytes) 1562 break; 1563 } 1564 1565 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1566 1567 /* Range is ensured to be empty */ 1568 if (!ret) 1569 return changed; 1570 1571 /* Given hole range was invalid (outside of device) */ 1572 if (ret == -ERANGE) { 1573 *hole_start += *hole_size; 1574 *hole_size = 0; 1575 return true; 1576 } 1577 1578 *hole_start += zone_size; 1579 *hole_size -= zone_size; 1580 changed = true; 1581 } 1582 1583 return changed; 1584 } 1585 1586 /* 1587 * Check if specified hole is suitable for allocation. 1588 * 1589 * @device: the device which we have the hole 1590 * @hole_start: starting position of the hole 1591 * @hole_size: the size of the hole 1592 * @num_bytes: the size of the free space that we need 1593 * 1594 * This function may modify @hole_start and @hole_size to reflect the suitable 1595 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1596 */ 1597 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1598 u64 *hole_size, u64 num_bytes) 1599 { 1600 bool changed = false; 1601 u64 hole_end = *hole_start + *hole_size; 1602 1603 for (;;) { 1604 /* 1605 * Check before we set max_hole_start, otherwise we could end up 1606 * sending back this offset anyway. 1607 */ 1608 if (contains_pending_extent(device, hole_start, *hole_size)) { 1609 if (hole_end >= *hole_start) 1610 *hole_size = hole_end - *hole_start; 1611 else 1612 *hole_size = 0; 1613 changed = true; 1614 } 1615 1616 switch (device->fs_devices->chunk_alloc_policy) { 1617 default: 1618 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1619 fallthrough; 1620 case BTRFS_CHUNK_ALLOC_REGULAR: 1621 /* No extra check */ 1622 break; 1623 case BTRFS_CHUNK_ALLOC_ZONED: 1624 if (dev_extent_hole_check_zoned(device, hole_start, 1625 hole_size, num_bytes)) { 1626 changed = true; 1627 /* 1628 * The changed hole can contain pending extent. 1629 * Loop again to check that. 1630 */ 1631 continue; 1632 } 1633 break; 1634 } 1635 1636 break; 1637 } 1638 1639 return changed; 1640 } 1641 1642 /* 1643 * Find free space in the specified device. 1644 * 1645 * @device: the device which we search the free space in 1646 * @num_bytes: the size of the free space that we need 1647 * @search_start: the position from which to begin the search 1648 * @start: store the start of the free space. 1649 * @len: the size of the free space. that we find, or the size 1650 * of the max free space if we don't find suitable free space 1651 * 1652 * This does a pretty simple search, the expectation is that it is called very 1653 * infrequently and that a given device has a small number of extents. 1654 * 1655 * @start is used to store the start of the free space if we find. But if we 1656 * don't find suitable free space, it will be used to store the start position 1657 * of the max free space. 1658 * 1659 * @len is used to store the size of the free space that we find. 1660 * But if we don't find suitable free space, it is used to store the size of 1661 * the max free space. 1662 * 1663 * NOTE: This function will search *commit* root of device tree, and does extra 1664 * check to ensure dev extents are not double allocated. 1665 * This makes the function safe to allocate dev extents but may not report 1666 * correct usable device space, as device extent freed in current transaction 1667 * is not reported as available. 1668 */ 1669 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1670 u64 *start, u64 *len) 1671 { 1672 struct btrfs_fs_info *fs_info = device->fs_info; 1673 struct btrfs_root *root = fs_info->dev_root; 1674 struct btrfs_key key; 1675 struct btrfs_dev_extent *dev_extent; 1676 struct btrfs_path *path; 1677 u64 search_start; 1678 u64 hole_size; 1679 u64 max_hole_start; 1680 u64 max_hole_size = 0; 1681 u64 extent_end; 1682 u64 search_end = device->total_bytes; 1683 int ret; 1684 int slot; 1685 struct extent_buffer *l; 1686 1687 search_start = dev_extent_search_start(device); 1688 max_hole_start = search_start; 1689 1690 WARN_ON(device->zone_info && 1691 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1692 1693 path = btrfs_alloc_path(); 1694 if (!path) { 1695 ret = -ENOMEM; 1696 goto out; 1697 } 1698 again: 1699 if (search_start >= search_end || 1700 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1701 ret = -ENOSPC; 1702 goto out; 1703 } 1704 1705 path->reada = READA_FORWARD; 1706 path->search_commit_root = 1; 1707 path->skip_locking = 1; 1708 1709 key.objectid = device->devid; 1710 key.type = BTRFS_DEV_EXTENT_KEY; 1711 key.offset = search_start; 1712 1713 ret = btrfs_search_backwards(root, &key, path); 1714 if (ret < 0) 1715 goto out; 1716 1717 while (search_start < search_end) { 1718 l = path->nodes[0]; 1719 slot = path->slots[0]; 1720 if (slot >= btrfs_header_nritems(l)) { 1721 ret = btrfs_next_leaf(root, path); 1722 if (ret == 0) 1723 continue; 1724 if (ret < 0) 1725 goto out; 1726 1727 break; 1728 } 1729 btrfs_item_key_to_cpu(l, &key, slot); 1730 1731 if (key.objectid < device->devid) 1732 goto next; 1733 1734 if (key.objectid > device->devid) 1735 break; 1736 1737 if (key.type != BTRFS_DEV_EXTENT_KEY) 1738 goto next; 1739 1740 if (key.offset > search_end) 1741 break; 1742 1743 if (key.offset > search_start) { 1744 hole_size = key.offset - search_start; 1745 dev_extent_hole_check(device, &search_start, &hole_size, 1746 num_bytes); 1747 1748 if (hole_size > max_hole_size) { 1749 max_hole_start = search_start; 1750 max_hole_size = hole_size; 1751 } 1752 1753 /* 1754 * If this free space is greater than which we need, 1755 * it must be the max free space that we have found 1756 * until now, so max_hole_start must point to the start 1757 * of this free space and the length of this free space 1758 * is stored in max_hole_size. Thus, we return 1759 * max_hole_start and max_hole_size and go back to the 1760 * caller. 1761 */ 1762 if (hole_size >= num_bytes) { 1763 ret = 0; 1764 goto out; 1765 } 1766 } 1767 1768 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1769 extent_end = key.offset + btrfs_dev_extent_length(l, 1770 dev_extent); 1771 if (extent_end > search_start) 1772 search_start = extent_end; 1773 next: 1774 path->slots[0]++; 1775 cond_resched(); 1776 } 1777 1778 /* 1779 * At this point, search_start should be the end of 1780 * allocated dev extents, and when shrinking the device, 1781 * search_end may be smaller than search_start. 1782 */ 1783 if (search_end > search_start) { 1784 hole_size = search_end - search_start; 1785 if (dev_extent_hole_check(device, &search_start, &hole_size, 1786 num_bytes)) { 1787 btrfs_release_path(path); 1788 goto again; 1789 } 1790 1791 if (hole_size > max_hole_size) { 1792 max_hole_start = search_start; 1793 max_hole_size = hole_size; 1794 } 1795 } 1796 1797 /* See above. */ 1798 if (max_hole_size < num_bytes) 1799 ret = -ENOSPC; 1800 else 1801 ret = 0; 1802 1803 ASSERT(max_hole_start + max_hole_size <= search_end, 1804 "max_hole_start=%llu max_hole_size=%llu search_end=%llu", 1805 max_hole_start, max_hole_size, search_end); 1806 out: 1807 btrfs_free_path(path); 1808 *start = max_hole_start; 1809 if (len) 1810 *len = max_hole_size; 1811 return ret; 1812 } 1813 1814 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1815 struct btrfs_device *device, 1816 u64 start, u64 *dev_extent_len) 1817 { 1818 struct btrfs_fs_info *fs_info = device->fs_info; 1819 struct btrfs_root *root = fs_info->dev_root; 1820 int ret; 1821 struct btrfs_path *path; 1822 struct btrfs_key key; 1823 struct btrfs_key found_key; 1824 struct extent_buffer *leaf = NULL; 1825 struct btrfs_dev_extent *extent = NULL; 1826 1827 path = btrfs_alloc_path(); 1828 if (!path) 1829 return -ENOMEM; 1830 1831 key.objectid = device->devid; 1832 key.type = BTRFS_DEV_EXTENT_KEY; 1833 key.offset = start; 1834 again: 1835 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1836 if (ret > 0) { 1837 ret = btrfs_previous_item(root, path, key.objectid, 1838 BTRFS_DEV_EXTENT_KEY); 1839 if (ret) 1840 goto out; 1841 leaf = path->nodes[0]; 1842 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1843 extent = btrfs_item_ptr(leaf, path->slots[0], 1844 struct btrfs_dev_extent); 1845 BUG_ON(found_key.offset > start || found_key.offset + 1846 btrfs_dev_extent_length(leaf, extent) < start); 1847 key = found_key; 1848 btrfs_release_path(path); 1849 goto again; 1850 } else if (ret == 0) { 1851 leaf = path->nodes[0]; 1852 extent = btrfs_item_ptr(leaf, path->slots[0], 1853 struct btrfs_dev_extent); 1854 } else { 1855 goto out; 1856 } 1857 1858 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1859 1860 ret = btrfs_del_item(trans, root, path); 1861 if (ret == 0) 1862 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1863 out: 1864 btrfs_free_path(path); 1865 return ret; 1866 } 1867 1868 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1869 { 1870 struct rb_node *n; 1871 u64 ret = 0; 1872 1873 read_lock(&fs_info->mapping_tree_lock); 1874 n = rb_last(&fs_info->mapping_tree.rb_root); 1875 if (n) { 1876 struct btrfs_chunk_map *map; 1877 1878 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1879 ret = map->start + map->chunk_len; 1880 } 1881 read_unlock(&fs_info->mapping_tree_lock); 1882 1883 return ret; 1884 } 1885 1886 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1887 u64 *devid_ret) 1888 { 1889 int ret; 1890 struct btrfs_key key; 1891 struct btrfs_key found_key; 1892 struct btrfs_path *path; 1893 1894 path = btrfs_alloc_path(); 1895 if (!path) 1896 return -ENOMEM; 1897 1898 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1899 key.type = BTRFS_DEV_ITEM_KEY; 1900 key.offset = (u64)-1; 1901 1902 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1903 if (ret < 0) 1904 goto error; 1905 1906 if (ret == 0) { 1907 /* Corruption */ 1908 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1909 ret = -EUCLEAN; 1910 goto error; 1911 } 1912 1913 ret = btrfs_previous_item(fs_info->chunk_root, path, 1914 BTRFS_DEV_ITEMS_OBJECTID, 1915 BTRFS_DEV_ITEM_KEY); 1916 if (ret) { 1917 *devid_ret = 1; 1918 } else { 1919 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1920 path->slots[0]); 1921 *devid_ret = found_key.offset + 1; 1922 } 1923 ret = 0; 1924 error: 1925 btrfs_free_path(path); 1926 return ret; 1927 } 1928 1929 /* 1930 * the device information is stored in the chunk root 1931 * the btrfs_device struct should be fully filled in 1932 */ 1933 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1934 struct btrfs_device *device) 1935 { 1936 int ret; 1937 struct btrfs_path *path; 1938 struct btrfs_dev_item *dev_item; 1939 struct extent_buffer *leaf; 1940 struct btrfs_key key; 1941 unsigned long ptr; 1942 1943 path = btrfs_alloc_path(); 1944 if (!path) 1945 return -ENOMEM; 1946 1947 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1948 key.type = BTRFS_DEV_ITEM_KEY; 1949 key.offset = device->devid; 1950 1951 btrfs_reserve_chunk_metadata(trans, true); 1952 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1953 &key, sizeof(*dev_item)); 1954 btrfs_trans_release_chunk_metadata(trans); 1955 if (ret) 1956 goto out; 1957 1958 leaf = path->nodes[0]; 1959 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1960 1961 btrfs_set_device_id(leaf, dev_item, device->devid); 1962 btrfs_set_device_generation(leaf, dev_item, 0); 1963 btrfs_set_device_type(leaf, dev_item, device->type); 1964 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1965 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1966 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1967 btrfs_set_device_total_bytes(leaf, dev_item, 1968 btrfs_device_get_disk_total_bytes(device)); 1969 btrfs_set_device_bytes_used(leaf, dev_item, 1970 btrfs_device_get_bytes_used(device)); 1971 btrfs_set_device_group(leaf, dev_item, 0); 1972 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1973 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1974 btrfs_set_device_start_offset(leaf, dev_item, 0); 1975 1976 ptr = btrfs_device_uuid(dev_item); 1977 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1978 ptr = btrfs_device_fsid(dev_item); 1979 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1980 ptr, BTRFS_FSID_SIZE); 1981 1982 ret = 0; 1983 out: 1984 btrfs_free_path(path); 1985 return ret; 1986 } 1987 1988 /* 1989 * Function to update ctime/mtime for a given device path. 1990 * Mainly used for ctime/mtime based probe like libblkid. 1991 * 1992 * We don't care about errors here, this is just to be kind to userspace. 1993 */ 1994 static void update_dev_time(const char *device_path) 1995 { 1996 struct path path; 1997 int ret; 1998 1999 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 2000 if (ret) 2001 return; 2002 2003 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 2004 path_put(&path); 2005 } 2006 2007 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 2008 struct btrfs_device *device) 2009 { 2010 struct btrfs_root *root = device->fs_info->chunk_root; 2011 int ret; 2012 struct btrfs_path *path; 2013 struct btrfs_key key; 2014 2015 path = btrfs_alloc_path(); 2016 if (!path) 2017 return -ENOMEM; 2018 2019 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2020 key.type = BTRFS_DEV_ITEM_KEY; 2021 key.offset = device->devid; 2022 2023 btrfs_reserve_chunk_metadata(trans, false); 2024 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2025 btrfs_trans_release_chunk_metadata(trans); 2026 if (ret) { 2027 if (ret > 0) 2028 ret = -ENOENT; 2029 goto out; 2030 } 2031 2032 ret = btrfs_del_item(trans, root, path); 2033 out: 2034 btrfs_free_path(path); 2035 return ret; 2036 } 2037 2038 /* 2039 * Verify that @num_devices satisfies the RAID profile constraints in the whole 2040 * filesystem. It's up to the caller to adjust that number regarding eg. device 2041 * replace. 2042 */ 2043 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 2044 u64 num_devices) 2045 { 2046 u64 all_avail; 2047 unsigned seq; 2048 int i; 2049 2050 do { 2051 seq = read_seqbegin(&fs_info->profiles_lock); 2052 2053 all_avail = fs_info->avail_data_alloc_bits | 2054 fs_info->avail_system_alloc_bits | 2055 fs_info->avail_metadata_alloc_bits; 2056 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2057 2058 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2059 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2060 continue; 2061 2062 if (num_devices < btrfs_raid_array[i].devs_min) 2063 return btrfs_raid_array[i].mindev_error; 2064 } 2065 2066 return 0; 2067 } 2068 2069 static struct btrfs_device * btrfs_find_next_active_device( 2070 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2071 { 2072 struct btrfs_device *next_device; 2073 2074 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2075 if (next_device != device && 2076 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2077 && next_device->bdev) 2078 return next_device; 2079 } 2080 2081 return NULL; 2082 } 2083 2084 /* 2085 * Helper function to check if the given device is part of s_bdev / latest_dev 2086 * and replace it with the provided or the next active device, in the context 2087 * where this function called, there should be always be another device (or 2088 * this_dev) which is active. 2089 */ 2090 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2091 struct btrfs_device *next_device) 2092 { 2093 struct btrfs_fs_info *fs_info = device->fs_info; 2094 2095 if (!next_device) 2096 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2097 device); 2098 ASSERT(next_device); 2099 2100 if (fs_info->sb->s_bdev && 2101 (fs_info->sb->s_bdev == device->bdev)) 2102 fs_info->sb->s_bdev = next_device->bdev; 2103 2104 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2105 fs_info->fs_devices->latest_dev = next_device; 2106 } 2107 2108 /* 2109 * Return btrfs_fs_devices::num_devices excluding the device that's being 2110 * currently replaced. 2111 */ 2112 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2113 { 2114 u64 num_devices = fs_info->fs_devices->num_devices; 2115 2116 down_read(&fs_info->dev_replace.rwsem); 2117 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2118 ASSERT(num_devices > 1, "num_devices=%llu", num_devices); 2119 num_devices--; 2120 } 2121 up_read(&fs_info->dev_replace.rwsem); 2122 2123 return num_devices; 2124 } 2125 2126 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2127 struct block_device *bdev, int copy_num) 2128 { 2129 struct btrfs_super_block *disk_super; 2130 const size_t len = sizeof(disk_super->magic); 2131 const u64 bytenr = btrfs_sb_offset(copy_num); 2132 int ret; 2133 2134 disk_super = btrfs_read_disk_super(bdev, copy_num, false); 2135 if (IS_ERR(disk_super)) 2136 return; 2137 2138 memset(&disk_super->magic, 0, len); 2139 folio_mark_dirty(virt_to_folio(disk_super)); 2140 btrfs_release_disk_super(disk_super); 2141 2142 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2143 if (ret) 2144 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2145 copy_num, ret); 2146 } 2147 2148 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) 2149 { 2150 int copy_num; 2151 struct block_device *bdev = device->bdev; 2152 2153 if (!bdev) 2154 return; 2155 2156 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2157 if (bdev_is_zoned(bdev)) 2158 btrfs_reset_sb_log_zones(bdev, copy_num); 2159 else 2160 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2161 } 2162 2163 /* Notify udev that device has changed */ 2164 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2165 2166 /* Update ctime/mtime for device path for libblkid */ 2167 update_dev_time(device->name->str); 2168 } 2169 2170 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2171 struct btrfs_dev_lookup_args *args, 2172 struct file **bdev_file) 2173 { 2174 struct btrfs_trans_handle *trans; 2175 struct btrfs_device *device; 2176 struct btrfs_fs_devices *cur_devices; 2177 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2178 u64 num_devices; 2179 int ret = 0; 2180 2181 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2182 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2183 return -EINVAL; 2184 } 2185 2186 /* 2187 * The device list in fs_devices is accessed without locks (neither 2188 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2189 * filesystem and another device rm cannot run. 2190 */ 2191 num_devices = btrfs_num_devices(fs_info); 2192 2193 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2194 if (ret) 2195 return ret; 2196 2197 device = btrfs_find_device(fs_info->fs_devices, args); 2198 if (!device) { 2199 if (args->missing) 2200 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2201 else 2202 ret = -ENOENT; 2203 return ret; 2204 } 2205 2206 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2207 btrfs_warn_in_rcu(fs_info, 2208 "cannot remove device %s (devid %llu) due to active swapfile", 2209 btrfs_dev_name(device), device->devid); 2210 return -ETXTBSY; 2211 } 2212 2213 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2214 return BTRFS_ERROR_DEV_TGT_REPLACE; 2215 2216 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2217 fs_info->fs_devices->rw_devices == 1) 2218 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2219 2220 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2221 mutex_lock(&fs_info->chunk_mutex); 2222 list_del_init(&device->dev_alloc_list); 2223 device->fs_devices->rw_devices--; 2224 mutex_unlock(&fs_info->chunk_mutex); 2225 } 2226 2227 ret = btrfs_shrink_device(device, 0); 2228 if (ret) 2229 goto error_undo; 2230 2231 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2232 if (IS_ERR(trans)) { 2233 ret = PTR_ERR(trans); 2234 goto error_undo; 2235 } 2236 2237 ret = btrfs_rm_dev_item(trans, device); 2238 if (ret) { 2239 /* Any error in dev item removal is critical */ 2240 btrfs_crit(fs_info, 2241 "failed to remove device item for devid %llu: %d", 2242 device->devid, ret); 2243 btrfs_abort_transaction(trans, ret); 2244 btrfs_end_transaction(trans); 2245 return ret; 2246 } 2247 2248 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2249 btrfs_scrub_cancel_dev(device); 2250 2251 /* 2252 * the device list mutex makes sure that we don't change 2253 * the device list while someone else is writing out all 2254 * the device supers. Whoever is writing all supers, should 2255 * lock the device list mutex before getting the number of 2256 * devices in the super block (super_copy). Conversely, 2257 * whoever updates the number of devices in the super block 2258 * (super_copy) should hold the device list mutex. 2259 */ 2260 2261 /* 2262 * In normal cases the cur_devices == fs_devices. But in case 2263 * of deleting a seed device, the cur_devices should point to 2264 * its own fs_devices listed under the fs_devices->seed_list. 2265 */ 2266 cur_devices = device->fs_devices; 2267 mutex_lock(&fs_devices->device_list_mutex); 2268 list_del_rcu(&device->dev_list); 2269 2270 cur_devices->num_devices--; 2271 cur_devices->total_devices--; 2272 /* Update total_devices of the parent fs_devices if it's seed */ 2273 if (cur_devices != fs_devices) 2274 fs_devices->total_devices--; 2275 2276 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2277 cur_devices->missing_devices--; 2278 2279 btrfs_assign_next_active_device(device, NULL); 2280 2281 if (device->bdev_file) { 2282 cur_devices->open_devices--; 2283 /* remove sysfs entry */ 2284 btrfs_sysfs_remove_device(device); 2285 } 2286 2287 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2288 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2289 mutex_unlock(&fs_devices->device_list_mutex); 2290 2291 /* 2292 * At this point, the device is zero sized and detached from the 2293 * devices list. All that's left is to zero out the old supers and 2294 * free the device. 2295 * 2296 * We cannot call btrfs_close_bdev() here because we're holding the sb 2297 * write lock, and fput() on the block device will pull in the 2298 * ->open_mutex on the block device and it's dependencies. Instead 2299 * just flush the device and let the caller do the final bdev_release. 2300 */ 2301 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2302 btrfs_scratch_superblocks(fs_info, device); 2303 if (device->bdev) { 2304 sync_blockdev(device->bdev); 2305 invalidate_bdev(device->bdev); 2306 } 2307 } 2308 2309 *bdev_file = device->bdev_file; 2310 synchronize_rcu(); 2311 btrfs_free_device(device); 2312 2313 /* 2314 * This can happen if cur_devices is the private seed devices list. We 2315 * cannot call close_fs_devices() here because it expects the uuid_mutex 2316 * to be held, but in fact we don't need that for the private 2317 * seed_devices, we can simply decrement cur_devices->opened and then 2318 * remove it from our list and free the fs_devices. 2319 */ 2320 if (cur_devices->num_devices == 0) { 2321 list_del_init(&cur_devices->seed_list); 2322 ASSERT(cur_devices->opened == 1, "opened=%d", cur_devices->opened); 2323 cur_devices->opened--; 2324 free_fs_devices(cur_devices); 2325 } 2326 2327 ret = btrfs_commit_transaction(trans); 2328 2329 return ret; 2330 2331 error_undo: 2332 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2333 mutex_lock(&fs_info->chunk_mutex); 2334 list_add(&device->dev_alloc_list, 2335 &fs_devices->alloc_list); 2336 device->fs_devices->rw_devices++; 2337 mutex_unlock(&fs_info->chunk_mutex); 2338 } 2339 return ret; 2340 } 2341 2342 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2343 { 2344 struct btrfs_fs_devices *fs_devices; 2345 2346 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2347 2348 /* 2349 * in case of fs with no seed, srcdev->fs_devices will point 2350 * to fs_devices of fs_info. However when the dev being replaced is 2351 * a seed dev it will point to the seed's local fs_devices. In short 2352 * srcdev will have its correct fs_devices in both the cases. 2353 */ 2354 fs_devices = srcdev->fs_devices; 2355 2356 list_del_rcu(&srcdev->dev_list); 2357 list_del(&srcdev->dev_alloc_list); 2358 fs_devices->num_devices--; 2359 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2360 fs_devices->missing_devices--; 2361 2362 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2363 fs_devices->rw_devices--; 2364 2365 if (srcdev->bdev) 2366 fs_devices->open_devices--; 2367 } 2368 2369 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2370 { 2371 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2372 2373 mutex_lock(&uuid_mutex); 2374 2375 btrfs_close_bdev(srcdev); 2376 synchronize_rcu(); 2377 btrfs_free_device(srcdev); 2378 2379 /* if this is no devs we rather delete the fs_devices */ 2380 if (!fs_devices->num_devices) { 2381 /* 2382 * On a mounted FS, num_devices can't be zero unless it's a 2383 * seed. In case of a seed device being replaced, the replace 2384 * target added to the sprout FS, so there will be no more 2385 * device left under the seed FS. 2386 */ 2387 ASSERT(fs_devices->seeding); 2388 2389 list_del_init(&fs_devices->seed_list); 2390 close_fs_devices(fs_devices); 2391 free_fs_devices(fs_devices); 2392 } 2393 mutex_unlock(&uuid_mutex); 2394 } 2395 2396 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2397 { 2398 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2399 2400 mutex_lock(&fs_devices->device_list_mutex); 2401 2402 btrfs_sysfs_remove_device(tgtdev); 2403 2404 if (tgtdev->bdev) 2405 fs_devices->open_devices--; 2406 2407 fs_devices->num_devices--; 2408 2409 btrfs_assign_next_active_device(tgtdev, NULL); 2410 2411 list_del_rcu(&tgtdev->dev_list); 2412 2413 mutex_unlock(&fs_devices->device_list_mutex); 2414 2415 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); 2416 2417 btrfs_close_bdev(tgtdev); 2418 synchronize_rcu(); 2419 btrfs_free_device(tgtdev); 2420 } 2421 2422 /* 2423 * Populate args from device at path. 2424 * 2425 * @fs_info: the filesystem 2426 * @args: the args to populate 2427 * @path: the path to the device 2428 * 2429 * This will read the super block of the device at @path and populate @args with 2430 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2431 * lookup a device to operate on, but need to do it before we take any locks. 2432 * This properly handles the special case of "missing" that a user may pass in, 2433 * and does some basic sanity checks. The caller must make sure that @path is 2434 * properly NUL terminated before calling in, and must call 2435 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2436 * uuid buffers. 2437 * 2438 * Return: 0 for success, -errno for failure 2439 */ 2440 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2441 struct btrfs_dev_lookup_args *args, 2442 const char *path) 2443 { 2444 struct btrfs_super_block *disk_super; 2445 struct file *bdev_file; 2446 int ret; 2447 2448 if (!path || !path[0]) 2449 return -EINVAL; 2450 if (!strcmp(path, "missing")) { 2451 args->missing = true; 2452 return 0; 2453 } 2454 2455 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2456 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2457 if (!args->uuid || !args->fsid) { 2458 btrfs_put_dev_args_from_path(args); 2459 return -ENOMEM; 2460 } 2461 2462 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2463 &bdev_file, &disk_super); 2464 if (ret) { 2465 btrfs_put_dev_args_from_path(args); 2466 return ret; 2467 } 2468 2469 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2470 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2471 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2472 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2473 else 2474 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2475 btrfs_release_disk_super(disk_super); 2476 fput(bdev_file); 2477 return 0; 2478 } 2479 2480 /* 2481 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2482 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2483 * that don't need to be freed. 2484 */ 2485 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2486 { 2487 kfree(args->uuid); 2488 kfree(args->fsid); 2489 args->uuid = NULL; 2490 args->fsid = NULL; 2491 } 2492 2493 struct btrfs_device *btrfs_find_device_by_devspec( 2494 struct btrfs_fs_info *fs_info, u64 devid, 2495 const char *device_path) 2496 { 2497 BTRFS_DEV_LOOKUP_ARGS(args); 2498 struct btrfs_device *device; 2499 int ret; 2500 2501 if (devid) { 2502 args.devid = devid; 2503 device = btrfs_find_device(fs_info->fs_devices, &args); 2504 if (!device) 2505 return ERR_PTR(-ENOENT); 2506 return device; 2507 } 2508 2509 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2510 if (ret) 2511 return ERR_PTR(ret); 2512 device = btrfs_find_device(fs_info->fs_devices, &args); 2513 btrfs_put_dev_args_from_path(&args); 2514 if (!device) 2515 return ERR_PTR(-ENOENT); 2516 return device; 2517 } 2518 2519 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2520 { 2521 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2522 struct btrfs_fs_devices *old_devices; 2523 struct btrfs_fs_devices *seed_devices; 2524 2525 lockdep_assert_held(&uuid_mutex); 2526 if (!fs_devices->seeding) 2527 return ERR_PTR(-EINVAL); 2528 2529 /* 2530 * Private copy of the seed devices, anchored at 2531 * fs_info->fs_devices->seed_list 2532 */ 2533 seed_devices = alloc_fs_devices(NULL); 2534 if (IS_ERR(seed_devices)) 2535 return seed_devices; 2536 2537 /* 2538 * It's necessary to retain a copy of the original seed fs_devices in 2539 * fs_uuids so that filesystems which have been seeded can successfully 2540 * reference the seed device from open_seed_devices. This also supports 2541 * multiple fs seed. 2542 */ 2543 old_devices = clone_fs_devices(fs_devices); 2544 if (IS_ERR(old_devices)) { 2545 kfree(seed_devices); 2546 return old_devices; 2547 } 2548 2549 list_add(&old_devices->fs_list, &fs_uuids); 2550 2551 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2552 seed_devices->opened = 1; 2553 INIT_LIST_HEAD(&seed_devices->devices); 2554 INIT_LIST_HEAD(&seed_devices->alloc_list); 2555 mutex_init(&seed_devices->device_list_mutex); 2556 2557 return seed_devices; 2558 } 2559 2560 /* 2561 * Splice seed devices into the sprout fs_devices. 2562 * Generate a new fsid for the sprouted read-write filesystem. 2563 */ 2564 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2565 struct btrfs_fs_devices *seed_devices) 2566 { 2567 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2568 struct btrfs_super_block *disk_super = fs_info->super_copy; 2569 struct btrfs_device *device; 2570 u64 super_flags; 2571 2572 /* 2573 * We are updating the fsid, the thread leading to device_list_add() 2574 * could race, so uuid_mutex is needed. 2575 */ 2576 lockdep_assert_held(&uuid_mutex); 2577 2578 /* 2579 * The threads listed below may traverse dev_list but can do that without 2580 * device_list_mutex: 2581 * - All device ops and balance - as we are in btrfs_exclop_start. 2582 * - Various dev_list readers - are using RCU. 2583 * - btrfs_ioctl_fitrim() - is using RCU. 2584 * 2585 * For-read threads as below are using device_list_mutex: 2586 * - Readonly scrub btrfs_scrub_dev() 2587 * - Readonly scrub btrfs_scrub_progress() 2588 * - btrfs_get_dev_stats() 2589 */ 2590 lockdep_assert_held(&fs_devices->device_list_mutex); 2591 2592 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2593 synchronize_rcu); 2594 list_for_each_entry(device, &seed_devices->devices, dev_list) 2595 device->fs_devices = seed_devices; 2596 2597 fs_devices->seeding = false; 2598 fs_devices->num_devices = 0; 2599 fs_devices->open_devices = 0; 2600 fs_devices->missing_devices = 0; 2601 fs_devices->rotating = false; 2602 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2603 2604 generate_random_uuid(fs_devices->fsid); 2605 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2606 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2607 2608 super_flags = btrfs_super_flags(disk_super) & 2609 ~BTRFS_SUPER_FLAG_SEEDING; 2610 btrfs_set_super_flags(disk_super, super_flags); 2611 } 2612 2613 /* 2614 * Store the expected generation for seed devices in device items. 2615 */ 2616 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2617 { 2618 BTRFS_DEV_LOOKUP_ARGS(args); 2619 struct btrfs_fs_info *fs_info = trans->fs_info; 2620 struct btrfs_root *root = fs_info->chunk_root; 2621 struct btrfs_path *path; 2622 struct extent_buffer *leaf; 2623 struct btrfs_dev_item *dev_item; 2624 struct btrfs_device *device; 2625 struct btrfs_key key; 2626 u8 fs_uuid[BTRFS_FSID_SIZE]; 2627 u8 dev_uuid[BTRFS_UUID_SIZE]; 2628 int ret; 2629 2630 path = btrfs_alloc_path(); 2631 if (!path) 2632 return -ENOMEM; 2633 2634 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2635 key.type = BTRFS_DEV_ITEM_KEY; 2636 key.offset = 0; 2637 2638 while (1) { 2639 btrfs_reserve_chunk_metadata(trans, false); 2640 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2641 btrfs_trans_release_chunk_metadata(trans); 2642 if (ret < 0) 2643 goto error; 2644 2645 leaf = path->nodes[0]; 2646 next_slot: 2647 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2648 ret = btrfs_next_leaf(root, path); 2649 if (ret > 0) 2650 break; 2651 if (ret < 0) 2652 goto error; 2653 leaf = path->nodes[0]; 2654 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2655 btrfs_release_path(path); 2656 continue; 2657 } 2658 2659 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2660 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2661 key.type != BTRFS_DEV_ITEM_KEY) 2662 break; 2663 2664 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2665 struct btrfs_dev_item); 2666 args.devid = btrfs_device_id(leaf, dev_item); 2667 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2668 BTRFS_UUID_SIZE); 2669 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2670 BTRFS_FSID_SIZE); 2671 args.uuid = dev_uuid; 2672 args.fsid = fs_uuid; 2673 device = btrfs_find_device(fs_info->fs_devices, &args); 2674 BUG_ON(!device); /* Logic error */ 2675 2676 if (device->fs_devices->seeding) 2677 btrfs_set_device_generation(leaf, dev_item, 2678 device->generation); 2679 2680 path->slots[0]++; 2681 goto next_slot; 2682 } 2683 ret = 0; 2684 error: 2685 btrfs_free_path(path); 2686 return ret; 2687 } 2688 2689 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2690 { 2691 struct btrfs_root *root = fs_info->dev_root; 2692 struct btrfs_trans_handle *trans; 2693 struct btrfs_device *device; 2694 struct file *bdev_file; 2695 struct super_block *sb = fs_info->sb; 2696 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2697 struct btrfs_fs_devices *seed_devices = NULL; 2698 u64 orig_super_total_bytes; 2699 u64 orig_super_num_devices; 2700 int ret = 0; 2701 bool seeding_dev = false; 2702 bool locked = false; 2703 2704 if (sb_rdonly(sb) && !fs_devices->seeding) 2705 return -EROFS; 2706 2707 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, 2708 fs_info->bdev_holder, NULL); 2709 if (IS_ERR(bdev_file)) 2710 return PTR_ERR(bdev_file); 2711 2712 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { 2713 ret = -EINVAL; 2714 goto error; 2715 } 2716 2717 if (fs_devices->seeding) { 2718 seeding_dev = true; 2719 down_write(&sb->s_umount); 2720 mutex_lock(&uuid_mutex); 2721 locked = true; 2722 } 2723 2724 sync_blockdev(file_bdev(bdev_file)); 2725 2726 rcu_read_lock(); 2727 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2728 if (device->bdev == file_bdev(bdev_file)) { 2729 ret = -EEXIST; 2730 rcu_read_unlock(); 2731 goto error; 2732 } 2733 } 2734 rcu_read_unlock(); 2735 2736 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2737 if (IS_ERR(device)) { 2738 /* we can safely leave the fs_devices entry around */ 2739 ret = PTR_ERR(device); 2740 goto error; 2741 } 2742 2743 device->fs_info = fs_info; 2744 device->bdev_file = bdev_file; 2745 device->bdev = file_bdev(bdev_file); 2746 ret = lookup_bdev(device_path, &device->devt); 2747 if (ret) 2748 goto error_free_device; 2749 2750 ret = btrfs_get_dev_zone_info(device, false); 2751 if (ret) 2752 goto error_free_device; 2753 2754 trans = btrfs_start_transaction(root, 0); 2755 if (IS_ERR(trans)) { 2756 ret = PTR_ERR(trans); 2757 goto error_free_zone; 2758 } 2759 2760 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2761 device->generation = trans->transid; 2762 device->io_width = fs_info->sectorsize; 2763 device->io_align = fs_info->sectorsize; 2764 device->sector_size = fs_info->sectorsize; 2765 device->total_bytes = 2766 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2767 device->disk_total_bytes = device->total_bytes; 2768 device->commit_total_bytes = device->total_bytes; 2769 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2770 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2771 device->dev_stats_valid = 1; 2772 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE); 2773 2774 if (seeding_dev) { 2775 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2776 seed_devices = btrfs_init_sprout(fs_info); 2777 if (IS_ERR(seed_devices)) { 2778 ret = PTR_ERR(seed_devices); 2779 btrfs_abort_transaction(trans, ret); 2780 goto error_trans; 2781 } 2782 } 2783 2784 mutex_lock(&fs_devices->device_list_mutex); 2785 if (seeding_dev) { 2786 btrfs_setup_sprout(fs_info, seed_devices); 2787 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2788 device); 2789 } 2790 2791 device->fs_devices = fs_devices; 2792 2793 mutex_lock(&fs_info->chunk_mutex); 2794 list_add_rcu(&device->dev_list, &fs_devices->devices); 2795 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2796 fs_devices->num_devices++; 2797 fs_devices->open_devices++; 2798 fs_devices->rw_devices++; 2799 fs_devices->total_devices++; 2800 fs_devices->total_rw_bytes += device->total_bytes; 2801 2802 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2803 2804 if (!bdev_nonrot(device->bdev)) 2805 fs_devices->rotating = true; 2806 2807 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2808 btrfs_set_super_total_bytes(fs_info->super_copy, 2809 round_down(orig_super_total_bytes + device->total_bytes, 2810 fs_info->sectorsize)); 2811 2812 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2813 btrfs_set_super_num_devices(fs_info->super_copy, 2814 orig_super_num_devices + 1); 2815 2816 /* 2817 * we've got more storage, clear any full flags on the space 2818 * infos 2819 */ 2820 btrfs_clear_space_info_full(fs_info); 2821 2822 mutex_unlock(&fs_info->chunk_mutex); 2823 2824 /* Add sysfs device entry */ 2825 btrfs_sysfs_add_device(device); 2826 2827 mutex_unlock(&fs_devices->device_list_mutex); 2828 2829 if (seeding_dev) { 2830 mutex_lock(&fs_info->chunk_mutex); 2831 ret = init_first_rw_device(trans); 2832 mutex_unlock(&fs_info->chunk_mutex); 2833 if (ret) { 2834 btrfs_abort_transaction(trans, ret); 2835 goto error_sysfs; 2836 } 2837 } 2838 2839 ret = btrfs_add_dev_item(trans, device); 2840 if (ret) { 2841 btrfs_abort_transaction(trans, ret); 2842 goto error_sysfs; 2843 } 2844 2845 if (seeding_dev) { 2846 ret = btrfs_finish_sprout(trans); 2847 if (ret) { 2848 btrfs_abort_transaction(trans, ret); 2849 goto error_sysfs; 2850 } 2851 2852 /* 2853 * fs_devices now represents the newly sprouted filesystem and 2854 * its fsid has been changed by btrfs_sprout_splice(). 2855 */ 2856 btrfs_sysfs_update_sprout_fsid(fs_devices); 2857 } 2858 2859 ret = btrfs_commit_transaction(trans); 2860 2861 if (seeding_dev) { 2862 mutex_unlock(&uuid_mutex); 2863 up_write(&sb->s_umount); 2864 locked = false; 2865 2866 if (ret) /* transaction commit */ 2867 return ret; 2868 2869 ret = btrfs_relocate_sys_chunks(fs_info); 2870 if (ret < 0) 2871 btrfs_handle_fs_error(fs_info, ret, 2872 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2873 trans = btrfs_attach_transaction(root); 2874 if (IS_ERR(trans)) { 2875 if (PTR_ERR(trans) == -ENOENT) 2876 return 0; 2877 ret = PTR_ERR(trans); 2878 trans = NULL; 2879 goto error_sysfs; 2880 } 2881 ret = btrfs_commit_transaction(trans); 2882 } 2883 2884 /* 2885 * Now that we have written a new super block to this device, check all 2886 * other fs_devices list if device_path alienates any other scanned 2887 * device. 2888 * We can ignore the return value as it typically returns -EINVAL and 2889 * only succeeds if the device was an alien. 2890 */ 2891 btrfs_forget_devices(device->devt); 2892 2893 /* Update ctime/mtime for blkid or udev */ 2894 update_dev_time(device_path); 2895 2896 return ret; 2897 2898 error_sysfs: 2899 btrfs_sysfs_remove_device(device); 2900 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2901 mutex_lock(&fs_info->chunk_mutex); 2902 list_del_rcu(&device->dev_list); 2903 list_del(&device->dev_alloc_list); 2904 fs_info->fs_devices->num_devices--; 2905 fs_info->fs_devices->open_devices--; 2906 fs_info->fs_devices->rw_devices--; 2907 fs_info->fs_devices->total_devices--; 2908 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2909 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2910 btrfs_set_super_total_bytes(fs_info->super_copy, 2911 orig_super_total_bytes); 2912 btrfs_set_super_num_devices(fs_info->super_copy, 2913 orig_super_num_devices); 2914 mutex_unlock(&fs_info->chunk_mutex); 2915 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2916 error_trans: 2917 if (trans) 2918 btrfs_end_transaction(trans); 2919 error_free_zone: 2920 btrfs_destroy_dev_zone_info(device); 2921 error_free_device: 2922 btrfs_free_device(device); 2923 error: 2924 fput(bdev_file); 2925 if (locked) { 2926 mutex_unlock(&uuid_mutex); 2927 up_write(&sb->s_umount); 2928 } 2929 return ret; 2930 } 2931 2932 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2933 struct btrfs_device *device) 2934 { 2935 int ret; 2936 struct btrfs_path *path; 2937 struct btrfs_root *root = device->fs_info->chunk_root; 2938 struct btrfs_dev_item *dev_item; 2939 struct extent_buffer *leaf; 2940 struct btrfs_key key; 2941 2942 path = btrfs_alloc_path(); 2943 if (!path) 2944 return -ENOMEM; 2945 2946 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2947 key.type = BTRFS_DEV_ITEM_KEY; 2948 key.offset = device->devid; 2949 2950 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2951 if (ret < 0) 2952 goto out; 2953 2954 if (ret > 0) { 2955 ret = -ENOENT; 2956 goto out; 2957 } 2958 2959 leaf = path->nodes[0]; 2960 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2961 2962 btrfs_set_device_id(leaf, dev_item, device->devid); 2963 btrfs_set_device_type(leaf, dev_item, device->type); 2964 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2965 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2966 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2967 btrfs_set_device_total_bytes(leaf, dev_item, 2968 btrfs_device_get_disk_total_bytes(device)); 2969 btrfs_set_device_bytes_used(leaf, dev_item, 2970 btrfs_device_get_bytes_used(device)); 2971 out: 2972 btrfs_free_path(path); 2973 return ret; 2974 } 2975 2976 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2977 struct btrfs_device *device, u64 new_size) 2978 { 2979 struct btrfs_fs_info *fs_info = device->fs_info; 2980 struct btrfs_super_block *super_copy = fs_info->super_copy; 2981 u64 old_total; 2982 u64 diff; 2983 int ret; 2984 2985 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2986 return -EACCES; 2987 2988 new_size = round_down(new_size, fs_info->sectorsize); 2989 2990 mutex_lock(&fs_info->chunk_mutex); 2991 old_total = btrfs_super_total_bytes(super_copy); 2992 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2993 2994 if (new_size <= device->total_bytes || 2995 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2996 mutex_unlock(&fs_info->chunk_mutex); 2997 return -EINVAL; 2998 } 2999 3000 btrfs_set_super_total_bytes(super_copy, 3001 round_down(old_total + diff, fs_info->sectorsize)); 3002 device->fs_devices->total_rw_bytes += diff; 3003 atomic64_add(diff, &fs_info->free_chunk_space); 3004 3005 btrfs_device_set_total_bytes(device, new_size); 3006 btrfs_device_set_disk_total_bytes(device, new_size); 3007 btrfs_clear_space_info_full(device->fs_info); 3008 if (list_empty(&device->post_commit_list)) 3009 list_add_tail(&device->post_commit_list, 3010 &trans->transaction->dev_update_list); 3011 mutex_unlock(&fs_info->chunk_mutex); 3012 3013 btrfs_reserve_chunk_metadata(trans, false); 3014 ret = btrfs_update_device(trans, device); 3015 btrfs_trans_release_chunk_metadata(trans); 3016 3017 return ret; 3018 } 3019 3020 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3021 { 3022 struct btrfs_fs_info *fs_info = trans->fs_info; 3023 struct btrfs_root *root = fs_info->chunk_root; 3024 int ret; 3025 struct btrfs_path *path; 3026 struct btrfs_key key; 3027 3028 path = btrfs_alloc_path(); 3029 if (!path) 3030 return -ENOMEM; 3031 3032 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3033 key.type = BTRFS_CHUNK_ITEM_KEY; 3034 key.offset = chunk_offset; 3035 3036 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3037 if (ret < 0) 3038 goto out; 3039 else if (ret > 0) { /* Logic error or corruption */ 3040 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing", 3041 chunk_offset); 3042 btrfs_abort_transaction(trans, -ENOENT); 3043 ret = -EUCLEAN; 3044 goto out; 3045 } 3046 3047 ret = btrfs_del_item(trans, root, path); 3048 if (ret < 0) { 3049 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset); 3050 btrfs_abort_transaction(trans, ret); 3051 goto out; 3052 } 3053 out: 3054 btrfs_free_path(path); 3055 return ret; 3056 } 3057 3058 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3059 { 3060 struct btrfs_super_block *super_copy = fs_info->super_copy; 3061 struct btrfs_disk_key *disk_key; 3062 struct btrfs_chunk *chunk; 3063 u8 *ptr; 3064 int ret = 0; 3065 u32 num_stripes; 3066 u32 array_size; 3067 u32 len = 0; 3068 u32 cur; 3069 struct btrfs_key key; 3070 3071 lockdep_assert_held(&fs_info->chunk_mutex); 3072 array_size = btrfs_super_sys_array_size(super_copy); 3073 3074 ptr = super_copy->sys_chunk_array; 3075 cur = 0; 3076 3077 while (cur < array_size) { 3078 disk_key = (struct btrfs_disk_key *)ptr; 3079 btrfs_disk_key_to_cpu(&key, disk_key); 3080 3081 len = sizeof(*disk_key); 3082 3083 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3084 chunk = (struct btrfs_chunk *)(ptr + len); 3085 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3086 len += btrfs_chunk_item_size(num_stripes); 3087 } else { 3088 ret = -EIO; 3089 break; 3090 } 3091 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3092 key.offset == chunk_offset) { 3093 memmove(ptr, ptr + len, array_size - (cur + len)); 3094 array_size -= len; 3095 btrfs_set_super_sys_array_size(super_copy, array_size); 3096 } else { 3097 ptr += len; 3098 cur += len; 3099 } 3100 } 3101 return ret; 3102 } 3103 3104 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3105 u64 logical, u64 length) 3106 { 3107 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3108 struct rb_node *prev = NULL; 3109 struct rb_node *orig_prev; 3110 struct btrfs_chunk_map *map; 3111 struct btrfs_chunk_map *prev_map = NULL; 3112 3113 while (node) { 3114 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3115 prev = node; 3116 prev_map = map; 3117 3118 if (logical < map->start) { 3119 node = node->rb_left; 3120 } else if (logical >= map->start + map->chunk_len) { 3121 node = node->rb_right; 3122 } else { 3123 refcount_inc(&map->refs); 3124 return map; 3125 } 3126 } 3127 3128 if (!prev) 3129 return NULL; 3130 3131 orig_prev = prev; 3132 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3133 prev = rb_next(prev); 3134 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3135 } 3136 3137 if (!prev) { 3138 prev = orig_prev; 3139 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3140 while (prev && logical < prev_map->start) { 3141 prev = rb_prev(prev); 3142 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3143 } 3144 } 3145 3146 if (prev) { 3147 u64 end = logical + length; 3148 3149 /* 3150 * Caller can pass a U64_MAX length when it wants to get any 3151 * chunk starting at an offset of 'logical' or higher, so deal 3152 * with underflow by resetting the end offset to U64_MAX. 3153 */ 3154 if (end < logical) 3155 end = U64_MAX; 3156 3157 if (end > prev_map->start && 3158 logical < prev_map->start + prev_map->chunk_len) { 3159 refcount_inc(&prev_map->refs); 3160 return prev_map; 3161 } 3162 } 3163 3164 return NULL; 3165 } 3166 3167 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3168 u64 logical, u64 length) 3169 { 3170 struct btrfs_chunk_map *map; 3171 3172 read_lock(&fs_info->mapping_tree_lock); 3173 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3174 read_unlock(&fs_info->mapping_tree_lock); 3175 3176 return map; 3177 } 3178 3179 /* 3180 * Find the mapping containing the given logical extent. 3181 * 3182 * @logical: Logical block offset in bytes. 3183 * @length: Length of extent in bytes. 3184 * 3185 * Return: Chunk mapping or ERR_PTR. 3186 */ 3187 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3188 u64 logical, u64 length) 3189 { 3190 struct btrfs_chunk_map *map; 3191 3192 map = btrfs_find_chunk_map(fs_info, logical, length); 3193 3194 if (unlikely(!map)) { 3195 btrfs_crit(fs_info, 3196 "unable to find chunk map for logical %llu length %llu", 3197 logical, length); 3198 return ERR_PTR(-EINVAL); 3199 } 3200 3201 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3202 btrfs_crit(fs_info, 3203 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3204 logical, logical + length, map->start, 3205 map->start + map->chunk_len); 3206 btrfs_free_chunk_map(map); 3207 return ERR_PTR(-EINVAL); 3208 } 3209 3210 /* Callers are responsible for dropping the reference. */ 3211 return map; 3212 } 3213 3214 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3215 struct btrfs_chunk_map *map, u64 chunk_offset) 3216 { 3217 int i; 3218 3219 /* 3220 * Removing chunk items and updating the device items in the chunks btree 3221 * requires holding the chunk_mutex. 3222 * See the comment at btrfs_chunk_alloc() for the details. 3223 */ 3224 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3225 3226 for (i = 0; i < map->num_stripes; i++) { 3227 int ret; 3228 3229 ret = btrfs_update_device(trans, map->stripes[i].dev); 3230 if (ret) 3231 return ret; 3232 } 3233 3234 return btrfs_free_chunk(trans, chunk_offset); 3235 } 3236 3237 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3238 { 3239 struct btrfs_fs_info *fs_info = trans->fs_info; 3240 struct btrfs_chunk_map *map; 3241 u64 dev_extent_len = 0; 3242 int i, ret = 0; 3243 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3244 3245 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3246 if (IS_ERR(map)) { 3247 /* 3248 * This is a logic error, but we don't want to just rely on the 3249 * user having built with ASSERT enabled, so if ASSERT doesn't 3250 * do anything we still error out. 3251 */ 3252 DEBUG_WARN("errr %ld reading chunk map at offset %llu", 3253 PTR_ERR(map), chunk_offset); 3254 return PTR_ERR(map); 3255 } 3256 3257 /* 3258 * First delete the device extent items from the devices btree. 3259 * We take the device_list_mutex to avoid racing with the finishing phase 3260 * of a device replace operation. See the comment below before acquiring 3261 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3262 * because that can result in a deadlock when deleting the device extent 3263 * items from the devices btree - COWing an extent buffer from the btree 3264 * may result in allocating a new metadata chunk, which would attempt to 3265 * lock again fs_info->chunk_mutex. 3266 */ 3267 mutex_lock(&fs_devices->device_list_mutex); 3268 for (i = 0; i < map->num_stripes; i++) { 3269 struct btrfs_device *device = map->stripes[i].dev; 3270 ret = btrfs_free_dev_extent(trans, device, 3271 map->stripes[i].physical, 3272 &dev_extent_len); 3273 if (ret) { 3274 mutex_unlock(&fs_devices->device_list_mutex); 3275 btrfs_abort_transaction(trans, ret); 3276 goto out; 3277 } 3278 3279 if (device->bytes_used > 0) { 3280 mutex_lock(&fs_info->chunk_mutex); 3281 btrfs_device_set_bytes_used(device, 3282 device->bytes_used - dev_extent_len); 3283 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3284 btrfs_clear_space_info_full(fs_info); 3285 3286 if (list_empty(&device->post_commit_list)) { 3287 list_add_tail(&device->post_commit_list, 3288 &trans->transaction->dev_update_list); 3289 } 3290 3291 mutex_unlock(&fs_info->chunk_mutex); 3292 } 3293 } 3294 mutex_unlock(&fs_devices->device_list_mutex); 3295 3296 /* 3297 * We acquire fs_info->chunk_mutex for 2 reasons: 3298 * 3299 * 1) Just like with the first phase of the chunk allocation, we must 3300 * reserve system space, do all chunk btree updates and deletions, and 3301 * update the system chunk array in the superblock while holding this 3302 * mutex. This is for similar reasons as explained on the comment at 3303 * the top of btrfs_chunk_alloc(); 3304 * 3305 * 2) Prevent races with the final phase of a device replace operation 3306 * that replaces the device object associated with the map's stripes, 3307 * because the device object's id can change at any time during that 3308 * final phase of the device replace operation 3309 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3310 * replaced device and then see it with an ID of 3311 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3312 * the device item, which does not exists on the chunk btree. 3313 * The finishing phase of device replace acquires both the 3314 * device_list_mutex and the chunk_mutex, in that order, so we are 3315 * safe by just acquiring the chunk_mutex. 3316 */ 3317 trans->removing_chunk = true; 3318 mutex_lock(&fs_info->chunk_mutex); 3319 3320 check_system_chunk(trans, map->type); 3321 3322 ret = remove_chunk_item(trans, map, chunk_offset); 3323 /* 3324 * Normally we should not get -ENOSPC since we reserved space before 3325 * through the call to check_system_chunk(). 3326 * 3327 * Despite our system space_info having enough free space, we may not 3328 * be able to allocate extents from its block groups, because all have 3329 * an incompatible profile, which will force us to allocate a new system 3330 * block group with the right profile, or right after we called 3331 * check_system_space() above, a scrub turned the only system block group 3332 * with enough free space into RO mode. 3333 * This is explained with more detail at do_chunk_alloc(). 3334 * 3335 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3336 */ 3337 if (ret == -ENOSPC) { 3338 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3339 struct btrfs_block_group *sys_bg; 3340 struct btrfs_space_info *space_info; 3341 3342 space_info = btrfs_find_space_info(fs_info, sys_flags); 3343 if (!space_info) { 3344 ret = -EINVAL; 3345 btrfs_abort_transaction(trans, ret); 3346 goto out; 3347 } 3348 3349 sys_bg = btrfs_create_chunk(trans, space_info, sys_flags); 3350 if (IS_ERR(sys_bg)) { 3351 ret = PTR_ERR(sys_bg); 3352 btrfs_abort_transaction(trans, ret); 3353 goto out; 3354 } 3355 3356 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3357 if (ret) { 3358 btrfs_abort_transaction(trans, ret); 3359 goto out; 3360 } 3361 3362 ret = remove_chunk_item(trans, map, chunk_offset); 3363 if (ret) { 3364 btrfs_abort_transaction(trans, ret); 3365 goto out; 3366 } 3367 } else if (ret) { 3368 btrfs_abort_transaction(trans, ret); 3369 goto out; 3370 } 3371 3372 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3373 3374 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3375 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3376 if (ret) { 3377 btrfs_abort_transaction(trans, ret); 3378 goto out; 3379 } 3380 } 3381 3382 mutex_unlock(&fs_info->chunk_mutex); 3383 trans->removing_chunk = false; 3384 3385 /* 3386 * We are done with chunk btree updates and deletions, so release the 3387 * system space we previously reserved (with check_system_chunk()). 3388 */ 3389 btrfs_trans_release_chunk_metadata(trans); 3390 3391 ret = btrfs_remove_block_group(trans, map); 3392 if (ret) { 3393 btrfs_abort_transaction(trans, ret); 3394 goto out; 3395 } 3396 3397 out: 3398 if (trans->removing_chunk) { 3399 mutex_unlock(&fs_info->chunk_mutex); 3400 trans->removing_chunk = false; 3401 } 3402 /* once for us */ 3403 btrfs_free_chunk_map(map); 3404 return ret; 3405 } 3406 3407 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3408 { 3409 struct btrfs_root *root = fs_info->chunk_root; 3410 struct btrfs_trans_handle *trans; 3411 struct btrfs_block_group *block_group; 3412 u64 length; 3413 int ret; 3414 3415 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3416 btrfs_err(fs_info, 3417 "relocate: not supported on extent tree v2 yet"); 3418 return -EINVAL; 3419 } 3420 3421 /* 3422 * Prevent races with automatic removal of unused block groups. 3423 * After we relocate and before we remove the chunk with offset 3424 * chunk_offset, automatic removal of the block group can kick in, 3425 * resulting in a failure when calling btrfs_remove_chunk() below. 3426 * 3427 * Make sure to acquire this mutex before doing a tree search (dev 3428 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3429 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3430 * we release the path used to search the chunk/dev tree and before 3431 * the current task acquires this mutex and calls us. 3432 */ 3433 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3434 3435 /* step one, relocate all the extents inside this chunk */ 3436 btrfs_scrub_pause(fs_info); 3437 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3438 btrfs_scrub_continue(fs_info); 3439 if (ret) { 3440 /* 3441 * If we had a transaction abort, stop all running scrubs. 3442 * See transaction.c:cleanup_transaction() why we do it here. 3443 */ 3444 if (BTRFS_FS_ERROR(fs_info)) 3445 btrfs_scrub_cancel(fs_info); 3446 return ret; 3447 } 3448 3449 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3450 if (!block_group) 3451 return -ENOENT; 3452 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3453 length = block_group->length; 3454 btrfs_put_block_group(block_group); 3455 3456 /* 3457 * On a zoned file system, discard the whole block group, this will 3458 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3459 * resetting the zone fails, don't treat it as a fatal problem from the 3460 * filesystem's point of view. 3461 */ 3462 if (btrfs_is_zoned(fs_info)) { 3463 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3464 if (ret) 3465 btrfs_info(fs_info, 3466 "failed to reset zone %llu after relocation", 3467 chunk_offset); 3468 } 3469 3470 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3471 chunk_offset); 3472 if (IS_ERR(trans)) { 3473 ret = PTR_ERR(trans); 3474 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3475 return ret; 3476 } 3477 3478 /* 3479 * step two, delete the device extents and the 3480 * chunk tree entries 3481 */ 3482 ret = btrfs_remove_chunk(trans, chunk_offset); 3483 btrfs_end_transaction(trans); 3484 return ret; 3485 } 3486 3487 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3488 { 3489 struct btrfs_root *chunk_root = fs_info->chunk_root; 3490 struct btrfs_path *path; 3491 struct extent_buffer *leaf; 3492 struct btrfs_chunk *chunk; 3493 struct btrfs_key key; 3494 struct btrfs_key found_key; 3495 u64 chunk_type; 3496 bool retried = false; 3497 int failed = 0; 3498 int ret; 3499 3500 path = btrfs_alloc_path(); 3501 if (!path) 3502 return -ENOMEM; 3503 3504 again: 3505 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3506 key.type = BTRFS_CHUNK_ITEM_KEY; 3507 key.offset = (u64)-1; 3508 3509 while (1) { 3510 mutex_lock(&fs_info->reclaim_bgs_lock); 3511 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3512 if (ret < 0) { 3513 mutex_unlock(&fs_info->reclaim_bgs_lock); 3514 goto error; 3515 } 3516 if (ret == 0) { 3517 /* 3518 * On the first search we would find chunk tree with 3519 * offset -1, which is not possible. On subsequent 3520 * loops this would find an existing item on an invalid 3521 * offset (one less than the previous one, wrong 3522 * alignment and size). 3523 */ 3524 ret = -EUCLEAN; 3525 mutex_unlock(&fs_info->reclaim_bgs_lock); 3526 goto error; 3527 } 3528 3529 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3530 key.type); 3531 if (ret) 3532 mutex_unlock(&fs_info->reclaim_bgs_lock); 3533 if (ret < 0) 3534 goto error; 3535 if (ret > 0) 3536 break; 3537 3538 leaf = path->nodes[0]; 3539 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3540 3541 chunk = btrfs_item_ptr(leaf, path->slots[0], 3542 struct btrfs_chunk); 3543 chunk_type = btrfs_chunk_type(leaf, chunk); 3544 btrfs_release_path(path); 3545 3546 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3547 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3548 if (ret == -ENOSPC) 3549 failed++; 3550 else 3551 BUG_ON(ret); 3552 } 3553 mutex_unlock(&fs_info->reclaim_bgs_lock); 3554 3555 if (found_key.offset == 0) 3556 break; 3557 key.offset = found_key.offset - 1; 3558 } 3559 ret = 0; 3560 if (failed && !retried) { 3561 failed = 0; 3562 retried = true; 3563 goto again; 3564 } else if (WARN_ON(failed && retried)) { 3565 ret = -ENOSPC; 3566 } 3567 error: 3568 btrfs_free_path(path); 3569 return ret; 3570 } 3571 3572 /* 3573 * return 1 : allocate a data chunk successfully, 3574 * return <0: errors during allocating a data chunk, 3575 * return 0 : no need to allocate a data chunk. 3576 */ 3577 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3578 u64 chunk_offset) 3579 { 3580 struct btrfs_block_group *cache; 3581 u64 bytes_used; 3582 u64 chunk_type; 3583 3584 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3585 ASSERT(cache); 3586 chunk_type = cache->flags; 3587 btrfs_put_block_group(cache); 3588 3589 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3590 return 0; 3591 3592 spin_lock(&fs_info->data_sinfo->lock); 3593 bytes_used = fs_info->data_sinfo->bytes_used; 3594 spin_unlock(&fs_info->data_sinfo->lock); 3595 3596 if (!bytes_used) { 3597 struct btrfs_trans_handle *trans; 3598 int ret; 3599 3600 trans = btrfs_join_transaction(fs_info->tree_root); 3601 if (IS_ERR(trans)) 3602 return PTR_ERR(trans); 3603 3604 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3605 btrfs_end_transaction(trans); 3606 if (ret < 0) 3607 return ret; 3608 return 1; 3609 } 3610 3611 return 0; 3612 } 3613 3614 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 3615 const struct btrfs_disk_balance_args *disk) 3616 { 3617 memset(cpu, 0, sizeof(*cpu)); 3618 3619 cpu->profiles = le64_to_cpu(disk->profiles); 3620 cpu->usage = le64_to_cpu(disk->usage); 3621 cpu->devid = le64_to_cpu(disk->devid); 3622 cpu->pstart = le64_to_cpu(disk->pstart); 3623 cpu->pend = le64_to_cpu(disk->pend); 3624 cpu->vstart = le64_to_cpu(disk->vstart); 3625 cpu->vend = le64_to_cpu(disk->vend); 3626 cpu->target = le64_to_cpu(disk->target); 3627 cpu->flags = le64_to_cpu(disk->flags); 3628 cpu->limit = le64_to_cpu(disk->limit); 3629 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 3630 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 3631 } 3632 3633 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 3634 const struct btrfs_balance_args *cpu) 3635 { 3636 memset(disk, 0, sizeof(*disk)); 3637 3638 disk->profiles = cpu_to_le64(cpu->profiles); 3639 disk->usage = cpu_to_le64(cpu->usage); 3640 disk->devid = cpu_to_le64(cpu->devid); 3641 disk->pstart = cpu_to_le64(cpu->pstart); 3642 disk->pend = cpu_to_le64(cpu->pend); 3643 disk->vstart = cpu_to_le64(cpu->vstart); 3644 disk->vend = cpu_to_le64(cpu->vend); 3645 disk->target = cpu_to_le64(cpu->target); 3646 disk->flags = cpu_to_le64(cpu->flags); 3647 disk->limit = cpu_to_le64(cpu->limit); 3648 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 3649 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 3650 } 3651 3652 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3653 struct btrfs_balance_control *bctl) 3654 { 3655 struct btrfs_root *root = fs_info->tree_root; 3656 struct btrfs_trans_handle *trans; 3657 struct btrfs_balance_item *item; 3658 struct btrfs_disk_balance_args disk_bargs; 3659 struct btrfs_path *path; 3660 struct extent_buffer *leaf; 3661 struct btrfs_key key; 3662 int ret, err; 3663 3664 path = btrfs_alloc_path(); 3665 if (!path) 3666 return -ENOMEM; 3667 3668 trans = btrfs_start_transaction(root, 0); 3669 if (IS_ERR(trans)) { 3670 btrfs_free_path(path); 3671 return PTR_ERR(trans); 3672 } 3673 3674 key.objectid = BTRFS_BALANCE_OBJECTID; 3675 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3676 key.offset = 0; 3677 3678 ret = btrfs_insert_empty_item(trans, root, path, &key, 3679 sizeof(*item)); 3680 if (ret) 3681 goto out; 3682 3683 leaf = path->nodes[0]; 3684 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3685 3686 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3687 3688 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3689 btrfs_set_balance_data(leaf, item, &disk_bargs); 3690 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3691 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3692 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3693 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3694 btrfs_set_balance_flags(leaf, item, bctl->flags); 3695 out: 3696 btrfs_free_path(path); 3697 err = btrfs_commit_transaction(trans); 3698 if (err && !ret) 3699 ret = err; 3700 return ret; 3701 } 3702 3703 static int del_balance_item(struct btrfs_fs_info *fs_info) 3704 { 3705 struct btrfs_root *root = fs_info->tree_root; 3706 struct btrfs_trans_handle *trans; 3707 struct btrfs_path *path; 3708 struct btrfs_key key; 3709 int ret, err; 3710 3711 path = btrfs_alloc_path(); 3712 if (!path) 3713 return -ENOMEM; 3714 3715 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3716 if (IS_ERR(trans)) { 3717 btrfs_free_path(path); 3718 return PTR_ERR(trans); 3719 } 3720 3721 key.objectid = BTRFS_BALANCE_OBJECTID; 3722 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3723 key.offset = 0; 3724 3725 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3726 if (ret < 0) 3727 goto out; 3728 if (ret > 0) { 3729 ret = -ENOENT; 3730 goto out; 3731 } 3732 3733 ret = btrfs_del_item(trans, root, path); 3734 out: 3735 btrfs_free_path(path); 3736 err = btrfs_commit_transaction(trans); 3737 if (err && !ret) 3738 ret = err; 3739 return ret; 3740 } 3741 3742 /* 3743 * This is a heuristic used to reduce the number of chunks balanced on 3744 * resume after balance was interrupted. 3745 */ 3746 static void update_balance_args(struct btrfs_balance_control *bctl) 3747 { 3748 /* 3749 * Turn on soft mode for chunk types that were being converted. 3750 */ 3751 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3752 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3753 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3754 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3755 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3756 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3757 3758 /* 3759 * Turn on usage filter if is not already used. The idea is 3760 * that chunks that we have already balanced should be 3761 * reasonably full. Don't do it for chunks that are being 3762 * converted - that will keep us from relocating unconverted 3763 * (albeit full) chunks. 3764 */ 3765 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3766 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3767 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3768 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3769 bctl->data.usage = 90; 3770 } 3771 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3772 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3773 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3774 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3775 bctl->sys.usage = 90; 3776 } 3777 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3778 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3779 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3780 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3781 bctl->meta.usage = 90; 3782 } 3783 } 3784 3785 /* 3786 * Clear the balance status in fs_info and delete the balance item from disk. 3787 */ 3788 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3789 { 3790 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3791 int ret; 3792 3793 ASSERT(fs_info->balance_ctl); 3794 3795 spin_lock(&fs_info->balance_lock); 3796 fs_info->balance_ctl = NULL; 3797 spin_unlock(&fs_info->balance_lock); 3798 3799 kfree(bctl); 3800 ret = del_balance_item(fs_info); 3801 if (ret) 3802 btrfs_handle_fs_error(fs_info, ret, NULL); 3803 } 3804 3805 /* 3806 * Balance filters. Return 1 if chunk should be filtered out 3807 * (should not be balanced). 3808 */ 3809 static bool chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 3810 { 3811 chunk_type = chunk_to_extended(chunk_type) & 3812 BTRFS_EXTENDED_PROFILE_MASK; 3813 3814 if (bargs->profiles & chunk_type) 3815 return false; 3816 3817 return true; 3818 } 3819 3820 static bool chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3821 struct btrfs_balance_args *bargs) 3822 { 3823 struct btrfs_block_group *cache; 3824 u64 chunk_used; 3825 u64 user_thresh_min; 3826 u64 user_thresh_max; 3827 bool ret = true; 3828 3829 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3830 chunk_used = cache->used; 3831 3832 if (bargs->usage_min == 0) 3833 user_thresh_min = 0; 3834 else 3835 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3836 3837 if (bargs->usage_max == 0) 3838 user_thresh_max = 1; 3839 else if (bargs->usage_max > 100) 3840 user_thresh_max = cache->length; 3841 else 3842 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3843 3844 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3845 ret = false; 3846 3847 btrfs_put_block_group(cache); 3848 return ret; 3849 } 3850 3851 static bool chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3852 struct btrfs_balance_args *bargs) 3853 { 3854 struct btrfs_block_group *cache; 3855 u64 chunk_used, user_thresh; 3856 bool ret = true; 3857 3858 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3859 chunk_used = cache->used; 3860 3861 if (bargs->usage_min == 0) 3862 user_thresh = 1; 3863 else if (bargs->usage > 100) 3864 user_thresh = cache->length; 3865 else 3866 user_thresh = mult_perc(cache->length, bargs->usage); 3867 3868 if (chunk_used < user_thresh) 3869 ret = false; 3870 3871 btrfs_put_block_group(cache); 3872 return ret; 3873 } 3874 3875 static bool chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3876 struct btrfs_balance_args *bargs) 3877 { 3878 struct btrfs_stripe *stripe; 3879 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3880 int i; 3881 3882 for (i = 0; i < num_stripes; i++) { 3883 stripe = btrfs_stripe_nr(chunk, i); 3884 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3885 return false; 3886 } 3887 3888 return true; 3889 } 3890 3891 static u64 calc_data_stripes(u64 type, int num_stripes) 3892 { 3893 const int index = btrfs_bg_flags_to_raid_index(type); 3894 const int ncopies = btrfs_raid_array[index].ncopies; 3895 const int nparity = btrfs_raid_array[index].nparity; 3896 3897 return (num_stripes - nparity) / ncopies; 3898 } 3899 3900 /* [pstart, pend) */ 3901 static bool chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3902 struct btrfs_balance_args *bargs) 3903 { 3904 struct btrfs_stripe *stripe; 3905 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3906 u64 stripe_offset; 3907 u64 stripe_length; 3908 u64 type; 3909 int factor; 3910 int i; 3911 3912 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3913 return false; 3914 3915 type = btrfs_chunk_type(leaf, chunk); 3916 factor = calc_data_stripes(type, num_stripes); 3917 3918 for (i = 0; i < num_stripes; i++) { 3919 stripe = btrfs_stripe_nr(chunk, i); 3920 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3921 continue; 3922 3923 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3924 stripe_length = btrfs_chunk_length(leaf, chunk); 3925 stripe_length = div_u64(stripe_length, factor); 3926 3927 if (stripe_offset < bargs->pend && 3928 stripe_offset + stripe_length > bargs->pstart) 3929 return false; 3930 } 3931 3932 return true; 3933 } 3934 3935 /* [vstart, vend) */ 3936 static bool chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3937 u64 chunk_offset, struct btrfs_balance_args *bargs) 3938 { 3939 if (chunk_offset < bargs->vend && 3940 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3941 /* at least part of the chunk is inside this vrange */ 3942 return false; 3943 3944 return true; 3945 } 3946 3947 static bool chunk_stripes_range_filter(struct extent_buffer *leaf, 3948 struct btrfs_chunk *chunk, 3949 struct btrfs_balance_args *bargs) 3950 { 3951 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3952 3953 if (bargs->stripes_min <= num_stripes 3954 && num_stripes <= bargs->stripes_max) 3955 return false; 3956 3957 return true; 3958 } 3959 3960 static bool chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 3961 { 3962 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3963 return false; 3964 3965 chunk_type = chunk_to_extended(chunk_type) & 3966 BTRFS_EXTENDED_PROFILE_MASK; 3967 3968 if (bargs->target == chunk_type) 3969 return true; 3970 3971 return false; 3972 } 3973 3974 static bool should_balance_chunk(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3975 u64 chunk_offset) 3976 { 3977 struct btrfs_fs_info *fs_info = leaf->fs_info; 3978 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3979 struct btrfs_balance_args *bargs = NULL; 3980 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3981 3982 /* type filter */ 3983 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3984 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3985 return false; 3986 } 3987 3988 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3989 bargs = &bctl->data; 3990 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3991 bargs = &bctl->sys; 3992 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3993 bargs = &bctl->meta; 3994 3995 /* profiles filter */ 3996 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3997 chunk_profiles_filter(chunk_type, bargs)) { 3998 return false; 3999 } 4000 4001 /* usage filter */ 4002 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 4003 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 4004 return false; 4005 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 4006 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 4007 return false; 4008 } 4009 4010 /* devid filter */ 4011 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 4012 chunk_devid_filter(leaf, chunk, bargs)) { 4013 return false; 4014 } 4015 4016 /* drange filter, makes sense only with devid filter */ 4017 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 4018 chunk_drange_filter(leaf, chunk, bargs)) { 4019 return false; 4020 } 4021 4022 /* vrange filter */ 4023 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 4024 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 4025 return false; 4026 } 4027 4028 /* stripes filter */ 4029 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 4030 chunk_stripes_range_filter(leaf, chunk, bargs)) { 4031 return false; 4032 } 4033 4034 /* soft profile changing mode */ 4035 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 4036 chunk_soft_convert_filter(chunk_type, bargs)) { 4037 return false; 4038 } 4039 4040 /* 4041 * limited by count, must be the last filter 4042 */ 4043 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 4044 if (bargs->limit == 0) 4045 return false; 4046 else 4047 bargs->limit--; 4048 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 4049 /* 4050 * Same logic as the 'limit' filter; the minimum cannot be 4051 * determined here because we do not have the global information 4052 * about the count of all chunks that satisfy the filters. 4053 */ 4054 if (bargs->limit_max == 0) 4055 return false; 4056 else 4057 bargs->limit_max--; 4058 } 4059 4060 return true; 4061 } 4062 4063 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 4064 { 4065 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4066 struct btrfs_root *chunk_root = fs_info->chunk_root; 4067 u64 chunk_type; 4068 struct btrfs_chunk *chunk; 4069 struct btrfs_path *path = NULL; 4070 struct btrfs_key key; 4071 struct btrfs_key found_key; 4072 struct extent_buffer *leaf; 4073 int slot; 4074 int ret; 4075 int enospc_errors = 0; 4076 bool counting = true; 4077 /* The single value limit and min/max limits use the same bytes in the */ 4078 u64 limit_data = bctl->data.limit; 4079 u64 limit_meta = bctl->meta.limit; 4080 u64 limit_sys = bctl->sys.limit; 4081 u32 count_data = 0; 4082 u32 count_meta = 0; 4083 u32 count_sys = 0; 4084 int chunk_reserved = 0; 4085 4086 path = btrfs_alloc_path(); 4087 if (!path) { 4088 ret = -ENOMEM; 4089 goto error; 4090 } 4091 4092 /* zero out stat counters */ 4093 spin_lock(&fs_info->balance_lock); 4094 memset(&bctl->stat, 0, sizeof(bctl->stat)); 4095 spin_unlock(&fs_info->balance_lock); 4096 again: 4097 if (!counting) { 4098 /* 4099 * The single value limit and min/max limits use the same bytes 4100 * in the 4101 */ 4102 bctl->data.limit = limit_data; 4103 bctl->meta.limit = limit_meta; 4104 bctl->sys.limit = limit_sys; 4105 } 4106 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4107 key.type = BTRFS_CHUNK_ITEM_KEY; 4108 key.offset = (u64)-1; 4109 4110 while (1) { 4111 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 4112 atomic_read(&fs_info->balance_cancel_req)) { 4113 ret = -ECANCELED; 4114 goto error; 4115 } 4116 4117 mutex_lock(&fs_info->reclaim_bgs_lock); 4118 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 4119 if (ret < 0) { 4120 mutex_unlock(&fs_info->reclaim_bgs_lock); 4121 goto error; 4122 } 4123 4124 /* 4125 * this shouldn't happen, it means the last relocate 4126 * failed 4127 */ 4128 if (ret == 0) 4129 BUG(); /* FIXME break ? */ 4130 4131 ret = btrfs_previous_item(chunk_root, path, 0, 4132 BTRFS_CHUNK_ITEM_KEY); 4133 if (ret) { 4134 mutex_unlock(&fs_info->reclaim_bgs_lock); 4135 ret = 0; 4136 break; 4137 } 4138 4139 leaf = path->nodes[0]; 4140 slot = path->slots[0]; 4141 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4142 4143 if (found_key.objectid != key.objectid) { 4144 mutex_unlock(&fs_info->reclaim_bgs_lock); 4145 break; 4146 } 4147 4148 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4149 chunk_type = btrfs_chunk_type(leaf, chunk); 4150 4151 if (!counting) { 4152 spin_lock(&fs_info->balance_lock); 4153 bctl->stat.considered++; 4154 spin_unlock(&fs_info->balance_lock); 4155 } 4156 4157 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4158 4159 btrfs_release_path(path); 4160 if (!ret) { 4161 mutex_unlock(&fs_info->reclaim_bgs_lock); 4162 goto loop; 4163 } 4164 4165 if (counting) { 4166 mutex_unlock(&fs_info->reclaim_bgs_lock); 4167 spin_lock(&fs_info->balance_lock); 4168 bctl->stat.expected++; 4169 spin_unlock(&fs_info->balance_lock); 4170 4171 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4172 count_data++; 4173 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4174 count_sys++; 4175 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4176 count_meta++; 4177 4178 goto loop; 4179 } 4180 4181 /* 4182 * Apply limit_min filter, no need to check if the LIMITS 4183 * filter is used, limit_min is 0 by default 4184 */ 4185 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4186 count_data < bctl->data.limit_min) 4187 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4188 count_meta < bctl->meta.limit_min) 4189 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4190 count_sys < bctl->sys.limit_min)) { 4191 mutex_unlock(&fs_info->reclaim_bgs_lock); 4192 goto loop; 4193 } 4194 4195 if (!chunk_reserved) { 4196 /* 4197 * We may be relocating the only data chunk we have, 4198 * which could potentially end up with losing data's 4199 * raid profile, so lets allocate an empty one in 4200 * advance. 4201 */ 4202 ret = btrfs_may_alloc_data_chunk(fs_info, 4203 found_key.offset); 4204 if (ret < 0) { 4205 mutex_unlock(&fs_info->reclaim_bgs_lock); 4206 goto error; 4207 } else if (ret == 1) { 4208 chunk_reserved = 1; 4209 } 4210 } 4211 4212 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4213 mutex_unlock(&fs_info->reclaim_bgs_lock); 4214 if (ret == -ENOSPC) { 4215 enospc_errors++; 4216 } else if (ret == -ETXTBSY) { 4217 btrfs_info(fs_info, 4218 "skipping relocation of block group %llu due to active swapfile", 4219 found_key.offset); 4220 ret = 0; 4221 } else if (ret) { 4222 goto error; 4223 } else { 4224 spin_lock(&fs_info->balance_lock); 4225 bctl->stat.completed++; 4226 spin_unlock(&fs_info->balance_lock); 4227 } 4228 loop: 4229 if (found_key.offset == 0) 4230 break; 4231 key.offset = found_key.offset - 1; 4232 } 4233 4234 if (counting) { 4235 btrfs_release_path(path); 4236 counting = false; 4237 goto again; 4238 } 4239 error: 4240 btrfs_free_path(path); 4241 if (enospc_errors) { 4242 btrfs_info(fs_info, "%d enospc errors during balance", 4243 enospc_errors); 4244 if (!ret) 4245 ret = -ENOSPC; 4246 } 4247 4248 return ret; 4249 } 4250 4251 /* 4252 * See if a given profile is valid and reduced. 4253 * 4254 * @flags: profile to validate 4255 * @extended: if true @flags is treated as an extended profile 4256 */ 4257 static int alloc_profile_is_valid(u64 flags, int extended) 4258 { 4259 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4260 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4261 4262 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4263 4264 /* 1) check that all other bits are zeroed */ 4265 if (flags & ~mask) 4266 return 0; 4267 4268 /* 2) see if profile is reduced */ 4269 if (flags == 0) 4270 return !extended; /* "0" is valid for usual profiles */ 4271 4272 return has_single_bit_set(flags); 4273 } 4274 4275 /* 4276 * Validate target profile against allowed profiles and return true if it's OK. 4277 * Otherwise print the error message and return false. 4278 */ 4279 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4280 const struct btrfs_balance_args *bargs, 4281 u64 allowed, const char *type) 4282 { 4283 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4284 return true; 4285 4286 /* Profile is valid and does not have bits outside of the allowed set */ 4287 if (alloc_profile_is_valid(bargs->target, 1) && 4288 (bargs->target & ~allowed) == 0) 4289 return true; 4290 4291 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4292 type, btrfs_bg_type_to_raid_name(bargs->target)); 4293 return false; 4294 } 4295 4296 /* 4297 * Fill @buf with textual description of balance filter flags @bargs, up to 4298 * @size_buf including the terminating null. The output may be trimmed if it 4299 * does not fit into the provided buffer. 4300 */ 4301 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4302 u32 size_buf) 4303 { 4304 int ret; 4305 u32 size_bp = size_buf; 4306 char *bp = buf; 4307 u64 flags = bargs->flags; 4308 char tmp_buf[128] = {'\0'}; 4309 4310 if (!flags) 4311 return; 4312 4313 #define CHECK_APPEND_NOARG(a) \ 4314 do { \ 4315 ret = snprintf(bp, size_bp, (a)); \ 4316 if (ret < 0 || ret >= size_bp) \ 4317 goto out_overflow; \ 4318 size_bp -= ret; \ 4319 bp += ret; \ 4320 } while (0) 4321 4322 #define CHECK_APPEND_1ARG(a, v1) \ 4323 do { \ 4324 ret = snprintf(bp, size_bp, (a), (v1)); \ 4325 if (ret < 0 || ret >= size_bp) \ 4326 goto out_overflow; \ 4327 size_bp -= ret; \ 4328 bp += ret; \ 4329 } while (0) 4330 4331 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4332 do { \ 4333 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4334 if (ret < 0 || ret >= size_bp) \ 4335 goto out_overflow; \ 4336 size_bp -= ret; \ 4337 bp += ret; \ 4338 } while (0) 4339 4340 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4341 CHECK_APPEND_1ARG("convert=%s,", 4342 btrfs_bg_type_to_raid_name(bargs->target)); 4343 4344 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4345 CHECK_APPEND_NOARG("soft,"); 4346 4347 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4348 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4349 sizeof(tmp_buf)); 4350 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4351 } 4352 4353 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4354 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4355 4356 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4357 CHECK_APPEND_2ARG("usage=%u..%u,", 4358 bargs->usage_min, bargs->usage_max); 4359 4360 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4361 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4362 4363 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4364 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4365 bargs->pstart, bargs->pend); 4366 4367 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4368 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4369 bargs->vstart, bargs->vend); 4370 4371 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4372 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4373 4374 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4375 CHECK_APPEND_2ARG("limit=%u..%u,", 4376 bargs->limit_min, bargs->limit_max); 4377 4378 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4379 CHECK_APPEND_2ARG("stripes=%u..%u,", 4380 bargs->stripes_min, bargs->stripes_max); 4381 4382 #undef CHECK_APPEND_2ARG 4383 #undef CHECK_APPEND_1ARG 4384 #undef CHECK_APPEND_NOARG 4385 4386 out_overflow: 4387 4388 if (size_bp < size_buf) 4389 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4390 else 4391 buf[0] = '\0'; 4392 } 4393 4394 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4395 { 4396 u32 size_buf = 1024; 4397 char tmp_buf[192] = {'\0'}; 4398 char *buf; 4399 char *bp; 4400 u32 size_bp = size_buf; 4401 int ret; 4402 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4403 4404 buf = kzalloc(size_buf, GFP_KERNEL); 4405 if (!buf) 4406 return; 4407 4408 bp = buf; 4409 4410 #define CHECK_APPEND_1ARG(a, v1) \ 4411 do { \ 4412 ret = snprintf(bp, size_bp, (a), (v1)); \ 4413 if (ret < 0 || ret >= size_bp) \ 4414 goto out_overflow; \ 4415 size_bp -= ret; \ 4416 bp += ret; \ 4417 } while (0) 4418 4419 if (bctl->flags & BTRFS_BALANCE_FORCE) 4420 CHECK_APPEND_1ARG("%s", "-f "); 4421 4422 if (bctl->flags & BTRFS_BALANCE_DATA) { 4423 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4424 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4425 } 4426 4427 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4428 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4429 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4430 } 4431 4432 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4433 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4434 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4435 } 4436 4437 #undef CHECK_APPEND_1ARG 4438 4439 out_overflow: 4440 4441 if (size_bp < size_buf) 4442 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4443 btrfs_info(fs_info, "balance: %s %s", 4444 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4445 "resume" : "start", buf); 4446 4447 kfree(buf); 4448 } 4449 4450 /* 4451 * Should be called with balance mutexe held 4452 */ 4453 int btrfs_balance(struct btrfs_fs_info *fs_info, 4454 struct btrfs_balance_control *bctl, 4455 struct btrfs_ioctl_balance_args *bargs) 4456 { 4457 u64 meta_target, data_target; 4458 u64 allowed; 4459 int mixed = 0; 4460 int ret; 4461 u64 num_devices; 4462 unsigned seq; 4463 bool reducing_redundancy; 4464 bool paused = false; 4465 int i; 4466 4467 if (btrfs_fs_closing(fs_info) || 4468 atomic_read(&fs_info->balance_pause_req) || 4469 btrfs_should_cancel_balance(fs_info)) { 4470 ret = -EINVAL; 4471 goto out; 4472 } 4473 4474 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4475 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4476 mixed = 1; 4477 4478 /* 4479 * In case of mixed groups both data and meta should be picked, 4480 * and identical options should be given for both of them. 4481 */ 4482 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4483 if (mixed && (bctl->flags & allowed)) { 4484 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4485 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4486 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4487 btrfs_err(fs_info, 4488 "balance: mixed groups data and metadata options must be the same"); 4489 ret = -EINVAL; 4490 goto out; 4491 } 4492 } 4493 4494 /* 4495 * rw_devices will not change at the moment, device add/delete/replace 4496 * are exclusive 4497 */ 4498 num_devices = fs_info->fs_devices->rw_devices; 4499 4500 /* 4501 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4502 * special bit for it, to make it easier to distinguish. Thus we need 4503 * to set it manually, or balance would refuse the profile. 4504 */ 4505 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4506 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4507 if (num_devices >= btrfs_raid_array[i].devs_min) 4508 allowed |= btrfs_raid_array[i].bg_flag; 4509 4510 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4511 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4512 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4513 ret = -EINVAL; 4514 goto out; 4515 } 4516 4517 /* 4518 * Allow to reduce metadata or system integrity only if force set for 4519 * profiles with redundancy (copies, parity) 4520 */ 4521 allowed = 0; 4522 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4523 if (btrfs_raid_array[i].ncopies >= 2 || 4524 btrfs_raid_array[i].tolerated_failures >= 1) 4525 allowed |= btrfs_raid_array[i].bg_flag; 4526 } 4527 do { 4528 seq = read_seqbegin(&fs_info->profiles_lock); 4529 4530 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4531 (fs_info->avail_system_alloc_bits & allowed) && 4532 !(bctl->sys.target & allowed)) || 4533 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4534 (fs_info->avail_metadata_alloc_bits & allowed) && 4535 !(bctl->meta.target & allowed))) 4536 reducing_redundancy = true; 4537 else 4538 reducing_redundancy = false; 4539 4540 /* if we're not converting, the target field is uninitialized */ 4541 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4542 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4543 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4544 bctl->data.target : fs_info->avail_data_alloc_bits; 4545 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4546 4547 if (reducing_redundancy) { 4548 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4549 btrfs_info(fs_info, 4550 "balance: force reducing metadata redundancy"); 4551 } else { 4552 btrfs_err(fs_info, 4553 "balance: reduces metadata redundancy, use --force if you want this"); 4554 ret = -EINVAL; 4555 goto out; 4556 } 4557 } 4558 4559 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4560 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4561 btrfs_warn(fs_info, 4562 "balance: metadata profile %s has lower redundancy than data profile %s", 4563 btrfs_bg_type_to_raid_name(meta_target), 4564 btrfs_bg_type_to_raid_name(data_target)); 4565 } 4566 4567 ret = insert_balance_item(fs_info, bctl); 4568 if (ret && ret != -EEXIST) 4569 goto out; 4570 4571 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4572 BUG_ON(ret == -EEXIST); 4573 BUG_ON(fs_info->balance_ctl); 4574 spin_lock(&fs_info->balance_lock); 4575 fs_info->balance_ctl = bctl; 4576 spin_unlock(&fs_info->balance_lock); 4577 } else { 4578 BUG_ON(ret != -EEXIST); 4579 spin_lock(&fs_info->balance_lock); 4580 update_balance_args(bctl); 4581 spin_unlock(&fs_info->balance_lock); 4582 } 4583 4584 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4585 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4586 describe_balance_start_or_resume(fs_info); 4587 mutex_unlock(&fs_info->balance_mutex); 4588 4589 ret = __btrfs_balance(fs_info); 4590 4591 mutex_lock(&fs_info->balance_mutex); 4592 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4593 btrfs_info(fs_info, "balance: paused"); 4594 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4595 paused = true; 4596 } 4597 /* 4598 * Balance can be canceled by: 4599 * 4600 * - Regular cancel request 4601 * Then ret == -ECANCELED and balance_cancel_req > 0 4602 * 4603 * - Fatal signal to "btrfs" process 4604 * Either the signal caught by wait_reserve_ticket() and callers 4605 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4606 * got -ECANCELED. 4607 * Either way, in this case balance_cancel_req = 0, and 4608 * ret == -EINTR or ret == -ECANCELED. 4609 * 4610 * So here we only check the return value to catch canceled balance. 4611 */ 4612 else if (ret == -ECANCELED || ret == -EINTR) 4613 btrfs_info(fs_info, "balance: canceled"); 4614 else 4615 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4616 4617 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4618 4619 if (bargs) { 4620 memset(bargs, 0, sizeof(*bargs)); 4621 btrfs_update_ioctl_balance_args(fs_info, bargs); 4622 } 4623 4624 /* We didn't pause, we can clean everything up. */ 4625 if (!paused) { 4626 reset_balance_state(fs_info); 4627 btrfs_exclop_finish(fs_info); 4628 } 4629 4630 wake_up(&fs_info->balance_wait_q); 4631 4632 return ret; 4633 out: 4634 if (bctl->flags & BTRFS_BALANCE_RESUME) 4635 reset_balance_state(fs_info); 4636 else 4637 kfree(bctl); 4638 btrfs_exclop_finish(fs_info); 4639 4640 return ret; 4641 } 4642 4643 static int balance_kthread(void *data) 4644 { 4645 struct btrfs_fs_info *fs_info = data; 4646 int ret = 0; 4647 4648 sb_start_write(fs_info->sb); 4649 mutex_lock(&fs_info->balance_mutex); 4650 if (fs_info->balance_ctl) 4651 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4652 mutex_unlock(&fs_info->balance_mutex); 4653 sb_end_write(fs_info->sb); 4654 4655 return ret; 4656 } 4657 4658 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4659 { 4660 struct task_struct *tsk; 4661 4662 mutex_lock(&fs_info->balance_mutex); 4663 if (!fs_info->balance_ctl) { 4664 mutex_unlock(&fs_info->balance_mutex); 4665 return 0; 4666 } 4667 mutex_unlock(&fs_info->balance_mutex); 4668 4669 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4670 btrfs_info(fs_info, "balance: resume skipped"); 4671 return 0; 4672 } 4673 4674 spin_lock(&fs_info->super_lock); 4675 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, 4676 "exclusive_operation=%d", fs_info->exclusive_operation); 4677 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4678 spin_unlock(&fs_info->super_lock); 4679 /* 4680 * A ro->rw remount sequence should continue with the paused balance 4681 * regardless of who pauses it, system or the user as of now, so set 4682 * the resume flag. 4683 */ 4684 spin_lock(&fs_info->balance_lock); 4685 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4686 spin_unlock(&fs_info->balance_lock); 4687 4688 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4689 return PTR_ERR_OR_ZERO(tsk); 4690 } 4691 4692 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4693 { 4694 struct btrfs_balance_control *bctl; 4695 struct btrfs_balance_item *item; 4696 struct btrfs_disk_balance_args disk_bargs; 4697 struct btrfs_path *path; 4698 struct extent_buffer *leaf; 4699 struct btrfs_key key; 4700 int ret; 4701 4702 path = btrfs_alloc_path(); 4703 if (!path) 4704 return -ENOMEM; 4705 4706 key.objectid = BTRFS_BALANCE_OBJECTID; 4707 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4708 key.offset = 0; 4709 4710 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4711 if (ret < 0) 4712 goto out; 4713 if (ret > 0) { /* ret = -ENOENT; */ 4714 ret = 0; 4715 goto out; 4716 } 4717 4718 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4719 if (!bctl) { 4720 ret = -ENOMEM; 4721 goto out; 4722 } 4723 4724 leaf = path->nodes[0]; 4725 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4726 4727 bctl->flags = btrfs_balance_flags(leaf, item); 4728 bctl->flags |= BTRFS_BALANCE_RESUME; 4729 4730 btrfs_balance_data(leaf, item, &disk_bargs); 4731 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4732 btrfs_balance_meta(leaf, item, &disk_bargs); 4733 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4734 btrfs_balance_sys(leaf, item, &disk_bargs); 4735 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4736 4737 /* 4738 * This should never happen, as the paused balance state is recovered 4739 * during mount without any chance of other exclusive ops to collide. 4740 * 4741 * This gives the exclusive op status to balance and keeps in paused 4742 * state until user intervention (cancel or umount). If the ownership 4743 * cannot be assigned, show a message but do not fail. The balance 4744 * is in a paused state and must have fs_info::balance_ctl properly 4745 * set up. 4746 */ 4747 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4748 btrfs_warn(fs_info, 4749 "balance: cannot set exclusive op status, resume manually"); 4750 4751 btrfs_release_path(path); 4752 4753 mutex_lock(&fs_info->balance_mutex); 4754 BUG_ON(fs_info->balance_ctl); 4755 spin_lock(&fs_info->balance_lock); 4756 fs_info->balance_ctl = bctl; 4757 spin_unlock(&fs_info->balance_lock); 4758 mutex_unlock(&fs_info->balance_mutex); 4759 out: 4760 btrfs_free_path(path); 4761 return ret; 4762 } 4763 4764 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4765 { 4766 int ret = 0; 4767 4768 mutex_lock(&fs_info->balance_mutex); 4769 if (!fs_info->balance_ctl) { 4770 mutex_unlock(&fs_info->balance_mutex); 4771 return -ENOTCONN; 4772 } 4773 4774 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4775 atomic_inc(&fs_info->balance_pause_req); 4776 mutex_unlock(&fs_info->balance_mutex); 4777 4778 wait_event(fs_info->balance_wait_q, 4779 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4780 4781 mutex_lock(&fs_info->balance_mutex); 4782 /* we are good with balance_ctl ripped off from under us */ 4783 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4784 atomic_dec(&fs_info->balance_pause_req); 4785 } else { 4786 ret = -ENOTCONN; 4787 } 4788 4789 mutex_unlock(&fs_info->balance_mutex); 4790 return ret; 4791 } 4792 4793 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4794 { 4795 mutex_lock(&fs_info->balance_mutex); 4796 if (!fs_info->balance_ctl) { 4797 mutex_unlock(&fs_info->balance_mutex); 4798 return -ENOTCONN; 4799 } 4800 4801 /* 4802 * A paused balance with the item stored on disk can be resumed at 4803 * mount time if the mount is read-write. Otherwise it's still paused 4804 * and we must not allow cancelling as it deletes the item. 4805 */ 4806 if (sb_rdonly(fs_info->sb)) { 4807 mutex_unlock(&fs_info->balance_mutex); 4808 return -EROFS; 4809 } 4810 4811 atomic_inc(&fs_info->balance_cancel_req); 4812 /* 4813 * if we are running just wait and return, balance item is 4814 * deleted in btrfs_balance in this case 4815 */ 4816 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4817 mutex_unlock(&fs_info->balance_mutex); 4818 wait_event(fs_info->balance_wait_q, 4819 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4820 mutex_lock(&fs_info->balance_mutex); 4821 } else { 4822 mutex_unlock(&fs_info->balance_mutex); 4823 /* 4824 * Lock released to allow other waiters to continue, we'll 4825 * reexamine the status again. 4826 */ 4827 mutex_lock(&fs_info->balance_mutex); 4828 4829 if (fs_info->balance_ctl) { 4830 reset_balance_state(fs_info); 4831 btrfs_exclop_finish(fs_info); 4832 btrfs_info(fs_info, "balance: canceled"); 4833 } 4834 } 4835 4836 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4837 atomic_dec(&fs_info->balance_cancel_req); 4838 mutex_unlock(&fs_info->balance_mutex); 4839 return 0; 4840 } 4841 4842 /* 4843 * shrinking a device means finding all of the device extents past 4844 * the new size, and then following the back refs to the chunks. 4845 * The chunk relocation code actually frees the device extent 4846 */ 4847 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4848 { 4849 struct btrfs_fs_info *fs_info = device->fs_info; 4850 struct btrfs_root *root = fs_info->dev_root; 4851 struct btrfs_trans_handle *trans; 4852 struct btrfs_dev_extent *dev_extent = NULL; 4853 struct btrfs_path *path; 4854 u64 length; 4855 u64 chunk_offset; 4856 int ret; 4857 int slot; 4858 int failed = 0; 4859 bool retried = false; 4860 struct extent_buffer *l; 4861 struct btrfs_key key; 4862 struct btrfs_super_block *super_copy = fs_info->super_copy; 4863 u64 old_total = btrfs_super_total_bytes(super_copy); 4864 u64 old_size = btrfs_device_get_total_bytes(device); 4865 u64 diff; 4866 u64 start; 4867 u64 free_diff = 0; 4868 4869 new_size = round_down(new_size, fs_info->sectorsize); 4870 start = new_size; 4871 diff = round_down(old_size - new_size, fs_info->sectorsize); 4872 4873 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4874 return -EINVAL; 4875 4876 path = btrfs_alloc_path(); 4877 if (!path) 4878 return -ENOMEM; 4879 4880 path->reada = READA_BACK; 4881 4882 trans = btrfs_start_transaction(root, 0); 4883 if (IS_ERR(trans)) { 4884 btrfs_free_path(path); 4885 return PTR_ERR(trans); 4886 } 4887 4888 mutex_lock(&fs_info->chunk_mutex); 4889 4890 btrfs_device_set_total_bytes(device, new_size); 4891 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4892 device->fs_devices->total_rw_bytes -= diff; 4893 4894 /* 4895 * The new free_chunk_space is new_size - used, so we have to 4896 * subtract the delta of the old free_chunk_space which included 4897 * old_size - used. If used > new_size then just subtract this 4898 * entire device's free space. 4899 */ 4900 if (device->bytes_used < new_size) 4901 free_diff = (old_size - device->bytes_used) - 4902 (new_size - device->bytes_used); 4903 else 4904 free_diff = old_size - device->bytes_used; 4905 atomic64_sub(free_diff, &fs_info->free_chunk_space); 4906 } 4907 4908 /* 4909 * Once the device's size has been set to the new size, ensure all 4910 * in-memory chunks are synced to disk so that the loop below sees them 4911 * and relocates them accordingly. 4912 */ 4913 if (contains_pending_extent(device, &start, diff)) { 4914 mutex_unlock(&fs_info->chunk_mutex); 4915 ret = btrfs_commit_transaction(trans); 4916 if (ret) 4917 goto done; 4918 } else { 4919 mutex_unlock(&fs_info->chunk_mutex); 4920 btrfs_end_transaction(trans); 4921 } 4922 4923 again: 4924 key.objectid = device->devid; 4925 key.type = BTRFS_DEV_EXTENT_KEY; 4926 key.offset = (u64)-1; 4927 4928 do { 4929 mutex_lock(&fs_info->reclaim_bgs_lock); 4930 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4931 if (ret < 0) { 4932 mutex_unlock(&fs_info->reclaim_bgs_lock); 4933 goto done; 4934 } 4935 4936 ret = btrfs_previous_item(root, path, 0, key.type); 4937 if (ret) { 4938 mutex_unlock(&fs_info->reclaim_bgs_lock); 4939 if (ret < 0) 4940 goto done; 4941 ret = 0; 4942 btrfs_release_path(path); 4943 break; 4944 } 4945 4946 l = path->nodes[0]; 4947 slot = path->slots[0]; 4948 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4949 4950 if (key.objectid != device->devid) { 4951 mutex_unlock(&fs_info->reclaim_bgs_lock); 4952 btrfs_release_path(path); 4953 break; 4954 } 4955 4956 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4957 length = btrfs_dev_extent_length(l, dev_extent); 4958 4959 if (key.offset + length <= new_size) { 4960 mutex_unlock(&fs_info->reclaim_bgs_lock); 4961 btrfs_release_path(path); 4962 break; 4963 } 4964 4965 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4966 btrfs_release_path(path); 4967 4968 /* 4969 * We may be relocating the only data chunk we have, 4970 * which could potentially end up with losing data's 4971 * raid profile, so lets allocate an empty one in 4972 * advance. 4973 */ 4974 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4975 if (ret < 0) { 4976 mutex_unlock(&fs_info->reclaim_bgs_lock); 4977 goto done; 4978 } 4979 4980 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4981 mutex_unlock(&fs_info->reclaim_bgs_lock); 4982 if (ret == -ENOSPC) { 4983 failed++; 4984 } else if (ret) { 4985 if (ret == -ETXTBSY) { 4986 btrfs_warn(fs_info, 4987 "could not shrink block group %llu due to active swapfile", 4988 chunk_offset); 4989 } 4990 goto done; 4991 } 4992 } while (key.offset-- > 0); 4993 4994 if (failed && !retried) { 4995 failed = 0; 4996 retried = true; 4997 goto again; 4998 } else if (failed && retried) { 4999 ret = -ENOSPC; 5000 goto done; 5001 } 5002 5003 /* Shrinking succeeded, else we would be at "done". */ 5004 trans = btrfs_start_transaction(root, 0); 5005 if (IS_ERR(trans)) { 5006 ret = PTR_ERR(trans); 5007 goto done; 5008 } 5009 5010 mutex_lock(&fs_info->chunk_mutex); 5011 /* Clear all state bits beyond the shrunk device size */ 5012 btrfs_clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 5013 CHUNK_STATE_MASK); 5014 5015 btrfs_device_set_disk_total_bytes(device, new_size); 5016 if (list_empty(&device->post_commit_list)) 5017 list_add_tail(&device->post_commit_list, 5018 &trans->transaction->dev_update_list); 5019 5020 WARN_ON(diff > old_total); 5021 btrfs_set_super_total_bytes(super_copy, 5022 round_down(old_total - diff, fs_info->sectorsize)); 5023 mutex_unlock(&fs_info->chunk_mutex); 5024 5025 btrfs_reserve_chunk_metadata(trans, false); 5026 /* Now btrfs_update_device() will change the on-disk size. */ 5027 ret = btrfs_update_device(trans, device); 5028 btrfs_trans_release_chunk_metadata(trans); 5029 if (ret < 0) { 5030 btrfs_abort_transaction(trans, ret); 5031 btrfs_end_transaction(trans); 5032 } else { 5033 ret = btrfs_commit_transaction(trans); 5034 } 5035 done: 5036 btrfs_free_path(path); 5037 if (ret) { 5038 mutex_lock(&fs_info->chunk_mutex); 5039 btrfs_device_set_total_bytes(device, old_size); 5040 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5041 device->fs_devices->total_rw_bytes += diff; 5042 atomic64_add(free_diff, &fs_info->free_chunk_space); 5043 } 5044 mutex_unlock(&fs_info->chunk_mutex); 5045 } 5046 return ret; 5047 } 5048 5049 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5050 struct btrfs_key *key, 5051 struct btrfs_chunk *chunk, int item_size) 5052 { 5053 struct btrfs_super_block *super_copy = fs_info->super_copy; 5054 struct btrfs_disk_key disk_key; 5055 u32 array_size; 5056 u8 *ptr; 5057 5058 lockdep_assert_held(&fs_info->chunk_mutex); 5059 5060 array_size = btrfs_super_sys_array_size(super_copy); 5061 if (array_size + item_size + sizeof(disk_key) 5062 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5063 return -EFBIG; 5064 5065 ptr = super_copy->sys_chunk_array + array_size; 5066 btrfs_cpu_key_to_disk(&disk_key, key); 5067 memcpy(ptr, &disk_key, sizeof(disk_key)); 5068 ptr += sizeof(disk_key); 5069 memcpy(ptr, chunk, item_size); 5070 item_size += sizeof(disk_key); 5071 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5072 5073 return 0; 5074 } 5075 5076 /* 5077 * sort the devices in descending order by max_avail, total_avail 5078 */ 5079 static int btrfs_cmp_device_info(const void *a, const void *b) 5080 { 5081 const struct btrfs_device_info *di_a = a; 5082 const struct btrfs_device_info *di_b = b; 5083 5084 if (di_a->max_avail > di_b->max_avail) 5085 return -1; 5086 if (di_a->max_avail < di_b->max_avail) 5087 return 1; 5088 if (di_a->total_avail > di_b->total_avail) 5089 return -1; 5090 if (di_a->total_avail < di_b->total_avail) 5091 return 1; 5092 return 0; 5093 } 5094 5095 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5096 { 5097 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5098 return; 5099 5100 btrfs_set_fs_incompat(info, RAID56); 5101 } 5102 5103 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5104 { 5105 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5106 return; 5107 5108 btrfs_set_fs_incompat(info, RAID1C34); 5109 } 5110 5111 /* 5112 * Structure used internally for btrfs_create_chunk() function. 5113 * Wraps needed parameters. 5114 */ 5115 struct alloc_chunk_ctl { 5116 u64 start; 5117 u64 type; 5118 /* Total number of stripes to allocate */ 5119 int num_stripes; 5120 /* sub_stripes info for map */ 5121 int sub_stripes; 5122 /* Stripes per device */ 5123 int dev_stripes; 5124 /* Maximum number of devices to use */ 5125 int devs_max; 5126 /* Minimum number of devices to use */ 5127 int devs_min; 5128 /* ndevs has to be a multiple of this */ 5129 int devs_increment; 5130 /* Number of copies */ 5131 int ncopies; 5132 /* Number of stripes worth of bytes to store parity information */ 5133 int nparity; 5134 u64 max_stripe_size; 5135 u64 max_chunk_size; 5136 u64 dev_extent_min; 5137 u64 stripe_size; 5138 u64 chunk_size; 5139 int ndevs; 5140 /* Space_info the block group is going to belong. */ 5141 struct btrfs_space_info *space_info; 5142 }; 5143 5144 static void init_alloc_chunk_ctl_policy_regular( 5145 struct btrfs_fs_devices *fs_devices, 5146 struct alloc_chunk_ctl *ctl) 5147 { 5148 struct btrfs_space_info *space_info; 5149 5150 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5151 ASSERT(space_info); 5152 5153 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5154 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5155 5156 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5157 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5158 5159 /* We don't want a chunk larger than 10% of writable space */ 5160 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5161 ctl->max_chunk_size); 5162 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5163 } 5164 5165 static void init_alloc_chunk_ctl_policy_zoned( 5166 struct btrfs_fs_devices *fs_devices, 5167 struct alloc_chunk_ctl *ctl) 5168 { 5169 u64 zone_size = fs_devices->fs_info->zone_size; 5170 u64 limit; 5171 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5172 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5173 u64 min_chunk_size = min_data_stripes * zone_size; 5174 u64 type = ctl->type; 5175 5176 ctl->max_stripe_size = zone_size; 5177 if (type & BTRFS_BLOCK_GROUP_DATA) { 5178 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5179 zone_size); 5180 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5181 ctl->max_chunk_size = ctl->max_stripe_size; 5182 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5183 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5184 ctl->devs_max = min_t(int, ctl->devs_max, 5185 BTRFS_MAX_DEVS_SYS_CHUNK); 5186 } else { 5187 BUG(); 5188 } 5189 5190 /* We don't want a chunk larger than 10% of writable space */ 5191 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5192 zone_size), 5193 min_chunk_size); 5194 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5195 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5196 } 5197 5198 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5199 struct alloc_chunk_ctl *ctl) 5200 { 5201 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5202 5203 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5204 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5205 ctl->devs_max = btrfs_raid_array[index].devs_max; 5206 if (!ctl->devs_max) 5207 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5208 ctl->devs_min = btrfs_raid_array[index].devs_min; 5209 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5210 ctl->ncopies = btrfs_raid_array[index].ncopies; 5211 ctl->nparity = btrfs_raid_array[index].nparity; 5212 ctl->ndevs = 0; 5213 5214 switch (fs_devices->chunk_alloc_policy) { 5215 default: 5216 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5217 fallthrough; 5218 case BTRFS_CHUNK_ALLOC_REGULAR: 5219 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5220 break; 5221 case BTRFS_CHUNK_ALLOC_ZONED: 5222 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5223 break; 5224 } 5225 } 5226 5227 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5228 struct alloc_chunk_ctl *ctl, 5229 struct btrfs_device_info *devices_info) 5230 { 5231 struct btrfs_fs_info *info = fs_devices->fs_info; 5232 struct btrfs_device *device; 5233 u64 total_avail; 5234 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5235 int ret; 5236 int ndevs = 0; 5237 u64 max_avail; 5238 u64 dev_offset; 5239 5240 /* 5241 * in the first pass through the devices list, we gather information 5242 * about the available holes on each device. 5243 */ 5244 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5245 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5246 WARN(1, KERN_ERR 5247 "BTRFS: read-only device in alloc_list\n"); 5248 continue; 5249 } 5250 5251 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5252 &device->dev_state) || 5253 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5254 continue; 5255 5256 if (device->total_bytes > device->bytes_used) 5257 total_avail = device->total_bytes - device->bytes_used; 5258 else 5259 total_avail = 0; 5260 5261 /* If there is no space on this device, skip it. */ 5262 if (total_avail < ctl->dev_extent_min) 5263 continue; 5264 5265 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5266 &max_avail); 5267 if (ret && ret != -ENOSPC) 5268 return ret; 5269 5270 if (ret == 0) 5271 max_avail = dev_extent_want; 5272 5273 if (max_avail < ctl->dev_extent_min) { 5274 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5275 btrfs_debug(info, 5276 "%s: devid %llu has no free space, have=%llu want=%llu", 5277 __func__, device->devid, max_avail, 5278 ctl->dev_extent_min); 5279 continue; 5280 } 5281 5282 if (ndevs == fs_devices->rw_devices) { 5283 WARN(1, "%s: found more than %llu devices\n", 5284 __func__, fs_devices->rw_devices); 5285 break; 5286 } 5287 devices_info[ndevs].dev_offset = dev_offset; 5288 devices_info[ndevs].max_avail = max_avail; 5289 devices_info[ndevs].total_avail = total_avail; 5290 devices_info[ndevs].dev = device; 5291 ++ndevs; 5292 } 5293 ctl->ndevs = ndevs; 5294 5295 /* 5296 * now sort the devices by hole size / available space 5297 */ 5298 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5299 btrfs_cmp_device_info, NULL); 5300 5301 return 0; 5302 } 5303 5304 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5305 struct btrfs_device_info *devices_info) 5306 { 5307 /* Number of stripes that count for block group size */ 5308 int data_stripes; 5309 5310 /* 5311 * The primary goal is to maximize the number of stripes, so use as 5312 * many devices as possible, even if the stripes are not maximum sized. 5313 * 5314 * The DUP profile stores more than one stripe per device, the 5315 * max_avail is the total size so we have to adjust. 5316 */ 5317 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5318 ctl->dev_stripes); 5319 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5320 5321 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5322 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5323 5324 /* 5325 * Use the number of data stripes to figure out how big this chunk is 5326 * really going to be in terms of logical address space, and compare 5327 * that answer with the max chunk size. If it's higher, we try to 5328 * reduce stripe_size. 5329 */ 5330 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5331 /* 5332 * Reduce stripe_size, round it up to a 16MB boundary again and 5333 * then use it, unless it ends up being even bigger than the 5334 * previous value we had already. 5335 */ 5336 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5337 data_stripes), SZ_16M), 5338 ctl->stripe_size); 5339 } 5340 5341 /* Stripe size should not go beyond 1G. */ 5342 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5343 5344 /* Align to BTRFS_STRIPE_LEN */ 5345 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5346 ctl->chunk_size = ctl->stripe_size * data_stripes; 5347 5348 return 0; 5349 } 5350 5351 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5352 struct btrfs_device_info *devices_info) 5353 { 5354 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5355 /* Number of stripes that count for block group size */ 5356 int data_stripes; 5357 5358 /* 5359 * It should hold because: 5360 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5361 */ 5362 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min, 5363 "ndevs=%d max_avail=%llu dev_extent_min=%llu", ctl->ndevs, 5364 devices_info[ctl->ndevs - 1].max_avail, ctl->dev_extent_min); 5365 5366 ctl->stripe_size = zone_size; 5367 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5368 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5369 5370 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */ 5371 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5372 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5373 ctl->stripe_size) + ctl->nparity, 5374 ctl->dev_stripes); 5375 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5376 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5377 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size, 5378 "stripe_size=%llu data_stripes=%d max_chunk_size=%llu", 5379 ctl->stripe_size, data_stripes, ctl->max_chunk_size); 5380 } 5381 5382 ctl->chunk_size = ctl->stripe_size * data_stripes; 5383 5384 return 0; 5385 } 5386 5387 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5388 struct alloc_chunk_ctl *ctl, 5389 struct btrfs_device_info *devices_info) 5390 { 5391 struct btrfs_fs_info *info = fs_devices->fs_info; 5392 5393 /* 5394 * Round down to number of usable stripes, devs_increment can be any 5395 * number so we can't use round_down() that requires power of 2, while 5396 * rounddown is safe. 5397 */ 5398 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5399 5400 if (ctl->ndevs < ctl->devs_min) { 5401 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5402 btrfs_debug(info, 5403 "%s: not enough devices with free space: have=%d minimum required=%d", 5404 __func__, ctl->ndevs, ctl->devs_min); 5405 } 5406 return -ENOSPC; 5407 } 5408 5409 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5410 5411 switch (fs_devices->chunk_alloc_policy) { 5412 default: 5413 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5414 fallthrough; 5415 case BTRFS_CHUNK_ALLOC_REGULAR: 5416 return decide_stripe_size_regular(ctl, devices_info); 5417 case BTRFS_CHUNK_ALLOC_ZONED: 5418 return decide_stripe_size_zoned(ctl, devices_info); 5419 } 5420 } 5421 5422 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5423 { 5424 for (int i = 0; i < map->num_stripes; i++) { 5425 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5426 struct btrfs_device *device = stripe->dev; 5427 5428 btrfs_set_extent_bit(&device->alloc_state, stripe->physical, 5429 stripe->physical + map->stripe_size - 1, 5430 bits | EXTENT_NOWAIT, NULL); 5431 } 5432 } 5433 5434 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5435 { 5436 for (int i = 0; i < map->num_stripes; i++) { 5437 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5438 struct btrfs_device *device = stripe->dev; 5439 5440 btrfs_clear_extent_bits(&device->alloc_state, stripe->physical, 5441 stripe->physical + map->stripe_size - 1, 5442 bits | EXTENT_NOWAIT); 5443 } 5444 } 5445 5446 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5447 { 5448 write_lock(&fs_info->mapping_tree_lock); 5449 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5450 RB_CLEAR_NODE(&map->rb_node); 5451 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5452 write_unlock(&fs_info->mapping_tree_lock); 5453 5454 /* Once for the tree reference. */ 5455 btrfs_free_chunk_map(map); 5456 } 5457 5458 static int btrfs_chunk_map_cmp(const struct rb_node *new, 5459 const struct rb_node *exist) 5460 { 5461 const struct btrfs_chunk_map *new_map = 5462 rb_entry(new, struct btrfs_chunk_map, rb_node); 5463 const struct btrfs_chunk_map *exist_map = 5464 rb_entry(exist, struct btrfs_chunk_map, rb_node); 5465 5466 if (new_map->start == exist_map->start) 5467 return 0; 5468 if (new_map->start < exist_map->start) 5469 return -1; 5470 return 1; 5471 } 5472 5473 EXPORT_FOR_TESTS 5474 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5475 { 5476 struct rb_node *exist; 5477 5478 write_lock(&fs_info->mapping_tree_lock); 5479 exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree, 5480 btrfs_chunk_map_cmp); 5481 5482 if (exist) { 5483 write_unlock(&fs_info->mapping_tree_lock); 5484 return -EEXIST; 5485 } 5486 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5487 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5488 write_unlock(&fs_info->mapping_tree_lock); 5489 5490 return 0; 5491 } 5492 5493 EXPORT_FOR_TESTS 5494 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5495 { 5496 struct btrfs_chunk_map *map; 5497 5498 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5499 if (!map) 5500 return NULL; 5501 5502 refcount_set(&map->refs, 1); 5503 RB_CLEAR_NODE(&map->rb_node); 5504 5505 return map; 5506 } 5507 5508 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5509 struct alloc_chunk_ctl *ctl, 5510 struct btrfs_device_info *devices_info) 5511 { 5512 struct btrfs_fs_info *info = trans->fs_info; 5513 struct btrfs_chunk_map *map; 5514 struct btrfs_block_group *block_group; 5515 u64 start = ctl->start; 5516 u64 type = ctl->type; 5517 int ret; 5518 5519 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5520 if (!map) 5521 return ERR_PTR(-ENOMEM); 5522 5523 map->start = start; 5524 map->chunk_len = ctl->chunk_size; 5525 map->stripe_size = ctl->stripe_size; 5526 map->type = type; 5527 map->io_align = BTRFS_STRIPE_LEN; 5528 map->io_width = BTRFS_STRIPE_LEN; 5529 map->sub_stripes = ctl->sub_stripes; 5530 map->num_stripes = ctl->num_stripes; 5531 5532 for (int i = 0; i < ctl->ndevs; i++) { 5533 for (int j = 0; j < ctl->dev_stripes; j++) { 5534 int s = i * ctl->dev_stripes + j; 5535 map->stripes[s].dev = devices_info[i].dev; 5536 map->stripes[s].physical = devices_info[i].dev_offset + 5537 j * ctl->stripe_size; 5538 } 5539 } 5540 5541 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5542 5543 ret = btrfs_add_chunk_map(info, map); 5544 if (ret) { 5545 btrfs_free_chunk_map(map); 5546 return ERR_PTR(ret); 5547 } 5548 5549 block_group = btrfs_make_block_group(trans, ctl->space_info, type, start, 5550 ctl->chunk_size); 5551 if (IS_ERR(block_group)) { 5552 btrfs_remove_chunk_map(info, map); 5553 return block_group; 5554 } 5555 5556 for (int i = 0; i < map->num_stripes; i++) { 5557 struct btrfs_device *dev = map->stripes[i].dev; 5558 5559 btrfs_device_set_bytes_used(dev, 5560 dev->bytes_used + ctl->stripe_size); 5561 if (list_empty(&dev->post_commit_list)) 5562 list_add_tail(&dev->post_commit_list, 5563 &trans->transaction->dev_update_list); 5564 } 5565 5566 atomic64_sub(ctl->stripe_size * map->num_stripes, 5567 &info->free_chunk_space); 5568 5569 check_raid56_incompat_flag(info, type); 5570 check_raid1c34_incompat_flag(info, type); 5571 5572 return block_group; 5573 } 5574 5575 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5576 struct btrfs_space_info *space_info, 5577 u64 type) 5578 { 5579 struct btrfs_fs_info *info = trans->fs_info; 5580 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5581 struct btrfs_device_info *devices_info = NULL; 5582 struct alloc_chunk_ctl ctl; 5583 struct btrfs_block_group *block_group; 5584 int ret; 5585 5586 lockdep_assert_held(&info->chunk_mutex); 5587 5588 if (!alloc_profile_is_valid(type, 0)) { 5589 DEBUG_WARN("invalid alloc profile for type %llu", type); 5590 return ERR_PTR(-EINVAL); 5591 } 5592 5593 if (list_empty(&fs_devices->alloc_list)) { 5594 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5595 btrfs_debug(info, "%s: no writable device", __func__); 5596 return ERR_PTR(-ENOSPC); 5597 } 5598 5599 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5600 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5601 DEBUG_WARN(); 5602 return ERR_PTR(-EINVAL); 5603 } 5604 5605 ctl.start = find_next_chunk(info); 5606 ctl.type = type; 5607 ctl.space_info = space_info; 5608 init_alloc_chunk_ctl(fs_devices, &ctl); 5609 5610 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5611 GFP_NOFS); 5612 if (!devices_info) 5613 return ERR_PTR(-ENOMEM); 5614 5615 ret = gather_device_info(fs_devices, &ctl, devices_info); 5616 if (ret < 0) { 5617 block_group = ERR_PTR(ret); 5618 goto out; 5619 } 5620 5621 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5622 if (ret < 0) { 5623 block_group = ERR_PTR(ret); 5624 goto out; 5625 } 5626 5627 block_group = create_chunk(trans, &ctl, devices_info); 5628 5629 out: 5630 kfree(devices_info); 5631 return block_group; 5632 } 5633 5634 /* 5635 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5636 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5637 * chunks. 5638 * 5639 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5640 * phases. 5641 */ 5642 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5643 struct btrfs_block_group *bg) 5644 { 5645 struct btrfs_fs_info *fs_info = trans->fs_info; 5646 struct btrfs_root *chunk_root = fs_info->chunk_root; 5647 struct btrfs_key key; 5648 struct btrfs_chunk *chunk; 5649 struct btrfs_stripe *stripe; 5650 struct btrfs_chunk_map *map; 5651 size_t item_size; 5652 int i; 5653 int ret; 5654 5655 /* 5656 * We take the chunk_mutex for 2 reasons: 5657 * 5658 * 1) Updates and insertions in the chunk btree must be done while holding 5659 * the chunk_mutex, as well as updating the system chunk array in the 5660 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5661 * details; 5662 * 5663 * 2) To prevent races with the final phase of a device replace operation 5664 * that replaces the device object associated with the map's stripes, 5665 * because the device object's id can change at any time during that 5666 * final phase of the device replace operation 5667 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5668 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5669 * which would cause a failure when updating the device item, which does 5670 * not exists, or persisting a stripe of the chunk item with such ID. 5671 * Here we can't use the device_list_mutex because our caller already 5672 * has locked the chunk_mutex, and the final phase of device replace 5673 * acquires both mutexes - first the device_list_mutex and then the 5674 * chunk_mutex. Using any of those two mutexes protects us from a 5675 * concurrent device replace. 5676 */ 5677 lockdep_assert_held(&fs_info->chunk_mutex); 5678 5679 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5680 if (IS_ERR(map)) { 5681 ret = PTR_ERR(map); 5682 btrfs_abort_transaction(trans, ret); 5683 return ret; 5684 } 5685 5686 item_size = btrfs_chunk_item_size(map->num_stripes); 5687 5688 chunk = kzalloc(item_size, GFP_NOFS); 5689 if (!chunk) { 5690 ret = -ENOMEM; 5691 btrfs_abort_transaction(trans, ret); 5692 goto out; 5693 } 5694 5695 for (i = 0; i < map->num_stripes; i++) { 5696 struct btrfs_device *device = map->stripes[i].dev; 5697 5698 ret = btrfs_update_device(trans, device); 5699 if (ret) 5700 goto out; 5701 } 5702 5703 stripe = &chunk->stripe; 5704 for (i = 0; i < map->num_stripes; i++) { 5705 struct btrfs_device *device = map->stripes[i].dev; 5706 const u64 dev_offset = map->stripes[i].physical; 5707 5708 btrfs_set_stack_stripe_devid(stripe, device->devid); 5709 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5710 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5711 stripe++; 5712 } 5713 5714 btrfs_set_stack_chunk_length(chunk, bg->length); 5715 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5716 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5717 btrfs_set_stack_chunk_type(chunk, map->type); 5718 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5719 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5720 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5721 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5722 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5723 5724 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5725 key.type = BTRFS_CHUNK_ITEM_KEY; 5726 key.offset = bg->start; 5727 5728 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5729 if (ret) 5730 goto out; 5731 5732 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5733 5734 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5735 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5736 if (ret) 5737 goto out; 5738 } 5739 5740 out: 5741 kfree(chunk); 5742 btrfs_free_chunk_map(map); 5743 return ret; 5744 } 5745 5746 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5747 { 5748 struct btrfs_fs_info *fs_info = trans->fs_info; 5749 u64 alloc_profile; 5750 struct btrfs_block_group *meta_bg; 5751 struct btrfs_space_info *meta_space_info; 5752 struct btrfs_block_group *sys_bg; 5753 struct btrfs_space_info *sys_space_info; 5754 5755 /* 5756 * When adding a new device for sprouting, the seed device is read-only 5757 * so we must first allocate a metadata and a system chunk. But before 5758 * adding the block group items to the extent, device and chunk btrees, 5759 * we must first: 5760 * 5761 * 1) Create both chunks without doing any changes to the btrees, as 5762 * otherwise we would get -ENOSPC since the block groups from the 5763 * seed device are read-only; 5764 * 5765 * 2) Add the device item for the new sprout device - finishing the setup 5766 * of a new block group requires updating the device item in the chunk 5767 * btree, so it must exist when we attempt to do it. The previous step 5768 * ensures this does not fail with -ENOSPC. 5769 * 5770 * After that we can add the block group items to their btrees: 5771 * update existing device item in the chunk btree, add a new block group 5772 * item to the extent btree, add a new chunk item to the chunk btree and 5773 * finally add the new device extent items to the devices btree. 5774 */ 5775 5776 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5777 meta_space_info = btrfs_find_space_info(fs_info, alloc_profile); 5778 if (!meta_space_info) { 5779 DEBUG_WARN(); 5780 return -EINVAL; 5781 } 5782 meta_bg = btrfs_create_chunk(trans, meta_space_info, alloc_profile); 5783 if (IS_ERR(meta_bg)) 5784 return PTR_ERR(meta_bg); 5785 5786 alloc_profile = btrfs_system_alloc_profile(fs_info); 5787 sys_space_info = btrfs_find_space_info(fs_info, alloc_profile); 5788 if (!sys_space_info) { 5789 DEBUG_WARN(); 5790 return -EINVAL; 5791 } 5792 sys_bg = btrfs_create_chunk(trans, sys_space_info, alloc_profile); 5793 if (IS_ERR(sys_bg)) 5794 return PTR_ERR(sys_bg); 5795 5796 return 0; 5797 } 5798 5799 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5800 { 5801 const int index = btrfs_bg_flags_to_raid_index(map->type); 5802 5803 return btrfs_raid_array[index].tolerated_failures; 5804 } 5805 5806 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5807 { 5808 struct btrfs_chunk_map *map; 5809 int miss_ndevs = 0; 5810 int i; 5811 bool ret = true; 5812 5813 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5814 if (IS_ERR(map)) 5815 return false; 5816 5817 for (i = 0; i < map->num_stripes; i++) { 5818 if (test_bit(BTRFS_DEV_STATE_MISSING, 5819 &map->stripes[i].dev->dev_state)) { 5820 miss_ndevs++; 5821 continue; 5822 } 5823 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5824 &map->stripes[i].dev->dev_state)) { 5825 ret = false; 5826 goto end; 5827 } 5828 } 5829 5830 /* 5831 * If the number of missing devices is larger than max errors, we can 5832 * not write the data into that chunk successfully. 5833 */ 5834 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5835 ret = false; 5836 end: 5837 btrfs_free_chunk_map(map); 5838 return ret; 5839 } 5840 5841 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5842 { 5843 write_lock(&fs_info->mapping_tree_lock); 5844 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5845 struct btrfs_chunk_map *map; 5846 struct rb_node *node; 5847 5848 node = rb_first_cached(&fs_info->mapping_tree); 5849 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5850 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5851 RB_CLEAR_NODE(&map->rb_node); 5852 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5853 /* Once for the tree ref. */ 5854 btrfs_free_chunk_map(map); 5855 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5856 } 5857 write_unlock(&fs_info->mapping_tree_lock); 5858 } 5859 5860 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map) 5861 { 5862 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type); 5863 5864 if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5865 return 2; 5866 5867 /* 5868 * There could be two corrupted data stripes, we need to loop retry in 5869 * order to rebuild the correct data. 5870 * 5871 * Fail a stripe at a time on every retry except the stripe under 5872 * reconstruction. 5873 */ 5874 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5875 return map->num_stripes; 5876 5877 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5878 return btrfs_raid_array[index].ncopies; 5879 } 5880 5881 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5882 { 5883 struct btrfs_chunk_map *map; 5884 int ret; 5885 5886 map = btrfs_get_chunk_map(fs_info, logical, len); 5887 if (IS_ERR(map)) 5888 /* 5889 * We could return errors for these cases, but that could get 5890 * ugly and we'd probably do the same thing which is just not do 5891 * anything else and exit, so return 1 so the callers don't try 5892 * to use other copies. 5893 */ 5894 return 1; 5895 5896 ret = btrfs_chunk_map_num_copies(map); 5897 btrfs_free_chunk_map(map); 5898 return ret; 5899 } 5900 5901 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5902 u64 logical) 5903 { 5904 struct btrfs_chunk_map *map; 5905 unsigned long len = fs_info->sectorsize; 5906 5907 if (!btrfs_fs_incompat(fs_info, RAID56)) 5908 return len; 5909 5910 map = btrfs_get_chunk_map(fs_info, logical, len); 5911 5912 if (!WARN_ON(IS_ERR(map))) { 5913 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5914 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5915 btrfs_free_chunk_map(map); 5916 } 5917 return len; 5918 } 5919 5920 #ifdef CONFIG_BTRFS_EXPERIMENTAL 5921 static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes) 5922 { 5923 for (int index = first; index < first + num_stripes; index++) { 5924 const struct btrfs_device *device = map->stripes[index].dev; 5925 5926 if (device->devid == READ_ONCE(device->fs_devices->read_devid)) 5927 return index; 5928 } 5929 5930 /* If no read-preferred device is set use the first stripe. */ 5931 return first; 5932 } 5933 5934 struct stripe_mirror { 5935 u64 devid; 5936 int num; 5937 }; 5938 5939 static int btrfs_cmp_devid(const void *a, const void *b) 5940 { 5941 const struct stripe_mirror *s1 = (const struct stripe_mirror *)a; 5942 const struct stripe_mirror *s2 = (const struct stripe_mirror *)b; 5943 5944 if (s1->devid < s2->devid) 5945 return -1; 5946 if (s1->devid > s2->devid) 5947 return 1; 5948 return 0; 5949 } 5950 5951 /* 5952 * Select a stripe for reading using the round-robin algorithm. 5953 * 5954 * 1. Compute the read cycle as the total sectors read divided by the minimum 5955 * sectors per device. 5956 * 2. Determine the stripe number for the current read by taking the modulus 5957 * of the read cycle with the total number of stripes: 5958 * 5959 * stripe index = (total sectors / min sectors per dev) % num stripes 5960 * 5961 * The calculated stripe index is then used to select the corresponding device 5962 * from the list of devices, which is ordered by devid. 5963 */ 5964 static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes) 5965 { 5966 struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 }; 5967 struct btrfs_device *device = map->stripes[first].dev; 5968 struct btrfs_fs_info *fs_info = device->fs_devices->fs_info; 5969 unsigned int read_cycle; 5970 unsigned int total_reads; 5971 unsigned int min_reads_per_dev; 5972 5973 total_reads = percpu_counter_sum(&fs_info->stats_read_blocks); 5974 min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >> 5975 fs_info->sectorsize_bits; 5976 5977 for (int index = 0, i = first; i < first + num_stripes; i++) { 5978 stripes[index].devid = map->stripes[i].dev->devid; 5979 stripes[index].num = i; 5980 index++; 5981 } 5982 sort(stripes, num_stripes, sizeof(struct stripe_mirror), 5983 btrfs_cmp_devid, NULL); 5984 5985 read_cycle = total_reads / min_reads_per_dev; 5986 return stripes[read_cycle % num_stripes].num; 5987 } 5988 #endif 5989 5990 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5991 struct btrfs_chunk_map *map, int first, 5992 bool dev_replace_is_ongoing) 5993 { 5994 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); 5995 int i; 5996 int num_stripes; 5997 int preferred_mirror; 5998 int tolerance; 5999 struct btrfs_device *srcdev; 6000 6001 ASSERT((map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)), 6002 "type=%llu", map->type); 6003 6004 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6005 num_stripes = map->sub_stripes; 6006 else 6007 num_stripes = map->num_stripes; 6008 6009 switch (policy) { 6010 default: 6011 /* Shouldn't happen, just warn and use pid instead of failing */ 6012 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", 6013 policy); 6014 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); 6015 fallthrough; 6016 case BTRFS_READ_POLICY_PID: 6017 preferred_mirror = first + (current->pid % num_stripes); 6018 break; 6019 #ifdef CONFIG_BTRFS_EXPERIMENTAL 6020 case BTRFS_READ_POLICY_RR: 6021 preferred_mirror = btrfs_read_rr(map, first, num_stripes); 6022 break; 6023 case BTRFS_READ_POLICY_DEVID: 6024 preferred_mirror = btrfs_read_preferred(map, first, num_stripes); 6025 break; 6026 #endif 6027 } 6028 6029 if (dev_replace_is_ongoing && 6030 fs_info->dev_replace.cont_reading_from_srcdev_mode == 6031 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 6032 srcdev = fs_info->dev_replace.srcdev; 6033 else 6034 srcdev = NULL; 6035 6036 /* 6037 * try to avoid the drive that is the source drive for a 6038 * dev-replace procedure, only choose it if no other non-missing 6039 * mirror is available 6040 */ 6041 for (tolerance = 0; tolerance < 2; tolerance++) { 6042 if (map->stripes[preferred_mirror].dev->bdev && 6043 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 6044 return preferred_mirror; 6045 for (i = first; i < first + num_stripes; i++) { 6046 if (map->stripes[i].dev->bdev && 6047 (tolerance || map->stripes[i].dev != srcdev)) 6048 return i; 6049 } 6050 } 6051 6052 /* we couldn't find one that doesn't fail. Just return something 6053 * and the io error handling code will clean up eventually 6054 */ 6055 return preferred_mirror; 6056 } 6057 6058 EXPORT_FOR_TESTS 6059 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6060 u64 logical, u16 total_stripes) 6061 { 6062 struct btrfs_io_context *bioc; 6063 6064 bioc = kzalloc( 6065 /* The size of btrfs_io_context */ 6066 sizeof(struct btrfs_io_context) + 6067 /* Plus the variable array for the stripes */ 6068 sizeof(struct btrfs_io_stripe) * (total_stripes), 6069 GFP_NOFS); 6070 6071 if (!bioc) 6072 return NULL; 6073 6074 refcount_set(&bioc->refs, 1); 6075 6076 bioc->fs_info = fs_info; 6077 bioc->replace_stripe_src = -1; 6078 bioc->full_stripe_logical = (u64)-1; 6079 bioc->logical = logical; 6080 6081 return bioc; 6082 } 6083 6084 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6085 { 6086 WARN_ON(!refcount_read(&bioc->refs)); 6087 refcount_inc(&bioc->refs); 6088 } 6089 6090 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6091 { 6092 if (!bioc) 6093 return; 6094 if (refcount_dec_and_test(&bioc->refs)) 6095 kfree(bioc); 6096 } 6097 6098 /* 6099 * Please note that, discard won't be sent to target device of device 6100 * replace. 6101 */ 6102 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6103 u64 logical, u64 *length_ret, 6104 u32 *num_stripes) 6105 { 6106 struct btrfs_chunk_map *map; 6107 struct btrfs_discard_stripe *stripes; 6108 u64 length = *length_ret; 6109 u64 offset; 6110 u32 stripe_nr; 6111 u32 stripe_nr_end; 6112 u32 stripe_cnt; 6113 u64 stripe_end_offset; 6114 u64 stripe_offset; 6115 u32 stripe_index; 6116 u32 factor = 0; 6117 u32 sub_stripes = 0; 6118 u32 stripes_per_dev = 0; 6119 u32 remaining_stripes = 0; 6120 u32 last_stripe = 0; 6121 int ret; 6122 int i; 6123 6124 map = btrfs_get_chunk_map(fs_info, logical, length); 6125 if (IS_ERR(map)) 6126 return ERR_CAST(map); 6127 6128 /* we don't discard raid56 yet */ 6129 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6130 ret = -EOPNOTSUPP; 6131 goto out_free_map; 6132 } 6133 6134 offset = logical - map->start; 6135 length = min_t(u64, map->start + map->chunk_len - logical, length); 6136 *length_ret = length; 6137 6138 /* 6139 * stripe_nr counts the total number of stripes we have to stride 6140 * to get to this block 6141 */ 6142 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6143 6144 /* stripe_offset is the offset of this block in its stripe */ 6145 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6146 6147 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6148 BTRFS_STRIPE_LEN_SHIFT; 6149 stripe_cnt = stripe_nr_end - stripe_nr; 6150 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6151 (offset + length); 6152 /* 6153 * after this, stripe_nr is the number of stripes on this 6154 * device we have to walk to find the data, and stripe_index is 6155 * the number of our device in the stripe array 6156 */ 6157 *num_stripes = 1; 6158 stripe_index = 0; 6159 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6160 BTRFS_BLOCK_GROUP_RAID10)) { 6161 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6162 sub_stripes = 1; 6163 else 6164 sub_stripes = map->sub_stripes; 6165 6166 factor = map->num_stripes / sub_stripes; 6167 *num_stripes = min_t(u64, map->num_stripes, 6168 sub_stripes * stripe_cnt); 6169 stripe_index = stripe_nr % factor; 6170 stripe_nr /= factor; 6171 stripe_index *= sub_stripes; 6172 6173 remaining_stripes = stripe_cnt % factor; 6174 stripes_per_dev = stripe_cnt / factor; 6175 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6176 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6177 BTRFS_BLOCK_GROUP_DUP)) { 6178 *num_stripes = map->num_stripes; 6179 } else { 6180 stripe_index = stripe_nr % map->num_stripes; 6181 stripe_nr /= map->num_stripes; 6182 } 6183 6184 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6185 if (!stripes) { 6186 ret = -ENOMEM; 6187 goto out_free_map; 6188 } 6189 6190 for (i = 0; i < *num_stripes; i++) { 6191 stripes[i].physical = 6192 map->stripes[stripe_index].physical + 6193 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6194 stripes[i].dev = map->stripes[stripe_index].dev; 6195 6196 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6197 BTRFS_BLOCK_GROUP_RAID10)) { 6198 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6199 6200 if (i / sub_stripes < remaining_stripes) 6201 stripes[i].length += BTRFS_STRIPE_LEN; 6202 6203 /* 6204 * Special for the first stripe and 6205 * the last stripe: 6206 * 6207 * |-------|...|-------| 6208 * |----------| 6209 * off end_off 6210 */ 6211 if (i < sub_stripes) 6212 stripes[i].length -= stripe_offset; 6213 6214 if (stripe_index >= last_stripe && 6215 stripe_index <= (last_stripe + 6216 sub_stripes - 1)) 6217 stripes[i].length -= stripe_end_offset; 6218 6219 if (i == sub_stripes - 1) 6220 stripe_offset = 0; 6221 } else { 6222 stripes[i].length = length; 6223 } 6224 6225 stripe_index++; 6226 if (stripe_index == map->num_stripes) { 6227 stripe_index = 0; 6228 stripe_nr++; 6229 } 6230 } 6231 6232 btrfs_free_chunk_map(map); 6233 return stripes; 6234 out_free_map: 6235 btrfs_free_chunk_map(map); 6236 return ERR_PTR(ret); 6237 } 6238 6239 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6240 { 6241 struct btrfs_block_group *cache; 6242 bool ret; 6243 6244 /* Non zoned filesystem does not use "to_copy" flag */ 6245 if (!btrfs_is_zoned(fs_info)) 6246 return false; 6247 6248 cache = btrfs_lookup_block_group(fs_info, logical); 6249 6250 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6251 6252 btrfs_put_block_group(cache); 6253 return ret; 6254 } 6255 6256 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc, 6257 struct btrfs_dev_replace *dev_replace, 6258 u64 logical, 6259 struct btrfs_io_geometry *io_geom) 6260 { 6261 u64 srcdev_devid = dev_replace->srcdev->devid; 6262 /* 6263 * At this stage, num_stripes is still the real number of stripes, 6264 * excluding the duplicated stripes. 6265 */ 6266 int num_stripes = io_geom->num_stripes; 6267 int max_errors = io_geom->max_errors; 6268 int nr_extra_stripes = 0; 6269 int i; 6270 6271 /* 6272 * A block group which has "to_copy" set will eventually be copied by 6273 * the dev-replace process. We can avoid cloning IO here. 6274 */ 6275 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6276 return; 6277 6278 /* 6279 * Duplicate the write operations while the dev-replace procedure is 6280 * running. Since the copying of the old disk to the new disk takes 6281 * place at run time while the filesystem is mounted writable, the 6282 * regular write operations to the old disk have to be duplicated to go 6283 * to the new disk as well. 6284 * 6285 * Note that device->missing is handled by the caller, and that the 6286 * write to the old disk is already set up in the stripes array. 6287 */ 6288 for (i = 0; i < num_stripes; i++) { 6289 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6290 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6291 6292 if (old->dev->devid != srcdev_devid) 6293 continue; 6294 6295 new->physical = old->physical; 6296 new->dev = dev_replace->tgtdev; 6297 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6298 bioc->replace_stripe_src = i; 6299 nr_extra_stripes++; 6300 } 6301 6302 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6303 ASSERT(nr_extra_stripes <= 2, "nr_extra_stripes=%d", nr_extra_stripes); 6304 /* 6305 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6306 * replace. 6307 * If we have 2 extra stripes, only choose the one with smaller physical. 6308 */ 6309 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6310 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6311 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6312 6313 /* Only DUP can have two extra stripes. */ 6314 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP, 6315 "map_type=%llu", bioc->map_type); 6316 6317 /* 6318 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6319 * The extra stripe would still be there, but won't be accessed. 6320 */ 6321 if (first->physical > second->physical) { 6322 swap(second->physical, first->physical); 6323 swap(second->dev, first->dev); 6324 nr_extra_stripes--; 6325 } 6326 } 6327 6328 io_geom->num_stripes = num_stripes + nr_extra_stripes; 6329 io_geom->max_errors = max_errors + nr_extra_stripes; 6330 bioc->replace_nr_stripes = nr_extra_stripes; 6331 } 6332 6333 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6334 struct btrfs_io_geometry *io_geom) 6335 { 6336 /* 6337 * Stripe_nr is the stripe where this block falls. stripe_offset is 6338 * the offset of this block in its stripe. 6339 */ 6340 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6341 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6342 ASSERT(io_geom->stripe_offset < U32_MAX, 6343 "stripe_offset=%llu", io_geom->stripe_offset); 6344 6345 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6346 unsigned long full_stripe_len = 6347 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6348 6349 /* 6350 * For full stripe start, we use previously calculated 6351 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6352 * STRIPE_LEN. 6353 * 6354 * By this we can avoid u64 division completely. And we have 6355 * to go rounddown(), not round_down(), as nr_data_stripes is 6356 * not ensured to be power of 2. 6357 */ 6358 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6359 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6360 6361 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset, 6362 "raid56_full_stripe_start=%llu full_stripe_len=%lu offset=%llu", 6363 io_geom->raid56_full_stripe_start, full_stripe_len, offset); 6364 ASSERT(io_geom->raid56_full_stripe_start <= offset, 6365 "raid56_full_stripe_start=%llu offset=%llu", 6366 io_geom->raid56_full_stripe_start, offset); 6367 /* 6368 * For writes to RAID56, allow to write a full stripe set, but 6369 * no straddling of stripe sets. 6370 */ 6371 if (io_geom->op == BTRFS_MAP_WRITE) 6372 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6373 } 6374 6375 /* 6376 * For other RAID types and for RAID56 reads, allow a single stripe (on 6377 * a single disk). 6378 */ 6379 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6380 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6381 return U64_MAX; 6382 } 6383 6384 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6385 u64 *length, struct btrfs_io_stripe *dst, 6386 struct btrfs_chunk_map *map, 6387 struct btrfs_io_geometry *io_geom) 6388 { 6389 dst->dev = map->stripes[io_geom->stripe_index].dev; 6390 6391 if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst) 6392 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6393 map->type, 6394 io_geom->stripe_index, dst); 6395 6396 dst->physical = map->stripes[io_geom->stripe_index].physical + 6397 io_geom->stripe_offset + 6398 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6399 return 0; 6400 } 6401 6402 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6403 const struct btrfs_io_stripe *smap, 6404 const struct btrfs_chunk_map *map, 6405 int num_alloc_stripes, 6406 struct btrfs_io_geometry *io_geom) 6407 { 6408 if (!smap) 6409 return false; 6410 6411 if (num_alloc_stripes != 1) 6412 return false; 6413 6414 if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ) 6415 return false; 6416 6417 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1) 6418 return false; 6419 6420 return true; 6421 } 6422 6423 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6424 struct btrfs_io_geometry *io_geom) 6425 { 6426 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6427 io_geom->stripe_nr /= map->num_stripes; 6428 if (io_geom->op == BTRFS_MAP_READ) 6429 io_geom->mirror_num = 1; 6430 } 6431 6432 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6433 struct btrfs_chunk_map *map, 6434 struct btrfs_io_geometry *io_geom, 6435 bool dev_replace_is_ongoing) 6436 { 6437 if (io_geom->op != BTRFS_MAP_READ) { 6438 io_geom->num_stripes = map->num_stripes; 6439 return; 6440 } 6441 6442 if (io_geom->mirror_num) { 6443 io_geom->stripe_index = io_geom->mirror_num - 1; 6444 return; 6445 } 6446 6447 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6448 dev_replace_is_ongoing); 6449 io_geom->mirror_num = io_geom->stripe_index + 1; 6450 } 6451 6452 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6453 struct btrfs_io_geometry *io_geom) 6454 { 6455 if (io_geom->op != BTRFS_MAP_READ) { 6456 io_geom->num_stripes = map->num_stripes; 6457 return; 6458 } 6459 6460 if (io_geom->mirror_num) { 6461 io_geom->stripe_index = io_geom->mirror_num - 1; 6462 return; 6463 } 6464 6465 io_geom->mirror_num = 1; 6466 } 6467 6468 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6469 struct btrfs_chunk_map *map, 6470 struct btrfs_io_geometry *io_geom, 6471 bool dev_replace_is_ongoing) 6472 { 6473 u32 factor = map->num_stripes / map->sub_stripes; 6474 int old_stripe_index; 6475 6476 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6477 io_geom->stripe_nr /= factor; 6478 6479 if (io_geom->op != BTRFS_MAP_READ) { 6480 io_geom->num_stripes = map->sub_stripes; 6481 return; 6482 } 6483 6484 if (io_geom->mirror_num) { 6485 io_geom->stripe_index += io_geom->mirror_num - 1; 6486 return; 6487 } 6488 6489 old_stripe_index = io_geom->stripe_index; 6490 io_geom->stripe_index = find_live_mirror(fs_info, map, 6491 io_geom->stripe_index, 6492 dev_replace_is_ongoing); 6493 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6494 } 6495 6496 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6497 struct btrfs_io_geometry *io_geom, 6498 u64 logical, u64 *length) 6499 { 6500 int data_stripes = nr_data_stripes(map); 6501 6502 /* 6503 * Needs full stripe mapping. 6504 * 6505 * Push stripe_nr back to the start of the full stripe For those cases 6506 * needing a full stripe, @stripe_nr is the full stripe number. 6507 * 6508 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6509 * that can be expensive. Here we just divide @stripe_nr with 6510 * @data_stripes. 6511 */ 6512 io_geom->stripe_nr /= data_stripes; 6513 6514 /* RAID[56] write or recovery. Return all stripes */ 6515 io_geom->num_stripes = map->num_stripes; 6516 io_geom->max_errors = btrfs_chunk_max_errors(map); 6517 6518 /* Return the length to the full stripe end. */ 6519 *length = min(logical + *length, 6520 io_geom->raid56_full_stripe_start + map->start + 6521 btrfs_stripe_nr_to_offset(data_stripes)) - 6522 logical; 6523 io_geom->stripe_index = 0; 6524 io_geom->stripe_offset = 0; 6525 } 6526 6527 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6528 struct btrfs_io_geometry *io_geom) 6529 { 6530 int data_stripes = nr_data_stripes(map); 6531 6532 ASSERT(io_geom->mirror_num <= 1, "mirror_num=%d", io_geom->mirror_num); 6533 /* Just grab the data stripe directly. */ 6534 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6535 io_geom->stripe_nr /= data_stripes; 6536 6537 /* We distribute the parity blocks across stripes. */ 6538 io_geom->stripe_index = 6539 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6540 6541 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6542 io_geom->mirror_num = 1; 6543 } 6544 6545 static void map_blocks_single(const struct btrfs_chunk_map *map, 6546 struct btrfs_io_geometry *io_geom) 6547 { 6548 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6549 io_geom->stripe_nr /= map->num_stripes; 6550 io_geom->mirror_num = io_geom->stripe_index + 1; 6551 } 6552 6553 /* 6554 * Map one logical range to one or more physical ranges. 6555 * 6556 * @length: (Mandatory) mapped length of this run. 6557 * One logical range can be split into different segments 6558 * due to factors like zones and RAID0/5/6/10 stripe 6559 * boundaries. 6560 * 6561 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6562 * which has one or more physical ranges (btrfs_io_stripe) 6563 * recorded inside. 6564 * Caller should call btrfs_put_bioc() to free it after use. 6565 * 6566 * @smap: (Optional) single physical range optimization. 6567 * If the map request can be fulfilled by one single 6568 * physical range, and this is parameter is not NULL, 6569 * then @bioc_ret would be NULL, and @smap would be 6570 * updated. 6571 * 6572 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6573 * value is 0. 6574 * 6575 * Mirror number 0 means to choose any live mirrors. 6576 * 6577 * For non-RAID56 profiles, non-zero mirror_num means 6578 * the Nth mirror. (e.g. mirror_num 1 means the first 6579 * copy). 6580 * 6581 * For RAID56 profile, mirror 1 means rebuild from P and 6582 * the remaining data stripes. 6583 * 6584 * For RAID6 profile, mirror > 2 means mark another 6585 * data/P stripe error and rebuild from the remaining 6586 * stripes.. 6587 */ 6588 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6589 u64 logical, u64 *length, 6590 struct btrfs_io_context **bioc_ret, 6591 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6592 { 6593 struct btrfs_chunk_map *map; 6594 struct btrfs_io_geometry io_geom = { 0 }; 6595 u64 map_offset; 6596 int ret = 0; 6597 int num_copies; 6598 struct btrfs_io_context *bioc = NULL; 6599 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6600 bool dev_replace_is_ongoing = false; 6601 u16 num_alloc_stripes; 6602 u64 max_len; 6603 6604 ASSERT(bioc_ret); 6605 6606 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6607 io_geom.num_stripes = 1; 6608 io_geom.stripe_index = 0; 6609 io_geom.op = op; 6610 6611 map = btrfs_get_chunk_map(fs_info, logical, *length); 6612 if (IS_ERR(map)) 6613 return PTR_ERR(map); 6614 6615 num_copies = btrfs_chunk_map_num_copies(map); 6616 if (io_geom.mirror_num > num_copies) 6617 return -EINVAL; 6618 6619 map_offset = logical - map->start; 6620 io_geom.raid56_full_stripe_start = (u64)-1; 6621 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6622 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6623 io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type); 6624 6625 if (dev_replace->replace_task != current) 6626 down_read(&dev_replace->rwsem); 6627 6628 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6629 /* 6630 * Hold the semaphore for read during the whole operation, write is 6631 * requested at commit time but must wait. 6632 */ 6633 if (!dev_replace_is_ongoing && dev_replace->replace_task != current) 6634 up_read(&dev_replace->rwsem); 6635 6636 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6637 case BTRFS_BLOCK_GROUP_RAID0: 6638 map_blocks_raid0(map, &io_geom); 6639 break; 6640 case BTRFS_BLOCK_GROUP_RAID1: 6641 case BTRFS_BLOCK_GROUP_RAID1C3: 6642 case BTRFS_BLOCK_GROUP_RAID1C4: 6643 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6644 break; 6645 case BTRFS_BLOCK_GROUP_DUP: 6646 map_blocks_dup(map, &io_geom); 6647 break; 6648 case BTRFS_BLOCK_GROUP_RAID10: 6649 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6650 break; 6651 case BTRFS_BLOCK_GROUP_RAID5: 6652 case BTRFS_BLOCK_GROUP_RAID6: 6653 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6654 map_blocks_raid56_write(map, &io_geom, logical, length); 6655 else 6656 map_blocks_raid56_read(map, &io_geom); 6657 break; 6658 default: 6659 /* 6660 * After this, stripe_nr is the number of stripes on this 6661 * device we have to walk to find the data, and stripe_index is 6662 * the number of our device in the stripe array 6663 */ 6664 map_blocks_single(map, &io_geom); 6665 break; 6666 } 6667 if (io_geom.stripe_index >= map->num_stripes) { 6668 btrfs_crit(fs_info, 6669 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6670 io_geom.stripe_index, map->num_stripes); 6671 ret = -EINVAL; 6672 goto out; 6673 } 6674 6675 num_alloc_stripes = io_geom.num_stripes; 6676 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6677 op != BTRFS_MAP_READ) 6678 /* 6679 * For replace case, we need to add extra stripes for extra 6680 * duplicated stripes. 6681 * 6682 * For both WRITE and GET_READ_MIRRORS, we may have at most 6683 * 2 more stripes (DUP types, otherwise 1). 6684 */ 6685 num_alloc_stripes += 2; 6686 6687 /* 6688 * If this I/O maps to a single device, try to return the device and 6689 * physical block information on the stack instead of allocating an 6690 * I/O context structure. 6691 */ 6692 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) { 6693 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6694 if (mirror_num_ret) 6695 *mirror_num_ret = io_geom.mirror_num; 6696 *bioc_ret = NULL; 6697 goto out; 6698 } 6699 6700 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6701 if (!bioc) { 6702 ret = -ENOMEM; 6703 goto out; 6704 } 6705 bioc->map_type = map->type; 6706 bioc->use_rst = io_geom.use_rst; 6707 6708 /* 6709 * For RAID56 full map, we need to make sure the stripes[] follows the 6710 * rule that data stripes are all ordered, then followed with P and Q 6711 * (if we have). 6712 * 6713 * It's still mostly the same as other profiles, just with extra rotation. 6714 */ 6715 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6716 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6717 /* 6718 * For RAID56 @stripe_nr is already the number of full stripes 6719 * before us, which is also the rotation value (needs to modulo 6720 * with num_stripes). 6721 * 6722 * In this case, we just add @stripe_nr with @i, then do the 6723 * modulo, to reduce one modulo call. 6724 */ 6725 bioc->full_stripe_logical = map->start + 6726 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6727 nr_data_stripes(map)); 6728 for (int i = 0; i < io_geom.num_stripes; i++) { 6729 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6730 u32 stripe_index; 6731 6732 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6733 dst->dev = map->stripes[stripe_index].dev; 6734 dst->physical = 6735 map->stripes[stripe_index].physical + 6736 io_geom.stripe_offset + 6737 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6738 } 6739 } else { 6740 /* 6741 * For all other non-RAID56 profiles, just copy the target 6742 * stripe into the bioc. 6743 */ 6744 for (int i = 0; i < io_geom.num_stripes; i++) { 6745 ret = set_io_stripe(fs_info, logical, length, 6746 &bioc->stripes[i], map, &io_geom); 6747 if (ret < 0) 6748 break; 6749 io_geom.stripe_index++; 6750 } 6751 } 6752 6753 if (ret) { 6754 *bioc_ret = NULL; 6755 btrfs_put_bioc(bioc); 6756 goto out; 6757 } 6758 6759 if (op != BTRFS_MAP_READ) 6760 io_geom.max_errors = btrfs_chunk_max_errors(map); 6761 6762 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6763 op != BTRFS_MAP_READ) { 6764 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom); 6765 } 6766 6767 *bioc_ret = bioc; 6768 bioc->num_stripes = io_geom.num_stripes; 6769 bioc->max_errors = io_geom.max_errors; 6770 bioc->mirror_num = io_geom.mirror_num; 6771 6772 out: 6773 if (dev_replace_is_ongoing && dev_replace->replace_task != current) { 6774 lockdep_assert_held(&dev_replace->rwsem); 6775 /* Unlock and let waiting writers proceed */ 6776 up_read(&dev_replace->rwsem); 6777 } 6778 btrfs_free_chunk_map(map); 6779 return ret; 6780 } 6781 6782 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6783 const struct btrfs_fs_devices *fs_devices) 6784 { 6785 if (args->fsid == NULL) 6786 return true; 6787 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6788 return true; 6789 return false; 6790 } 6791 6792 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6793 const struct btrfs_device *device) 6794 { 6795 if (args->missing) { 6796 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6797 !device->bdev) 6798 return true; 6799 return false; 6800 } 6801 6802 if (device->devid != args->devid) 6803 return false; 6804 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6805 return false; 6806 return true; 6807 } 6808 6809 /* 6810 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6811 * return NULL. 6812 * 6813 * If devid and uuid are both specified, the match must be exact, otherwise 6814 * only devid is used. 6815 */ 6816 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6817 const struct btrfs_dev_lookup_args *args) 6818 { 6819 struct btrfs_device *device; 6820 struct btrfs_fs_devices *seed_devs; 6821 6822 if (dev_args_match_fs_devices(args, fs_devices)) { 6823 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6824 if (dev_args_match_device(args, device)) 6825 return device; 6826 } 6827 } 6828 6829 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6830 if (!dev_args_match_fs_devices(args, seed_devs)) 6831 continue; 6832 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6833 if (dev_args_match_device(args, device)) 6834 return device; 6835 } 6836 } 6837 6838 return NULL; 6839 } 6840 6841 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6842 u64 devid, u8 *dev_uuid) 6843 { 6844 struct btrfs_device *device; 6845 unsigned int nofs_flag; 6846 6847 /* 6848 * We call this under the chunk_mutex, so we want to use NOFS for this 6849 * allocation, however we don't want to change btrfs_alloc_device() to 6850 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6851 * places. 6852 */ 6853 6854 nofs_flag = memalloc_nofs_save(); 6855 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6856 memalloc_nofs_restore(nofs_flag); 6857 if (IS_ERR(device)) 6858 return device; 6859 6860 list_add(&device->dev_list, &fs_devices->devices); 6861 device->fs_devices = fs_devices; 6862 fs_devices->num_devices++; 6863 6864 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6865 fs_devices->missing_devices++; 6866 6867 return device; 6868 } 6869 6870 /* 6871 * Allocate new device struct, set up devid and UUID. 6872 * 6873 * @fs_info: used only for generating a new devid, can be NULL if 6874 * devid is provided (i.e. @devid != NULL). 6875 * @devid: a pointer to devid for this device. If NULL a new devid 6876 * is generated. 6877 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6878 * is generated. 6879 * @path: a pointer to device path if available, NULL otherwise. 6880 * 6881 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6882 * on error. Returned struct is not linked onto any lists and must be 6883 * destroyed with btrfs_free_device. 6884 */ 6885 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6886 const u64 *devid, const u8 *uuid, 6887 const char *path) 6888 { 6889 struct btrfs_device *dev; 6890 u64 tmp; 6891 6892 if (WARN_ON(!devid && !fs_info)) 6893 return ERR_PTR(-EINVAL); 6894 6895 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6896 if (!dev) 6897 return ERR_PTR(-ENOMEM); 6898 6899 INIT_LIST_HEAD(&dev->dev_list); 6900 INIT_LIST_HEAD(&dev->dev_alloc_list); 6901 INIT_LIST_HEAD(&dev->post_commit_list); 6902 6903 atomic_set(&dev->dev_stats_ccnt, 0); 6904 btrfs_device_data_ordered_init(dev); 6905 btrfs_extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6906 6907 if (devid) 6908 tmp = *devid; 6909 else { 6910 int ret; 6911 6912 ret = find_next_devid(fs_info, &tmp); 6913 if (ret) { 6914 btrfs_free_device(dev); 6915 return ERR_PTR(ret); 6916 } 6917 } 6918 dev->devid = tmp; 6919 6920 if (uuid) 6921 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6922 else 6923 generate_random_uuid(dev->uuid); 6924 6925 if (path) { 6926 struct rcu_string *name; 6927 6928 name = rcu_string_strdup(path, GFP_KERNEL); 6929 if (!name) { 6930 btrfs_free_device(dev); 6931 return ERR_PTR(-ENOMEM); 6932 } 6933 rcu_assign_pointer(dev->name, name); 6934 } 6935 6936 return dev; 6937 } 6938 6939 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6940 u64 devid, u8 *uuid, bool error) 6941 { 6942 if (error) 6943 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6944 devid, uuid); 6945 else 6946 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6947 devid, uuid); 6948 } 6949 6950 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 6951 { 6952 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6953 6954 return div_u64(map->chunk_len, data_stripes); 6955 } 6956 6957 #if BITS_PER_LONG == 32 6958 /* 6959 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6960 * can't be accessed on 32bit systems. 6961 * 6962 * This function do mount time check to reject the fs if it already has 6963 * metadata chunk beyond that limit. 6964 */ 6965 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6966 u64 logical, u64 length, u64 type) 6967 { 6968 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6969 return 0; 6970 6971 if (logical + length < MAX_LFS_FILESIZE) 6972 return 0; 6973 6974 btrfs_err_32bit_limit(fs_info); 6975 return -EOVERFLOW; 6976 } 6977 6978 /* 6979 * This is to give early warning for any metadata chunk reaching 6980 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6981 * Although we can still access the metadata, it's not going to be possible 6982 * once the limit is reached. 6983 */ 6984 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6985 u64 logical, u64 length, u64 type) 6986 { 6987 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6988 return; 6989 6990 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6991 return; 6992 6993 btrfs_warn_32bit_limit(fs_info); 6994 } 6995 #endif 6996 6997 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6998 u64 devid, u8 *uuid) 6999 { 7000 struct btrfs_device *dev; 7001 7002 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7003 btrfs_report_missing_device(fs_info, devid, uuid, true); 7004 return ERR_PTR(-ENOENT); 7005 } 7006 7007 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 7008 if (IS_ERR(dev)) { 7009 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 7010 devid, PTR_ERR(dev)); 7011 return dev; 7012 } 7013 btrfs_report_missing_device(fs_info, devid, uuid, false); 7014 7015 return dev; 7016 } 7017 7018 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7019 struct btrfs_chunk *chunk) 7020 { 7021 BTRFS_DEV_LOOKUP_ARGS(args); 7022 struct btrfs_fs_info *fs_info = leaf->fs_info; 7023 struct btrfs_chunk_map *map; 7024 u64 logical; 7025 u64 length; 7026 u64 devid; 7027 u64 type; 7028 u8 uuid[BTRFS_UUID_SIZE]; 7029 int index; 7030 int num_stripes; 7031 int ret; 7032 int i; 7033 7034 logical = key->offset; 7035 length = btrfs_chunk_length(leaf, chunk); 7036 type = btrfs_chunk_type(leaf, chunk); 7037 index = btrfs_bg_flags_to_raid_index(type); 7038 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7039 7040 #if BITS_PER_LONG == 32 7041 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7042 if (ret < 0) 7043 return ret; 7044 warn_32bit_meta_chunk(fs_info, logical, length, type); 7045 #endif 7046 7047 map = btrfs_find_chunk_map(fs_info, logical, 1); 7048 7049 /* already mapped? */ 7050 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7051 btrfs_free_chunk_map(map); 7052 return 0; 7053 } else if (map) { 7054 btrfs_free_chunk_map(map); 7055 } 7056 7057 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7058 if (!map) 7059 return -ENOMEM; 7060 7061 map->start = logical; 7062 map->chunk_len = length; 7063 map->num_stripes = num_stripes; 7064 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7065 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7066 map->type = type; 7067 /* 7068 * We can't use the sub_stripes value, as for profiles other than 7069 * RAID10, they may have 0 as sub_stripes for filesystems created by 7070 * older mkfs (<v5.4). 7071 * In that case, it can cause divide-by-zero errors later. 7072 * Since currently sub_stripes is fixed for each profile, let's 7073 * use the trusted value instead. 7074 */ 7075 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7076 map->verified_stripes = 0; 7077 map->stripe_size = btrfs_calc_stripe_length(map); 7078 for (i = 0; i < num_stripes; i++) { 7079 map->stripes[i].physical = 7080 btrfs_stripe_offset_nr(leaf, chunk, i); 7081 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7082 args.devid = devid; 7083 read_extent_buffer(leaf, uuid, (unsigned long) 7084 btrfs_stripe_dev_uuid_nr(chunk, i), 7085 BTRFS_UUID_SIZE); 7086 args.uuid = uuid; 7087 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7088 if (!map->stripes[i].dev) { 7089 map->stripes[i].dev = handle_missing_device(fs_info, 7090 devid, uuid); 7091 if (IS_ERR(map->stripes[i].dev)) { 7092 ret = PTR_ERR(map->stripes[i].dev); 7093 btrfs_free_chunk_map(map); 7094 return ret; 7095 } 7096 } 7097 7098 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7099 &(map->stripes[i].dev->dev_state)); 7100 } 7101 7102 ret = btrfs_add_chunk_map(fs_info, map); 7103 if (ret < 0) { 7104 btrfs_err(fs_info, 7105 "failed to add chunk map, start=%llu len=%llu: %d", 7106 map->start, map->chunk_len, ret); 7107 btrfs_free_chunk_map(map); 7108 } 7109 7110 return ret; 7111 } 7112 7113 static void fill_device_from_item(struct extent_buffer *leaf, 7114 struct btrfs_dev_item *dev_item, 7115 struct btrfs_device *device) 7116 { 7117 unsigned long ptr; 7118 7119 device->devid = btrfs_device_id(leaf, dev_item); 7120 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7121 device->total_bytes = device->disk_total_bytes; 7122 device->commit_total_bytes = device->disk_total_bytes; 7123 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7124 device->commit_bytes_used = device->bytes_used; 7125 device->type = btrfs_device_type(leaf, dev_item); 7126 device->io_align = btrfs_device_io_align(leaf, dev_item); 7127 device->io_width = btrfs_device_io_width(leaf, dev_item); 7128 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7129 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7130 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7131 7132 ptr = btrfs_device_uuid(dev_item); 7133 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7134 } 7135 7136 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7137 u8 *fsid) 7138 { 7139 struct btrfs_fs_devices *fs_devices; 7140 int ret; 7141 7142 lockdep_assert_held(&uuid_mutex); 7143 ASSERT(fsid); 7144 7145 /* This will match only for multi-device seed fs */ 7146 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7147 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7148 return fs_devices; 7149 7150 7151 fs_devices = find_fsid(fsid, NULL); 7152 if (!fs_devices) { 7153 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7154 btrfs_err(fs_info, 7155 "failed to find fsid %pU when attempting to open seed devices", 7156 fsid); 7157 return ERR_PTR(-ENOENT); 7158 } 7159 7160 fs_devices = alloc_fs_devices(fsid); 7161 if (IS_ERR(fs_devices)) 7162 return fs_devices; 7163 7164 fs_devices->seeding = true; 7165 fs_devices->opened = 1; 7166 return fs_devices; 7167 } 7168 7169 /* 7170 * Upon first call for a seed fs fsid, just create a private copy of the 7171 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7172 */ 7173 fs_devices = clone_fs_devices(fs_devices); 7174 if (IS_ERR(fs_devices)) 7175 return fs_devices; 7176 7177 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 7178 if (ret) { 7179 free_fs_devices(fs_devices); 7180 return ERR_PTR(ret); 7181 } 7182 7183 if (!fs_devices->seeding) { 7184 close_fs_devices(fs_devices); 7185 free_fs_devices(fs_devices); 7186 return ERR_PTR(-EINVAL); 7187 } 7188 7189 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7190 7191 return fs_devices; 7192 } 7193 7194 static int read_one_dev(struct extent_buffer *leaf, 7195 struct btrfs_dev_item *dev_item) 7196 { 7197 BTRFS_DEV_LOOKUP_ARGS(args); 7198 struct btrfs_fs_info *fs_info = leaf->fs_info; 7199 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7200 struct btrfs_device *device; 7201 u64 devid; 7202 int ret; 7203 u8 fs_uuid[BTRFS_FSID_SIZE]; 7204 u8 dev_uuid[BTRFS_UUID_SIZE]; 7205 7206 devid = btrfs_device_id(leaf, dev_item); 7207 args.devid = devid; 7208 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7209 BTRFS_UUID_SIZE); 7210 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7211 BTRFS_FSID_SIZE); 7212 args.uuid = dev_uuid; 7213 args.fsid = fs_uuid; 7214 7215 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7216 fs_devices = open_seed_devices(fs_info, fs_uuid); 7217 if (IS_ERR(fs_devices)) 7218 return PTR_ERR(fs_devices); 7219 } 7220 7221 device = btrfs_find_device(fs_info->fs_devices, &args); 7222 if (!device) { 7223 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7224 btrfs_report_missing_device(fs_info, devid, 7225 dev_uuid, true); 7226 return -ENOENT; 7227 } 7228 7229 device = add_missing_dev(fs_devices, devid, dev_uuid); 7230 if (IS_ERR(device)) { 7231 btrfs_err(fs_info, 7232 "failed to add missing dev %llu: %ld", 7233 devid, PTR_ERR(device)); 7234 return PTR_ERR(device); 7235 } 7236 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7237 } else { 7238 if (!device->bdev) { 7239 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7240 btrfs_report_missing_device(fs_info, 7241 devid, dev_uuid, true); 7242 return -ENOENT; 7243 } 7244 btrfs_report_missing_device(fs_info, devid, 7245 dev_uuid, false); 7246 } 7247 7248 if (!device->bdev && 7249 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7250 /* 7251 * this happens when a device that was properly setup 7252 * in the device info lists suddenly goes bad. 7253 * device->bdev is NULL, and so we have to set 7254 * device->missing to one here 7255 */ 7256 device->fs_devices->missing_devices++; 7257 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7258 } 7259 7260 /* Move the device to its own fs_devices */ 7261 if (device->fs_devices != fs_devices) { 7262 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7263 &device->dev_state)); 7264 7265 list_move(&device->dev_list, &fs_devices->devices); 7266 device->fs_devices->num_devices--; 7267 fs_devices->num_devices++; 7268 7269 device->fs_devices->missing_devices--; 7270 fs_devices->missing_devices++; 7271 7272 device->fs_devices = fs_devices; 7273 } 7274 } 7275 7276 if (device->fs_devices != fs_info->fs_devices) { 7277 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7278 if (device->generation != 7279 btrfs_device_generation(leaf, dev_item)) 7280 return -EINVAL; 7281 } 7282 7283 fill_device_from_item(leaf, dev_item, device); 7284 if (device->bdev) { 7285 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7286 7287 if (device->total_bytes > max_total_bytes) { 7288 btrfs_err(fs_info, 7289 "device total_bytes should be at most %llu but found %llu", 7290 max_total_bytes, device->total_bytes); 7291 return -EINVAL; 7292 } 7293 } 7294 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7295 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7296 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7297 device->fs_devices->total_rw_bytes += device->total_bytes; 7298 atomic64_add(device->total_bytes - device->bytes_used, 7299 &fs_info->free_chunk_space); 7300 } 7301 ret = 0; 7302 return ret; 7303 } 7304 7305 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7306 { 7307 struct btrfs_super_block *super_copy = fs_info->super_copy; 7308 struct extent_buffer *sb; 7309 u8 *array_ptr; 7310 unsigned long sb_array_offset; 7311 int ret = 0; 7312 u32 array_size; 7313 u32 cur_offset; 7314 struct btrfs_key key; 7315 7316 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7317 7318 /* 7319 * We allocated a dummy extent, just to use extent buffer accessors. 7320 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7321 * that's fine, we will not go beyond system chunk array anyway. 7322 */ 7323 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7324 if (!sb) 7325 return -ENOMEM; 7326 set_extent_buffer_uptodate(sb); 7327 7328 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7329 array_size = btrfs_super_sys_array_size(super_copy); 7330 7331 array_ptr = super_copy->sys_chunk_array; 7332 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7333 cur_offset = 0; 7334 7335 while (cur_offset < array_size) { 7336 struct btrfs_chunk *chunk; 7337 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr; 7338 u32 len = sizeof(*disk_key); 7339 7340 /* 7341 * The sys_chunk_array has been already verified at super block 7342 * read time. Only do ASSERT()s for basic checks. 7343 */ 7344 ASSERT(cur_offset + len <= array_size); 7345 7346 btrfs_disk_key_to_cpu(&key, disk_key); 7347 7348 array_ptr += len; 7349 sb_array_offset += len; 7350 cur_offset += len; 7351 7352 ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY); 7353 7354 chunk = (struct btrfs_chunk *)sb_array_offset; 7355 ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM); 7356 7357 len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk)); 7358 7359 ASSERT(cur_offset + len <= array_size); 7360 7361 ret = read_one_chunk(&key, sb, chunk); 7362 if (ret) 7363 break; 7364 7365 array_ptr += len; 7366 sb_array_offset += len; 7367 cur_offset += len; 7368 } 7369 clear_extent_buffer_uptodate(sb); 7370 free_extent_buffer_stale(sb); 7371 return ret; 7372 } 7373 7374 /* 7375 * Check if all chunks in the fs are OK for read-write degraded mount 7376 * 7377 * If the @failing_dev is specified, it's accounted as missing. 7378 * 7379 * Return true if all chunks meet the minimal RW mount requirements. 7380 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7381 */ 7382 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7383 struct btrfs_device *failing_dev) 7384 { 7385 struct btrfs_chunk_map *map; 7386 u64 next_start; 7387 bool ret = true; 7388 7389 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7390 /* No chunk at all? Return false anyway */ 7391 if (!map) { 7392 ret = false; 7393 goto out; 7394 } 7395 while (map) { 7396 int missing = 0; 7397 int max_tolerated; 7398 int i; 7399 7400 max_tolerated = 7401 btrfs_get_num_tolerated_disk_barrier_failures( 7402 map->type); 7403 for (i = 0; i < map->num_stripes; i++) { 7404 struct btrfs_device *dev = map->stripes[i].dev; 7405 7406 if (!dev || !dev->bdev || 7407 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7408 dev->last_flush_error) 7409 missing++; 7410 else if (failing_dev && failing_dev == dev) 7411 missing++; 7412 } 7413 if (missing > max_tolerated) { 7414 if (!failing_dev) 7415 btrfs_warn(fs_info, 7416 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7417 map->start, missing, max_tolerated); 7418 btrfs_free_chunk_map(map); 7419 ret = false; 7420 goto out; 7421 } 7422 next_start = map->start + map->chunk_len; 7423 btrfs_free_chunk_map(map); 7424 7425 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7426 } 7427 out: 7428 return ret; 7429 } 7430 7431 static void readahead_tree_node_children(struct extent_buffer *node) 7432 { 7433 int i; 7434 const int nr_items = btrfs_header_nritems(node); 7435 7436 for (i = 0; i < nr_items; i++) 7437 btrfs_readahead_node_child(node, i); 7438 } 7439 7440 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7441 { 7442 struct btrfs_root *root = fs_info->chunk_root; 7443 struct btrfs_path *path; 7444 struct extent_buffer *leaf; 7445 struct btrfs_key key; 7446 struct btrfs_key found_key; 7447 int ret; 7448 int slot; 7449 int iter_ret = 0; 7450 u64 total_dev = 0; 7451 u64 last_ra_node = 0; 7452 7453 path = btrfs_alloc_path(); 7454 if (!path) 7455 return -ENOMEM; 7456 7457 /* 7458 * uuid_mutex is needed only if we are mounting a sprout FS 7459 * otherwise we don't need it. 7460 */ 7461 mutex_lock(&uuid_mutex); 7462 7463 /* 7464 * It is possible for mount and umount to race in such a way that 7465 * we execute this code path, but open_fs_devices failed to clear 7466 * total_rw_bytes. We certainly want it cleared before reading the 7467 * device items, so clear it here. 7468 */ 7469 fs_info->fs_devices->total_rw_bytes = 0; 7470 7471 /* 7472 * Lockdep complains about possible circular locking dependency between 7473 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7474 * used for freeze procection of a fs (struct super_block.s_writers), 7475 * which we take when starting a transaction, and extent buffers of the 7476 * chunk tree if we call read_one_dev() while holding a lock on an 7477 * extent buffer of the chunk tree. Since we are mounting the filesystem 7478 * and at this point there can't be any concurrent task modifying the 7479 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7480 */ 7481 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7482 path->skip_locking = 1; 7483 7484 /* 7485 * Read all device items, and then all the chunk items. All 7486 * device items are found before any chunk item (their object id 7487 * is smaller than the lowest possible object id for a chunk 7488 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7489 */ 7490 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7491 key.type = 0; 7492 key.offset = 0; 7493 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7494 struct extent_buffer *node = path->nodes[1]; 7495 7496 leaf = path->nodes[0]; 7497 slot = path->slots[0]; 7498 7499 if (node) { 7500 if (last_ra_node != node->start) { 7501 readahead_tree_node_children(node); 7502 last_ra_node = node->start; 7503 } 7504 } 7505 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7506 struct btrfs_dev_item *dev_item; 7507 dev_item = btrfs_item_ptr(leaf, slot, 7508 struct btrfs_dev_item); 7509 ret = read_one_dev(leaf, dev_item); 7510 if (ret) 7511 goto error; 7512 total_dev++; 7513 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7514 struct btrfs_chunk *chunk; 7515 7516 /* 7517 * We are only called at mount time, so no need to take 7518 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7519 * we always lock first fs_info->chunk_mutex before 7520 * acquiring any locks on the chunk tree. This is a 7521 * requirement for chunk allocation, see the comment on 7522 * top of btrfs_chunk_alloc() for details. 7523 */ 7524 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7525 ret = read_one_chunk(&found_key, leaf, chunk); 7526 if (ret) 7527 goto error; 7528 } 7529 } 7530 /* Catch error found during iteration */ 7531 if (iter_ret < 0) { 7532 ret = iter_ret; 7533 goto error; 7534 } 7535 7536 /* 7537 * After loading chunk tree, we've got all device information, 7538 * do another round of validation checks. 7539 */ 7540 if (total_dev != fs_info->fs_devices->total_devices) { 7541 btrfs_warn(fs_info, 7542 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7543 btrfs_super_num_devices(fs_info->super_copy), 7544 total_dev); 7545 fs_info->fs_devices->total_devices = total_dev; 7546 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7547 } 7548 if (btrfs_super_total_bytes(fs_info->super_copy) < 7549 fs_info->fs_devices->total_rw_bytes) { 7550 btrfs_err(fs_info, 7551 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7552 btrfs_super_total_bytes(fs_info->super_copy), 7553 fs_info->fs_devices->total_rw_bytes); 7554 ret = -EINVAL; 7555 goto error; 7556 } 7557 ret = 0; 7558 error: 7559 mutex_unlock(&uuid_mutex); 7560 7561 btrfs_free_path(path); 7562 return ret; 7563 } 7564 7565 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7566 { 7567 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7568 struct btrfs_device *device; 7569 int ret = 0; 7570 7571 mutex_lock(&fs_devices->device_list_mutex); 7572 list_for_each_entry(device, &fs_devices->devices, dev_list) 7573 device->fs_info = fs_info; 7574 7575 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7576 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7577 device->fs_info = fs_info; 7578 ret = btrfs_get_dev_zone_info(device, false); 7579 if (ret) 7580 break; 7581 } 7582 7583 seed_devs->fs_info = fs_info; 7584 } 7585 mutex_unlock(&fs_devices->device_list_mutex); 7586 7587 return ret; 7588 } 7589 7590 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7591 const struct btrfs_dev_stats_item *ptr, 7592 int index) 7593 { 7594 u64 val; 7595 7596 read_extent_buffer(eb, &val, 7597 offsetof(struct btrfs_dev_stats_item, values) + 7598 ((unsigned long)ptr) + (index * sizeof(u64)), 7599 sizeof(val)); 7600 return val; 7601 } 7602 7603 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7604 struct btrfs_dev_stats_item *ptr, 7605 int index, u64 val) 7606 { 7607 write_extent_buffer(eb, &val, 7608 offsetof(struct btrfs_dev_stats_item, values) + 7609 ((unsigned long)ptr) + (index * sizeof(u64)), 7610 sizeof(val)); 7611 } 7612 7613 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7614 struct btrfs_path *path) 7615 { 7616 struct btrfs_dev_stats_item *ptr; 7617 struct extent_buffer *eb; 7618 struct btrfs_key key; 7619 int item_size; 7620 int i, ret, slot; 7621 7622 if (!device->fs_info->dev_root) 7623 return 0; 7624 7625 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7626 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7627 key.offset = device->devid; 7628 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7629 if (ret) { 7630 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7631 btrfs_dev_stat_set(device, i, 0); 7632 device->dev_stats_valid = 1; 7633 btrfs_release_path(path); 7634 return ret < 0 ? ret : 0; 7635 } 7636 slot = path->slots[0]; 7637 eb = path->nodes[0]; 7638 item_size = btrfs_item_size(eb, slot); 7639 7640 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7641 7642 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7643 if (item_size >= (1 + i) * sizeof(__le64)) 7644 btrfs_dev_stat_set(device, i, 7645 btrfs_dev_stats_value(eb, ptr, i)); 7646 else 7647 btrfs_dev_stat_set(device, i, 0); 7648 } 7649 7650 device->dev_stats_valid = 1; 7651 btrfs_dev_stat_print_on_load(device); 7652 btrfs_release_path(path); 7653 7654 return 0; 7655 } 7656 7657 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7658 { 7659 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7660 struct btrfs_device *device; 7661 struct btrfs_path *path = NULL; 7662 int ret = 0; 7663 7664 path = btrfs_alloc_path(); 7665 if (!path) 7666 return -ENOMEM; 7667 7668 mutex_lock(&fs_devices->device_list_mutex); 7669 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7670 ret = btrfs_device_init_dev_stats(device, path); 7671 if (ret) 7672 goto out; 7673 } 7674 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7675 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7676 ret = btrfs_device_init_dev_stats(device, path); 7677 if (ret) 7678 goto out; 7679 } 7680 } 7681 out: 7682 mutex_unlock(&fs_devices->device_list_mutex); 7683 7684 btrfs_free_path(path); 7685 return ret; 7686 } 7687 7688 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7689 struct btrfs_device *device) 7690 { 7691 struct btrfs_fs_info *fs_info = trans->fs_info; 7692 struct btrfs_root *dev_root = fs_info->dev_root; 7693 struct btrfs_path *path; 7694 struct btrfs_key key; 7695 struct extent_buffer *eb; 7696 struct btrfs_dev_stats_item *ptr; 7697 int ret; 7698 int i; 7699 7700 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7701 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7702 key.offset = device->devid; 7703 7704 path = btrfs_alloc_path(); 7705 if (!path) 7706 return -ENOMEM; 7707 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7708 if (ret < 0) { 7709 btrfs_warn_in_rcu(fs_info, 7710 "error %d while searching for dev_stats item for device %s", 7711 ret, btrfs_dev_name(device)); 7712 goto out; 7713 } 7714 7715 if (ret == 0 && 7716 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7717 /* need to delete old one and insert a new one */ 7718 ret = btrfs_del_item(trans, dev_root, path); 7719 if (ret != 0) { 7720 btrfs_warn_in_rcu(fs_info, 7721 "delete too small dev_stats item for device %s failed %d", 7722 btrfs_dev_name(device), ret); 7723 goto out; 7724 } 7725 ret = 1; 7726 } 7727 7728 if (ret == 1) { 7729 /* need to insert a new item */ 7730 btrfs_release_path(path); 7731 ret = btrfs_insert_empty_item(trans, dev_root, path, 7732 &key, sizeof(*ptr)); 7733 if (ret < 0) { 7734 btrfs_warn_in_rcu(fs_info, 7735 "insert dev_stats item for device %s failed %d", 7736 btrfs_dev_name(device), ret); 7737 goto out; 7738 } 7739 } 7740 7741 eb = path->nodes[0]; 7742 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7743 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7744 btrfs_set_dev_stats_value(eb, ptr, i, 7745 btrfs_dev_stat_read(device, i)); 7746 out: 7747 btrfs_free_path(path); 7748 return ret; 7749 } 7750 7751 /* 7752 * called from commit_transaction. Writes all changed device stats to disk. 7753 */ 7754 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7755 { 7756 struct btrfs_fs_info *fs_info = trans->fs_info; 7757 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7758 struct btrfs_device *device; 7759 int stats_cnt; 7760 int ret = 0; 7761 7762 mutex_lock(&fs_devices->device_list_mutex); 7763 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7764 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7765 if (!device->dev_stats_valid || stats_cnt == 0) 7766 continue; 7767 7768 7769 /* 7770 * There is a LOAD-LOAD control dependency between the value of 7771 * dev_stats_ccnt and updating the on-disk values which requires 7772 * reading the in-memory counters. Such control dependencies 7773 * require explicit read memory barriers. 7774 * 7775 * This memory barriers pairs with smp_mb__before_atomic in 7776 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7777 * barrier implied by atomic_xchg in 7778 * btrfs_dev_stats_read_and_reset 7779 */ 7780 smp_rmb(); 7781 7782 ret = update_dev_stat_item(trans, device); 7783 if (!ret) 7784 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7785 } 7786 mutex_unlock(&fs_devices->device_list_mutex); 7787 7788 return ret; 7789 } 7790 7791 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7792 { 7793 btrfs_dev_stat_inc(dev, index); 7794 7795 if (!dev->dev_stats_valid) 7796 return; 7797 btrfs_err_rl_in_rcu(dev->fs_info, 7798 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7799 btrfs_dev_name(dev), 7800 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7801 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7802 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7803 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7804 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7805 } 7806 7807 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7808 { 7809 int i; 7810 7811 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7812 if (btrfs_dev_stat_read(dev, i) != 0) 7813 break; 7814 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7815 return; /* all values == 0, suppress message */ 7816 7817 btrfs_info_in_rcu(dev->fs_info, 7818 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7819 btrfs_dev_name(dev), 7820 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7821 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7822 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7823 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7824 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7825 } 7826 7827 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7828 struct btrfs_ioctl_get_dev_stats *stats) 7829 { 7830 BTRFS_DEV_LOOKUP_ARGS(args); 7831 struct btrfs_device *dev; 7832 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7833 int i; 7834 7835 mutex_lock(&fs_devices->device_list_mutex); 7836 args.devid = stats->devid; 7837 dev = btrfs_find_device(fs_info->fs_devices, &args); 7838 mutex_unlock(&fs_devices->device_list_mutex); 7839 7840 if (!dev) { 7841 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7842 return -ENODEV; 7843 } else if (!dev->dev_stats_valid) { 7844 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7845 return -ENODEV; 7846 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7847 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7848 if (stats->nr_items > i) 7849 stats->values[i] = 7850 btrfs_dev_stat_read_and_reset(dev, i); 7851 else 7852 btrfs_dev_stat_set(dev, i, 0); 7853 } 7854 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7855 current->comm, task_pid_nr(current)); 7856 } else { 7857 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7858 if (stats->nr_items > i) 7859 stats->values[i] = btrfs_dev_stat_read(dev, i); 7860 } 7861 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7862 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7863 return 0; 7864 } 7865 7866 /* 7867 * Update the size and bytes used for each device where it changed. This is 7868 * delayed since we would otherwise get errors while writing out the 7869 * superblocks. 7870 * 7871 * Must be invoked during transaction commit. 7872 */ 7873 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7874 { 7875 struct btrfs_device *curr, *next; 7876 7877 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING, "state=%d" , trans->state); 7878 7879 if (list_empty(&trans->dev_update_list)) 7880 return; 7881 7882 /* 7883 * We don't need the device_list_mutex here. This list is owned by the 7884 * transaction and the transaction must complete before the device is 7885 * released. 7886 */ 7887 mutex_lock(&trans->fs_info->chunk_mutex); 7888 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7889 post_commit_list) { 7890 list_del_init(&curr->post_commit_list); 7891 curr->commit_total_bytes = curr->disk_total_bytes; 7892 curr->commit_bytes_used = curr->bytes_used; 7893 } 7894 mutex_unlock(&trans->fs_info->chunk_mutex); 7895 } 7896 7897 /* 7898 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7899 */ 7900 int btrfs_bg_type_to_factor(u64 flags) 7901 { 7902 const int index = btrfs_bg_flags_to_raid_index(flags); 7903 7904 return btrfs_raid_array[index].ncopies; 7905 } 7906 7907 7908 7909 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7910 u64 chunk_offset, u64 devid, 7911 u64 physical_offset, u64 physical_len) 7912 { 7913 struct btrfs_dev_lookup_args args = { .devid = devid }; 7914 struct btrfs_chunk_map *map; 7915 struct btrfs_device *dev; 7916 u64 stripe_len; 7917 bool found = false; 7918 int ret = 0; 7919 int i; 7920 7921 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 7922 if (!map) { 7923 btrfs_err(fs_info, 7924 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7925 physical_offset, devid); 7926 ret = -EUCLEAN; 7927 goto out; 7928 } 7929 7930 stripe_len = btrfs_calc_stripe_length(map); 7931 if (physical_len != stripe_len) { 7932 btrfs_err(fs_info, 7933 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7934 physical_offset, devid, map->start, physical_len, 7935 stripe_len); 7936 ret = -EUCLEAN; 7937 goto out; 7938 } 7939 7940 /* 7941 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 7942 * space. Although kernel can handle it without problem, better to warn 7943 * the users. 7944 */ 7945 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7946 btrfs_warn(fs_info, 7947 "devid %llu physical %llu len %llu inside the reserved space", 7948 devid, physical_offset, physical_len); 7949 7950 for (i = 0; i < map->num_stripes; i++) { 7951 if (map->stripes[i].dev->devid == devid && 7952 map->stripes[i].physical == physical_offset) { 7953 found = true; 7954 if (map->verified_stripes >= map->num_stripes) { 7955 btrfs_err(fs_info, 7956 "too many dev extents for chunk %llu found", 7957 map->start); 7958 ret = -EUCLEAN; 7959 goto out; 7960 } 7961 map->verified_stripes++; 7962 break; 7963 } 7964 } 7965 if (!found) { 7966 btrfs_err(fs_info, 7967 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7968 physical_offset, devid); 7969 ret = -EUCLEAN; 7970 } 7971 7972 /* Make sure no dev extent is beyond device boundary */ 7973 dev = btrfs_find_device(fs_info->fs_devices, &args); 7974 if (!dev) { 7975 btrfs_err(fs_info, "failed to find devid %llu", devid); 7976 ret = -EUCLEAN; 7977 goto out; 7978 } 7979 7980 if (physical_offset + physical_len > dev->disk_total_bytes) { 7981 btrfs_err(fs_info, 7982 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7983 devid, physical_offset, physical_len, 7984 dev->disk_total_bytes); 7985 ret = -EUCLEAN; 7986 goto out; 7987 } 7988 7989 if (dev->zone_info) { 7990 u64 zone_size = dev->zone_info->zone_size; 7991 7992 if (!IS_ALIGNED(physical_offset, zone_size) || 7993 !IS_ALIGNED(physical_len, zone_size)) { 7994 btrfs_err(fs_info, 7995 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7996 devid, physical_offset, physical_len); 7997 ret = -EUCLEAN; 7998 goto out; 7999 } 8000 } 8001 8002 out: 8003 btrfs_free_chunk_map(map); 8004 return ret; 8005 } 8006 8007 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8008 { 8009 struct rb_node *node; 8010 int ret = 0; 8011 8012 read_lock(&fs_info->mapping_tree_lock); 8013 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 8014 struct btrfs_chunk_map *map; 8015 8016 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 8017 if (map->num_stripes != map->verified_stripes) { 8018 btrfs_err(fs_info, 8019 "chunk %llu has missing dev extent, have %d expect %d", 8020 map->start, map->verified_stripes, map->num_stripes); 8021 ret = -EUCLEAN; 8022 goto out; 8023 } 8024 } 8025 out: 8026 read_unlock(&fs_info->mapping_tree_lock); 8027 return ret; 8028 } 8029 8030 /* 8031 * Ensure that all dev extents are mapped to correct chunk, otherwise 8032 * later chunk allocation/free would cause unexpected behavior. 8033 * 8034 * NOTE: This will iterate through the whole device tree, which should be of 8035 * the same size level as the chunk tree. This slightly increases mount time. 8036 */ 8037 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8038 { 8039 struct btrfs_path *path; 8040 struct btrfs_root *root = fs_info->dev_root; 8041 struct btrfs_key key; 8042 u64 prev_devid = 0; 8043 u64 prev_dev_ext_end = 0; 8044 int ret = 0; 8045 8046 /* 8047 * We don't have a dev_root because we mounted with ignorebadroots and 8048 * failed to load the root, so we want to skip the verification in this 8049 * case for sure. 8050 * 8051 * However if the dev root is fine, but the tree itself is corrupted 8052 * we'd still fail to mount. This verification is only to make sure 8053 * writes can happen safely, so instead just bypass this check 8054 * completely in the case of IGNOREBADROOTS. 8055 */ 8056 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8057 return 0; 8058 8059 key.objectid = 1; 8060 key.type = BTRFS_DEV_EXTENT_KEY; 8061 key.offset = 0; 8062 8063 path = btrfs_alloc_path(); 8064 if (!path) 8065 return -ENOMEM; 8066 8067 path->reada = READA_FORWARD; 8068 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8069 if (ret < 0) 8070 goto out; 8071 8072 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8073 ret = btrfs_next_leaf(root, path); 8074 if (ret < 0) 8075 goto out; 8076 /* No dev extents at all? Not good */ 8077 if (ret > 0) { 8078 ret = -EUCLEAN; 8079 goto out; 8080 } 8081 } 8082 while (1) { 8083 struct extent_buffer *leaf = path->nodes[0]; 8084 struct btrfs_dev_extent *dext; 8085 int slot = path->slots[0]; 8086 u64 chunk_offset; 8087 u64 physical_offset; 8088 u64 physical_len; 8089 u64 devid; 8090 8091 btrfs_item_key_to_cpu(leaf, &key, slot); 8092 if (key.type != BTRFS_DEV_EXTENT_KEY) 8093 break; 8094 devid = key.objectid; 8095 physical_offset = key.offset; 8096 8097 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8098 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8099 physical_len = btrfs_dev_extent_length(leaf, dext); 8100 8101 /* Check if this dev extent overlaps with the previous one */ 8102 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8103 btrfs_err(fs_info, 8104 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8105 devid, physical_offset, prev_dev_ext_end); 8106 ret = -EUCLEAN; 8107 goto out; 8108 } 8109 8110 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8111 physical_offset, physical_len); 8112 if (ret < 0) 8113 goto out; 8114 prev_devid = devid; 8115 prev_dev_ext_end = physical_offset + physical_len; 8116 8117 ret = btrfs_next_item(root, path); 8118 if (ret < 0) 8119 goto out; 8120 if (ret > 0) { 8121 ret = 0; 8122 break; 8123 } 8124 } 8125 8126 /* Ensure all chunks have corresponding dev extents */ 8127 ret = verify_chunk_dev_extent_mapping(fs_info); 8128 out: 8129 btrfs_free_path(path); 8130 return ret; 8131 } 8132 8133 /* 8134 * Check whether the given block group or device is pinned by any inode being 8135 * used as a swapfile. 8136 */ 8137 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8138 { 8139 struct btrfs_swapfile_pin *sp; 8140 struct rb_node *node; 8141 8142 spin_lock(&fs_info->swapfile_pins_lock); 8143 node = fs_info->swapfile_pins.rb_node; 8144 while (node) { 8145 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8146 if (ptr < sp->ptr) 8147 node = node->rb_left; 8148 else if (ptr > sp->ptr) 8149 node = node->rb_right; 8150 else 8151 break; 8152 } 8153 spin_unlock(&fs_info->swapfile_pins_lock); 8154 return node != NULL; 8155 } 8156 8157 static int relocating_repair_kthread(void *data) 8158 { 8159 struct btrfs_block_group *cache = data; 8160 struct btrfs_fs_info *fs_info = cache->fs_info; 8161 u64 target; 8162 int ret = 0; 8163 8164 target = cache->start; 8165 btrfs_put_block_group(cache); 8166 8167 sb_start_write(fs_info->sb); 8168 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8169 btrfs_info(fs_info, 8170 "zoned: skip relocating block group %llu to repair: EBUSY", 8171 target); 8172 sb_end_write(fs_info->sb); 8173 return -EBUSY; 8174 } 8175 8176 mutex_lock(&fs_info->reclaim_bgs_lock); 8177 8178 /* Ensure block group still exists */ 8179 cache = btrfs_lookup_block_group(fs_info, target); 8180 if (!cache) 8181 goto out; 8182 8183 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8184 goto out; 8185 8186 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8187 if (ret < 0) 8188 goto out; 8189 8190 btrfs_info(fs_info, 8191 "zoned: relocating block group %llu to repair IO failure", 8192 target); 8193 ret = btrfs_relocate_chunk(fs_info, target); 8194 8195 out: 8196 if (cache) 8197 btrfs_put_block_group(cache); 8198 mutex_unlock(&fs_info->reclaim_bgs_lock); 8199 btrfs_exclop_finish(fs_info); 8200 sb_end_write(fs_info->sb); 8201 8202 return ret; 8203 } 8204 8205 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8206 { 8207 struct btrfs_block_group *cache; 8208 8209 if (!btrfs_is_zoned(fs_info)) 8210 return false; 8211 8212 /* Do not attempt to repair in degraded state */ 8213 if (btrfs_test_opt(fs_info, DEGRADED)) 8214 return true; 8215 8216 cache = btrfs_lookup_block_group(fs_info, logical); 8217 if (!cache) 8218 return true; 8219 8220 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8221 btrfs_put_block_group(cache); 8222 return true; 8223 } 8224 8225 kthread_run(relocating_repair_kthread, cache, 8226 "btrfs-relocating-repair"); 8227 8228 return true; 8229 } 8230 8231 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8232 struct btrfs_io_stripe *smap, 8233 u64 logical) 8234 { 8235 int data_stripes = nr_bioc_data_stripes(bioc); 8236 int i; 8237 8238 for (i = 0; i < data_stripes; i++) { 8239 u64 stripe_start = bioc->full_stripe_logical + 8240 btrfs_stripe_nr_to_offset(i); 8241 8242 if (logical >= stripe_start && 8243 logical < stripe_start + BTRFS_STRIPE_LEN) 8244 break; 8245 } 8246 ASSERT(i < data_stripes, "i=%d data_stripes=%d", i, data_stripes); 8247 smap->dev = bioc->stripes[i].dev; 8248 smap->physical = bioc->stripes[i].physical + 8249 ((logical - bioc->full_stripe_logical) & 8250 BTRFS_STRIPE_LEN_MASK); 8251 } 8252 8253 /* 8254 * Map a repair write into a single device. 8255 * 8256 * A repair write is triggered by read time repair or scrub, which would only 8257 * update the contents of a single device. 8258 * Not update any other mirrors nor go through RMW path. 8259 * 8260 * Callers should ensure: 8261 * 8262 * - Call btrfs_bio_counter_inc_blocked() first 8263 * - The range does not cross stripe boundary 8264 * - Has a valid @mirror_num passed in. 8265 */ 8266 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8267 struct btrfs_io_stripe *smap, u64 logical, 8268 u32 length, int mirror_num) 8269 { 8270 struct btrfs_io_context *bioc = NULL; 8271 u64 map_length = length; 8272 int mirror_ret = mirror_num; 8273 int ret; 8274 8275 ASSERT(mirror_num > 0, "mirror_num=%d", mirror_num); 8276 8277 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8278 &bioc, smap, &mirror_ret); 8279 if (ret < 0) 8280 return ret; 8281 8282 /* The map range should not cross stripe boundary. */ 8283 ASSERT(map_length >= length, "map_length=%llu length=%u", map_length, length); 8284 8285 /* Already mapped to single stripe. */ 8286 if (!bioc) 8287 goto out; 8288 8289 /* Map the RAID56 multi-stripe writes to a single one. */ 8290 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8291 map_raid56_repair_block(bioc, smap, logical); 8292 goto out; 8293 } 8294 8295 ASSERT(mirror_num <= bioc->num_stripes, 8296 "mirror_num=%d num_stripes=%d", mirror_num, bioc->num_stripes); 8297 smap->dev = bioc->stripes[mirror_num - 1].dev; 8298 smap->physical = bioc->stripes[mirror_num - 1].physical; 8299 out: 8300 btrfs_put_bioc(bioc); 8301 ASSERT(smap->dev); 8302 return 0; 8303 } 8304